WorldWideScience

Sample records for regulatory t-cell function

  1. Interleukin-2 and STAT5 in regulatory T cell development and function

    OpenAIRE

    Mahmud, Shawn A.; Manlove, Luke S.; Farrar, Michael A.

    2013-01-01

    Interleukin-2 and its downstream target STAT5 have effects on many aspects of immune function. This has been perhaps best documented in regulatory T cells. In this review we summarize the initial findings supporting a role for IL2 and STAT5 in regulatory T cell development and outline more recent studies describing how this critical signaling pathway entrains regulatory T cell differentiation and affects regulatory T cell function.

  2. PKC-theta in regulatory and effector T-cell functions

    Directory of Open Access Journals (Sweden)

    Vedran eBrezar

    2015-10-01

    Full Text Available One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teff or regulatory (Tregs T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ to the immunological synapse is instrumental for the formation of signalling complexes, that ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the immunological synapse where its formation induces altered signalling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance.This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.

  3. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Ingrid; Birnir, Bryndis

    2006-01-01

    Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflamma......Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS......) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1-TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between...... neurons and T cells results in the conversion of encephalitogenic T cells to CD25+ TGF-beta1+ CTLA-4+ FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4...

  4. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  5. Progranulin facilitates conversion and function of regulatory T cells under inflammatory conditions.

    Directory of Open Access Journals (Sweden)

    Fanhua Wei

    Full Text Available The progranulin (PGRN is known to protect regulatory T cells (Tregs from a negative regulation by TNF-α, and its levels are elevated in various kinds of autoimmune diseases. Whether PGRN directly regulates the conversion of CD4+CD25-T cells into Foxp3-expressing regulatory T cells (iTreg, and whether PGRN affects the immunosuppressive function of Tregs, however, remain unknown. In this study we provide evidences demonstrating that PGRN is able to stimulate the conversion of CD4+CD25-T cells into iTreg in a dose-dependent manner in vitro. In addition, PGRN showed synergistic effects with TGF-β1 on the induction of iTreg. PGRN was required for the immunosuppressive function of Tregs, since PGRN-deficient Tregs have a significant decreased ability to suppress the proliferation of effector T cells (Teff. In addition, PGRN deficiency caused a marked reduction in Tregs number in the course of inflammatory arthritis, although no significant difference was observed in the numbers of Tregs between wild type and PGRN deficient mice during development. Furthermore, PGRN deficiency led to significant upregulation of the Wnt receptor gene Fzd2. Collectively, this study reveals that PGRN directly regulates the numbers and function of Tregs under inflammatory conditions, and provides new insight into the immune regulatory mechanism of PGRN in the pathogenesis of inflammatory and immune-related diseases.

  6. Regulatory T-cells and autoimmunity.

    LENUS (Irish Health Repository)

    Ni Choileain, Niamh

    2012-02-03

    Approximately 20% of the population is affected by autoimmune or inflammatory diseases mediated by an abnormal immune response. A characteristic feature of autoimmune disease is the selective targeting of a single cell type, organ or tissue by certain populations of autoreactive T-cells. Examples of such diseases include rheumatoid arthritis, insulin-dependent diabetes mellitus, and systemic lupus erythematosus (SLE), all of which are characterized by chronic inflammation, tissue destruction and target organ malfunction. Although strong evidence links most autoimmune diseases to specific genes, considerable controversy prevails regarding the role of regulatory T-cell populations in the disease process. These cells are now also believed to play a key role in mediating transplantation tolerance and inhibiting the induction of tumor immunity. Though the concept of therapeutic immune regulation aimed at treating autoimmune pathology has been validated in many animal models, the development of strategies for the treatment of human autoimmune disorders remains in its infancy. The main obstacles to this include the conflicting findings of different model systems, as well as the contrasting functions of regulatory T-cells and cytokines involved in the development of such disorders. This review examines the role of regulatory T-cells in the pathogenesis of autoimmunity and describes the therapeutic potential of these cells for the prevention of immune-mediated pathologies in the future. Although much remains to be learned about such pathologies, a clearer understanding of the mechanisms by which regulatory T-cells function will undoubtedly lead to exciting new possibilities for immunotherapeutics.

  7. Anti-regulatory T cells

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2017-01-01

    responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells—termed anti-regulatory T cells (anti-Tregs)—that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune...... reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells......Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host...

  8. Regulatory function of a novel population of mouse autoantigen-specific Foxp3 regulatory T cells depends on IFN-gamma, NO, and contact with target cells.

    Directory of Open Access Journals (Sweden)

    Cyndi Chen

    Full Text Available BACKGROUND: Both naturally arising Foxp3(+ and antigen-induced Foxp3(- regulatory T cells (Treg play a critical role in regulating immune responses, as well as in preventing autoimmune diseases and graft rejection. It is known that antigen-specific Treg are more potent than polyclonal Treg in suppressing pathogenic immune responses that cause autoimmunity and inflammation. However, difficulty in identifying and isolating a sufficient number of antigen-specific Treg has limited their use in research to elucidate the mechanisms underlying their regulatory function and their potential role in therapy. METHODOLOGY/PRINCIPAL FINDINGS: Using a novel class II MHC tetramer, we have isolated a population of CD4(+ Foxp3(- T cells specific for the autoantigen glutamic acid decarboxylase p286-300 peptide (NR286 T cells from diabetes-resistant non-obese resistant (NOR mice. These Foxp3(- NR286 T cells functioned as Treg that were able to suppress target T cell proliferation in vitro and inhibit type 1 diabetes in animals. Unexpected results from mechanistic studies in vitro showed that their regulatory function was dependent on not only IFN-gamma and nitric oxide, but also on cell contact with target cells. In addition, separating NR286 Treg from target T cells in transwell assays abolished both production of NO and suppression of target T cells, regardless of whether IFN-gamma was produced in cell cultures. Therefore, production of NO, not IFN-gamma, was cell contact dependent, suggesting that NO may function downstream of IFN-gamma in mediating regulatory function of NR286 Treg. CONCLUSIONS/SIGNIFICANCE: These studies identified a unique population of autoantigen-specific Foxp3(- Treg that can exert their regulatory function dependent on not only IFN-gamma and NO but also cell contact with target cells.

  9. Perspectives on Regulatory T Cell Therapies.

    Science.gov (United States)

    Probst-Kepper, Michael; Kröger, Andrea; Garritsen, Henk S P; Buer, Jan

    2009-01-01

    Adoptive transfer in animal models clearly indicate an essential role of CD4+ CD25+ FOXP3+ regulatory T (T(reg)) cells in prevention and treatment of autoimmune and graft-versus-host disease. Thus, T(reg) cell therapies and development of drugs that specifically enhance T(reg) cell function and development represent promising tools to establish dominant tolerance. So far, lack of specific markers to differentiate human T(reg) cells from activated CD4+ CD25+ effector T cells, which also express FOXP3 at different levels, hampered such an approach. Recent identification of the orphan receptor glycoprotein-A repetitions predominant (GARP or LRRC32) as T(reg) cell-specific key molecule that dominantly controls FOXP3 via a positive feedback loop opens up new perspectives for molecular and cellular therapies. This brief review focuses on the role of GARP as a safeguard of a complex regulatory network of human T(reg) cells and its implications for regulatory T cell therapies in autoimmunity and graft-versus-host disease.

  10. The ThPOK transcription factor differentially affects the development and function of self-specific CD8(+) T cells and regulatory CD4(+) T cells.

    Science.gov (United States)

    Twu, Yuh-Ching; Teh, Hung-Sia

    2014-03-01

    The zinc finger transcription factor ThPOK plays a crucial role in CD4 T-cell development and CD4/CD8 lineage decision. In ThPOK-deficient mice, developing T cells expressing MHC class II-restricted T-cell receptors are redirected into the CD8 T-cell lineage. In this study, we investigated whether the ThPOK transgene affected the development and function of two additional types of T cells, namely self-specific CD8 T cells and CD4(+) FoxP3(+) T regulatory cells. Self-specific CD8 T cells are characterized by high expression of CD44, CD122, Ly6C, 1B11 and proliferation in response to either IL-2 or IL-15. The ThPOK transgene converted these self-specific CD8 T cells into CD4 T cells. The converted CD4(+) T cells are no longer self-reactive, lose the characteristics of self-specific CD8 T cells, acquire the properties of conventional CD4 T cells and survive poorly in peripheral lymphoid organs. By contrast, the ThPOK transgene promoted the development of CD4(+) FoxP3(+) regulatory T cells resulting in an increased recovery of CD4(+) FoxP3(+) regulatory T cells that expressed higher transforming growth factor-β-dependent suppressor activity. These studies indicate that the ThPOK transcription factor differentially affects the development and function of self-specific CD8 T cells and CD4(+) FoxP3(+) regulatory T cells. © 2013 John Wiley & Sons Ltd.

  11. Human mesenchymal stromal cells enhance the immunomodulatory function of CD8+CD28− regulatory T cells

    Science.gov (United States)

    Liu, Qiuli; Zheng, Haiqing; Chen, Xiaoyong; Peng, Yanwen; Huang, Weijun; Li, Xiaobo; Li, Gang; Xia, Wenjie; Sun, Qiquan; Xiang, Andy Peng

    2015-01-01

    One important aspect of mesenchymal stromal cells (MSCs)-mediated immunomodulation is the recruitment and induction of regulatory T (Treg) cells. However, we do not yet know whether MSCs have similar effects on the other subsets of Treg cells. Herein, we studied the effects of MSCs on CD8+CD28− Treg cells and found that the MSCs could not only increase the proportion of CD8+CD28− T cells, but also enhance CD8+CD28−T cells' ability of hampering naive CD4+ T-cell proliferation and activation, decreasing the production of IFN-γ by activated CD4+ T cells and inducing the apoptosis of activated CD4+ T cells. Mechanistically, the MSCs affected the functions of the CD8+CD28− T cells partially through moderate upregulating the expression of IL-10 and FasL. The MSCs had no distinct effect on the shift from CD8+CD28+ T cells to CD8+CD28− T cells, but did increase the proportion of CD8+CD28− T cells by reducing their rate of apoptosis. In summary, this study shows that MSCs can enhance the regulatory function of CD8+CD28− Treg cells, shedding new light on MSCs-mediated immune regulation. PMID:25482073

  12. Pretransplantation recipient regulatory T cell suppressive function predicts delayed and slow graft function after kidney transplantation.

    Science.gov (United States)

    Nguyen, Minh-Tri J P; Fryml, Elise; Sahakian, Sossy K; Liu, Shuqing; Michel, Rene P; Lipman, Mark L; Mucsi, Istvan; Cantarovich, Marcelo; Tchervenkov, Jean I; Paraskevas, Steven

    2014-10-15

    Delayed graft function (DGF) and slow graft function (SGF) are a continuous spectrum of ischemia-reperfusion-related acute kidney injury (AKI) that increases the risk for acute rejection and graft loss after kidney transplantation. Regulatory T cells (Tregs) are critical in transplant tolerance and attenuate murine AKI. In this prospective observational cohort study, we evaluated whether pretransplantation peripheral blood recipient Treg frequency and suppressive function are predictors of DGF and SGF after kidney transplantation. Deceased donor kidney transplant recipients (n=53) were divided into AKI (n=37; DGF, n=10; SGF, n=27) and immediate graft function (n=16) groups. Pretransplantation peripheral blood CD4CD25FoxP3 Treg frequency was quantified by flow cytometry. Regulatory T-cell suppressive function was measured by suppression of autologous effector T-cell proliferation by Treg in co-culture. Pretransplantation Treg suppressive function, but not frequency, was decreased in AKI recipients (Paccounting for the effects of cold ischemic time and donor age, Treg suppressive function discriminated DGF from immediate graft function recipients in multinomial logistic regression (odds ratio, 0.77; Pfunction is a potential independent pretransplantation predictor of DGF and SGF.

  13. Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (Treg)-like cells

    International Nuclear Information System (INIS)

    Kim, Joon-Young; Kim, Han-Jong; Hurt, Elaine M.; Chen, Xin; Howard, O.M. Zack; Farrar, William L.

    2007-01-01

    FOXP3, a forkhead transcription factor is essential for the development and function of CD4 + CD25 + regulatory T cells (Tregs). In contrast to conversion of murine naive T cells to Tregs by transduction of Foxp3, it is controversial whether ectopic expression of FOXP3 in human CD4 + T cells is sufficient for acquisition of suppressive activity. Here, we show that retroviral transduction of FOXP3 induces a Treg phenotype in human leukemic CD4 + Jurkat-T cells, evidenced by increased expression of Treg-associated cell surface markers as well as inhibition of cytokine production. Furthermore, FOXP3-transduced Jurkat-T cells suppress the proliferation of human CD4 + CD25 - T cells. Additionally, DNA microarray analysis identifies Treg-related genes regulated by FOXP3. Our study demonstrates that enforced expression of FOXP3 confers Treg-like properties on Jurkat-T cells, which can be a convenient and efficient Treg-like cell model for further study to identify Treg cell surface markers and target genes regulated by FOXP3

  14. GITR ligand-costimulation activates effector and regulatory functions of CD4+ T cells

    International Nuclear Information System (INIS)

    Igarashi, Hanna; Cao, Yujia; Iwai, Hideyuki; Piao, Jinhua; Kamimura, Yosuke; Hashiguchi, Masaaki; Amagasa, Teruo; Azuma, Miyuki

    2008-01-01

    Engagement of glucocorticoid-induced TNFR-related protein (GITR) enables the costimulation of both CD25 - CD4 + effector (Teff) and CD25 + CD4 + regulatory (Treg) cells; however, the effects of GITR-costimulation on Treg function remain controversial. In this study, we examined the effects of GITR ligand (GITRL) binding on the respective functions of CD4 + T cells. GITRL-P815 transfectants efficiently augmented anti-CD3-induced proliferation and cytokine production by Teff cells. Proliferation and IL-10 production in Treg were also enhanced by GITRL transfectants when exogenous IL-2 and stronger CD3 stimulation was provided. Concomitant GITRL-costimulation of Teff and Treg converted the anergic state of Treg into a proliferating state, maintaining and augmenting their function. Thus, GITRL-costimulation augments both effector and regulatory functions of CD4 + T cells. Our results suggest that highly activated and increased ratios of Treg reverse the immune-enhancing effects of GITRL-costimulation in Teff, which may be problematic for therapeutic applications using strong GITR agonists

  15. T-regulatory cells in chronic rejection versus stable grafts.

    Science.gov (United States)

    Al-Wedaie, Fatima; Farid, Eman; Tabbara, Khaled; El-Agroudy, Amgad E; Al-Ghareeb, Sumaya M

    2015-04-01

    Studying regulatory T cells in kidney allograft acceptance versus chronic rejection may help in the understanding of more mechanisms of immune tolerance and, in the future, may enable clinicians to induce immune tolerance and decrease the use of immunosuppressive drugs. The aim of the current study was to evaluate regulatory T cells in kidney transplant patients with stable graft versus transplant with biopsy-proven chronic rejection. The 3 groups that were studied included: kidney transplanted patients with no rejection episodes (n = 43); transplanted patients with biopsy-proven renal rejection (n = 27); and healthy age-matched nontransplanted individuals as controls (n = 42).The percentage of regulatory T cells (CD4+CD25+Foxp3+) in blood was determined by flow cytometry. The regulatory T cell percentage was significantly lower in chronic rejection patients than control or stable graft groups. No significant difference was observed in regulatory T cell percentage between the stable graft and control groups. In the stable graft group, patients on rapamycin had a significantly higher regulatory T cell percentage than patients on cyclosporine. No effect of donor type, infection, or duration after transplant was observed on regulatory T cell percentage. The results of the current study are consistent with previous studies addressing the function of regulatory T cells in inducing immunotolerance after kidney transplant. Considering the established role of regulatory T cells in graft maintenance and our observation of high regulatory T cell percentage in patients receiving rapamycin than cyclosporine, we recommend including rapamycin when possible in immunosuppressive protocols. The findings from the current study on the chronic rejection group support ongoing research of having treatment with regulatory T cells, which may constitute a novel, efficient antirejection therapy in the future.

  16. Phenotypic and Functional Properties of Tumor-Infiltrating Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Gap Ryol Lee

    2017-01-01

    Full Text Available Regulatory T (Treg cells maintain immune homeostasis by suppressing excessive immune responses. Treg cells induce tolerance against self- and foreign antigens, thus preventing autoimmunity, allergy, graft rejection, and fetus rejection during pregnancy. However, Treg cells also infiltrate into tumors and inhibit antitumor immune responses, thus inhibiting anticancer therapy. Depleting whole Treg cell populations in the body to enhance anticancer treatments will produce deleterious autoimmune diseases. Therefore, understanding the precise nature of tumor-infiltrating Treg cells is essential for effectively targeting Treg cells in tumors. This review summarizes recent results relating to Treg cells in the tumor microenvironment, with particular emphasis on their accumulation, phenotypic, and functional properties, and targeting to enhance the efficacy of anticancer treatment.

  17. [TNF-α, diabetes type 1 and regulatory T cells].

    Science.gov (United States)

    Ryba, Monika; Myśliwska, Jolanta

    2010-01-01

    Recent studies on animal models of diabetes as well as human regulatory T cells have shown that α impairs the ability of these cells to prevent the disease. NOD mice treated with α had decreased frequency of regulatory T cells, whereas anti-TNF administration induced the increase in the number of these cells and disease prevention. The action of α also influenced the suppressive potential of Tregs. Increased susceptibility of Tregs to the modulatory effects of α involves signaling through TNFR2 that is expressed on the surface of this cell population. It seems that α neutralization may rescue regulatory T cells and restore their function in several autoimmune and inflammatory diseases. This review describes recent data concerning regulatory T cells in the context of inflammation that is present during diabetes type 1. It describes how TNF contributes to the pathogenesis of type 1 diabetes, what is the impact of this cytokine on regulatory T cell population and therapeutic effects that result from its neutralization in several inflammatory and autoimmune diseases.

  18. Perspectives on Regulatory T Cell Therapies

    OpenAIRE

    Probst-Kepper, Michael; Kröger, Andrea; Garritsen, Henk S.P.; Buer, Jan

    2009-01-01

    Adoptive transfer in animal models clearly indicate an essential role of CD4+ CD25+ FOXP3+ regulatory T (Treg) cells in prevention and treatment of autoimmune and graft-versus-host disease. Thus, Treg cell therapies and development of drugs that specifically enhance Treg cell function and development represent promising tools to establish dominant tolerance. So far, lack of specific markers to differentiate human Treg cells from activated CD4+ CD25+ effector T cells, which also express FOXP3 ...

  19. [CD4 + CD25 + regulatory T cells and their importance to human illnesses].

    Science.gov (United States)

    Kelsen, Jens; Hvas, Christian Lodberg; Agnholt, Jørgen; Dahlerup, Jens F

    2006-01-03

    Regulatory T cells ensure a balanced immune response that is competent both to fight pathogens, at the same time, to recognize self-antigens and commensals as harmless. Regulatory mechanisms are essential in preventing autoimmune disorders but may also facilitate the progression of malignant diseases and the establishment of latent infections via suppression of the host immune response. Regulatory T cells arise in the thymus, and regulatory T cell function can be induced in the periphery, so-called infectious tolerance. An absolute or relative defect in regulatory T cell function may contribute to the development of autoimmune disorders such as rheumatoid arthritis, type 1 diabetes mellitus, multiple sclerosis and chronic inflammatory bowel disease. Regulatory T cell therapy is a tempting strategy for reestablishing the immune balance and thus preventing or reversing these disorders. Reestablishment of the immune balance may be accomplished by adoptive transfer of ex vivo-propagated regulatory T cells or by induction of regulatory functions locally in the organs, although such strategies are in their infancy in human research.

  20. Engineering Specificity and Function of Therapeutic Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Jenny L. McGovern

    2017-11-01

    Full Text Available Adoptive therapy with polyclonal regulatory T cells (Tregs has shown efficacy in suppressing detrimental immune responses in experimental models of autoimmunity and transplantation. The lack of specificity is a potential limitation of Treg therapy, as studies in mice have demonstrated that specificity can enhance the therapeutic potency of Treg. We will discuss that vectors encoding T cell receptors or chimeric antigen receptors provide an efficient gene-transfer platform to reliably produce Tregs of defined antigen specificity, thus overcoming the considerable difficulties of isolating low-frequency, antigen-specific cells that may be present in the natural Treg repertoire. The recent observations that Tregs can polarize into distinct lineages similar to the Th1, Th2, and Th17 subsets described for conventional T helper cells raise the possibility that Th1-, Th2-, and Th17-driven pathology may require matching Treg subsets for optimal therapeutic efficacy. In the future, genetic engineering may serve not only to enforce FoxP3 expression and a stable Treg phenotype but it may also enable the expression of particular transcription factors that drive differentiation into defined Treg subsets. Together, established and recently developed gene transfer and editing tools provide exciting opportunities to produce tailor-made antigen-specific Treg products with defined functional activities.

  1. Trichostatin A Promotes the Generation and Suppressive Functions of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Cristian Doñas

    2013-01-01

    Full Text Available Regulatory T cells are a specific subset of lymphocytes that suppress immune responses and play a crucial role in the maintenance of self-tolerance. They can be generated in the thymus as well as in the periphery through differentiation of naïve CD4+ T cells. The forkhead box P3 transcription factor (Foxp3 is a crucial molecule regulating the generation and function of Tregs. Here we show that the foxp3 gene promoter becomes hyperacetylated in in vitro differentiated Tregs compared to naïve CD4+ T cells. We also show that the histone deacetylase inhibitor TSA stimulated the in vitro differentiation of naïve CD4+ T cells into Tregs and that this induction was accompanied by a global increase in histone H3 acetylation. Importantly, we also demonstrated that Tregs generated in the presence of TSA have phenotypical and functional differences from the Tregs generated in the absence of TSA. Thus, TSA-generated Tregs showed increased suppressive activities, which could potentially be explained by a mechanism involving the ectonucleotidases CD39 and CD73. Our data show that TSA could potentially be used to enhance the differentiation and suppressive function of CD4+Foxp3+ Treg cells.

  2. Environment and T regulatory cells in allergy.

    Science.gov (United States)

    Braga, M; Schiavone, C; Di Gioacchino, G; De Angelis, I; Cavallucci, E; Lazzarin, F; Petrarca, C; Di Gioacchino, M

    2012-04-15

    The central role of T regulatory cells in the responses against harmless environmental antigens has been confirmed by many studies. Impaired T regulatory cell function is implicated in many pathological conditions, particularly allergic diseases. The "hygiene hypothesis" suggests that infections and infestations may play a protective role for allergy, whereas environmental pollutants favor the development of allergic diseases. Developing countries suffer from a variety of infections and are also facing an increasing diffusion of environmental pollutants. In these countries allergies increase in relation to the spreading use of xenobiotics (pesticides, herbicides, pollution, etc.) with a rate similar to those of developed countries, overcoming the protective effects of infections. We review here the main mechanisms of non-self tolerance, with particular regard to relations between T regulatory cell activity, infections and infestations such as helminthiasis, and exposure to environmental xenobiotics with relevant diffusion in developing countries. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Regulatory T Cells: Potential Target in Anticancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Chi-Mou Juang

    2007-09-01

    Full Text Available The concept of regulatory T cells was first described in the early 1970s, and regulatory T cells were called suppressive T cells at that time. Studies that followed have demonstrated that these suppressive T cells negatively regulated tumor immunity and contributed to tumor growth in mice. Despite the importance of these studies, there was extensive skepticism about the existence of these cells, and the concept of suppressive T cells left the center stage of immunologic research for decades. Interleukin-2 receptor α-chain, CD25, was first demonstrated in 1995 to serve as a phenotypic marker for CD4+ regulatory cells. Henceforth, research of regulatory T cells boomed. Regulatory T cells are involved in the pathogenesis of cancer, autoimmune disease, transplantation immunology, and immune tolerance in pregnancy. Recent evidence has demonstrated that regulatory T cellmediated immunosuppression is one of the crucial tumor immune evasion mechanisms and the main obstacle of successful cancer immunotherapy. The mechanism and the potential clinical application of regulatory T cells in cancer immunotherapy are discussed.

  4. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.

    Science.gov (United States)

    Mao, Leilei; Li, Peiying; Zhu, Wen; Cai, Wei; Liu, Zongjian; Wang, Yanling; Luo, Wenli; Stetler, Ruth A; Leak, Rehana K; Yu, Weifeng; Gao, Yanqin; Chen, Jun; Chen, Gang; Hu, Xiaoming

    2017-07-01

    Delayed thrombolytic treatment with recombinant tissue plasminogen activator (tPA) may exacerbate blood-brain barrier breakdown after ischaemic stroke and lead to lethal haemorrhagic transformation. The immune system is a dynamic modulator of stroke response, and excessive immune cell accumulation in the cerebral vasculature is associated with compromised integrity of the blood-brain barrier. We previously reported that regulatory T cells, which function to suppress excessive immune responses, ameliorated blood-brain barrier damage after cerebral ischaemia. This study assessed the impact of regulatory T cells in the context of tPA-induced brain haemorrhage and investigated the underlying mechanisms of action. The number of circulating regulatory T cells in stroke patients was dramatically reduced soon after stroke onset (84 acute ischaemic stroke patients with or without intravenous tPA treatment, compared to 115 age and gender-matched healthy controls). Although stroke patients without tPA treatment gradually repopulated the numbers of circulating regulatory T cells within the first 7 days after stroke, post-ischaemic tPA treatment led to sustained suppression of regulatory T cells in the blood. We then used the murine suture and embolic middle cerebral artery occlusion models of stroke to investigate the therapeutic potential of adoptive regulatory T cell transfer against tPA-induced haemorrhagic transformation. Delayed administration of tPA (10 mg/kg) resulted in haemorrhagic transformation in the ischaemic territory 1 day after ischaemia. When regulatory T cells (2 × 106/mouse) were intravenously administered immediately after delayed tPA treatment in ischaemic mice, haemorrhagic transformation was significantly decreased, and this was associated with improved sensorimotor functions. Blood-brain barrier disruption and tight junction damages were observed in the presence of delayed tPA after stroke, but were mitigated by regulatory T cell transfer. Mechanistic

  5. Galectin-1 is required for the regulatory function of B cells.

    Science.gov (United States)

    Alhabbab, R; Blair, P; Smyth, L A; Ratnasothy, K; Peng, Q; Moreau, A; Lechler, R; Elgueta, R; Lombardi, G

    2018-02-09

    Galectin-1 (Gal-1) is required for the development of B cells in the bone marrow (BM), however very little is known about the contribution of Gal-1 to the development of B cell regulatory function. Here, we report an important role for Gal-1 in the induction of B cells regulatory function. Mice deficient of Gal-1 (Gal-1 -/- ) showed significant loss of Transitional-2 (T2) B cells, previously reported to include IL-10 + regulatory B cells. Gal-1 -/- B cells stimulated in vitro via CD40 molecules have impaired IL-10 and Tim-1 expression, the latter reported to be required for IL-10 production in regulatory B cells, and increased TNF-α expression compared to wild type (WT) B cells. Unlike their WT counterparts, T2 and T1 Gal-1 -/- B cells did not suppress TNF-α expression by CD4 + T cells activated in vitro with allogenic DCs (allo-DCs), nor were they suppressive in vivo, being unable to delay MHC-class I mismatched skin allograft rejection following adoptive transfer. Moreover, T cells stimulated with allo-DCs show an increase in their survival when co-cultured with Gal-1 -/- T2 and MZ B cells compared to WT T2 and MZ B cells. Collectively, these data suggest that Gal-1 contributes to the induction of B cells regulatory function.

  6. Impact of alemtuzumab treatment on the survival and function of human regulatory T cells in vitro

    Science.gov (United States)

    Havari, Evis; Turner, Michael J; Campos-Rivera, Juanita; Shankara, Srinivas; Nguyen, Tri-Hung; Roberts, Bruce; Siders, William; Kaplan, Johanne M

    2014-01-01

    Alemtuzumab is a humanized monoclonal antibody specific for the CD52 protein present at high levels on the surface of B and T lymphocytes. In clinical trials, alemtuzumab has shown a clinical benefit superior to that of interferon-β in relapsing–remitting multiple sclerosis patients. Treatment with alemtuzumab leads to the depletion of circulating lymphocytes followed by a repopulation process characterized by alterations in the number, proportions and properties of lymphocyte subsets. Of particular interest, an increase in the percentage of T cells with a regulatory phenotype (Treg cells) has been observed in multiple sclerosis patients after alemtuzumab. Since Treg cells play an important role in the control of autoimmune responses, the effect of alemtuzumab on Treg cells was further studied in vitro. Alemtuzumab effectively mediated complement-dependent cytolysis of human T lymphocytes and the remaining population was enriched in T cells with a regulatory phenotype. The alemtuzumab-exposed T cells displayed functional regulatory characteristics including anergy to stimulation with allogeneic dendritic cells and ability to suppress the allogeneic response of autologous T cells. Consistent with the observed increase in Treg cell frequency, the CD25hi T-cell population was necessary for the suppressive activity of alemtuzumab-exposed T cells. The mechanism of this suppression was found to be dependent on both cell–cell contact and interleukin-2 consumption. These findings suggest that an alemtuzumab-mediated increase in the proportion of Treg cells may play a role in promoting the long-term efficacy of alemtuzumab in patients with multiple sclerosis. PMID:24116901

  7. Freeze-thaw lysates of Plasmodium falciparum-infected red blood cells induce differentiation of functionally competent regulatory T cells from memory T cells.

    Science.gov (United States)

    Finney, Olivia C; Lawrence, Emma; Gray, Alice P; Njie, Madi; Riley, Eleanor M; Walther, Michael

    2012-07-01

    In addition to naturally occurring regulatory T (nTreg) cells derived from the thymus, functionally competent Treg cells can be induced in vitro from peripheral blood lymphocytes in response to TCR stimulation with cytokine costimulation. Using these artificial stimulation conditions, both naïve as well as memory CD4(+) T cells can be converted into induced Treg (iTreg) cells, but the cellular origin of such iTreg cells in vivo or in response to more physiologic stimulation with pathogen-derived antigens is less clear. Here, we demonstrate that a freeze/thaw lysate of Plasmodium falciparum schizont extract (PfSE) can induce functionally competent Treg cells from peripheral lymphocytes in a time- and dose-dependent manner without the addition of exogenous costimulatory factors. The PfSE-mediated induction of Treg cells required the presence of nTreg cells in the starting culture. Further experiments mixing either memory or naïve T cells with antigen presenting cells and CFSE-labeled Treg cells identified CD4(+) CD45RO(+) CD25(-) memory T cells rather than Treg cells as the primary source of PfSE-induced Treg cells. Taken together, these data suggest that in the presence of nTreg cells, PfSE induces memory T cells to convert into iTreg cells that subsequently expand alongside PfSE-induced effector T cells. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Regulatory T cells in skin.

    Science.gov (United States)

    Ali, Niwa; Rosenblum, Michael D

    2017-11-01

    Foxp3 + CD4 + regulatory T (Treg) cells are a subset of immune cells that function to regulate tissue inflammation. Skin is one of the largest organs and is home to a large proportion of the body's Treg cells. However, relative to other tissues (such as the spleen and gastrointestinal tract) the function of Treg cells in skin is less well defined. Here, we review our understanding of how Treg cells migrate to skin and the cellular and molecular pathways required for their maintenance in this tissue. In addition, we outline what is known about the specialized functions of Treg cells in skin. Namely, the orchestration of stem cell-mediated hair follicle regeneration, augmentation of wound healing, and promoting adaptive immune tolerance to skin commensal microbes. A comprehensive understanding of the biology of skin Treg cells may lead to novel therapeutic approaches that preferentially target these cells to treat cutaneous autoimmunity, skin cancers and disorders of skin regeneration. © 2017 John Wiley & Sons Ltd.

  9. Regulatory T cells and immunity to pathogens.

    Science.gov (United States)

    Rouse, Barry T; Suvas, Susmit

    2007-09-01

    Immune responses to pathogens are modulated by one or more types of cells that perform a regulatory function. Some cells with this function, such as CD4+ Foxp3+ natural regulatory T cells (nTreg), pre-exist prior to infections whereas others may be induced as a consequence of infection (adaptive Treg). With pathogens that have a complex pathogenesis, multiple types of regulatory cells could influence the outcome. One major property of Treg is to help minimize collateral tissue damage that can occur during immune reactions to a chronic infection. The consequence is less damage to the host but in such situations the pathogen is likely to establish persistence. In some cases, a fine balance is established between Treg responses, effector components of immunity and the pathogen. Treg responses to pathogens may also act to hamper the efficacy of immune control. This review discusses these issues as well as the likely mechanisms by which various pathogens can signal the participation of Treg during infection.

  10. Balancing Inflammation: The Link between Th17 and Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Maggie L. Diller

    2016-01-01

    Full Text Available CD4+ T cell compartments in mouse and man are composed of multiple distinct subsets each possessing unique phenotypic and functional characteristics. IL-17-producing CD4+ T cells (Th17 cells represent a distinct subset of the CD4+ T cell lineage. Recent evidence suggests that Th17 cells carry out effector functions similar to cytotoxic CD8+ T cells and play an important role in the clearance of extracellular pathogens and fungi. Th17 cell differentiation and function are closely related to the development and function of regulatory T cells (TREG. The balance between these two cell populations is essential for immune homeostasis and dysregulation of this balance has been implicated in a variety of inflammatory conditions including autoimmunity, allograft rejection, and tumorigenesis. Emerging evidence reports a significant amount of plasticity between the Th17 and regulatory T cell compartments, and the mechanisms by which these cells communicate and influence each other are just beginning to be understood. In this review, we highlight recent findings detailing the mechanisms driving Th17 and TREG plasticity and discuss the biologic consequences of their unique relationship.

  11. Effects of natalizumab treatment on Foxp3+ T regulatory cells.

    Science.gov (United States)

    Stenner, Max-Philipp; Waschbisch, Anne; Buck, Dorothea; Doerck, Sebastian; Einsele, Hermann; Toyka, Klaus V; Wiendl, Heinz

    2008-10-06

    Natalizumab, a monoclonal humanized antibody targeting the alpha-4 chain of very late activation antigen 4 (VLA-4) exerts impressive therapeutic effects in patients with relapsing-remitting multiple sclerosis. Our objective was to study impacts of Natalizumab therapy on Foxp3+ T regulatory cells (Tregs) in multiple sclerosis (MS) patients. A combined approach of in vitro and ex vivo experiments using T cells isolated from the peripheral blood of healthy donors and Natalizumab treated MS patients was chosen. We determined binding of Natalizumab and its effects on the frequency, transmigratory behaviour and suppressive function of Tregs. Binding of Natalizumab and expression of CD49d (alpha-4 chain of VLA-4) differed between non-regulatory and regulatory cells. Albeit Foxp3+ Tregs had lower levels of CD49d, Natalizumab blocked the transmigration of Foxp3+ Tregs similar to non-regulatory T cells. The frequency of peripheral blood Tregs was unaffected by Natalizumab treatment. Natalizumab does not alter the suppressive capacity of CD4+CD25(high)CD127(low)Foxp3+ Tregs under in vitro conditions. Furthermore, the impaired function of Tregs in MS patients is not restored by Natalizumab treatment. We provide a first detailed analysis of Natalizumab effects on the regulatory T cell population. Our prospective study shows that Foxp3+ Tregs express lower levels of VLA-4 and bind less Natalizumab. We further the understanding of the mechanisms of action of Natalizumab by demonstrating that unlike other immunomodulatory drugs the beneficial therapeutic effects of the monoclonal antibody are largely independent of alterations in Treg frequency or function.

  12. FoxP3+ regulatory T cells are distinct from leukemia cells in HTLV-1-associated adult T-cell leukemia.

    Science.gov (United States)

    Toulza, Frederic; Nosaka, Kisato; Takiguchi, Masafumi; Pagliuca, Tony; Mitsuya, Hiroaki; Tanaka, Yuetsu; Taylor, Graham P; Bangham, Charles R M

    2009-11-15

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATLL). It has been postulated that ATLL cells might act as regulatory T cells (T(regs)) which, in common with ATLL cells, express both CD25 and FoxP3, and so contribute to the severe immune suppression typical of ATLL. We report here that the frequency of CD25(+) cells varied independently of the frequency of FoxP3(+) cells in both a cross-sectional study and in a longitudinal study of 2 patients with chronic ATLL. Furthermore, the capacity of ATLL cells to suppress proliferation of heterologous CD4(+)CD25(-) cells correlated with the frequency of CD4(+) FoxP3(+) cells but was independent of CD25 expression. Finally, the frequency of CD4(+)FoxP3(+) cells was inversely correlated with the lytic activity of HTLV-1-specific CTLs in patients with ATLL. We conclude that ATLL is not a tumor of FoxP3(+) regulatory T cells, and that a population of FoxP3(+) cells distinct from ATLL cells has regulatory functions and may impair the cell-mediated immune response to HTLV-1 in patients with ATLL.

  13. Airway function, inflammation and regulatory T cell function in subjects in asthma remission.

    Science.gov (United States)

    Boulet, Louis-Philippe; Turcott, Hélène; Plante, Sophie; Chakir, Jamila

    2012-01-01

    Factors associated with asthma remission need to be determined, particularly when remission occurs in adulthood. To evaluate airway responsiveness and inflammation in adult patients in asthma remission compared with adults with mild, persistent symptomatic asthma. Adenosine monophosphate and methacholine responsiveness were evaluated in 26 patients in complete remission of asthma, 16 patients in symptomatic remission of asthma, 29 mild asthmatic patients and 15 healthy controls. Blood sampling and induced sputum were also obtained to measure inflammatory parameters. Perception of breathlessness at 20% fall in forced expiratory volume in 1 s was similar among groups. In subjects with symptomatic remission of asthma, responsiveness to adenosine monophosphate and methacholine was intermediate between mild asthma and complete asthma remission, with the latter group similar to controls. Asthma remission was associated with a shorter duration of disease. Blood immunoglobulin E levels were significantly increased in the asthma group, and blood eosinophils were significantly elevated in the complete asthma remission, symptomatic remission and asthma groups compared with controls. The suppressive function of regulatory T cells was lower in asthma and remission groups compared with controls. A continuum of asthma remission was observed, with patients in complete asthma remission presenting features similar to controls, while patients in symptomatic asthma remission appeared to be in an intermediate state between complete asthma remission and symptomatic asthma. Remission was associated with a shorter disease duration. Despite remission of asthma, a decreased suppressor function of regulatory T cells was observed, which may predispose patients to future recurrence of the disease.

  14. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  15. Unexpected T cell regulatory activity of anti-histone H1 autoantibody: Its mode of action in regulatory T cell-dependent and -independent manners

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Yuki [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Kawamoto, Seiji, E-mail: skawa@hiroshima-u.ac.jp [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Katayama, Akiko [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Nakano, Toshiaki [Liver Transplantation Program, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Yamanaka, Yasushi; Takahashi, Miki [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Shimada, Yayoi; Chiang, Kuei-Chen [Kazusa Institute for Drug Discovery, Josai International University, Kisarazu (Japan); Ohmori, Naoya [Kazusa Institute for Drug Discovery, Josai International University, Kisarazu (Japan); Faculty of Nursing, Josai International University, Togane (Japan); Aki, Tsunehiro [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Goto, Takeshi; Sato, Shuji [Kazusa Institute for Drug Discovery, Josai International University, Kisarazu (Japan); Faculty of Nursing, Josai International University, Togane (Japan); Goto, Shigeru [Liver Transplantation Program, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Iwao Hospital, Yufuin (Japan); Chen, Chao-Long [Liver Transplantation Program, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Ono, Kazuhisa [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan)

    2013-02-08

    Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Here we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4{sup +}Foxp3{sup +} Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings.

  16. Unexpected T cell regulatory activity of anti-histone H1 autoantibody: Its mode of action in regulatory T cell-dependent and -independent manners

    International Nuclear Information System (INIS)

    Takaoka, Yuki; Kawamoto, Seiji; Katayama, Akiko; Nakano, Toshiaki; Yamanaka, Yasushi; Takahashi, Miki; Shimada, Yayoi; Chiang, Kuei-Chen; Ohmori, Naoya; Aki, Tsunehiro; Goto, Takeshi; Sato, Shuji; Goto, Shigeru; Chen, Chao-Long; Ono, Kazuhisa

    2013-01-01

    Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Here we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4 + Foxp3 + Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings

  17. Thymopoiesis and regulatory T cells in healthy children and adolescents

    Directory of Open Access Journals (Sweden)

    Maria Izabel Arismendi

    2012-01-01

    Full Text Available OBJECTIVES: The purpose of this study was to investigate the association between T cell receptor excision circle levels in peripheral blood mononuclear cells and regulatory T cells that co-express CD25 and Foxp3 in healthy children and adolescents of different ages. MATERIALS AND METHODS: The quantification of signal-joint T-cell receptor excision circle levels in the genomic DNA of peripheral blood mononuclear cells was performed using real-time quantitative PCR. The analysis of CD4, CD8, CD25, and Foxp3 expression was performed using flow cytometry. RESULTS: Ninety-five healthy controls (46 females and 49 males ranging in age from 1 to 18 years were analyzed. The mean T-cell receptor excision circle count in all individuals was 89.095¡36.790 T-cell receptor excision circles per microgram of DNA. There was an inverse correlation between T-cell receptor excision circles counts and age (r = -0.846; p<0.001 as well as between the proportion of CD4+CD25+Foxp3+ T cells and age (r = -0.467; p = 0.04. In addition, we observed a positive correlation between the amount of CD4+CD25+Foxp3+ T cells and the amount of Tcell receptor excision circles per microgram of DNA in individuals of all ages (r = -0.529; p = 0.02. CONCLUSIONS: In this study, we observed a decrease in the thymic function with age based on the fact that the level of T-cell receptor excision circles in the peripheral blood positively correlated with the proportion of regulatory T cells in healthy children and adolescents. These findings indicate that although T-cell receptor excision circles and regulatory T cells levels decrease with age, homeostasis of the immune system and relative regulatory T cells population levels are maintained in the peripheral blood.

  18. Effects of natalizumab treatment on Foxp3+ T regulatory cells.

    Directory of Open Access Journals (Sweden)

    Max-Philipp Stenner

    Full Text Available BACKGROUND: Natalizumab, a monoclonal humanized antibody targeting the alpha-4 chain of very late activation antigen 4 (VLA-4 exerts impressive therapeutic effects in patients with relapsing-remitting multiple sclerosis. Our objective was to study impacts of Natalizumab therapy on Foxp3+ T regulatory cells (Tregs in multiple sclerosis (MS patients. METHODOLOGY: A combined approach of in vitro and ex vivo experiments using T cells isolated from the peripheral blood of healthy donors and Natalizumab treated MS patients was chosen. We determined binding of Natalizumab and its effects on the frequency, transmigratory behaviour and suppressive function of Tregs. PRINCIPAL FINDINGS: Binding of Natalizumab and expression of CD49d (alpha-4 chain of VLA-4 differed between non-regulatory and regulatory cells. Albeit Foxp3+ Tregs had lower levels of CD49d, Natalizumab blocked the transmigration of Foxp3+ Tregs similar to non-regulatory T cells. The frequency of peripheral blood Tregs was unaffected by Natalizumab treatment. Natalizumab does not alter the suppressive capacity of CD4+CD25(highCD127(lowFoxp3+ Tregs under in vitro conditions. Furthermore, the impaired function of Tregs in MS patients is not restored by Natalizumab treatment. CONCLUSIONS: We provide a first detailed analysis of Natalizumab effects on the regulatory T cell population. Our prospective study shows that Foxp3+ Tregs express lower levels of VLA-4 and bind less Natalizumab. We further the understanding of the mechanisms of action of Natalizumab by demonstrating that unlike other immunomodulatory drugs the beneficial therapeutic effects of the monoclonal antibody are largely independent of alterations in Treg frequency or function.

  19. Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer.

    Science.gov (United States)

    Hadaschik, Boris; Su, Yun; Huter, Eva; Ge, Yingzi; Hohenfellner, Markus; Beckhove, Philipp

    2012-04-01

    Immunotherapy is a promising approach in an effort to control castration resistant prostate cancer. We characterized tumor antigen reactive T cells in patients with prostate cancer and analyzed the suppression of antitumor responses by regulatory T cells. Peripheral blood samples were collected from 57 patients with histologically confirmed prostate cancer, 8 patients with benign prostatic hyperplasia and 16 healthy donors. Peripheral blood mononuclear cells were isolated and antigen specific interferon-γ secretion of isolated T cells was analyzed by enzyme-linked immunospot assay. T cells were functionally characterized and T-cell responses before and after regulatory T-cell depletion were compared. As test tumor antigens, a panel of 11 long synthetic peptides derived from a total of 8 tumor antigens was used, including prostate specific antigen and prostatic acid phosphatase. In patients with prostate cancer we noted a 74.5% effector T-cell response rate compared with only 25% in patients with benign prostatic hyperplasia and 31% in healthy donors. In most patients 2 or 3 tumor antigens were recognized. Comparing various disease stages there was a clear increase in the immune response against prostate specific antigens from intermediate to high risk tumors and castration resistant disease. Regulatory T-cell depletion led to a significant boost in effector T-cell responses against prostate specific antigen and prostatic acid phosphatase. Tumor specific effector T cells were detected in most patients with prostate cancer, especially those with castration resistant prostate cancer. Since effector T-cell responses against prostate specific antigens strongly increased after regulatory T-cell depletion, our results indicate that immunotherapy efficacy could be enhanced by decreasing regulatory T cells. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    NARCIS (Netherlands)

    A.U. Engela (Anja); C.C. Baan (Carla); A. Peeters (Anna); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We

  1. Thymic versus induced regulatory T cells – who regulates the regulators?

    Directory of Open Access Journals (Sweden)

    Giovanni Antonio Maria Povoleri

    2013-06-01

    Full Text Available Physiological health must balance immunological responsiveness against foreign pathogens with tolerance towards self-components and commensals. Disruption of this balance causes autoimmune diseases/chronic inflammation, in case of excessive immune responses, and persistent infection/immunodeficiency if regulatory components are overactive. This homeostasis occurs at two different levels: at a resting state to prevent autoimmune disease, as autoreactive effector T-cells (Teffs are only partially deleted in the thymus, and during inflammation to prevent excessive tissue injury, contract the immune response and enable tissue repair. Adaptive immune cells with regulatory function (regulatory T-cells are essential to control Teffs. Two sets of regulatory T cell are required to achieve the desired control: those emerging de novo from embryonic/neonatal thymus (thymic or tTregs, whose function is to control autoreactive Teffs to prevent autoimmune diseases, and those induced in the periphery (peripheral or pTregs to acquire regulatory phenotype in response to pathogens/inflammation. The differentiation mechanisms of these cells determine their commitment to lineage and plasticity towards other phenotypes. tTregs, expressing high levels of IL-2 receptor alpha chain (CD25, and the transcription factor Foxp3, are the most important, since mutations or deletions in these genes cause fatal autoimmune diseases in both mice and men. In the periphery, instead, Foxp3+ pTregs can be induced from naïve precursors in response to environmental signals. Here, we discuss molecular signatures and induction processes, mechanisms and sites of action, lineage stability and differentiating characteristics of both Foxp3+ and Foxp3- populations of regulatory T cells, derived from the thymus or induced peripherally. We relate these predicates to programs of cell-based therapy for the treatment of autoimmune diseases and induction of tolerance to transplants.

  2. Characterization of γδ regulatory T cells from peripheral blood in patients with multiple myeloma

    International Nuclear Information System (INIS)

    Ma, Yongyong; Lei, Huyi; Tan, Jie; Xuan, Li; Wu, Xiuli; Liu, Qifa

    2016-01-01

    γδ regulatory T cells are able to inhibit the activation and function of T cells involved in antigen-specific immune responses. This study aimed to investigate the potential role of γδ regulatory T cells in inhibiting anti-tumor immune responses in patients diagnosed as multiple myeloma (MM). We measured the levels of γδ T cells, the distribution and clonally amplified TCR Vγ and VδT cells in peripheral blood of healthy donors, patients recently diagnosed with MM, and MM patients in remission cohorts. In addition, we evaluated the ability of γδ regulatory T cells to inhibit the proliferation of CD4+CD25- T cells and detected the expression of immunoregulatory-associated molecules. We found that the levels of γδ regulatory T cells from the peripheral blood in patients of MM were significantly higher than those in healthy donors. Comparison of γδT regulatory cells function in MM and healthy donors showed similarly inhibitory effects on the proliferation of T cells. Additionally, TLR8 expression level increased significantly in MM patients compared to healthy donors, while the expression levels of Foxp3, CD25, CTLA4, GITR, GATA3 and Tbet in MM patients and healthy donors showed no significant difference. Taken together, our study reveals the potential role of γδ regulatory T cells in inhibiting anti-tumor immune responses in MM patients.

  3. Genomewide analyses of pathogenic and regulatory T cells of NOD ...

    Indian Academy of Sciences (India)

    DANG SUN

    1School of Life Sciences, Tsinghua University, Qinghuayuan Road, Beijing 100084, People's Republic of China. 2Alliance ... Reestablishing a well-balanced population of regulatory T cells (Tregs) .... Definition of CpG methylation peaks: Log2 ratios between ..... How these eight genes work in T cell function differentiation.

  4. Genomewide analyses of pathogenic and regulatory T cells of NOD ...

    Indian Academy of Sciences (India)

    Reestablishing a well-balanced population of regulatory T cells (Tregs) and pathogenic T cells (Tpaths) is necessary for diabetic patients to regain glucose control. However, the molecular mechanisms modulating functional differentiation of Tpaths and Tregs remain unclear. In this study, we anal- ysed the gene expression ...

  5. TLR5 signaling enhances the proliferation of human allogeneic CD40-activated B cell induced CD4hiCD25+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Ping-Lung Chan

    Full Text Available Although diverse functions of different toll-like receptors (TLR on human natural regulatory T cells have been demonstrated recently, the role of TLR-related signals on human induced regulatory T cells remain elusive. Previously our group developed an ex vivo high-efficient system in generating human alloantigen-specific CD4(hiCD25(+ regulatory T cells from naïve CD4(+CD25(- T cells using allogeneic CD40-activated B cells as stimulators. In this study, we investigated the role of TLR5-related signals on the generation and function of these novel CD4(hiCD25(+ regulatory T cells. It was found that induced CD4(hiCD25(+ regulatory T cells expressed an up-regulated level of TLR5 compared to their precursors. The blockade of TLR5 using anti-TLR5 antibodies during the co-culture decreased CD4(hiCD25(+ regulatory T cells proliferation by induction of S phase arrest. The S phase arrest was associated with reduced ERK1/2 phosphorylation. However, TLR5 blockade did not decrease the CTLA-4, GITR and FOXP3 expressions, and the suppressive function of CD4(hiCD25(+ regulatory T cells. In conclusion, we discovered a novel function of TLR5-related signaling in enhancing the proliferation of CD4(hiCD25(+ regulatory T cells by promoting S phase progress but not involved in the suppressive function of human CD40-activated B cell-induced CD4(hiCD25(+ regulatory T cells, suggesting a novel role of TLR5-related signals in the generation of induced regulatory T cells.

  6. Andrographolide Ameliorate Rheumatoid Arthritis by Promoting the Development of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Muhaimin Rifa’i

    2010-10-01

    Full Text Available Andrographolide is important material present in Andrographis paniculata. This material can promote T cell to develop into regulatory T cell, CD4+CD25+. CD4+CD25+ regulatory T (Treg cells, a component of the innate immune response, which play a key role in the maintenance of self-tolerance, have become the focus of numerous studies over the last decade. These cells have the potential to be exploited to treat autoimmune disease. These cells inhibit the immune response in an Ag-nonspecific manner, interacting with other T cells. These T cell populations actively control the properties of other immune cells by suppressing their functional activity to prevent autoimmunity but also influence the immune response to allergens as well as against tumor cells and pathogens. In this experiment we showed that active compound from Andrographis paniculata namely andrographolide can induce active regulatory T cell that has an efficacy to cure rheumatoid arthritis mice model.

  7. The Importance of the Nurse Cells and Regulatory Cells in the Control of T Lymphocyte Responses

    Directory of Open Access Journals (Sweden)

    María Guadalupe Reyes García

    2013-01-01

    Full Text Available T lymphocytes from the immune system are bone marrow-derived cells whose development and activities are carefully supervised by two sets of accessory cells. In the thymus, the immature young T lymphocytes are engulfed by epithelial “nurse cells” and retained in vacuoles, where most of them (95% are negatively selected and removed when they have an incomplete development or express high affinity autoreactive receptors. The mature T lymphocytes that survive to this selection process leave the thymus and are controlled in the periphery by another subpopulation of accessory cells called “regulatory cells,” which reduce any excessive immune response and the risk of collateral injuries to healthy tissues. By different times and procedures, nurse cells and regulatory cells control both the development and the functions of T lymphocyte subpopulations. Disorders in the T lymphocytes development and migration have been observed in some parasitic diseases, which disrupt the thymic microenvironment of nurse cells. In other cases, parasites stimulate rather than depress the functions of regulatory T cells decreasing T-mediated host damages. This paper is a short review regarding some features of these accessory cells and their main interactions with T immature and mature lymphocytes. The modulatory role that neurotransmitters and hormones play in these interactions is also revised.

  8. Regulatory T cells: immune suppression and beyond

    OpenAIRE

    Wan, Yisong Y

    2010-01-01

    Foxp3-expressing regulatory T cells (Tregs) were originally identified as critical in maintaining self-tolerance and immune homeostasis. The immunosuppressive functions of Tregs are widely acknowledged and have been extensively studied. Recent studies have revealed many diverse roles of Tregs in shaping the immune system and the inflammatory response. This review will discuss our efforts as well as the efforts of others towards understanding the multifaceted function of Treg...

  9. Cross-talk between cd1d-restricted nkt cells and γδ cells in t regulatory cell response

    Directory of Open Access Journals (Sweden)

    Huber Sally A

    2011-01-01

    Full Text Available Abstract CD1d is a non-classical major histocompatibility class 1-like molecule which primarily presents either microbial or endogenous glycolipid antigens to T cells involved in innate immunity. Natural killer T (NKT cells and a subpopulation of γδ T cells expressing the Vγ4 T cell receptor (TCR recognize CD1d. NKT and Vγ4 T cells function in the innate immune response via rapid activation subsequent to infection and secrete large quantities of cytokines that both help control infection and modulate the developing adaptive immune response. T regulatory cells represent one cell population impacted by both NKT and Vγ4 T cells. This review discusses the evidence that NKT cells promote T regulatory cell activation both through direct interaction of NKT cell and dendritic cells and through NKT cell secretion of large amounts of TGFβ, IL-10 and IL-2. Recent studies have shown that CD1d-restricted Vγ4 T cells, in contrast to NKT cells, selectively kill T regulatory cells through a caspase-dependent mechanism. Vγ4 T cell elimination of the T regulatory cell population allows activation of autoimmune CD8+ effector cells leading to severe cardiac injury in a coxsackievirus B3 (CVB3 myocarditis model in mice. CD1d-restricted immunity can therefore lead to either immunosuppression or autoimmunity depending upon the type of innate effector dominating during the infection.

  10. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis.

    Science.gov (United States)

    Ferri, Silvia; Longhi, Maria Serena; De Molo, Chiara; Lalanne, Claudine; Muratori, Paolo; Granito, Alessandro; Hussain, Munther J; Ma, Yun; Lenzi, Marco; Mieli-Vergani, Giorgina; Bianchi, Francesco B; Vergani, Diego; Muratori, Luigi

    2010-09-01

    Immunotolerance is maintained by regulatory T cells (Tregs), including CD4(+)CD25(hi), CD8(+)CD28(-), gammadelta, and CD3(+)CD56(+) [natural killer T (NKT)] cells. CD4(+)CD25(hi) cells are impaired in children with autoimmune hepatitis (AIH). Little is known about Tregs in adults with AIH. The aim of this study was to investigate the frequency and function of Treg subsets in adult patients with AIH during periods of active disease and remission. Forty-seven AIH patients (16 with active disease and 31 in remission) and 28 healthy controls were studied. Flow cytometry was used to evaluate surface markers and function-related intracellular molecules in gammadelta, CD8(+)CD28(-), NKT, and CD4(+)CD25(hi) cells. CD4(+)CD25(hi) T cell function was determined by the ability to suppress proliferation and interferon gamma (IFN-gamma) production by CD4(+)CD25(-) target cells. Liver forkhead box P3-positive (FOXP3(+)) cells were sought by immunohistochemistry. In AIH patients, particularly during active disease, CD4(+)CD25(hi) T cells were fewer, expressed lower levels of FOXP3, and were less effective at inhibiting target cell proliferation versus healthy controls. Moreover, although the numbers of CD8(+)CD28(-) T cells were similar in AIH patients and healthy controls, NKT cells were numerically reduced, especially during active disease, and produced lower quantities of the immunoregulatory cytokine interleukin-4 versus controls. In contrast, gammadelta T cells in AIH patients were more numerous versus healthy controls and had an inverted Vdelta1/Vdelta2 ratio and higher IFN-gamma and granzyme B production; the latter was correlated to biochemical indices of liver damage. There were few FOXP3(+) cells within the portal tract inflammatory infiltrate. Our data show that the defect in immunoregulation in adult AIH is complex, and gammadelta T cells are likely to be effectors of liver damage.

  11. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression.

    Science.gov (United States)

    Wang, Rui; Wan, Qi; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya

    2008-07-16

    Regulatory T (T(reg)) cells control immune activation and maintain tolerance. How T(regs) mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32), which within T cells is specifically expressed in T(regs) activated through the T cell receptor (TCR). Ectopic expression of GARP in human naïve T (T(N)) cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N) cells induced expression of T(reg) master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg) cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.

  12. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression.

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2008-07-01

    Full Text Available Regulatory T (T(reg cells control immune activation and maintain tolerance. How T(regs mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32, which within T cells is specifically expressed in T(regs activated through the T cell receptor (TCR. Ectopic expression of GARP in human naïve T (T(N cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N cells induced expression of T(reg master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.

  13. Regulatory T Cells in Human Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Dong-Jun Peng

    2012-01-01

    Full Text Available Multiple layers of suppressive components including regulatory T (TReg cells, suppressive antigen-presenting cells, and inhibitory cytokines form suppressive networks in the ovarian cancer microenvironment. It has been demonstrated that as a major suppressive element, TReg cells infiltrate tumor, interact with several types of immune cells, and mediate immune suppression through different molecular and cellular mechanisms. In this paper, we focus on human ovarian cancer and will discuss the nature of TReg cells including their subsets, trafficking, expansion, and function. We will briefly review the development of manipulation of TReg cells in preclinical and clinical settings.

  14. Regulatory T cell frequencies and phenotypes following anti-viral vaccination

    NARCIS (Netherlands)

    de Wolf, A Charlotte M T; van Aalst, Susan; Ludwig, Irene S; Bodinham, Caroline L; Lewis, David J; van der Zee, Ruurd; van Eden, Willem; Broere, Femke

    2017-01-01

    Regulatory T cells (Treg) function in the prevention of excessive inflammation and maintenance of immunological homeostasis. However, these cells may also interfere with resolution of infections or with immune reactions following vaccination. Effects of Treg on vaccine responses are nowadays

  15. Increased T-regulatory cells within lymphocyte follicles in moderate COPD

    DEFF Research Database (Denmark)

    Plumb, J; Smyth, L J C; Adams, H R

    2009-01-01

    Lymphoid follicles in the lung parenchyma are a characteristic feature of chronic obstructive pulmonary disease (COPD). There are reports of altered CD4 T-regulatory cell numbers in COPD lungs, but the location of these cells within COPD lung tissue specific follicles has not been investigated......, as well as lymphoid clusters lacking organisation. The percentage of CD4 cells that were T-regulatory cells were significantly increased (p = 0.02) within COPD (16%) follicles compared with smokers (10%) and nonsmokers (8%). In contrast, there was no change (p>0.05) in the percentage of T-regulatory cells...... in clusters or the subepithelium between groups. Lymphoid follicles in COPD patients have increased T-regulatory cells. Therefore, T-regulatory activity may be altered within COPD lymphoid follicles....

  16. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis

    Science.gov (United States)

    McNally, Alice; Hill, Geoffrey R.; Sparwasser, Tim; Thomas, Ranjeny; Steptoe, Raymond J.

    2011-01-01

    CD4+CD25+ regulatory T cells (Treg) play a crucial role in the regulation of immune responses. Although many mechanisms of Treg suppression in vitro have been described, the mechanisms by which Treg modulate CD8+ T cell differentiation and effector function in vivo are more poorly defined. It has been proposed, in many instances, that modulation of cytokine homeostasis could be an important mechanism by which Treg regulate adaptive immunity; however, direct experimental evidence is sparse. Here we demonstrate that CD4+CD25+ Treg, by critically regulating IL-2 homeostasis, modulate CD8+ T-cell effector differentiation. Expansion and effector differentiation of CD8+ T cells is promoted by autocrine IL-2 but, by competing for IL-2, Treg limit CD8+ effector differentiation. Furthermore, a regulatory loop exists between Treg and CD8+ effector T cells, where IL-2 produced during CD8+ T-cell effector differentiation promotes Treg expansion. PMID:21502514

  17. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis.

    Science.gov (United States)

    Chae, Wook-Jin; Park, Jong-Hyun; Henegariu, Octavian; Yilmaz, Saliha; Hao, Liming; Bothwell, Alfred L M

    2017-10-01

    Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3 + regulatory T (Treg) cells use Dickkopf-1 (DKK-1) to regulate T-cell-mediated tolerance in the T-cell-mediated autoimmune colitis model. Treg cells from DKK-1 hypomorphic doubleridge mice failed to control CD4 + T-cell proliferation, resulting in CD4 T-cell-mediated autoimmune colitis. Thymus-derived Treg cells showed a robust expression of DKK-1 but not in naive or effector CD4 T cells. DKK-1 expression in Foxp3 + Treg cells was further increased upon T-cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3 + Treg cells expressed DKK-1 in the cell membrane and the functional inhibition of DKK-1 using DKK-1 monoclonal antibody abrogated the suppressor function of Foxp3 + Treg cells. DKK-1 expression was dependent on de novo protein synthesis and regulated by the mitogen-activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane-bound DKK-1 as a novel Treg-derived mediator to maintain immunological tolerance in T-cell-mediated autoimmune colitis. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  18. Tolerogenic dendritic cells for regulatory T cell induction in man

    Directory of Open Access Journals (Sweden)

    Verena eRaker

    2015-11-01

    Full Text Available Dendritic cells are (DC highly specialized professional antigen-presenting cells (APC that regulate immune responses, maintaining the balance between tolerance and immunity. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, inhibition of memory T cell responses, T cell anergy and induction of regulatory T cells. These properties have led to the analysis of human tolerogenic DC as a therapeutic strategy for induction or re-establishment of tolerance. In the recent years, numerous protocols for the generation of human tolerogenic DC have been developed and their tolerogenic mechanisms, including induction of regulatory T cells, are relatively well understood. Phase I trials have been conducted in autoimmune disease, with results that emphasize the feasibility and safety of treatments with tolerogenic DC. Therefore, the scientific rationale for the use of tolerogenic DC therapy in the fields of transplantation medicine and allergic and autoimmune diseases is strong. This review will give an overview on efforts and protocols to generate human tolerogenic DC with focus on IL-10-modulated DC as inducers of regulatory T cells and discuss their clinical applications and challenges faced in further developing this form of immunotherapy.

  19. Plasticity of regulatory T cells under cytokine pressure.

    Science.gov (United States)

    Diaconu, Carmen C; Neagu, Ana I; Lungu, Răzvan; Tardei, Graţiela; Alexiu, Irina; Bleotu, Coralia; Economescu, Mihaela Chivu; Bumbăcea, Roxana S; Pele, Irina; Bumbăcea, Dragoş

    2010-01-01

    CD4+ T helper (Th) cells have been divided into different subsets as defined by their cytokine products and functions after their activation. CD4+ T cell subsets are continuously discovered and until now Th1, Th2, Th9, Th17, and regulatory T (Treg) cells have been almost unanimously recognized but yet not completely characterized. The selective production of cytokines by each of the subsets is probably the master key of the mechanisms of immune regulation. The cytokine milieu is extremely important on deciding the fate of T cells. Generally, more than one cytokine is needed for differentiating to a particular lineage and just recently it was shown that this status quo of commitment could be challenged. It is well known that cytokines bind to Type I/II cytokine receptors signaling via Janus kinases (JAKs) followed by activation of Signal Transducer and Activator of Transcription (STAT). STAT molecules work together with other transcription factors (Foxp3, RORgammat and RORalpha, T-bet, GATA3, Runx 1, NFAT, etc.) also controlled by cytokines, in modulating the Th phenotype and functions. In this review, we analyze the plasticity of Treg population focusing on the most recent discoveries on how microenvironmental cytokines refine/modify Treg phenotype and function, thus changing their fate.

  20. Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity.

    Science.gov (United States)

    Heit, Antje; Gebhardt, Friedemann; Lahl, Katharina; Neuenhahn, Michael; Schmitz, Frank; Anderl, Florian; Wagner, Hermann; Sparwasser, Tim; Busch, Dirk H; Kastenmüller, Kathrin

    2008-06-01

    Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.

  1. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation.

    Science.gov (United States)

    Li, Qian; Guo, Zhenhong; Xu, Xiongfei; Xia, Sheng; Cao, Xuetao

    2008-10-01

    The tissue microenvironment may affect the development and function of immune cells such as DC. Whether and how the pulmonary stromal microenvironment can affect the development and function of lung DC need to be investigated. Regulatory DC (DCreg) can regulate T-cell response. We wondered whether such regulatory DC exist in the lung and what is the effect of the pulmonary stromal microenvironment on the generation of DCreg. Here we demonstrate that murine pulmonary stromal cells can drive immature DC, which are regarded as being widely distributed in the lung, to proliferate and differentiate into a distinct subset of DCreg, which express high levels of CD11b but low levels of MHC class II (I-A), CD11c, secrete high amounts of IL-10, NO and prostaglandin E2 (PGE2) and suppress T-cell proliferation. The natural counterpart of DCreg in the lung with similar phenotype and regulatory function has been identified. Pulmonary stroma-derived TGF-beta is responsible for the differentiation of immature DC to DCreg, and DCreg-derived PGE2 contributes to their suppression of T-cell proliferation. Moreover, DCreg can induce the generation of CD4+CD25+Foxp3+ Treg. Importantly, infusion with DCreg attenuates T-cell-mediated eosinophilic airway inflammation in vivo. Therefore, the pulmonary microenvironment may drive the generation of DCreg, thus contributing to the maintenance of immune homoeostasis and the control of inflammation in the lung.

  2. CD4+CD25+ regulatory T cells: I. Phenotype and physiology

    DEFF Research Database (Denmark)

    Holm, Thomas Lindebo; Nielsen, Janne; Claesson, Mogens H

    2004-01-01

    it has become increasingly clear that regulatory CD4+CD25+ T cells (Treg cells) play an important role in the maintenance of immunological self-tolerance, and that this cell subset exerts its function by suppressing the proliferation or function of autoreactive T cells. Based on human and murine......The immune system protects us against foreign pathogens. However, if fine discrimination between self and non-self is not carried out properly, immunological attacks against self may be launched leading to autoimmune diseases, estimated to afflict up to 5% of the population. During the last decade...

  3. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    OpenAIRE

    Engela, Anja; Baan, Carla; Peeters, Anna; Weimar, Willem; Hoogduijn, Martin

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We investigated the interaction between both cell types using perirenal adipose tissue-derived MSCs (ASCs) from kidney donors and Tregs from blood bank donors or kidney recipients 6 months after transplant...

  4. Resistin enhances the expansion of regulatory T cells through modulation of dendritic cells

    Directory of Open Access Journals (Sweden)

    Han Seung

    2010-06-01

    Full Text Available Abstract Background Resistin, a member of adipokine family, is known to be involved in the modulation of immune responses including inflammatory activity. Interestingly, resistin is secreted by adipocytes in mice and rats whereas it is secreted by leukocytes in humans. However, the mechanism behind the effect of resistin on the expansion of regulatory T cells (Tregs remains poorly understood. Therefore, we examined regulatory effect of resistin on the induction and cellular modification of Tregs. Results Both protein and mRNA expression of FoxP3, a representative marker of Tregs, increased in a dose-dependent manner when peripheral blood mononuclear cells were treated with resistin. At the same time, resistin had no direct effect on the induction of FoxP3 in CD4+ T cells, suggesting an indirect role through other cells type(s. Since DCs are an important player in the differentiation of T cells, we focused on the role of DCs in the modulation of Tregs by resistin. Resistin suppressed the expression of interferon regulatory factor (IRF-1 and its target cytokines, IL-6, IL-23p19 and IL-12p40, in DCs. Furthermore, FoxP3 expression is increased in CD4+ T cells when co-cultured with DCs and concomitantly treated with resistin. Conclusion Our results suggest that resistin induces expansion of functional Tregs only when co-cultured with DCs.

  5. Induction of Regulatory T Cells by Intravenous Immunoglobulin: A Bridge between Adaptive and Innate Immunity.

    Science.gov (United States)

    Kaufman, Gabriel N; Massoud, Amir H; Dembele, Marieme; Yona, Madelaine; Piccirillo, Ciriaco A; Mazer, Bruce D

    2015-01-01

    Intravenous immunoglobulin (IVIg) is a polyclonal immunoglobulin G preparation with potent immunomodulatory properties. The mode of action of IVIg has been investigated in multiple disease states, with various mechanisms described to account for its benefits. Recent data indicate that IVIg increases both the number and the suppressive capacity of regulatory T cells, a subpopulation of T cells that are essential for immune homeostasis. IVIg alters dendritic cell function, cytokine and chemokine networks, and T lymphocytes, leading to development of regulatory T cells. The ability of IVIg to influence Treg induction has been shown both in animal models and in human diseases. In this review, we discuss data on the potential mechanisms contributing to the interaction between IVIg and the regulatory T-cell compartment.

  6. Helminth-induced regulatory T cells and suppression of allergic responses.

    Science.gov (United States)

    Logan, Jayden; Navarro, Severine; Loukas, Alex; Giacomin, Paul

    2018-05-28

    Infection with helminths has been associated with lower rates of asthma and other allergic diseases. This has been attributed, in part, to the ability of helminths to induce regulatory T cells that suppress inappropriate immune responses to allergens. Recent compelling evidence suggests that helminths may promote regulatory T cell expansion or effector functions through either direct (secretion of excretory/secretory molecules) or indirect mechanisms (regulation of the microbiome). This review will discuss key findings from human immunoepidemiological observations, studies using animal models of disease, and clinical trials with live worm infections, discussing the therapeutic potential for worms and their secreted products for treating allergic inflammation. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  7. Regulatory T cells and B cells: implication on autoimmune diseases

    OpenAIRE

    Wang, Ping; Zheng, Song Guo

    2013-01-01

    The regulatory T (Treg) cells play an important role in the maintenance of homeostasis and the prevention of autoimmune diseases. Although most studies are focusing on the role of Treg cells in T cells and T cells-mediated diseases, these cells also directly affect B cells and other non-T cells. This manuscript updates the role of Treg cells on the B cells and B cell-mediated diseases. In addition, the mechanisms whereby Treg cells suppress B cell responses have been discussed.

  8. The expanding universe of regulatory T cell subsets in cancer.

    Science.gov (United States)

    Gajewski, Thomas F

    2007-08-01

    Evidence has indicated that failed antitumor immunity is dominated by immunosuppressive mechanisms within the tumor microenvironment. In this issue of Immunity, Peng et al. (2007) add to this list by describing tumor-infiltrating gammadelta T cells that have regulatory function.

  9. The Macrophage Galactose-Type C-Type Lectin (MGL Modulates Regulatory T Cell Functions.

    Directory of Open Access Journals (Sweden)

    Ilaria Grazia Zizzari

    Full Text Available Regulatory T cells (Tregs are physiologically designed to prevent autoimmune disease and maintain self-tolerance. In tumour microenvironments, their presence is related to a poor prognosis, and they influence the therapeutic outcome due to their capacity to suppress the immune response by cell-cell contact and to release immunosuppressive cytokines. In this study, we demonstrate that Treg immunosuppressive activity can be modulated by the cross-linking between the CD45RA expressed by Tregs and the C-type lectin MGL. This specific interaction strongly decreases the immunosuppressive activity of Tregs, restoring the proliferative capacity of co-cultured T lymphocytes. This effect can be attributed to changes in CD45RA and TCR signalling through the inhibition of Lck and inactivation of Zap-70, an increase in the Foxp3 methylation status and, ultimately, the reduced production of suppressive cytokines. These results indicate a role of MGL as an immunomodulator within the tumour microenvironment interfering with Treg functions, suggesting its possible use in the design of anticancer vaccines.

  10. MicroRNA 10a marks regulatory T cells

    DEFF Research Database (Denmark)

    Jeker, Lukas T; Zhou, Xuyu; Gershberg, Kseniya

    2012-01-01

    MicroRNAs (miRNAs) are crucial for regulatory T cell (Treg) stability and function. We report that microRNA-10a (miR-10a) is expressed in Tregs but not in other T cells including individual thymocyte subsets. Expression profiling in inbred mouse strains demonstrated that non-obese diabetic (NOD......) mice with a genetic susceptibility for autoimmune diabetes have lower Treg-specific miR-10a expression than C57BL/6J autoimmune resistant mice. Inhibition of miR-10a expression in vitro leads to reduced FoxP3 expression levels and miR-10a expression is lower in unstable "exFoxP3" T cells. Unstable...... and phenotype of natural Treg nor the capacity of conventional T cells to induce FoxP3 in response to TGFβ, RA, or a combination of the two. Thus, miR-10a is selectively expressed in Treg but inhibition by antagomiRs or genetic ablation resulted in discordant effects on FoxP3....

  11. REGULATORY T-CELLS IN CHRONIC LYMPHOCYTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    Giovanni D'arena

    2012-08-01

    Full Text Available Regulatory T-cells (Tregs constitute a small subset of cells that are actively involved in maintaining self-tolerance, in immune homeostasis and in antitumor immunity. They are thought to play a significant role in the progression of cancer and are generally increased in patient with chronic lymphocytic leukemia (CLL. Their number correlates with more aggressive disease status and is predictive of the time to treatment, as well. Moreover, it is now clear that dysregulation in Tregs cell frequency and/or function may result in a plethora of autoimmune diseases, including multiple sclerosis, type 1 diabetes mellitus, myasthenia gravis, systemic lupus erythematosis, autoimmune lymphoproliferative disorders, rheumatoid arthritis, and psoriasis. Efforts are made aiming to develop approaches to deplete Tregs or inhibit their function in either cancer and autoimmune disorders.

  12. Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation.

    Science.gov (United States)

    Ali, Niwa; Zirak, Bahar; Rodriguez, Robert Sanchez; Pauli, Mariela L; Truong, Hong-An; Lai, Kevin; Ahn, Richard; Corbin, Kaitlin; Lowe, Margaret M; Scharschmidt, Tiffany C; Taravati, Keyon; Tan, Madeleine R; Ricardo-Gonzalez, Roberto R; Nosbaum, Audrey; Bertolini, Marta; Liao, Wilson; Nestle, Frank O; Paus, Ralf; Cotsarelis, George; Abbas, Abul K; Rosenblum, Michael D

    2017-06-01

    The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatorycells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of T regs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Regulation of CD8+ T cell responses to retinal antigen by local FoxP3+ regulatory T cells

    Directory of Open Access Journals (Sweden)

    Scott W McPherson

    2012-06-01

    Full Text Available While pathogenic CD4 T cells are well known mediators of autoimmune uveoretinitis, CD8 T cells can also be uveitogenic. Since preliminary studies indicated that C57BL/6 mice were minimally susceptible to autoimmune uveoretinitis induction by CD8 T cells, the basis of the retinal disease resistance was sought. Mice that express β-galactosidase (βgal on a retina-specific promoter (arrβgal mice were backcrossed to mice expressing green fluorescent protein and diphtheria toxin receptor under control of the Foxp3 promoter (Foxp3-DTR/GFP mice, and to T cell receptor transgenic mice that produce βgal specific CD8 T cells (BG1 mice. These mice were used to explore the role of regulatory T cells in the resistance to retinal autoimmune disease. Experiments with T cells from double transgenic BG1 x Foxp3-DTR/GFP mice transferred into Foxp3-DTR/GFP x arrβgal mice confirmed that the retina was well protected from attempts to induce disease by adoptive transfer of activated BG1 T cells. The successful induction of retinal disease following unilateral intraocular administration of diphtheria toxin to deplete regulatory T cells showed that the protective activity was dependent on local, toxin-sensitive regulatory T cells; the opposite, untreated eye remained disease-free. Although there were very few Foxp3+ regulatory T cells in the parenchyma of quiescent retina, and they did not accumulate in retina, their depletion by local toxin administration led to disease susceptibility. We propose that these regulatory T cells modulate the pathogenic activity of βgal-specific CD8 T cells in the retinas of arrβgal mice on a local basis, allowing immunoregulation to be responsive to local conditions.

  14. Regulatory Eosinophils Suppress T Cells Partly through Galectin-10.

    Science.gov (United States)

    Lingblom, Christine; Andersson, Jennie; Andersson, Kerstin; Wennerås, Christine

    2017-06-15

    Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16 hi subset of eosinophils, encompassing 1-5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16 hi eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16 neg eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10-containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell-suppressive molecule in eosinophils. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. The lupus susceptibility gene Pbx1 regulates the balance between follicular helper T cell and regulatory T cell differentiation

    Science.gov (United States)

    Choi, Seung-Chul; Hutchinson, Tarun E.; Titov, Anton A.; Seay, Howard R.; Li, Shiwu; Brusko, Todd M.; Croker, Byron P.; Salek-Ardakani, Shahram; Morel, Laurence

    2016-01-01

    Pbx1 controls chromatin accessibility to a large number of genes and is entirely conserved between mice and humans. The Pbx1-d dominant negative isoform is more frequent in the CD4+ T cells from lupus patients than from healthy controls. Pbx1-d is associated with the production of autoreactive T cells in mice carrying the Sle1a1 lupus susceptibility locus. Transgenic expression of Pbx1-d in CD4+ T cells reproduced the phenotypes of Sle1a1 mice, with increased inflammatory functions of CD4+ T cells and impaired regulatory T cell homeostasis. Pbx1-d Tg also expanded the number of follicular helper T cells in a cell-intrinsic and antigen-specific manner that was enhanced in recall responses, and resulted in TH1-biased antibodies. Moreover, Pbx1-d Tg CD4+ T cells upregulated the expression of miR-10a, miR-21 and miR-155, which have been implicated in Treg and TFH cell homeostasis. Our results suggest that Pbx1-d impacts lupus development by regulating effector T cell differentiation and promoting TFH cells at the expense of Treg cells. In addition, our results identify Pbx1 as a novel regulator of CD4+ T cell effector function. PMID:27296664

  16. Cutting Edge: c-Maf Is Required for Regulatory T Cells To Adopt RORγt+ and Follicular Phenotypes.

    Science.gov (United States)

    Wheaton, Joshua D; Yeh, Chen-Hao; Ciofani, Maria

    2017-12-15

    Regulatory T cells (Tregs) adopt specialized phenotypes defined by coexpression of lineage-defining transcription factors, such as RORγt, Bcl-6, or PPARγ, alongside Foxp3. These Treg subsets have unique tissue distributions and diverse roles in maintaining organismal homeostasis. However, despite extensive functional characterization, the factors driving Treg specialization are largely unknown. In this article, we show that c-Maf is a critical transcription factor regulating this process in mice, essential for generation of both RORγt + Tregs and T follicular regulatory cells, but not for adipose-resident Tregs. c-Maf appears to function primarily in Treg specialization, because IL-10 production, expression of other effector molecules, and general immune homeostasis are not c-Maf dependent. As in other T cells, c-Maf is induced in Tregs by IL-6 and TGF-β, suggesting that a combination of inflammatory and tolerogenic signals promote c-Maf expression. Therefore, c-Maf is a novel regulator of Treg specialization, which may integrate disparate signals to facilitate environmental adaptation. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. Constitutive GITR Activation Reduces Atherosclerosis by Promoting Regulatory CD4+ T-Cell Responses-Brief Report

    NARCIS (Netherlands)

    Meiler, Svenja; Smeets, Esther; Winkels, Holger; Shami, Annelie; Pascutti, Maria Fernanda; Nolte, Martijn A.; Beckers, Linda; Weber, Christian; Gerdes, Norbert; Lutgens, Esther

    2016-01-01

    Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR) is expressed on CD4(+) effector memory T cells and regulatory T cells; however, its role on these functionally opposing cell types in atherosclerosis is not fully understood. Low-density lipoprotein

  18. Controlling the frontier: regulatory T-cells and intestinal homeostasis.

    Science.gov (United States)

    Bollrath, Julia; Powrie, Fiona M

    2013-11-30

    The intestine represents one of the most challenging sites for the immune system as immune cells must be able to mount an efficient response to invading pathogens while tolerating the large number and diverse array of resident commensal bacteria. Foxp3(+) regulatory T-cells (Tregs) play a non-redundant role at maintaining this balance. At the same time Treg cell differentiation and function can be modulated by the intestinal microbiota. In this review, we will discuss effector mechanisms of Treg cells in the intestine and how these cells can be influenced by the intestinal microbiota. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Impairment of T-regulatory cells in cord blood of atopic mothers.

    Science.gov (United States)

    Schaub, Bianca; Liu, Jing; Höppler, Sabine; Haug, Severine; Sattler, Christine; Lluis, Anna; Illi, Sabina; von Mutius, Erika

    2008-06-01

    Maternal atopy is a strong predictor for the development of childhood allergic diseases. The underlying mechanisms are ill defined, yet regulatory T (Treg) and T(H)17 cells may play a key role potentially shaping the early immune system toward a proallergic or antiallergic immune regulation. We examined T(H)1/T(H)2, Treg, and T(H)17 cell responses to innate (lipid A/peptidoglycan) and mitogen/adaptive (phytohemagglutinin/Dermatophagoides pteronyssinus 1) immune stimulation in cord blood from offspring of atopic/nonatopic mothers. Cord blood mononuclear cells from 161 healthy neonates (59% nonatopic, 41% atopic mothers) were investigated regarding Treg and T(H)17 cells (mRNA/surface markers), suppressive function, and proliferation/cytokine secretion. Cord blood from offspring of atopic mothers showed fewer innate-induced Treg cells (CD4(+)CD25(+)high), lower mRNA expression of associated markers (glucocorticoid-induced tumor necrosis factor receptor-related protein/lymphocyte activation gene 3; P cell function was impaired in mitogen-induced suppression of T effector cells in cord blood of offspring from atopic mothers (P = .03). Furthermore, IL-10 and IFN-gamma secretion were decreased in innate-stimulated cord blood of offspring from atopic mothers (P = .04/.05). Innate-induced IL-17 was independent of maternal atopy and highly correlated with IL-13 secretion. In offspring of atopic mothers, Treg cell numbers, expression, and function were impaired at birth. T(H)17 cells were correlated with T(H)2 cells, independently of maternal atopy.

  20. Runx1 and Runx3 are involved in the generation and function of highly suppressive IL-17-producing T regulatory cells.

    Directory of Open Access Journals (Sweden)

    Lequn Li

    Full Text Available CD4(+Foxp3(+ T regulatory cells (Tregs display phenotypic and functional plasticity that is regulated by cytokines and other immune cells. Previously, we determined that during co-culture with CD4(+CD25(- T cells and antigen presenting cells, Tregs produced IL-17. Here, we investigated the mechanisms underlying the differentiation of IL-17-producing Treg (Tr17 cells and their molecular and functional properties. We determined that during stimulation via TCR/CD3 and CD28, the combination of IL-1β and IL-2 was necessary and sufficient for the generation of Tr17 cells. Tr17 cells expressed Runx1 transcription factor, which was required for sustained expression of Foxp3 and RORγt and for production of IL-17. Surprisingly, Tr17 cells also expressed Runx3, which regulated transcription of perforin and granzyme B thereby mediating cytotoxic activity. Our studies indicate that Tr17 cells concomitantly express Foxp3, RORγt, Runx1 and Runx3 and are capable of producing IL-17 while mediating potent suppressive and cytotoxic function.

  1. A Lactobacillus rhamnosus strain induces a heme oxygenase dependent increase in Foxp3+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Khalil Karimi

    Full Text Available We investigated the consequences of feeding with a Lactobacillus species on the immune environment in GALT, and the role of dendritic cells and heme oxygenase-1 in mediating these responses. Feeding with a specific strain of Lactobacillus rhamnosus induced a significant increase in CD4+CD25+Foxp3+ functional regulatory T cells in GALT. This increase was greatest in the mesenteric lymph nodes and associated with a marked decrease in TNF and IFNγ production. Dendritic cell regulatory function and HO-1 expression was also increased. The increase in Foxp3+ T cells could be prevented by treatment with a heme oxygenase inhibitor. However, neither inhibition of heme oxygenase nor blockade of IL-10 and TGFβ prevented the inhibition of inflammatory cytokine production. In conclusion Lactobacillus feeding induced a tolerogenic environment in GALT. HO-1 was critical to the enhancement of Foxp3+ regulatory T cells while additional, as yet unknown, pathways were involved in the down-regulation of inflammatory cytokine production by T cells.

  2. Self-reactive T cells

    DEFF Research Database (Denmark)

    Becker, Jürgen C; thor Straten, Per; Andersen, Mads Hald

    2014-01-01

    -proteins expressed in regulatory immune cells have been reported, especially in patients with cancer. The seemingly lack of tolerance toward such proteins is interesting, as it suggests a regulatory function of self-reactive T (srT) cells, which may be important for the fine tuning of the immune system......The immune system is a tightly regulated and complex system. An important part of this immune regulation is the assurance of tolerance toward self-antigens to maintain immune homeostasis. However, in recent years, antigen-specific cellular immune responses toward several normal self....... In particular, surprising has been the description of cytotoxic srT cells that are able to eliminate normal regulatory immune cells. Such srT cells may be important as effector cells that suppress regulatory suppressor cells. The current knowledge of the nature and function of srT cells is still limited. Still...

  3. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Mesquita Júnior, D.; Cruvinel, W.M.; Araujo, J.A.P.; Salmazi, K.C.; Kallas, E.G.; Andrade, L.E.C.

    2014-01-01

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25 +/high CD127 Ø/low FoxP3 + , and effector T cells were defined as CD25 + CD127 + FoxP3 Ø . The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4 + TREG and CD28 + TREG cells and an increased frequency of CD40L + TREG cells. There was a decrease in the TREG/effector-T ratio for GITR + , HLA-DR + , OX40 + , and CD45RO + cells, and an increased ratio of TREG/effector-T CD40L + cells in patients with SLE. In addition, CD40L + TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease

  4. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita Júnior, D. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cruvinel, W.M. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Departamento de Biomedicina, Universidade Católica de Goiás, Goiânia, GO (Brazil); Araujo, J.A.P. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Salmazi, K.C.; Kallas, E.G. [Disciplina de Imunologia Clínica e Alergia, Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Andrade, L.E.C. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-08-22

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25{sup +/high}CD127{sup Ø/low}FoxP3{sup +}, and effector T cells were defined as CD25{sup +}CD127{sup +}FoxP3{sup Ø}. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4{sup +}TREG and CD28{sup +}TREG cells and an increased frequency of CD40L{sup +}TREG cells. There was a decrease in the TREG/effector-T ratio for GITR{sup +}, HLA-DR{sup +}, OX40{sup +}, and CD45RO{sup +} cells, and an increased ratio of TREG/effector-T CD40L{sup +} cells in patients with SLE. In addition, CD40L{sup +}TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  5. Cell-Intrinsic Roles for Autophagy in Modulating CD4 T Cell Functions

    Directory of Open Access Journals (Sweden)

    Elise Jacquin

    2018-05-01

    Full Text Available The catabolic process of autophagy plays important functions in inflammatory and immune responses by modulating innate immunity and adaptive immunity. Over the last decade, a cell-intrinsic role for autophagy in modulating CD4 T cell functions and differentiation was revealed. After the initial observation of autophagosomes in effector CD4 T cells, further work has shown that not only autophagy levels are modulated in CD4 T cells in response to environmental signals but also that autophagy critically affects the biology of these cells. Mouse models of autophagy deletion in CD4 T cells have indeed shown that autophagy is essential for CD4 T cell survival and homeostasis in peripheral lymphoid organs. Furthermore, autophagy is required for CD4 T cell proliferation and cytokine production in response to T cell receptor activation. Recent developments have uncovered that autophagy controls CD4 T cell differentiation and functions. While autophagy is required for the maintenance of immunosuppressive functions of regulatory T cells, it restrains the differentiation of TH9 effector cells, thus limiting their antitumor and pro-inflammatory properties. We will here discuss these findings that collectively suggest that therapeutic strategies targeting autophagy could be exploited for the treatment of cancer and inflammatory diseases.

  6. Transcriptional Repressor HIC1 Contributes to Suppressive Function of Human Induced Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Ubaid Ullah

    2018-02-01

    Full Text Available Regulatory T (Treg cells are critical in regulating the immune response. In vitro induced Treg (iTreg cells have significant potential in clinical medicine. However, applying iTreg cells as therapeutics is complicated by the poor stability of human iTreg cells and their variable suppressive activity. Therefore, it is important to understand the molecular mechanisms of human iTreg cell specification. We identified hypermethylated in cancer 1 (HIC1 as a transcription factor upregulated early during the differentiation of human iTreg cells. Although FOXP3 expression was unaffected, HIC1 deficiency led to a considerable loss of suppression by iTreg cells with a concomitant increase in the expression of effector T cell associated genes. SNPs linked to several immune-mediated disorders were enriched around HIC1 binding sites, and in vitro binding assays indicated that these SNPs may alter the binding of HIC1. Our results suggest that HIC1 is an important contributor to iTreg cell development and function.

  7. Deficient regulatory T cell activity and low frequency of IL-17-producing T cells correlate with the extent of cardiomyopathy in human Chagas' disease.

    Directory of Open Access Journals (Sweden)

    Paulo Marcos Matta Guedes

    Full Text Available BACKGROUND: Myocardium damage during Chagas' disease results from the immunological imbalance between pro- and production of anti-inflammatory cytokines and has been explained based on the Th1-Th2 dichotomy and regulatory T cell activity. Recently, we demonstrated that IL-17 produced during experimental T. cruzi infection regulates Th1 cells differentiation and parasite induced myocarditis. Here, we investigated the role of IL-17 and regulatory T cell during human Chagas' disease. METHODOLOGY/PRINCIPAL FINDINGS: First, we observed CD4(+IL-17(+ T cells in culture of peripheral blood mononuclear cells (PBMC from Chagas' disease patients and we evaluated Th1, Th2, Th17 cytokine profile production in the PBMC cells from Chagas' disease patients (cardiomyopathy-free, and with mild, moderate or severe cardiomyopathy cultured with T. cruzi antigen. Cultures of PBMC from patients with moderate and severe cardiomyopathy produced high levels of TNF-α, IFN-γ and low levels of IL-10, when compared to mild cardiomyopathy or cardiomyopathy-free patients. Flow cytometry analysis showed higher CD4(+IL-17(+ cells in PBMC cultured from patients without or with mild cardiomyopathy, in comparison to patients with moderate or severe cardiomyopathy. We then analyzed the presence and function of regulatory T cells in all patients. All groups of Chagas' disease patients presented the same frequency of CD4(+CD25(+ regulatory T cells. However, CD4(+CD25(+ T cells from patients with mild cardiomyopathy or cardiomyopathy-free showed higher suppressive activity than those with moderate and severe cardiomyopathy. IFN-γ levels during chronic Chagas' disease are inversely correlated to the LVEF (P = 0.007, r = -0.614, while regulatory T cell activity is directly correlated with LVEF (P = 0.022, r = 0.500. CONCLUSION/SIGNIFICANCE: These results indicate that reduced production of the cytokines IL-10 and IL-17 in association with high levels of IFN-γ and TNF

  8. Targeting CD28, CTLA-4 and PD-L1 costimulation differentially controls immune synapses and function of human regulatory and conventional T-cells.

    Directory of Open Access Journals (Sweden)

    Nahzli Dilek

    Full Text Available CD28, CTLA-4 and PD-L1, the three identified ligands for CD80/86, are pivotal positive and negative costimulatory molecules that, among other functions, control T cell motility and formation of immune synapse between T cells and antigen-presenting cells (APCs. What remains incompletely understood is how CD28 leads to the activation of effector T cells (Teff but inhibition of suppression by regulatory T cells (Tregs, while CTLA-4 and PD-L1 inhibit Teff function but are crucial for the suppressive function of Tregs. Using alloreactive human T cells and blocking antibodies, we show here by live cell dynamic microscopy that CD28, CTLA-4, and PD-L1 differentially control velocity, motility and immune synapse formation in activated Teff versus Tregs. Selectively antagonizing CD28 costimulation increased Treg dwell time with APCs and induced calcium mobilization which translated in increased Treg suppressive activity, in contrast with the dampening effect on Teff responses. The increase in Treg suppressive activity after CD28 blockade was also confirmed with polyclonal Tregs. Whereas CTLA-4 played a critical role in Teff by reversing TCR-induced STOP signals, it failed to affect motility in Tregs but was essential for formation of the Treg immune synapse. Furthermore, we identified a novel role for PD-L1-CD80 interactions in suppressing motility specifically in Tregs. Thus, our findings reveal that the three identified ligands of CD80/86, CD28, CTLA-4 and PD-L1, differentially control immune synapse formation and function of the human Teff and Treg cells analyzed here. Individually targeting CD28, CTLA-4 and PD-L1 might therefore represent a valuable therapeutic strategy to treat immune disorders where effector and regulatory T cell functions need to be differentially targeted.

  9. Regulatory function of cytomegalovirus-specific CD4+CD27-CD28- T cells

    International Nuclear Information System (INIS)

    Tovar-Salazar, Adriana; Patterson-Bartlett, Julie; Jesser, Renee; Weinberg, Adriana

    2010-01-01

    CMV infection is characterized by high of frequencies of CD27 - CD28 - T cells. Here we demonstrate that CMV-specific CD4 + CD27 - CD28 - cells are regulatory T cells (T R ). CD4 + CD27 - CD28 - cells sorted from CMV-stimulated PBMC of CMV-seropositive donors inhibited de novo CMV-specific proliferation of autologous PBMC in a dose-dependent fashion. Compared with the entire CMV-stimulated CD4 + T-cell population, higher proportions of CD4 + CD27 - CD28 - T R expressed FoxP3, TGFβ, granzyme B, perforin, GITR and PD-1, lower proportions expressed CD127 and PD1-L and similar proportions expressed CD25, CTLA4, Fas-L and GITR-L. CMV-CD4 + CD27 - CD28 - T R expanded in response to IL-2, but not to CMV antigenic restimulation. The anti-proliferative effect of CMV-CD4 + CD27 - CD28 - T R significantly decreased after granzyme B or TGFβ inhibition. The CMV-CD4 + CD27 - CD28 - T R of HIV-infected and uninfected donors had similar phenotypes and anti-proliferative potency, but HIV-infected individuals had higher proportions of CMV-CD4 + CD27 - CD28 - T R . The CMV-CD4 + CD27 - CD28 - T R may contribute to the downregulation of CMV-specific and nonspecific immune responses of CMV-infected individuals.

  10. Functional defect of circulating regulatory CD4+T cells in patients with Wegener's granulomatosis in remission

    NARCIS (Netherlands)

    Abdulahad, Wayel Habib; Stegeman, Coen; van der Geld, Y.M.; Doornbos-van der Meer, B.; Limburg, Piet; Kallenberg, Cees

    Objective. Accumulating data support the role of regulatory T cells, a subset of CD4+ T cells that expresses CD25(high) and the transcription factor fork-head box P3 (FoxP3), in controlling and preventing autoimmunity. In Wegener's granulomatosis (WG), an autoimmune vasculitis, up-regulation of CD25

  11. Regulatory T-cells in autoimmune diseases: challenges, controversies and--yet--unanswered questions.

    Science.gov (United States)

    Grant, Charlotte R; Liberal, Rodrigo; Mieli-Vergani, Giorgina; Vergani, Diego; Longhi, Maria Serena

    2015-02-01

    Regulatory T cells (Tregs) are central to the maintenance of self-tolerance and tissue homeostasis. Markers commonly used to define human Tregs in the research setting include high expression of CD25, FOXP3 positivity and low expression/negativity for CD127. Many other markers have been proposed, but none unequivocally identifies bona fide Tregs. Tregs are equipped with an array of mechanisms of suppression, including the modulation of antigen presenting cell maturation and function, the killing of target cells, the disruption of metabolic pathways and the production of anti-inflammatory cytokines. Treg impairment has been reported in a number of human autoimmune conditions and includes Treg numerical and functional defects and conversion into effector cells in response to inflammation. In addition to intrinsic Treg impairment, resistance of effector T cells to Treg control has been described. Discrepancies in the literature are common, reflecting differences in the choice of study participants and the technical challenges associated with investigating this cell population. Studies differ in terms of the methodology used to define and isolate putative regulatory cells and to assess their suppressive function. In this review we outline studies describing Treg frequency and suppressive function in systemic and organ specific autoimmune diseases, with a specific focus on the challenges faced when investigating Tregs in these conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Microenvironmental cues enhance mesenchymal stem cell-mediated immunomodulation and regulatory T-cell expansion.

    Science.gov (United States)

    Kadle, Rohini L; Abdou, Salma A; Villarreal-Ponce, Alvaro P; Soares, Marc A; Sultan, Darren L; David, Joshua A; Massie, Jonathan; Rifkin, William J; Rabbani, Piul; Ceradini, Daniel J

    2018-01-01

    Mesenchymal stem cells (MSCs) are known to both have powerful immunosuppressive properties and promote allograft tolerance. Determining the environmental oxygen tension and inflammatory conditions under which MSCs are optimally primed for this immunosuppressive function is essential to their utilization in promoting graft tolerance. Of particular interest is the mechanisms governing the interaction between MSCs and regulatory T cells (Tregs), which is relatively unknown. We performed our experiments utilizing rat bone marrow derived MSCs. We observed that priming MSCs in hypoxia promotes maintenance of stem-like characteristics, with greater expression of typical MSC cell-surface markers, increased proliferation, and maintenance of differentiation potential. Addition of autologous MSCs to CD4+/allogeneic endothelial cell (EC) co-culture increases regulatory T cell (Treg) proliferation, which is further enhanced when MSCs are primed in hypoxia. Furthermore, MSC-mediated Treg expansion does not require direct cell-cell contact. The expression of indolamine 2,3-dioxygenase, a mediator of MSC immunomodulation, increases when MSCs are primed in hypoxia, and inhibition of IDO significantly decreases the expansion of Tregs. Priming with inflammatory cytokines IFNγ and TNFα increases also expression of markers associated with MSC immunomodulatory function, but decreases MSC proliferation. The expression of IDO also increases when MSCs are primed with inflammatory cytokines. However, there is no increase in Treg expansion when MSCs are primed with IFNγ, suggesting an alternate mechanism for inflammatory-stimulated MSC immunomodulation. Overall, these results suggest that MSCs primed in hypoxia or inflammatory conditions are optimally primed for immunosuppressive function. These results provide a clearer picture of how to enhance MSC immunomodulation for clinical use.

  13. T Cell-Mediated Modulation of Mast Cell Function: Heterotypic Adhesion-Induced Stimulatory or Inhibitory Effects

    Directory of Open Access Journals (Sweden)

    Yoseph A. Mekori

    2012-01-01

    Full Text Available Close physical proximity between mast cells and T cells has been demonstrated in several T cell mediated inflammatory processes such as rheumatoid arthritis and sarcoidosis. However, the way by which mast cells are activated in these T cell-mediated immune responses has not been fully elucidated. We have identified and characterized a novel mast cell activation pathway initiated by physical contact with activated T cells, and showed that this pathway is associated with degranulation and cytokine release. The signaling events associated with this pathway of mast cell activation have also been elucidated confirming the activation of the Ras MAPK systems. More recently, we hypothesized and demonstrated that mast cells may also be activated by microparticles released from activated T cells that are considered as miniature version of a cell. By extension, microparticles might affect the activity of mast cells, which are usually not in direct contact with T cells at the inflammatory site. Recent works have also focused on the effects of regulatory T cells on mast cells. These reports highlighted the importance of the cytokines IL-2 and IL-9, produced by mast cells and T cells, respectively, in obtaining optimal immune suppression. Finally, physical contact, associated by OX40-OX40L engagement has been found to underlie the down-regulatory effects exerted by regulatory T cells on mast cell function.

  14. Regulatory T Cells in Post-stroke Immune Homeostasis.

    Science.gov (United States)

    Liesz, Arthur; Kleinschnitz, Christoph

    2016-08-01

    The secondary neuroinflammatory response has come into focus of experimental stroke research. Immunological mechanisms after acute stroke are being investigated in the hope to identify novel and druggable pathways that contribute to secondary infarct growth after stroke. Among a variety of neuroimmunological events after acute brain ischemia, including microglial activation, brain leukocyte invasion, and secretion of pro-inflammatory factors, lymphocytes have been identified as the key leukocyte subpopulation driving the neuroinflammatory response and contributing to stroke outcome. Several studies have shown that pro-inflammatory lymphocyte subpopulations worsen stroke outcome and that inhibiting their invasion to the injured brain is neuroprotective. In contrast to the effector functions of pro-inflammatory lymphocytes, regulatory T cells (Treg) are critically involved in maintaining immune homeostasis and have been characterized as disease-limiting protective cells in several inflammatory conditions, particularly in primary inflammatory diseases of the central nervous system (CNS). However, due to the complex function of regulatory cells in immune homeostasis and disease, divergent findings have been described for the role of Treg in stroke models. Emerging evidence suggests that this discrepancy arises from potentially differing functions of Treg depending on the predominant site of action within the neurovascular unit and the surrounding inflammatory milieu. This article will provide a comprehensive review of current findings on Treg in brain ischemia models and discuss potential reasons for the observed discrepancies.

  15. Diacylglycerol kinases in T cell tolerance and effector function

    Directory of Open Access Journals (Sweden)

    Shelley S Chen

    2016-11-01

    Full Text Available Diacylglycerol kinases (DGKs are a family of enzymes that regulate the relative levels of diacylglycerol (DAG and phosphatidic acid (PA in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR signal by recruiting multiple effector molecules such as RasGRP1, PKC, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms,  and , in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.

  16. A population dynamics analysis of the interaction between adaptive regulatory T cells and antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    David Fouchet

    Full Text Available BACKGROUND: Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks that can be accomplished by a network. METHODOLOGY AND PRINCIPAL FINDINGS: We used a mathematical model to describe a interaction network of adaptive regulatory T cells, in which mature precursor T cells may differentiate into either adaptive regulatory T cells or effector T cells, depending on the activation state of the cell by which the antigen was presented. Using an equilibrium analysis of the mathematical model we show that, for some parameters, the network has two stable equilibrium states: one in which effector T cells are strongly regulated by regulatory T cells and another in which effector T cells are not regulated because the regulatory T cell population is vanishingly small. We then simulate different types of perturbations, such as the introduction of an antigen into a virgin system, and look at the state into which the system falls. We find that whether or not the interaction network switches from the regulated (tolerant state to the unregulated state depends on the strength of the antigenic stimulus and the state from which the network has been perturbed. CONCLUSION/SIGNIFICANCE: Our findings suggest that the interaction network studied in this paper plays an essential part in generating and maintaining tolerance against allergens and self-antigens.

  17. The Microbiota and Epigenetic Regulation of T Helper 17/Regulatory T Cells

    DEFF Research Database (Denmark)

    Luo, Annie; Leach, Steven T; Barres, Romain

    2017-01-01

    Immune cells not only affect tissue homeostasis at the site of inflammation but also exert systemic effects contributing to multiple chronic conditions. Recent evidence clearly supports an altered T helper 17/regulatory T cell (Th17/Treg) balance leading to the development and progression of infl...

  18. Circulating gluten-specific FOXP3+CD39+ regulatory T cells have impaired suppressive function in patients with celiac disease.

    Science.gov (United States)

    Cook, Laura; Munier, C Mee Ling; Seddiki, Nabila; van Bockel, David; Ontiveros, Noé; Hardy, Melinda Y; Gillies, Jana K; Levings, Megan K; Reid, Hugh H; Petersen, Jan; Rossjohn, Jamie; Anderson, Robert P; Zaunders, John J; Tye-Din, Jason A; Kelleher, Anthony D

    2017-12-01

    Celiac disease is a chronic immune-mediated inflammatory disorder of the gut triggered by dietary gluten. Although the effector T-cell response in patients with celiac disease has been well characterized, the role of regulatory T (Treg) cells in the loss of tolerance to gluten remains poorly understood. We sought to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3) + Treg cells. Treated patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. Peripheral blood was collected before and after challenge. To comprehensively measure the gluten-specific CD4 + T-cell response, we paired traditional IFN-γ ELISpot with an assay to detect antigen-specific CD4 + T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation but rather on antigen-induced coexpression of CD25 and OX40 (CD134). Numbers of circulating gluten-specific Treg cells and effector T cells both increased significantly after oral wheat challenge, peaking at day 6. Surprisingly, we found that approximately 80% of the ex vivo circulating gluten-specific CD4 + T cells were FOXP3 + CD39 + Treg cells, which reside within the pool of memory CD4 + CD25 + CD127 low CD45RO + Treg cells. Although we observed normal suppressive function in peripheral polyclonal Treg cells from patients with celiac disease, after a short in vitro expansion, the gluten-specific FOXP3 + CD39 + Treg cells exhibited significantly reduced suppressive function compared with polyclonal Treg cells. This study provides the first estimation of FOXP3 + CD39 + Treg cell frequency within circulating gluten-specific CD4 + T cells after oral gluten challenge of patients with celiac disease. FOXP3 + CD39 + Treg cells comprised a major proportion of all circulating gluten-specific CD4 + T cells but had impaired suppressive function, indicating that Treg cell dysfunction might be a key

  19. Hypoxia Enhances Immunosuppression by Inhibiting CD4+ Effector T Cell Function and Promoting Treg Activity

    Directory of Open Access Journals (Sweden)

    Astrid M. Westendorf

    2017-03-01

    Full Text Available Background/Aims: Hypoxia occurs in many pathological conditions, including inflammation and cancer. Within this context, hypoxia was shown to inhibit but also to promote T cell responses. Due to this controversial function, we aimed to explore whether an insufficient anti-tumour response during colitis-associated colon cancer could be ascribed to a hypoxic microenvironment. Methods: Colitis-associated colon cancer was induced in wildtype mice, and hypoxia as well as T cell immunity were analysed in the colonic tumour tissues. In addition, CD4+ effector T cells and regulatory T cells were cultured under normoxic and hypoxic conditions and examined regarding their phenotype and function. Results: We observed severe hypoxia in the colon of mice suffering from colitis-associated colon cancer that was accompanied by a reduced differentiation of CD4+ effector T cells and an enhanced number and suppressive activity of regulatory T cells. Complementary ex vivo and in vitro studies revealed that T cell stimulation under hypoxic conditions inhibited the differentiation, proliferation and IFN-γ production of TH1 cells and enhanced the suppressive capacity of regulatory T cells. Moreover, we identified an active role for HIF-1α in the modulation of CD4+ T cell functions under hypoxic conditions. Conclusion: Our data indicate that oxygen availability can function as a local modulator of CD4+ T cell responses and thus influences tumour immune surveillance in inflammation-associated colon cancer.

  20. JAK inhibition induces silencing of T Helper cytokine secretion and a profound reduction in T regulatory cells.

    Science.gov (United States)

    Keohane, Clodagh; Kordasti, Shahram; Seidl, Thomas; Perez Abellan, Pilar; Thomas, Nicholas S B; Harrison, Claire N; McLornan, Donal P; Mufti, Ghulam J

    2015-10-01

    CD4(+) T cells maintain cancer surveillance and immune tolerance. Chronic inflammation has been proposed as a driver of clonal evolution in myeloproliferative neoplasms (MPN), suggesting that T cells play an important role in their pathogenesis. Treatment with JAK inhibitors (JAKi) results in improvements in MPN-associated constitutional symptoms as well as reductions in splenomegaly. However, effects of JAKi on T cells in MPN are not well established and the baseline immune signature remains unclear. We investigated the frequency and function of CD4(+) T cell subsets in 50 MPN patients at baseline as well as during treatment with either ruxolitinib or fedratinib in a subset. We show that CD4(+)  CD127(low)  CD25(high)  FOXP3(+) T regulatory cells are reduced in MPN patients compared to healthy controls and that this decrease is even more pronounced following JAKi therapy. Moreover, we show that after 6 months of treatment the number of T helper (Th)-17 cells increased. We also describe a functional 'silencing' of T helper cells both in vivo and in vitro and a blockade of pro-inflammatory cytokines from these cells. This profound effect of JAKi on T cell function may underlay augmented rates of atypical infections that have been reported with use of these drugs. © 2015 John Wiley & Sons Ltd.

  1. Genomewide analyses of pathogenic and regulatory T cells of NOD ...

    Indian Academy of Sciences (India)

    DANG SUN

    Two regulatory T cell clones (Tregs) were used in this study. Treg1 cells were clone-derived from the previously described. Keywords. methylation; cDNA microarray; type 1 diabetes; pathogenic T cells; .... Gender-specific differences in.

  2. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia.

    Science.gov (United States)

    Zhou, Qing; Munger, Meghan E; Highfill, Steven L; Tolar, Jakub; Weigel, Brenda J; Riddle, Megan; Sharpe, Arlene H; Vallera, Daniel A; Azuma, Miyuki; Levine, Bruce L; June, Carl H; Murphy, William J; Munn, David H; Blazar, Bruce R

    2010-10-07

    Tumor-induced immune defects can weaken host immune response and permit tumor cell growth. In a systemic model of murine acute myeloid leukemia (AML), tumor progression resulted in increased regulatory T cells (Treg) and elevation of program death-1 (PD-1) expression on CD8(+) cytotoxic T cells (CTLs) at the tumor site. PD-1 knockout mice were more resistant to AML despite the presence of similar percentage of Tregs compared with wild type. In vitro, intact Treg suppression of CD8(+) T-cell responses was dependent on PD-1 expression by T cells and Tregs and PD-L1 expression by antigen-presenting cells. In vivo, the function of adoptively transferred AML-reactive CTLs was reduced by AML-associated Tregs. Anti-PD-L1 monoclonal antibody treatment increased the proliferation and function of CTLs at tumor sites, reduced AML tumor burden, and resulted in long-term survivors. Treg depletion followed by PD-1/PD-L1 blockade showed superior efficacy for eradication of established AML. These data demonstrated that interaction between PD-1 and PD-L1 can facilitate Treg-induced suppression of T-effector cells and dampen the antitumor immune response. PD-1/PD-L1 blockade coupled with Treg depletion represents an important new approach that can be readily translated into the clinic to improve the therapeutic efficacy of adoptive AML-reactive CTLs in advanced AML disease.

  3. R5-SHIV induces multiple defects in T cell function during early infection of rhesus macaques including accumulation of T reg cells in lymph nodes.

    Directory of Open Access Journals (Sweden)

    Michael Santosuosso

    2011-04-01

    Full Text Available HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues.Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation.We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection.

  4. LAG-3 Represents a Marker of CD4+ T Cells with Regulatory Activity in Patients with Bone Fracture.

    Science.gov (United States)

    Wang, Jun; Ti, Yunfan; Wang, Yicun; Guo, Guodong; Jiang, Hui; Chang, Menghan; Qian, Hongbo; Zhao, Jianning; Sun, Guojing

    2018-04-19

    The lymphocyte activation gene 3 (LAG-3) is a CD4 homolog with binding affinity to MHC class II molecules. It is thought that LAG-3 exerts a bimodal function, such that co-ligation of LAG-3 and CD3 could deliver an inhibitory signal in conventional T cells, whereas, on regulatory T cells, LAG-3 expression could promote their inhibitory function. In this study, we investigated the role of LAG-3 expression on CD4 + T cells in patients with long bone fracture. We found that LAG-3 + cells represented approximately 13% of peripheral blood CD4 + T cells on average. Compared to LAG-3 - CD4 + T cells, LAG-3 + CD4 + T cells presented significantly higher Foxp3 and CTLA-4 expression. Directly ex vivo or with TCR stimulation, LAG-3 + CD4 + T cells expressed significantly higher levels of IL-10 and TGF-β than LAG-3 - CD4 + T cells. Interestingly, blocking the LAG-3-MHC class II interaction actually increased the IL-10 expression by LAG-3 + CD4 + T cells. The frequency of LAG-3 + CD4 + T cell was positively correlated with restoration of healthy bone function in long bone fracture patients. These results together suggested that LAG-3 is a marker of CD4 + T cells with regulatory function; at the same time, LAG-3 might have limited the full suppressive potential of Treg cells.

  5. Differential responses of human regulatory T cells (Treg and effector T cells to rapamycin.

    Directory of Open Access Journals (Sweden)

    Laura Strauss

    Full Text Available BACKGROUND: The immunosuppressive drug rapamycin (RAPA promotes the expansion of CD4(+ CD25(highFoxp3(+ regulatory T cells via mechanisms that remain unknown. Here, we studied expansion, IL-2R-gamma chain signaling, survival pathways and resistance to apoptosis in human Treg responding to RAPA. METHODOLOGY/PRINCIPAL FINDINGS: CD4(+CD25(+ and CD4(+CD25(neg T cells were isolated from PBMC of normal controls (n = 21 using AutoMACS. These T cell subsets were cultured in the presence of anti-CD3/CD28 antibodies and 1000 IU/mL IL-2 for 3 to 6 weeks. RAPA (1-100 nM was added to half of the cultures. After harvest, the cell phenotype, signaling via the PI3K/mTOR and STAT pathways, expression of survival proteins and Annexin V binding were determined and compared to values obtained with freshly-separated CD4(+CD25(high and CD4(+CD25(neg T cells. Suppressor function was tested in co-cultures with autologous CFSE-labeled CD4(+CD25(neg or CD8(+CD25(neg T-cell responders. The frequency and suppressor activity of Treg were increased after culture of CD4(+CD25(+ T cells in the presence of 1-100 nM RAPA (p<0.001. RAPA-expanded Treg were largely CD4(+CD25(highFoxp3(+ cells and were resistant to apoptosis, while CD4(+CD25(neg T cells were sensitive. Only Treg upregulated anti-apoptotic and down-regulated pro-apoptotic proteins. Treg expressed higher levels of the PTEN protein than CD4(+CD25(neg cells. Activated Treg+/-RAPA preferentially phosphorylated STAT5 and STAT3 and did not utilize the PI3K/mTOR pathway. CONCLUSIONS/SIGNIFICANCE: RAPA favors Treg expansion and survival by differentially regulating signaling, proliferation and sensitivity to apoptosis of human effector T cells and Treg after TCR/IL-2 activation.

  6. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins.

    Science.gov (United States)

    Zhang, Mingce; Robinson, Tanya O; Duverger, Alexandra; Kutsch, Olaf; Heath, Sonya L; Cron, Randy Q

    2018-03-01

    During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Detection of Tax-specific CTLs in lymph nodes of adult T-cell leukemia/lymphoma patients and its association with Foxp3 positivity of regulatory T-cell function.

    Science.gov (United States)

    Ichikawa, Ayako; Miyoshi, Hiroaki; Arakawa, Fumiko; Kiyasu, Junichi; Sato, Kensaku; Niino, Daisuke; Kimura, Yoshizo; Yoshida, Maki; Kawano, Riko; Muta, Hiroko; Sugita, Yasuo; Ohshima, Koichi

    2017-06-01

    Human T-cell lymphotropic virus type (HTLV)-1 Tax is a viral protein that has been reported to be important in the proliferation of adult T-cell leukemia/lymphoma (ATLL) cells and to be a target of HTLV-1-specific cytotoxic T lymphocytes (CTLs). However, it is not clear how Tax-specific CTLs behave in lymph nodes of ATLL patients. The present study analyzed the immunostaining of Tax-specific CTLs. Furthermore, ATLL tumor cells are known to be positive for forkhead box P3 (Foxp3)and to have a regulatory T (Treg)-cell-like function. The association between T-reg function and number and activity of Tax-specific CTLs was also investigated. A total of 15 ATLL lymphoma cases with human leukocyte antigen (HLA)-A24, for which Tax has a high affinity, were selected from the files of the Department of Pathology, School of Medicine, Kurume University (Kurume, Japan) using a polymerase chain reaction (PCR) method. Immunostaining was performed for cluster of differentiation (CD) 20, CD3, CD4, CD8, T-cell intracellular antigen-1 and Foxp3 in paraffin sections, and for Tax, interferon γ and HLA-A24 in frozen sections. In addition, the staining of Tax-specific CTLs (HLA-A24-restricted) was analyzed by MHC Dextramer ® assay in frozen sections. In addition, the messenger RNA expression of Tax and HTLV-1 basic leucine zipper factor were also evaluated by reverse transcription-PCR. Immunohistochemical staining of Tax protein in lymphoma tissue revealed the presence of positive lymphoma cells ranging from 5 to 80%, and immunohistochemical staining of HLA-A24 revealed the presence of positive lymphoma cells ranging from 1 to 95%. The expression of Tax and HLA-A24 was downregulated by viral function. Foxp3, a marker for Treg cells, was expressed in 0-90% of cells. Several cases exhibited Tax-specific CTL (HLA-A24-restricted)-positive cells, and there was an inverse correlation between Tax-specific CTLs and Foxp3. However, neither Tax nor HLA-A24 expression was associated with CTL or

  8. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function

    Directory of Open Access Journals (Sweden)

    George A. Robinson

    2017-11-01

    Full Text Available It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β, and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.

  9. CCR6 is expressed on an IL-10-producing, autoreactive memory T cell population with context-dependent regulatory function.

    Science.gov (United States)

    Rivino, Laura; Gruarin, Paola; Häringer, Barbara; Steinfelder, Svenja; Lozza, Laura; Steckel, Bodo; Weick, Anja; Sugliano, Elisa; Jarrossay, David; Kühl, Anja A; Loddenkemper, Christoph; Abrignani, Sergio; Sallusto, Federica; Lanzavecchia, Antonio; Geginat, Jens

    2010-03-15

    Interleukin (IL)-10 produced by regulatory T cell subsets is important for the prevention of autoimmunity and immunopathology, but little is known about the phenotype and function of IL-10-producing memory T cells. Human CD4(+)CCR6(+) memory T cells contained comparable numbers of IL-17- and IL-10-producing cells, and CCR6 was induced under both Th17-promoting conditions and upon tolerogenic T cell priming with transforming growth factor (TGF)-beta. In normal human spleens, the majority of CCR6(+) memory T cells were in the close vicinity of CCR6(+) myeloid dendritic cells (mDCs), and strikingly, some of them were secreting IL-10 in situ. Furthermore, CCR6(+) memory T cells produced suppressive IL-10 but not IL-2 upon stimulation with autologous immature mDCs ex vivo, and secreted IL-10 efficiently in response to suboptimal T cell receptor (TCR) stimulation with anti-CD3 antibodies. However, optimal TCR stimulation of CCR6(+) T cells induced expression of IL-2, interferon-gamma, CCL20, and CD40L, and autoreactive CCR6(+) T cell lines responded to various recall antigens. Notably, we isolated autoreactive CCR6(+) T cell clones with context-dependent behavior that produced IL-10 with autologous mDCs alone, but that secreted IL-2 and proliferated upon stimulation with tetanus toxoid. We propose the novel concept that a population of memory T cells, which is fully equipped to participate in secondary immune responses upon recognition of a relevant recall antigen, contributes to the maintenance of tolerance under steady-state conditions.

  10. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    Science.gov (United States)

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Regulatory T cells in chronic lymphocytic leukemia: implication for immunotherapeutic interventions.

    Science.gov (United States)

    Jadidi-Niaragh, Farhad; Ghalamfarsa, Ghasem; Yousefi, Mehdi; Tabrizi, Mina Hajifaraj; Shokri, Fazel

    2013-08-01

    Identification of regulatory T cells (Tregs) has led to breaking the dichotomy of the Th1/Th2 axis in the immunopathology of several diseases such as autoimmune diseases and cancer. Despite the presence of extensive information about immunobiology of Tregs in pathogenesis of autoimmune diseases, little is known about the frequency and function of these cells in hematologic malignancies, particularly chronic lymphocytic leukemia (CLL). Recent data have demonstrated increased frequency and intact functional capacity of CD4(+) Tregs in CLL patients. However, the precise role of these cells in the immunopathology of CLL is not well known. While targeting Tregs in cancer diseases seems to be an interesting immunotherapeutic approach, such therapeutic interventions in CLL might be deleterious due to suppression of the tumor-specific adaptive and innate immune responses. Thus, the precise biological and regulatory functions of all Tregs subsets should be carefully investigated before planning any immunotherapeutic interventions based on targeting of Tregs. In this communication, we review the recent data published on immunobiology of Tregs in CLL and discuss about the possibility of targeting Tregs in CLL.

  12. Levels and function of regulatory T cells in patients with polymorphic light eruption: relation to photohardening.

    Science.gov (United States)

    Schweintzger, N; Gruber-Wackernagel, A; Reginato, E; Bambach, I; Quehenberger, F; Byrne, S N; Wolf, P

    2015-08-01

    We hypothesized that regulatory T cells (Tregs) are involved in the immunological abnormalities seen in patients with polymorphic light eruption (PLE). To investigate the number and suppressive function of peripheral Tregs in patients with PLE compared with healthy controls. Blood sampling was done in 30 patients with PLE [seeking or not seeking 311-nm ultraviolet (UV)B photohardening] as well as 19 healthy controls at two time points: TP1, March to June (before phototherapy); and TP2, May to August (after phototherapy). We compared the number of CD4(+) CD25(high) CD127(-) FoxP3(+) Tregs by flow cytometry and their function by assessing FoxP3 mRNA levels and effector T cell/Treg suppression assays. Tregs isolated from healthy controls significantly suppressed the proliferation of effector T cells at TP1 by 68% (P = 0·0156). In contrast, Tregs from patients with PLE entirely lacked the capacity to suppress effector T-cell proliferation at that time point. The medical photohardening seen in 23 patients with PLE resulted in a significant increase in the median percentage of circulating Tregs [both as a proportion of all lymphocytes; 65 6% increase (P = 0·0049), and as a proportion of CD4(+) T cells; 32.5% increase (P = 0·0049)]. This was accompanied by an increase in the expression of FoxP3 mRNA (P = 0·0083) and relative immunosuppressive function of Tregs (P = 0·083) comparing the two time points in representative subsets of patients with healthy controls tested. Seven patients with PLE not receiving 311-nm UVB also exhibited an increase in the number of Tregs but this was not statistically significant. No significant differences in Treg numbers were observed in healthy subjects between the two time points. An impaired Treg function is likely to play a role in PLE pathogenesis. A UV-induced increase in the number of Tregs (either naturally or therapeutically) may be a compensatory mechanism by which the immune system counteracts the susceptibility to

  13. [Change of CD4(+) CD25(+) regulatory T cells and NK Cells in peripheral blood of children with acute leukemia and its possible significance in tumor immunity].

    Science.gov (United States)

    Wu, Ze-Lin; Hu, Guan-Yu; Chen, Fu-Xiong; Lu, Hui-Min; Wu, Zi-Liang; Li, Hua-Mei; Wei, Feng-Gui; Guan, Jing-Ming; Wu, Li-Ping

    2010-06-01

    This study was purposed to investigate the changes of CD4(+) CD25(+) regulatory T cells and NK cells in peripheral blood of acute leukemia children at different stages, the function of immune system and the possible roles of the CD4(+) CD25(+) regulatory T cells as well as NK cells in leukemia immunity. The number and proportion of CD4(+) CD25(+) regulatory T cells and NK cells were detected by flow cytometry in the peripheral blood of 53 acute leukemia children, including 25 patients in new diagnosis and 28 patients in continuous complete remission (CCR), and were compared with that of 20 normal children. The results indicated that the mean proportion of CD4(+) CD25(+) CD127(+) in CD4(+) T cells of peripheral blood in newly diagnosed patients, patients with CCR and normal children were (9.55 +/- 2.41)%, (8.54 +/- 2.51)% and (6.25 +/- 0.85)% respectively, the mean proportions of CD4(+)CD25(+)CD127(+) in newly diagnosed patients and patients with CCR were higher than that in normal children, the mean proportion of CD4(+)CD25(+)CD127(+) in newly diagnosed patients were higher than that in patients with CCR (p cell count in patients with acute leukaemia decreased as compared with normal control, while after achieving CCR, the NK cell count in patients were also less than that in normal control (4.11 +/- 3.87% and 10.41 +/- 7.20% vs 14.06 +/- 5.95%, p regulatory T cells is a simple, reproductive and accurate method, and the CD4(+) CD25(+) CD127(+) T cells can better reflect the proportion of CD4(+)CD25(+) regulatory T cells. The increase of regulatory T cells and decrease of NK cells in pediatric patients with acute leukemia indicate that the function of NK cells may be depressed. Treg T cells play a role in occurrence and development of leukemia, and are involved in down-regulating NK cell function.

  14. Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells.

    Science.gov (United States)

    Curti, Antonio; Trabanelli, Sara; Onofri, Chiara; Aluigi, Michela; Salvestrini, Valentina; Ocadlikova, Darina; Evangelisti, Cecilia; Rutella, Sergio; De Cristofaro, Raimondo; Ottaviani, Emanuela; Baccarani, Michele; Lemoli, Roberto M

    2010-12-01

    The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased immunogenicity and have been proposed as vaccines against leukemia. Leukemic dendritic cells were generated from acute myeloid leukemia cells and used as stimulators in functional assays, including the induction of regulatory T cells. Indoleamine 2,3-dioxygenase expression in leukemic dendritic cells was evaluated at molecular, protein and enzymatic levels. We demonstrate that, after differentiation into dendritic cells, both indoleamine 2,3-dioxygenase-negative and indoleamine 2,3-dioxygenase-positive acute myeloid leukemia samples show induction and up-regulation of indoleamine 2,3-dioxygenase gene and protein, respectively. Indoleamine 2,3-dioxygenase-positive acute myeloid leukemia dendritic cells catabolize tryptophan into kynurenine metabolite and inhibit T-cell proliferation through an indoleamine 2,3-dioxygenase-dependent mechanism. Moreover, indoleamine 2,3-dioxygenase-positive leukemic dendritic cells increase the number of allogeneic and autologous CD4(+)CD25(+) Foxp3(+) T cells and this effect is completely abrogated by the indoleamine 2,3-dioxygenase-inhibitor, 1-methyl tryptophan. Purified CD4(+)CD25(+) T cells obtained from co-culture with indoleamine 2,3-dioxygenase-positive leukemic dendritic cells act as regulatory T cells as they inhibit naive T-cell proliferation and impair the complete maturation of normal dendritic cells. Importantly, leukemic dendritic cell-induced regulatory T cells are capable of in vitro suppression of a leukemia-specific T cell-mediated immune response, directed against the leukemia-associated antigen, Wilms' tumor protein. These data identify

  15. Ubiquitin-specific Protease-7 Inhibition Impairs Tip60-dependent Foxp3+ T-regulatory Cell Function and Promotes Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Liqing Wang

    2016-11-01

    Full Text Available Foxp3+ T-regulatory (Treg cells are known to suppress protective host immune responses to a wide variety of solid tumors, but their therapeutic targeting is largely restricted to their transient depletion or “secondary” modulation, e.g. using anti-CTLA-4 monoclonal antibody. Our ongoing studies of the post-translational modifications that regulate Foxp3 demonstrated that the histone/protein acetyltransferase, Tip60, plays a dominant role in promoting acetylation, dimerization and function in Treg cells. We now show that the ubiquitin-specific protease, Usp7, controls Treg function largely by stabilizing the expression and promoting the multimerization of Tip60 and Foxp3. Genetic or pharmacologic targeting of Usp7 impairs Foxp3+ Treg suppressive functions, while conventional T cell responses remain intact. As a result, pharmacologic inhibitors of Usp7 can limit tumor growth in immunocompetent mice, and promote the efficacy of antitumor vaccines and immune checkpoint therapy with anti-PD1 monoclonal antibody in murine models. Hence, pharmacologic therapy with Usp7 inhibitors may have an important role in future cancer immunotherapy.

  16. TGF-beta and 'adaptive' Foxp3(+) regulatory T cells.

    Science.gov (United States)

    Chen, Wanjun; Konkel, Joanne E

    2010-02-01

    In naïve T cells transforming growth factor-beta (TGF-beta) induces Foxp3, a transcription factor essential for programming and developing T regulatory cells (Treg cells). This finding reveals a physiological factor which can turn on the Foxp3 gene and establishes an experimental approach to induce antigen-specific Treg cells as a potential therapy for human diseases. While this role for TGF-beta is well confirmed, several critical questions remain largely unanswered and await further investigation. In this regard, it is imperative to understand the molecular pathways by which TGF-beta signaling initiates and regulates Foxp3 expression. It is also important to elucidate which factors and/or cytokines influence the TGF-beta-mediated conversion of naïve T cells and how to create an immunologically regulatory milieu to facilitate Treg cell generation in vivo. In this short article, we will highlight the key findings and recent progress in the field, discuss the molecular mechanisms underlying the TGF-beta-mediated induction of Foxp3, and attempt to outline the challenges ahead.

  17. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells.

    Science.gov (United States)

    Wang, Rui; Kozhaya, Lina; Mercer, Frances; Khaitan, Alka; Fujii, Hodaka; Unutmaz, Derya

    2009-08-11

    The molecules that define human regulatory T cells (Tregs) phenotypically and functionally remain to be fully characterized. We recently showed that activated human Tregs express mRNA for a transmembrane protein called glycoprotein A repetitions predominant (GARP, or LRRC32). Here, using a GARP-specific mAb, we demonstrate that expression of GARP on activated Tregs correlates with their suppressive capacity. However, GARP was not induced on T cells activated in the presence of TGFbeta, which expressed high levels of FOXP3 and lacked suppressive function. Ectopic expression of FOXP3 in conventional T cells was also insufficient for induction of GARP expression in most donors. Functionally, silencing GARP in Tregs only moderately attenuated their suppressive activity. CD25+ T cells sorted for high GARP expression displayed more potent suppressive activity compared with CD25+GARP- cells. Remarkably, CD25+GARP- T cells expanded in culture contained 3-5 fold higher IL-17-secreting cells compared with either CD25+GARP+ or CD25-GARP- cells, suggesting that high GARP expression can potentially discriminate Tregs from those that have switched to Th17 lineage. We also determined whether GARP expression correlates with FOXP3-expressing T cells in human immunodeficiency virus (HIV) -infected subjects. A subset of HIV+ individuals with high percentages of FOXP3+ T cells did not show proportionate increase in GARP+ T cells. This finding suggests that higher FOXP3 levels observed in these HIV+ individuals is possibly due to immune activation rather than to an increase in Tregs. Our findings highlight the significance of GARP both in dissecting duality of Treg/Th17 cell differentiation and as a marker to identify bona fide Tregs during diseases with chronic immune activation.

  18. The role of T regulatory cells in kidney transplantation

    OpenAIRE

    Urbanová, Anna

    2011-01-01

    T regulatory lymphocytes (Treg) belong to the CD4+ cell group. They are an essential part of the immunity system. Treg cells prevent from excessive activation of effector T cells and they keep the tolerance to the tissues of the body. They have high expression of CD25 and the transcription factor Foxp3. We distinguish two basic populations of Treg cells: natural Treg cells (nTreg) created in the thym and representing 5-10 % of all CD4+ cells, and induced Treg cells (iTreg), created from naive...

  19. Lower omental t-regulatory cell count is associated with higher fasting glucose and lower β-cell function in adults with obesity.

    Science.gov (United States)

    Gyllenhammer, Lauren E; Lam, Jonathan; Alderete, Tanya L; Allayee, Hooman; Akbari, Omid; Katkhouda, Namir; Goran, Michael I

    2016-06-01

    T-lymphocytes are potential initiators and regulators of adipose tissue (AT) inflammation, but there is limited human data on omental AT. The aim of this study was to assess the relationship between T cells, particularly Foxp3+ regulatory T (Treg) cells, in human subcutaneous (subQ) and omental AT and type 2 diabetes risk. SubQ and deep subQ (DsubQ) abdominal and omental AT biopsies were collected from 44 patients (body mass index, BMI ≥25) undergoing elective abdominal surgery. Flow cytometry was used to quantify CD4+ T cell (T effector and Treg) and macrophages (M1 and M2), and systemic inflammation was measured in fasting blood. Tregs were significantly lower in omental versus subQ and DsubQ AT, and M1 cell counts were significantly higher in the omental and DsubQ depot relative to the subQ. Only omental AT Tregs were negatively associated with fasting glucose and MCP-1 and positively associated with homeostasis model assessment (HOMA)-β. M1 and M2 cell counts across multiple depots had significant relationships with HOMA-insulin resistance, tumor necrosis factor-α, insulin, and HOMA-β. All relationships were consistent across ethnicities. Tregs were significantly lower in omental versus both subQ adipose depots. Fewer omental Tregs may have metabolic implications based on depot-specific relationships with higher fasting glucose and lower β-cell function. © 2016 The Obesity Society.

  20. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis.

    Science.gov (United States)

    Kohlgruber, Ayano C; Gal-Oz, Shani T; LaMarche, Nelson M; Shimazaki, Moto; Duquette, Danielle; Nguyen, Hung N; Mina, Amir I; Paras, Tyler; Tavakkoli, Ali; von Andrian, Ulrich; Banks, Alexander S; Shay, Tal; Brenner, Michael B; Lynch, Lydia

    2018-05-01

    γδ T cells are situated at barrier sites and guard the body from infection and damage. However, little is known about their roles outside of host defense in nonbarrier tissues. Here, we characterize a highly enriched tissue-resident population of γδ T cells in adipose tissue that regulate age-dependent regulatory T cell (T reg ) expansion and control core body temperature in response to environmental fluctuations. Mechanistically, innate PLZF + γδ T cells produced tumor necrosis factor and interleukin (IL) 17 A and determined PDGFRα + and Pdpn + stromal-cell production of IL-33 in adipose tissue. Mice lacking γδ T cells or IL-17A exhibited decreases in both ST2 + T reg cells and IL-33 abundance in visceral adipose tissue. Remarkably, these mice also lacked the ability to regulate core body temperature at thermoneutrality and after cold challenge. Together, these findings uncover important physiological roles for resident γδ T cells in adipose tissue immune homeostasis and body-temperature control.

  1. Accumulation and suppressive function of regulatory T cells in malignant ascites: Reducing their suppressive function using arsenic trioxide in vitro.

    Science.gov (United States)

    Hu, Zilong; Hu, Shidong; Wu, Youjun; Li, Songyan; He, Changzheng; Xing, Xiaowei; Wang, Yufeng; Du, Xiaohui

    2018-04-01

    Although adoptive cell therapy (ACT) has demonstrated effective and remarkable clinical responses in several studies, this approach does not lead to objective clinical responses in all cases. The function of ACT is often compromised by various tumor escape mechanisms, including the accumulation of immunoregulatory cells. As a result of peritoneal metastasis in the terminal stage, malignant ascites fluid lacks effectiveness and is a poor prognostic factor for gastric cancer. The present study assessed T-cell subsets in lymphocytes derived from malignant ascites, and investigated the effects of arsenic trioxide (As 2 O 3 ) on regulatory T cells (Tregs) and ascites-derived tumor-infiltrating lymphocytes (TILs) in vitro . In this study, lymphocytes were separated from malignant ascites and T-cell subsets were detected via flow cytometry. Forkhead box P3 (FoxP3) expression was assessed by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. In addition, cytokines, including interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and interferon-γ (IFN-γ), were measured by enzyme-linked immunosorbent assay (ELISA). Abundant Tregs were observed in ascites lymphocytes, which and exhibited a significantly increased frequency compared with that in the peripheral blood of patients. Furthermore, As 2 O 3 treatment significantly reduced Treg numbers and Foxp3 mRNA levels in vitro (P<0.05). IFN-γ levels in the supernatant of ascites-derived TILs were increased by As 2 O 3 , whereas IL-10 and TGF-β levels were significantly reduced (P<0.05). As 2 O 3 may induce selective depletion and inhibit immunosuppressive function of Tregs, and may enhance the cytotoxic activity of ascites-derived TILs.

  2. Human Epidermal Langerhans Cells Maintain Immune Homeostasis in Skin by Activating Skin Resident Regulatory T Cells

    Science.gov (United States)

    Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.

    2013-01-01

    Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445

  3. Acquisition of T regulatory function in cathepsin L-inhibited T cells by eye-derived CTLA-2alpha during inflammatory conditions.

    Science.gov (United States)

    Sugita, Sunao; Horie, Shintaro; Nakamura, Orie; Maruyama, Kazuichi; Takase, Hiroshi; Usui, Yoshihiko; Takeuchi, Masaru; Ishidoh, Kazumi; Koike, Masato; Uchiyama, Yasuo; Peters, Christoph; Yamamoto, Yoshimi; Mochizuki, Manabu

    2009-10-15

    Pigment epithelium isolated from the eye possesses immunosuppressive properties such as regulatory T (Treg) cell induction; e.g., cultured retinal pigment epithelium (RPE) converts CD4(+) T cells into Treg cells in vitro. RPE constitutively expresses a novel immunosuppressive factor, CTLA-2alpha, which is a cathepsin L (CathL) inhibitor, and this molecule acts via RPE to induce Treg cells. To clarify CTLA-2alpha's role in the T cell response to RPE in ocular inflammation, we used the experimental autoimmune uveitis (EAU) animal model to examine this new immunosuppressive property of RPE. In EAU models, TGF-beta, but not IFN-gamma inflammatory cytokines, promotes the up-regulation of the expression of CTLA-2alpha in RPE. Similarly, CTLA-2alpha via RPE was able to promote TGF-beta production by the CD4(+) T cells. The RPE-exposed T cells (RPE-induced Treg cells) greatly produced TGF-beta and suppressed bystander effector T cells. There was less expression of CathL by the RPE-exposed T cells, and CathL-inhibited T cells were able to acquire the Treg phenotype. Moreover, CathL-deficient mice spontaneously produced Treg cells, with the increase in T cells potentially providing protection against ocular inflammation. More importantly, CD4(+) T cells from EAU in CathL knockout mice or rCTLA-2alpha from EAU animals were found to contain a high population of forkhead box p3(+) T cells. In both EAU models, there was significant suppression of the ocular inflammation. These results indicate that RPE secretes CTLA-2alpha, thereby enabling the bystander T cells to be converted into Treg cells via TGF-beta promotion.

  4. EFFECTS OF HISTONE DEACETYLASE INHIBITOR, SAHA, ON EFFECTOR AND FOXP3+ REGULATORY T CELLS IN RHESUS MACAQUES

    OpenAIRE

    Johnson, Jennifer; Pahuja, Anil; Graham, Melanie; Hering, Bernhard; Hancock, Wayne W.; Pratima, Bansal-Pakala

    2008-01-01

    SAHA, a histone deacetylase inhibitor (HDACi), is clinically approved for treatment of cutaneous T-cell lymphoma. Although the exact underlying mechanisms are unknown, HDACi arrest the cell cycle in rapidly proliferating tumor cells and promote their apoptosis. HDACi were also recently shown to enhance the production and suppressive functions of Foxp3+ regulatory T (Treg) cells in rodents, leading us to begin to investigate the actions of HDACi on rhesus monkey T cells for the sake of potenti...

  5. Novel effector phenotype of Tim-3+ regulatory T cells leads to enhanced suppressive function in head and neck cancer patients.

    Science.gov (United States)

    Liu, Zhuqing; McMichael, Elizabeth L; Shayan, Gulidanna; Li, Jing; Chen, Kevin; Srivastava, Raghvendra M; Kane, Lawrence P; Lu, Binfeng; Ferris, Robert L

    2018-04-30

    Regulatory T (Treg) cells are important suppressive cells among tumor infiltrating lymphocytes (TIL). Treg express the well-known immune checkpoint receptor PD-1, which is reported to mark "exhausted" Treg with lower suppressive function. T cell immunoglobulin mucin (Tim)-3, a negative regulator of Th1 immunity, is expressed by a sizeable fraction of TIL Tregs, but the functional status of Tim-3+ Tregs remains unclear. CD4+CTLA-4+CD25high Treg were sorted from freshly excised head and neck squamous cell carcinoma (HNSCC) TIL based on Tim-3 expression. Functional and phenotypic features of these Tim-3+ and Tim-3- TIL Tregs were tested by in vitro suppression assays and multi-color flow cytometry. Gene expression profiling and NanoString analysis of Tim-3+ TIL Treg were performed. A murine HNSCC tumor model was used to test the effect of anti-PD-1 immunotherapy on Tim-3+ Treg.  Results: Despite high PD-1 expression, Tim-3+ TIL Treg displayed a greater capacity to inhibit naïve T cell proliferation than Tim-3- Treg. Tim-3+ Treg from human HNSCC TIL also displayed an effector-like phenotype, with more robust expression of CTLA-4, PD-1, CD39 and IFN-γ receptor. Exogenous IFN-γ treatment could partially reverse the suppressive function of Tim-3+ TIL Treg. Anti-PD-1 immunotherapy downregulated Tim-3 expression on Tregs isolated from murine HNSCC tumors, and this treatment reversed the suppressive function of HNSCC TIL Tregs. Tim-3+ Treg are functionally and phenotypically distinct in HNSCC TIL, and are highly effective at inhibiting T cell proliferation despite high PD-1 expression.  IFN-γ induced by anti-PD-1 immunotherapy may be beneficial by reversing Tim-3+ Treg suppression. Copyright ©2018, American Association for Cancer Research.

  6. Computational modeling of heterogeneity and function of CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Adria eCarbo

    2014-07-01

    Full Text Available The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation.

  7. Immune regulation in Chandipura virus infection: characterization of CD4+ T regulatory cells from infected mice

    Directory of Open Access Journals (Sweden)

    Shahir Prajakta

    2011-05-01

    Full Text Available Abstract Back ground Chandipura virus produces acute infection in mice. During infection drastic reduction of CD4+, CD8+ and CD19 + cell was noticed. Depletion of lymphocytes also noticed in spleen. The reduction may be due to the regulatory mechanism of immune system to prevent the bystander host tissue injury. There are several mechanisms like generation of regulatory cells, activation induced cell death (ACID etc were indicated to control the activation and maintain cellular homeostasis. Role of regulatory cells in homeostasis has been described in several viral diseases. This study was undertaken to characterize CD4+T regulatory cells from the infected mice. Method In this study we purified the CD4+ T cells from Chandipura virus infected susceptible Balb/c mice. CD4+ T regulatory cells were identified by expression of cell surface markers CD25, CD127 and CTLA-4 and intracellular markers Foxp3, IL-10 and TGF-beta. Antigen specificity and ability to suppress the proliferation of other lymphocytes were studied in vitro by purified CD4+CD25+T regulatory cells from infected mice. The proliferation was calculated by proliferation module of Flow Jo software. Expression of death receptors on regulatory cells were studied by flowcytometer. Results The CD4+ T cells isolated from infected mice expressed characteristic markers of regulatory phenotype at all post infective hours tested. The CD4+ T regulatory cells were proliferated when stimulated with Chandipura virus antigen. The regulatory cells did not suppress the proliferation of splenocytes stimulated with anti CD3 antibody when co cultured with them. Interesting observation was, while purification of CD4+ T cells by negative selection, the population of cells negative for CD4 also co purified along with CD4+ T cell. Flow cytometry analysis and light microscopy revealed that CD4 negative cells were of different size and shape (atypical compared to the normal lymphocytes. Greater percentage of

  8. Comparison of circulating and intratumoral regulatory T cells in patients with renal cell carcinoma.

    Science.gov (United States)

    Asma, Gati; Amal, Gorrab; Raja, Marrakchi; Amine, Derouiche; Mohammed, Chebil; Amel, Ben Ammar Elgaaied

    2015-05-01

    The clear evidence that tumor-infiltrating lymphocytes (TIL) exists in the tumor microenvironment raises the question why renal cell carcinoma (RCC) progresses. Numerous studies support the implication of CD4(+)CD25(high) regulatory T (Treg) cells in RCC development. We aimed in this study to characterize the phenotype and function of circulating and intratumoral Treg cells of RCC patient in order to evaluate their implication in the inhibition of the local antitumor immune response. Our results demonstrate that the proportion of Treg in TIL was, in average, similar to that found in circulating CD4(+) T cells of patients or healthy donors. However, intratumoral Treg exhibit a marked different phenotype when compared with the autologous circulating Treg. A higher CD25 mean level, HLA-DR, Fas, and GITR, and a lower CD45RA expression were observed in intratumoral Treg, suggesting therefore that these cells are effector in the tumor microenvironment. Additionally, intratumoral Treg showed a higher inhibitory function on autologous CD4(+)CD25(-) T cells when compared with circulating Treg that may be explained by an overexpression of FoxP3 transcription factor. These findings suggest that intratumoral Treg could be major actors in the impairment of local antitumor immune response for RCC patients.

  9. Regulatory T Cells and Host Anti-CML Responses

    National Research Council Canada - National Science Library

    Wong, Jr, K. K

    2008-01-01

    CD4+CD25+FoxP-3+ regulatory T-cells (Tregs) suppress immune responses to "self" antigens, but also have been shown to suppress host anti-tumor responses in several human malignancies, including breast, gastrointestinal, and ovarian cancer...

  10. MicroRNAs regulate T-cell production of interleukin-9 and identify hypoxia-inducible factor-2α as an important regulator of T helper 9 and regulatory T-cell differentiation.

    Science.gov (United States)

    Singh, Yogesh; Garden, Oliver A; Lang, Florian; Cobb, Bradley S

    2016-09-01

    MicroRNAs (miRNAs) regulate many aspects of helper T cell (Th) development and function. Here we found that they are required for the suppression of interleukin-9 (IL-9) expression in Th9 cells and other Th subsets. Two highly related miRNAs (miR-15b and miR-16) that we previously found to play an important role in regulatory T (Treg) cell differentiation were capable of suppressing IL-9 expression when they were over-expressed in Th9 cells. We used these miRNAs as tools to identify novel regulators of IL-9 expression and found that they could regulate the expression of Epas1, which encodes hypoxia-inducible factor (HIF)-2α. HIF proteins regulate metabolic pathway usage that is important in determining appropriate Th differentiation. The related protein, HIF-1α enhances Th17 differentiation and inhibits Treg cell differentiation. Here we found that HIF-2α was required for IL-9 expression in Th9 cells, but its expression was not sufficient in other Th subsets. Furthermore, HIF-2α suppressed Treg cell differentiation like HIF-1α, demonstrating both similar and distinct roles of the HIF proteins in Th differentiation and adding a further dimension to their function. Ironically, even though miR-15b and miR-16 suppressed HIF-2α expression in Treg cells, inhibiting their function in Treg cells did not lead to an increase in IL-9 expression. Therefore, the physiologically relevant miRNAs that regulate IL-9 expression in Treg cells and other subsets remain unknown. Nevertheless, the analysis of miR-15b and miR-16 function led to the discovery of the importance of HIF-2α so this work demonstrated the utility of studying miRNA function to identify novel regulatory pathways in helper T-cell development. © 2016 John Wiley & Sons Ltd.

  11. Selective Expansion of Memory CD4+ T cells By Mitogenic Human CD28 Generates Inflammatory Cytokines and Regulatory T cells

    Science.gov (United States)

    Singh, Manisha; Basu, Sreemanti; Camell, Christina; Couturier, Jacob; Nudelman, Rodolfo J.; Medina, Miguel A.; Rodgers, John R.; Lewis, Dorothy E.

    2009-01-01

    Co-stimulatory signals are important for development of effector and regulatory T cells. In this case, CD28 signaling is usually considered inert in the absence of signaling through the TCR. By contrast, mitogenic rat CD28 mAbs reportedly expand regulatory T cells without TCR stimulation. We found that a commercially available human CD28 mAb (ANC28) stimulated PBMCs without TCR co-ligation or cross-linking; ANC28 selectively expanded CD4+CD25+FoxP3−(T effector) and CD4+CD25+FoxP3+ (Treg) cells. ANC28 stimulated the CD45RO+ CD4+ (memory) population whereas CD45RA+CD4+ (naïve) cells did not respond. ANC28 also induced inflammatory cytokines. Treg induced by ANC28 retain the Treg phenotype longer than did co-stimulated Treg. Treg induced by ANC28 suppressed CD25− T cells through a contact-dependent mechanism. Purity influenced the response of CD4+CD25+ cells because bead-purified CD4+CD25+ cells (85–90% pure) responded strongly to ANC28, whereas 98% pure FACS-sorted CD4+CD25 bright (T-reg) did not respond. Purified CD4+CD25int cells responded similarly to the bead-purified CD4+CD25+ cells. Thus, pre-activated CD4+ T cells (CD25int) respond to ANC28 rather than Treg (CD25bright). The ability of ANC28 to expand both effectors producing inflammatory cytokines as well as suppressive regulatory T cells might be useful for ex vivo expansion of therapeutic T cells. PMID:18446791

  12. REGULATORY T-CELLS IN CHRONIC LYMPHOCYTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    Giovanni D'arena

    2012-01-01

    Full Text Available

    Regulatory T-cells (Tregs constitute a small subset of cells that are actively involved in maintaining self-tolerance, in immune homeostasis and in antitumor immunity. They are thought to play a significant role in the progression of cancer and are generally increased in patient with chronic lymphocytic leukemia (CLL. Their number correlates with more aggressive disease status and is predictive of the time to treatment, as well. Moreover, it is now clear that dysregulation in Tregs cell frequency and/or function may result in a plethora of autoimmune diseases, including multiple sclerosis, type 1 diabetes mellitus, myasthenia gravis, systemic lupus erythematosis, autoimmune lymphoproliferative disorders, rheumatoid arthritis, and psoriasis. Efforts are made aiming to develop approaches to deplete Tregs or inhibit their function in either cancer and autoimmune disorders.

  13. CD4 T cells mediate both positive and negative regulation of the immune response to HIV infection: complex role of T follicular helper cells and Regulatory T cells in pathogenesis

    Directory of Open Access Journals (Sweden)

    Chansavath ePhetsouphanh

    2015-01-01

    Full Text Available HIV-1 infection results in chronic activation of cells in lymphoid tissue, including T cells, B cells and myeloid lineage cells. The resulting characteristic hyperplasia is an amalgam of proliferating host immune cells in the adaptive response, increased concentrations of innate response mediators due to viral and bacterial products, and homeostatic responses to inflammation. While it is generally thought that CD4 T cells are greatly depleted, in fact, two types of CD4 T cells appear to be increased, namely regulatory T cells (Tregs and T follicular helper cells (Tfh. These cells have opposing roles, but may both be important in the pathogenic process. Whether Tregs are failing in their role to limit lymphocyte activation is unclear, but there is no doubt now that Tfh are associated with B cell hyperplasia and increased germinal centre activity. Antiretroviral therapy (ART may reduce the lymphocyte activation, but not completely, and therefore there is a need for interventions that selectively enhance normal CD4 function without exacerbating Tfh, B cell or Treg dysfunction.

  14. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells*

    Science.gov (United States)

    Ali, Ramadan A.; Camick, Christina; Wiles, Katherine; Walseth, Timothy F.; Slama, James T.; Bhattacharya, Sumit; Giovannucci, David R.; Wall, Katherine A.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca2+ mobilizing second messenger discovered to date, has been implicated in Ca2+ signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca2+ signaling or the identity of the Ca2+ stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca2+ signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca2+ signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca2+ stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca2+ signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca2+ release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. PMID:26728458

  15. Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells.

    Science.gov (United States)

    Sharma, Sonia; Grandvaux, Nathalie; Mamane, Yael; Genin, Pierre; Azimi, Nazli; Waldmann, Thomas; Hiscott, John

    2002-09-15

    IFN regulatory factor (IRF)-4 is a lymphoid/myeloid-restricted member of the IRF transcription factor family that plays an essential role in the homeostasis and function of mature lymphocytes. IRF-4 expression is tightly regulated in resting primary T cells and is transiently induced at the mRNA and protein levels after activation by Ag-mimetic stimuli such as TCR cross-linking or treatment with phorbol ester and calcium ionophore (PMA/ionomycin). However, IRF-4 is constitutively upregulated in human T cell leukemia virus type I (HTLV-I) infected T cells as a direct gene target for the HTLV-I Tax oncoprotein. In this study we demonstrate that chronic IRF-4 expression in HTLV-I-infected T lymphocytes is associated with a leukemic phenotype, and we examine the mechanisms by which continuous production of IRF-4 is achieved in HTLV-I-transformed T cells. IRF-4 expression in HTLV-1-infected cells is driven through activation of the NF-kappaB and NF-AT pathways, resulting in the binding of p50, p65, and c-Rel to the kappaB1 element and p50, c-Rel, and NF-ATp to the CD28RE element within the -617 to -209 region of the IRF-4 promoter. Furthermore, mutation of either the kappaB1 or CD28RE sites blocks Tax-mediated transactivation of the human IRF-4 promoter in T cells. These experiments constitute the first detailed analysis of human IRF-4 transcriptional regulation within the context of HTLV-I infection and transformation of CD4(+) T lymphocytes.

  16. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice.

    Science.gov (United States)

    Chiasson, Valorie L; Pakanati, Abhinandan R; Hernandez, Marcos; Young, Kristina J; Bounds, Kelsey R; Mitchell, Brett M

    2017-07-01

    The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4 + /FoxP3 + regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice. © 2017 American Heart Association, Inc.

  17. Tolerogenic dendritic cells from poorly compensated type 1 diabetes patients have decreased ability to induce stable antigen-specific T cell hyporesponsiveness and generation of suppressive regulatory T cells

    DEFF Research Database (Denmark)

    Dánova, Klara; Grohova, Anna; Strnadova, Pavla

    2017-01-01

    state of patients. tolDCs differentiated from both groups of patients acquired a regulatory phenotype and an anti-inflammatory profile. Interestingly, tolDCs from well-controlled patients expressed higher levels of inhibitory molecules IL-T3 and PD-L1. Additionally, glutamic acid decarboxylase (GAD)65......Tolerogenic dendritic cells (tolDCs) may offer an interesting intervention strategy to re-establish Ag-specific tolerance in autoimmune diseases, including type 1 diabetes (T1D). T1D results from selective destruction of insulin-producing b cells leading to hyperglycemia that, in turn, specifically...... suppressive abilities. The functionality of tolDCs was confirmed in the adoptive transfer model of NOD-SCID mice where tolDCs delayed diabetes onset. These results suggest that metabolic control of T1D affects the functional characteristics of tolDCs and subsequent effector T cell responses. Metabolic control...

  18. T cell immunity

    OpenAIRE

    Emel Bülbül Başkan

    2013-01-01

    Since birth, our immune system is constantly bombarded with self-antigens and foreign pathogens. To stay healthy, complex immune strategies have evolved in our immune system to maintain self-tolerance and to defend against foreign pathogens. Effector T cells are the key players in steering the immune responses to execute immune functions. While effector T cells were initially identified to be immune promoting, recent studies unraveled negative regulatory functions of effector T cells...

  19. CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity.

    Science.gov (United States)

    Akane, Kazuyuki; Kojima, Seiji; Mak, Tak W; Shiku, Hiroshi; Suzuki, Haruhiko

    2016-03-01

    The Fas/FasL (CD95/CD178) system is required for immune regulation; however, it is unclear in which cells, when, and where Fas/FasL molecules act in the immune system. We found that CD8(+)CD122(+) cells, which are mostly composed of memory T cells in comparison with naïve cells in the CD8(+)CD122(-) population, were previously shown to include cells with regulatory activity and could be separated into CD49d(low) cells and CD49d(high) cells. We established in vitro and in vivo experimental systems to evaluate the regulatory activity of CD122(+) cells. Regulatory activity was observed in CD8(+)CD122(+)CD49d(low) but not in CD8(+)CD122(+)CD49d(high) cells, indicating that the regulatory cells in the CD8(+)CD122(+) population could be narrowed down to CD49d(low) cells. CD8(+)CD122(-) cells taken from lymphoproliferation (lpr) mice were resistant to regulation by normal CD122(+) Tregs. CD122(+) Tregs taken from generalized lymphoproliferative disease (gld) mice did not regulate wild-type CD8(+)CD122(-) cells, indicating that the regulation by CD122(+) Tregs is Fas/FasL-dependent. CD122(+) Tregs taken from IL-10-deficient mice could regulate CD8(+)CD122(-) cells as equally as wild-type CD122(+) Tregs both in vitro and in vivo. MHC class I-missing T cells were not regulated by CD122(+) Tregs in vitro. CD122(+) Tregs also regulated CD4(+) cells in a Fas/FasL-dependent manner in vitro. These results suggest an essential role of Fas/FasL as a terminal effector of the CD122(+) Tregs that kill activated T cells to maintain immune homeostasis.

  20. Arsenic trioxide decreases the amount and inhibits the function of regulatory T cells, which may contribute to its efficacy in the treatment of acute promyelocytic leukemia.

    Science.gov (United States)

    Xu, Wen; Li, Xiaoxia; Quan, Lina; Yao, Jiying; Mu, Guannan; Guo, Jingjie; Wang, Yitong

    2018-03-01

    Arsenic trioxide (ATO) exhibits substantial clinical efficacy in the treatment of acute promyelocytic leukemia (APL). Here, we investigated whether ATO exerts its efficacy by affecting regulatory T (Treg) cells. We determined whether ATO treatment influenced the amount and function of purified Treg cells. We also examined the effect of ATO treatment on Treg cells from APL patients. ATO treatment induced apoptosis in purified Treg cells and dampened the inhibition of effector T (Teff) cells proliferation and the secretion of cytokine by Treg cells. Treg cell levels in the peripheral blood and serum IL-10 levels were dramatically decreased in APL patients after single ATO treatment. In summary, our results show that ATO decreases the amount and inhibits the function of Treg cells, thereby enhancing Teff cell function and overall anti-tumor immunity.

  1. Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells.

    Science.gov (United States)

    Mascarell, Laurent; Lombardi, Vincent; Louise, Anne; Saint-Lu, Nathalie; Chabre, Henri; Moussu, Hélène; Betbeder, Didier; Balazuc, Anne-Marie; Van Overtvelt, Laurence; Moingeon, Philippe

    2008-09-01

    A detailed characterization of oral antigen-presenting cells is critical to improve second-generation sublingual allergy vaccines. To characterize oral dendritic cells (DCs) within lingual and buccal tissues from BALB/c mice with respect to their surface phenotype, distribution, and capacity to polarize CD4(+) T-cell responses. In situ analysis of oral DCs was performed by immunohistology. Purified DCs were tested in vitro for their capacity to capture, process, and present the ovalbumin antigen to naive CD4(+) T cells. In vivo priming of ovalbumin-specific T cells adoptively transferred to BALB/c mice was analyzed by cytofluorometry in cervical lymph nodes after sublingual administration of mucoadhesive ovalbumin. Three subsets of oral DCs with a distinct tissue distribution were identified: (1) a minor subset of CD207(+) Langerhans cells located in the mucosa itself, (2) a major subpopulation of CD11b(+)CD11c(-) and CD11b(+)CD11c(+) myeloid DCs at the mucosal/submucosal interface, and (3) B220(+)120G8(+) plasmacytoid DCs found in submucosal tissues. Purified myeloid and plasmacytoid oral DCs capture and process the antigen efficiently and are programmed to elicit IFN-gamma and/or IL-10 production together with a suppressive function in naive CD4(+) T cells. Targeting the ovalbumin antigen to oral DCs in vivo by using mucoadhesive particles establishes tolerance in the absence of cell depletion through the stimulation of IFN-gamma and IL-10-producing CD4(+) regulatory T cells in cervical lymph nodes. The oral immune system is composed of various subsets of tolerogenic DCs organized in a compartmentalized manner and programmed to induce T(H)1/regulatory T-cell responses.

  2. A gene regulatory network armature for T-lymphocyte specification

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Elizabeth-sharon [Los Alamos National Laboratory

    2008-01-01

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.

  3. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling

    Science.gov (United States)

    Corral-Jara, Karla F.; Gómez-Leyva, Juan F.; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1. PMID:27578921

  4. Identity and Diversity of Human Peripheral Th and T Regulatory Cells Defined by Single-Cell Mass Cytometry.

    Science.gov (United States)

    Kunicki, Matthew A; Amaya Hernandez, Laura C; Davis, Kara L; Bacchetta, Rosa; Roncarolo, Maria-Grazia

    2018-01-01

    Human CD3 + CD4 + Th cells, FOXP3 + T regulatory (Treg) cells, and T regulatory type 1 (Tr1) cells are essential for ensuring peripheral immune response and tolerance, but the diversity of Th, Treg, and Tr1 cell subsets has not been fully characterized. Independent functional characterization of human Th1, Th2, Th17, T follicular helper (Tfh), Treg, and Tr1 cells has helped to define unique surface molecules, transcription factors, and signaling profiles for each subset. However, the adequacy of these markers to recapitulate the whole CD3 + CD4 + T cell compartment remains questionable. In this study, we examined CD3 + CD4 + T cell populations by single-cell mass cytometry. We characterize the CD3 + CD4 + Th, Treg, and Tr1 cell populations simultaneously across 23 memory T cell-associated surface and intracellular molecules. High-dimensional analysis identified several new subsets, in addition to the already defined CD3 + CD4 + Th, Treg, and Tr1 cell populations, for a total of 11 Th cell, 4 Treg, and 1 Tr1 cell subsets. Some of these subsets share markers previously thought to be selective for Treg, Th1, Th2, Th17, and Tfh cells, including CD194 (CCR4) + FOXP3 + Treg and CD183 (CXCR3) + T-bet + Th17 cell subsets. Unsupervised clustering displayed a phenotypic organization of CD3 + CD4 + T cells that confirmed their diversity but showed interrelation between the different subsets, including similarity between Th1-Th2-Tfh cell populations and Th17 cells, as well as similarity of Th2 cells with Treg cells. In conclusion, the use of single-cell mass cytometry provides a systems-level characterization of CD3 + CD4 + T cells in healthy human blood, which represents an important baseline reference to investigate abnormalities of different subsets in immune-mediated pathologies. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. CD4+ virtual memory: Antigen-inexperienced T cells reside in the naïve, regulatory, and memory T cell compartments at similar frequencies, implications for autoimmunity.

    Science.gov (United States)

    Marusina, Alina I; Ono, Yoko; Merleev, Alexander A; Shimoda, Michiko; Ogawa, Hiromi; Wang, Elizabeth A; Kondo, Kayo; Olney, Laura; Luxardi, Guillaume; Miyamura, Yoshinori; Yilma, Tilahun D; Villalobos, Itzel Bustos; Bergstrom, Jennifer W; Kronenberg, Daniel G; Soulika, Athena M; Adamopoulos, Iannis E; Maverakis, Emanual

    2017-02-01

    It is widely accepted that central and effector memory CD4 + T cells originate from naïve T cells after they have encountered their cognate antigen in the setting of appropriate co-stimulation. However, if this were true the diversity of T cell receptor (TCR) sequences within the naïve T cell compartment should be far greater than that of the memory T cell compartment, which is not supported by TCR sequencing data. Here we demonstrate that aged mice with far fewer naïve T cells, respond to the model antigen, hen eggwhite lysozyme (HEL), by utilizing the same TCR sequence as their younger counterparts. CD4 + T cell repertoire analysis of highly purified T cell populations from naive animals revealed that the HEL-specific clones displayed effector and central "memory" cell surface phenotypes even prior to having encountered their cognate antigen. Furthermore, HEL-inexperienced CD4 + T cells were found to reside within the naïve, regulatory, central memory, and effector memory T cell populations at similar frequencies and the majority of the CD4 + T cells within the regulatory and memory populations were unexpanded. These findings support a new paradigm for CD4 + T cell maturation in which a specific clone can undergo a differentiation process to exhibit a "memory" or regulatory phenotype without having undergone a clonal expansion event. It also demonstrates that a foreign-specific T cell is just as likely to reside within the regulatory T cell compartment as it would the naïve compartment, arguing against the specificity of the regulatory T cell compartment being skewed towards self-reactive T cell clones. Finally, we demonstrate that the same set of foreign and autoreactive CD4 + T cell clones are repetitively generated throughout adulthood. The latter observation argues against T cell-depleting strategies or autologous stem cell transplantation as therapies for autoimmunity-as the immune system has the ability to regenerate pathogenic clones. Published by

  6. T-Bet Enhances Regulatory T Cell Fitness and Directs Control of Th1 Responses in Crescentic GN.

    Science.gov (United States)

    Nosko, Anna; Kluger, Malte A; Diefenhardt, Paul; Melderis, Simon; Wegscheid, Claudia; Tiegs, Gisa; Stahl, Rolf A K; Panzer, Ulf; Steinmetz, Oliver M

    2017-01-01

    Th1 cells are central pathogenic mediators of crescentic GN (cGN). Mechanisms responsible for Th1 cell downregulation, however, remain widely unknown. Recently, it was proposed that activation of the Th1-characteristic transcription factor T-bet optimizes Foxp3 + regulatory T (Treg) cells to counteract Th1-type inflammation. Because very little is known about the role of T-bet + Treg1 cells in inflammatory diseases, we studied the function of these cells in the nephrotoxic nephritis (NTN) model of cGN. The percentage of Treg1 cells progressively increased in kidneys of nephritic wild-type mice during the course of NTN, indicating their functional importance. Notably, naïve Foxp3 Cre xT-bet fl/fl mice, lacking Treg1 cells, showed spontaneous skewing toward Th1 immunity. Furthermore, absence of Treg1 cells resulted in aggravated NTN with selectively dysregulated renal and systemic Th1 responses. Detailed analyses of Treg cells from Foxp3 Cre xT-bet fl/fl mice revealed unaltered cytokine production and suppressive capacity. However, in competitive cotransfer experiments, wild-type Treg cells outcompeted T-bet-deficient Treg cells in terms of population expansion and expression levels of Foxp3, indicating that T-bet expression is crucial for general Treg fitness. Additionally, T-bet-deficient Treg cells lacked expression of the Th1-characteristic trafficking receptor CXCR3, which correlated with significant impairment of renal Treg infiltration. In summary, our data indicate a new subtype of Treg cells in cGN. These Treg1 cells are characterized by activation of the transcription factor T-bet, which enhances the overall fitness of these cells and optimizes their capacity to downregulate Th1 responses by inducing chemokine receptor CXCR3 expression. Copyright © 2016 by the American Society of Nephrology.

  7. CD147 (Basigin/Emmprin) identifies FoxP3+CD45RO+CTLA4+-activated human regulatory T cells.

    Science.gov (United States)

    Solstad, Therese; Bains, Simer Jit; Landskron, Johannes; Aandahl, Einar Martin; Thiede, Bernd; Taskén, Kjetil; Torgersen, Knut Martin

    2011-11-10

    Human CD4(+)FoxP3(+) T cells are functionally and phenotypically heterogeneous providing plasticity to immune activation and regulation. To better understand the functional dynamics within this subset, we first used a combined strategy of subcellular fractionation and proteomics to describe differences at the protein level between highly purified human CD4(+)CD25(+) and CD4(+)CD25(-) T-cell populations. This identified a set of membrane proteins highly expressed on the cell surface of human regulatory T cells (Tregs), including CD71, CD95, CD147, and CD148. CD147 (Basigin or Emmprin) divided CD4(+)CD25(+) cells into distinct subsets. Furthermore, CD147, CD25, FoxP3, and in particular CTLA-4 expression correlated. Phenotypical and functional analyses suggested that CD147 marks the switch between resting (CD45RA(+)) and activated (CD45RO(+)) subsets within the FoxP3(+) T-cell population. Sorting of regulatory T cells into CD147(-) and CD147(+) populations demonstrated that CD147 identifies an activated and highly suppressive CD45RO(+) Treg subset. When analyzing CD4(+) T cells for their cytokine producing potential, CD147 levels grouped the FoxP3(+) subset into 3 categories with different ability to produce IL-2, TNF-α, IFN-γ, and IL-17. Together, this suggests that CD147 is a direct marker for activated Tregs within the CD4(+)FoxP3(+) subset and may provide means to manipulate cells important for immune homeostasis.

  8. [Autologous regulatory T cells can suppress the proliferation of lymphoma cell line in vitro].

    Science.gov (United States)

    Ying, Zhi-Tao; Guo, Jun; Ren, Jun; Kong, Yan; Yuan, Zhi-Hong; Liu, Xi-Juan; Zhang, Chen; Zheng, Wen; Song, Yu-Qin; Zhang, Yun-Tao; Zhu, Jun

    2009-06-01

    This study was aimed to investigate the suppressive effect of regulatory T (Treg) cells on the T cell lymphoma EL4 cell line and to explore its mechanism. C57BL/6 Mouse Treg cells were isolated by MACS (magnetic cell sorting). The purity and the expression of Foxp3 were detected by flow cytometry. The suppressive effect of sorted Treg cells on EL4 cells was detected by MTT assay. The secretion of TGF-beta1 and IL-10 was examined by enzyme-linked immunosorbent assay (ELISA). The results showed that CD4(+)CD25(+) T cells could be successfully isolated by MACS with the purity reaching 91.6% and the expression level of Foxp3 was 78.9%. The ratio of viable cells was more than 95%. Regulatory T cells could suppress the proliferation of EL4 cells effectively in the presence of antigen presenting cells (APCs). And the suppressive effect was most significant at 1:1 ratio. In addition, the suppression still existed without APCs. TGF-beta1 and IL-10 could not be detected by ELISA. It is concluded that the Treg cells can suppress T lymphoma cell in vitro. The suppressive effect of Treg cells works in dose-dependent manner, but not in cytokine-dependent manner. The mechanism of this suppression may take effect through cell-cell contact.

  9. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells.

    Science.gov (United States)

    Ali, Ramadan A; Camick, Christina; Wiles, Katherine; Walseth, Timothy F; Slama, James T; Bhattacharya, Sumit; Giovannucci, David R; Wall, Katherine A

    2016-02-26

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+) mobilizing second messenger discovered to date, has been implicated in Ca(2+) signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca(2+) signaling or the identity of the Ca(2+) stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca(2+) signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca(2+) signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca(2+) stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca(2+) signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca(2+) release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Células T regulatórias naturais (T REGS em doenças reumáticas Natural regulatory T cells in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Wilson de Melo Cruvinel

    2008-12-01

    dessas enfermidades. Apresenta, ainda, a perspectiva de futuras abordagens terapêuticas fundamentadas na manipulação dessas células.The healthy immune system must keep the delicate balance between the capacity to respond to exogenous antigens and to keep the tolerance to endogenous antigens. In the absence of an adequate response to exogenous agents the individual is subjected to the deleterious effect of the invasion for pathogens. On the other hand, if the immune system responds in an unwary exacerbated way harmful inflammatory consequences may result. Well-established mechanisms of maintaining self-tolerance include clonal deletion and anergy. Despite the functional evidence in favor of the existence of suppressor T cells, for many years immunologists failed to identify the phenotypic characteristics and to confirm the existence of these lymphocytes. The recent demonstration of different phenotypes of cells, now designated regulatory T cells, reintroduced the paradigm of active regulation of auto-reactivity by particular subtypes of lymphocytes. This subject is of great interest in the contemporary literature. It has been shown that excess regulatory function may be associated with increased susceptibility to infectious and neoplastic diseases. On the other hand decreased regulatory function may cause autoimmunity. In fact, several experimental models of diverse autoimmune conditions have been developed by decreasing or abolishing regulatory T cells. Counterpart of this phenomenon has been sought for in several human autoimmune diseases. At this moment it seems that the most important subtype of regulatory cells are the natural regulatory T cells (TREGS, which represent about 5% of peripheral blood CD4 T lymphocytes. These cells are characterized by the constitutive expression of FOXP3, GITR, CTLA-4 and high levels of CD25. The present article reviews the basic knowledge on the TREGS and the several studies describing the status and function of these cells in

  11. Regulatory T Cells As Potential Targets for HIV Cure Research

    Science.gov (United States)

    Kleinman, Adam J.; Sivanandham, Ranjit; Pandrea, Ivona; Chougnet, Claire A.; Apetrei, Cristian

    2018-01-01

    T regulatory cells (Tregs) are a key component of the immune system, which maintain a delicate balance between overactive responses and immunosuppression. As such, Treg deficiencies are linked to autoimmune disorders and alter the immune control of pathogens. In HIV infection, Tregs play major roles, both beneficial and detrimental. They regulate the immune system such that inflammation and spread of virus through activated T cells is suppressed. However, suppression of immune activation also limits viral clearance and promotes reservoir formation. Tregs can be directly targeted by HIV, thereby harboring a fraction of the viral reservoir. The vital role of Tregs in the pathogenesis and control of HIV makes them a subject of interest for manipulation in the search of an HIV cure. Here, we discuss the origin and generation, homeostasis, and functions of Tregs, particularly their roles and effects in HIV infection. We also present various Treg manipulation strategies, including Treg depletion techniques and interventions that alter Treg function, which may be used in different cure strategies, to simultaneously boost HIV-specific immune responses and induce reactivation of the latent virus.

  12. Percentage and function of CD4+CD25+ regulatory T cells in patients with hyperthyroidism

    Science.gov (United States)

    Jiang, Ting-Jun; Cao, Xue-Liang; Luan, Sha; Cui, Wan-Hui; Qiu, Si-Huang; Wang, Yi-Chao; Zhao, Chang-Jiu; Fu, Peng

    2018-01-01

    The current study observed the percentage of peripheral blood (PB) CD4+CD25+ regulatory T cells (Tregs) and the influence of CD4+CD25+ Tregs on the proliferation of naïve CD4 T cells in patients with hyperthyroidism. Furthermore, preliminary discussions are presented on the action mechanism of CD4+CD25+ Tregs on hyperthyroidism attacks. The present study identified that compared with the percentage of PB CD4+CD25+ Tregs in healthy control subjects, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in patients with hyperthyroidism (P>0.05). For patients with hyperthyroidism, CD4+CD25+ Tregs exhibited significantly reduced inhibition of the proliferation of naïve CD4 T cells and decreased secretion capacity on the cytokines of CD4 T cells, compared with those of healthy control subjects (Phyperthyroidism was significantly improved (Phyperthyroidism before treatment, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in hyperthyroidism patients following treatment (P>0.05). In the patients with hyperthyroidism, following treatment, CD4+CD25+ Tregs exhibited significantly increased inhibition of the proliferation of naïve CD4 T cells and increased secretion capacity of CD4 T cell cytokines, compared with those of the patients with hyperthyroidism prior to treatment (Phyperthyroidism, and its non-proportional decrease may be closely associated with the occurrence and progression of hyperthyroidism. PMID:29207121

  13. Identification of a subset of perpheral T-cell lymphoma, not otherwise specified, characterized by FOXP3-positive regulatory T-cell phenotype, HTLV-1 negativity and poor outcome

    DEFF Research Database (Denmark)

    Pedersen, Martin Bjerregård; Hamilton-Dutoit, Stephen Jacques; Bendix, Knud

    2014-01-01

    Identification of a subset of perpheral T-cell lymphoma, not otherwise specified, characterized by FOXP3-positive regulatory T-cell phenotype, HTLV-1 negativity and poor outcome.......Identification of a subset of perpheral T-cell lymphoma, not otherwise specified, characterized by FOXP3-positive regulatory T-cell phenotype, HTLV-1 negativity and poor outcome....

  14. Radiation Enhances Regulatory T Cell Representation

    Energy Technology Data Exchange (ETDEWEB)

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Economou, James S. [Department of Surgical Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); McBride, William H. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States)

    2011-11-15

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4{sup +}CD25{sup hi}Foxp3{sup +} lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4{sup +}CD25{sup hi}Foxp3{sup +} Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  15. Radiation Enhances Regulatory T Cell Representation

    International Nuclear Information System (INIS)

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde; Economou, James S.; McBride, William H.; Schaue, Dörthe

    2011-01-01

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4 + CD25 hi Foxp3 + lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4 + CD25 hi Foxp3 + Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  16. CD103 is a marker for alloantigen-induced regulatory CD8+ T cells

    NARCIS (Netherlands)

    Uss, Elena; Rowshani, Ajda T.; Hooibrink, Berend; Lardy, Neubury M.; van Lier, René A. W.; ten Berge, Ineke J. M.

    2006-01-01

    The alphaEbeta7 integrin CD103 may direct lymphocytes to its ligand E-cadherin. CD103 is expressed on T cells in lung and gut and on allograft-infiltrating T cells. Moreover, recent studies have documented expression of CD103 on CD4+ regulatory T cells. Approximately 4% of circulating CD8+ T cells

  17. Impaired circulating CD4+ LAP+ regulatory T cells in patients with acute coronary syndrome and its mechanistic study.

    Directory of Open Access Journals (Sweden)

    Zheng-Feng Zhu

    Full Text Available OBJECTIVE: CD4(+ latency-associated peptide (LAP(+ regulatory T cells (Tregs are a newly discovered T cell subset in humans and the role of these cells in patients with acute coronary syndrome (ACS has not been explored. We designed to investigate whether circulating frequency and function of CD4(+LAP(+ Tregs are defective in ACS. METHODS: One hundred eleven ACS patients (acute myocardial infarction and unstable angina and 117 control patients were enrolled in the study. The control patients consisted of chronic stable angina (CSA and chest pain syndrome (CPS. The frequencies of circulating CD4(+LAP(+ Tregs and the expression of the transmembrane protein glycoprotein-A repetitions predominant (GARP on CD4(+ T cells were determined by flow cytometry. The function of CD4(+LAP(+ Tregs was detected using thymidine uptake. Serum interleukin-10 (IL-10 and transforming growth factor-β protein (TGF-β levels were detected using ELISA and expression of GARP mRNA in peripheral blood mononuclear cells (PBMCs was measured by real time-polymerase chain reaction. RESULTS: We found ACS patients had a significantly lower frequency of circulating CD4(+LAP(+ Tregs, and the function of these cells was reduced compared to controls. The expression of GARP in CD4(+ T cells and the serum levels of TGF-β in ACS patients were lower than those of control patients. The serum levels of IL-10 were similar between the two cohorts. CONCLUSIONS: A novel regulatory T cell subset, defined as CD4(+LAP(+ T cells is defective in ACS patients.

  18. The PDL1-PD1 Axis Converts Human Th1 Cells Into Regulatory T Cells

    Science.gov (United States)

    Amarnath, Shoba; Mangus, Courtney W.; Wang, James C.M.; Wei, Fang; He, Alice; Kapoor, Veena; Foley, Jason E.; Massey, Paul R.; Felizardo, Tania C.; Riley, James L.; Levine, Bruce L.; June, Carl H.; Medin, Jeffrey A.; Fowler, Daniel H.

    2011-01-01

    Immune surveillance by T helper type 1 (Th1) cells is critical for the host response to tumors and infection, but also contributes to autoimmunity and graft-versus-host disease (GvHD) after transplantation. The inhibitory molecule programmed death ligand-1 (PDL1) has been shown to anergize human Th1 cells, but other mechanisms of PDL1-mediated Th1 inhibition such as the conversion of Th1 cells to a regulatory phenotype have not been well characterized. We hypothesized that PDL1 may cause Th1 cells to manifest differentiation plasticity. Conventional T cells or irradiated K562 myeloid tumor cells overexpressing PDL1 converted TBET+ Th1 cells into FOXP3+ regulatory T cells (TREGS) in vivo, thereby preventing human-into-mouse xenogeneic GvHD (xGvHD). Either blocking PD1 expression on Th1 cells by siRNA targeting or abrogation of PD1 signaling by SHP1/2 pharmacologic inhibition stabilized Th1 cell differentiation during PDL1 challenge and restored the capacity of Th1 cells to mediate lethal xGVHD. PD1 signaling therefore induces human Th1 cells to manifest in vivo plasticity, resulting in a TREG phenotype that severely impairs cell-mediated immunity. Converting human Th1 cells to a regulatory phenotype with PD1 signaling provides a potential way to block GvHD after transplantation. Moreover, because this conversion can be prevented by blocking PD1 expression or pharmacologically inhibiting SHP1/2, this pathway provides a new therapeutic direction for enhancing T cell immunity to cancer and infection. PMID:22133721

  19. Protein Arginine Methyltransferase 5 Inhibition Upregulates Foxp3+ Regulatory T Cells Frequency and Function during the Ulcerative Colitis

    Directory of Open Access Journals (Sweden)

    Yingxia Zheng

    2017-05-01

    Full Text Available Ulcerative colitis (UC pathogenesis is related to imbalance of immune responses, and the equilibrium between inflammatory T cells and Foxp3+ regulatory T cells (Tregs plays an important role in the intestinal homeostasis. Protein arginine methyltransferases (PRMTs regulate chromatin remodeling and gene expression. Here, we investigated whether inhibition of PRMTs affects colitis pathogenesis in mice and inflammatory bowel disease patients and further explored the underlying mechanisms. In this study, we found that protein arginine N-methyltransferase inhibitor 1 (AMI-1 treatments increased Tregs frequency, function, and reduced colitis incidence. Adoptive transfer of AMI-1-treated Tregs could reduce the colitis incidence. Colitis was associated with increased local PRMT5 expression, which was inhibited by AMI-1 treatment. Additionally, PRMT5 knockdown T cells produced a better response to TGFβ and promoted Tregs differentiation through decreased DNA methyltransferase 1 (DNMT1 expression. PRMT5 also enhanced H3K27me3 and DNMT1 binding to Foxp3 promoter, which restricted Tregs differentiation. Furthermore, PRMT5 knockdown led to decreased Foxp3 promoter methylation during Tregs induction. PRMT5 expression had a negative relationship with Tregs in UC patients, knockdown of PRMT5 expression increased Tregs frequency and decreased TNFα, IL-6, and IL-13 levels. Our study outlines a novel regulation of PRMT5 on Tregs development and function. Strategies to decrease PRMT5 expression might have therapeutic potential to control UC.

  20. Induced Foxp3+ T cells colonising tolerated allografts exhibit the hypomethylation pattern typical of mature regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Robert eHilbrands

    2016-04-01

    Full Text Available Regulatory T cells expressing the transcription factor Foxp3 require acquisition of a specific hypomethylation pattern to ensure optimal functional commitment, limited lineage plasticity and long-term maintenance of tolerance. A better understanding of the molecular mechanisms involved in the generation of these epigenetic changes in vivo will contribute to the clinical exploitation of Foxp3+Treg. Here we show that both in vitro and in vivo generated antigen specific Foxp3+Treg can acquire Treg-specific epigenetic characteristics and prevent skin graft rejection in an animal model.

  1. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo.

    Science.gov (United States)

    Roux, Clémence; Saviane, Gaëlle; Pini, Jonathan; Belaïd, Nourhène; Dhib, Gihen; Voha, Christine; Ibáñez, Lidia; Boutin, Antoine; Mazure, Nathalie M; Wakkach, Abdelilah; Blin-Wakkach, Claudine; Rouleau, Matthieu

    2017-01-01

    Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs), and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4 + FoxP3 + regulatory T (Treg) cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3 + -Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo . They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.

  2. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Clémence Roux

    2018-01-01

    Full Text Available Despite mesenchymal stromal cells (MSCs are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate. Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs, and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4+ FoxP3+ regulatory T (Treg cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3+-Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo. They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.

  3. Effects of nilotinib on regulatory T cells: the dose matters

    Directory of Open Access Journals (Sweden)

    Chen Baoan

    2010-01-01

    Full Text Available Abstract Background Nilotinib is a tyrosine kinase inhibitor with high target specificity. Here, we characterized the effects of nilotinib for the first time on CD4+CD25+ regulatory T cells (Tregs which regulate anti-tumor/leukemia immune responses. Design and Methods Carboxyfluorescein diacetate succinimidyl ester (CFSE and 5-bromo-2-deoxy -uridine (BrdU were used to assess the proliferation and cell cycle distribution of Tregs. The expression of the transcription factor forkhead box P3 (FoxP3 and the glucocorticoid-induced tumor necrosis factor receptor (GITR were measured by flow cytometry. Western blotting analysis was used to detect the effects of nilotinib on the signal transduction cascade of T-cell receptor (TCR in Tregs. Results Nilotinib inhibited the proliferation and suppressive capacity of Tregs in a dose-dependent manner. However, the production of cytokines secreted by Tregs and CD4+CD25- T cells was only inhibited at high concentrations of nilotinib exceeding the mean therapeutic serum concentrations of the drug in patients. Only high doses of nilotinib arrested both Tregs and CD4+CD25- T cells in the G0/G1 phase and down-regulated the expression of FoxP3 and GITR. In western blotting analysis, nilotinib did not show significant inhibitory effects on TCR signaling events in Tregs and CD4+CD25- T cells. Conclusions These findings indicate that nilotinib does not hamper the function of Tregs at clinical relevant doses, while long-term administration of nilotinib still needs to be investigated.

  4. The Alternative NF-κB Pathway in Regulatory T Cell Homeostasis and Suppressive Function.

    Science.gov (United States)

    Grinberg-Bleyer, Yenkel; Caron, Rachel; Seeley, John J; De Silva, Nilushi S; Schindler, Christian W; Hayden, Matthew S; Klein, Ulf; Ghosh, Sankar

    2018-04-01

    CD4 + Foxp3 + regulatory T cells (Tregs) are essential regulators of immune responses. Perturbation of Treg homeostasis or function can lead to uncontrolled inflammation and autoimmunity. Therefore, understanding the molecular mechanisms involved in Treg biology remains an active area of investigation. It has been shown previously that the NF-κB family of transcription factors, in particular, the canonical pathway subunits, c-Rel and p65, are crucial for the development, maintenance, and function of Tregs. However, the role of the alternative NF-κB pathway components, p100 and RelB, in Treg biology remains unclear. In this article, we show that conditional deletion of the p100 gene, nfkb2 , in Tregs, resulted in massive inflammation because of impaired suppressive function of nfkb2 -deficient Tregs. Surprisingly, mice lacking RelB in Tregs did not exhibit the same phenotype. Instead, deletion of both relb and nfkb2 rescued the inflammatory phenotype, demonstrating an essential role for p100 as an inhibitor of RelB in Tregs. Our data therefore illustrate a new role for the alternative NF-κB signaling pathway in Tregs that has implications for the understanding of molecular pathways driving tolerance and immunity. Copyright © 2018 by The American Association of Immunologists, Inc.

  5. Regulatory T cells (Treg and Their Roles in Immune System with Respect to Immunopathological Disorders

    Directory of Open Access Journals (Sweden)

    Kateřina Kondělková

    2010-01-01

    Full Text Available Regulatory T cells (Tregs are a specialized subpopulation of T cells that act to suppress immune response, thereby maintaining homeostasis and self-tolerance. It has been shown that Tregs are able to inhibit T cell proliferation and cytokine production and play a critical role in preventing autoimmunity. Different subsets with various functions of Treg cells exist. Tregs can be usually identified by flow cytometry. The most specific marker for these cells is FoxP3, which is localized intracellulary. Selected surface markers such as CD25high (high molecular density and CD127low (low molecular density could serve as surrogate markers to detect Tregs in a routine clinical practice. Dysregulation in Treg cell frequency or functions may lead to the development of autoimmune disease. Therapeutical Treg modulation is considered to be a promising therapeutical approach to treat some selected disorders, such as allergies, and to prevent allograft rejection.

  6. Quantitative and qualitative analysis of regulatory T cells in B cell chronic lymphocytic leukemia.

    Science.gov (United States)

    Mpakou, Vassiliki E; Ioannidou, Heleni-Dikaia; Konsta, Eugene; Vikentiou, Myrofora; Spathis, Aris; Kontsioti, Frieda; Kontos, Christos K; Velentzas, Athanassios D; Papageorgiou, Sotiris; Vasilatou, Diamantina; Gkontopoulos, Konstantinos; Glezou, Irene; Stavroulaki, Georgia; Mpazani, Efthimia; Kokkori, Stella; Kyriakou, Elias; Karakitsos, Petros; Dimitriadis, George; Pappa, Vasiliki

    2017-09-01

    Accumulated data indicate a significant role of T cell dysfunction in the pathogenesis of chronic lymphocytic leukemia. In CLL, regulatory T cells are significantly higher and show lower apoptotic levels compared to healthy donors. We demonstrate that CLL derived CD4 + CD25 - CD127 - and CD4 + CD25 low CD127 - subpopulations share a common immunophenotypic profile with conventional Tregs and are associated with advanced stage disease. We further provide evidence that the increased number of Tregs contributes indirectly to the proliferation of the CLL clone, by suppressing the proliferation of Teffs which in turn suppress CLL cells. These data are further supported by our observations that CLL derived Tregs appear rather incapable of inducing apoptosis of both normal B cells and CLL cells, in contrast to normal Tregs, suggesting an immunoediting effect of CLL cells on Tregs which negatively affects the functionality of the latter and contributes to the failure of Tregs in CLL to efficiently eliminate the abnormal clone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pb exposure attenuates hypersensitivity in vivo by increasing regulatory T cells

    International Nuclear Information System (INIS)

    Fang, Liang; Zhao, Fang; Shen, Xuefeng; Ouyang, Weiming; Liu, Xinqin; Xu, Yan; Yu, Tao; Jin, Boquan; Chen, Jingyuan; Luo, Wenjing

    2012-01-01

    Pb is a common environmental pollutant affecting various organs. Exposure of the immune system to Pb leads to immunosuppression or immunodysregulation. Although previous studies showed that Pb exposure can modulate the function of helper T cells, Pb immunotoxicity remains incompletely understood. In this study, we investigated the effect of Pb exposure on T cell development, and the underlying mechanism of Pb-induced suppression of the delayed-type hypersensitivity (DTH) response in vivo. Sprague–Dawley rats were exposed to 300 ppm Pb-acetate solution via the drinking water for six weeks, and we found that Pb exposure significantly increased Pb concentrations in the blood by 4.2-fold (p + CD8 − and peripheral CD4 + T cells was significantly reduced, whereas, CD8 + population was not affected. In contrast to conventional CD4 + T cells, Foxp3 + regulatory T cells (Tregs) were increased in both the thymus and peripheral lymphoid organs of Pb-exposed rats. In line with the increase of Tregs, the DTH response of Pb-exposed rats was markedly suppressed. Depletion of Tregs reversed the suppression of DTH response by Pb-exposed CD4 + T cells in an adoptive transfer model, suggesting a critical role of the increased Tregs in suppressing the DTH response. Collectively, this study revealed that Pb-exposure may upregulate Tregs, thereby leading to immunosuppression. -- Highlights: ► Pb exposure impaired CD4 + thymic T cell development. ► Peripheral T lymphocytes were reduced following Pb exposure. ► Pb exposure increases thymic and peripheral Treg cells in rats. ► Tregs played a critical role in Pb-exposure-induced immune suppression.

  8. Regulatory dendritic cells in autoimmunity: A comprehensive review.

    Science.gov (United States)

    Liu, Juan; Cao, Xuetao

    2015-09-01

    Dendritic cells (DCs) are professional antigen-presenting cells (APC) with significant phenotypic heterogeneity and functional plasticity. DCs play crucial roles in initiating effective adaptive immune responses for elimination of invading pathogens and also in inducing immune tolerance toward harmless components to maintain immune homeostasis. The regulatory capacity of DCs depends on their immature state and distinct subsets, yet not restricted to the immature state and one specialized subset. The tolerogenicity of DC is controlled by a complex network of environmental signals and cellular intrinsic mechanisms. Regulatory DCs play an important role in the maintenance of immunological tolerance via the induction of T cell unresponsiveness or apoptosis, and generation of regulatory T cells. DCs play essential roles in driving autoimmunity via promoting the activation of effector T cells such as T helper 1 and T helper 17 cells, and/or suppressing the generation of regulatory T cells. Besides, a breakdown of DCs-mediated tolerance due to abnormal environmental signals or breakdown of intrinsic regulatory mechanisms is closely linked with the pathogenesis of autoimmune diseases. Novel immunotherapy taking advantage of the tolerogenic potential of regulatory DCs is being developed for treatment of autoimmune diseases. In this review, we will describe the current understanding on the generation of regulatory DC and the role of regulatory DCs in promoting tolerogenic immune responses and suppressing autoimmune responses. The emerging roles of DCs dysfunction in the pathogenesis of autoimmune diseases and the potential application of regulatory DCs in the treatment of autoimmune diseases will also be discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Gamma c-signaling cytokines induce a regulatory T cell phenotype in malignant CD4+ T lymphocytes

    DEFF Research Database (Denmark)

    Kasprzycka, Monika; Zhang, Qian; Witkiewicz, Agnieszka

    2008-01-01

    In this study, we demonstrate that malignant mature CD4(+) T lymphocytes derived from cutaneous T cell lymphomas (CTCL) variably display some aspects of the T regulatory phenotype. Whereas seven cell lines representing a spectrum of primary cutaneous T cell lymphoproliferative disorders expressed...... that FOXP3-expressing cells were common among the CD7-negative enlarged atypical and small lymphocytes at the early skin patch and plaque stages. Their frequency was profoundly diminished at the tumor stage and in the CTCL lymph node lesions with or without large cell transformation. These results indicate...

  10. [Regulatory T cells inhibit proliferation of mouse lymphoma cell line EL4 in vitro].

    Science.gov (United States)

    Zhang, Chen; Kong, Yan; Guo, Jun; Ying, Zhi-Tao; Yuan, Zhi-Hong; Zhang, Yun-Tao; Zheng, Wen; Song, Yu-Qin; Li, Ping-Ping; Zhu, Jun

    2010-10-01

    This study was aimed to investigate the effect of regulatory T (Treg) cells on the T cell lymphoma EL4 cells and its mechanism in vitro. C57BL/6 mouse Treg cells were isolated by magnetic cell sorting (MACS). The purity of Treg cells and their expression of Foxp3 were identified by flow cytometry (FCM) and PT-PCR respectively. The suppression of Treg cells on EL4 cells was detected by 3H-TdR method. At the same time, enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of cytokine TGF-β1 and IL-10. The results showed that CD4+CD25+ T cells could be successfully isolated by MACS with the purity reaching 94.52% and the expression of Foxp3 reaching 84.72%. After sorting, the expression of Foxp3 mRNA could be detected by RT-PCR. 3H-TdR assay confirmed that regulatory T cells could suppress the proliferation of EL4 cells with or without antigen presenting cells (APC) or dendritic cells (DC), APC or DC might effectively enhance the suppression. In addition, DC alone also suppressed the proliferation. TGF-β1 and IL-10 could be detected in the supernatant by ELISA. It is concluded that the Treg cells can obviously suppress the proliferation of T cell lymphoma cells in vitro, APC or DC can enhance this suppressive effect, while the DC alone also can suppress the proliferation of EL4 cells, the TGF-β1 and IL-10 cytokine pathway may be one of the mechanisms of suppression.

  11. Tissue-specific control of latent CMV reactivation by regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Maha Almanan

    2017-08-01

    Full Text Available Cytomegalovirus (CMV causes a persistent, lifelong infection. CMV persists in a latent state and undergoes intermittent subclinical viral reactivation that is quelled by ongoing T cell responses. While T cells are critical to maintain control of infection, the immunological factors that promote CMV persistence remain unclear. Here, we investigated the role of regulatory T cells (Treg in a mouse model of latent CMV infection using Foxp3-diphtheria toxin receptor (Foxp3-DTR mice. Eight months after infection, MCMV had established latency in the spleen, salivary gland, lung, and pancreas, which was accompanied by an increased frequency of Treg. Administration of diphtheria toxin (DT after establishment of latency efficiently depleted Treg and drove a significant increase in the numbers of functional MCMV-specific CD4+ and CD8+ T cells. Strikingly, Treg depletion decreased the number of animals with reactivatable latent MCMV in the spleen. Unexpectedly, in the same animals, ablation of Treg drove a significant increase in viral reactivation in the salivary gland that was accompanied with augmented local IL-10 production by Foxp3-CD4+T cells. Further, neutralization of IL-10 after Treg depletion significantly decreased viral load in the salivary gland. Combined, these data show that Treg have divergent control of MCMV infection depending upon the tissue. In the spleen, Treg antagonize CD8+ effector function and promote viral persistence while in the salivary gland Treg prevent IL-10 production and limit viral reactivation and replication. These data provide new insights into the organ-specific roles of Treg in controlling the reactivation of latent MCMV infection.

  12. Consumption of probiotics increases the effect of regulatory T cells in transfer colitis

    DEFF Research Database (Denmark)

    Petersen, Emil Rathsach; Claesson, Mogens Helweg; Schmidt, Esben Gjerløff Wedebye

    2012-01-01

    BACKGROUND: Probiotics may alter immune regulation. Recently, we showed that the probiotic bacteria Lactobacillus acidophilus NCFM™ influenced the activity of regulatory T cells (Tregs) in vitro. The aim of the present work was to demonstrate if L. acidophilus NCFM™ also affects the function...... of Tregs in vivo. METHODS: Development of colitis after transfer of CD4+CD25- T cells and protection from colitis by Tregs was studied in immunodeficient SCID mice which were simultaneously tube-fed with L. acidophilus NCFM™ or L. salivarius Ls-33 for 5 weeks. RESULTS: Probiotic-fed SCID mice transplanted...... with low numbers of Tregs in addition to the disease-inducing T cells were completely protected from colitis. This was in contrast to the control group, which showed intermediate levels of inflammation. In addition, feeding with probiotics lowered serum levels of inflammatory cytokines in both colitic mice...

  13. CD73 Expressed on γδ T Cells Shapes Their Regulatory Effect in Experimental Autoimmune Uveitis.

    Directory of Open Access Journals (Sweden)

    Dongchun Liang

    Full Text Available γδ T cells can either enhance or inhibit an adaptive immune response, but the mechanisms involved are not fully understood. Given that CD73 is the main enzyme responsible for conversion of AMP into the immunosuppressive molecule adenosine, we investigated its role in the regulatory function of γδ T cells in experimental autoimmune uveitis (EAU. We found that γδ T cells expressed different amounts of CD73 during the different stages of EAU and that low CD73 expression on γδ T cells correlated with enhanced Th17 response-promoting activity. Functional comparison of CD73-deficient and wild-type B6 (CD73+/+ mice showed that failure to express CD73 decreased both the enhancing and suppressive effects of γδ T cells on EAU. We also demonstrated that γδ T cells expressed different amounts of CD73 when activated by different pathways, which enabled them to either enhance or inhibit an adaptive immune response. Our results demonstrate that targeting CD73 expression on γδ T cells may allow us to manipulate their pro- or anti-inflammatory effect on Th17 responses.

  14. Intravital imaging of donor allogeneic effector and regulatory T cells with host dendritic cells during GVHD.

    Science.gov (United States)

    Lin, Kaifeng Lisa; Fulton, LeShara M; Berginski, Matthew; West, Michelle L; Taylor, Nicholas A; Moran, Timothy P; Coghill, James M; Blazar, Bruce R; Bear, James E; Serody, Jonathan S

    2014-03-06

    Graft-versus-host disease (GVHD) is a systemic inflammatory response due to the recognition of major histocompatibility complex disparity between donor and recipient after hematopoietic stem cell transplantation (HSCT). T-cell activation is critical to the induction of GVHD, and data from our group and others have shown that regulatory T cells (Tregs) prevent GVHD when given at the time of HSCT. Using multiphoton laser scanning microscopy, we examined the single cell dynamics of donor T cells and dendritic cells (DCs) with or without Tregs postallogeneic transplantation. We found that donor conventional T cells (Tcons) spent very little time screening host DCs. Tcons formed stable contacts with DCs very early after transplantation and only increased velocity in the lymph node at 20 hours after transplant. We also observed that Tregs reduced the interaction time between Tcons and DCs, which was dependent on the generation of interleukin 10 by Tregs. Imaging using inducible Tregs showed similar disruption of Tcon-DC contact. Additionally, we found that donor Tregs induce host DC death and down-regulate surface proteins required for donor T-cell activation. These data indicate that Tregs use multiple mechanisms that affect host DC numbers and function to mitigate acute GVHD.

  15. Psoriasis associated with idiopathic CD4+ T-cell lymphopenia: a regulatory T-cell defect?

    Science.gov (United States)

    Baroudjian, B; Viguier, M; Battistella, M; Beneton, N; Pagès, C; Gener, G; Bégon, E; Bachelez, H

    2014-07-01

    Idiopathic CD4(+) lymphocytopenia (ICL) is a rare immunodeficiency syndrome of unknown origin for which the increased risks of opportunistic infections and of malignancies have been well established; however, skin dysimmune diseases, including psoriasis, have been scarcely reported up to now. We report herein the severe course of psoriasis in four patients with ICL, and show evidence for a defect in the skin recruitment of regulatory CD4(+) FoxP3(+) T cells. These data raise the apparent paradigm of the occurrence of a severe immunomediated disease together with a profound T-cell defect, a model that might also apply to other immune deficiencies associated with psoriasis. © 2014 British Association of Dermatologists.

  16. Characterizing T Cells in SCID Patients Presenting with Reactive or Residual T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Atar Lev

    2012-01-01

    Full Text Available Introduction. Patients with severe combined immunodeficiency (SCID may present with residual circulating T cells. While all cells are functionally deficient, resulting in high susceptibility to infections, only some of these cells are causing autoimmune symptoms. Methods. Here we compared T-cell functions including the number of circulating CD3+ T cells, in vitro responses to mitogens, T-cell receptor (TCR repertoire, TCR excision circles (TREC levels, and regulatory T cells (Tregs enumeration in several immunodeficinecy subtypes, clinically presenting with nonreactive residual cells (MHC-II deficiency or reactive cells. The latter includes patients with autoreactive clonal expanded T cell and patients with alloreactive transplacentally maternal T cells. Results. MHC-II deficient patients had slightly reduced T-cell function, normal TRECs, TCR repertoires, and normal Tregs enumeration. In contrast, patients with reactive T cells exhibited poor T-cell differentiation and activity. While the autoreactive cells displayed significantly reduced Tregs numbers, the alloreactive transplacentally acquired maternal lymphocytes had high functional Tregs. Conclusion. SCID patients presenting with circulating T cells show different patterns of T-cell activity and regulatory T cells enumeration that dictates the immunodeficient and autoimmune manifestations. We suggest that a high-tolerance capacity of the alloreactive transplacentally acquired maternal lymphocytes represents a toleration advantage, yet still associated with severe immunodeficiency.

  17. Clinical Grade Regulatory CD4+ T Cells (Tregs: Moving Toward Cellular-Based Immunomodulatory Therapies

    Directory of Open Access Journals (Sweden)

    Richard Duggleby

    2018-02-01

    Full Text Available Regulatory T cells (Tregs are CD4+ T cells that are key players of immune tolerance. They are powerful suppressor cells, able to impact the function of numerous immune cells, including key effectors of inflammation such as effector T cells. For this reason, Tregs are an ideal candidate for the development of cell therapy approaches to modulate immune responses. Treg therapy has shown promising results so far, providing key knowledge on the conditions in which these cells can provide protection and demonstrating that they could be an alternative to current pharmacological immunosuppressive therapies. However, a more comprehensive understanding of their characteristics, isolation, activation, and expansion is needed to be able design cost effective therapies. Here, we review the practicalities of making Tregs a viable cell therapy, in particular, discussing the challenges faced in isolating and manufacturing Tregs and defining what are the most appropriate applications for this new therapy.

  18. Daratumumab depletes CD38sup>+> immune-regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma

    DEFF Research Database (Denmark)

    Krejcik, Jakub; Casneuf, Tineke; Nijhof, Inger S

    2016-01-01

    target non-plasma cells that express CD38, which prompted evaluation of daratumumab's effects on CD38-positive immune subpopulations. Peripheral blood (PB) and bone marrow (BM) from patients with relapsed/refractory myeloma from two daratumumab monotherapy studies were analyzed before and during therapy......Daratumumab targets CD38-expressing myeloma cells through a variety of immune-mediated mechanisms (complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis) and direct apoptosis with cross-linking. These mechanisms may also...... and at relapse. Regulatory B cells (Bregs) and myeloid-derived suppressor cells (MDSCs), previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was identified...

  19. Virally inactivated human platelet concentrate lysate induces regulatory T cells and immunosuppressive effect in a murine asthma model.

    Science.gov (United States)

    Lee, Yueh-Lun; Lee, Lin-Wen; Su, Chen-Yao; Hsiao, George; Yang, Yi-Yuan; Leu, Sy-Jye; Shieh, Ying-Hua; Burnouf, Thierry

    2013-09-01

    Platelet concentrate lysates (PCLs) are increasingly used in regenerative medicine. We have developed a solvent/detergent (S/D)-treated PCL. The functional properties of this preparation should be unveiled. We hypothesized that, due to transforming growth factor-β1 (TGF-β1) content, PCLs may exert immunosuppressive and anti-inflammatory functions. PCL was prepared by S/D treatment, oil extraction, and hydrophobic interaction chromatography. The content of TGF-β in PCL was determined by enzyme-linked immunosorbent assay. Cultured CD4+ T cells were used to investigate the effects of PCL on expression of transcription factor forkhead box P3 (Foxp3), the inhibition of T-cell proliferation, and cytokine production. The regulatory function of PCL-converted CD4+ T cells was analyzed by suppressive assay. The BALB/c mice were given PCL-converted CD4+ T cells before ovalbumin (OVA) sensitization and challenge using an asthma model. Inflammatory parameters, such as the level of immunoglobulin E (IgE), airway hyperresponsiveness (AHR), bronchial lavage fluid eosinophils, and cytokines were assayed. Recombinant human (rHu) TGF-β1 was used as control. PCL significantly enhanced the development of CD4+Foxp3+-induced regulatory T cells (iTregs). Converted iTregs produced neither Th1 nor Th2 cytokines and inhibited normal T-cell proliferation. PCL- and rHuTGF-β-converted CD4+ T cells prevented OVA-induced asthma. PCL- and rHuTGF-β-modified T cells both significantly reduced expression levels of OVA-specific IgE and significantly inhibited the development of AHR, airway eosinophilia, and Th2 responses in mice. S/D-treated PCL promotes Foxp3+ iTregs and exerts immunosuppressive and anti-inflammatory properties. This finding may help to understand the clinical properties of platelet lysates. © 2013 American Association of Blood Banks.

  20. A2E Suppresses Regulatory Function of RPE Cells in Th1 Cell Differentiation Via Production of IL-1β and Inhibition of PGE2.

    Science.gov (United States)

    Shi, Qian; Wang, Qiu; Li, Jing; Zhou, Xiaohui; Fan, Huimin; Wang, Fenghua; Liu, Haiyun; Sun, Xiangjun; Sun, Xiaodong

    2015-12-01

    Inflammatory status of RPE cells induced by A2E is essential in the development of AMD. Recent research indicated T-cell immunity was involved in the pathological progression of AMD. This study was designed to investigate how A2E suppresses immunoregulatory function of RPE cells in T-cell immunity in vitro. Mouse RPE cells or human ARPE19 cells were stimulated with A2E, and co-cultured with naïve T cells under Th1, Th2, Th17, and regulatory T cell (Treg) polarization conditions. The intracellular cytokines or transcript factors of the induced T-cells subset were detected with flow cytometer and qRT-PCR. The ROS levels were detected, and the factors and possible pathways involved in the A2E-laden RPE cells were analyzed through neutralization antibody of IL-1β and inhibitors of related pathways. The A2E reduced regulatory function of RPE cells in Treg differentiation. The A2E-laden RPE cells promoted polarization of Th1 cells in vitro, but not Th2 or Th17 differentiation. The A2E induced RPE cells to release inflammatory cytokines and ROS, but PGE2 production was inhibited. Through neutralization of IL-1β or inhibition of COX2-PGE2 pathways, A2E-laden RPE cells expressed reduced effect in inducing Th1 cells. The A2E inhibited regulatory function of RPE cells in suppressing Th1 cell immunity in vitro through production of IL-1β and inhibition of PGE2. Our data indicate that A2E could suppress immunoregulatory function of RPE cells and adaptive immunity might play a role in the immune pathogenesis of AMD.

  1. Regulatory T cell effects in antitumor laser immunotherapy: a mathematical model and analysis

    Science.gov (United States)

    Dawkins, Bryan A.; Laverty, Sean M.

    2016-03-01

    Regulatory T cells (Tregs) have tremendous influence on treatment outcomes in patients receiving immunotherapy for cancerous tumors. We present a mathematical model incorporating the primary cellular and molecular components of antitumor laser immunotherapy. We explicitly model developmental classes of dendritic cells (DCs), cytotoxic T cells (CTLs), primary and metastatic tumor cells, and tumor antigen. Regulatory T cells have been shown to kill antigen presenting cells, to influence dendritic cell maturation and migration, to kill activated killer CTLs in the tumor microenvironment, and to influence CTL proliferation. Since Tregs affect explicitly modeled cells, but we do not explicitly model dynamics of Treg themselves, we use model parameters to analyze effects of Treg immunosuppressive activity. We will outline a systematic method for assigning clinical outcomes to model simulations and use this condition to associate simulated patient treatment outcome with Treg activity.

  2. Superior Cervical Ganglia Neurons Induce Foxp3+ Regulatory T Cells via Calcitonin Gene-Related Peptide.

    Science.gov (United States)

    Szklany, Kirsten; Ruiter, Evelyn; Mian, Firoz; Kunze, Wolfgang; Bienenstock, John; Forsythe, Paul; Karimi, Khalil

    2016-01-01

    The nervous and immune systems communicate bidirectionally, utilizing diverse molecular signals including cytokines and neurotransmitters to provide an integrated response to changes in the body's internal and external environment. Although, neuro-immune interactions are becoming better understood under inflammatory circumstances and it has been evidenced that interaction between neurons and T cells results in the conversion of encephalitogenic T cells to T regulatory cells, relatively little is known about the communication between neurons and naïve T cells. Here, we demonstrate that following co-culture of naïve CD4+ T cells with superior cervical ganglion neurons, the percentage of Foxp3 expressing CD4+CD25+ cells significantly increased. This was mediated in part by immune-regulatory cytokines TGF-β and IL-10, as well as the neuropeptide calcitonin gene-related peptide while vasoactive intestinal peptide was shown to play no role in generation of T regulatory cells. Additionally, T cells co-cultured with neurons showed a decrease in the levels of pro-inflammatory cytokine IFN-γ released upon in vitro stimulation. These findings suggest that the generation of Tregs may be promoted by naïve CD4+ T cell: neuron interaction through the release of neuropeptide CGRP.

  3. Regulatory T cells in multiple sclerosis and myasthenia gravis.

    Science.gov (United States)

    Danikowski, K M; Jayaraman, S; Prabhakar, B S

    2017-06-09

    Multiple sclerosis (MS) is a chronic debilitating disease of the central nervous system primarily mediated by T lymphocytes with specificity to neuronal antigens in genetically susceptible individuals. On the other hand, myasthenia gravis (MG) primarily involves destruction of the neuromuscular junction by antibodies specific to the acetylcholine receptor. Both autoimmune diseases are thought to result from loss of self-tolerance, which allows for the development and function of autoreactive lymphocytes. Although the mechanisms underlying compromised self-tolerance in these and other autoimmune diseases have not been fully elucidated, one possibility is numerical, functional, and/or migratory deficits in T regulatory cells (Tregs). Tregs are thought to play a critical role in the maintenance of peripheral immune tolerance. It is believed that Tregs function by suppressing the effector CD4+ T cell subsets that mediate autoimmune responses. Dysregulation of suppressive and migratory markers on Tregs have been linked to the pathogenesis of both MS and MG. For example, genetic abnormalities have been found in Treg suppressive markers CTLA-4 and CD25, while others have shown a decreased expression of FoxP3 and IL-10. Furthermore, elevated levels of pro-inflammatory cytokines such as IL-6, IL-17, and IFN-γ secreted by T effectors have been noted in MS and MG patients. This review provides several strategies of treatment which have been shown to be effective or are proposed as potential therapies to restore the function of various Treg subsets including Tr1, iTr35, nTregs, and iTregs. Strategies focusing on enhancing the Treg function find importance in cytokines TGF-β, IDO, interleukins 10, 27, and 35, and ligands Jagged-1 and OX40L. Likewise, strategies which affect Treg migration involve chemokines CCL17 and CXCL11. In pre-clinical animal models of experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune myasthenia gravis (EAMG), several strategies

  4. Identification and Functional Characterization of Human Cd4+Cd25+ T Cells with Regulatory Properties Isolated from Peripheral Blood

    Science.gov (United States)

    Jonuleit, Helmut; Schmitt, Edgar; Stassen, Michael; Tuettenberg, Andrea; Knop, Jurgen; Enk, Alexander H.

    2001-01-01

    A subpopulation of peripheral human CD4+CD25+ T cells that expresses CD45RO, histocompatibility leukocyte antigen DR, and intracellular cytotoxic T lymphocyte–associated antigen (CTLA) 4 does not expand after stimulation and markedly suppresses the expansion of conventional T cells in a contact-dependent manner. After activation, CD4+CD25+ T cells express CTLA-4 on the surface detectable for several weeks. These cells show a G1/G0 cell cycle arrest and no production of interleukin (IL)-2, IL-4, or interferon (IFN)-γ on either protein or mRNA levels. The anergic state of CD4+CD25+ T cells is not reversible by the addition of anti-CD28, anti–CTLA-4, anti–transforming growth factor β, or anti–IL-10 antibody. However, the refractory state of CD4+CD25+ T cells was partially reversible by the addition of IL-2 or IL-4. These data demonstrate that human blood contains a resident T cell population with potent regulatory properties. PMID:11390435

  5. Pb exposure attenuates hypersensitivity in vivo by increasing regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Liang [Department of Immunology, Fourth Military Medical University, Xi' an 710032 (China); Zhao, Fang; Shen, Xuefeng [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Ouyang, Weiming [Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Bethesda, MD (United States); Liu, Xinqin; Xu, Yan; Yu, Tao [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Jin, Boquan [Department of Immunology, Fourth Military Medical University, Xi' an 710032 (China); Chen, Jingyuan, E-mail: jy_chen@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Luo, Wenjing, E-mail: luowenj@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China)

    2012-12-01

    Pb is a common environmental pollutant affecting various organs. Exposure of the immune system to Pb leads to immunosuppression or immunodysregulation. Although previous studies showed that Pb exposure can modulate the function of helper T cells, Pb immunotoxicity remains incompletely understood. In this study, we investigated the effect of Pb exposure on T cell development, and the underlying mechanism of Pb-induced suppression of the delayed-type hypersensitivity (DTH) response in vivo. Sprague–Dawley rats were exposed to 300 ppm Pb-acetate solution via the drinking water for six weeks, and we found that Pb exposure significantly increased Pb concentrations in the blood by 4.2-fold (p < 0.05) as compared to those in the control rats. In Pb-exposed rats, the amount of thymic CD4{sup +}CD8{sup −} and peripheral CD4{sup +} T cells was significantly reduced, whereas, CD8{sup +} population was not affected. In contrast to conventional CD4{sup +} T cells, Foxp3{sup +} regulatory T cells (Tregs) were increased in both the thymus and peripheral lymphoid organs of Pb-exposed rats. In line with the increase of Tregs, the DTH response of Pb-exposed rats was markedly suppressed. Depletion of Tregs reversed the suppression of DTH response by Pb-exposed CD4{sup +} T cells in an adoptive transfer model, suggesting a critical role of the increased Tregs in suppressing the DTH response. Collectively, this study revealed that Pb-exposure may upregulate Tregs, thereby leading to immunosuppression. -- Highlights: ► Pb exposure impaired CD4{sup +} thymic T cell development. ► Peripheral T lymphocytes were reduced following Pb exposure. ► Pb exposure increases thymic and peripheral Treg cells in rats. ► Tregs played a critical role in Pb-exposure-induced immune suppression.

  6. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (T FH ) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of T FH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on T FH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate T FH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing T FH cell maturation. In cocultures they differentiated B cells into CD138 + plasma and IgD - CD27 + memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented T FH cell development. Added to T FH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3 + CXCR5 + PD-1 + follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on T FH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control T FH cell maturation, expand follicular regulatory T cells, and inhibit the T FH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the T FH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. CD4~+Foxp3~+ regulatory T cells converted by rapamycin from peripheral CD4~+ CD25~-naive T cells display more potent regulatory ability in vitro

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-fei; GAO Jie; ZHANG Dong; WANG Zi-han; ZHU Ji-ye

    2010-01-01

    Background Rapamycin (RAPA) is a relatively new immunosuppressant drug that functions as a serine/threonine kinase inhibitor to prevent rejection in organ transplantation. RAPA blocks activation of T-effector (Teff) cells by inhibiting the response to interleukin-2. Recently, RAPA was also shown to selectively expand the T-regulator (Treg) cell population. To date, no studies have examined the mechanism by which RAPA converts Teff cells to Treg cells. Methods Peripheral CD4~+CD25~- naive T cells were cultivated with RAPA and B cells as antigen-presenting cells (APCs) in vitro. CD4~+CD25~- T cells were harvested after 6 days and analyzed for expression of forkhead box protein 3 (Foxp3) using flow cytometry. CD4~+CD25~+CD127~- subsets as the converted Tregs were isolated from the mixed lymphocyte reactions (MLR) with CD127 negative selection, followed by CD4 and CD25 positive selection using microbeads and magnetic separation column (MSC). Moreover, mRNA was extracted from converted Tregs and C57BL/6 naive CD4~+CD25~+ T cells and Foxp3 levels were examined by quantitative real-time polymerase chain reaction (rt-PCR). A total of 1×10~5 carboxyfluorescein succinimidyl ester (CFSE)-labeled naive CD4~+CD25~- T cells/well from C57BL/6 mice were cocultured with DBA/2 or C3H maturation of dendritic cells (mDCs) (0.25×10~5/well) in 96-well round-bottom plates for 6 days. Then 1×10~5 or 0.25×10~5 converted Treg cells were added to every well as regulatory cells. Cells were harvested after 6 days of culture and analyzed for proliferation of CFSE-labeled naive CD4~+CD25~- T cells using flow cytometry. Data were analyzed using CellQuest software.Results We found that RAPA can convert peripheral CD4~+CD25~- naive T Cells to CD4~+Foxp3~+ Treg cells using B cells as APCs, and this subtype of Treg can potently suppress Teff proliferation and maintain antigenic specificity. Conclusion Our findings provide evidence that RAPA induces Treg cell conversion from Teff cells and

  8. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2-interacting mediator knock-out mice.

    Science.gov (United States)

    Wang, Y M; Zhang, G Y; Wang, Y; Hu, M; Zhou, J J; Sawyer, A; Cao, Q; Wang, Y; Zheng, G; Lee, V W S; Harris, D C H; Alexander, S I

    2017-05-01

    Regulatory T cells (T regs ) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of T regs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of T regs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of T regs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2-interacting mediator (Bim) knock-out mice by transient depleting T regs . Bim is a pro-apoptotic member of the B cell lymphoma 2 (Bcl-2) family. Bim knock-out (Bim -/- ) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that T reg depletion in Bim -/- mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild-type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17α, interferon (IFN)-γ and tumour necrosis factor (TNF)-α were increased significantly after T reg depletion in Bim -/- mice. This study demonstrates that transient depletion of T regs leads to enhanced self-reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim-deficient mice. © 2017 British Society for Immunology.

  9. Type 2 innate lymphoid cell suppression by regulatorycells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction.

    Science.gov (United States)

    Rigas, Diamanda; Lewis, Gavin; Aron, Jennifer L; Wang, Bowen; Banie, Homayon; Sankaranarayanan, Ishwarya; Galle-Treger, Lauriane; Maazi, Hadi; Lo, Richard; Freeman, Gordon J; Sharpe, Arlene H; Soroosh, Pejman; Akbari, Omid

    2017-05-01

    Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Fogg, Mark; Murphy, John R.; Lorch, Jochen; Posner, Marshall; Wang, Fred

    2013-01-01

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients

  11. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Mark [Department of Medicine, Brigham and Women' s Hospital (United States); Murphy, John R. [Departments of Medicine and Microbiology, Boston University School of Medicine, Boston, MA 02118 (United States); Lorch, Jochen; Posner, Marshall [Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Wang, Fred, E-mail: fwang@research.bwh.harvard.edu [Department of Medicine, Brigham and Women' s Hospital (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-07-05

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients.

  12. Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver.

    Science.gov (United States)

    Mailer, Reiner K W; Gisterå, Anton; Polyzos, Konstantinos A; Ketelhuth, Daniel F J; Hansson, Göran K

    2017-05-26

    The liver is the central organ that responds to dietary cholesterol intake and facilitates the release and clearance of lipoprotein particles. Persistent hypercholesterolemia leads to immune responses against lipoprotein particles that drive atherosclerosis. However, the effect of hypercholesterolemia on hepatic T-cell differentiation remains unknown. To investigate hepatic T-cell subsets upon hypercholesterolemia. We observed that hypercholesterolemia elevated the intrahepatic regulatory T (Treg) cell population and increased the expression of transforming growth factor-β1 in the liver. Adoptive transfer experiments revealed that intrahepatically differentiated Treg cells relocated to the inflamed aorta in atherosclerosis-prone low-density lipoprotein receptor deficient ( Ldlr -/- ) mice. Moreover, hypercholesterolemia induced the differentiation of intrahepatic, but not intrasplenic, Th17 cells in wild-type mice, whereas the disrupted liver homeostasis in hypercholesterolemic Ldlr -/- mice led to intrahepatic Th1 cell differentiation and CD11b + CD11c + leukocyte accumulation. Our results elucidate a new mechanism that controls intrahepatic T-cell differentiation during atherosclerosis development and indicates that intrahepatically differentiated T cells contribute to the CD4 + T-cell pool in the atherosclerotic aorta. © 2017 American Heart Association, Inc.

  13. Acquired transcriptional programming in functional and exhausted virus-specific CD8 T cells.

    Science.gov (United States)

    Youngblood, Ben; Wherry, E John; Ahmed, Rafi

    2012-01-01

    Failure to control viral infections such as HIV results in T-cell receptor (TCR) and inhibitory receptor driven exhaustion of antigen-specific T cells. Persistent signaling by these receptors during chronic viral infection sculpts the transcriptional regulatory programs of virus-specific T cells. The resulting gene expression profile is tailored to temper the potentially damaging effector functions of cytotoxic T cells and adapt them to an antigen-rich and inflammation-rich environment. Here we review recent studies investigating mechanisms of transcriptional regulation of effector, functional memory, and exhausted T-cell functions during acute versus chronic infections. Patterns of gene expression in virus-specific CD8 T cells are a result of a combination of pro and inhibitory signals from antigen presentation (TCR-mediated) and co-inhibitory receptor ligation (PD-1, 2B4). Further, memory-specific transcriptional regulation of 2B4 expression and signaling impose a self-limiting secondary effector response to a prolonged viral infection. Additionally, differentiation of functional memory CD8 T cells is coupled with acquisition of a repressive epigenetic program for PD-1 expression. However, chronic infection provides a signal that blocks the acquisition of these epigenetic modifications reinforcing the suppression of cytotoxic lymphocyte (CTL) functions in exhausted cells. Current findings suggest that the mechanism(s) that delineate functional memory versus exhaustion are coupled with acquisition of transcriptional programs at the effector stage of differentiation, reinforced by cessation or persistence of TCR signaling.

  14. Robust and Accurate Discrimination of Self/Non-Self Antigen Presentations by Regulatory T Cell Suppression.

    Directory of Open Access Journals (Sweden)

    Chikara Furusawa

    Full Text Available The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self and non-self antigens, even when there is a significant overlap between the affinity distribution of T cells to self and non-self antigens. Here, the number of regulatory T cells in the system acts as a global variable controlling the T cell population dynamics. The present study provides a basis for the development of a quantitative theory for self and non-self discrimination in the immune system and a possible strategy for its experimental verification.

  15. Robust and Accurate Discrimination of Self/Non-Self Antigen Presentations by Regulatory T Cell Suppression.

    Science.gov (United States)

    Furusawa, Chikara; Yamaguchi, Tomoyuki

    The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self and non-self antigens, even when there is a significant overlap between the affinity distribution of T cells to self and non-self antigens. Here, the number of regulatory T cells in the system acts as a global variable controlling the T cell population dynamics. The present study provides a basis for the development of a quantitative theory for self and non-self discrimination in the immune system and a possible strategy for its experimental verification.

  16. P2X7 on mouse T cells: one channel, many functions

    Directory of Open Access Journals (Sweden)

    Björn eRissiek

    2015-05-01

    Full Text Available The P2X7 receptor is an adenosine triphosphate (ATP-gated cation channel that is expressed by several cells of the immune system. P2X7 is best known for its proinflammatory role in promoting inflammasome formation and release of mature IL-1β by innate immune cells. Mounting evidence indicates that P2X7 is also an important regulatory receptor of murine and human T cell functions. Murine T cells express a sensitive splice variant of P2X7 that can be activated either by non-covalent binding of ATP or, in the presence of nicotinamide adenine dinucleotide (NAD+, by its covalent ADP-ribosylation catalyzed by the ecto-ADP-ribosyltransferase ARTC2.2. Prolonged activation of P2X7 by either one of these pathways triggers the induction of T cell death. Conversely, lower concentrations of ATP can activate P2X7 to enhance T cell proliferation and production of IL-2. In this review we will highlight the molecular and cellular consequences of P2X7 activation on mouse T cells and its versatile role in T cell homeostasis and activation. Further, we will discuss important differences in the function of P2X7 on human and murine T cells.

  17. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy.

    Science.gov (United States)

    Sander, Frida Ewald; Nilsson, Malin; Rydström, Anna; Aurelius, Johan; Riise, Rebecca E; Movitz, Charlotta; Bernson, Elin; Kiffin, Roberta; Ståhlberg, Anders; Brune, Mats; Foà, Robin; Hellstrand, Kristoffer; Thorén, Fredrik B; Martner, Anna

    2017-11-01

    Regulatory T cells (T regs ) have been proposed to dampen functions of anti-neoplastic immune cells and thus promote cancer progression. In a phase IV trial (Re:Mission Trial, NCT01347996, http://www.clinicaltrials.gov ) 84 patients (age 18-79) with acute myeloid leukemia (AML) in first complete remission (CR) received ten consecutive 3-week cycles of immunotherapy with histamine dihydrochloride (HDC) and low-dose interleukin-2 (IL-2) to prevent relapse of leukemia in the post-consolidation phase. This study aimed at defining the features, function and dynamics of Foxp3 + CD25 high CD4 + T regs during immunotherapy and to determine the potential impact of T regs on relapse risk and survival. We observed a pronounced increase in T reg counts in peripheral blood during initial cycles of HDC/IL-2. The accumulating T regs resembled thymic-derived natural T regs (nT regs ), showed augmented expression of CTLA-4 and suppressed the cell cycle proliferation of conventional T cells ex vivo. Relapse of AML was not prognosticated by T reg counts at onset of treatment or after the first cycle of immunotherapy. However, the magnitude of T reg induction was diminished in subsequent treatment cycles. Exploratory analyses implied that a reduced expansion of T regs in later treatment cycles and a short T reg telomere length were significantly associated with a favorable clinical outcome. Our results suggest that immunotherapy with HDC/IL-2 in AML entails induction of immunosuppressive T regs that may be targeted for improved anti-leukemic efficiency.

  18. Rol de las células T regulatorias en esclerosis múltiple Role of T-regulatory cells in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Rojas

    2010-02-01

    Full Text Available La esclerosis múltiple (EM es una enfermedad inflamatoria autoinmune desmielinizante del sistema nervioso central (SNC. La mayoría de las enfermedades autoinmunes se originan por la activación anormal de la respuesta inflamatoria contra auto-antígenos (la mayoría de ellos desconocidos a la fecha como consecuencia de la pérdida de la tolerancia periférica. Las células T-regulatorias constituyen un grupo esencial de linfocitos T encargados del mantenimiento de la tolerancia periférica, la prevención de enfermedades autoinmunes y la limitación de enfermedades inflamatorias crónicas. Teniendo en cuenta la importancia de la tolerancia periférica, las células T-regulatorias serían componentes cruciales en el escenario fisiopatológico de los procesos autoinmunes, incluyendo la EM. El presente trabajo recopila los conocimientos actuales sobre la función de las células T-regulatorias en la EM, la enfermedad autoinmune desmielinizante del SNC más prevalente en los seres humanos.Multiple sclerosis (MS is an autoimmune inflammatory demyelinating disease of the central nervous system (CNS. Most of autoimmune diseases arise by an abnormal activation of the inflammatory response against self-antigens (most of them unknown up to date as a consequence of dysfunction in peripheral tolerance. Regulatory T-cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory conditions. Based on that knowledge, T-regulatory cells have emerged as a key component of the physiopathology of autoimmune diseases including MS. This review compiles the current knowledge on the role and function of T-regulatory cells in MS, the most prevalent CNS autoimmune disease in humans.

  19. Human T-Lymphotropic Virus Type 1 (HTLV-1 and Regulatory T Cells in HTLV-1-Associated Neuroinflammatory Disease

    Directory of Open Access Journals (Sweden)

    Yoshihisa Yamano

    2011-08-01

    Full Text Available Human T-lymphotropic virus type 1 (HTLV-1 is a retrovirus that is the causative agent of adult T cell leukemia/lymphoma (ATL and associated with multiorgan inflammatory disorders, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP and uveitis. HTLV-1-infected T cells have been hypothesized to contribute to the development of these disorders, although the precise mechanisms are not well understood. HTLV-1 primarily infects CD4+ T helper (Th cells that play a central role in adaptive immune responses. Based on their functions, patterns of cytokine secretion, and expression of specific transcription factors and chemokine receptors, Th cells that are differentiated from naïve CD4+ T cells are classified into four major lineages: Th1, Th2, Th17, and T regulatory (Treg cells. The CD4+CD25+CCR4+ T cell population, which consists primarily of suppressive T cell subsets, such as the Treg and Th2 subsets in healthy individuals, is the predominant viral reservoir of HTLV-1 in both ATL and HAM/TSP patients. Interestingly, CD4+CD25+CCR4+ T cells become Th1-like cells in HAM/TSP patients, as evidenced by their overproduction of IFN-γ, suggesting that HTLV-1 may intracellularly induce T cell plasticity from Treg to IFN-γ+ T cells. This review examines the recent research into the association between HTLV-1 and Treg cells that has greatly enhanced understanding of the pathogenic mechanisms underlying immune dysregulation in HTLV-1-associated neuroinflammatory disease.

  20. Homeostasis and function of regulatory T cells (Tregs) in vivo: lessons from TCR-transgenic Tregs

    Science.gov (United States)

    Attridge, Kesley; Walker, Lucy S K

    2014-01-01

    The identification of CD25 and subsequently Forkhead box protein 3 (Foxp3) as markers for regulatory T cells (Tregs) has revolutionized our ability to explore this population experimentally. In a similar vein, our understanding of antigen-specific Treg responses in vivo owes much to the fortuitous generation of T-cell receptor (TCR)-transgenic Tregs. This has permitted tracking of Tregs with a defined specificity in vivo, facilitating analysis of how encounter with cognate antigen shapes Treg homeostasis and function. Here, we review the key lessons learned from a decade of analysis of TCR-transgenic Tregs and set this in the broader context of general progress in the field. Use of TCR-transgenic Tregs has led to an appreciation that Tregs are a highly dynamic proliferative population in vivo, rather than an anergic population as they were initially portrayed. It is now clear that Treg homeostasis is positively regulated by encounter with self-antigen expressed on peripheral tissues, which is likely to be relevant to the phenomenon of peripheral repertoire reshaping that has been described for Tregs and the observation that the Treg TCR specificities vary by anatomical location. Substantial evidence has also accumulated to support the role of CD28 costimulation and interleukin-2 in Treg homeostasis. The availability of TCR-transgenic Tregs has enabled analysis of Treg populations that are sufficient or deficient in particular genes, without the comparison being confounded by repertoire alterations. This approach has yielded insights into genes required for Treg function in vivo, with particular progress being made on the role of ctla-4 in this context. As the prospect of manipulating Treg populations in the clinic becomes reality, a full appreciation of the rules governing their homeostasis will prove increasingly important. PMID:24712457

  1. Involvement of regulatory T cells and selected cytokines in the pathogenesis of bronchial asthma

    Directory of Open Access Journals (Sweden)

    Monika Zuśka-Prot

    2016-06-01

    Full Text Available Asthma pathogenesis is complex and involves the interplay of many factors and actions. Airway inflammation in allergic asthma is characterized by an exaggerated activation of T helper type 2 cells, IgE production and infiltration and activation of eosinophils. The results of studies conducted in recent years indicate that the deficit of naturally occurring Foxp3+CD25+CD4+ and Foxp3+CD25+CD8+ regulatory T cells and type 1 regulatory T cells plays a pivotal role in the development of this disease. Moreover, numerous studies have provided convincing evidence that a decrease in IL-10 production and an increase in IL-17 production have an important place in the pathophysiology of asthma. TGF-β is another important cytokine involved in this disease. TGF-β has a paradoxical status in relation to asthma pathogenesis because it seems to play a role in both suppressing and promoting asthma development. This review discusses briefly clinical and experimental data concerning the involvement of T regulatory cells and IL-10, IL-17 and TGF-β in the pathogenesis of asthma.

  2. CD4+ FOXP3+ Regulatory T Cells Exhibit Impaired Ability to Suppress Effector T Cell Proliferation in Patients with Turner Syndrome.

    Directory of Open Access Journals (Sweden)

    Young Ah Lee

    Full Text Available We investigated whether the frequency, phenotype, and suppressive function of CD4+ FOXP3+ regulatory T cells (Tregs are altered in young TS patients with the 45,X karyotype compared to age-matched controls.Peripheral blood mononuclear cells from young TS patients (n = 24, 17.4-35.9 years and healthy controls (n = 16 were stained with various Treg markers to characterize their phenotypes. Based on the presence of thyroid autoimmunity, patients were categorized into TS (- (n = 7 and TS (+ (n = 17. Tregs sorted for CD4+ CD25bright were co-cultured with autologous CD4+ CD25- target cells in the presence of anti-CD3 and -CD28 antibodies to assess their suppressive function.Despite a lower frequency of CD4+ T cells in the TS (- and TS (+ patients (mean 30.8% and 31.7%, vs. 41.2%; P = 0.003 and P < 0.001, respectively, both groups exhibited a higher frequency of FOXP3+ Tregs among CD4+ T cells compared with controls (means 1.99% and 2.05%, vs. 1.33%; P = 0.029 and P = 0.004, respectively. There were no differences in the expression of CTLA-4 and the frequency of Tregs expressing CXCR3+, and CCR4+ CCR6+ among the three groups. However, the ability of Tregs to suppress the in vitro proliferation of autologous CD4+ CD25- T cells was significantly impaired in the TS (- and TS (+ patients compared to controls (P = 0.003 and P = 0.041. Meanwhile, both the TS (- and TS (+ groups had lower frequencies of naïve cells (P = 0.001 for both but higher frequencies of effector memory cells (P = 0.004 and P = 0.002 than did the healthy control group.The Tregs of the TS patients could not efficiently suppress the proliferation of autologous effector T cells, despite their increased frequency in peripheral CD4+ T cells.

  3. Quantitative and functional analysis of CD69+ T regulatory lymphocytes in patients with periodontal disease.

    Science.gov (United States)

    Vitales-Noyola, Marlen; Martínez-Martínez, Rita; Loyola-Rodríguez, Juan P; Baranda, Lourdes; Niño-Moreno, Perla; González-Amaro, Roberto

    2017-08-01

    Periodontal disease is chronic inflammatory process that affects the attachment structures of the teeth and constitutes a significant cause of tooth loss in adults. Although different bacteria play an important role in the triggering of this condition, the progression and severity of the disease are strongly affected by the host immune response, which is under the control of different immune regulatory mechanisms, including T regulatory (Treg) cells. The aim of this study was to assess the frequency and function of CD69 + Treg lymphocytes in patients with chronic periodontal disease. Peripheral blood samples (n = 33) and gingival tissue (n = 9) were obtained from patients with chronic periodontal disease. Blood samples from 25 healthy individuals were also studied. Levels of CD69 + Treg lymphocytes in peripheral blood and gingival tissue were determined by six-color multiparametric flow cytometry, immunofluorescence, and immunohistochemistry. The immune regulatory function of CD69 + Treg cells was tested by an in vitro assay of inhibition of lymphocyte activation. Percentages of CD69 + Treg cells were significantly higher in the peripheral blood from patients with active periodontal disease compared to healthy controls, and these percentages inversely correlated with the periodontal attachment loss. Increased numbers of these Treg cells were detected in the gingival tissue from active PD patients compared to their peripheral blood. However, the suppressive function of CD69 + Treg cells was significantly diminished in patients with periodontal disease compared to healthy controls. Our data suggest that CD69 + Treg cells seem to be another important piece in the complex immunopathogenesis of periodontal disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.

    Science.gov (United States)

    De Rosa, Veronica; Di Rella, Francesca; Di Giacomo, Antonio; Matarese, Giuseppe

    2017-06-01

    Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Forkhead-Box-P3 Gene Transfer in Human CD4+ T Conventional Cells for the Generation of Stable and Efficient Regulatory T Cells, Suitable for Immune Modulatory Therapy

    Directory of Open Access Journals (Sweden)

    Laura Passerini

    2017-10-01

    Full Text Available The development of novel approaches to control immune responses to self- and allogenic tissues/organs represents an ambitious goal for the management of autoimmune diseases and in transplantation. Regulatory T cells (Tregs are recognized as key players in the maintenance of peripheral tolerance in physiological and pathological conditions, and Treg-based cell therapies to restore tolerance in T cell-mediated disorders have been designed. However, several hurdles, including insufficient number of Tregs, their stability, and their antigen specificity, have challenged Tregs clinical applicability. In the past decade, the ability to engineer T cells has proven a powerful tool to redirect specificity and function of different cell types for specific therapeutic purposes. By using lentivirus-mediated gene transfer of the thymic-derived Treg transcription factor forkhead-box-P3 (FOXP3 in conventional CD4+ T cells, we converted effector T cells into Treg-like cells, endowed with potent in vitro and in vivo suppressive activity. The resulting CD4FOXP3 T-cell population displays stable phenotype and suppressive function. We showed that this strategy restores Treg function in T lymphocytes from patients carrying mutations in FOXP3 [immune-dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX], in whom CD4FOXP3 T cell could be used as therapeutics to control autoimmunity. Here, we will discuss the potential advantages of using CD4FOXP3 T cells for in vivo application in inflammatory diseases, where tissue inflammation may undermine the function of natural Tregs. These findings pave the way for the use of engineered Tregs not only in IPEX syndrome but also in autoimmune disorders of different origin and in the context of stem cell and organ transplantation.

  6. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy.

    Science.gov (United States)

    Chen, Jiahuan; Ganguly, Anutosh; Mucsi, Ashley D; Meng, Junchen; Yan, Jiacong; Detampel, Pascal; Munro, Fay; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W; Qi, Hai; Shi, Yan

    2017-02-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell-DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1-dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin-cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1-dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell-mediated DC suppression in a contact-dependent manner. © 2017 Chen et al.

  7. Natural CD8+25+ regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma

    International Nuclear Information System (INIS)

    Xie, Yufeng; Zhang, Xueshu; Zhao, Tuo; Li, Wei; Xiang, Jim

    2013-01-01

    Highlights: •CD8 + 25 + regulatory T cells secrete tolerogenic exosomes. •CD8 + 25 + regulatory T cell-derived exosomes exhibit immunosuppressive effect. •CD8 + 25 + regulatory T cell-derived exosomes inhibit antitumor immunity. -- Abstract: Natural CD4 + 25 + and CD8 + 25 + regulatory T (Tr) cells have been shown to inhibit autoimmune diseases. Immune cells secrete exosomes (EXOs), which are crucial for immune regulation. However, immunomodulatory effect of natural Tr cell-secreted EXOs is unknown. In this study, we purified natural CD8 + 25 + Tr cells from C57BL/6 mouse naive CD8 + T cells, and in vitro amplified them with CD3/CD28 beads. EXOs (EXO Tr ) were purified from Tr cell’s culture supernatants by differential ultracentrifugation and analyzed by electron microscopy, Western blot and flow cytometry. Our data showed that EXO Tr had a “saucer” or round shape with 50–100 nm in diameter, contained EXO-associated markers LAMP-1 and CD9, and expressed natural Tr cell markers CD25 and GITR. To assess immunomodulatory effect, we i.v. immunized C57BL/6 mice with ovalbumin (OVA)-pulsed DCs (DC OVA ) plus Tr cells or EXO Tr , and then assessed OVA-specific CD8 + T cell responses using PE-H-2K b /OVA tetramer and FITC-anti-CD8 antibody staining by flow cytometry and antitumor immunity in immunized mice with challenge of OVA-expressing BL6–10 OVA melanoma cells. We demonstrated that DC OVA -stimulated CD8 + T cell responses and protective antitumor immunity significantly dropped from 2.52% to 1.08% and 1.81% (p OVA (p Tr , respectively. Our results indicate that natural CD8 + 25 + Tr cell-released EXOs, alike CD8 + 25 + Tr cells, can inhibit CD8 + T cell responses and antitumor immunity. Therefore, EXOs derived from natural CD4 + 25 + and CD8 + 25 + Tr cells may become an alternative for immunotherapy of autoimmune diseases

  8. Suppression of HIV replication by CD8+regulatory T-cells in elite controllers

    Directory of Open Access Journals (Sweden)

    Wei eLu

    2016-04-01

    Full Text Available We previously demonstrated in the Chinese macaque model that an oral vaccine made of inactivated SIV and lactobacillus plantarum induced CD8+regulatory T-cells which suppressed the activation of SIV+CD4+T-cells, prevented SIV replication and protected macaques from SIV challenges.Here ,we sought whether a similar population of CD8+T-regs would induce the suppression of HIV replication in elite controllers (ECs, a small population (3‰ of HIV-infected patients with undetectable HIV replication. For that purpose, we investigated the in vitro antiviral activity of fresh CD8+T-cells on HIV-infected CD4+T-cells taken from 10 ECs. The 10 ECs had a classical genomic profile: all of them carried the KIR3DL1 gene and nine carried at least one allele of HLA-B:Bw4-80Ile ( i.e. with an isoleucine residue at position 80. In the nine HLA-B:Bw4-80Ile positive patients, we demonstrated a strong viral suppression byKIR3DL1-expressing CD8+T-cells that required cell-to-cell contact to switch off the activation signals in infected CD4+T-cells. KIR3DL1-expressing CD8+T-cells withdrawal and KIR3DL1 neutralization by a specific anti-KIR antibody inhibited the suppression of viral replication. Our findings provide the first evidence for an instrumental role of KIR-expressing CD8+ regulatory T- cells in the natural control of HIV-1 infection.

  9. Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus

    International Nuclear Information System (INIS)

    Silva-Campa, Erika; Flores-Mendoza, Lilian; Resendiz, Monica; Pinelli-Saavedra, Araceli; Mata-Haro, Veronica; Mwangi, Waithaka; Hernandez, Jesus

    2009-01-01

    Delayed development of virus-specific immune response has been observed in pigs infected with the porcine reproductive and respiratory syndrome virus (PRRSV). Several studies support the hypothesis that the PRRSV is capable of modulating porcine immune system, but the mechanisms involved are yet to be defined. In this study, we evaluated the induction of T regulatory cells by PRRSV-infected dendritic cells (DCs). Our results showed that PRRSV-infected DCs significantly increased Foxp3 + CD25 + T cells, an effect that was reversible by IFN-α treatment, and this outcome was reproducible using two distinct PRRSV strains. Analysis of the expressed cytokines suggested that the induction of Foxp3 + CD25 + T cells is dependent on TGF-β but not IL-10. In addition, a significant up-regulation of Foxp3 mRNA, but not TBX21 or GATA3, was detected. Importantly, our results showed that the induced Foxp3 + CD25 + T cells were able to suppress the proliferation of PHA-stimulated PBMCs. The T cells induced by the PRRSV-infected DCs fit the Foxp3 + CD25 + T helper 3 (Th3) regulatory cell phenotype described in the literature. The induction of this cell phenotype depended, at least in part, on PRRSV viability because IFN-α treatment or virus inactivation reversed these effects. In conclusion, this data supports the hypothesis that the PRRSV succeeds to establish and replicate in porcine cells early post-infection, in part, by inducing Th3 regulatory cells as a mechanism of modulating the porcine immune system.

  10. Memory CD8+ T cells protect dendritic cells from CTL killing

    NARCIS (Netherlands)

    Watchmaker, Payal B.; Urban, Julie A.; Berk, Erik; Nakamura, Yutaro; Mailliard, Robbie B.; Watkins, Simon C.; van Ham, S. Marieke; Kalinski, Pawel

    2008-01-01

    CD8(+) T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8(+) T cells to regulate survival and functions of dendritic cells (DC). We report that, in

  11. An activating mutation of interferon regulatory factor 4 (IRF4) in adult T cell leukemia.

    Science.gov (United States)

    Cherian, Mathew A; Olson, Sydney; Sundaramoorthi, Hemalatha; Cates, Kitra; Cheng, Xiaogang; Harding, John; Martens, Andrew; Challen, Grant A; Tyagi, Manoj; Ratner, Lee; Rauch, Daniel

    2018-03-14

    The human T cell leukemia virus-1 (HTLV-1) oncoprotein Tax drives cell proliferation and resistance to apoptosis early in the pathogenesis of adult T-cell leukemia (ATL). Subsequently, likely as a result of specific immuno-editing, Tax expression is downregulated and functionally replaced by somatic driver mutations of the host genome. Both amplification and point mutations of interferon regulatory factor 4 (IRF4) have been previously detected in ATL, and the K59R mutation is the most common single-nucleotide variation in IRF4 and is found exclusively in ATL. Here high throughput whole-exome sequencing revealed recurrent activating genetic alterations in the T cell receptor, CD28, and NF-kB pathways. Moreover, we found that IRF4, which is transcriptionally activated downstream of these pathways, is frequently mutated in ATL. IRF4 RNA, protein, and IRF4 transcriptional targets are uniformly elevated in HTLV transformed cells and ATL cell lines, and IRF4 was bound to genomic regulatory DNA of many of these transcriptional targets in HTLV-1 transformed cell lines. We further noted that the K59R IRF4 mutant is expressed at higher levels in the nucleus than is wild-type IRF4, and is transcriptionally more active. Expression of both wild-type and the K59R mutant of IRF4 from a constitutive promoter in retrovirally transduced murine bone marrow cells increased the abundance of T lymphocytes but not myeloid cells or B lymphocytes in mice. IRF4 may represent a therapeutic target in ATL since ATL cells select for a mutant of IRF4 with higher nuclear expression and transcriptional activity, and over-expression of IRF4 induces the expansion of T lymphocytes in vivo. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells

    KAUST Repository

    Joshi, Rubin N.

    2017-09-25

    Regulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4CD25 T cells (Tcons) independently of IP levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively. Tregs induced a state of overall decreased phosphorylation as opposed to TCR stimulation. We discovered novel phosphosites (T595_S597) in the DEF6 (SLAT) protein that were phosphorylated upon TCR stimulation and conversely dephosphorylated upon coculture with Tregs. Mutation of these DEF6 phosphosites abrogated interaction of DEF6 with the IP receptor and affected NFAT activation and cytokine transcription in primary Tcons. This novel mechanism and phosphoproteomics data resource may aid in modifying sensitivity of Tcons to Treg-mediated suppression in autoimmune disease or cancer.

  13. Regulatory T cells and type 2 innate lymphoid cell-dependent asthma.

    Science.gov (United States)

    Aron, J L; Akbari, O

    2017-08-01

    Group 2 innate lymphoid cells (ILC2s) are a recently identified group of cells with the potent capability to produce Th2-type cytokines such as interleukin (IL)-5 and IL-13. Several studies suggest that ILC2s play an important role in the development of allergic diseases and asthma. Activation of pulmonary ILC2s in murine models lacking T and B cells induces eosinophilia and airway hyper-reactivity (AHR), which are cardinal features of asthma. More importantly, numerous recent studies have highlighted the role of ILC2s in asthma persistence and exacerbation among human subjects, and thus, regulation of pulmonary ILC2s is a major area of investigation aimed at curbing allergic lung inflammation and exacerbation. Emerging evidence reveals that a group of regulatory T cells, induced Tregs (iTregs), effectively suppress the production of ILC2-driven, pro-inflammatory cytokines IL-5 and IL-13. The inhibitory effects of iTregs are blocked by preventing direct cellular contact or by inhibiting the ICOS-ICOS-ligand (ICOSL) pathway, suggesting that both direct contact and ICOS-ICOSL interaction are important in the regulation of ILC2 function. Also, cytokines such as IL-10 and TGF-β1 significantly reduce cytokine secretion by ILC2s. Altogether, these new findings uncover iTregs as potent regulators of ILC2 activation and implicate their utility as a therapeutic approach for the treatment of ILC2-mediated allergic asthma and respiratory disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Defective immunoregulatory T-cell function in chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Han, T.; Ozer, H.; Henderson, E.S.; Dadey, B.; Nussbaum-Blumenson, A.; Barcos, M.

    1981-01-01

    Chronic lymphocytic leukemia (CLL) of B-cell origin results in the malignant proliferation of small immunoglobulin-bearing lymphocytes. There is currently a controversy in the literature regarding both the ability of this leukemic population to differentiate into mature plasma cells, as well as the ability of apparently normal T cells from these patients to regulate allogeneic B-cell differentiation. In the present study we have examined the lymphocytes of CLL patients in various clinical stages of their disease and with different surface phenotypes of their leukemic B-cell population. Our results show that leukemic CLL B cells from all 20 patients (including one patient with a monoclonal IgM paraprotein and another with a monoclonal IgG paraprotein) are incapable of further differentiation even in the absence of suppressor T cells and the presence of helper T lymphocytes. This lack of capacity to differentiate is unaffected by clinical stage, by therapy, or by the phenotype of the malignant population. Since the leukemic B population did not suppress normal allogeneic B-cell differentiation, the maturation deficit is evidently intrinsic to the leukemic clone rather than a result of activity of non-T suppressor cells. T helper function was also variably depressed in the blood of some patients with CLL, and this depression did not correlate with clinical stage, with therapy, or with the degree of lymphocytosis. Dysfunction of radiosensitive T suppressor cells was found to be the most consistent regulatory deficit of CLL T cells. Each of 11 patients whose leukemic cell population was of the μdelta, μα, or μ phenotype had both helper and suppressor cell defects

  15. Hypomethylation of the Treg-Specific Demethylated Region in FOXP3 Is a Hallmark of the Regulatory T-cell Subtype in Adult T-cell Leukemia.

    Science.gov (United States)

    Shimazu, Yayoi; Shimazu, Yutaka; Hishizawa, Masakatsu; Hamaguchi, Masahide; Nagai, Yuya; Sugino, Noriko; Fujii, Sumie; Kawahara, Masahiro; Kadowaki, Norimitsu; Nishikawa, Hiroyoshi; Sakaguchi, Shimon; Takaori-Kondo, Akifumi

    2016-02-01

    Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1. Because of its immunosuppressive property and resistance to treatment, patients with ATL have poor prognoses. ATL cells possess the regulatory T cell (Treg) phenotype, such as CD4 and CD25, and usually express forkhead box P3 (FOXP3). However, the mechanisms of FOXP3 expression and its association with Treg-like characteristics in ATL remain unclear. Selective demethylation of the Treg-specific demethylated region (TSDR) in the FOXP3 gene leads to stable FOXP3 expression and defines natural Tregs. Here, we focus on the functional and clinical relationship between the epigenetic pattern of the TSDR and ATL. Analysis of DNA methylation in specimens from 26 patients with ATL showed that 15 patients (58%) hypomethylated the TSDR. The FOXP3(+) cells were mainly observed in the TSDR-hypomethylated cases. The TSDR-hypomethylated ATL cells exerted more suppressive function than the TSDR-methylated ATL cells. Thus, the epigenetic analysis of the FOXP3 gene identified a distinct subtype with Treg properties in heterogeneous ATL. Furthermore, we observed that the hypomethylation of TSDR was associated with poor outcomes in ATL. These results suggest that the DNA methylation status of the TSDR is an important hallmark to define this heterogeneous disease and to predict ATL patient prognosis. ©2015 American Association for Cancer Research.

  16. FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival

    DEFF Research Database (Denmark)

    Gjerdrum, L M; Woetmann, A; Odum, Niels

    2007-01-01

    FOXP3 is a unique marker for CD4+CD25+ regulatory T cells (Tregs). In solid tumours, high numbers of Tregs are associated with a poor prognosis. Knowledge about the implications of Tregs for the behaviour of haematological malignancies is limited. In this study, skin biopsies from 86 patients...... with mycosis fungoides (MF) and cutaneous T-cell lymphoma (CTCL) unspecified were analysed for the expression of FOXP3 on tumour cells and tumour-infiltrating Tregs. Labelling of above 10% of the neoplastic cells was seen in one case classified as an aggressive epidermotropic CD8+ cytotoxic CTCL....... In the remaining 85 cases, the atypical neoplastic infiltrate was either FOXP3 negative (n=80) or contained only very occasional weakly positive cells (n=5). By contrast, all biopsies showed varying numbers of strongly FOXP3+ tumour-infiltrating Tregs. MF with early or infiltrated plaques had significantly higher...

  17. Early lymphocyte recovery after intensive timed sequential chemotherapy for acute myelogenous leukemia: peripheral oligoclonal expansion of regulatory T cells.

    Science.gov (United States)

    Kanakry, Christopher G; Hess, Allan D; Gocke, Christopher D; Thoburn, Christopher; Kos, Ferdynand; Meyer, Christian; Briel, Janet; Luznik, Leo; Smith, B Douglas; Levitsky, Hyam; Karp, Judith E

    2011-01-13

    Few published studies characterize early lymphocyte recovery after intensive chemotherapy for acute myelogenous leukemia (AML). To test the hypothesis that lymphocyte recovery mirrors ontogeny, we characterized early lymphocyte recovery in 20 consecutive patients undergoing induction timed sequential chemotherapy for newly diagnosed AML. Recovering T lymphocytes were predominantly CD4(+) and included a greatly expanded population of CD3(+)CD4(+)CD25(+)Foxp3(+) T cells. Recovering CD3(+)CD4(+)CD25(+)Foxp3(+) T cells were phenotypically activated regulatory T cells and showed suppressive activity on cytokine production in a mixed lymphocyte reaction. Despite an initial burst of thymopoiesis, most recovering regulatory T cells were peripherally derived. Furthermore, regulatory T cells showed marked oligoclonal skewing, suggesting that their peripheral expansion was antigen-driven. Overall, lymphocyte recovery after chemotherapy differs from ontogeny, specifically identifying a peripherally expanded oligoclonal population of activated regulatory T lymphocytes. These differences suggest a stereotyped immunologic recovery shared by patients with newly diagnosed AML after induction timed sequential chemotherapy. Further insight into this oligoclonal regulatory T-cell population will be fundamental toward developing effective immunomodulatory techniques to improve survival for patients with AML.

  18. Regulatory Myeloid Cells in Transplantation

    Science.gov (United States)

    Rosborough, Brian R.; Raïch-Regué, Dàlia; Turnquist, Heth R.; Thomson, Angus W.

    2013-01-01

    Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages (Mreg), regulatory dendritic cells (DCreg) and myeloid-derived suppressor cells (MDSC) to regulate alloimmunity, their potential as cellular therapeutic agents and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity following RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and usher in a new era of immune modulation exploiting cells of myeloid origin. PMID:24092382

  19. Impact of 5-aza-2'-deoxycytidine and epigallocatechin-3-gallate for induction of human regulatory T cells.

    Science.gov (United States)

    Kehrmann, Jan; Tatura, Roman; Zeschnigk, Michael; Probst-Kepper, Michael; Geffers, Robert; Steinmann, Joerg; Buer, Jan

    2014-07-01

    The epigenetic regulation of transcription factor genes is critical for T-cell lineage specification. A specific methylation pattern within a conserved region of the lineage specifying transcription factor gene FOXP3, the Treg-specific demethylated region (TSDR), is restricted to regulatory T (Treg) cells and is required for stable expression of FOXP3 and suppressive function. We analysed the impact of hypomethylating agents 5-aza-2'-deoxycytidine and epigallocatechin-3-gallate on human CD4(+)  CD25(-) T cells for generating demethylation within FOXP3-TSDR and inducing functional Treg cells. Gene expression, including lineage-specifying transcription factors of the major T-cell lineages and their leading cytokines, functional properties and global transcriptome changes were analysed. The FOXP3-TSDR methylation pattern was determined by using deep amplicon bisulphite sequencing. 5-aza-2'-deoxycytidine induced FOXP3-TSDR hypomethylation and expression of the Treg-cell-specific genes FOXP3 and LRRC32. Proliferation of 5-aza-2'-deoxycytidine-treated cells was reduced, but the cells did not show suppressive function. Hypomethylation was not restricted to FOXP3-TSDR and expression of master transcription factors and leading cytokines of T helper type 1 and type 17 cells were induced. Epigallocatechin-3-gallate induced global DNA hypomethylation to a lesser extent than 5-aza-2'-deoxycitidine, but no relevant hypomethylation within FOXP3-TSDR or expression of Treg-cell-specific genes. Neither of the DNA methyltransferase inhibitors induced fully functional human Treg cells. 5-aza-2'-deoxycitidine-treated cells resembled Treg cells, but they did not suppress proliferation of responder cells, which is an essential capability to be used for Treg cell transfer therapy. Using a recently developed targeted demethylation technology might be a more promising approach for the generation of functional Treg cells. © 2014 John Wiley & Sons Ltd.

  20. Induction of Foxp3-expressing regulatory T-cells by donor blood transfusion is required for tolerance to rat liver allografts.

    Directory of Open Access Journals (Sweden)

    Yuta Abe

    Full Text Available BACKGROUND: Donor-specific blood transfusion (DST prior to solid organ transplantation has been shown to induce long-term allograft survival in the absence of immunosuppressive therapy. Although the mechanisms underlying DST-induced allograft tolerance are not well defined, there is evidence to suggest DST induces one or more populations of antigen-specific regulatory cells that suppress allograft rejection. However, neither the identity nor the regulatory properties of these tolerogenic lymphocytes have been reported. Therefore, the objective of this study was to define the kinetics, phenotype and suppressive function of the regulatory cells induced by DST alone or in combination with liver allograft transplantation (LTx. METHODOLOGY/PRINCIPAL FINDINGS: Tolerance to Dark Agouti (DA; RT1(a rat liver allografts was induced by injection (iv of 1 ml of heparinized DA blood to naïve Lewis (LEW; RT1(l rats once per week for 4 weeks prior to LTx. We found that preoperative DST alone generates CD4(+ T-cells that when transferred into naïve LEW recipients are capable of suppressing DA liver allograft rejection and promoting long-term survival of the graft and recipient. However, these DST-generated T-cells did not express the regulatory T-cell (Treg transcription factor Foxp3 nor did they suppress alloantigen (DA-induced activation of LEW T-cells in vitro suggesting that these lymphocytes are not fully functional regulatory Tregs. We did observe that DST+LTx (but not DST alone induced the time-dependent formation of CD4(+Foxp3(+ Tregs that potently suppressed alloantigen-induced activation of naïve LEW T-cells in vitro and liver allograft rejection in vivo. Finally, we present data demonstrating that virtually all of the Foxp3-expressing Tregs reside within the CD4(+CD45RC(- population whereas in which approximately 50% of these Tregs express CD25. CONCLUSIONS/SIGNIFICANCE: We conclude that preoperative DST, in the absence of liver allograft

  1. The clinical and pathogenetic value of Foxp3+ T regulatory cells in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    A. S. Avdeeva

    2016-01-01

    Full Text Available T regulatory cells (Tregs play a key role in the immune system due to the suppression of a hyperimmune response to autoantigens and opportunistic enteric microorganisms. In recent years, there has been evidence that Tregs can suppress various immunoinflammatory responses to a wide range of physiological and pathological stimuli, including microorganisms, tumor cells, allogeneic grafts, and fetal cells.Tregs express a broad spectrum of membrane molecules that determine their functional activity and make it possible to identify these cells; however, none has discovered a universal surface marker that would distinguish this cell subpopulation from a pool of T lymphocytes. The most specific intracellular marker for Tregs is the nuclear transcription factor Foxp3 that is of fundamental importance in the development of Tregs and their inhibitory function.The results of the vast majority of studies indicate that there are increased numbers of Tregs in the synovial fluid of patients with rheumatoid arthritis (RA; however, the data on the level of this cell population in their peripheral blood are very contradictory. The majority of investigators have observed a decrease in the percentage of circulating Tregs while other studies have revealed its increase or no differences from the corresponding value of healthy donors or patients with osteoarthritis. It is believed that a quantitative defect in CD4+CD25+Foxp3+CD127 regulatory cells is especially characteristic of early RA and associated with the risk of the latter in asymptomatic patients positive for anti-cyclic citrullinated peptide antibodies. The use of disease-modifying antirheumatic drugs and biologic agents is accompanied by a certain change in the level and functional activity of Tregs, which is responsible for the therapeutic effect of the medicaments.Thus, an important part is assigned to Tregs in the pathogenesis of autoimmune rheumatic diseases, RA in particular. The decrease in the level

  2. The Living Eye “Disarms” Uncommitted Autoreactive T Cells by Converting Them to FoxP3+ Regulatory Cells Following Local Antigen Recognition

    Science.gov (United States)

    Zhou, Ru; Horai, Reiko; Silver, Phyllis B; Mattapallil, Mary J; Zárate-Bladés, Carlos R; Chong, Wai Po; Chen, Jun; Rigden, Rachael C; Villasmil, Rafael; Caspi, Rachel R

    2011-01-01

    Immune privilege is used by the eye, brain, reproductive organs and gut to preserve structural and functional integrity in the face of inflammation. The eye is arguably the most vulnerable, and therefore also the most “privileged” of tissues, but paradoxically, remains subject to destructive autoimmunity. It has been proposed, although never proven in vivo, that the eye can induce T regulatory cells (Tregs) locally. Using FoxP3-GFP reporter mice expressing a retina-specific T cell receptor, we now show that uncommitted T cells rapidly convert in the living eye to FoxP3+ Tregs in a process involving retinal antigen recognition, de novo FoxP3 induction and proliferation. This takes place within the ocular tissue and is supported by retinoic acid, which is normally present in the eye due to its function in the chemistry of vision. Non-converted T cells showed evidence of priming, but appeared restricted from expressing effector function in the eye. Preexisting ocular inflammation impeded conversion of uncommitted T cells into Tregs. Importantly, retina-specific T cells primed in vivo before introduction into the eye were resistant to Treg conversion in the ocular environment, and instead caused severe uveitis. Thus, uncommitted T cells can be disarmed, but immune privilege is unable to protect from uveitogenic T cells that have acquired effector function prior to entering the eye. These findings shed new light on the phenomenon of immune privilege and on its role, as well as its limitations, in actively controlling immune responses in the tissue. PMID:22238462

  3. In vitro induced regulatory T cells are unique from endogenous regulatory T cells and effective at suppressing late stages of ongoing autoimmunity.

    Directory of Open Access Journals (Sweden)

    Thanh-Long M Nguyen

    Full Text Available Strategies to boost the numbers and functions of regulatory T cells (Tregs are currently being tested as means to treat autoimmunity. While Tregs have been shown to be effective in this role, strategies to manipulate Tregs to effectively suppress later stages of ongoing diseases need to be established. In this study, we evaluated the ability of TGF-β-induced Tregs (iTregs specific for the major self-antigen in autoimmune gastritis to suppress established autoimmune gastritis in mice. When transferred into mice during later stages of disease, iTregs demethylated the Foxp3 promoter, maintained Foxp3 expression, and suppressed effector T cell proliferation. More importantly, these iTregs were effective at stopping disease progression. Untreated mice had high numbers of endogenous Tregs (enTregs but these were unable to stop disease progression. In contrast, iTregs, were found in relatively low numbers in treated mice, yet were effective at stopping disease progression, suggesting qualitative differences in suppressor functions. We identified several inhibitory receptors (LAG-3, PD-1, GARP, and TNFR2, cytokines (TGF-β1 and IL12p35, and transcription factors (IRF4 and Tbet expressed at higher levels by iTregs compared to enTregs isolated form mice with ongoing disease, which likely accounts for superior suppressor ability in this disease model. These data support efforts to use iTregs in therapies to treat establish autoimmunity, and show that iTregs are more effective than enTregs at suppressing inflammation in this disease model.

  4. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  5. Foxp3+ regulatory T cells control persistence of viral CNS infection.

    Directory of Open Access Journals (Sweden)

    Dajana Reuter

    Full Text Available We earlier established a model of a persistent viral CNS infection using two week old immunologically normal (genetically unmodified mice and recombinant measles virus (MV. Using this model infection we investigated the role of regulatory T cells (Tregs as regulators of the immune response in the brain, and assessed whether the persistent CNS infection can be modulated by manipulation of Tregs in the periphery. CD4(+ CD25(+ Foxp3(+ Tregs were expanded or depleted during the persistent phase of the CNS infection, and the consequences for the virus-specific immune response and the extent of persistent infection were analyzed. Virus-specific CD8(+ T cells predominantly recognising the H-2D(b-presented viral hemagglutinin epitope MV-H(22-30 (RIVINREHL were quantified in the brain by pentamer staining. Expansion of Tregs after intraperitoneal (i.p. application of the superagonistic anti-CD28 antibody D665 inducing transient immunosuppression caused increased virus replication and spread in the CNS. In contrast, depletion of Tregs using diphtheria toxin (DT in DEREG (depletion of regulatory T cells-mice induced an increase of virus-specific CD8(+ effector T cells in the brain and caused a reduction of the persistent infection. These data indicate that manipulation of Tregs in the periphery can be utilized to regulate virus persistence in the CNS.

  6. Regulatory T Cells and Pro-inflammatory Responses Predominate in Children with Tuberculosis

    Directory of Open Access Journals (Sweden)

    Elizabeth Whittaker

    2017-04-01

    Full Text Available BackgroundFollowing infection with Mycobacterium tuberculosis (M.tb, children are more susceptible to develop disease particularly extrapulmonary disease than adults. The exact mechanisms required for containment of M.tb are not known, but would be important to identify correlates of protection.ObjectiveTo comprehensively analyze key immune responses to mycobacteria between HIV-negative children with extrapulmonary TB (EPTB compared to children with pulmonary TB (PTB or healthy controls.MethodsWhole blood was stimulated in vitro with mycobacteria for 24 h or 6 days to induce effector and memory responses. CD4, CD8, γδ, regulatory T cells, and their related cytokines were measured. Samples of children with tuberculosis (TB disease were analyzed both at time of diagnosis and at the end of TB treatment to determine if any differences were due to TB disease or an underlying host phenotype.ResultsSeventy-six children with TB disease (48 with PTB and 28 with EPTB and 83 healthy controls were recruited to the study. The frequency of CD4+CD25+CD39+FOXP3+ regulatory T cells and secreted IL10 were significantly higher in children with TB compared to healthy controls. IFNγ-, IL17-, and IL22-producing γδ T cells, IL22-producing CD4+ T cells and secreted pro-inflammatory cytokines (IFNγ, IL1β, and TNFα were significantly lower in children with TB disease compared to healthy controls. IFNγ-producing CD4+ T cells and Ki67+-proliferating CD4+ T cells, however, were present in equal numbers in both groups. Following treatment, these immune parameters recovered to “healthy” levels or greater in children with PTB, but not those with extrapulmonary TB.ConclusionIn children with TB disease, a predominantly immune regulatory state is present. These immune findings do not distinguish between children with PTB and EPTB at the time of diagnosis. Following treatment, these inflammatory responses recover in PTB, suggesting that the effect is disease

  7. Mycobacterium leprae-Infected Macrophages Preferentially Primed Regulatory T Cell Responses and Was Associated with Lepromatous Leprosy.

    Directory of Open Access Journals (Sweden)

    Degang Yang

    2016-01-01

    Full Text Available The persistence of Mycobacterium leprae (M. leprae infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions.Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta, IL-6, tumor necrosis factor alpha (TNF-alpha and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings.Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity.

  8. Mycobacterium leprae-Infected Macrophages Preferentially Primed Regulatory T Cell Responses and Was Associated with Lepromatous Leprosy.

    Science.gov (United States)

    Yang, Degang; Shui, Tiejun; Miranda, Jake W; Gilson, Danny J; Song, Zhengyu; Chen, Jia; Shi, Chao; Zhu, Jianyu; Yang, Jun; Jing, Zhichun

    2016-01-01

    The persistence of Mycobacterium leprae (M. leprae) infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions. Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta), IL-6, tumor necrosis factor alpha (TNF-alpha) and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg) cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma) expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings. Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity.

  9. The accumulation of regulatory T cells in the hepatic hilar lymph nodes in biliary atresia.

    Science.gov (United States)

    Sakamoto, Naoya; Muraji, Toshihiro; Ohtani, Haruo; Masumoto, Kouji

    2017-10-01

    A proposed etiopathogenesis of biliary atresia (BA) involves T-cell-mediated inflammatory bile duct damage and progressive hepatic fibrosis. Pediatric surgeons often observe swelling of the hepatic hilar lymph nodes during the Kasai procedure. Given the importance of regulatory mechanisms in immune responses, the present study was designed to analyze the quantitative changes of regulatory T cells (T reg cells) in the hepatic hilar lymph nodes (hepatic hilar LNs) and peripheral blood (PB) in BA. The hepatic hilar LNs and PB obtained during the Kasai procedure were analyzed by flow cytometry. The ratios of total and active Tregs to the total CD4 + cells in the PB and the hepatic hilar LNs were compared. In patients with BA, the ratios of both the total and active T reg cells in the hepatic hilar LNs were higher than those in the PB (total T reg cells: PB vs. LN; P hilar lymph nodes of BA patients. This finding could shed light on the pathogenesis of BA.

  10. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells

    OpenAIRE

    Wang, Xiaomei; Su, Jin; Sherman, Alexandra; Rogers, Geoffrey L.; Liao, Gongxian; Hoffman, Brad E.; Leong, Kam W.; Terhorst, Cox; Daniell, Henry; Herzog, Roland W.

    2015-01-01

    Coadministering FIX orally and systemically induces tolerance via complex immune regulation, involving tolerogenic dendritic and T-cell subsets.Induced CD4+CD25−LAP+ regulatory T cells with increased IL-10 and TGF-β expression and CD4+CD25+ regulatory T cells suppress antibody formation against FIX.

  11. Genome-wide expression profiling during protection from colitis by regulatory T cells

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Olsen, Jørgen; Gad, Monika

    2008-01-01

    BACKGROUND: In the adoptive transfer model of colitis it has been shown that regulatory T cells (Treg) can hinder disease development and cure already existing mild colitis. The mechanisms underlying this regulatory effect of CD4(+)CD25(+) Tregs are not well understood. METHODS: To identify......Chip Mouse Genome 430 2.0 Array), which enabled an analysis of a complete set of RNA transcript levels in each sample. Array results were confirmed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR). RESULTS: Data were analyzed using combined projections to latent structures and functional...... annotation analysis. The colitic samples were clearly distinguishable from samples from normal mice by a vast number of inflammation- and growth factor-related transcripts. In contrast, the Treg-protected animals could not be distinguished from either the normal BALB/c mice or the normal SCID mice. mRNA...

  12. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets.

    Science.gov (United States)

    Carow, Berit; Gao, Yu; Coquet, Jonathan; Reilly, Marie; Rottenberg, Martin E

    2016-09-15

    Conditional gene targeting using the bacteriophage-derived Cre recombinase is widely applied for functional gene studies in mice. Mice transgenic for Cre under the control of the lck gene promoter are used to study the role of loxP-targeted genes in T cell development and function. In this article, we show a striking 65% reduction in cellularity, preferential development of γδ versus αβ T cells, and increased expression of IL-7R in the thymus of mice expressing Cre under the proximal lck promoter (lck-cre(+) mice). The transition from CD4/CD8 double-negative to double-positive cells was blocked, and lck-cre(+) double-positive cells were more prone to apoptosis and showed higher levels of Cre expression. Importantly, numbers of naive T cells were reduced in spleens and lymph nodes of lck-cre(+) mice. In contrast, frequencies of γδ T cells, CD44(+)CD62L(-) effector T cells, and Foxp3(+) regulatory T cells were elevated, as was the frequency of IFN-γ-secreting CD4(+) and CD8(+) T cells. A literature survey of 332 articles that used lck-cre(+) mice for deletion of floxed genes indicated that results are statistically influenced by the control used (lck-cre(+) or lck-cre(-)), more frequently resembling the lck-cre(+) phenotype described in this article if lck-cre(-) controls were used. Altogether, care should be taken when interpreting published results and to properly control targeted gene deletions using the lck-cre(+) strain. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Targeting CXCR4 reverts the suppressive activity of T-regulatory cells in renal cancer.

    Science.gov (United States)

    Santagata, Sara; Napolitano, Maria; D'Alterio, Crescenzo; Desicato, Sonia; Maro, Salvatore Di; Marinelli, Luciana; Fragale, Alessandra; Buoncervello, Maria; Persico, Francesco; Gabriele, Lucia; Novellino, Ettore; Longo, Nicola; Pignata, Sandro; Perdonà, Sisto; Scala, Stefania

    2017-09-29

    With the intent to identify biomarkers in renal cell carcinoma (RCC) the functional status of T-regulatory cells (Tregs) was investigated in primary RCC. Tregs were isolated from tumoral-(TT), peritumoral tissue-(PT) and peripheral blood-(PB) of 42 primary RCC patients and function evaluated through effector T cells (Teff) proliferation, cytokines release and demethylation of Treg Specific Region (TSDR). The highest value of Tregs was detected in TT with the uppermost amount of effector-Tregs-(CD4 + CD25 hi FOXP3 hi CD45RA - ). PB-RCC Tregs efficiently suppress Teff proliferation compared to healthy donor (HD)-Tregs and, at the intrapatient evaluation, TT-derived Tregs were the most suppressive. Higher demethylation TSDR was detected in TT- and PB-RCC Tregs vs HD-Tregs ( P <0,001). CXCR4 is highly expressed on Tregs, thus we wished to modulate Tregs function through CXCR4 inhibition. CXCR4 antagonism, elicited by a new peptidic antagonist, Peptide-R29, efficiently reversed Tregs suppression of Teff proliferation. Thus Tregs functional evaluation precisely reflects Tregs status and may be a reliable biomarker of tumoral immune response. In addition, treatment with CXCR4 antagonist, impairing Tregs function, could improve the anticancer immune response, in combination with conventional therapy and/or immunotherapy such as checkpoints inhibitors.

  14. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile.

    Science.gov (United States)

    DeFuria, Jason; Belkina, Anna C; Jagannathan-Bogdan, Madhumita; Snyder-Cappione, Jennifer; Carr, Jordan David; Nersesova, Yanina R; Markham, Douglas; Strissel, Katherine J; Watkins, Amanda A; Zhu, Min; Allen, Jessica; Bouchard, Jacqueline; Toraldo, Gianluca; Jasuja, Ravi; Obin, Martin S; McDonnell, Marie E; Apovian, Caroline; Denis, Gerald V; Nikolajczyk, Barbara S

    2013-03-26

    Patients with type 2 diabetes (T2D) have disease-associated changes in B-cell function, but the role these changes play in disease pathogenesis is not well established. Data herein show B cells from obese mice produce a proinflammatory cytokine profile compared with B cells from lean mice. Complementary in vivo studies show that obese B cell-null mice have decreased systemic inflammation, inflammatory B- and T-cell cytokines, adipose tissue inflammation, and insulin resistance (IR) compared with obese WT mice. Reduced inflammation in obese/insulin resistant B cell-null mice associates with an increased percentage of anti-inflammatory regulatory T cells (Tregs). This increase contrasts with the sharply decreased percentage of Tregs in obese compared with lean WT mice and suggests that B cells may be critical regulators of T-cell functions previously shown to play important roles in IR. We demonstrate that B cells from T2D (but not non-T2D) subjects support proinflammatory T-cell function in obesity/T2D through contact-dependent mechanisms. In contrast, human monocytes increase proinflammatory T-cell cytokines in both T2D and non-T2D analyses. These data support the conclusion that B cells are critical regulators of inflammation in T2D due to their direct ability to promote proinflammatory T-cell function and secrete a proinflammatory cytokine profile. Thus, B cells are potential therapeutic targets for T2D.

  15. Pulmonary CCR2+CD4+ T cells are immune regulatory and attenuate lung fibrosis development.

    Science.gov (United States)

    Milger, Katrin; Yu, Yingyan; Brudy, Eva; Irmler, Martin; Skapenko, Alla; Mayinger, Michael; Lehmann, Mareike; Beckers, Johannes; Reichenberger, Frank; Behr, Jürgen; Eickelberg, Oliver; Königshoff, Melanie; Krauss-Etschmann, Susanne

    2017-11-01

    Animal models have suggested that CCR2-dependent signalling contributes to the pathogenesis of pulmonary fibrosis, but global blockade of CCL2 failed to improve the clinical course of patients with lung fibrosis. However, as levels of CCR2 + CD4 + T cells in paediatric lung fibrosis had previously been found to be increased, correlating with clinical symptoms, we hypothesised that distinct CCR2 + cell populations might either increase or decrease disease pathogenesis depending on their subtype. To investigate the role of CCR2 + CD4 + T cells in experimental lung fibrosis and in patients with idiopathic pulmonary fibrosis and other fibrosis. Pulmonary CCR2 + CD4 + T cells were analysed using flow cytometry and mRNA profiling, followed by in silico pathway analysis, in vitro assays and adoptive transfer experiments. Frequencies of CCR2 + CD4 + T cells were increased in experimental fibrosis-specifically the CD62L - CD44 + effector memory T cell phenotype, displaying a distinct chemokine receptor profile. mRNA profiling of isolated CCR2 + CD4 + T cells from fibrotic lungs suggested immune regulatory functions, a finding that was confirmed in vitro using suppressor assays. Importantly, adoptive transfer of CCR2 + CD4 + T cells attenuated fibrosis development. The results were partly corroborated in patients with lung fibrosis, by showing higher percentages of Foxp3 + CD25 + cells within bronchoalveolar lavage fluid CCR2 + CD4 + T cells as compared with CCR2 - CD4 + T cells. Pulmonary CCR2 + CD4 + T cells are immunosuppressive, and could attenuate lung inflammation and fibrosis. Therapeutic strategies completely abrogating CCR2-dependent signalling will therefore also eliminate cell populations with protective roles in fibrotic lung disease. This emphasises the need for a detailed understanding of the functions of immune cell subsets in fibrotic lung disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights

  16. Flow cytometric analysis of regulatory T cells during hyposensitization of acquired allergic contact dermatitis.

    Science.gov (United States)

    Fraser, Kathleen; Abbas, Mariam; Hull, Peter R

    2014-01-01

    We previously demonstrated that repeated intradermal steroid injections administered at weekly intervals into positive patch-test sites induce hyposensitization and desensitization. To examine changes in CD4CD25CD127lo/ regulatory T cells during the attenuation of the patch-test response. Ten patients with known allergic contact dermatitis were patch tested weekly for 10 weeks. The patch-test site was injected intradermally with 2 mg triamcinolone. At weeks 1 and 7, a biopsy was performed on the patch-test site in 6 patients, and flow cytometry was performed assessing CD4CD25CD127lo/ regulatory T cells. Secondary outcomes were clinical score, reaction size, erythema, and temperature. Statistical analysis included regression, correlation, and repeated-measures analysis of variance. The percentage of CD4CD25CD127lo/ regulatory T cells, measured by flow cytometry, increased from week 1 to week 7 by an average of 19.2%. The average grade of patch-test reaction decreased from +++ (vesicular reaction) to ++ (palpable erythema). The mean drop in temperature following treatment was 0.28°C per week. The mean area decreased 8.6 mm/wk over 10 weeks. Intradermal steroid injections of weekly patch-test reactions resulted in hyposensitization of the allergic contact dermatitis reaction. CD4CD25CD127lo/ regulatory T cells showed a tendency to increase; however, further studies are needed to determine if this is significant.

  17. T Cell Epitope Immunotherapy Induces a CD4+ T Cell Population with Regulatory Activity

    Directory of Open Access Journals (Sweden)

    Verhoef Adrienne

    2005-01-01

    Full Text Available Background Synthetic peptides, representing CD4+ T cell epitopes, derived from the primary sequence of allergen molecules have been used to down-regulate allergic inflammation in sensitised individuals. Treatment of allergic diseases with peptides may offer substantial advantages over treatment with native allergen molecules because of the reduced potential for cross-linking IgE bound to the surface of mast cells and basophils. Methods and Findings In this study we address the mechanism of action of peptide immunotherapy (PIT in cat-allergic, asthmatic patients. Cell-division-tracking dyes, cell-mixing experiments, surface phenotyping, and cytokine measurements were used to investigate immunomodulation in peripheral blood mononuclear cells (PBMCs after therapy. Proliferative responses of PBMCs to allergen extract were significantly reduced after PIT. This was associated with modified cytokine profiles generally characterised by an increase in interleukin-10 and a decrease in interleukin-5 production. CD4+ cells isolated after PIT were able to actively suppress allergen-specific proliferative responses of pretreatment CD4neg PBMCs in co-culture experiments. PIT was associated with a significant increase in surface expression of CD5 on both CD4+ and CD8+ PBMCs. Conclusion This study provides evidence for the induction of a population of CD4+ T cells with suppressor/regulatory activity following PIT. Furthermore, up-regulation of cell surface levels of CD5 may contribute to reduced reactivity to allergen.

  18. Acid Sphingomyelinase (ASM) is a Negative Regulator of Regulatory T Cell (Treg) Development.

    Science.gov (United States)

    Zhou, Yuetao; Salker, Madhuri S; Walker, Britta; Münzer, Patrick; Borst, Oliver; Gawaz, Meinrad; Gulbins, Erich; Singh, Yogesh; Lang, Florian

    2016-01-01

    Regulatory T cell (Treg) is required for the maintenance of tolerance to various tissue antigens and to protect the host from autoimmune disorders. However, Treg may, indirectly, support cancer progression and bacterial infections. Therefore, a balance of Treg function is pivotal for adequate immune responses. Acid sphingomyelinase (ASM) is a rate limiting enzyme involved in the production of ceramide by breaking down sphingomyelin. Previous studies in T-cells have suggested that ASM is involved in CD28 signalling, T lymphocyte granule secretion, degranulation, and vesicle shedding similar to the formation of phosphatidylserine-exposing microparticles from glial cells. However, whether ASM affects the development of Treg has not yet been described. Splenocytes, isolated Naive T lymphocytes and cultured T cells were characterized for various immune T cell markers by flow cytometery. Cell proliferation was measured by Carboxyfluorescein succinimidyl ester (CFSE) dye, cell cycle analysis by Propidium Iodide (PI), mRNA transcripts by q-RT PCR and protein expression by Western Blotting respectively. ASM deficient mice have higher number of Treg compared with littermate control mice. In vitro induction of ASM deficient T cells in the presence of TGF-β and IL-2 lead to a significantly higher number of Foxp3+ induced Treg (iTreg) compared with control T-cells. Further, ASM deficient iTreg has less AKT (serine 473) phosphorylation and Rictor levels compared with control iTreg. Ceramide C6 led to significant reduction of iTreg in both ASM deficient and WT mice. The reduction in iTreg leads to induction of IL-1β, IL-6 and IL-17 but not IFN-γ mRNA levels. ASM is a negative regulator of natural and iTreg. © 2016 The Author(s) Published by S. Karger AG, Basel.

  19. Immunohistochemical analysis of regulatory T cell markers FOXP3 and GITR on CD4(+) CD25(+) T cells in normal skin and inflammatory dermatoses

    NARCIS (Netherlands)

    de Boer, Onno J.; van der Loos, Chris M.; Teeling, Peter; van der Wal, Allard C.; Teunissen, Marcel B. M.

    2007-01-01

    Regulatory T cells (Treg) are a subset of T lymphocytes that play a central role in immunologic tolerance and in the termination of immune responses. The identification of these cells in normal and inflammatory conditions may contribute to a better understanding of underlying pathology. We

  20. Downregulated regulatory T cell function is associated with increased peptic ulcer in Helicobacter pylori-infection.

    Science.gov (United States)

    Bagheri, Nader; Shirzad, Hedayatollah; Elahi, Shokrollah; Azadegan-Dehkordi, Fatemeh; Rahimian, Ghorbanali; Shafigh, Mohammedhadi; Rashidii, Reza; Sarafnejad, Abdulfatah; Rafieian-Kopaei, Mahmoud; Faridani, Rana; Tahmasbi, Kamran; Kheiri, Soleiman; Razavi, Alireza

    2017-09-01

    Helicobacter pylori (H. pylori) chronically colonizes gastric/duodenal mucosa and induces gastroduodenal disease such as gastritis and peptic ulcer and induces vigorous innate and specific immune responses; however, the infection is not removed, a state of chronic active gastritis persists for life if untreated. The objective of this study was to determine the number of regulatory T cells (Tregs) in gastric mucosa of patients with gastritis and peptic ulcer and determined the relationship between main virulence factor of H. pylori and Tregs. A total of 89 patients with gastritis, 63 patients with peptic ulcer and 40 healthy, H. pylori-negative subjects were enrolled in this study. Expression of CD4 and Foxp3 was determined by immunohistochemistry. Antrum biopsy was obtained for detection of H. pylori, bacterial virulence factors and histopathological assessments. TGF-β1, IL-10 and FOXP3 expressions were determined by real-time polymerase chain reaction (qPCR). The numbers of CD4 + and Foxp3 + T cells as well as the expression of IL-10, TGF-β1, FOXP3, INF-γ and IL-17A in infected patients were significantly higher than the ones in uninfected patients. Also, the number of CD4 + T cells was independent on the vacuolating cytotoxin A (vacA) and outer inflammatory protein A (oipA), but it was positively correlated with cytotoxin-associated gene A (cagA). Instead, the number of Foxp3 + T cells was dependent on the vacA and oipA, but it was independent on cagA. The number of Foxp3 + T cells and the expression of IL-10, TGF-β1 and FOXP3 in infected patients with gastritis were significantly higher than the ones in infected patients with peptic ulcer. Moreover, the number of CD4 + T cells and the expression of IL-17A and INF-γ was the lowest in the gastritis patients, however, increased progressively in the peptic ulcer patients. Additionally, the numbers of CD4 + and Foxp3 + T cells as well as the expression of IL-10, TGF-β1, FOXP3 and INF-γ were positively

  1. Repeated 0.5 Gy gamma-ray irradiation attenuates autoimmune disease in MRL-lpr/lpr mice with up-regulation of regulatory T cells

    International Nuclear Information System (INIS)

    Mitsutoshi Tsukimoto; Fumitoshi Tago; Hiroko Nakatsukasa; Shuji Kojima

    2007-01-01

    Complete text of publication follows. MRL-lpr/lpr mice present a single gene mutation on the Fas (CD95) gene that leads to reduced signaling for apoptosis. With aging, these mice spontaneously develop autoimmune disease and are used as a model of systemic lupus erythematosus. We previously reported attenuation of autoimmune disease in MRL-lpr/lpr mice by repeated γ-ray irradiation (0.5 Gy each time). In this study, we investigated the mechanisms of this attenuation focusing the highly activated CD3 + CD4 - CD8 - B220 + T cells, which are characteristically involved in autoimmune pathology in these mice. We measured the weight of the spleen and the population of CD3 + CD4 - CD8 - B220 + T cells. Splenomegaly and increase in percentage of CD3 + CD4 - CD8 - B220 + T cells, which occur with aging in non-irradiated mice, were suppressed in irradiated mice. To investigate the function of CD3 + CD4 - CD8 - B220 + T cells, we isolated these cells from splenocytes by magnetic cell sorting. Isolated CD3 + CD4 - CD8 - B220 + T cells were more resistant to irradiation-induced cell death than isolated CD4 + T cells. Although high proliferation rate and IL-6 production were observed in isolated CD3 + CD4 - CD8 - B220 + T cells, the proliferation rate and IL-6 production were lower in the cells isolated from the irradiated mice. Moreover, the production of autoantibodies (anti-collagen antibody and anti-single strand DNA antibody) was also lowered by irradiation. These results indicate that activation of CD3 + CD4 - CD8 - B220 + T cells and progression of pathology would be suppressed by repeated 0.5 Gy γ-ray irradiation. To uncover the mechanism of the immune suppression, we analyzed population of regulatory T cells (CD4 + CD25 + Foxp3 + ), which suppress activated T cells and excessive autoimmune responses. Intriguingly, significant increase of the percentage of regulatory T cells was observed in irradiated mice. In conclusion, we found that repeated 0.5 Gy γ-ray irradiation

  2. Effect of chorioamnionitis on regulatory T cells in moderate/late preterm neonates☆

    Science.gov (United States)

    Rueda, Cesar M.; Wells, Casey B.; Gisslen, Tate; Jobe, Alan H.; Kallapur, Suhas G.; Chougnet, Claire A.

    2014-01-01

    Regulatory T-cells (Treg) have a protective role for the control of immune activation and tissue damage. The effects of chorioamnionitis (chorio) on Treg in moderate/late preterm newborns are not known. We hypothesized that infants exposed to chorio would have decreased Treg frequency and/or function. We isolated mononuclear cells from adult peripheral blood and cord blood from term and moderate/late preterm infants who were classified for severity of chorio exposure. Mononuclear cells were analyzed by flow cytometry for Treg frequency and phenotype. Treg suppression of activation of conventional T-cells (Tcon) was also quantified. Treg frequencies were similar in all groups of neonates, but lower than that found in adults. Newborn Treg had a naïve phenotype, with decreased levels of CD45RO, HLA-DR, CD39 and TIGIT compared to adult Treg and chorio did not affect the phenotype. Treg from preterm newborns exposed to severe chorio had higher expression of Ki67 compared to the other groups. Treg from preterm newborns were less suppressive than Treg from adults or term, and the level of suppression was reduced with severe chorio. Relative to term, Treg frequency and phenotype were not affected by prematurity and chorio but their functionality was decreased. Lower Treg activity may contribute to inflammation in newborns that is often associated with chorioamnionitis. PMID:25451985

  3. Robust and Accurate Discrimination of Self/Non-Self Antigen Presentations by Regulatory T Cell Suppression

    OpenAIRE

    Furusawa, Chikara; Yamaguchi, Tomoyuki

    2016-01-01

    The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self ...

  4. CD4-regulatory cells in COPD patients

    DEFF Research Database (Denmark)

    Smyth, Lucy J C; Starkey, Cerys; Vestbo, Jørgen

    2007-01-01

    BACKGROUND: The numbers of airway CD8 and B lymphocytes are increased in COPD patients, suggesting an autoimmune process. CD4-regulatory T cells control autoimmunity but have not been studied in patients with COPD. OBJECTIVE: To compare T-regulatory cell numbers in the BAL from COPD patients......, smokers with normal lung function, and healthy nonsmokers (HNS). METHODS: BAL and peripheral blood mononuclear cell (PBMC) samples were obtained from 26 COPD patients, 19 smokers, and 8 HNS. Flow cytometry was performed for regulatory phenotypic markers. RESULTS: COPD patients had increased BAL CD8...... numbers compared to smokers and HNS. CD4 numbers were similar between groups. There was increased BAL CD4CD25(bright) expression in smokers (median 28.8%) and COPD patients (median 23.1%) compared to HNS (median 0%). Increased FoxP3 expression was confirmed in BAL CD4CD25(bright) cells. BAL CD4CD25 cells...

  5. Non-suppressive regulatory T cell subset expansion in pulmonary arterial hypertension.

    Science.gov (United States)

    Sada, Yoshiharu; Dohi, Yoshihiro; Uga, Sayuri; Higashi, Akifumi; Kinoshita, Hiroki; Kihara, Yasuki

    2016-08-01

    Regulatory T cells (Tregs) have been reported to play a pivotal role in the vascular remodeling of pulmonary arterial hypertension (PAH). Recent studies have revealed that Tregs are heterogeneous and can be characterized by three phenotypically and functionally different subsets. In this study, we investigated the roles of Treg subsets in the pathogenesis of PAH in eight patients with PAH and 14 healthy controls. Tregs and their subsets in peripheral blood samples were analyzed by flow cytometry. Treg subsets were defined as CD4(+)CD45RA(+)FoxP3(low) resting Tregs (rTregs), CD4(+)CD45RA(-)FoxP3(high) activated Tregs (aTregs), and CD4(+)CD45RA(-)FoxP3(low) non-suppressive Tregs (non-Tregs). The proportion of Tregs among CD4(+) T cells was significantly higher in PAH patients than in controls (6.54 ± 1.10 vs. 3.81 ± 0.28 %, p < 0.05). Of the three subsets, the proportion of non-Tregs was significantly elevated in PAH patients compared with controls (4.06 ± 0.40 vs. 2.79 ± 0.14 %, p < 0.01), whereas those of rTregs and aTregs were not different between the two groups. Moreover, the expression levels of cytotoxic T lymphocyte antigen 4, a functional cell surface molecule, in aTregs (p < 0.05) and non-Tregs (p < 0.05) were significantly higher in PAH patients compared with controls. These results suggested the non-Treg subset was expanded and functionally activated in peripheral lymphocytes obtained from IPAH patients. We hypothesize that immunoreactions involving the specific activation of the non-Treg subset might play a role in the vascular remodeling of PAH.

  6. Redirection to the bone marrow improves T cell persistence and antitumor functions.

    Science.gov (United States)

    Khan, Anjum B; Carpenter, Ben; Santos E Sousa, Pedro; Pospori, Constandina; Khorshed, Reema; Griffin, James; Velica, Pedro; Zech, Mathias; Ghorashian, Sara; Forrest, Calum; Thomas, Sharyn; Gonzalez Anton, Sara; Ahmadi, Maryam; Holler, Angelika; Flutter, Barry; Ramirez-Ortiz, Zaida; Means, Terry K; Bennett, Clare L; Stauss, Hans; Morris, Emma; Lo Celso, Cristina; Chakraverty, Ronjon

    2018-05-01

    A key predictor for the success of gene-modified T cell therapies for cancer is the persistence of transferred cells in the patient. The propensity of less differentiated memory T cells to expand and survive efficiently has therefore made them attractive candidates for clinical application. We hypothesized that redirecting T cells to specialized niches in the BM that support memory differentiation would confer increased therapeutic efficacy. We show that overexpression of chemokine receptor CXCR4 in CD8+ T cells (TCXCR4) enhanced their migration toward vascular-associated CXCL12+ cells in the BM and increased their local engraftment. Increased access of TCXCR4 to the BM microenvironment induced IL-15-dependent homeostatic expansion and promoted the differentiation of memory precursor-like cells with low expression of programmed death-1, resistance to apoptosis, and a heightened capacity to generate polyfunctional cytokine-producing effector cells. Following transfer to lymphoma-bearing mice, TCXCR4 showed a greater capacity for effector expansion and better tumor protection, the latter being independent of changes in trafficking to the tumor bed or local out-competition of regulatory T cells. Thus, redirected homing of T cells to the BM confers increased memory differentiation and antitumor immunity, suggesting an innovative solution to increase the persistence and functions of therapeutic T cells.

  7. Ex-Th17 (Nonclassical Th1) Cells Are Functionally Distinct from Classical Th1 and Th17 Cells and Are Not Constrained by Regulatory T Cells.

    Science.gov (United States)

    Basdeo, Sharee A; Cluxton, Deborah; Sulaimani, Jamal; Moran, Barry; Canavan, Mary; Orr, Carl; Veale, Douglas J; Fearon, Ursula; Fletcher, Jean M

    2017-03-15

    Th17 cells are an important therapeutic target in autoimmunity. However, it is known that Th17 cells exhibit considerable plasticity, particularly at sites of autoimmune inflammation. Th17 cells can switch to become ex-Th17 cells that no longer produce IL-17 but produce IFN-γ. These ex-Th17 cells are also called nonclassical Th1 cells because of their ability to produce IFN-γ, similar to Th1 cells; however, it is unclear whether they resemble Th1 or Th17 cells in terms of their function and regulation, and whether they have a pathogenic role in autoimmunity. We compared the phenotypic and functional features of human Th17, Th1, and ex-Th17 cell populations. Our data showed that despite their loss of IL-17 expression, ex-Th17 cells were more polyfunctional in terms of cytokine production than either Th1 or bona fide Th17 cells, and produced increased amounts of proinflammatory cytokines. The proliferative brake on Th17 cells appeared to be lifted because ex-Th17 cells proliferated more than Th17 cells after stimulation. In contrast with Th1 and Th17 cells, ex-Th17 cells were highly resistant to suppression of proliferation and cytokines by regulatory T cells. Finally, we showed that ex-Th17 cells accumulated in the joints of rheumatoid arthritis patients. Taken together, these data indicate that human ex-Th17 cells are functionally distinct from Th1 and Th17 cells, and suggest that they may play a pathogenic role at sites of autoimmunity, such as the rheumatoid arthritis joint where they accumulate. These findings have implications for therapeutic strategies that target IL-17, because these may not inhibit pathogenic ex-Th17 cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. Large-scale Isolation of Highly Pure "Untouched" Regulatory T Cells in a GMP Environment for Adoptive Cell Therapy.

    Science.gov (United States)

    Haase, Doreen; Puan, Kia Joo; Starke, Mireille; Lai, Tuck Siong; Soh, Melissa Yan Ling; Karunanithi, Iyswariya; San Luis, Boris; Poh, Tuang Yeow; Yusof, Nurhashikin; Yeap, Chun Hsien; Phang, Chew Yen; Chye, Willis Soon Yuan; Chan, Marieta; Koh, Mickey Boon Chai; Goh, Yeow Tee; Bertin-Maghit, Sebastien; Nardin, Alessandra; Ho, Liam Pock; Rotzschke, Olaf

    2015-01-01

    Adoptive cell therapy is an emerging treatment strategy for a number of serious diseases. Regulatory T (Treg) cells represent 1 cell type of particular interest for therapy of inflammatory conditions, as they are responsible for controlling unwanted immune responses. Initial clinical trials of adoptive transfer of Treg cells in patients with graft-versus-host disease were shown to be safe. However, obtaining sufficient numbers of highly pure and functional Treg cells with minimal contamination remains a challenge. We developed a novel approach to isolate "untouched" human Treg cells from healthy donors on the basis of negative selection using the surface markers CD49d and CD127. This procedure, which uses an antibody cocktail and magnetic beads for separation in an automated system (RoboSep), was scaled up and adapted to be compatible with good manufacturing practice conditions. With this setup we performed 9 Treg isolations from large-scale leukapheresis samples in a good manufacturing practice facility. These runs yielded sufficient numbers of "untouched" Treg cells for immediate use in clinical applications. The cell preparations consisted of viable highly pure FoxP3-positive Treg cells that were functional in suppressing the proliferation of effector T cells. Contamination with CD4 effector T cells was cell types did not exceed 2% in the final product. Remaining isolation reagents were reduced to levels that are considered safe. Treg cells isolated with this procedure will be used in a phase I clinical trial of adoptive transfer into leukemia patients developing graft-versus-host disease after stem cell transplantation.

  9. In vivo SPECT reporter gene imaging of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Ehsan Sharif-Paghaleh

    Full Text Available Regulatory T cells (Tregs were identified several years ago and are key in controlling autoimmune diseases and limiting immune responses to foreign antigens, including alloantigens. In vivo imaging techniques including intravital microscopy as well as whole body imaging using bioluminescence probes have contributed to the understanding of in vivo Treg function, their mechanisms of action and target cells. Imaging of the human sodium/iodide symporter via Single Photon Emission Computed Tomography (SPECT has been used to image various cell types in vivo. It has several advantages over the aforementioned imaging techniques including high sensitivity, it allows non-invasive whole body studies of viable cell migration and localisation of cells over time and lastly it may offer the possibility to be translated to the clinic. This study addresses whether SPECT/CT imaging can be used to visualise the migratory pattern of Tregs in vivo. Treg lines derived from CD4(+CD25(+FoxP3(+ cells were retrovirally transduced with a construct encoding for the human Sodium Iodide Symporter (NIS and the fluorescent protein mCherry and stimulated with autologous DCs. NIS expressing self-specific Tregs were specifically radiolabelled in vitro with Technetium-99m pertechnetate ((99mTcO(4(- and exposure of these cells to radioactivity did not affect cell viability, phenotype or function. In addition adoptively transferred Treg-NIS cells were imaged in vivo in C57BL/6 (BL/6 mice by SPECT/CT using (99mTcO(4(-. After 24 hours NIS expressing Tregs were observed in the spleen and their localisation was further confirmed by organ biodistribution studies and flow cytometry analysis. The data presented here suggests that SPECT/CT imaging can be utilised in preclinical imaging studies of adoptively transferred Tregs without affecting Treg function and viability thereby allowing longitudinal studies within disease models.

  10. Human regulatory T cells control xenogeneic graft-versus-host disease induced by autologous T cells in RAG2-/-gammac-/- immunodeficient mice.

    NARCIS (Netherlands)

    Mutis, T; Rijn, R.S. van; Simonetti, E.R.; Aarts-Riemens, T.; Emmelot, M.E.; Bloois, L. van; Martens, A.; Verdonck, L.F.; Ebeling, S.B.

    2006-01-01

    PURPOSE: Effective prevention of graft-versus-host disease (GvHD) is a major challenge to improve the safety of allogeneic stem cell transplantation for leukemia treatment. In murine transplantation models, administration of naturally occurring CD4+CD25+ regulatory T cells (Treg) can prevent GvHD.

  11. Helminth Infection and Commensal Microbiota Drive Early IL-10 Production in the Skin by CD4+ T Cells That Are Functionally Suppressive.

    Directory of Open Access Journals (Sweden)

    David E Sanin

    2015-05-01

    Full Text Available The skin provides an important first line of defence and immunological barrier to invasive pathogens, but immune responses must also be regulated to maintain barrier function and ensure tolerance of skin surface commensal organisms. In schistosomiasis-endemic regions, populations can experience repeated percutaneous exposure to schistosome larvae, however little is known about how repeated exposure to pathogens affects immune regulation in the skin. Here, using a murine model of repeated infection with Schistosoma mansoni larvae, we show that the skin infection site becomes rich in regulatory IL-10, whilst in its absence, inflammation, neutrophil recruitment, and local lymphocyte proliferation is increased. Whilst CD4+ T cells are the primary cellular source of regulatory IL-10, they expressed none of the markers conventionally associated with T regulatory (Treg cells (i.e. FoxP3, Helios, Nrp1, CD223, or CD49b. Nevertheless, these IL-10+ CD4+ T cells in the skin from repeatedly infected mice are functionally suppressive as they reduced proliferation of responsive CD4+ T cells from the skin draining lymph node. Moreover, the skin of infected Rag-/- mice had impaired IL-10 production and increased neutrophil recruitment. Finally, we show that the mechanism behind IL-10 production by CD4+ T cells in the skin is due to a combination of an initial (day 1 response specific to skin commensal bacteria, and then over the following days schistosome-specific CD4+ T cell responses, which together contribute towards limiting inflammation and tissue damage following schistosome infection. We propose CD4+ T cells in the skin that do not express markers of conventional T regulatory cell populations have a significant role in immune regulation after repeated pathogen exposure and speculate that these cells may also help to maintain skin barrier function in the context of repeated percutaneous insult by other skin pathogens.

  12. Photo(chemotherapy reduces circulating Th17 cells and restores circulating regulatory T cells in psoriasis.

    Directory of Open Access Journals (Sweden)

    Takuya Furuhashi

    Full Text Available BACKGROUND: Photo(chemotherapy is widely used to treat psoriasis, the pathogenesis of which might be caused by an imbalance of Th17 cells/regulatory T cells (Treg. In the present study, we evaluated the effects of photo(chemotherapy on the Th17/Treg balance and Treg function. METHODS: Peripheral blood was obtained from psoriasis patients treated with bath-psoralen ultraviolet A (UVA, n = 50 or narrowband ultraviolet B (UVB, n = 18, and age-matched healthy volunteers (n = 20. CD3(+CD4(+IL-17A(+ or CD4(+CD25(+Foxp3(+cells were analyzed to estimate Th17 or Treg number by fluorescence-activated cell sorting. Moreover, CD4(+ CD25(- T cells from patients treated with PUVA(n = 14 were incubated in CFSE and activated with or without CD4(+ CD25(+T cells, and the suppressive function of CD4(+ CD25(+T cells were analyzed. RESULTS: Photo(chemotherapy significantly reduced Th17 levels from 5.66 ± 3.15% to 2.96 ± 2.89% in patients with increased Th17 (Th17/CD4>3.01% [mean+SD of controls]. In contrast, photo(chemotherapy significantly increased Treg levels from 2.77 ± 0.75 to 3.40 ± 1.88% in patients with less than 4.07% Treg level, defined as the mean of controls. Furthermore, while Treg suppressed the CD4(+CD25(- T cell proliferation to a greater extent in controls (Treg Functional Ratio 94.4 ± 4.28% than in patients (70.3±25.1%, PUVA significantly increased Treg Functional Ratio to 88.1 ± 6.47%. Th17 levels in severe patients (>30 PASI were significantly higher as compared to controls. Th17 levels that were left after treatment in the patients not achieving PASI 50 (3.78 ± 4.18% were significantly higher than those in the patients achieving PASI 75 (1.83±1.87%. Treg levels in patients achieving PASI 90 (4.89 ± 1.70% were significantly higher than those in the patients not achieving PASI 90 (3.90 ± 1.66%. Treg levels prior to treatment with Th17 high decreased group (5.16 ± 2.20% was significantly higher than that with Th17 high increased group

  13. Acute Malaria Induces PD1+CTLA4+ Effector T Cells with Cell-Extrinsic Suppressor Function.

    Directory of Open Access Journals (Sweden)

    Maria Sophia Mackroth

    2016-11-01

    Full Text Available In acute Plasmodium falciparum (P. falciparum malaria, the pro- and anti-inflammatory immune pathways must be delicately balanced so that the parasitemia is controlled without inducing immunopathology. An important mechanism to fine-tune T cell responses in the periphery is the induction of coinhibitory receptors such as CTLA4 and PD1. However, their role in acute infections such as P. falciparum malaria remains poorly understood. To test whether coinhibitory receptors modulate CD4+ T cell functions in malaria, blood samples were obtained from patients with acute P. falciparum malaria treated in Germany. Flow cytometric analysis showed a more frequent expression of CTLA4 and PD1 on CD4+ T cells of malaria patients than of healthy control subjects. In vitro stimulation with P. falciparum-infected red blood cells revealed a distinct population of PD1+CTLA4+CD4+ T cells that simultaneously produced IFNγ and IL10. This antigen-specific cytokine production was enhanced by blocking PD1/PDL1 and CTLA4. PD1+CTLA4+CD4+ T cells were further isolated based on surface expression of PD1 and their inhibitory function investigated in-vitro. Isolated PD1+CTLA4+CD4+ T cells suppressed the proliferation of the total CD4+ population in response to anti-CD3/28 and plasmodial antigens in a cell-extrinsic manner. The response to other specific antigens was not suppressed. Thus, acute P. falciparum malaria induces P. falciparum-specific PD1+CTLA4+CD4+ Teffector cells that coproduce IFNγ and IL10, and inhibit other CD4+ T cells. Transient induction of regulatory Teffector cells may be an important mechanism that controls T cell responses and might prevent severe inflammation in patients with malaria and potentially other acute infections.

  14. Immune Privilege and Eye-Derived T-Regulatory Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Keino

    2018-01-01

    Full Text Available Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs, which are generated by the anterior chamber-associated immune deviation (ACAID, and ocular resident cells including corneal endothelial (CE cells, ocular pigment epithelial (PE cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF-β, cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2α, and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.

  15. Immune Privilege and Eye-Derived T-Regulatory Cells.

    Science.gov (United States)

    Keino, Hiroshi; Horie, Shintaro; Sugita, Sunao

    2018-01-01

    Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs), which are generated by the anterior chamber-associated immune deviation (ACAID), and ocular resident cells including corneal endothelial (CE) cells, ocular pigment epithelial (PE) cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF- β ), cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2 α ), and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.

  16. Effector Regulatory T Cells Reflect the Equilibrium between Antitumor Immunity and Autoimmunity in Adult T-cell Leukemia.

    Science.gov (United States)

    Ureshino, Hiroshi; Shindo, Takero; Nishikawa, Hiroyoshi; Watanabe, Nobukazu; Watanabe, Eri; Satoh, Natsuko; Kitaura, Kazutaka; Kitamura, Hiroaki; Doi, Kazuko; Nagase, Kotaro; Kimura, Hiromi; Samukawa, Makoto; Kusunoki, Susumu; Miyahara, Masaharu; Shin-I, Tadasu; Suzuki, Ryuji; Sakaguchi, Shimon; Kimura, Shinya

    2016-08-01

    The regulatory T cells (Treg) with the most potent immunosuppressive activity are the effector Tregs (eTreg) with a CD45RA(-)Foxp3(++)CCR4(+) phenotype. Adult T-cell leukemia (ATL) cells often share the Treg phenotype and also express CCR4. Although mogamulizumab, a monoclonal antibody to CCR4, shows marked antitumor effects against ATL and peripheral T-cell lymphoma, concerns have been raised that it may induce severe autoimmune immunopathology by depleting eTregs. Here, we present case reports for two patients with ATL who responded to mogamulizumab but developed a severe skin rash and autoimmune brainstem encephalitis. Deep sequencing of the T-cell receptor revealed that ATL cells and naturally occurring Tregs within the cell population with a Treg phenotype can be clearly distinguished according to CADM1 expression. The onset of skin rash and brainstem encephalitis was coincident with eTreg depletion from the peripheral blood, whereas ATL relapses were coincident with eTreg recovery. These results imply that eTreg numbers in the peripheral blood sensitively reflect the equilibrium between antitumor immunity and autoimmunity, and that mogamulizumab might suppress ATL until the eTreg population recovers. Close monitoring of eTreg numbers is crucial if we are to provide immunomodulatory treatments that target malignancy without severe adverse events. Cancer Immunol Res; 4(8); 644-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Generation in vivo of peptide-specific cytotoxic T cells and presence of regulatory T cells during vaccination with hTERT (class I and II peptide-pulsed DCs

    Directory of Open Access Journals (Sweden)

    Satthaporn Sukchai

    2009-03-01

    Full Text Available Abstract Background Optimal techniques for DC generation for immunotherapy in cancer are yet to be established. Study aims were to evaluate: (i DC activation/maturation milieu (TNF-α +/- IFN-α and its effects on CD8+ hTERT-specific T cell responses to class I epitopes (p540 or p865, (ii CD8+ hTERT-specific T cell responses elicited by vaccination with class I alone or both class I and II epitope (p766 and p672-pulsed DCs, prepared without IFN-α, (iii association between circulating T regulatory cells (Tregs and clinical responses. Methods Autologous DCs were generated from 10 patients (HLA-0201 with advanced cancer by culturing CD14+ blood monocytes in the presence of GM-CSF and IL-4 supplemented with TNF-α [DCT] or TNF-α and IFN-α [DCTI]. The capacity of the DCs to induce functional CD8+ T cell responses to hTERT HLA-0201 restricted nonapeptides was assessed by MHC tetramer binding and peptide-specific cytotoxicity. Each DC preparation (DCT or DCTI was pulsed with only one type of hTERT peptide (p540 or p865 and both preparations were injected into separate lymph node draining regions every 2–3 weeks. This vaccination design enabled comparison of efficacy between DCT and DCTI in generating hTERT peptide specific CD8+ T cells and comparison of class I hTERT peptide (p540 or p865-loaded DCT with or without class II cognate help (p766 and p672 in 6 patients. T regulatory cells were evaluated in 8 patients. Results (i DCTIs and DCTs, pulsed with hTERT peptides, were comparable (p = 0.45, t-test in inducing peptide-specific CD8+ T cell responses. (ii Class II cognate help, significantly enhanced (p (iii Clinical responders had significantly lower (p Conclusion Addition of IFN-α to ex vivo monocyte-derived DCs, did not significantly enhance peptide-specific T cell responses in vivo, compared with TNF-α alone. Class II cognate help significantly augments peptide-specific T cell responses. Clinically favourable responses were seen in patients

  18. Regulatory B and T cell responses in patients with autoimmune thyroid disease and healthy controls

    DEFF Research Database (Denmark)

    Kristensen, Birte; Hegedüs, Laszlo

    2016-01-01

    ). HT is primarily a T-cell mediated disease, and whether B cells play a pathogenic role in the pathogenesis is still unclear. Both GD and HT are characterized by infiltration of the thyroid gland by self-reactive T cells and B cells. In the first paper of this thesis, the role of regulatory B cells...... (Bregs) and regulatory T cells (Tregs) were investigated in the context of GD and HT. First, we studied the role of the thyroid self-antigen, thyroglobulin (TG) in healthy donors. The self-antigen TG, but not the foreign recall antigen tetanus toxoid (TT), was able to induce interleukin 10 (IL-10......Autoimmune diseases occur due to faulty self-tolerance. Graves' disease (GD) and Hashimoto's thyroiditis (HT) are classic examples of organ-specific autoimmune diseases. GD is an auto-antibody-mediated disease where autoantibodies are produced against the thyroid stimulating hormone receptor (TSHR...

  19. PD-L1-specific T cells

    DEFF Research Database (Denmark)

    Ahmad, Shamaila Munir; Borch, Troels Holz; Hansen, Morten

    2016-01-01

    -specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy...... for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses...

  20. The interaction between regulatory T cells and NKT cells in the liver: a CD1d bridge links innate and adaptive immunity.

    Science.gov (United States)

    Hua, Jing; Liang, Shuwen; Ma, Xiong; Webb, Tonya J; Potter, James P; Li, Zhiping

    2011-01-01

    Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells. The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis. CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact. Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury. NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity.

  1. The Cellular and Molecular Mechanisms of Immuno-suppression by Human Type 1 Regulatory T cells

    Directory of Open Access Journals (Sweden)

    Silvia eGregori

    2012-02-01

    Full Text Available The immuno-regulatory mechanisms of IL-10-producing type 1 regulatory T (Tr1 cells have been widely studied over the years. However, several recent discoveries have shed new light on the cellular and molecular mechanisms that human Tr1 cells use to control immune responses and induce tolerance. In this review we outline the well-known and newly discovered regulatory properties of human Tr1 cells and provide an in-depth comparison of the known suppressor mechanisms of Tr1 cells with FOXP3+ Treg. We also highlight the role that Tr1 cells play in promoting and maintaining tolerance in autoimmunity, allergy, and transplantation.

  2. Interleukin-4 Supports the Suppressive Immune Responses Elicited by Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Yang

    2017-11-01

    Full Text Available Interleukin-4 (IL-4 has been considered as one of the tolerogenic cytokines in many autoimmune animal models and clinical settings. Despite its role in antagonizing pathogenic Th1 responses, little is known about whether IL-4 possesses functions that affect regulatory T cells (Tregs. Tregs are specialized cells responsible for the maintenance of peripheral tolerance through their immune modulatory capabilities. Interestingly, it has been suggested that IL-4 supplement at a high concentration protects responder T cells (Tresps from Treg-mediated immune suppression. In addition, such supplement also impedes TGF-β-induced Treg differentiation in vitro. However, these phenomena may contradict the tolerogenic role of IL-4, and the effects of IL-4 on Tregs are therefore needed to be further elucidated. In this study, we utilized IL-4 knockout (KO mice to validate the role of IL-4 on Treg-mediated immune suppression. Although IL-4 KO and control animals harbor similar frequencies of Tregs, Tregs from IL-4 KO mice weakly suppressed autologous Tresp activation. In addition, IL-4 deprivation impaired the ability of Tregs to modulate immune response, whereas IL-4 supplementation reinforced IL-4 KO Tregs in their function in suppressing Tresps. Finally, the presence of IL-4 was associated with increased cell survival and granzyme expression of Tregs. These results suggest the essential role of IL-4 in supporting Treg-mediated immune suppression, which may benefit the development of therapeutic strategies for autoimmune diseases.

  3. Effect of chorioamnionitis on regulatory T cells in moderate/late preterm neonates.

    Science.gov (United States)

    Rueda, Cesar M; Wells, Casey B; Gisslen, Tate; Jobe, Alan H; Kallapur, Suhas G; Chougnet, Claire A

    2015-01-01

    Regulatory T-cells (Treg) have a protective role for the control of immune activation and tissue damage. The effects of chorioamnionitis (chorio) on Treg in moderate/late preterm newborns are not known. We hypothesized that infants exposed to chorio would have decreased Treg frequency and/or function. We isolated mononuclear cells from adult peripheral blood and cord blood from term and moderate/late preterm infants who were classified for severity of chorio exposure. Mononuclear cells were analyzed by flow cytometry for Treg frequency and phenotype. Treg suppression of activation of conventional T-cells (Tcon) was also quantified. Treg frequencies were similar in all groups of neonates, but lower than that found in adults. Newborn Treg had a naïve phenotype, with decreased levels of CD45RO, HLA-DR, CD39 and TIGIT compared to adult Treg and chorio did not affect the phenotype. Treg from preterm newborns exposed to severe chorio had higher expression of Ki67 compared to the other groups. Treg from preterm newborns were less suppressive than Treg from adults or term, and the level of suppression was reduced with severe chorio. Relative to term, Treg frequency and phenotype were not affected by prematurity and chorio but their functionality was decreased. Lower Treg activity may contribute to inflammation in newborns that is often associated with chorioamnionitis. Copyright © 2014 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  4. The diabetes type 1 locus Idd6 modulates activity of CD4+CD25+ regulatory T-cells.

    Science.gov (United States)

    Rogner, Ute Christine; Lepault, Françoise; Gagnerault, Marie-Claude; Vallois, David; Morin, Joëlle; Avner, Philip; Boitard, Christian

    2006-01-01

    The genetic locus Idd6 confers susceptibility to the spontaneous development of type 1 diabetes in the NOD mouse. Our studies on disease resistance of the congenic mouse strain NOD.C3H 6.VIII showed that Idd6 influences T-cell activities in the peripheral immune system and suggest that a major mechanism by which the Idd6 locus modifies diabetes development is via modulation of regulatory T-cell activities. Our transfer experiments using total splenocytes and purified T-cells demonstrated that the locus specifically controls the efficiency of disease protection mediated by the regulatory CD4(+)CD25(+) T-cell subset. Our data also implicate the Idd6 locus in controlling the balance between infiltrating lymphocytes and antigen-presenting cells within the pancreatic islet.

  5. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function.

    Science.gov (United States)

    Noval Rivas, Magali; Burton, Oliver T; Oettgen, Hans C; Chatila, Talal

    2016-09-01

    Food allergy is a major health issue, but its pathogenesis remains obscure. Group 2 innate lymphoid cells (ILC2s) promote allergic inflammation. However their role in food allergy is largely unknown. We sought to investigate the role of ILC2s in food allergy. Food allergy-prone mice with a gain-of-function mutation in the IL-4 receptor α chain (Il4raF709) were orally sensitized with food allergens, and the ILC2 compartment was analyzed. The requirement for ILC2s in food allergy was investigated by using Il4raF709, IL-33 receptor-deficient (Il1rl1(-/-)), IL-13-deficient (Il13(-/-)), and IL-4-deficient (Il4(-/-)) mice and by adoptive transfer of in vitro-expanded ILC2s. Direct effects of ILC2s on regulatory T (Treg) cells and mast cells were analyzed in coculture experiments. Treg cell control of ILC2s was assessed in vitro and in vivo. Il4raF709 mice with food allergy exhibit increased numbers of ILC2s. IL-4 secretion by ILC2s contributes to the allergic response by reducing allergen-specific Treg cell and activating mast cell counts. IL-33 receptor deficiency in Il4raF709 Il1rl1(-/-) mice protects against allergen sensitization and anaphylaxis while reducing ILC2 induction. Adoptive transfer of wild-type and Il13(-/-) but not Il4(-/-) ILC2s restored sensitization in Il4raF709 Il1rl1(-/-) mice. Treg cells suppress ILC2s in vitro and in vivo. IL-4 production by IL-33-stimulated ILC2s blocks the generation of allergen-specific Treg cells and favors food allergy. Strategies to block ILC2 activation or the IL-33/IL-33 receptor pathway can lead to innovative therapies in the treatment of food allergy. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Mechanisms for Development and Function of Foxp3+ Regulatory T Cells

    Science.gov (United States)

    2008-04-04

    of the immunological synapse (studies by our group - Thomas et al, 2003); Cholesterol 9 synthesis and thereby the cholesterol amount in CD4 T-cells...precursor of cholesterol synthesis (studies by our group - Brumeanu et al, 2007). At present, it is generally accepted that lipid rafts play a...mice induces a fulminate diabetes within 10-14 days. T-regs and diabetogenic T-cells were isolated on CD4 columns followed by CD25 Ab-magnetic

  7. Viral RNA-Unprimed Rig-I Restrains Stat3 Activation in the Modulation of Regulatory T Cell/Th17 Cell Balance.

    Science.gov (United States)

    Yang, Hui; Guo, He-Zhou; Li, Xian-Yang; Lin, Jian; Zhang, Wu; Zhao, Jun-Mei; Zhang, Hong-Xin; Chen, Sai-Juan; Chen, Zhu; Zhu, Jiang

    2017-07-01

    Innate immunity activation by viral RNA-primed retinoid acid inducible gene-I (Rig-I) in CD4 + T cells antagonizes TGFβ signaling to suppress the differentiation of regulatory T cells (Tregs). However, how viral RNA-unliganded Rig-I (apo-Rig-I) modulates Treg generation remains unclear. In this article, we show that, in the absence of viral infection, Treg differentiation of Rig-I -/- CD4 + T cells was compromised, in the presence of increased generation of Th17 cells and overactivation of Stat3, a critical regulator tilting the Treg/Th17 cell balance. Mechanistically, apo-Rig-I physically associates with Stat3, thereby inhibiting Jak1's association with Stat3 while facilitating Shp2's association to inhibit p-Stat3 levels. Interestingly, inhibition of Stat3 ameliorates the Treg/Th17 imbalance and the colitis observed in Rig-I -/- mice. Collectively, these results uncover an independent functional contribution of the apo-Rig-I/Stat3 interaction in the maintenance of Treg/Th17 cell balance. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. T cell responses in senior patients with community-acquired pneumonia related to disease severity.

    Science.gov (United States)

    Bian, Lu-Qin; Bi, Ying; Zhou, Shao-Wei; Chen, Zi-Dan; Wen, Jun; Shi, Jin; Mao, Ling; Wang, Ling

    2017-12-01

    Senior individuals older than 65 years of age are at a disproportionally higher risk of developing pneumonia. Impaired capacity to defend against airway infections may be one of the reasons. It is generally believed that weaker regulatory T cell responses may be beneficial to host defense against pathogens. In senior patients with community-acquired bacterial pneumonia, we investigated the frequencies and functions of regulatory T cells. Interestingly, we found that compared to age- and sex-matched healthy controls, senior pneumonia patients presented lower frequencies of Foxp3-expressing and Helios-expressing CD4 + T cells. The quantity of Foxp3 and Helios being expressed, measured by their mRNA transcription levels, was also lower in CD4 + T cells from pneumonia patients. Furthermore, following TCR and TGF-β stimulation, pneumonia patients presented impaired capacity to upregulate Foxp3 and Helios. Functional analyses revealed that CD4 + T cells from pneumonia patients secreted lower amounts of IL-10 and TGF-β, two cytokines critical to regulatory T cell-mediated suppression. Also, the expression of granzyme B and perforin, which were cytolytic molecules potentially utilized by regulatory T cells to mediate the elimination of antigen-presenting cells and effector T cells, were reduced in CD4 + CD25 + T cells from senior pneumonia patients. In addition, the CD4 + CD25 + T cells from senior pneumonia patients presented reduced capacity to suppress effector CD4 + and CD8 + T cell proliferation. Moreover, the value of pneumonia severity index was inversely correlated with several parameters of regulatory T cell function. Together, our results demonstrated that senior pneumonia patients presented a counterintuitive impairment in regulatory T cell responses that was associated with worse prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Functional Heterogeneity in the CD4+ T Cell Response to Murine γ-Herpesvirus 68

    Science.gov (United States)

    Hu, Zhuting; Blackman, Marcia A.; Kaye, Kenneth M.; Usherwood, Edward J.

    2015-01-01

    CD4+ T cells are critical for the control of virus infections, T cell memory and immune surveillance. Here we studied the differentiation and function of murine γ-herpesvirus 68 (MHV-68)-specific CD4+ T cells using gp150-specific TCR transgenic mice. This allowed a more detailed study of the characteristics of the CD4+ T cell response than previously available approaches for this virus. Most gp150-specific CD4+ T cells expressed T-bet and produced IFN-γ, indicating MHV-68 infection triggered differentiation of CD4+ T cells largely into the Th1 subset, whereas some became TFH and Foxp3+ regulatory T cells. These CD4+ T cells were protective against MHV-68 infection, in the absence of CD8+ T cells and B cells, and protection depended on IFN-γ secretion. Marked heterogeneity was observed in the CD4+ T cells, based on Ly6C expression. Ly6C expression positively correlated with IFN-γ, TNF-α and granzyme B production, T-bet and KLRG1 expression, proliferation and CD4+ T cell-mediated cytotoxicity. Ly6C expression inversely correlated with survival, CCR7 expression and secondary expansion potential. Ly6C+ and Ly6C− gp150-specific CD4+ T cells were able to interconvert in a bidirectional manner upon secondary antigen exposure in vivo. These results indicate that Ly6C expression is closely associated with antiviral activity in effector CD4+ T cells, but inversely correlated with memory potential. Interconversion between Ly6C+ and Ly6C− cells may maintain a balance between the two antigen-specific CD4+ T cell populations during MHV-68 infection. These findings have significant implications for Ly6C as a surface marker to distinguish functionally distinct CD4+ T cells during persistent virus infection. PMID:25662997

  10. Regulatory T cells in radiotherapeutic responses

    Directory of Open Access Journals (Sweden)

    Dörthe eSchaue

    2012-08-01

    Full Text Available Radiation therapy (RT can extend its influence in cancer therapy beyond what can be attributed to in-field cytotoxicity by modulating the immune system. While complex, these systemic effects can help tip the therapeutic balance in favor of treatment success or failure. Engagement of the immune system is generally through recognition of damage-associated molecules expressed or released as a result of tumor and normal tissue radiation damage. This system has evolved to discriminate pathological from physiological forms of cell death by signaling danger. The multiple mechanisms that can be evoked include a shift towards a pro-inflammatory, pro-oxidant microenvironment that can promote maturation of dendritic cells and, in cancer treatment, the development of effector T cell responses to tumor-associated antigens. Control over these processes is exerted by regulatory T cells (Tregs, suppressor macrophages and immunosuppressive cytokines that act in consort to maintain tolerance to self, limit tissue damage, and re-establish tissue homeostasis. Unfortunately, by the time RT for cancer is initiated the tumor-host relationship has already been sculpted in favor of tumor growth and against immune-mediated mechanisms for tumor regression. Reversing this situation is a major challenge. However, recent data show that removal of Tregs can tip the balance in favor of the generation of radiation-induced anti-tumor immunity. The clinical challenge is to do so without excessive depletion that might precipitate serious autoimmune reactions and increase the likelihood of normal tissue complications. The selective modulation of Treg biology to maintain immune tolerance and control of normal tissue damage, while releasing the brakes on anti-tumor immune responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for cancer.

  11. Regulatory T Cells in Radiotherapeutic Responses

    International Nuclear Information System (INIS)

    Schaue, Dörthe; Xie, Michael W.; Ratikan, Josephine A.; McBride, William H.

    2012-01-01

    Radiation therapy (RT) can extend its influence in cancer therapy beyond what can be attributed to in-field cytotoxicity by modulating the immune system. While complex, these systemic effects can help tip the therapeutic balance in favor of treatment success or failure. Engagement of the immune system is generally through recognition of damage-associated molecules expressed or released as a result of tumor and normal tissue radiation damage. This system has evolved to discriminate pathological from physiological forms of cell death by signaling “danger.” The multiple mechanisms that can be evoked include a shift toward a pro-inflammatory, pro-oxidant microenvironment that can promote maturation of dendritic cells and, in cancer treatment, the development of effector T cell responses to tumor-associated antigens. Control over these processes is exerted by regulatory T cells (Tregs), suppressor macrophages, and immunosuppressive cytokines that act in consort to maintain tolerance to self, limit tissue damage, and re-establish tissue homeostasis. Unfortunately, by the time RT for cancer is initiated the tumor-host relationship has already been sculpted in favor of tumor growth and against immune-mediated mechanisms for tumor regression. Reversing this situation is a major challenge. However, recent data show that removal of Tregs can tip the balance in favor of the generation of radiation-induced anti-tumor immunity. The clinical challenge is to do so without excessive depletion that might precipitate serious autoimmune reactions and increase the likelihood of normal tissue complications. The selective modulation of Treg biology to maintain immune tolerance and control of normal tissue damage, while releasing the “brakes” on anti-tumor immune responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for cancer.

  12. Specific central nervous system recruitment of HLA-G(+) regulatory T cells in multiple sclerosis.

    Science.gov (United States)

    Huang, Yu-Hwa; Zozulya, Alla L; Weidenfeller, Christian; Metz, Imke; Buck, Dorothea; Toyka, Klaus V; Brück, Wolfgang; Wiendl, Heinz

    2009-08-01

    We have recently described a novel population of natural regulatory T cells (T(reg)) that are characterized by the expression of HLA-G and may be found at sites of tissue inflammation (HLA-G(pos) T(reg)). Here we studied the role of these cells in multiple sclerosis (MS), a prototypic autoimmune inflammatory disorder of the central nervous system (CNS). Sixty-four patients with different types of MS, 9 patients with other neurological diseases, and 20 healthy donors were included in this study. Inflamed brain lesions from 5 additional untreated MS patients were examined. HLA-G(pos) T(reg) were analyzed in the cerebrospinal fluid (CSF) by flow cytometry and in inflammatory demyelinating lesions of MS brain specimens by immunohistochemistry. Functional capacity was accessed and transmigration was determined using an in vitro model of the human blood-brain barrier (BBB). HLA-G(pos) T(reg) were found enriched in the inflamed CSF of MS patients and in inflammatory demyelinating lesions of MS brain specimens. HLA-G(pos) T(reg) showed a strong propensity to transmigrate across BBB, which was vigorously driven by inflammatory chemokines, and associated with a gain of suppressive capacity upon transmigration. CSF-derived HLA-G(pos) T(reg) of MS patients represented a population of activated central memory activated T cells with an upregulated expression of inflammatory chemokine receptors and exhibiting full suppressive capacity. Unlike natural FoxP3-expressing T(reg), HLA-G(pos) T(reg) derived from peripheral blood were functionally unimpaired in MS. In MS, HLA-G(pos) T(reg) may serve to control potentially destructive immune responses directly at the sites of CNS inflammation and to counterbalance inflammation once specifically recruited to the CNS.

  13. Vitamin D3 targets epidermal and dermal dendritic cells for induction of distinct regulatory T cells

    NARCIS (Netherlands)

    van der Aar, Angelic M. G.; Sibiryak, Darya S.; Bakdash, Ghaith; van Capel, Toni M. M.; van der Kleij, Hanneke P. M.; Opstelten, Dirk-Jan E.; Teunissen, Marcel B. M.; Kapsenberg, Martien L.; de Jong, Esther C.

    2011-01-01

    Background: The vitamin D metabolite 1,25(OH) 2D3 (VitD3) is a potent immunosuppressive drug and, among others, is used for topical treatment of psoriasis. A proposed mechanism of VitD3-mediated suppression is priming of dendritic cells (DCs) to induce regulatory T (Treg) cells. Objective:

  14. Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets

    Science.gov (United States)

    2017-01-01

    CD4 T cells, including T regulatory cells (Treg cells) and effector T helper cells (Th cells), and recently identified innate lymphoid cells (ILCs) play important roles in host defense and inflammation. Both CD4 T cells and ILCs can be classified into distinct lineages based on their functions and the expression of lineage-specific genes, including those encoding effector cytokines, cell surface markers, and key transcription factors. It was first recognized that each lineage expresses a specific master transcription factor and the expression of these factors is mutually exclusive because of cross-regulation among these factors. However, recent studies indicate that the master regulators are often coexpressed. Furthermore, the expression of master regulators can be dynamic and quantitative. In this review, we will first discuss similarities and differences between the development and functions of CD4 T cell and ILC subsets and then summarize recent literature on quantitative, dynamic, and cell type–specific balance between the master transcription factors in determining heterogeneity and plasticity of these subsets. PMID:28630089

  15. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells.

    Science.gov (United States)

    Khan, Adnan R; Amu, Sylvie; Saunders, Sean P; Hams, Emily; Blackshields, Gordon; Leonard, Martin O; Weaver, Casey T; Sparwasser, Tim; Sheils, Orla; Fallon, Padraic G

    2015-06-01

    cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Regulatory T-cell cytokines in patients with nonsegmental vitiligo.

    Science.gov (United States)

    Kidir, Mehtap; Karabulut, Ayse A; Ercin, Mustafa E; Atasoy, Pınar

    2017-05-01

    In the etiopathogenesis of vitiligo, the role of suppressor cytokines, such as transforming growth factor-β (TGF-β) and interleukin-10 (IL-10), associated with regulatory T-cells (Treg) is not completely known. In this study, the role of Treg-cell functions in the skin of patients with nonsegmental vitiligo was investigated. Lesional and nonlesional skin samples from 30 adult volunteers ranging in age from 18 to 36 years with nonsegmental vitiligo were compared with normal skin area excision specimens of 30 benign melanocytic nevus cases as controls. All samples were evaluated staining for forkhead box P3 (Foxp3), TGF-β, and IL-10 using the standardized streptavidin-biotin immunoperoxidase immunohistochemistry method. Foxp3 expression was lower in lesional vitiligo skin specimens compared to controls; it was also lower in lesional vitiligo specimens than nonlesional vitiligo specimens. IL-10 levels were lower in lesional vitiligo specimens compared to the controls, whereas IL-10 expression was significantly lower in lesional specimens compared with nonlesional specimens. TGF-β expression was higher in both lesional and nonlesional skin specimens of patients with vitiligo compared to controls. TGF-β expression was lower in lesional skin specimens than nonlesional skin specimens. In addition, there was no significant correlation between Foxp3 expression with TGF-β and IL-10 expressions in lesional skin specimens in the vitiligo group. In this study, results supporting the contribution of Treg cells and IL-10 deficiency to the autoimmune process were obtained. Therefore, future studies are necessary to demonstrate the definitive role of Treg-cell functions in the etiopathogenesis of vitiligo. © 2017 The International Society of Dermatology.

  17. Toward understanding the genetics of regulatory T cells in ovarian cancer.

    Science.gov (United States)

    Derycke, Melissa S; Charbonneau, Bridget; Preston, Claudia C; Kalli, Kimberly R; Knutson, Keith L; Rider, David N; Goode, Ellen L

    2013-06-01

    Tumor-infiltrating regulatory T cells (Tregs) promote immune evasion and are associated with poor disease outcome in patients affected by various malignancies. We have recently demonstrated that several, inherited single nucleotide polymorphisms affecting Treg-related genes influence the survival of ovarian cancer patients, providing novel insights into possible mechanisms of immune escape.

  18. Cytokine Secreting Microparticles Engineer the Fate and the Effector Functions of T-Cells.

    Science.gov (United States)

    Majedi, Fatemeh S; Hasani-Sadrabadi, Mohammad Mahdi; Kidani, Yoko; Thauland, Timothy J; Moshaverinia, Alireza; Butte, Manish J; Bensinger, Steven J; Bouchard, Louis-S

    2018-02-01

    T-cell immunotherapy is a promising approach for cancer, infection, and autoimmune diseases. However, significant challenges hamper its therapeutic potential, including insufficient activation, delivery, and clonal expansion of T-cells into the tumor environment. To facilitate T-cell activation and differentiation in vitro, core-shell microparticles are developed for sustained delivery of cytokines. These particles are enriched by heparin to enable a steady release of interleukin-2 (IL-2), the major T-cell growth factor, over 10+ d. The controlled delivery of cytokines is used to steer lineage specification of cultured T-cells. This approach enables differentiation of T-cells into central memory and effector memory subsets. It is shown that the sustained release of stromal cell-derived factor 1α could accelerate T-cell migration. It is demonstrated that CD4+ T-cells could be induced to high concentrations of regulatory T-cells through controlled release of IL-2 and transforming growth factor beta. It is found that CD8+ T-cells that received IL-2 from microparticles are more likely to gain effector functions as compared with traditional administration of IL-2. Culture of T-cells within 3D scaffolds that contain IL-2-secreting microparticles enhances proliferation as compared with traditional, 2D approaches. This yield a new method to control the fate of T-cells and ultimately to new strategies for immune therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Evaluation of CD4+ CD25+ FoxP3+ regulatory T cells during treatment of patients with brucellosis.

    Science.gov (United States)

    Hasanjani Roushan, M R; Bayani, M; Soleimani Amiri, S; Mohammadnia-Afrouzi, M; Nouri, H R; Ebrahimpour, S

    2016-01-01

    Cell-mediated immunity (CMI) plays a critical role in the control of brucellosis. Regulatory T cells (Tregs) have a functional character in modulating the balance between host immune response and tolerance, which can eventually lead to chronic infection or relapse. The aim of this study was to assess the alteration of Tregs in cases of brucellosis before and after treatment. Thirty cases of acute brucellosis with the mean age of 41.03±15.15 years (case group) and 30 healthy persons with the mean age of 40.63±13.95 years (control group) were selected and assessed. Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood of all individuals. We analyzed the alteration of Treg cell count using flow cytometry for CD4, CD25, and FoxP3 markers. The level of CD4+ CD25+ FoxP3+ Treg cells was increased in active patients compared with controls (2.5±0.99% vs 1.6±0.84%, p= 0.0004), but it had declined in the treated cases (1.83±0.73%, p=0.02). The level of Tregs was elevated in three relapsed cases. The frequency of Tregs and Treg/Teff (effector T cell) ratio was correlated with inverse serum agglutination test (SAT) and, 2-mercaptoethanol (2-ME) titers as markers of treatment in brucellosis. Based on our findings, we suggest that regulatory cells, such as CD4+ CD25+ FoxP3+ Treg cells, may contribute to the development of infection processes involving immune responses in brucellosis, and evaluation of regulatory T-cell levels may be a potential diagnostic strategy for the treatment outcome in chronic and relapsed cases of brucellosis.

  20. Induction of regulatory T cells by high-dose gp96 suppresses murine liver immune hyperactivation.

    Directory of Open Access Journals (Sweden)

    Xinghui Li

    Full Text Available Immunization with high-dose heat shock protein gp96, an endoplasmic reticulum counterpart of the Hsp90 family, significantly enhances regulatory T cell (Treg frequency and suppressive function. Here, we examined the potential role and mechanism of gp96 in regulating immune-mediated hepatic injury in mice. High-dose gp96 immunization elicited rapid and long-lasting protection of mice against concanavalin A (Con A-and anti-CD137-induced liver injury, as evidenced by decreased alanine aminotransaminase (ALT levels, hepatic necrosis, serum pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6, and number of IFN-γ (+ CD4(+ and IFN-γ (+ CD8(+ T cells in the spleen and liver. In contrast, CD4(+CD25(+Foxp3(+ Treg frequency and suppressive function were both increased, and the protective effect of gp96 could be generated by adoptive transfer of Treg cells from gp96-immunized mice. In vitro co-culture experiments demonstrated that gp96 stimulation enhanced Treg proliferation and suppressive function, and up-regulation of Foxp3, IL-10, and TGF-β1 induced by gp96 was dependent on TLR2- and TLR4-mediated NF-κB activation. Our work shows that activation of Tregs by high-dose gp96 immunization protects against Con A- and anti-CD137-induced T cell-hepatitis and provides therapeutic potential for the development of a gp96-based anti-immune hyperactivation vaccine against immune-mediated liver destruction.

  1. Regulatory T-cells and immune tolerance in pregnancy : a new target for infertility treatment?

    NARCIS (Netherlands)

    Guerin, Leigh R.; Prins, Jelmer R.; Robertson, Sarah A.

    2009-01-01

    Adaptation of the maternal immune response to accommodate the semi-allogeneic fetus is necessary for pregnancy success, and disturbances in maternal tolerance are implicated in infertility and reproductive pathologies. T regulatory (Treg) cells are a recently discovered subset of T-lymphocytes with

  2. Adoptive regulatory T cell therapy: challenges in clinical transplantation.

    Science.gov (United States)

    Safinia, Niloufar; Sagoo, Pervinder; Lechler, Robert; Lombardi, Giovanna

    2010-08-01

    The identification and characterisation of regulatory T cells (Tregs) has recently opened up exciting opportunities for Treg cell therapy in transplantation. In this review, we outline the basic biology of Tregs and discuss recent advances and challenges for the identification, isolation and expansion of these cells for cell therapy. Tregs of thymic origin have been shown to be key regulators of immune responses in mice and humans, preventing autoimmunity, graft-versus-host disease and organ graft rejection in the transplantation setting. To date, a variety of different methods to isolate and expand Tregs ex vivo have been advocated. Although promising, relatively few clinical trials of human Treg cell infusion have been initiated. Many key questions about Treg cell therapy still remain and here we provide an in-depth analysis and highlight the challenges and opportunities for immune intervention with Treg-based therapeutics in clinical transplantation.

  3. Modulation of phenotype and function of human CD4+CD25+ T regulatory lymphocytes mediated by cAMP elevating agents

    Directory of Open Access Journals (Sweden)

    Antonella Riccomi

    2016-09-01

    Full Text Available We have shown that Cholera Toxin (CT and other cyclic AMP (cAMP elevating agents induce up-regulation of the inhibitory molecule CTLA-4 in human resting CD4+ T lymphocytes, which following the treatment acquired suppressive functions. In this study, we evaluated the effect of cAMP elevating agents on human CD4+CD25+ T cells, which include the T regulatory (Treg cells that play a pivotal role in the maintenance of immunological tolerance. We found that cAMP elevating agents induce up-regulation of CTLA-4 in CD4+CD25- and further enhance its expression in CD4+CD25+ T cells. We observed an increase of two isoforms of mRNA coding for the membrane and the soluble CTLA-4 molecules, suggesting that the regulation of CTLA-4 expression by cAMP is at the transcriptional level. In addition, we found that the increase of cAMP in CD4+CD25+ T cells converts the CD4+CD25+Foxp3- T cells in CD4+CD25+Foxp3+ T cells, whereas the increase of cAMP in CD4+CD25- T cells did not up-regulate Foxp3 in the absence of activation stimuli. To investigate the function of these cells, we performed an in vitro suppression assay by culturing CD4+CD25+ T cells untreated or pre-treated with CT with anti-CD3 mAbs-stimulated autologous PBMC. We found that CT enhances the inhibitory function of CD4+CD25+ T cells, CD4+ and CD8+ T cell proliferation and IFNγ production are strongly inhibited by CD4+CD25+ T cells pre-treated with cAMP elevating agents. Furthermore, we found that CD4+CD25+ T lymphocytes pre-treated with cAMP elevating agents induce the up-regulation of CD80 and CD86 co-stimulatory molecules on immature dendritic cells (DCs in the absence of antigenic stimulation, however without leading to full DC maturation. These data show that the increase of intracellular cAMP modulates the phenotype and function of human CD4+CD25+ T cells.

  4. Transitional-2 B cells acquire regulatory function during tolerance induction and contribute to allograft survival.

    Science.gov (United States)

    Moreau, Aurélie; Blair, Paul A; Chai, Jian-Guo; Ratnasothy, Kulachelvy; Stolarczyk, Emilie; Alhabbab, Rowa; Rackham, Chloe L; Jones, Peter M; Smyth, Lesley; Elgueta, Raul; Howard, Jane K; Lechler, Robert I; Lombardi, Giovanna

    2015-03-01

    In humans, tolerance to renal transplants has been associated with alterations in B-cell gene transcription and maintenance of the numbers of circulating transitional B cells. Here, we use a mouse model of transplantation tolerance to investigate the contribution of B cells to allograft survival. We demonstrate that transfer of B cells from mice rendered tolerant to MHC class I mismatched skin grafts can prolong graft survival in a dose-dependent and antigen-specific manner to a degree similar to that afforded by graft-specific regulatory T (Treg) cells. Tolerance in this model was associated with an increase in transitional-2 (T2) B cells. Only T2 B cells from tolerized mice, not naïve T2 nor alloantigen experienced T2, were capable of prolonging skin allograft survival, and suppressing T-cell activation. Tolerized T2 B cells expressed lower levels of CD86, increased TIM-1, and demonstrated a preferential survival in vivo. Furthermore, we demonstrate a synergistic effect between tolerized B cells and graft-specific Treg cells. IL-10 production by T2 B cells did not contribute to tolerance, as shown by transfer of B cells from IL-10(-/-) mice. These results suggest that T2 B cells in tolerant patients may include a population of regulatory B cells that directly inhibit graft rejection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Increased expression of the regulatory T cell-associated marker CTLA-4 in bovine leukemia virus infection.

    Science.gov (United States)

    Suzuki, Saori; Konnai, Satoru; Okagawa, Tomohiro; Ikebuchi, Ryoyo; Nishimori, Asami; Kohara, Junko; Mingala, Claro N; Murata, Shiro; Ohashi, Kazuhiko

    2015-02-15

    Regulatory T cells (Tregs) play a critical role in the maintenance of the host's immune system. Tregs, particularly CD4(+)CD25(+)Foxp3(+) T cells, have been reported to be involved in the immune evasion mechanism of tumors and several pathogens that cause chronic infections. Recent studies showed that a Treg-associated marker, cytotoxic T-lymphocyte antigen 4 (CTLA-4), is closely associated with the progression of several diseases. We recently reported that the proportion of Foxp3(+)CD4(+) cells was positively correlated with the number of lymphocytes, virus titer, and virus load but inversely correlated with IFN-γ expression in cattle infected with bovine leukemia virus (BLV), which causes chronic infection and lymphoma in its host. Here the kinetics of CTLA-4(+) cells were analyzed in BLV-infected cattle. CTLA-4 mRNA was predominantly expressed in CD4(+) T cells in BLV-infected cattle, and the expression was positively correlated with Foxp3 mRNA expression. To test for differences in the protein expression level of CTLA-4, we measured the proportion of CTLA-4-expressing cells by flow cytometry. In cattle with persistent lymphocytosis (PL), mean fluorescence intensities (MFIs) of CTLA-4 on CD4(+) and CD25(+) T cells were significantly increased compared with that in control and aleukemic (AL) cattle. The percentage of CTLA-4(+) cells in the CD4(+) T cell subpopulation was positively correlated with TGF-β mRNA expression, suggesting that CD4(+)CTLA-4(+) T cells have a potentially immunosuppressive function in BLV infection. In the limited number of cattle that were tested, the anti-CTLA-4 antibody enhanced the expression of CD69, IL-2, and IFN-γ mRNA in anti-programmed death ligand 1 (PD-L1) antibody-treated peripheral blood mononuclear cells from BLV-infected cattle. Together with previous findings, the present results indicate that Tregs may be involved in the inhibition of T cell function during BLV infection. Copyright © 2014 Elsevier B.V. All rights

  6. KLRG1 impairs regulatory T-cell competitive fitness in the gut.

    Science.gov (United States)

    Meinicke, Holger; Bremser, Anna; Brack, Maria; Schrenk, Klaudia; Pircher, Hanspeter; Izcue, Ana

    2017-09-01

    Immune homeostasis requires the tight, tissue-specific control of the different CD4 + Foxp3 + regulatory T (Treg) cell populations. The cadherin-binding inhibitory receptor killer cell lectin-like receptor G1 (KLRG1) is expressed by a subpopulation of Treg cells with GATA3 + effector phenotype. Although such Treg cells are important for the immune balance, especially in the gut, the role of KLRG1 in Treg cells has not been assessed. Using KLRG1 knockout mice, we found that KLRG1 deficiency does not affect Treg cell frequencies in spleen, mesenteric lymph nodes or intestine, or frequencies of GATA3 + Treg cells in the gut. KLRG1-deficient Treg cells were also protective in a T-cell transfer model of colitis. Hence, KLRG1 is not essential for the development or activity of the general Treg cell population. We then checked the effects of KLRG1 on Treg cell activation. In line with KLRG1's reported inhibitory activity, in vitro KLRG1 cross-linking dampened the Treg cell T-cell receptor response. Consistently, lack of KLRG1 on Treg cells conferred on them a competitive advantage in the gut, but not in lymphoid organs. Hence, although absence of KLRG1 is not enough to increase intestinal Treg cells in KLRG1 knockout mice, KLRG1 ligation reduces T-cell receptor signals and the competitive fitness of individual Treg cells in the intestine. © 2017 John Wiley & Sons Ltd.

  7. The role of Foxp3+ regulatory T cells in liver transplant tolerance.

    Science.gov (United States)

    Li, W; Carper, K; Zheng, X X; Kuhr, C S; Reyes, J D; Liang, Y; Perkins, D L; Thomson, A W; Perkins, J D

    2006-12-01

    The liver has long been considered a tolerogenic organ that favors the induction of peripheral tolerance. The mechanisms underlying liver tolerogenicity remain largely undefined. In this study, we characterized Foxp3-expressing CD4+ CD25+ regulatory T cells (Treg) in liver allograft recipients and examined the role of Treg in inherent liver tolerogenicity by employing the mouse spontaneous liver transplant tolerance model. Orthotopic liver transplantation was performed from C57BL/10 (H2b) to C3H/HeJ (H2k) mice. The percentage of CD4+ CD25+ Treg was expanded in the liver grafts and recipient spleens from day 5 up to day 100 posttransplantation, associated with high intracellular Foxp3 and CTLA4 expression. Immunohistochemistry further demonstrated significant numbers of Foxp3+ cells in the liver grafts and recipient spleens and increased transforming growth factor beta expression in the recipient spleens throughout the time courses. Adoptive transfer of spleen cells from the long-term liver allograft survivors significantly prolonged donor heart graft survival. Depletion of recipient CD4+ CD25+ Treg using anti-CD25 monoclonal antibody (250 microg/d) induced acute liver allograft rejection, associated with elevated anti-donor T-cell proliferative responses, CTL and natural killer activities, enhanced interleukin (IL)-2, interferon-gamma, IL-10, and decreased IL-4 production, and decreased T-cell apoptotic activity in anti-CD25-treated recipients. Moreover, CTLA4 blockade by anti-CTLA4 monoclonal antibody administration exacerbated liver graft rejection when combined with anti-CD25 monoclonal antibody. Thus, Foxp3+ CD4+ CD25+ Treg appear to underpin spontaneous acceptance of major histocompatability complex- mismatched liver allografts in mice. CTLA4, IL-4, and apoptosis of alloreactive T cells appear to contribute to the function of Treg and regulation of graft outcome.

  8. Gene Therapy With Regulatory T Cells: A Beneficial Alliance

    Directory of Open Access Journals (Sweden)

    Moanaro Biswas

    2018-03-01

    Full Text Available Gene therapy aims to replace a defective or a deficient protein at therapeutic or curative levels. Improved vector designs have enhanced safety, efficacy, and delivery, with potential for lasting treatment. However, innate and adaptive immune responses to the viral vector and transgene product remain obstacles to the establishment of therapeutic efficacy. It is widely accepted that endogenous regulatory T cells (Tregs are critical for tolerance induction to the transgene product and in some cases the viral vector. There are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of adaptive Tregs specific to the introduced gene product and concurrent administration of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered to direct specificity to the therapeutic antigen. Recent clinical trials have advanced adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in patients receiving cell transplants. Here, we highlight the potential benefit of combining gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. Furthermore, techniques to engineer antigen-specific Treg cell populations, either through reprogramming conventional CD4+ T cells or transferring T cell receptors with known specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon these observations and the successful use of chimeric (IgG-based antigen receptors (CARs in antigen-specific effector T cells, different types of CAR-Tregs could be added to the repertoire of inhibitory modalities to suppress immune responses to therapeutic cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs to suppress unwanted immune responses to gene therapy and their perspectives are reviewed in this article.

  9. New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function.

    Science.gov (United States)

    Fu, Shin-Huei; Yeh, Li-Tzu; Chu, Chin-Chen; Yen, B Lin-Ju; Sytwu, Huey-Kang

    2017-07-21

    B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3 + regulatory T cells with an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8 + T cells, Blimp-1 expression is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function of effector and memory CD8 + T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity. In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T lymphocyte homeostasis.

  10. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy.

    Science.gov (United States)

    Golubovskaya, Vita; Wu, Lijun

    2016-03-15

    This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy--a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4⁺ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8⁺ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be modulated to improve CAR-T therapy. In addition, CD4⁺ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  11. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy

    Directory of Open Access Journals (Sweden)

    Vita Golubovskaya

    2016-03-01

    Full Text Available This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy––a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4+ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh and CD8+ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.; intracellular markers (FOXP3; epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic; and these differences can be modulated to improve CAR-T therapy. In addition, CD4+ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  12. Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4+ T cell subsets in multiple sclerosis patients.

    Science.gov (United States)

    Sacramento, Priscila M; Monteiro, Clarice; Dias, Aleida S O; Kasahara, Taissa M; Ferreira, Thaís B; Hygino, Joana; Wing, Ana Cristina; Andrade, Regis M; Rueda, Fernanda; Sales, Marisa C; Vasconcelos, Claudia Cristina; Bento, Cleonice A M

    2018-05-02

    Excessive levels of pro-inflammatory cytokines in the central nervous system (CNS) are associated with reduced serotonin (5-HT) synthesis, a neurotransmitter with diverse immune effects. In this study, we evaluated the ability of exogenous 5-HT to modulate the T-cell behavior of patients with multiple sclerosis (MS), a demyelinating autoimmune disease mediated by Th1 and Th17 cytokines. Here, 5-HT attenuated, in vitro, T-cell proliferation and Th1 and Th17 cytokines production in cell cultures from MS patients. Additionally, 5-HT reduced IFN-γ and IL-17 release by CD8 + T-cells. By contrast, 5-HT increased IL-10 production by CD4 + T-cells from MS patients. A more accurate analysis of these IL-10-secreting CD4 + T-cells revealed that 5-HT favors the expansion of FoxP3 + CD39 + regulatory T cells (Tregs) and type 1 regulatory T cells. Notably, this neurotransmitter also elevated the frequency of Treg17 cells, a novel regulatory T-cell subset. The effect of 5-HT in up-regulating CD39 + Treg and Treg17 cells was inversely correlated with the number of active brain lesions. Finally, in addition to directly reducing cytokine production by purified Th1 and Th17 cells, 5-HT enhanced in vitro Treg function. In summary, our data suggest that serotonin may play a protective role in the pathogenesis of MS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Directory of Open Access Journals (Sweden)

    Barbara Ensoli

    2010-11-01

    Full Text Available Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002. Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002, served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+ and CD8(+ cellular activation (CD38 and HLA-DR together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+ T cells and B cells with reduction of CD8(+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+ and CD8(+ T cells were accompanied by increases of CD4(+ and CD8(+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite

  14. Midkine inhibits inducible regulatory T cell differentiation by suppressing the development of tolerogenic dendritic cells.

    Science.gov (United States)

    Sonobe, Yoshifumi; Li, Hua; Jin, Shijie; Kishida, Satoshi; Kadomatsu, Kenji; Takeuchi, Hideyuki; Mizuno, Tetsuya; Suzumura, Akio

    2012-03-15

    Midkine (MK), a heparin-binding growth factor, reportedly contributes to inflammatory diseases, including Crohn's disease and rheumatoid arthritis. We previously showed that MK aggravates experimental autoimmune encephalomyelitis (EAE) by decreasing regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs), a population that regulates the development of autoimmune responses, although the precise mechanism remains uncertain. In this article, we show that MK produced in inflammatory conditions suppresses the development of tolerogenic dendritic cells (DCregs), which drive the development of inducible Treg. MK suppressed DCreg-mediated expansion of the CD4(+)CD25(+)Foxp3(+) Treg population. DCregs expressed significantly higher levels of CD45RB and produced significantly less IL-12 compared with conventional dendritic cells. However, MK downregulated CD45RB expression and induced IL-12 production by reducing phosphorylated STAT3 levels via src homology region 2 domain-containing phosphatase-2 in DCreg. Inhibiting MK activity with anti-MK RNA aptamers, which bind to the targeted protein to suppress the function of the protein, increased the numbers of CD11c(low)CD45RB(+) dendritic cells and Tregs in the draining lymph nodes and suppressed the severity of EAE, an animal model of multiple sclerosis. Our results also demonstrated that MK was produced by inflammatory cells, in particular, CD4(+) T cells under inflammatory conditions. Taken together, these results suggest that MK aggravates EAE by suppressing DCreg development, thereby impairing the Treg population. Thus, MK is a promising therapeutic target for various autoimmune diseases.

  15. Animal models of allergen-induced tolerance in asthma: are T-regulatory-1 cells (Tr-1) the solution for T-helper-2 cells (Th-2) in asthma?

    Science.gov (United States)

    Tournoy, K G; Hove, C; Grooten, J; Moerloose, K; Brusselle, G G; Joos, G F

    2006-01-01

    Non-specific anti-inflammatory medication is actually the treatment of choice for controlling the T-helper type 2 (Th-2) cell-driven airway inflammation in asthma. The induction of counterbalancing Th-1 cell clones, long considered a promising approach for immunotherapy, has failed to fulfil its promise because of potentially detrimental side-effects. This is therefore probably not a valid option for the treatment of asthma. With the increasing awareness that active immune mechanisms exist to control inflammatory responses, interest rises to investigate whether these can be exploited to control allergen-induced airway disease. The induction of antigen-specific T cells with suppressive characteristics (regulatory T cells) is therefore a potentially interesting approach. These regulatory T cells mediate tolerance in healthy, non-atopic individuals and have the potential of becoming an effective means of preventing allergen-induced airway inflammation and possibly of suppressing ongoing allergic immune responses. Here we review the available knowledge about allergen-induced suppressive immunity obtained from animal models taking into account the different developmental stages of allergic airway disease.

  16. Natural CD8{sup +}25{sup +} regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yufeng; Zhang, Xueshu; Zhao, Tuo; Li, Wei; Xiang, Jim, E-mail: jim.xiang@saskcancer.ca

    2013-08-16

    Highlights: •CD8{sup +}25{sup +} regulatory T cells secrete tolerogenic exosomes. •CD8{sup +}25{sup +} regulatory T cell-derived exosomes exhibit immunosuppressive effect. •CD8{sup +}25{sup +} regulatory T cell-derived exosomes inhibit antitumor immunity. -- Abstract: Natural CD4{sup +}25{sup +} and CD8{sup +}25{sup +} regulatory T (Tr) cells have been shown to inhibit autoimmune diseases. Immune cells secrete exosomes (EXOs), which are crucial for immune regulation. However, immunomodulatory effect of natural Tr cell-secreted EXOs is unknown. In this study, we purified natural CD8{sup +}25{sup +} Tr cells from C57BL/6 mouse naive CD8{sup +} T cells, and in vitro amplified them with CD3/CD28 beads. EXOs (EXO{sub Tr}) were purified from Tr cell’s culture supernatants by differential ultracentrifugation and analyzed by electron microscopy, Western blot and flow cytometry. Our data showed that EXO{sub Tr} had a “saucer” or round shape with 50–100 nm in diameter, contained EXO-associated markers LAMP-1 and CD9, and expressed natural Tr cell markers CD25 and GITR. To assess immunomodulatory effect, we i.v. immunized C57BL/6 mice with ovalbumin (OVA)-pulsed DCs (DC{sub OVA}) plus Tr cells or EXO{sub Tr}, and then assessed OVA-specific CD8{sup +} T cell responses using PE-H-2K{sup b}/OVA tetramer and FITC-anti-CD8 antibody staining by flow cytometry and antitumor immunity in immunized mice with challenge of OVA-expressing BL6–10{sub OVA} melanoma cells. We demonstrated that DC{sub OVA}-stimulated CD8{sup +} T cell responses and protective antitumor immunity significantly dropped from 2.52% to 1.08% and 1.81% (p < 0.05), and from 8/8 to 2/8 and 5/8 mice DC{sub OVA} (p < 0.05) in immunized mice with co-injection of Tr cells and EXO{sub Tr}, respectively. Our results indicate that natural CD8{sup +}25{sup +} Tr cell-released EXOs, alike CD8{sup +}25{sup +} Tr cells, can inhibit CD8{sup +} T cell responses and antitumor immunity. Therefore, EXOs derived from

  17. The Numerology of T Cell Functional Diversity

    OpenAIRE

    Haining, W. Nicholas

    2012-01-01

    Memory T cells are heterogeneous in phenotype and function. In this issue of Immunity Newell et al. (2012) use a new flow cytometry platform to show that the functional heterogeneity in the human T cell compartment is even greater than expected.

  18. Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging

    Directory of Open Access Journals (Sweden)

    Claire E. Gustafson

    2017-06-01

    Full Text Available Aging is associated with an increased susceptibility to infection and a failure to control latent viruses thought to be driven, at least in part, by alterations in CD8 T cell function. The aging T cell repertoire is characterized by an accumulation of effector CD8 T cells, many of which express the negative regulatory receptor CD85j. To define the biological significance of CD85j expression on CD8 T cells and to address the question whether presence of CD85j in older individuals is beneficial or detrimental for immune function, we examined the specific attributes of CD8 T cells expressing CD85j as well as the functional role of CD85j in antigen-specific CD8 T cell responses during immune aging. Here, we show that CD85j is mainly expressed by terminally differentiated effector (TEMRAs CD8 T cells, which increase with age, in cytomegalovirus (CMV infection and in males. CD85j+ CMV-specific cells demonstrate clonal expansion. However, TCR diversity is similar between CD85j+ and CD85j− compartments, suggesting that CD85j does not directly impact the repertoire of antigen-specific cells. Further phenotypic and functional analyses revealed that CD85j identifies a specific subset of CMV-responsive CD8 T cells that coexpress a marker of senescence (CD57 but retain polyfunctional cytokine production and expression of cytotoxic mediators. Blocking CD85j binding enhanced proliferation of CMV-specific CD8 T cells upon antigen stimulation but did not alter polyfunctional cytokine production. Taken together, these data demonstrate that CD85j characterizes a population of “senescent,” but not exhausted antigen-specific effector CD8 T cells and indicates that CD85j is an important checkpoint regulator controlling expansion of virus-specific T cells during aging. Inhibition of CD85j activity may be a mechanism to promote stronger CD8 T cell effector responses during immune aging.

  19. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32).

    Science.gov (United States)

    Chan, Derek V; Somani, Ally-Khan; Young, Andrew B; Massari, Jessica V; Ohtola, Jennifer; Sugiyama, Hideaki; Garaczi, Edina; Babineau, Denise; Cooper, Kevin D; McCormick, Thomas S

    2011-05-26

    Elevated numbers of regulatory T cells (T(regs)) have been implicated in certain cancers. Depletion of T(regs) has been shown to increase anti-tumor immunity. T(regs) also play a critical role in the suppression of autoimmune responses. The study of T(regs) has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32), also known as Glycoprotein A Repetitions Predominant (GARP), has been postulated as a novel surface marker of activated T(regs). However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of T(regs) expressing LRRC32. Using naturally-occurring freshly isolated T(regs), we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ T(regs) are distinct from LRRC32- T(regs) with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ T(regs) are more potent suppressors than LRRC32- T(regs). A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent T(reg) populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of T(regs) and the refinement of immunotherapeutic strategies aimed at targeting these cells.

  20. Regulation of Germinal Center Reactions by B and T Cells

    Directory of Open Access Journals (Sweden)

    Yeonseok Chung

    2013-10-01

    Full Text Available Break of B cell tolerance to self-antigens results in the development of autoantibodies and, thus, leads to autoimmunity. How B cell tolerance is maintained during active germinal center (GC reactions is yet to be fully understood. Recent advances revealed several subsets of T cells and B cells that can positively or negatively regulate GC B cell responses in vivo. IL-21-producing CXCR5+ CD4+ T cells comprise a distinct lineage of helper T cells—termed follicular helper T cells (TFH—that can provide help for the development of GC reactions where somatic hypermutation and affinity maturation take place. Although the function of TFH cells is beneficial in generating high affinity antibodies against infectious agents, aberrant activation of TFH cell or B cell to self-antigens results in autoimmunity. At least three subsets of immune cells have been proposed as regulatory cells that can limit such antibody-mediated autoimmunity, including follicular regulatory T cells (TFR, Qa-1 restricted CD8+ regulatory T cells (CD8+TREG, and regulatory B cells (BREG. In this review, we will discuss our current understanding of GC B cell regulation with specific emphasis on the newly identified immune cell subsets involved in this process.

  1. Challenges in cryopreservation of regulatory T cells (Tregs) for clinical therapeutic applications.

    Science.gov (United States)

    Golab, Karolina; Leveson-Gower, Dennis; Wang, Xiao-Jun; Grzanka, Jakub; Marek-Trzonkowska, Natalia; Krzystyniak, Adam; Millis, J Michael; Trzonkowski, Piotr; Witkowski, Piotr

    2013-07-01

    Promising results of initial studies applying ex-vivo expanded regulatory T cell (Treg) as a clinical intervention have increased interest in this type of the cellular therapy and several new clinical trials involving Tregs are currently on the way. Methods of isolation and expansion of Tregs have been studied and optimized to the extent that such therapy is feasible, and allows obtaining sufficient numbers of Tregs in the laboratory following Good Manufacturing Practice (GMP) guidelines. Nevertheless, Treg therapy could even more rapidly evolve if Tregs could be efficiently cryopreserved and stored for future infusion or expansions rather than utilization of only freshly isolated and expanded cells as it is preferred now. Currently, our knowledge regarding the impact of cryopreservation on Treg recovery, viability, and functionality is still limited. Based on experience with cryopreserved peripheral blood mononuclear cells (PBMCs), cryopreservation may have a detrimental effect on Tregs, can decrease Treg viability, cause abnormal cytokine secretion, and compromise expression of surface markers essential for proper Treg function and processing. Therefore, optimal strategies and conditions for Treg cryopreservation in conjunction with cell culture, expansion, and processing for clinical application still need to be investigated and defined. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Dendritic Cell-Specific Deletion of β-Catenin Results in Fewer Regulatory T-Cells without Exacerbating Autoimmune Collagen-Induced Arthritis.

    Science.gov (United States)

    Alves, C Henrique; Ober-Blöbaum, Julia L; Brouwers-Haspels, Inge; Asmawidjaja, Patrick S; Mus, Adriana M C; Razawy, Wida; Molendijk, Marlieke; Clausen, Björn E; Lubberts, Erik

    2015-01-01

    Dendritic cells (DCs) are professional antigen presenting cells that have the dual ability to stimulate immunity and maintain tolerance. However, the signalling pathways mediating tolerogenic DC function in vivo remain largely unknown. The β-catenin pathway has been suggested to promote a regulatory DC phenotype. The aim of this study was to unravel the role of β-catenin signalling to control DC function in the autoimmune collagen-induced arthritis model (CIA). Deletion of β-catenin specifically in DCs was achieved by crossing conditional knockout mice with a CD11c-Cre transgenic mouse line. Bone marrow-derived DCs (BMDCs) were generated and used to study the maturation profile of these cells in response to a TLR2 or TLR4 ligand stimulation. CIA was induced by intra-dermal immunization with 100 μg chicken type II collagen in complete Freund's adjuvant on days 0 and 21. CIA incidence and severity was monitored macroscopically and by histology. The T cell profile as well as their cytokine production were analysed by flow cytometry. Lack of β-catenin specifically in DCs did not affect the spontaneous, TLR2- or TLR4-induced maturation and activation of BMDCs or their cytokine production. Moreover, no effect on the incidence and severity of CIA was observed in mice lacking β-catenin in CD11c+ cells. A decreased frequency of splenic CD3+CD8+ T cells and of regulatory T cells (Tregs) (CD4+CD25highFoxP3+), but no changes in the frequency of splenic Th17 (CCR6+CXCR3-CCR4+), Th2 (CCR6-CXCR3-CCR4+) and Th1 (CCR6-CXCR3+CCR4-) cells were observed in these mice under CIA condition. Furthermore, the expression of IL-17A, IL-17F, IL-22, IL-4 or IFNγ was also not affected. Our data indicate that ablation of β-catenin expression in DCs did not alter the course and severity of CIA. We conclude that although deletion of β-catenin resulted in a lower frequency of Tregs, this decrease was not sufficient to aggravate the onset and severity of CIA.

  3. Dendritic Cell-Specific Deletion of β-Catenin Results in Fewer Regulatory T-Cells without Exacerbating Autoimmune Collagen-Induced Arthritis.

    Directory of Open Access Journals (Sweden)

    C Henrique Alves

    Full Text Available Dendritic cells (DCs are professional antigen presenting cells that have the dual ability to stimulate immunity and maintain tolerance. However, the signalling pathways mediating tolerogenic DC function in vivo remain largely unknown. The β-catenin pathway has been suggested to promote a regulatory DC phenotype. The aim of this study was to unravel the role of β-catenin signalling to control DC function in the autoimmune collagen-induced arthritis model (CIA. Deletion of β-catenin specifically in DCs was achieved by crossing conditional knockout mice with a CD11c-Cre transgenic mouse line. Bone marrow-derived DCs (BMDCs were generated and used to study the maturation profile of these cells in response to a TLR2 or TLR4 ligand stimulation. CIA was induced by intra-dermal immunization with 100 μg chicken type II collagen in complete Freund's adjuvant on days 0 and 21. CIA incidence and severity was monitored macroscopically and by histology. The T cell profile as well as their cytokine production were analysed by flow cytometry. Lack of β-catenin specifically in DCs did not affect the spontaneous, TLR2- or TLR4-induced maturation and activation of BMDCs or their cytokine production. Moreover, no effect on the incidence and severity of CIA was observed in mice lacking β-catenin in CD11c+ cells. A decreased frequency of splenic CD3+CD8+ T cells and of regulatory T cells (Tregs (CD4+CD25highFoxP3+, but no changes in the frequency of splenic Th17 (CCR6+CXCR3-CCR4+, Th2 (CCR6-CXCR3-CCR4+ and Th1 (CCR6-CXCR3+CCR4- cells were observed in these mice under CIA condition. Furthermore, the expression of IL-17A, IL-17F, IL-22, IL-4 or IFNγ was also not affected. Our data indicate that ablation of β-catenin expression in DCs did not alter the course and severity of CIA. We conclude that although deletion of β-catenin resulted in a lower frequency of Tregs, this decrease was not sufficient to aggravate the onset and severity of CIA.

  4. The role of dietary sodium intake on the modulation of T helper 17 cells and regulatory T cells in patients with rheumatoid arthritis and systemic lupus erythematosus

    Science.gov (United States)

    Massaro, Laura; Barbati, Cristiana; Vomero, Marta; Ceccarelli, Fulvia; Spinelli, Francesca Romana; Riccieri, Valeria; Spagnoli, Alessandra; Alessandri, Cristiano; Desideri, Giovambattista; Conti, Fabrizio

    2017-01-01

    We aimed at investigating whether the frequency and function of T helper 17 (Th17) and regulatory T cells (Treg) are affected by a restriction of dietary sodium intake in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We enrolled RA and SLE patients not receiving drugs known to increase urinary sodium excretion. Patients underwent a dietary regimen starting with a restricted daily sodium intake followed by a normal-sodium daily intake. The timepoints were identified at baseline (T0), after 3 weeks of low-sodium dietary regimen (T3), after 2 weeks of normal-sodium dietary regimen (T5). On these visits, we measured the 24-hour urinary sodium excretion, the frequency and function of Th17 and Treg cells in the peripheral blood, the serum levels of cytokines. Analysis of urinary sodium excretion confirmed adherence to the dietary regimen. In RA patients, a trend toward a reduction in the frequencies of Th17 cells over the low-sodium dietary regimen followed by an increase at T5 was observed, while Treg cells exhibited the opposite trend. SLE patients showed a progressive reduction in the percentage of Th17 cells that reached a significance at T5 compared to T0 (p = 0.01) and an increase in the percentage of Treg cells following the low-sodium dietary regimen at both T1 and T3 compared to T0 (p = 0.04 and p = 0.02, respectively). No significant apoptosis or proliferation modulation was found. In RA patients, we found a reduction at T5 compared to T0 in serum levels of both TGFβ (p = 0.0016) and IL-9 (p = 0.0007); serum IL-9 levels were also reduced in SLE patients at T5 with respect to T0 (p = 0.03). This is the first study investigating the effects of dietary sodium intake on adaptive immunity. Based on the results, we hypothesize that a restricted sodium dietary intake may dampen the inflammatory response in RA and SLE patients. PMID:28877244

  5. Glucocorticoid induced TNFR-related protein (GITR as marker of human regulatory T cells: expansion of the GITR+CD25- cell subset in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    E. Bartoloni Bocci

    2011-06-01

    Full Text Available Objectives: Regulatory T cells (TREG represent a T cell subset able to modulate immune response by suppressing autoreactive T-lymphocytes. The evidence of a reduced number and an impaired function of this cell population in autoimmune/ inflammatory chronic diseases led to the hypothesis of its involvement in the pathogenesis of these disorders. Glucocorticoid-induced TNFR-related protein (GITR is a well known marker of murine TREG cells, but little is known in humans. The aim of this study was to investigate the characteristics of TREG cells in systemic lupus erythematosus (SLE and the potential role of GITR as marker of human TREG. Methods: Nineteen SLE patients and 15 sex- and age-matched normal controls (NC were enrolled. CD4+ T cells were magnetic sorted from peripheral blood by negative selection. Cell phenotype was analyzed through flow-cytometry using primary and secondary antibodies and real time polymerase-chain reaction (PCR using TaqMan probes. Results: The CD25highGITRhigh subset was significantly decreased in SLE patients with respect to NC (0.37±0.21% vs 0.72±0.19%; p<0.05. On the opposite, the CD25-GITRhigh cell population was expanded in the peripheral blood of SLE patients (3.5±2.25 vs 0.70±0.32%, p<0.01. Interestingly, FoxP3 at mRNA level was expressed in both CD25- GITRhigh and CD25highGITRhigh cells, suggesting that both cell subsets have regulatory activity. Conclusions: CD4+CD25-GITRhigh cells are increased in SLE as compared to NC. The expression of high level of GITR, but not CD25, on FoxP3+ cells appears to point to a regulatory phenotype of this peculiar T cell subset.

  6. IL-15 Renders Conventional Lymphocytes Resistant to Suppressive Functions of Regulatory T Cells through Activation of the Phosphatidylinositol 3-Kinase Pathway

    NARCIS (Netherlands)

    Ahmed, Melika Ben; Hmida, Nadia Belhadj; Moes, Nicolette; Buyse, Sophie; Abdeladhim, Maha; Louzir, Hechmi; Cerf-Bensussan, Nadine

    2009-01-01

    IL-15 drives chronic inflammation in several human diseases. We have recently shown that IL-15 inhibits the immunosuppressive effects of TGF-beta through blockage of the Smad3-signaling pathway. Data pointing to reciprocal interactions between TGF-beta and CD4(+) regulatory T cells led us to

  7. Las células T reguladoras y su influencia en la sobrevida del trasplante renal Regulatory T cells and their influence in kidney allograft survival

    Directory of Open Access Journals (Sweden)

    Sonia Y. Velásquez

    2007-10-01

    Full Text Available La respuesta inmune desencadenada frente a un trasplante alogénico conduce usualmente a una respuesta efectora que resulta en el rechazo del aloinjerto; sin embargo, algunos individuos mantienen un trasplante funcionante a largo plazo sin signos de rechazo (tolerancia operacional, aun en ausencia de inmunosupresión. Se ha sugerido que los mismos mecanismos son responsables para la tolerancia hacia antígenos propios y aloantígenos. Uno de estos mecanismos es la regulación inmune y se han identificado varias subpoblaciones de células con propiedades reguladoras. Entre ellas, la población celular mejor caracterizada corresponde a las células T reguladoras (Tregs. Aunque las Tregs en ratones son CD4+CD25+, en humanos el fenotipo de las Treg está restringida a las células T CD4 con alta expresión de CD25 (CD25high y del factor de transcripción Foxp3. El análisis fenotípico y funcional de las células T reguladoras o supresoras circulantes en pacientes trasplantados tal vez sea útil para la detección de pacientes tolerantes operacionales. Además, una futura manipulación in vitro de estas células con fines terapéuticos podría conducir a lograr la inducción de tolerancia in vivo en el trasplante clínico. Aquí, revisamos la evidencia experimental y clínica del papel de las células reguladoras en la biología del trasplante.The immune response elicited by an allogenic transplant usually leads to an effector response resulting in allograft rejection; however, some individuals maintain a long-term functioning transplant without signs of rejection (operational tolerance even in the absence of immunosuppression. It has been suggested that the same mechanisms are responsible for tolerance to self-antigens and alloantigens. One of such mechanisms is immune regulation and several cell subsets with regulatory properties have been identified. Among them, the best characterized cell populations are the regulatory T cells (Treg. Although

  8. GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells

    OpenAIRE

    Tran, Dat Q.; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M.

    2009-01-01

    TGF-β family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-β is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFβ-binding protein (LTBP) to produce a large latent form. Latent TGF-β is also found on the surface of activated FOXP3+ regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule ...

  9. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion.

    Science.gov (United States)

    Coffelt, Seth B; Chen, Yung-Yi; Muthana, Munitta; Welford, Abigail F; Tal, Andrea O; Scholz, Alexander; Plate, Karl H; Reiss, Yvonne; Murdoch, Craig; De Palma, Michele; Lewis, Claire E

    2011-04-01

    Angiopoietin 2 (ANGPT2) is a proangiogenic cytokine whose expression is often upregulated by endothelial cells in tumors. Expression of its receptor, TIE2, defines a highly proangiogenic subpopulation of myeloid cells in circulation and tumors called TIE2-expressing monocytes/macrophages (TEMs). Genetic depletion of TEMs markedly reduces tumor angiogenesis in various tumor models, emphasizing their essential role in driving tumor progression. Previously, we demonstrated that ANGPT2 augments the expression of various proangiogenic genes, the potent immunosuppressive cytokine, IL-10, and a chemokine for regulatory T cells (Tregs), CCL17 by TEMs in vitro. We now show that TEMs also express higher levels of IL-10 than TIE2(-) macrophages in tumors and that ANGPT2-stimulated release of IL-10 by TEMs suppresses T cell proliferation, increases the ratio of CD4(+) T cells to CD8(+) T cells, and promotes the expansion of CD4(+)CD25(high)FOXP3(+) Tregs. Furthermore, syngeneic murine tumors expressing high levels of ANGPT2 contained not only high numbers of TEMs but also increased numbers of Tregs, whereas genetic depletion of tumor TEMs resulted in a marked reduction in the frequency of Tregs in tumors. Taken together, our data suggest that ANGPT2-stimulated TEMs represent a novel, potent immunosuppressive force in tumors.

  10. Downregulation of IL-17-producing T cells is associated with regulatory T cell expansion and disease progression in chronic lymphocytic leukemia.

    Science.gov (United States)

    Jadidi-Niaragh, Farhad; Ghalamfarsa, Ghasem; Memarian, Ali; Asgarian-Omran, Hossein; Razavi, Seyed Mohsen; Sarrafnejad, Abdolfattah; Shokri, Fazel

    2013-04-01

    Little is known about the immunobiology of interleukin-17 (IL-17)-producing T cells and regulatory T cells (Treg) in chronic lymphocytic leukemia (CLL). In this study, the frequencies of Th17, Tc17, and CD39(+) Treg cells were enumerated in peripheral T cells isolated from 40 CLL patients and 15 normal subjects by flow cytometry. Our results showed a lower frequency of Th17 and Tc17 cells in progressive (0.99 ± 0.12 % of total CD3(+)CD4(+) cells; 0.44 ± 0.09 % of total CD8(+) cells) compared to indolent patients (1.57 ± 0.24 %, p = 0.042; 0.82 ± 0.2 %, p = 0.09) and normal subjects (1.78 ± 0.2 %, p = 0.003; 0.71 ± 0.09 %, p = 0.04). Decrease in IL-17-producing T cells was associated with CD39(+) Treg cells expansion. Variation of IL-17-producing cells and Treg cells in indolent and progressive patients was neither associated to the expression levels of Th1- and Th2-specific transcription factors T-bet and GATA-3 nor to the frequencies of IFN-γ and IL-4-producing CD4(+) T cells in a selected number of samples. Additionally, suppressive potential of CD4(+) Treg was similar in CLL patients and normal subjects. Our data indicate that progression of CLL is associated with downregulation of IL-17-producing T cells and expansion of Treg cells, implying contribution of these subsets of T cells in the progression of CLL.

  11. Epigenetic control of CD8+ T cell differentiation.

    Science.gov (United States)

    Henning, Amanda N; Roychoudhuri, Rahul; Restifo, Nicholas P

    2018-05-01

    Upon stimulation, small numbers of naive CD8 + T cells proliferate and differentiate into a variety of memory and effector cell types. CD8 + T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8 + T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8 + T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8 + T cell function in individuals with chronic infections and cancer.

  12. Phenotypic and functional markers for 1alpha,25-dihydroxyvitamin D(3)-modified regulatory dendritic cells

    DEFF Research Database (Denmark)

    Pedersen, A W; Holmstrøm, K; Jensen, S S

    2009-01-01

    The clinical use of dendritic cells (DCs) to induce antigen-specific immune tolerance has been hampered by the lack of a widely acknowledged method for generating human regulatory DCs but even more so by the non-existence of reliable markers. Thus, we set out to find reliable markers that can...... CD14 and reduced CD1a on the cell surface. These VD3-treated DCs exert a long-lasting inefficient T cell stimulation and induce T cell hyporesponsiveness with regulatory potential. Importantly, such VD3-treated DCs were readily distinguishable from untreated DCs by low levels of interleukin-23...

  13. CD 4 + CD 25 + T cells maintain homeostasis by promoting TER - 119 cell development and inhibiting T cell activation

    Directory of Open Access Journals (Sweden)

    Muhaimin Rifa’i

    2014-05-01

    Full Text Available CD4+ CD25+ regulatory T cells involved in the regulation of self- tolerance and normality of homeostasis. CD122 deficient mice are model animals that have an abnormal immune system characteristically have a high number of activated T cells and TER-119 cell decreased. Here we showed evidence that the transfer of CD4+ CD25+ regulatory T cells derived from normal mice to CD122- defficient neonates prevent the development of activated memory T cells and elicit TER-119 differentiation. Bone marrow reconstitution derived from CD122-/- mice to normal mice resulting tolerance to individual that genetically different. Importantly, CD4+ CD25+ regulatory T cells derived from normal mice can replace CD4+ CD25+ cells derived from CD122-/- mice. The results of this experiment suggest that regulatory T cells from normal mice exert a critical role in maintaining peripheral tolerance and controlling hematopoietic disorder.

  14. Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers

    NARCIS (Netherlands)

    Almeida, Afonso R. M.; Legrand, Nicolas; Papiernik, Martine; Freitas, António A.

    2002-01-01

    We show that the lymphoid hyperplasia observed in IL-2Ralpha- and IL-2-deficient mice is due to the lack of a population of regulatory cells essential for CD4 T cell homeostasis. In chimeras reconstituted with bone marrow cells from IL-2Ralpha-deficient donors, restitution of a population of

  15. Micro-RNA 10a Is Increased in Feline T Regulatory Cells and Increases Foxp3 Protein Expression Following In Vitro Transfection

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-02-01

    Full Text Available CD4+CD25+Foxp3+ T regulatory (Treg cells are activated during the course of lentiviral infection and exhibit heightened suppressor function when compared to Treg cells from uninfected controls. Foxp3 is essential to Treg cell function and multiple studies have documented that lentivirus-activated Treg cells exhibit heightened Foxp3 expression when compared to Treg cells from uninfected controls. Our hypothesis was that lentivirus-induced micro-RNAs (miRNAs contribute to heightened Treg cell suppressor function by stabilizing Foxp3 expression. We demonstrated that CD4+CD25+ T cells from both feline immunodeficiency virus infected (FIV+ cats and uninfected control cats exhibit increased miRNA 10a and 21 levels compared to autologous CD4+CD25− T cells but there was no difference in the levels of these miRNAs when Treg cells from FIV+ cats were compared to Treg cells from uninfected controls. Further, there was no increase in Foxp3 mRNA following transfection of miRNA 10a or 21 into a feline cell line. However, transfection with miRNA 10a resulted in increased Foxp3 protein expression.

  16. Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Tanner M Johanns

    2010-08-01

    Full Text Available The pathogenesis of persistent infection is dictated by the balance between opposing immune activation and suppression signals. Herein, virulent Salmonella was used to explore the role and potential importance of Foxp3-expressing regulatory T cells in dictating the natural progression of persistent bacterial infection. Two distinct phases of persistent Salmonella infection are identified. In the first 3-4 weeks after infection, progressively increasing bacterial burden was associated with delayed effector T cell activation. Reciprocally, at later time points after infection, reductions in bacterial burden were associated with robust effector T cell activation. Using Foxp3(GFP reporter mice for ex vivo isolation of regulatory T cells, we demonstrate that the dichotomy in infection tempo between early and late time points is directly paralleled by drastic changes in Foxp3(+ Treg suppressive potency. In complementary experiments using Foxp3(DTR mice, the significance of these shifts in Treg suppressive potency on infection outcome was verified by enumerating the relative impacts of regulatory T cell ablation on bacterial burden and effector T cell activation at early and late time points during persistent Salmonella infection. Moreover, Treg expression of CTLA-4 directly paralleled changes in suppressive potency, and the relative effects of Treg ablation could be largely recapitulated by CTLA-4 in vivo blockade. Together, these results demonstrate that dynamic regulation of Treg suppressive potency dictates the course of persistent bacterial infection.

  17. Regulatory T cells and skeletal muscle regeneration.

    Science.gov (United States)

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging. © 2016 Federation of European Biochemical Societies.

  18. Core Transcriptional Regulatory Circuit Controlled by the TAL1 Complex in Human T Cell Acute Lymphoblastic Leukemia

    OpenAIRE

    Sanda, Takaomi; Lawton, Lee N.; Barrasa, M. Inmaculada; Fan, Zi Peng; Kohlhammer, Holger; Gutierrez, Alejandro; Ma, Wenxue; Tatarek, Jessica; Ahn, Yebin; Kelliher, Michelle A.; Jamieson, Catriona H.M.; Staudt, Louis M.; Young, Richard A.; Look, A. Thomas

    2012-01-01

    The oncogenic transcription factor TAL1/SCL is aberrantly expressed in over 40% of cases of human T-cell acute lymphoblastic leukemia (T-ALL), emphasizing its importance in the molecular pathogenesis of T-ALL. Here we identify the core transcriptional regulatory circuit controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3 and RUNX1. We show that TAL1 forms a positive interconnected auto-regulatory loop with GATA3 and RUNX1, and that the TAL1 complex directly activates the MY...

  19. Bee venom enhances the differentiation of human regulatory T cells.

    Science.gov (United States)

    Caramalho, I; Melo, A; Pedro, E; Barbosa, M M P; Victorino, R M M; Pereira Santos, M C; Sousa, A E

    2015-10-01

    Venom-specific immunotherapy (VIT) is well recognized by its efficacy, and compelling evidence implicates regulatory T cells (Tregs) in the underlying tolerogenic mechanisms. Additionally, hymenoptera venom has for a long time been claimed to modulate immunity. Here, we investigated the putative role of bee venom (Bv) in human FOXP3-expressing Treg homeostasis and differentiation, irrespective of the donors' allergic status. We found that Bv significantly enhanced the differentiation of FOXP3-expressing cells both from conventional naïve CD4 T cells and mature CD4 thymocytes, a property that may contribute to the VIT's capacity to expand circulating Tregs in allergic individuals. We expect that our data enlightening the Treg-mediated immunomodulatory properties of Bv regardless of TCR specificity, to have application in other allergies, as well as in other clinical settings, such as autoimmunity and transplantation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. REGULATORY T CELLS AND VASECTOMY

    Science.gov (United States)

    Rival, Claudia; Wheeler, Karen; Jeffrey, Sarah; Qiao, Hui; Luu, Brian; Tewalt, Eric F; Engelhard, Victor H; Tardif, Stephen; Hardy, Daniel; del Rio, Roxana; Teuscher, Cory; Tung, Kenneth

    2013-01-01

    CD4+CD25+ regulatory T cells (Tregs) strongly influence the early and late autoimmune responses to meiotic germ cell antigens (MGCA) and the gonadal immunopathology in vasectomized mice. This is supported by the published and recently acquired information presented here. Within 24 hours of unilateral vasectomy (uni-vx) the ipsilateral epididymis undergoes epithelial cell apoptosis followed by necrosis, severe inflammation, and granuloma formation. Unexpectedly, vasectomy alone induced MGCA-specific tolerance. In contrast, uni-vx plus simultaneous Treg depletion resulted in MGCA-specific autoimmune response and bilateral autoimmune orchitis. Both tolerance and autoimmunity were strictly linked to the early epididymal injury. We now discovered that testicular autoimmunity in uni-vx mice did not occur when Treg depletion was delayed by one week. Remarkably, this delayed Treg depletion also prevented tolerance induction. Therefore, tolerance depends on a rapid de novo Treg response to MGCA exposed after vasectomy. Moreover, tolerance was blunted in mice genetically deficient in PD-1 ligand, suggesting the involvement of induced Treg. We conclude that pre-existing natural Treg prevents post-vasectomy autoimmunity, whereas vasectomy-induced Treg maintains post-vasectomy tolerance. We further discovered that vasectomized mice were still resistant to autoimmune orchitis induction for at least 12–16 months; thus, tolerance is long-lasting. Although significant sperm autoantibodies of low titers became detectable in uni-vx mice at seven months, the antibody titers fluctuated over time, suggesting a dynamic “balance” between the autoimmune and tolerance states. Finally, we observed severe epididymal fibrosis and hypo-spermatogenesis at 12 months after uni-vx: findings of highly critical clinical significance. PMID:24080233

  1. Defective IL-10 signaling in hyper-IgE syndrome results in impaired generation of tolerogenic dendritic cells and induced regulatory T cells

    Science.gov (United States)

    Saito, Masako; Nagasawa, Masayuki; Takada, Hidetoshi; Hara, Toshiro; Tsuchiya, Shigeru; Agematsu, Kazunaga; Yamada, Masafumi; Kawamura, Nobuaki; Ariga, Tadashi; Tsuge, Ikuya; Nonoyama, Shigeaki; Karasuyama, Hajime

    2011-01-01

    Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by recurrent staphylococcal infections and atopic dermatitis associated with elevated serum IgE levels. Although defective differentiation of IL-17–producing CD4+ T cells (Th17) partly accounts for the susceptibility to staphylococcal skin abscesses and pneumonia, the pathogenesis of atopic manifestations in HIES still remains an enigma. In this study, we examined the differentiation and function of Th1, Th2, regulatory T cells (Treg cells), and dendritic cells (DCs) in HIES patients carrying either STAT3 or TYK2 mutations. Although the in vitro differentiation of Th1 and Th2 cells and the number and function of Treg cells in the peripheral blood were normal in HIES patients with STAT3 mutations, primary and monocyte-derived DCs showed defective responses to IL-10 and thus failed to become tolerogenic. When treated with IL-10, patient DCs showed impaired up-regulation of inhibitory molecules on their surface, including PD-L1 and ILT-4, compared with control DCs. Moreover, IL-10–treated DCs from patients displayed impaired ability to induce the differentiation of naive CD4+ T cells to FOXP3+ induced Treg cells (iTreg cells). These results suggest that the defective generation of IL-10–induced tolerogenic DCs and iTreg cells may contribute to inflammatory changes in HIES. PMID:21300911

  2. Regulatory T cells expanded from HIV-1-infected individuals maintain phenotype, TCR repertoire and suppressive capacity.

    Directory of Open Access Journals (Sweden)

    Mathieu Angin

    Full Text Available While modulation of regulatory T cell (Treg function and adoptive Treg transfer are being explored as therapeutic modalities in the context of autoimmune diseases, transplantation and cancer, their role in HIV-1 pathogenesis remains less well defined. Controversy persists regarding their beneficial or detrimental effects in HIV-1 disease, which warrants further detailed exploration. Our objectives were to investigate if functional CD4(+ Tregs can be isolated and expanded from HIV-1-infected individuals for experimental or potential future therapeutic use and to determine phenotype and suppressive capacity of expanded Tregs from HIV-1 positive blood and tissue. Tregs and conventional T cell controls were isolated from blood and gut-associated lymphoid tissue of individuals with HIV-1 infection and healthy donors using flow-based cell-sorting. The phenotype of expanded Tregs was assessed by flow-cytometry and quantitative PCR. T-cell receptor ß-chain (TCR-β repertoire diversity was investigated by deep sequencing. Flow-based T-cell proliferation and chromium release cytotoxicity assays were used to determine Treg suppressive function. Tregs from HIV-1 positive individuals, including infants, were successfully expanded from PBMC and GALT. Expanded Tregs expressed high levels of FOXP3, CTLA4, CD39 and HELIOS and exhibited a highly demethylated TSDR (Treg-specific demethylated region, characteristic of Treg lineage. The TCRß repertoire was maintained following Treg expansion and expanded Tregs remained highly suppressive in vitro. Our data demonstrate that Tregs can be expanded from blood and tissue compartments of HIV-1+ donors with preservation of Treg phenotype, function and TCR repertoire. These results are highly relevant for the investigation of potential future therapeutic use, as currently investigated for other disease states and hold great promise for detailed studies on the role of Tregs in HIV-1 infection.

  3. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappaB activation.

    Directory of Open Access Journals (Sweden)

    Caitlin O'Mahony

    Full Text Available Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-kappaB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-kappaB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to naïve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-kappaB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis-fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-kappaB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-kappaB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS.

  4. Umbilical cord-derived mesenchymal stem cells reversed the suppressive deficiency of T regulatory cells from peripheral blood of patients with multiple sclerosis in a co-culture – a preliminary study

    Science.gov (United States)

    Yang, Hongna; Sun, Jinhua; Wang, Feng; Li, Yan; Bi, Jianzhong; Qu, Tingyu

    2016-01-01

    The immunoregulatory function of T regulatory cells (Tregs) is impaired in multiple sclerosis (MS). Recent studies have shown that umbilical cord-derived mesenchymal stem cells (UC-MSCs) exert regulatory effect on the functions of immune cells. Thus, we investigated whether UC-MSCs could improve the impaired function of Tregs from MS patients. Co-cultures of UC-MSCs with PBMCs of MS patients were performed for 3 days. Flow cytometry was used to determine the frequency of Tregs. A cell proliferation assay was used to evaluate the suppressive capacity of Tregs. ELISA was conducted for cytokine analysis in the co-cultures. Our results showed that UC-MSCs significantly increased the frequency of CD4+CD25+CD127low/− Tregs in resting CD4+ T cells (pUC-MSC-primed Tregs of MS patients significantly inhibited the proliferation of PHA-stimulated autologous and allogeneic CD4+CD25− T effector cells (Teffs) from MS patients and healthy individuals compared to non-UC-MSC-primed (naïve) Tregs from the same MS patients (pUC-MSC-primed Tregs from MS patients and naïve Tregs from healthy subjects. The impaired suppressive function of Tregs from MS can be completely reversed in a co-culture by UC-MSC modulation. This report is the first to demonstrate that functional defects of Tregs in MS can be repaired in vitro using a simple UC-MSC priming approach. PMID:27705922

  5. CD4+ Primary T Cells Expressing HCV-Core Protein Upregulate Foxp3 and IL-10, Suppressing CD4 and CD8 T Cells

    Science.gov (United States)

    Aguado, Enrique; Garcia-Cozar, Francisco

    2014-01-01

    Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein. PMID:24465502

  6. CD4+ primary T cells expressing HCV-core protein upregulate Foxp3 and IL-10, suppressing CD4 and CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Cecilia Fernandez-Ponce

    Full Text Available Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127(lowPD-1(highTIM-3(high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.

  7. Distribution and clonality of the vα and vβ T-cell receptor repertoire of regulatory T cells in leukemia patients with and without graft versus host disease.

    Science.gov (United States)

    Jin, Zhenyi; Wu, Xiuli; Chen, Shaohua; Yang, Lijian; Liu, Qifa; Li, Yangqiu

    2014-03-01

    Graft versus host disease (GVHD) is the main complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recent data indicated that regulatory T (Treg) cells might relate to GVHD, and such functions might be mediated by certain T-cell receptor (TCR) subfamily of Treg cells. Thus, we analyzed the distribution and clonality of the TCR Vα and Vβ repertoire of Treg cells from leukemia patients with and without GVHD after allo-HSCT. Numerous TCR Vα subfamilies, including Vα1, Vα9, Vα13, Vα16-19, and Vα24-29, were absent in Treg cells after allo-HSCT. The usage numbers for the TCR Vα and Vβ subfamilies in Treg cells from patients without GVHD appeared more widely. The expression frequencies of Vα10 or Vα20 between both groups were significantly different. Moreover, the expression frequency of TCR Vβ2 subfamily in patients without GVHD was significantly higher than that in patients with GVHD. Oligoclonally expanded TCR Vα and Vβ Treg cells were identified in a few samples in both groups. Restricted utilization of the Vα and Vβ subfamilies and the absence of some important TCR rearrangements in Treg cells may be related to GVHD due to a lower regulating function of Treg subfamilies.

  8. The numerology of T cell functional diversity.

    Science.gov (United States)

    Haining, W Nicholas

    2012-01-27

    Memory T cells are heterogeneous in phenotype and function. In this issue of Immunity, Newell et al. (2012) use a new flow cytometry platform to show that the functional heterogeneity of the human T cell compartment is even greater than previously thought. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells

    OpenAIRE

    Curti, A; Trabanelli, S; Onofri, C; Aluigi, M; Salvestrini, V; Ocadlikova, D; Evangelisti, C; Rutella, S; De Cristofaro, R; Ottaviani, E; Baccarani, M; Lemoli, RM

    2010-01-01

    Background: The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased immunogenicity and have been proposed as vaccines against leukemia.\\ud Design and Methods: Leukemic d...

  10. Regulatory T-Cell-Associated Cytokines in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Akiko Okamoto

    2011-01-01

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disease characterized by autoantibody production, complement activation, and immune complex deposition, resulting in tissue and organ damage. An understanding of the mechanisms responsible for homeostatic control of inflammation, which involve both innate and adoptive immune responses, will enable the development of novel therapies for SLE. Regulatory T cells (Treg play critical roles in the induction of peripheral tolerance to self- and foreign antigens. Naturally occurring CD4+CD25+ Treg, which characteristically express the transcription factor forkhead box protein P3 (Foxp3, have been intensively studied because their deficiency abrogates self-tolerance and causes autoimmune disease. Moreover, regulatory cytokines such as interleukin-10 (IL-10 also play a central role in controlling inflammatory processes. This paper focuses on Tregs and Treg-associated cytokines which might regulate the pathogenesis of SLE and, hence, have clinical applications.

  11. Differential sensitivity of regulatory and effector T cells to cell death: a prerequisite for transplant tolerance

    Directory of Open Access Journals (Sweden)

    Sylvaine eYou

    2015-05-01

    Full Text Available Despite significant progress achieved in transplantation, immunosuppressive therapies currently used to prevent graft rejection are still endowed with severe side effects impairing their efficiency over the long term. Thus, the development of graft-specific, non toxic innovative therapeutic strategies has become a major challenge, the goal being to selectively target alloreactive effector T cells while sparing CD4+Foxp3+ regulatory T cells (Tregs to promote operational tolerance. Various approaches, notably the one based on monoclonal antibodies or fusion proteins directed against the TCR/CD3 complex, TCR coreceptors, or costimulatory molecules, have been proposed to reduce the alloreactive T cell pool which is an essential prerequisite to create a therapeutic window allowing Tregs to induce and maintain allograft tolerance. In this minireview, we focus on the differential sensitivity of Tregs and effector T cells to the depleting and inhibitory effect of these immunotherapies, with a particular emphasis on CD3-specific antibodies that beyond their immunosuppressive effect, also express potent tolerogenic capacities.

  12. Changes in peripheral blood level of regulatory T cells in patients with malignant melanoma during treatment with dendritic cell vaccination and low-dose IL-2

    DEFF Research Database (Denmark)

    Bjoern, J; Brimnes, M K; Andersen, M H

    2011-01-01

    In this study, changes in peripheral blood regulatory T cell (Treg) levels were evaluated in 46 progressive patients with melanoma treated with a dendritic cell-based vaccine and concomitant low-dose IFN-α and IL-2. The regulatory subset of CD4 T cells, characterized by CD25(high......) , was prospectively analysed in fresh blood, and treatment-associated quantitative and qualitative changes were analysed. By the 4th vaccine, patients showed a marked increase in CD4+ CD25(high) T cell subset from 6% to 22% (P...

  13. Changes in peripheral blood level of regulatory T cells in patients with malignant melanoma during treatment with dendritic cell vaccination and low-dose IL-2

    DEFF Research Database (Denmark)

    Bjoern, J; Brimnes, M K; Andersen, M H

    2011-01-01

    In this study, changes in peripheral blood regulatory T cell (Treg) levels were evaluated in 46 progressive patients with melanoma treated with a dendritic cell-based vaccine and concomitant low-dose IFN-a and IL-2. The regulatory subset of CD4 T cells, characterized by CD25(high......) , was prospectively analysed in fresh blood, and treatment-associated quantitative and qualitative changes were analysed. By the 4th vaccine, patients showed a marked increase in CD4+ CD25(high) T cell subset from 6% to 22% (P...

  14. Immunoregulatory changes induced by total lymphoid irradiation. II. Development of thymus-leukemia antigen-positive and -negative suppressor T cells that differ in their regulatory function

    International Nuclear Information System (INIS)

    King, D.P.; Strober, S.

    1981-01-01

    BALB/c mice treated with total lymphoid irradiation (TLI) develop non-antigen-specific suppressor cells of the adoptive secondary antibody response and of the mixed leukocyte reaction. Suppressors of the adoptive anti-DNP response were eliminated by incubation of spleen cells with anti-Thy-1.2 or anti-thymus-leukemia (TL) antiserum and complement before cell transfer. Thymectomy before TLI prevented the appearance of the latter suppressor cells. On the other hand, suppressors of the MLR were eliminated by incubation of spleen cells with anti-Thy-1.2 but not anti-TL antiserum and complement. Thymectomy before TLI did not prevent their subsequent development. Thus, two subpopulations of suppressor T cells that differ in the expression of the TL surface antigen, dependence on the presence of the thymus, and in regulatory functions develop after TLI. The TL+, thymus-dependent cell suppresses the adoptive antibody response, and the TL-, thymus-independent cell suppresses the MLR

  15. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Minoru [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Yasuda, Hisafumi, E-mail: yasuda@med.kobe-u.ac.jp [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Abe, Yasuhisa; Sasaki, Hirotomo; Shimizu, Mami; Arai, Takashi; Okumachi, Yasuyo; Moriyama, Hiroaki; Hara, Kenta; Yokono, Koichi; Nagata, Masao [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)

    2010-03-26

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cells induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.

  16. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells.

    Science.gov (United States)

    Manlove, Luke S; Berquam-Vrieze, Katherine E; Pauken, Kristen E; Williams, Richard T; Jenkins, Marc K; Farrar, Michael A

    2015-10-15

    BCR-ABL(+) acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific Ag that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL(+) leukemia progression although ultimately this immune response fails. To address how BCR-ABL(+) leukemia escapes immune surveillance, we developed a peptide: MHC class II tetramer that labels endogenous BCR-ABL-specific CD4(+) T cells. Naive mice harbored a small population of BCR-ABL-specific T cells that proliferated modestly upon immunization. The small number of naive BCR-ABL-specific T cells was due to negative selection in the thymus, which depleted BCR-ABL-specific T cells. Consistent with this observation, we saw that BCR-ABL-specific T cells were cross-reactive with an endogenous peptide derived from ABL. Despite this cross-reactivity, the remaining population of BCR-ABL reactive T cells proliferated upon immunization with the BCR-ABL fusion peptide and adjuvant. In response to BCR-ABL(+) leukemia, BCR-ABL-specific T cells proliferated and converted into regulatory T (Treg) cells, a process that was dependent on cross-reactivity with self-antigen, TGF-β1, and MHC class II Ag presentation by leukemic cells. Treg cells were critical for leukemia progression in C57BL/6 mice, as transient Treg cell ablation led to extended survival of leukemic mice. Thus, BCR-ABL(+) leukemia actively suppresses antileukemia immune responses by converting cross-reactive leukemia-specific T cells into Treg cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. Functional properties of T cells in patients with chronic T gamma lymphocytosis and chronic T cell neoplasia

    NARCIS (Netherlands)

    Rümke, H. C.; Miedema, F.; ten Berge, I. J.; Terpstra, F.; van der Reijden, H. J.; van de Griend, R. J.; de Bruin, H. G.; von dem Borne, A. E.; Smit, J. W.; Zeijlemaker, W. P.; Melief, C. J.

    1982-01-01

    The expanded T cell populations of 10 patients with either T gamma lymphocytosis (five patients) or proven chronic T cell malignancy (five patients) were analyzed with respect to functional activity in vitro, including proliferative responses to mitogens, cytotoxic activity (killer [K] and natural

  18. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    Science.gov (United States)

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  19. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function.

    Science.gov (United States)

    Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R

    2016-01-19

    The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. CD4+ T helper cells and regulatory T cells in active lupus nephritis: an imbalance towards a predominant Th1 response?

    Science.gov (United States)

    Mesquita, D; Kirsztajn, G Mastroianni; Franco, M F; Reis, L A; Perazzio, S F; Mesquita, F V; Ferreira, V da Silva; Andrade, L E Coelho; de Souza, A W Silva

    2018-01-01

    The objective of this study was to evaluate the frequency of CD4 + T cell subsets in peripheral blood mononuclear cells (PBMC), urine and renal tissue from patients with lupus nephritis (LN). PBMC and urinary cells were collected from 17 patients with active LN, 20 disease controls (DC) with primary glomerulonephritis and 10 healthy controls (HC) and were analysed by flow cytometry with markers for T helper type 1 (Th1), Th2, Th17 and regulatory T cells (T reg ) cells. T cell subsets were assessed by immunohistochemistry from LN biopsy specimens from 12 LN patients. T cell subtypes in PBMC were re-evaluated at 6 months of therapy. CD4 + T cells were decreased in PBMC in LN compared with DC and HC (P = 0·0001). No differences were observed in urinary CD4 + T cell subsets between LN and DC. The frequency of urinary Th17 cells was higher in patients with non-proliferative than in proliferative LN (P = 0·041). CD3 + and T-box 21 ( Tbet+) cells were found in glomeruli and interstitium of LN patients, while forkhead box protein 3 (FoxP3), retinoid-related orphan receptor gamma (ROR-γ) and GATA binding protein 3 (GATA-3) were present only in glomeruli. Th1 cells in PBMC were correlated negatively with urinary Th1 cells (Rho = -0·531; P = 0·028) and with T bet in renal interstitium (Rho = -0·782; P = 0·004). At 6 months, LN patients showed an increase in Th17 cells in PBMC. In conclusion, the inverse association between Th1 cells from PBMC and urinary/renal tissue indicate a role for Th1 in LN pathophysiology. Urinary Th17 cells were associated with less severe LN, and Th17 increased in PBMC during therapy. Urinary CD4 + T cells were not different between LN and DC. © 2017 British Society for Immunology.

  1. Classical dendritic cells are required for dietary antigen-mediated peripheral regulatory T cell and tolerance induction

    Science.gov (United States)

    Esterházy, Daria; Loschko, Jakob; London, Mariya; Jove, Veronica; Oliveira, Thiago Y.; Mucida, Daniel

    2016-01-01

    Oral tolerance prevents pathological inflammatory responses towards innocuous foreign antigens via peripheral regulatory T cells (pTreg cells). However, whether a particular subset of antigen-presenting cells (APCs) is required during dietary antigen exposure to instruct naïve CD4+ T cells to differentiate into pTreg cells has not been defined. Using myeloid lineage-specific APC depletion in mice, we found that monocyte-derived APCs are dispensable, while classical dendritic cells (cDCs) are critical for pTreg cell induction and oral tolerance. CD11b− cDCs from the gut-draining lymph nodes efficiently induced pTreg cells, and conversely, loss of IRF8-dependent CD11b− cDCs impaired their polarization, although oral tolerance remained intact. These data reveal the hierarchy of cDC subsets in pTreg cell induction and their redundancy during oral tolerance development. PMID:27019226

  2. Regulatory T cell activity in immunosuppresive mice model of pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Li, Jun-Lu; Chen, Ting-Sang; Yuan, Cong-Cong; Zhao, Guo-Qiang; Xu, Min; Li, Xiao-Yan; Cao, Jie; Xing, Li-Hua

    2017-08-01

    Pseudomonas aeruginosa (PA) pneumonia is a refractory, even lethal complication in immunosuppressive individuals and immune disturbances may promote the pathological process. We aimed to investigate the regulatory T (Treg) cell activity in an immunosuppressive mice model of PA pneumonia by estimating levels of main transcription factor and the main effector of Treg cells, i.e., Forkhead box protein 3 (FOXP3) and interleukine-10 (IL-10). Seventy-two BALB/c mice were divided into four groups randomly: control (A), PA pneumonia (B), immunosuppression (C) and immunosuppression with PA pneumonia (D). Mice were sacrificed at 4, 8 and 24 h after establishing experimental models. The pathological changes of lung tissue were graded, and the FOXP3 mRNA and serum IL-10 levels were detected. Histological analysis of lung tissues showed there were no significantly pathological changes in groups A and C, but significantly pathological changes were found in groups B and D, especially in group D at 8 h (Ppneumonia in immunosuppressive individuals worsens rapidly, which may be associated with Treg cells function disturbance. And Treg cells may be promising as adjuvant therapeutics for PA pneumonia in immunosuppressive individuals.

  3. Interaction between the immune system and acute myeloid leukemia: A model incorporating promotion of regulatory T cell expansion by leukemic cells.

    Science.gov (United States)

    Nishiyama, Yoshiaki; Saikawa, Yutaka; Nishiyama, Nobuaki

    2018-03-01

    Population dynamics of regulatory T cells (Treg) are crucial for the underlying interplay between leukemic and immune cells in progression of acute myeloid leukemia (AML). The goal of this work is to elucidate the dynamics of a model that includes Treg, which can be qualitatively assessed by accumulating clinical findings on the impact of activated immune cell infusion after selective Treg depletion. We constructed an ordinary differential equation model to describe the dynamics of three components in AML: leukemic blast cells, mature regulatory T cells (Treg), and mature effective T cells (Teff), including cytotoxic T lymphocytes. The model includes promotion of Treg expansion by leukemic blast cells, leukemic stem cell and progenitor cell targeting by Teff, and Treg-mediated Teff suppression, and exhibits two coexisting, stable steady states, corresponding to high leukemic cell load at diagnosis or relapse, and to long-term complete remission. Our model is capable of explaining the clinical findings that the survival of patients with AML after allogeneic stem cell transplantation is influenced by the duration of complete remission, and that cut-off minimal residual disease thresholds associated with a 100% relapse rate are identified in AML. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. FoxP3+CD4+CD25+ T cells with regulatory properties can be cultured from colonic mucosa of patients with Crohn's disease

    Science.gov (United States)

    Kelsen, J; Agnholt, J; Hoffmann, H J; Rømer, J L; Hvas, C L; Dahlerup, J F

    2005-01-01

    CD4+CD25+ regulatory T cells (Tregs) are involved in the maintenance of peripheral tolerance and ensure a balanced immune response competent of fighting pathogens and at the same time recognizing commensals as harmless. This feature is lost in Crohn's disease (CD). The forkhead/winged helix transcription factor FoxP3 is a master gene for Treg function and defects in the FoxP3 gene lead to a clinical picture similar to inflammatory bowel disease (IBD). Murine colitis can be cured by adoptive transfer of Tregs and ex vivo-generated gut-specific Tregs represent an attractive option for therapy in CD. Thus, defective Tregs could contribute to the development of CD. We cultured biopsies of colonic mucosa in the presence of high concentrations of interleukin (IL)-2 and IL-4 to overcome the anergic nature of naturally occurring CD4+CD25+ Tregs in the mucosa. We investigated the expression of FoxP3 and regulatory potential of gut-derived CD4+CD25+ T cells cultured from patients with CD and healthy individuals. The FoxP3 expression was analysed by reverse transcriptase polymerase chain reaction (RT-PCR), and the suppressive effect of FoxP3+CD4+CD25+ T cells on proliferation and cytokine production of autologous CD4+ T cells was assessed by flow cytometry. Cultured gut-derived T cells with CD4+CD25+ phenotype expressed FoxP3 and were able as the freshly isolated Tregs from peripheral blood to suppress proliferation and cytokine production of autologous CD4+ T cells. Thus, we demonstrate that FoxP3+CD4+CD25+ T cells with regulatory properties can be propagated in vitro from inflamed mucosa of CD patients, which may be of interest in adoptive immunotherapy. PMID:16045746

  5. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4+ T Cells

    Science.gov (United States)

    Carrette, Florent; Henriquez, Monique L.; Fujita, Yu

    2018-01-01

    T cells mediating influenza viral control are instructed in lymphoid and nonlymphoid tissues to differentiate into memory T cells that confer protective immunity. The mechanisms by which influenza virus–specific memory CD4+ T cells arise have been attributed to changes in transcription factors, cytokines and cytokine receptors, and metabolic programming. The molecules involved in these biosynthetic pathways, including proteins and lipids, are modified to varying degrees of glycosylation, fucosylation, sialation, and sulfation, which can alter their function. It is currently unknown how the glycome enzymatic machinery regulates CD4+ T cell effector and memory differentiation. In a murine model of influenza virus infection, we found that fucosyltransferase enzymatic activity was induced in effector and memory CD4+ T cells. Using CD4+ T cells deficient in the Fut4/7 enzymes that are expressed only in hematopoietic cells, we found decreased frequencies of effector cells with reduced expression of T-bet and NKG2A/C/E in the lungs during primary infection. Furthermore, Fut4/7−/− effector CD4+ T cells had reduced survival with no difference in proliferation or capacity for effector function. Although Fut4/7−/− CD4+ T cells seeded the memory pool after primary infection, they failed to form tissue-resident cells, were dysfunctional, and were unable to re-expand after secondary infection. Our findings highlight an important regulatory axis mediated by cell-intrinsic fucosyltransferase activity in CD4+ T cell effectors that ensure the development of functional memory CD4+ T cells. PMID:29491007

  6. Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Torrealdea Javier

    2011-07-01

    Full Text Available Abstract Background The relapsing-remitting dynamics is a hallmark of autoimmune diseases such as Multiple Sclerosis (MS. Although current understanding of both cellular and molecular mechanisms involved in the pathogenesis of autoimmune diseases is significant, how their activity generates this prototypical dynamics is not understood yet. In order to gain insight about the mechanisms that drive these relapsing-remitting dynamics, we developed a computational model using such biological knowledge. We hypothesized that the relapsing dynamics in autoimmunity can arise through the failure in the mechanisms controlling cross-regulation between regulatory and effector T cells with the interplay of stochastic events (e.g. failure in central tolerance, activation by pathogens that are able to trigger the immune system. Results The model represents five concepts: central tolerance (T-cell generation by the thymus, T-cell activation, T-cell memory, cross-regulation (negative feedback between regulatory and effector T-cells and tissue damage. We enriched the model with reversible and irreversible tissue damage, which aims to provide a comprehensible link between autoimmune activity and clinical relapses and active lesions in the magnetic resonances studies in patients with Multiple Sclerosis. Our analysis shows that the weakness in this negative feedback between effector and regulatory T-cells, allows the immune system to generate the characteristic relapsing-remitting dynamics of autoimmune diseases, without the need of additional environmental triggers. The simulations show that the timing at which relapses appear is highly unpredictable. We also introduced targeted perturbations into the model that mimicked immunotherapies that modulate effector and regulatory populations. The effects of such therapies happened to be highly dependent on the timing and/or dose, and on the underlying dynamic of the immune system. Conclusion The relapsing dynamic in MS

  7. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices

    Science.gov (United States)

    Singha, Santiswarup; Shao, Kun; Yang, Yang; Clemente-Casares, Xavier; Solé, Patricia; Clemente, Antonio; Blanco, Jesús; Dai, Qin; Song, Fayi; Liu, Shang Wan; Yamanouchi, Jun; Umeshappa, Channakeshava Sokke; Nanjundappa, Roopa Hebbandi; Detampel, Pascal; Amrein, Matthias; Fandos, César; Tanguay, Robert; Newbigging, Susan; Serra, Pau; Khadra, Anmar; Chan, Warren C. W.; Santamaria, Pere

    2017-07-01

    We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.

  8. Regulatory T cell derived Exosomes: possible therapeutic and diagnostic tools in transplantation

    Directory of Open Access Journals (Sweden)

    Akansha eAgarwal

    2014-11-01

    Full Text Available Exosomes are extracellular vesicles released by many cells of the body. These small vesicles play an important part in intercellular communication both in the local environment and systemically, facilitating in the transfer of proteins, cytokines as well as miRNA between cells. The observation that exosomes isolated from immune cells such as dendritic cells (DCs modulate the immune response has paved the way for these structures to be considered as potential immunotherapeutic reagents. Indeed clinical trials using DC derived exosomes to facilitate immune responses to specific cancer antigens are now underway. Exosomes can also have a negative effect on the immune response and exosomes isolated from regulatory T cells (Tregs and other subsets of T cells have been shown to have immune suppressive capacities. Here we review what is currently known about Treg derived exosomes and their contribution to immune regulation, as well as highlighting their possible therapeutic potential for preventing graft rejection, and their possible use as diagnostic tools to assess transplant outcome.

  9. What Are the Molecules Involved in Regulatory T-Cells Induction by Dendritic Cells in Cancer?

    Directory of Open Access Journals (Sweden)

    Rodrigo Nalio Ramos

    2013-01-01

    Full Text Available Dendritic cells (DCs are essential for the maintenance of homeostasis in the organism, and they do that by modulating lymphocyte priming, expansion, and response patterns according to signals they receive from the environment. The induction of suppressive lymphocytes by DCs is essential to hinder the development of autoimmune diseases but can be reverted against homeostasis when in the context of neoplasia. In this setting, the induction of suppressive or regulatory T cells contributes to the establishment of a state of tolerance towards the tumor, allowing it to grow unchecked by an otherwise functional immune system. Besides affecting its local environment, tumor also has been described as potent sources of anti-inflammatory/suppressive factors, which may act systemically, generating defects in the differentiation and maturation of immune cells, far beyond the immediate vicinity of the tumor mass. Cytokines, as IL-10 and TGF-beta, as well as cell surface molecules like PD-L1 and ICOS seem to be significantly involved in the redirection of DCs towards tolerance induction, and recent data suggest that tumor cells may, indeed, modulate distinct DCs subpopulations through the involvement of these molecules. It is to be expected that the identification of such molecules should provide molecular targets for more effective immunotherapeutic approaches to cancer.

  10. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Sanda, Takaomi; Lawton, Lee N; Barrasa, M Inmaculada; Fan, Zi Peng; Kohlhammer, Holger; Gutierrez, Alejandro; Ma, Wenxue; Tatarek, Jessica; Ahn, Yebin; Kelliher, Michelle A; Jamieson, Catriona H M; Staudt, Louis M; Young, Richard A; Look, A Thomas

    2012-08-14

    The oncogenic transcription factor TAL1/SCL is aberrantly expressed in over 40% of cases of human T cell acute lymphoblastic leukemia (T-ALL), emphasizing its importance in the molecular pathogenesis of T-ALL. Here we identify the core transcriptional regulatory circuit controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. We show that TAL1 forms a positive interconnected autoregulatory loop with GATA3 and RUNX1 and that the TAL1 complex directly activates the MYB oncogene, forming a positive feed-forward regulatory loop that reinforces and stabilizes the TAL1-regulated oncogenic program. One of the critical downstream targets in this circuitry is the TRIB2 gene, which is oppositely regulated by TAL1 and E2A/HEB and is essential for the survival of T-ALL cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. EFFECTS OF HISTONE DEACETYLASE INHIBITOR, SAHA, ON EFFECTOR AND FOXP3+ REGULATORY T CELLS IN RHESUS MACAQUES

    Science.gov (United States)

    Johnson, Jennifer; Pahuja, Anil; Graham, Melanie; Hering, Bernhard; Hancock, Wayne W.; Pratima, Bansal-Pakala

    2008-01-01

    SAHA, a histone deacetylase inhibitor (HDACi), is clinically approved for treatment of cutaneous T-cell lymphoma. Although the exact underlying mechanisms are unknown, HDACi arrest the cell cycle in rapidly proliferating tumor cells and promote their apoptosis. HDACi were also recently shown to enhance the production and suppressive functions of Foxp3+ regulatory T (Treg) cells in rodents, leading us to begin to investigate the actions of HDACi on rhesus monkey T cells for the sake of potential preclinical applications. In this study, we show that SAHA inhibits polyclonal activation and proliferation of rhesus T cells and that the anti-proliferative effects are due to inhibition of T effector (Teff) cells and enhancement of Treg cells. Cryopreserved rhesus macaque splenocytes were CFSE labeled, stimulated with anti-CD3/anti-CD28 and cultured for 5 days in the presence of varying concentrations of SAHA. Samples were then co-stained to evaluate CD4 and CD8 expression. 10 and 5μM concentrations of SAHA were toxic to splenocytes. Proliferation was inhibited by 57% in CD4 cells and 47% in CD8 cells when unseparated splenocytes were cultured with 3 μM SAHA. Effector cells alone showed a decreased inhibition to proliferation when cultured with 3 μM and 1 μM SAHA when compared to Teff plus Treg cells. Our data suggest that SAHA can be used as part of an immunosuppressive protocol to enhance graft survival by limiting Teff cell proliferation as well as increasing Treg cells, thereby promoting tolerance. PMID:18374101

  12. IFNγ signaling endows DCs with the capacity to control type I inflammation during parasitic infection through promoting T-bet+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Hyang-Mi Lee

    2015-02-01

    Full Text Available IFNγ signaling drives dendritic cells (DCs to promote type I T cell (Th1 immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population.

  13. The Role of Natural Killer T Cells in Cancer—A Phenotypical and Functional Approach

    Science.gov (United States)

    Krijgsman, Daniëlle; Hokland, Marianne; Kuppen, Peter J. K.

    2018-01-01

    Natural killer T (NKT) cells are a subset of CD1d-restricted T cells at the interface between the innate and adaptive immune system. NKT cells can be subdivided into functional subsets that respond rapidly to a wide variety of glycolipids and stress-related proteins using T- or natural killer (NK) cell-like effector mechanisms. Because of their major modulating effects on immune responses via secretion of cytokines, NKT cells are also considered important players in tumor immunosurveillance. During early tumor development, T helper (TH)1-like NKT cell subsets have the potential to rapidly stimulate tumor-specific T cells and effector NK cells that can eliminate tumor cells. In case of tumor progression, NKT cells may become overstimulated and anergic leading to deletion of a part of the NKT cell population in patients via activation-induced cell death. In addition, the remaining NKT cells become hyporesponsive, or switch to immunosuppressive TH2-/T regulatory-like NKT cell subsets, thereby facilitating tumor progression and immune escape. In this review, we discuss this important role of NKT cells in tumor development and we conclude that there should be three important focuses of future research in cancer patients in relation with NKT cells: (1) expansion of the NKT cell population, (2) prevention and breaking of NKT cell anergy, and (3) skewing of NKT cells toward TH1-like subsets with antitumor activity. PMID:29535734

  14. Salmon cartilage proteoglycan suppresses mouse experimental colitis through induction of Foxp3+ regulatory T cells

    International Nuclear Information System (INIS)

    Mitsui, Toshihito; Sashinami, Hiroshi; Sato, Fuyuki; Kijima, Hiroshi; Ishiguro, Yoh; Fukuda, Shinsaku; Yoshihara, Shuichi; Hakamada, Ken-Ichi; Nakane, Akio

    2010-01-01

    Research highlights: → Salmon proteoglycan suppresses IL-10 -/- cell transfer-induced colitis progression. → Salmon proteoglycan suppresses Th1- and Th17-related factors in colitis mice. → Salmon proteoglycan enhances Foxp3 expression. -- Abstract: Proteoglycans (PGs) are complex glycohydrates which are widely distributed in extracellular matrix (ECM). PGs are involved in the construction of ECM, cell proliferation and differentiation. ECM components are involved in transduction of proinflammatory responses, but it is still unknown whether PGs are involved in inflammatory response. In this study, we investigated the effect of PG extracted from salmon cartilage on the progression of experimental colitis-induced in severe combined immunodeficiency mice by cell transfer from interleukin-10 (IL-10) -/- mice. IL-10 -/- cell-transferred mice showed weight loss, colon shortening and histological appearance of mild colitis. Daily oral administration of PG attenuated the clinical progression of colitis in a dose-dependent manner. Colitis-induced mice showed the elevated expression of IFN-γ, IL-12, TNF-α, IL-21, IL-23p19, IL-6, IL-17A and retinoic acid-related orphan receptor γt (RORγt) in lamina propria mononuclear cells (LPMCs) and oral administration of PG suppressed the expression of these factors. Conversely, expression of Foxp3 that induces CD4 + CD25 + regulatory T cells in LPMCs was enhanced by PG administration. These findings suggested that salmon PG attenuated the progression of colitis due to suppression of inflammatory response by enhancement of regulatory T cell induction.

  15. Increased regulatory T cells in acute lymphoblastic leukemia patients.

    Science.gov (United States)

    Idris, Siti-Zuleha; Hassan, Norfarazieda; Lee, Le-Jie; Md Noor, Sabariah; Osman, Raudhawati; Abdul-Jalil, Marsitah; Nordin, Abdul-Jalil; Abdullah, Maha

    2015-10-01

    Regulation in adaptive immune response balances a fine line that prevents instigation of self-damage or fall into unresponsiveness permitting abnormal cell growth. Mechanisms that keep this balance in check include regulatory T cells (Tregs). Tregs consist of a small but heterogeneous population which may be identified by the phenotype, CD3+CD4+CD25+CD127-. Role of Tregs in pathogenesis of cancers is thus far supported by evidence of increased Tregs in various cancers and may contribute to poorer prognosis. Tregs may also be important in acute leukemias. A review of the literature on Tregs in acute leukemias was conducted and Tregs were determined in B-cell acute lymphoblastic leukemias (ALLs). Studies on Tregs in B-cell ALL are few and controversial. We observed a significantly increased percentage of Tregs (mean ± SD, 9.72 ± 3.79% vs. 7.05 ± 1.74%; P = 0.047) in the bone marrow/peripheral blood of ALL (n = 17) compared to peripheral blood of normal controls (n = 35). A positive trend between Tregs and age (R = 0.474, P = 0.055, n = 17) implicates this factor of poor prognosis in B-cell ALL. Tregs in cancer are particularly significant in immunotherapy. The manipulation of the immune system to treat cancer has for a long time ignored regulatory mechanisms inducible or in place. In lymphoma studies tumor-specific mechanisms that are unlike conventional methods in the induction of Tregs have been hypothesized. In addition, tumor-infiltrating Tregs may present different profiles from peripheral blood pictures. Tregs will continue to be dissected to reveal their mysteries and their impact on clinical significance.

  16. Requirements for growth and IL-10 expression of highly purified human T regulatory cells

    OpenAIRE

    Bonacci, Benedetta; Edwards, Brandon; Jia, Shuang; Williams, Calvin; Hessner, Martin J.; Gauld, Stephen; Verbsky, James

    2012-01-01

    Human regulatory T cells (TR) cells have potential for the treatment of a variety of immune mediated diseases but the anergic phenotype of these cells makes them difficult to expand in vitro. We have examined the requirements for growth and cytokine expression from highly purified human TR cells, and correlated these findings with the signal transduction events of these cells. We demonstrate that these cells do not proliferate or secrete IL-10 even in the presence of high doses of IL-2. Stimu...

  17. T cells in vascular inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Lucas L Lintermans

    2014-10-01

    Full Text Available Inflammation of the human vasculature is a manifestation of many different diseases ranging from systemic autoimmune diseases to chronic inflammatory diseases, in which multiple types of immune cells are involved. For both autoimmune diseases and chronic inflammatory diseases several observations support a key role for T lymphocytes in these disease pathologies, but the underlying mechanisms are poorly understood. Previous studies in several autoimmune diseases have demonstrated a significant role for a specific subset of CD4+ T cells termed effector memory T cells. This expanded population of effector memory T cells may contribute to tissue injury and disease progression. These cells exert multiple pro-inflammatory functions through the release of effector cytokines. Many of these cytokines have been detected in the inflammatory lesions and participate in the vasculitic reaction, contributing to recruitment of macrophages, neutrophils, dendritic cells, NK cells, B cells and T cells. In addition, functional impairment of regulatory T cells paralyzes anti-inflammatory effects in vasculitic disorders. Interestingly, activation of effector memory T cells in uniquely dependent on the voltage-gated Kv1.3 potassium channel providing an anchor for specific drug targeting. In this review, we focus on the CD4+ T cells in the context of vascular inflammation and describe the evidence supporting the role of different T cell subsets in vascular inflammation. Selective targeting of pathogenic effector memory T cells might enable a more tailored therapeutic approach that avoids unwanted adverse side effects of generalized immunosuppression by modulating the effector functions of T cell responses to inhibit the development of vascular inflammation.

  18. [Regulatory role of NKT cells in the prevention of type 1 diabetes].

    Science.gov (United States)

    Ghazarian, Liana; Simoni, Yannick; Pingris, Karine; Beaudoin, Lucie; Lehuen, Agnès

    2013-01-01

    Type 1 diabetes is an autoimmune disease resulting from the destruction of pancreatic β cells by the immune system. NKT cells are innate-like T cells that can exert potent immuno-regulatory functions. The regulatory role of NKT cells was initially proposed after the observed decreased frequency of this subset in mouse models of type 1 diabetes, as well as in patients developing various autoimmune pathologies. Increasing NKT cell frequency and function prevent the development of type 1 diabetes in mouse models. Several mechanisms including IL-4 and IL-10 production by NKT cells and the accumulation of tolerogenic dendritic cells are critical for the dampening of pathogenic anti-islet T cell responses by NKT cells. Importantly, these cells can at the same time prevent diabetes and promote efficient immune responses against infectious agents. These results strengthen the potential role of NKT cells as a key target for the development of therapeutic strategies against type 1 diabetes. © 2013 médecine/sciences – Inserm.

  19. Inhibition of Allograft Inflammatory Factor-1 in Dendritic Cells Restrains CD4+ T Cell Effector Responses and Induces CD25+Foxp3+ T Regulatory Subsets

    Directory of Open Access Journals (Sweden)

    Diana M. Elizondo

    2017-11-01

    Full Text Available Allograft inflammatory factor-1 (AIF1 is a cytoplasmic scaffold protein shown to influence immune responses in macrophages and microglial cells. The protein contains Ca2+ binding EF-hand and PDZ interaction domains important for mediating intracellular signaling complexes. This study now reports that AIF1 is expressed in CD11c+ dendritic cells (DC and silencing of expression restrains induction of antigen-specific CD4+ T cell effector responses. AIF1 knockdown in murine DC resulted in impaired T cell proliferation and skewed polarization away from T helper type 1 and 17 fates. In turn, there was a parallel expansion of IL-10-producing and CD25+Foxp3+ T regulatory subsets. These studies are the first to demonstrate that AIF1 expression in DC serves as a potent governor of cognate T cell responses and presents a novel target for engineering tolerogenic DC-based immunotherapies.

  20. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation.

    Science.gov (United States)

    Chu, Chung-Ching; Ali, Niwa; Karagiannis, Panagiotis; Di Meglio, Paola; Skowera, Ania; Napolitano, Luca; Barinaga, Guillermo; Grys, Katarzyna; Sharif-Paghaleh, Ehsan; Karagiannis, Sophia N; Peakman, Mark; Lombardi, Giovanna; Nestle, Frank O

    2012-05-07

    Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141(+) DDCs). CD141(+) DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation. Vitamin D(3) (VitD3) promotes certain phenotypic and functional properties of tissue-resident CD141(+) DDCs from human blood DCs. These CD141(+) DDC-like cells can be generated in vitro and, once transferred in vivo, have the capacity to inhibit xeno-graft versus host disease and tumor alloimmunity. These findings suggest that CD141(+) DDCs play an essential role in the maintenance of skin homeostasis and in the regulation of both systemic and tumor alloimmunity. Finally, VitD3-induced CD141(+) DDC-like cells have potential clinical use for their capacity to induce immune tolerance.

  1. Regulatory T cells and their prognostic value for patients with squamous cell carcinoma of the head and neck

    Czech Academy of Sciences Publication Activity Database

    Bouček, Jan; Mrkvan, Tomáš; Chovanec, M.; Kuchař, M.; Betka, Jaroslav; Bouček, V.; Hladíková, M.; Betka, J.; Eckschlager, T.; Říhová, Blanka

    2010-01-01

    Roč. 14, 1-2 (2010), s. 426-433 ISSN 1582-1838 R&D Projects: GA MZd NR8883; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z50200510 Keywords : regulatory T cell s * head and neck squamous cell carcinoma * tumour markers Subject RIV: EC - Immunology Impact factor: 4.608, year: 2010

  2. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Masashi Ohno

    Full Text Available Curcumin is a hydrophobic polyphenol derived from turmeric, a traditional Indian spice. Curcumin exhibits various biological functions, but its clinical application is limited due to its poor absorbability after oral administration. A newly developed nanoparticle curcumin shows improved absorbability in vivo. In this study, we examined the effects of nanoparticle curcumin (named Theracurmin on experimental colitis in mice.BALB/c mice were fed with 3% dextran sulfate sodium (DSS in water. Mucosal cytokine expression and lymphocyte subpopulation were analyzed by real-time PCR and flow cytometry, respectively. The profile of the gut microbiota was analyzed by real-time PCR.Treatment with nanoparticle curcumin significantly attenuated body weight loss, disease activity index, histological colitis score and significantly improved mucosal permeability. Immunoblot analysis showed that NF-κB activation in colonic epithelial cells was significantly suppressed by treatment with nanoparticle curcumin. Mucosal mRNA expression of inflammatory mediators was significantly suppressed by treatment with nanoparticle curcumin. Treatment with nanoparticle curcumin increased the abundance of butyrate-producing bacteria and fecal butyrate level. This was accompanied by increased expansion of CD4+ Foxp3+ regulatory T cells and CD103+ CD8α- regulatory dendritic cells in the colonic mucosa.Treatment with nanoparticle curcumin suppressed the development of DSS-induced colitis potentially via modulation of gut microbial structure. These responses were associated with induction of mucosal immune cells with regulatory properties. Nanoparticle curcumin is one of the promising candidates as a therapeutic option for the treatment of IBD.

  3. Regulatory T cell expansion in HTLV-1 and strongyloidiasis co-infection is associated with reduced IL-5 responses to Strongyloides stercoralis antigen.

    Directory of Open Access Journals (Sweden)

    Martin Montes

    2009-06-01

    Full Text Available Human strongyloidiasis varies from a chronic but limited infection in normal hosts to hyperinfection in patients treated with corticosteroids or with HTLV-1 co-infection. Regulatory T cells dampen immune responses to infections. How human strongyloidiasis is controlled and how HTLV-1 infection affects this control are not clear. We hypothesize that HTLV-1 leads to dissemination of Strongyloides stercoralis infection by augmenting regulatory T cell numbers, which in turn down regulate the immune response to the parasite.To measure peripheral blood T regulatory cells and Strongyloides stercoralis larval antigen-specific cytokine responses in strongyloidiasis patients with or without HTLV-1 co-infection.Peripheral blood mononuclear cells (PBMCs were isolated from newly diagnosed strongyloidiasis patients with or without HTLV-1 co-infection. Regulatory T cells were characterized by flow cytometry using intracellular staining for CD4, CD25 and FoxP3. PBMCs were also cultured with and without Strongyloides larval antigens. Supernatants were analyzed for IL-5 production.Patients with HTLV-1 and Strongyloides co-infection had higher parasite burdens. Eosinophil counts were decreased in the HTLV-1 and Strongyloides co-infected subjects compared to strongyloidiasis-only patients (70.0 vs. 502.5 cells/mm(3, p = 0.09, Mann-Whitney test. The proportion of regulatory T cells was increased in HTLV-1 positive subjects co-infected with strongyloidiasis compared to patients with only strongyloidiasis or asymptomatic HTLV-1 carriers (median = 17.9% vs. 4.3% vs. 5.9 p<0.05, One-way ANOVA. Strongyloides antigen-specific IL-5 responses were reduced in strongyloidiasis/HTLV-1 co-infected patients (5.0 vs. 187.5 pg/ml, p = 0.03, Mann-Whitney test. Reduced IL-5 responses and eosinophil counts were inversely correlated to the number of CD4+CD25+FoxP3+ cells.Regulatory T cell counts are increased in patients with HTLV-1 and Strongyloides stercoralis co-infection and

  4. Activation of the aryl hydrocarbon receptor reduces the number of precursor and effector T cells, but preserves thymic CD4(+)CD25(+)Foxp3(+) regulatory T cells

    NARCIS (Netherlands)

    Schulz, V.J.; Smit, J.J.; Bol-Schoenmakers, M.; van Duursen, M.B.M.; van den Berg, M.; Pieters, R.H.H.

    2012-01-01

    Aryl hydrocarbon receptor (AhR) activation suppresses immune responses, including allergic sensitization, by increasing the percentage of regulatory (Treg) cells. Furthermore, AhR activation is known to affect thymic precursor T cells. However, the effect of AhR activation on intrathymic

  5. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  6. [Regulatory B cells activated by CpG-ODN combined with anti-CD40 monoclonal antibody inhibit CD4(+)T cell proliferation].

    Science.gov (United States)

    Wang, Keng; Tao, Lei; Su, Jianbing; Zhang, Yueyang; Zou, Binhua; Wang, Yiyuan; Li, Xiaojuan

    2016-09-01

    Objective To observe the immunosuppressive function of regulatory B cells (Bregs) in vitro after activated by CpG oligodeoxynucleotide (CpG-ODN) and anti-CD40 mAb. Methods Mice splenic CD5(+)CD1d(high)B cells and CD5(-)CD1d(low)B cells were sorted by flow cytometry. These B cells were first stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours, and then co-cultured with purified CD4(+)T cells. The interleukin 10 (IL-10) expression in the activated Bregs and other B cell subset, as well as the proliferation and interferon γ (IFN-γ) expression in the CD4(+) T cells activated by anti-CD3 mAb plus anti-CD28 mAb were determined by flow cytometry. Results CD5(+)CD1d(high) B cells activated by CpG-ODN plus anti-CD40 mAb blocked the up-regulated CD4(+)T proliferation and significantly reduced the IFN-γ level. At the same time, activated CD5(-)CD1d(low)B cells showed no inhibitory effect on CD4(+)T cells. Further study revealed that IL-10 expression in the CD5(+)CD1d(high) B cells were much higher than that in the CD5(-)CD1d(low)B cells after stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours. Conclusion CD5(+)CD1d(high) B cells activated by CpG-ODN combined with anti-CD40 mAb have immune inhibitory effects on CD4(+)T cell activation in vitro , which possibly due to IL-10 secretion.

  7. The mRNA expression of pro- and anti-inflammatory cytokines in T regulatory cells in children with type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Maria Górska

    2010-06-01

    Full Text Available Type 1 diabetes mellitus (T1DM is caused by the autoimmune-mediated destruction of insulin-producing beta cells in the pancreas. T regulatory cells (Tregs represent an active mechanism of suppressing autoreactive T cells that escape central tolerance. The aim of our study was to test the hypothesis that T regulatory cells express pro- and anti-inflammatory cytokines, elements of cytotoxicity and OX40/4-1BB molecules. The examined group consisted of 50 children with T1DM. Fifty two healthy individuals (control group were enrolled into the study. A flow cytometric analysis of T-cell subpopulations was performed using the following markers: anti-CD3, anti-CD4, anti-CD25, anti-CD127, anti-CD134 and anti-CD137. Concurrently with the flow cytometric assessment of Tregs we separated CD4+CD25+CD127dim/- cells for further mRNA analysis. mRNA levels for transcription factor FoxP3, pro- and anti-inflammatory cytokines (interferon gamma, interleukin-2, interleukin-4, interleukin-10, transforming growth factor beta1 and tumor necrosis factor alpha, activatory molecules (OX40, 4-1BB and elements of cytotoxicity (granzyme B, perforin 1 were determined by real-time PCR technique. We found no alterations in the frequency of CD4+CD25highCD127low cells between diabetic and control children. Treg cells expressed mRNA for pro- and anti-inflammatory cytokines. Lower OX40 and higher 4-1BB mRNA but not protein levels in Treg cells in diabetic patients compared to the healthy children were noted. Our observations confirm the presence of mRNA for pro- and anti-inflammatory cytokines in CD4+CD25+CD127dim/- cells in the peripheral blood of children with T1DM. Further studies with the goal of developing new strategies to potentiate Treg function in autoimmune diseases are warranted.

  8. TCR Signal Strength Regulates Akt Substrate Specificity To Induce Alternate Murine Th and T Regulatory Cell Differentiation Programs.

    Science.gov (United States)

    Hawse, William F; Boggess, William C; Morel, Penelope A

    2017-07-15

    The Akt/mTOR pathway is a key driver of murine CD4 + T cell differentiation, and induction of regulatory T (Treg) cells results from low TCR signal strength and low Akt/mTOR signaling. However, strong TCR signals induce high Akt activity that promotes Th cell induction. Yet, it is unclear how Akt controls alternate T cell fate decisions. We find that the strength of the TCR signal results in differential Akt enzymatic activity. Surprisingly, the Akt substrate networks associated with T cell fate decisions are qualitatively different. Proteomic profiling of Akt signaling networks during Treg versus Th induction demonstrates that Akt differentially regulates RNA processing and splicing factors to drive T cell differentiation. Interestingly, heterogeneous nuclear ribonucleoprotein (hnRNP) L or hnRNP A1 are Akt substrates during Treg induction and have known roles in regulating the stability and splicing of key mRNAs that code for proteins in the canonical TCR signaling pathway, including CD3ζ and CD45. Functionally, inhibition of Akt enzymatic activity results in the dysregulation of splicing during T cell differentiation, and knockdown of hnRNP L or hnRNP A1 results in the lower induction of Treg cells. Together, this work suggests that a switch in substrate specificity coupled to the phosphorylation status of Akt may lead to alternative cell fates and demonstrates that proteins involved with alternative splicing are important factors in T cell fate decisions. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. Differential effects of IL-2 and IL-21 on expansion of the CD4+ CD25+ Foxp3+ T regulatory cells with redundant roles in natural killer cell mediated antibody dependent cellular cytotoxicity in chronic lymphocytic leukemia.

    Science.gov (United States)

    Gowda, Aruna; Ramanunni, Asha; Cheney, Carolyn; Rozewski, Darlene; Kindsvogel, Wayne; Lehman, Amy; Jarjoura, David; Caligiuri, Michael; Byrd, John C; Muthusamy, Natarajan

    2010-01-01

    CD4(+) CD25(+) regulatory T cells are expanded in solid and hematological malignancies including chronic lymphocytic leukemia (CLL). Several cytokines and co-stimulatory molecules are required for generation, survival and maintenance of their suppressive effect. We and others have shown direct cytotoxic effect of the novel common gamma chain cytokine interleukin (IL)-21 on primary B cells from CLL patients. Since members of this family of cytokines are known to exhibit their effects on diverse immune cells, we have examined the effects of IL-21 on CLL patient derived regulatory T cell (Treg) induction, expansion and the inhibitory effect on natural killer cells in vitro. We demonstrate here the expression of IL-21 receptor in CD4(+)CD25(High) regulatory cells from CLL patients. In contrast to IL-2, the IL-21 cytokine failed to mediate expansion of regulatory T cells or induced expression of Foxp3 in CD4(+)CD25(Intermediate) or CD4(+)CD25(Dim/-) T cells in whole blood derived from CLL patients. Interestingly, in contrast to their differential effects on expansion of the CD4(+)CD25(+)Foxp3(+)T cells, IL-2 and IL-21 exhibited a redundant role in Treg mediated suppression of NK cell mediated antibody dependent cytotoxicity function. Given the infusion related toxicities and pro-survival effect of IL-2 in CLL, these studies provide a rationale to explore IL-21 as an alternate gamma chain cytokine in CLL therapy.

  10. 1-Methyl-tryptophan attenuates regulatory T cells differentiation due to the inhibition of estrogen-IDO1-MRC2 axis in endometriosis.

    Science.gov (United States)

    Wei, Chunyan; Mei, Jie; Tang, Lingli; Liu, Yukai; Li, Dajin; Li, Mingqing; Zhu, Xiaoyong

    2016-12-01

    Foxp3 + regulatory T (T reg ) cells contribute to the local dysfunctional immune environment in endometriosis, an estrogen-dependent gynecological disease, which affects the function of ectopic endometrial tissue clearance by the immune system. The reason for the high percentage of peritoneal T reg in endometriosis patients is unknown. Here, we show that the proportion of peritoneal T reg cells increases as endometriosis progresses. To determine the probable mechanism, we established a naive T cell-macrophage-endometrial stromal cell (ESC) co-culture system to mimic the peritoneal cavity microenvironment. After adding 1-methyl-tryptophan (1-MT), a specific inhibitor of indoleamine 2,3-dioxygenase-1 (IDO1), to the co-culture system, we found that the differentiation of T reg cells, mainly IL-10 + T reg cells, decreased. Therefore, 1-MT-pretreated ESCs-educated T reg cells performed impaired suppressive function. Moreover, estrogen promoted the differentiation of T reg cells by elevating IDO1 expression in the ectopic lesion. Subsequently, we examined mannose receptor C, type 2 (MRC2), which is an up-stream molecule of IL-10, by bioinformatics analysis and real-time PCR validation. MRC2 expression in ectopic ESCs was notably lower than that in normal ESCs, which further negatively regulated the expression of IDO1 and Ki-67 in ESCs. Furthermore, MRC2 is required for T reg differentiation in the ectopic lesion, especially that for CD4 high T reg . Therefore, MRC2-silenced ESCs-educated T reg manifested a stronger suppressive function in vitro. Consistently, the percentage of T reg increased when MRC2-shRNA was administered in the peritoneal cavity of endometriosis-disease mice model. Besides, 1-MT improved the condition of endometriosis, in terms of reducing the number and weight of total ectopic lesions in vivo. These results indicate that the estrogen-IDO1-MRC2 axis participates in the differentiation and function of T reg and is involved in the development of

  11. Resting regulatory CD4 T cells: a site of HIV persistence in patients on long-term effective antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Tu-Anh Tran

    Full Text Available BACKGROUND: In HIV-infected patients on long-term HAART, virus persistence in resting long-lived CD4 T cells is a major barrier to curing the infection. Cell quiescence, by favouring HIV latency, reduces the risk of recognition and cell destruction by cytotoxic lymphocytes. Several cell-activation-based approaches have been proposed to disrupt cell quiescence and then virus latency, but these approaches have not eradicated the virus. CD4+CD25+ regulatory T cells (Tregs are a CD4+ T-cell subset with particular activation properties. We investigated the role of these cells in virus persistence in patients on long-term HAART. METHODOLOGY/PRINCIPAL FINDINGS: We found evidence of infection of resting Tregs (HLADR(-CD69(-CD25(hiFoxP3+CD4+ T cells purified from patients on prolonged HAART. HIV DNA harbouring cells appear more abundant in the Treg subset than in non-Tregs. The half-life of the Treg reservoir was estimated at 20 months. Since Tregs from patients on prolonged HAART showed hyporesponsiveness to cell activation and inhibition of HIV-specific cytotoxic T lymphocyte-related functions upon activation, therapeutics targeting cell quiescence to induce virus expression may not be appropriate for purging the Treg reservoir. CONCLUSIONS: Our results identify Tregs as a particular compartment within the latent reservoir that may require a specific approach for its purging.

  12. FOXP3 renders activated human regulatory T cells resistant to restimulation-induced cell death by suppressing SAP expression.

    Science.gov (United States)

    Katz, Gil; Voss, Kelsey; Yan, Toria F; Kim, Yong Chan; Kortum, Robert L; Scott, David W; Snow, Andrew L

    2018-05-01

    Restimulation-induced cell death (RICD) is an apoptotic program that regulates effector T cell expansion, triggered by repeated stimulation through the T cell receptor (TCR) in the presence of interleukin-2 (IL-2). Although CD4 + regulatory T cells (Tregs) consume IL-2 and experience frequent TCR stimulation, they are highly resistant to RICD. Resistance in Tregs is dependent on the forkhead box P3 (FOXP3) transcription factor, although the mechanism remains unclear. T cells from patients with X-linked lymphoproliferative disease (XLP-1), that lack the adaptor molecule SLAM-associated protein (SAP), are also resistant to RICD. Here we demonstrate that normal Tregs express very low levels of SAP compared to conventional T cells. FOXP3 reduces SAP expression by directly binding to and repressing the SH2D1A (SAP) promoter. Indeed, ectopic SAP expression restores RICD sensitivity in human FOXP3 + Tregs. Our findings illuminate the mechanism behind FOXP3-mediated RICD resistance in Tregs, providing new insight into their long-term persistence. Published by Elsevier Inc.

  13. Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy

    Directory of Open Access Journals (Sweden)

    Caminade Anne-Marie

    2009-09-01

    Full Text Available Abstract Background Adoptive cell therapy with allogenic NK cells constitutes a promising approach for the treatment of certain malignancies. Such strategies are currently limited by the requirement of an efficient protocol for NK cell expansion. We have developed a method using synthetic nanosized phosphonate-capped dendrimers allowing such expansion. We are showing here that this is due to a specific inhibitory activity towards CD4+ T cell which could lead to further medical applications of this dendrimer. Methods Mononuclear cells from human peripheral blood were used to investigate the immunomodulatory effects of nanosized phosphonate-capped dendrimers on interleukin-2 driven CD4+T cell expansion. Proliferation status was investigated using flow cytometry analysis of CFSE dilution and PI incorporation experiments. Magnetic bead cell sorting was used to address activity towards individual or mixed cell sub-populations. We performed equilibrium binding assay to assess the interaction of fluorescent dendrimers with pure CD4+ T cells. Results Phosphonate-capped dendrimers are inhibiting the activation, and therefore the proliferation; of CD4+ T cells in IL-2 stimulated PBMCs, without affecting their viability. This allows a rapid enrichment of NK cells and further expansion. We found that dendrimer acts directly on T cells, as their regulatory property is maintained when stimulating purified CD4+ T cells with anti-CD3/CD28 microbeads. Performing equilibrium binding assays using a fluorescent analogue, we show that the phosphonate capped-dendrimers are specifically interacting with purified CD4+ T cells. Ultimately, we found that our protocol prevents the IL-2 related expansion of regulatory T cells that would be deleterious for the activity of infused NK cells. Conclusion High yield expansion of NK cells from human PBMCs by phosphonate-capped dendrimers and IL-2 occurs through the specific inhibition of the CD4+ lymphocyte compartment. Given the

  14. Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells.

    Science.gov (United States)

    Thorburn, Alison N; Foster, Paul S; Gibson, Peter G; Hansbro, Philip M

    2012-05-01

    Asthma is an allergic airways disease (AAD) caused by dysregulated immune responses and characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). NKT cells have been shown to contribute to AHR in some mouse models. Conversely, regulatory T cells (Tregs) control aberrant immune responses and maintain homeostasis. Recent evidence suggests that Streptococcus pneumoniae induces Tregs that have potential to be harnessed therapeutically for asthma. In this study, mouse models of AAD were used to identify the S. pneumoniae components that have suppressive properties, and the mechanisms underlying suppression were investigated. We tested the suppressive capacity of type-3-polysaccharide (T3P), isolated cell walls, pneumolysoid (Ply) and CpG. When coadministered, T3P + Ply suppressed the development of: eosinophilic inflammation, Th2 cytokine release, mucus hypersecretion, and AHR. Importantly, T3P + Ply also attenuated features of AAD when administered during established disease. We show that NKT cells contributed to the development of AAD and also were suppressed by T3P + Ply treatment. Furthermore, adoptive transfer of NKT cells induced AHR, which also could be reversed by T3P + Ply. T3P + Ply-induced Tregs were essential for the suppression of NKT cells and AAD, which was demonstrated by Treg depletion. Collectively, our results show that the S. pneumoniae components T3P + Ply suppress AAD through the induction of Tregs that blocked the activity of NKT cells. These data suggest that S. pneumoniae components may have potential as a therapeutic strategy for the suppression of allergic asthma through the induction of Tregs and suppression of NKT cells.

  15. CD4+CD25+ regulatory T cells: II. Origin, disease models and clinical aspects

    DEFF Research Database (Denmark)

    Nielsen, Janne; Holm, Thomas Lindebo; Claesson, Mogens H

    2004-01-01

    Autoimmune diseases afflict approximately 5% of the population and reflect a failure in the immune system to discriminate between self and non-self resulting in the breakdown of self-tolerance. Regulatory CD4+CD25+ T cells (Treg cells) have been shown to play an important role in the maintenance ...... in disease models such as autoimmune gastritis and inflammatory bowel disease. Finally, we will consider some aspects of the therapeutic potential of Treg cells....

  16. Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth

    Science.gov (United States)

    Hutzler, Marina; Abel, Simone; Alter, Christina; Stockmann, Christian; Kliche, Stefanie; Albert, Juliane; Sparwasser, Tim; Sakaguchi, Shimon; Westendorf, Astrid M.; Schadendorf, Dirk; Buer, Jan; Helfrich, Iris

    2012-01-01

    Infiltration of Foxp3+ regulatory T (T reg) cells is considered to be a critical step during tumor development and progression. T reg cells supposedly suppress locally an effective anti-tumor immune response within tumor tissues, although the precise mechanism by which T reg cells infiltrate the tumor is still unclear. We provide evidence that Neuropilin 1 (Nrp-1), highly expressed by Foxp3+ T reg cells, regulates the immunological anti-tumor control by guiding T reg cells into the tumor in response to tumor-derived vascular endothelial growth factor (VEGF). We demonstrate for the first time that T cell–specific ablation of Nrp-1 expression results in a significant breakdown in tumor immune escape in various transplantation models and in a spontaneous, endogenously driven melanoma model associated with strongly reduced tumor growth and prolonged tumor-free survival. Strikingly, numbers of tumor-infiltrating Foxp3+ T reg cells were significantly reduced accompanied by enhanced activation of CD8+ T cells within tumors of T cell–specific Nrp-1–deficient mice. This phenotype can be reversed by adoptive transfer of Nrp-1+ T reg cells from wild-type mice. Thus, our data strongly suggest that Nrp-1 acts as a key mediator of Foxp3+ T reg cell infiltration into the tumor site resulting in a dampened anti-tumor immune response and enhanced tumor progression. PMID:23045606

  17. Intrauterine growth restriction and prematurity influence regulatory T cell development in newborns.

    Science.gov (United States)

    Mukhopadhyay, Dhriti; Weaver, Laura; Tobin, Richard; Henderson, Stephanie; Beeram, Madhava; Newell-Rogers, M Karen; Perger, Lena

    2014-05-01

    The aim of this study was to determine the relationship of birth weight and gestational age with regulatory T cells (Tregs) in cord blood of human newborns. Cord blood mononuclear cells (CBMCs) of 210 newborns were analyzed using flow cytometry to identify Tregs (CD3(+), CD4(+), CD25(high), FoxP3(high)) and measure FoxP3 mean fluorescence intensity (MFI). Suppressive index (SI) was calculated as FoxP3 MFI per Treg. Mode of delivery had no significant effect on Tregs at birth. Term babies with growth restriction had fewer Tregs than their appropriate weight counterparts but equivalent SI. Preterm babies had higher percentages of Tregs, but lower SI than term controls. SI steadily increased through gestation. Intrauterine growth restriction is correlated with fewer circulating Tregs and prematurity with decreased functionality of Tregs compared to term appropriate weight infants. This may have implications in diseases such as necrotizing enterocolitis that disproportionately affect premature and lower birth weight infants. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Special regulatory T-cell review: T-cell dependent suppression revisited.

    Science.gov (United States)

    Basten, Antony; Fazekas de St Groth, Barbara

    2008-01-01

    The concept of T-cell dependent regulation of immune responses has been a central tenet of immunological thinking since the delineation of the two cell system in the 1960s. Indeed T-cell dependent suppression was discovered before MHC restriction. When reviewing the data from the original wave of suppression, it is intriguing to reflect not just on the decline and fall of suppressor T cells in the 1980s, but on their equally dramatic return to respectability over the past decade. Hopefully their resurgence will be supported by solid mechanistic data that will underpin their central place in our current and future understanding of the immune system. Cannon to right of them, Cannon to left of them, Cannon in front of them Volley'd and thunder'd Storm'd at with shot and shell, Boldly they rode and well, Into the jaws of Death, Into the mouth of Hell, Rode the six hundred (suppressionists). (Adapted from The Charge of the Light Brigade, Alfred, Lord Tennyson)

  19. Regulatory dendritic cell therapy: from rodents to clinical application

    OpenAIRE

    Raïch-Regué, Dalia; Glancy, Megan; Thomson, Angus W.

    2013-01-01

    Dendritic cells (DC) are highly-specialized, bone marrow-derived antigen-presenting cells that induce or regulate innate and adaptive immunity. Regulatory or “tolerogenic” DC play a crucial role in maintaining self tolerance in the healthy steady-state. These regulatory innate immune cells subvert naïve or memory T cell responses by various mechanisms. Regulatory DC (DCreg) also exhibit the ability to induce or restore T cell tolerance in many animal models of autoimmune disease or transplant...

  20. T cell suppression by naturally occurring HLA-G-expressing regulatory CD4+ T cells is IL-10-dependent and reversible.

    Science.gov (United States)

    Huang, Yu-Hwa; Zozulya, Alla L; Weidenfeller, Christian; Schwab, Nicholas; Wiendl, Heinz

    2009-08-01

    CD4(+) T cells constitutively expressing the immune-tolerogenic HLA-G have been described recently as a new type of nT(reg) (HLA-G(pos) T(reg)) in humans. HLA-G(pos) T(reg) accumulate at sites of inflammation and are potent suppressors of T cell proliferation in vitro, suggesting their role in immune regulation. We here characterize the mechanism of how CD4(+) HLA-G(pos) T(reg) influence autologous HLA-G(neg) T(resp) function. Using a suppression system free of APC, we demonstrate a T-T cell interaction, resulting in suppression of HLA-G(neg) T(resp), which is facilitated by TCR engagement on HLA-G(pos) T(reg). Suppression is independent of cell-cell contact and is reversible, as the removal of HLA-G(pos) T(reg) from the established coculture restored the proliferative capability of responder cells. Further, HLA-G(pos) T(reg)-mediated suppression critically depends on the secretion of IL-10 but not TGF-beta.

  1. Expansion of CD4+CD25+FOXP3+ regulatory T cells in infants of mothers with type 1 diabetes.

    Science.gov (United States)

    Luopajärvi, Kristiina; Nieminen, Janne K; Ilonen, Jorma; Akerblom, Hans K; Knip, Mikael; Vaarala, Outi

    2012-08-01

    Reduced risk for type 1 diabetes (T1D) has been reported in the offspring of mothers with T1D when compared with children of affected fathers. To evaluate the hypothesis that exposure of the offspring to maternal insulin therapy induces regulatory mechanisms in utero, we compared the FOXP3 expressing regulatory T cells in cord blood (CB) of infants born to mothers with or without T1D. Cord blood mononuclear cells (CBMCs) from 20 infants with maternal T1D and from 20 infants with an unaffected mother were analyzed for the numbers of CD4+CD25+FOXP3+ cells ex vivo and after in vitro stimulation with human insulin by flow cytometry. The mRNA expression of FOXP3, NFATc2, STIM1, interleukin (IL)-10, and transforming growth factor (TGF)-β was measured by real-time reverse transcription polymerase chain reaction. The percentage of FOXP3+ cells in CD4+CD25(high) cells was higher in the CB of the infants with maternal T1D when compared with the infants of unaffected mothers (p = 0.023). After in vitro insulin stimulation an increase in the percentage of FOXP3+ cells in CD4+CD25(high) cells (p = 0.0002) as well as upregulation of FOXP3, NFATc2, STIM1, IL-10, and TGF-β transcripts in CBMCs (p mothers with T1D, in whom the disease-related PTPN22 allele was associated with reduced STIM1 and NFATc2 response in insulin-stimulated CBMCs (p = 0.007 and p = 0.014). We suggest that maternal insulin treatment induces expansion of regulatory T cells in the fetus, which might contribute to the lower risk of diabetes in children with maternal vs. paternal diabetes. © 2012 John Wiley & Sons A/S.

  2. Non-traditional CD4+CD25-CD69+ regulatory T cells are correlated to leukemia relapse after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Zhao, Xiao-su; Wang, Xu-hua; Zhao, Xiang-yu; Chang, Ying-jun; Xu, Lan-ping; Zhang, Xiao-hui; Huang, Xiao-jun

    2014-07-01

    Non-traditional CD4+CD25-CD69+ T cells were found to be involved in disease progression in tumor-bearing mouse models and cancer patients recently. We attempted to define whether this subset of T cells were related to leukemia relapse after allogeneic hematopoietic cell transplantation (allo-HSCT). The frequency of CD4+CD25-CD69+ T cells among the CD4+ T cell population from the bone marrow of relapsed patients, patients with positive minimal residual disease (MRD+) and healthy donors was examined by flow cytometry. The CD4+CD25-CD69+ T cells were also stained with the intracellular markers to determine the cytokine (TGF-β, IL-2 and IL-10) secretion. The results showed that the frequency of CD4+CD25-CD69 + T cells was markedly increased in patients in the relapsed group and the MRD + group compared to the healthy donor group. The percentage of this subset of T cells was significantly decreased after effective intervention treatment. We also analyzed the reconstitution of CD4+CD25-CD69+ T cells at various time points after allo-HSCT, and the results showed that this subset of T cells reconstituted rapidly and reached a relatively higher level at +60 d in patients compared to controls. The incidence of either MRD+ or relapse in patients with a high frequency of CD4+CD25-CD69+ T cells (>7%) was significantly higher than that of patients with a low frequency of CD4+CD25-CD69+ T cells at +60 d, +90 d and +270 d after transplant. However, our preliminary data indicated that CD4+CD25-CD69+ T cells may not exert immunoregulatory function via cytokine secretion. This study provides the first clinical evidence of a correlation between non-traditional CD4+CD25-CD69+ Tregs and leukemia relapse after allo-HSCT and suggests that exploration of new methods of adoptive immunotherapy may be beneficial. Further research related to regulatory mechanism behind this phenomenon would be necessary.

  3. Natural Killer T Cells in Cancer Immunotherapy

    Science.gov (United States)

    Nair, Shiny; Dhodapkar, Madhav V.

    2017-01-01

    Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid antigens. Following stimulation, NKT cells lead to downstream activation of both innate and adaptive immune cells in the tumor microenvironment. This has impelled the development of NKT cell-targeted immunotherapies for treating cancer. In this review, we provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, we discuss future perspectives to better harness the potential of NKT cells for cancer therapy. PMID:29018445

  4. Cytokines affecting CD4+T regulatory cells in transplant tolerance. II. Interferon gamma (IFN-γ) promotes survival of alloantigen-specific CD4+T regulatory cells.

    Science.gov (United States)

    Nomura, Masaru; Hodgkinson, Suzanne J; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2017-06-01

    CD4 + T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4 + T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG heart allografts by a short course of immunosuppression and these grafts functioned for >100days with no further immunosuppression. In previous studies, we found the CD4 + T cells from tolerant rats that transfer tolerance to an irradiated DA host grafted with a PVG heart, lose their tolerance transferring ability after 3days of culture, either with or without donor alloantigen, and effect rejection of specific-donor grafts. If cultures with specific-donor alloantigen are supplemented by supernatant from ConA activated lymphocytes the tolerance transferring cells survive, suggesting these cells depend on cytokines for their survival. In this study, we found addition of rIFN-γ to MLC with specific-donor alloantigen maintained the capacity of tolerant CD4 + T cells to transfer alloantigen-specific tolerance and their ability to suppress PVG allograft rejection mediated by co-administered naïve CD4 + T cells. IFN-γ suppressed the in vitro proliferation of tolerant CD4 + T cells. Tolerant CD4 + CD25 + T cells did not proliferate in MLC to PVG stimulator cells with no cytokine added, but did when IFN-γ was present. IFN-γ did not alter proliferation of tolerant CD4 + CD25 + T cells to third-party Lewis. Tolerant CD4 + CD25 + T cells' expression of IFN-γ receptor (IFNGR) was maintained in culture when IFN-γ was present. This study suggested that IFN-γ maintained tolerance mediating alloantigen-specific CD4 + CD25 + T cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. Chemokines involved in protection from colitis by CD4+CD25+ regulatory T cells

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Brudzewsky, Dan; Gad, Monika

    2006-01-01

    /chemokine receptor-specific gene expression profiling system of 67 genes, the authors have determined the expression profile of chemokine and chemokine receptor genes in the rectum of colitic mice and in mice that have been protected fromcolitis by CD4CD25 regulatory T cells. In mice protected from colitis......, the authors found down regulation of the mRNA expression of the inflammatory chemokine receptors CCR1 and CXCR3 and their ligands CXCL9, CXCL10, CCL5, and CCL7. Also the transcripts for CCR9, CCL25, CCL17, and CXCL1 are found down regulated in protected compared with colitic animals. In addition, the authors......' results suggest that CCL20 is used by CCR6 regulatory T cells in the complex process of controlling colitis because transcripts for this chemokine were expressed to a higher level in protected animals. The chemokine pathways identified in the present study may be of importance for the development of new...

  6. Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression.

    Science.gov (United States)

    Trinh, Alice T; Ball, Bret G; Weber, Erin; Gallaher, Timothy K; Gluzman-Poltorak, Zoya; Anderson, French; Basile, Lena A

    2009-12-30

    Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements

  7. Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression

    Science.gov (United States)

    2009-01-01

    Background Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. Methods A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Results Vectors that contained the ADA LCR were preferentially expressed in T-cell

  8. 4-1BB Signaling in Conventional T Cells Drives IL-2 Production That Overcomes CD4+CD25+FoxP3+ T Regulatory Cell Suppression.

    Directory of Open Access Journals (Sweden)

    Hampartsoum B Barsoumian

    Full Text Available Costimulation with the recombinant SA-4-1BBL agonist of 4-1BB receptor on conventional CD4+ T cells (Tconvs overcomes the suppression mediated by naturally occurring CD4+CD25+FoxP3+ T regulatory cells (Tregs. The mechanistic basis of this observation has remained largely unknown. Herein we show that Tconvs, but not Tregs, are the direct target of SA-4-1BBL-mediated evasion of Treg suppression. IL-2 produced by Tconvs in response to 4-1BB signaling is both necessary and sufficient for overcoming Treg suppression. Supernatant from Tconvs stimulated with SA-4-1BBL contains high levels of IL-2 and overcomes Treg suppression in ex vivo Tconv:Treg cocultures. Removal of IL-2 from such supernatant restores Treg suppression and repletion of Tconv:Treg cocultures with exogenous recombinant IL-2 overcomes suppression. This study establishes 4-1BB signaling as a key circuit that regulates physical and functional equilibrium between Tregs and Tconvs with important implications for immunotherapy for indications where a fine balance between Tregs and Teffs plays a decisive role.

  9. Depigmented-polymerised allergoids favour regulatory over effector T cells: enhancement by 1α, 25-dihydroxyvitamin D3.

    Science.gov (United States)

    Urry, Zoe L; Richards, David F; Black, Cheryl; Morales, Maria; Carnés, Jerónimo; Hawrylowicz, Catherine M; Robinson, Douglas S

    2014-05-29

    Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT.

  10. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells.

    Science.gov (United States)

    Lecciso, Mariangela; Ocadlikova, Darina; Sangaletti, Sabina; Trabanelli, Sara; De Marchi, Elena; Orioli, Elisa; Pegoraro, Anna; Portararo, Paola; Jandus, Camilla; Bontadini, Andrea; Redavid, Annarita; Salvestrini, Valentina; Romero, Pedro; Colombo, Mario P; Di Virgilio, Francesco; Cavo, Michele; Adinolfi, Elena; Curti, Antonio

    2017-01-01

    Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC) cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML), ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs) with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1), was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1), which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1 + CD39 + DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  11. The effect of conditional EFNB1 deletion in the T cell compartment on T cell development and function

    Directory of Open Access Journals (Sweden)

    Jin Wei

    2011-12-01

    Full Text Available Abstract Background Eph kinases are the largest family of cell surface receptor tyrosine kinases. The ligands of Ephs, ephrins (EFNs, are also cell surface molecules. Ephs interact with EFNs transmitting signals in both directions, i.e., from Ephs to EFNs and from EFNs to Ephs. EFNB1 is known to be able to co-stimulate T cells in vitro and to modulate thymocyte development in a model of foetal thymus organ culture. To further understand the role of EFNB1 in T cell immunity, we generated T-cell-specific EFNB1 gene knockout mice to assess T cell development and function in these mice. Results The mice were of normal size and cellularity in the thymus and spleen and had normal T cell subpopulations in these organs. The bone marrow progenitors from KO mice and WT control mice repopulated host spleen T cell pool to similar extents. The activation and proliferation of KO T cells was comparable to that of control mice. Naïve KO CD4 cells showed an ability to differentiate into Th1, Th2, Th17 and Treg cells similar to control CD4 cells. Conclusions Our results suggest that the function of EFNB1 in the T cell compartment could be compensated by other members of the EFN family, and that such redundancy safeguards the pivotal roles of EFNB1 in T cell development and function.

  12. Regulatory T-cell and T-helper 17 balance in chronic lymphocytic leukemia progression and autoimmune cytopenias.

    Science.gov (United States)

    Lad, Deepesh P; Varma, Subhash; Varma, Neelam; Sachdeva, Man Updesh Singh; Bose, Parveen; Malhotra, Pankaj

    2015-01-01

    The reasons for progression and autoimmune cytopenias (AIC) in chronic lymphocytic leukemia (CLL) are not entirely clear, with previous studies suggesting a role for regulatory T-cells (Treg). In this study we prospectively studied Treg (CD3+CD4+CD25highCD127low), interleukin-10 (IL-10) producing Treg and T-helper 17 (Th17) (CD3+CD4+IL-17+) cells in 40 treatment-naive patients with CLL. The percentage of Th17 and not Treg cells was significantly higher in the AIC cohort than in those without AIC (pcells are responsible for AIC of CLL. Analysis of lymph-node aspirates showed that the percentage of Treg and IL-10 expression in Treg and not Th17 was significantly higher than in peripheral blood (pcells play a major role in the microenvironment where disease progression occurs. This shows the importance of maintaining the Treg:Th17 equilibrium, for imbalance leads to CLL progression or AIC.

  13. CD8 Follicular T Cells Promote B Cell Antibody Class Switch in Autoimmune Disease.

    Science.gov (United States)

    Valentine, Kristen M; Davini, Dan; Lawrence, Travis J; Mullins, Genevieve N; Manansala, Miguel; Al-Kuhlani, Mufadhal; Pinney, James M; Davis, Jason K; Beaudin, Anna E; Sindi, Suzanne S; Gravano, David M; Hoyer, Katrina K

    2018-05-09

    CD8 T cells can play both a protective and pathogenic role in inflammation and autoimmune development. Recent studies have highlighted the ability of CD8 T cells to function as T follicular helper (Tfh) cells in the germinal center in the context of infection. However, whether this phenomenon occurs in autoimmunity and contributes to autoimmune pathogenesis is largely unexplored. In this study, we show that CD8 T cells acquire a CD4 Tfh profile in the absence of functional regulatory T cells in both the IL-2-deficient and scurfy mouse models. Depletion of CD8 T cells mitigates autoimmune pathogenesis in IL-2-deficient mice. CD8 T cells express the B cell follicle-localizing chemokine receptor CXCR5, a principal Tfh transcription factor Bcl6, and the Tfh effector cytokine IL-21. CD8 T cells localize to the B cell follicle, express B cell costimulatory proteins, and promote B cell differentiation and Ab isotype class switching. These data reveal a novel contribution of autoreactive CD8 T cells to autoimmune disease, in part, through CD4 follicular-like differentiation and functionality. Copyright © 2018 by The American Association of Immunologists, Inc.

  14. A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells.

    Directory of Open Access Journals (Sweden)

    Yosuke Masubuchi

    Full Text Available BACKGROUND: Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. METHODOLOGY/PRINCIPAL FINDINGS: In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6. The α subunits of Gs (Gαs and G14 (Gα14 but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. CONCLUSIONS: 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism.

  15. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts.

    Science.gov (United States)

    Tao, Qianshan; Pan, Ying; Wang, Yiping; Wang, Huiping; Xiong, Shudao; Li, Qing; Wang, Jia; Tao, Lili; Wang, Zhitao; Wu, Fan; Zhang, Rui; Zhai, Zhimin

    2015-11-15

    Tumor immune escape mechanism mediated by CD4+CD25+regulatory T cells (Tregs) is a key factor in the pathogenesis of acute myeloid leukemia (AML). IL-35, as a novel inhibitory cytokine, is produced by Tregs specially and regulates functions of Tregs in murine. However, IL-35 expression of Tregs in human is still disputed, and its role in AML is yet to be elucidated. In this study, we found that IL-35 was expressed highly in peripheral blood plasma of adult patients with AML and significantly correlated with the clinical stages of malignancy. Tregs-derived from adult AML patients produced IL-35 in a stimulation-dependent manner. IL-35 promoted AML blasts immune escape by expanding Tregs and inhibiting CD4+CD25-effector T cells (Teffs). Furthermore, IL-35 directly promoted the proliferation of AML blasts and reduced the apoptosis of AML blasts. Together, our study demonstrates that IL-35-derived from Tregs promotes the growth of adult AML blasts, suggesting that IL-35 has an important role in the pathogenesis of AML. © 2015 UICC.

  16. Allogeneic effector/memory Th-1 cells impair FoxP3+ regulatory T lymphocytes and synergize with chaperone-rich cell lysate vaccine to treat leukemia.

    Science.gov (United States)

    Janikashvili, Nona; LaCasse, Collin J; Larmonier, Claire; Trad, Malika; Herrell, Amanda; Bustamante, Sara; Bonnotte, Bernard; Har-Noy, Michael; Larmonier, Nicolas; Katsanis, Emmanuel

    2011-02-03

    Therapeutic strategies combining the induction of effective antitumor immunity with the inhibition of the mechanisms of tumor-induced immunosuppression represent a key objective in cancer immunotherapy. Herein we demonstrate that effector/memory CD4(+) T helper-1 (Th-1) lymphocytes, in addition to polarizing type-1 antitumor immune responses, impair tumor-induced CD4(+)CD25(+)FoxP3(+) regulatory T lymphocyte (Treg) immunosuppressive function in vitro and in vivo. Th-1 cells also inhibit the generation of FoxP3(+) Tregs from naive CD4(+)CD25(-)FoxP3(-) T cells by an interferon-γ-dependent mechanism. In addition, in an aggressive mouse leukemia model (12B1), Th-1 lymphocytes act synergistically with a chaperone-rich cell lysate (CRCL) vaccine, leading to improved survival and long-lasting protection against leukemia. The combination of CRCL as a source of tumor-specific antigens and Th-1 lymphocytes as an adjuvant has the potential to stimulate efficient specific antitumor immunity while restraining Treg-induced suppression.

  17. Increase of Circulating CD4(+)CD25(high)Foxp3(+) Regulatory T Cells in Patients With Metastatic Renal Cell Carcinoma During Treatment With Dendritic Cell Vaccination and Low-Dose Interleukin-2

    DEFF Research Database (Denmark)

    Berntsen, Annika; Brimnes, M.K.; Straten, P.T.

    2010-01-01

    Regulatory T cells (Treg) play an important role in the maintenance of immune tolerance and may be one of the obstacles of successful tumor immunotherapy. In this study, we analyzed the impact of administration of dendritic cell (DC) vaccination in combination with low-dose interleukin (IL)-2...... in patients with metastatic renal cell carcinoma on the frequency of CD4(+) CD25(high)Foxp3(+) Treg cells in peripheral blood. We found that the treatment increased the frequency of Treg cells more than 7-fold compared with pretreatment levels (P cells decreased when patients...... had been off IL-2 treatment for only 8 days, but remained higher than pretreatment levels. A functional assay showed that isolated Treg cells were capable of inhibiting proliferation of responder cells. Also, in vitro studies showed that coculture of mature DCs, autologous T cells and IL-2 leads...

  18. FoxP3(+)CD4(+)CD25(+) T cells with regulatory properties can be cultured from colonic mucosa of patients with Crohn's disease

    DEFF Research Database (Denmark)

    Rømer, Johanne Lade

    2005-01-01

    Summary CD4(+)CD25(+) regulatory T cells (T(regs)) are involved in the maintenance of peripheral tolerance and ensure a balanced immune response competent of fighting pathogens and at the same time recognizing commensals as harmless. This feature is lost in Crohn's disease (CD). The forkhead/wing......(+) T cells. Thus, we demonstrate that FoxP3(+)CD4(+)CD25(+) T cells with regulatory properties can be propagated in vitro from inflamed mucosa of CD patients, which may be of interest in adoptive immunotherapy....

  19. Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus.

    Science.gov (United States)

    Vermeulen, Ben L; Devriendt, Bert; Olyslaegers, Dominique A; Dedeurwaerder, Annelike; Desmarets, Lowiese M; Favoreel, Herman W; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-05-31

    A strong cell-mediated immunity (CMI) is thought to be indispensable for protection against infection with feline infectious peritonitis virus (FIPV) in cats. In this study, the role of natural killer (NK) cells and regulatory T cells (Tregs), central players in the innate and adaptive CMI respectively, was examined during natural FIPV infection. When quantified, both NK cells and Tregs were drastically depleted from the peripheral blood, mesenteric lymph node (LN) and spleen in FIP cats. In contrast, mesentery and kidney from FIP cats did not show any difference when compared to healthy non-infected control animals. In addition, other regulatory lymphocytes (CD4+CD25-Foxp3+ and CD3+CD8+Foxp3+) were found to be depleted from blood and LN as well. Phenotypic analysis of blood-derived NK cells in FIP cats revealed an upregulation of activation markers (CD16 and CD25) and migration markers (CD11b and CD62L) while LN-derived NK cells showed upregulation of only CD16 and CD62L. LN-derived NK cells from FIPV-infected cats were also significantly less cytotoxic when compared with healthy cats. This study reveals for the first time that FIPV infection is associated with severe suppression of NK cells and Tregs, which is reflected by cell depletion and lowered cell functionality (only NK cells). This will un-doubtfully lead to a reduced capacity of the innate immune system (NK cells) to battle FIPV infection and a decreased capacity (Tregs) to suppress the immunopathology typical for FIP. However, these results will also open possibilities for new therapies targeting specifically NK cells and Tregs to enhance their numbers and/or functionality during FIPV infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Leukemia inhibitory factor tips the immune balance towards regulatory T cells in multiple sclerosis.

    Science.gov (United States)

    Janssens, Kris; Van den Haute, Chris; Baekelandt, Veerle; Lucas, Sophie; van Horssen, Jack; Somers, Veerle; Van Wijmeersch, Bart; Stinissen, Piet; Hendriks, Jerome J A; Slaets, Helena; Hellings, Niels

    2015-03-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), for which current treatments are unable to prevent disease progression. Based on its neuroprotective and neuroregenerating properties, leukemia inhibitory factor (LIF), a member of the interleukin-6 (IL-6) cytokine family, is proposed as a novel candidate for MS therapy. However, its effect on the autoimmune response remains unclear. In this study, we determined how LIF modulates T cell responses that play a crucial role in the pathogenesis of MS. We demonstrate that expression of the LIF receptor was strongly increased on immune cells of MS patients. LIF treatment potently boosted the number of regulatory T cells (Tregs) in CD4(+) T cells isolated from healthy controls and MS patients with low serum levels of IL-6. Moreover, IL-6 signaling was reduced in the donors that responded to LIF treatment in vitro. Our data together with previous findings revealing that IL-6 inhibits Treg development, suggest an opposing function of LIF and IL-6. In a preclinical animal model of MS we shifted the LIF/IL-6 balance in favor of LIF by CNS-targeted overexpression. This increased the number of Tregs in the CNS during active autoimmune responses and reduced disease symptoms. In conclusion, our data show that LIF downregulates the autoimmune response by enhancing Treg numbers, providing further impetus for the use of LIF as a novel treatment for MS and other autoimmune diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells

    Science.gov (United States)

    Tran, Dat Q.; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M.

    2009-01-01

    TGF-β family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-β is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFβ-binding protein (LTBP) to produce a large latent form. Latent TGF-β is also found on the surface of activated FOXP3+ regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-β to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-β and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-β expression on activated Tregs and recombinant latent TGF-β1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-β on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism. PMID:19651619

  2. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells.

    Science.gov (United States)

    Tran, Dat Q; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M

    2009-08-11

    TGF-beta family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-beta is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFbeta-binding protein (LTBP) to produce a large latent form. Latent TGF-beta is also found on the surface of activated FOXP3(+) regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-beta to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-beta and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-beta expression on activated Tregs and recombinant latent TGF-beta1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-beta on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism.

  3. The clinical correlation of regulatory T cells and cyclic adenosine monophosphate in enterovirus 71 infection.

    Directory of Open Access Journals (Sweden)

    Shih-Min Wang

    Full Text Available Brainstem encephalitis (BE and pulmonary edema (PE are notable complications of enterovirus 71 (EV71 infection.This study investigated the immunoregulatory characterizations of EV71 neurological complications by disease severity and milrinone treatment.Patients <18 years with virologically confirmed EV71 infections were enrolled and divided into 2 groups: the hand, foot, and mouth disease (HFMD or BE group, and the autonomic nervous system (ANS dysregulation or PE group. Cytokine and cyclic adenosine monophosphate (cAMP levels, and the regulatory T cell (Tregs profiles of the patients were determined.Patients with ANS dysregulation or PE exhibited significantly low frequency of CD4(+CD25(+Foxp3+ and CD4(+Foxp3(+ T cells compared with patients with HFMD or BE. The expression frequency of CD4-CD8- was also significantly decreased in patients with ANS dysregulation or PE. Among patients with ANS dysregulation or PE, the expression frequency of CD4+Foxp3+ increased markedly after milrinone treatment, and was associated with reduction of plasma levels IL-6, IL-8 and IL-10. Plasma concentrations of cAMP were significantly decreased in patients with ANS dysregulation or PE compared with patients with HFMD or BE; however, cAMP levels increased after milrinone treatment.These findings suggested decreased different regulatory T populations and cAMP expression correlate with increased EV71 disease severity. Improved outcome after milrinone treatment may associate with increased regulatory T populations, cAMP expression and modulation of cytokines levels.

  4. CD11c-Expressing Cells Affect Regulatory T Cell Behavior in the Meninges during Central Nervous System Infection.

    Science.gov (United States)

    O'Brien, Carleigh A; Overall, Christopher; Konradt, Christoph; O'Hara Hall, Aisling C; Hayes, Nikolas W; Wagage, Sagie; John, Beena; Christian, David A; Hunter, Christopher A; Harris, Tajie H

    2017-05-15

    Regulatory T cells (Tregs) play an important role in the CNS during multiple infections, as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, Tregs in the CNS during T. gondii infection are Th1 polarized, as exemplified by their T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4 + T cells, an MHC class II tetramer reagent specific for T. gondii did not recognize Tregs isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector T cells and Tregs in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Tregs were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4 + T cells within the meninges were highly migratory, whereas Tregs moved more slowly and were found in close association with CD11c + cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c + cells, mice were treated with anti-LFA-1 Abs to reduce the number of CD11c + cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c + cells and increased the speed of Treg migration. These data suggest that Tregs are anatomically restricted within the CNS, and their interaction with CD11c + populations regulates their local behavior during T. gondii infection. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Analysis of FOXP3+ regulatory T cells that display apparent viral antigen specificity during chronic hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Shuo Li

    2009-12-01

    Full Text Available We reported previously that a proportion of natural CD25(+ cells isolated from the PBMC of HCV patients can further upregulate CD25 expression in response to HCV peptide stimulation in vitro, and proposed that virus-specific regulatory T cells (Treg were primed and expanded during the disease. Here we describe epigenetic analysis of the FOXP3 locus in HCV-responsive natural CD25(+ cells and show that these cells are not activated conventional T cells expressing FOXP3, but hard-wired Treg with a stable FOXP3 phenotype and function. Of approximately 46,000 genes analyzed in genome wide transcription profiling, about 1% were differentially expressed between HCV-responsive Treg, HCV-non-responsive natural CD25(+ cells and conventional T cells. Expression profiles, including cell death, activation, proliferation and transcriptional regulation, suggest a survival advantage of HCV-responsive Treg over the other cell populations. Since no Treg-specific activation marker is known, we tested 97 NS3-derived peptides for their ability to elicit CD25 response (assuming it is a surrogate marker, accompanied by high resolution HLA typing of the patients. Some reactive peptides overlapped with previously described effector T cell epitopes. Our data offers new insights into HCV immune evasion and tolerance, and highlights the non-self specific nature of Treg during infection.

  6. Endogenous adaptation to low oxygen modulates T-cell regulatory pathways in EAE.

    Science.gov (United States)

    Esen, Nilufer; Katyshev, Vladimir; Serkin, Zakhar; Katysheva, Svetlana; Dore-Duffy, Paula

    2016-01-19

    In the brain, chronic inflammatory activity may lead to compromised delivery of oxygen and glucose suggesting that therapeutic approaches aimed at restoring metabolic balance may be useful. In vivo exposure to chronic mild normobaric hypoxia (10 % oxygen) leads to a number of endogenous adaptations that includes vascular remodeling (angioplasticity). Angioplasticity promotes tissue survival. We have previously shown that induction of adaptive angioplasticity modulates the disease pattern in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). In the present study, we define mechanisms by which adaptation to low oxygen functionally ameliorates the signs and symptoms of EAE and for the first time show that tissue hypoxia may fundamentally alter neurodegenerative disease. C57BL/6 mice were immunized with MOG, and some of them were kept in the hypoxia chambers (day 0) and exposed to 10 % oxygen for 3 weeks, while the others were kept at normoxic environment. Sham-immunized controls were included in both hypoxic and normoxic groups. Animals were sacrificed at pre-clinical and peak disease periods for tissue collection and analysis. Exposure to mild hypoxia decreased histological evidence of inflammation. Decreased numbers of cluster of differentiation (CD)4+ T cells were found in the hypoxic spinal cords associated with a delayed Th17-specific cytokine response. Hypoxia-induced changes did not alter the sensitization of peripheral T cells to the MOG peptide. Exposure to mild hypoxia induced significant increases in anti-inflammatory IL-10 levels and an increase in the number of spinal cord CD25+FoxP3+ T-regulatory cells. Acclimatization to mild hypoxia incites a number of endogenous adaptations that induces an anti-inflammatory milieu. Further understanding of these mechanisms system may pinpoint possible new therapeutic targets to treat neurodegenerative disease.

  7. The association between Neovascular Age-related Macular Degeneration and Regulatory T cells in peripheral blood

    DEFF Research Database (Denmark)

    Madelung, Christopher Fugl; Falk, Mads; Sørensen, Torben Lykke

    2015-01-01

    PURPOSE: To investigate regulatory T cells (Tregs) and subsets of the Treg population in patients with neovascular age-related macular degeneration (AMD). PATIENTS AND METHODS: Twenty-one neovascular AMD cases and 12 age-matched controls without retinal pathology were selected. Patients were...

  8. Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Niloufar Safinia

    2018-02-01

    Full Text Available Solid organ transplantation is the treatment of choice for patients with end-stage organ dysfunction. Despite improvements in short-term outcome, long-term outcome is suboptimal due to the increased morbidity and mortality associated with the toxicity of immunosuppressive regimens and chronic rejection (1–5. As such, the attention of the transplant community has focused on the development of novel therapeutic strategies to achieve allograft tolerance, a state whereby the immune system of the recipient can be re-educated to accept the allograft, averting the need for long-term immunosuppression. Indeed, reports of “operational” tolerance, whereby the recipient is off all immunosuppressive drugs and maintaining good graft function, is well documented in the literature for both liver and kidney transplantations (6–8. However, this phenomenon is rare and in the setting of liver transplantation has been shown to occur late after transplantation, with the majority of patients maintained on life-long immunosupression to prevent allograft rejection (9. As such, significant research has focused on immune regulation in the context of organ transplantation with regulatory T cells (Tregs identified as cells holding considerable promise in this endeavor. This review will provide a brief introduction to human Tregs, their phenotypic and functional characterization and focuses on our experience to date at the clinical translation of Treg immunotherapy in the setting of solid organ transplantation.

  9. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  10. Donor-Derived Regulatory Dendritic Cell Infusion Maintains Donor-Reactive CD4+CTLA4hi T Cells in Non-Human Primate Renal Allograft Recipients Treated with CD28 Co-Stimulation Blockade.

    Science.gov (United States)

    Ezzelarab, Mohamed B; Lu, Lien; Shufesky, William F; Morelli, Adrian E; Thomson, Angus W

    2018-01-01

    Donor-derived regulatory dendritic cell (DCreg) infusion before transplantation, significantly prolongs renal allograft survival in non-human primates. This is associated with enhanced expression of the immunoregulatory molecules cytotoxic T-lymphocyte-associated antigen (Ag) 4 (CTLA4) and programmed cell death protein 1 (PD1) by host donor-reactive T cells. In rodents and humans, CD28 co-stimulatory pathway blockade with the fusion protein CTLA4:Ig (CTLA4Ig) is associated with reduced differentiation and development of regulatory T cells (Treg). We hypothesized that upregulation of CTLA4 by donor-reactive CD4 + T cells in DCreg-infused recipients treated with CTLA4Ig, might be associated with higher incidences of donor-reactive CD4 + T cells with a Treg phenotype. In normal rhesus monkeys, allo-stimulated CD4 + CTLA4 hi , but not CD4 + CTLA4 med/lo T cells exhibited a regulatory phenotype, irrespective of PD1 expression. CTLA4Ig significantly reduced the incidence of CD4 + CTLA4 hi , but not CD4 + CTLA4 med/lo T cells following allo-stimulation, associated with a significant reduction in the CD4 + CTLA4 hi /CD4 + CTLA4 med/lo T cell ratio. In CTLA4Ig-treated renal allograft recipient monkeys, there was a marked reduction in circulating donor-reactive CD4 + CTLA4 hi T cells. In contrast, in CTLA4Ig-treated monkeys with DCreg infusion, no such reduction was observed. In parallel, the donor-reactive CD4 + CTLA4 hi /CD4 + CTLA4 med/lo T cell ratio was reduced significantly in graft recipients without DCreg infusion, but increased in those given DCreg. These observations suggest that pre-transplant DCreg infusion promotes and maintains donor-reactive CD4 + CTLA4 hi T cells with a regulatory phenotype after transplantation, even in the presence of CD28 co-stimulation blockade.

  11. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors.

    Science.gov (United States)

    Levite, Mia

    2008-08-01

    Neurotransmitters are traditionally viewed as nerve-secreted molecules that trigger or inhibit neuronal functions. Yet, neurotransmitters bind also their neurotransmitter receptors in T-cells and directly activate or suppress T-cell functions. This review focuses only on the activating effects of neurotransmitters on T-cells, primarily naïve/resting cells, and covers dopamine, glutamate, serotonin, and few neuropeptides: GnRH-I, GnRH-II, substance P, somatostatin, CGRP, and neuropeptide Y. T-cells express many neurotransmitter receptors. These are regulated by TCR-activation, cytokines, or the neurotransmitters themselves, and are upregulated/downregulated in some human diseases. The context - whether the T-cells are naïve/resting or antigen/mitogen/cytokine-activated, the T-cell subset (CD4/CD8/Th1/Th2/Teff/Treg), neurotransmitter dose (low/optimal or high/excess), exact neurotransmitter receptors expressed, and the cytokine milieu - is crucial, and can determine either activation or suppression of T-cells by the same neurotransmitter. T-cells also produce many neurotransmitters. In summary, neurotransmitters activate vital T-cell functions in a direct, potent and specific manner, and may serve for communicating between the brain and the immune system to elicit an effective and orchestrated immune function, and for new therapeutic avenues, to improve T-cell eradication of cancer and infectious organisms.

  12. Salmon cartilage proteoglycan suppresses mouse experimental colitis through induction of Foxp3{sup +} regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Toshihito [Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori 036-8562 (Japan); Department of Digestive Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Sashinami, Hiroshi [Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori 036-8562 (Japan); Sato, Fuyuki; Kijima, Hiroshi [Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Ishiguro, Yoh; Fukuda, Shinsaku [Department of Digestive Internal Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Yoshihara, Shuichi [Department of Glycomedicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Hakamada, Ken-Ichi [Department of Digestive Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Nakane, Akio, E-mail: a27k03n0@cc.hirosaki-u.ac.jp [Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori 036-8562 (Japan)

    2010-11-12

    Research highlights: {yields} Salmon proteoglycan suppresses IL-10{sup -/-} cell transfer-induced colitis progression. {yields} Salmon proteoglycan suppresses Th1- and Th17-related factors in colitis mice. {yields} Salmon proteoglycan enhances Foxp3 expression. -- Abstract: Proteoglycans (PGs) are complex glycohydrates which are widely distributed in extracellular matrix (ECM). PGs are involved in the construction of ECM, cell proliferation and differentiation. ECM components are involved in transduction of proinflammatory responses, but it is still unknown whether PGs are involved in inflammatory response. In this study, we investigated the effect of PG extracted from salmon cartilage on the progression of experimental colitis-induced in severe combined immunodeficiency mice by cell transfer from interleukin-10 (IL-10){sup -/-} mice. IL-10{sup -/-} cell-transferred mice showed weight loss, colon shortening and histological appearance of mild colitis. Daily oral administration of PG attenuated the clinical progression of colitis in a dose-dependent manner. Colitis-induced mice showed the elevated expression of IFN-{gamma}, IL-12, TNF-{alpha}, IL-21, IL-23p19, IL-6, IL-17A and retinoic acid-related orphan receptor {gamma}t (ROR{gamma}t) in lamina propria mononuclear cells (LPMCs) and oral administration of PG suppressed the expression of these factors. Conversely, expression of Foxp3 that induces CD4{sup +}CD25{sup +} regulatory T cells in LPMCs was enhanced by PG administration. These findings suggested that salmon PG attenuated the progression of colitis due to suppression of inflammatory response by enhancement of regulatory T cell induction.

  13. Antigen-specific T8+ human clone of cells with a nonspecific augmenting function on the T4 cell-B cell helper interaction

    International Nuclear Information System (INIS)

    Brines, R.D.; Sia, D.Y.; Lehner, T.

    1987-01-01

    The authors isolated a T8 + T3 + Ia + clone of cells from the peripheral blood mononuclear cells of a healthy subject. The clone was expanded and maintained with autologous feed cells, interleukin 2, and a streptococcal antigen. The T8 + clone of cells responded specifically to the streptococcal antigen, in the absence of accessory cells,and released a soluble factor. Both the cloned cells and the corresponding soluble factor expressed augmenting helper but not suppressor activity. The augmenting helper activity for B cell antibody synthesis was demonstrable only in the presence of autologous T 4 cells. Radioimmunoassay was used to measure antibodies. Although stimulation of the T8 + cloned cells was antigen-specific, the resulting soluble factor elicited nonspecific antibody synthesis in the presence of T4 and B cells. The T8 + cloned cell-derived factor was adsorbed by B cells but not by T4 cells. Preliminary studies suggest that the factor has the properties of a B cell growth factor. They suggest that the T8 + population consists of functionally heterogeneous cell subsets, some that have suppressor function and others that augment the T4 + helper-inducer activity in B cell antibody synthesis

  14. Oct4 targets regulatory nodes to modulate stem cell function.

    Directory of Open Access Journals (Sweden)

    Pearl A Campbell

    2007-06-01

    Full Text Available Stem cells are characterized by two defining features, the ability to self-renew and to differentiate into highly specialized cell types. The POU homeodomain transcription factor Oct4 (Pou5f1 is an essential mediator of the embryonic stem cell state and has been implicated in lineage specific differentiation, adult stem cell identity, and cancer. Recent description of the regulatory networks which maintain 'ES' have highlighted a dual role for Oct4 in the transcriptional activation of genes required to maintain self-renewal and pluripotency while concomitantly repressing genes which facilitate lineage specific differentiation. However, the molecular mechanism by which Oct4 mediates differential activation or repression at these loci to either maintain stem cell identity or facilitate the emergence of alternate transcriptional programs required for the realization of lineage remains to be elucidated. To further investigate Oct4 function, we employed gene expression profiling together with a robust statistical analysis to identify genes highly correlated to Oct4. Gene Ontology analysis to categorize overrepresented genes has led to the identification of themes which may prove essential to stem cell identity, including chromatin structure, nuclear architecture, cell cycle control, DNA repair, and apoptosis. Our experiments have identified previously unappreciated roles for Oct4 for firstly, regulating chromatin structure in a state consistent with self-renewal and pluripotency, and secondly, facilitating the expression of genes that keeps the cell poised to respond to cues that lead to differentiation. Together, these data define the mechanism by which Oct4 orchestrates cellular regulatory pathways to enforce the stem cell state and provides important insight into stem cell function and cancer.

  15. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    International Nuclear Information System (INIS)

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-01-01

    Highlights: → Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. → Induction of CD4 + CD25 + Foxp3 + T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. → C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4 + CD25 + Foxp3 + regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune

  16. Ex vivo modulation of the Foxo1 phosphorylation state does not lead to dysfunction of T regulatory cells.

    Directory of Open Access Journals (Sweden)

    Kristen Kelley Penberthy

    Full Text Available Peripheral regulatory CD4+ T cells (Treg cells prevent maladaptive inflammatory responses to innocuous foreign antigens. Treg cell dysfunction has been linked to many inflammatory diseases, including allergic airway inflammation. Glucocorticoids that are used to treat allergic airway inflammation and asthma are thought to work in part by promoting Treg cell differentiation; patients who are refractory to these drugs have defective induction of anti-inflammatory Treg cells. Previous observations suggest that Treg cells deficient in the transcription factor FoxO1 are pro-inflammatory, and that FoxO1 activity is regulated by its phosphorylation status and nuclear localization. Here, we asked whether altering the phosphorylation state of FoxO1 through modulation of a regulatory phosphatase might affect Treg cell function. In a mouse model of house dust mite-induced allergic airway inflammation, we observed robust recruitment of Treg cells to the lungs and lymph nodes of diseased mice, without an apparent increase in the Treg cytokine interleukin-10 in the airways. Intriguingly, expression of PP2A, a serine/threonine phosphatase linked to the regulation of FoxO1 phosphorylation, was decreased in the mediastinal lymph nodes of HDM-treated mice, mirroring the decreased PP2A expression seen in peripheral blood monocytes of glucocorticoid-resistant asthmatic patients. When we asked whether modulation of PP2A activity alters Treg cell function via treatment with the PP2A inhibitor okadaic acid, we observed increased phosphorylation of FoxO1 and decreased nuclear localization. However, dysregulation of FoxO1 did not impair Treg cell differentiation ex vivo or cause Treg cells to adopt a pro-inflammatory phenotype. Moreover, inhibition of PP2A activity did not affect the suppressive function of Treg cells ex vivo. Collectively, these data suggest that modulation of the phosphorylation state of FoxO1 via PP2A inhibition does not modify Treg cell function ex

  17. Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity.

    Science.gov (United States)

    Dwivedi, Mitesh; Kumar, Prasant; Laddha, Naresh C; Kemp, E Helen

    2016-04-01

    Regulatory T cells (Tregs) are comprised of a heterogeneous population of cells that play a vital role in suppressing inflammation and maintaining immune tolerance. Given the crucial role of Tregs in maintaining immune homeostasis, it is probably not surprising that many microbial species and their metabolites have the potential to induce Tregs. There is now great interest in the therapeutic potential of probiotics and prebiotics based strategies for a range of autoimmune disorders. This review will summarise recent findings concerning the role of probiotics and prebiotics in induction of Tregs to ameliorate the autoimmune conditions. In addition, the article is focused to explain the different mechanisms of Treg induction and function by these probiotics and prebiotics, based on the available studies till date. The article further proposes that induction of Tregs by probiotics and prebiotics could lead to the development of new therapeutic approach towards curbing the autoimmune response and as an alternative to detrimental immunosuppressive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  19. Graft-versus-host reaction and immune function. III. Functional pre-T cells in the bone marrow of graft-versus-host-reactive mice displaying T cell immunodeficiency

    International Nuclear Information System (INIS)

    Seddik, M.; Seemayer, T.A.; Lapp, W.S.

    1986-01-01

    Studies were performed to determine whether pre-T cells develop normally in the bone marrow of mice displaying thymic dysplasia and T cell immunodeficiency as a consequence of a graft-versus-host (GVH) reaction. GVH reactions were induced in CBAxAF1 mice by the injection of A strain lymphoid cells. To test for the presence of pre-T cells in GVH-reactive mice, bone marrow from GVH-reactive mice (GVHBM) was injected into irradiated syngeneic F1 mice and 30-40 days later thymic morphology and function were studied. Morphology studies showed nearly normal thymic architectural restoration; moreover, such glands contained normal numbers of Thy-1-positive cells. Functional pre-T cells were evaluated by transferring thymocytes from the irradiated GVHBM-reconstituted mice into T-cell-deprived mice. These thymocytes reconstituted allograft reactivity, T helper cell function and Con A and PHA mitogen responses of T-cell-deprived mice. These results suggest that the pre-T cell population in the bone marrow is not affected by the GVH reaction. Therefore, the T cell immunodeficiency associated with the GVH reaction is not due to a deficiency of pre-T cells in the bone marrow but is more likely associated with GVH-induced thymic dysplasia

  20. Glutamic acid decarboxylase-derived epitopes with specific domains expand CD4(+CD25(+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Guojiang Chen

    Full Text Available BACKGROUND: CD4(+CD25(+ regulatory T cell (Treg-based immunotherapy is considered a promising regimen for controlling the progression of autoimmune diabetes. In this study, we tested the hypothesis that the therapeutic effects of Tregs in response to the antigenic epitope stimulation depend on the structural properties of the epitopes used. METHODOLOGY/PRINCIPAL FINDINGS: Splenic lymphocytes from nonobese diabetic (NOD mice were stimulated with different glutamic acid decarboxylase (GAD-derived epitopes for 7-10 days and the frequency and function of Tregs was analyzed. We found that, although all expanded Tregs showed suppressive functions in vitro, only p524 (GAD524-538-expanded CD4(+CD25(+ T cells inhibited diabetes development in the co-transfer models, while p509 (GAD509-528- or p530 (GAD530-543-expanded CD4(+CD25(+ T cells had no such effects. Using computer-guided molecular modeling and docking methods, the differences in structural characteristics of these epitopes and the interaction mode (including binding energy and identified domains in the epitopes between the above-mentioned epitopes and MHC class II I-A(g7 were analyzed. The theoretical results showed that the epitope p524, which induced protective Tregs, possessed negative surface-electrostatic potential and bound two chains of MHC class II I-A(g7, while the epitopes p509 and p530 which had no such ability exhibited positive surface-electrostatic potential and bound one chain of I-A(g7. Furthermore, p524 bound to I-A(g7 more stably than p509 and p530. Of importance, we hypothesized and subsequently confirmed experimentally that the epitope (GAD570-585, p570, which displayed similar characteristics to p524, was a protective epitope by showing that p570-expanded CD4(+CD25(+ T cells suppressed the onset of diabetes in NOD mice. CONCLUSIONS/SIGNIFICANCE: These data suggest that molecular modeling-based structural analysis of epitopes may be an instrumental tool for prediction of

  1. Phosphorylation regulates human T-cell leukemia virus type 1 Rex function

    Directory of Open Access Journals (Sweden)

    Ward Michael

    2009-11-01

    Full Text Available Abstract Background Human T-cell leukemia virus type 1 (HTLV-1 is a pathogenic complex deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-1 Rex (Rex-1 is a phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore, it has been proposed that Rex-1 function may be regulated through site-specific phosphorylation. Results We conducted a phosphoryl mapping of Rex-1 over-expressed in transfected 293 T cells using a combination of affinity purification and liquid chromatography tandem mass spectrometry. We achieved 100% physical coverage of the Rex-1 polypeptide and identified five novel phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence of two previously identified residues, Ser-70 and Thr-174, but found no evidence of phosphorylation at Ser-177. The functional significance of these phosphorylation events was evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that phosphorylation at Ser-97 and Thr-174 is critical for Rex-1 function. Conclusion We have mapped completely the site-specific phosphorylation of Rex-1 identifying a total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this work is the first to completely map the phosphorylation sites in Rex-1 and provides important insight into

  2. Clinical potential of regulatory T cell therapy in liver diseases: An overview and current perspectives

    Directory of Open Access Journals (Sweden)

    Hannah Claire Jeffery

    2016-09-01

    Full Text Available The increasing demand for liver transplantation and the decline in donor organs has highlighted the need for alternative novel therapies to prevent chronic active hepatitis, which eventually leads to liver cirrhosis and liver cancer. Liver histology of chronic hepatitis is composed of both effector and regulatory lymphocytes. The human liver contains different subsets of effector lymphocytes, that are kept in check by a subpopulation of T cells known as Regulatory T cells (Treg. The balance of effector and regulatory lymphocytes generally determines the outcome of hepatic inflammation: resolution, fulminant hepatitis or chronic active hepatitis. Thus, maintaining and adjusting this balance is crucial in immunological manipulation of liver diseases. One of the options to restore this balance is to enrich Treg in the liver disease patients.Advances in the knowledge of Treg biology and development of clinical grade isolation reagents, cell sorting equipment and Good Manufacturing Practice (GMP facilities have paved the way to apply Treg cells as a potential therapy to restore peripheral self-tolerance in autoimmune liver diseases, chronic rejection and post-transplantation. Past and on-going studies have applied Treg in type-1 diabetes mellitus, systemic lupus erythematosus, graft versus host diseases (GVHD and solid organ transplantations. There have not been any new therapies for the autoimmune liver diseases for more than three decades; thus the clinical potential for the application of autologous Treg cell therapy to treat autoimmune liver disease is an attractive and novel option. However, it is fundamental to understand the deep immunology, genetic profiles, biology, homing behavior and microenvironment of Treg before applying the cells to the patients.

  3. Biogenesis and function of T cell-derived exosomes

    Directory of Open Access Journals (Sweden)

    Miguel Angel Alonso

    2016-08-01

    Full Text Available Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins and nucleic acids confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes.

  4. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Mariangela Lecciso

    2017-12-01

    Full Text Available Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML, ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1, was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1, which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1+CD39+ DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  5. MHC class II molecules deliver costimulatory signals in human T cells through a functional linkage with IL-2-receptors

    DEFF Research Database (Denmark)

    Odum, Niels; Kanner, S B; Ledbetter, J A

    1993-01-01

    MHC class II-positive T cells are found in tissues involved in autoimmune and infectious disorders. Because stimulation of class II molecules by mAb or bacterial superantigens induces protein tyrosine phosphorylation through activation of PTK3 in T cells, we hypothesized that class II signals play...... tyrosine phosphorylation of specific substrates including PLC-gamma 1. Combined stimulation of IL-2R and class II molecules had an additive effect on tyrosine phosphorylation. Pretreatment of T cells with a protein tyrosine kinase inhibitor, herbimycin A, inhibited IL-2 and class II-induced proliferation...... a regulatory function in T cell activation. Here, we show that cross-linking HLA-DR and -DP but not -DQ molecules by immobilized mAb enhanced proliferative T cell responses to IL-2. In contrast, class II stimulation had no effect on IL-4-induced proliferation. The costimulatory effect was most pronounced...

  6. Reduction of regulatory T cells in skin lesions but not in peripheral blood of patients with systemic scleroderma.

    Science.gov (United States)

    Klein, S; Kretz, C C; Ruland, V; Stumpf, C; Haust, M; Hartschuh, W; Hartmann, M; Enk, A; Suri-Payer, E; Oberle, N; Krammer, P H; Kuhn, A

    2011-08-01

    To determine the frequency and suppressive capacity of regulatory T cells (T(reg)) and their association with clinical parameters in patients with systemic scleroderma (SSc). Peripheral blood from 25 patients with SSc, 15 patients with localised scleroderma (LS) and 29 healthy controls (HC) was studied. Analysis of CD4(+) forkhead box P3 (Foxp3)(+) and CD4(+)CD25(++)Foxp3(+) T(reg) subpopulations was carried out by flow cytometry and cell proliferation was quantified by (3)H-thymidine incorporation. Quantitative analysis of T(reg) was further performed in skin biopsies from 17 patients with SSc and 21 patients with LS using anti-CD4 and anti-Foxp3 monoclonal antibodies for immunohistochemistry. The frequency of CD4(+)Foxp3(+) and CD4(+)CD25(++)Foxp3(+) T(reg) in peripheral blood from patients with SSc was not significantly different from that of patients with LS or HC. The suppressive capacity of CD4(+)CD25(++) T(reg) in SSc was also found to be similar to that of HC. Phenotypic and functional data revealed no significant difference between the limited or diffuse form of SSc. Moreover, therapy with bosentan showed no significant effect on the frequency of T(reg) during the course of the disease. However, the frequency of T(reg) in skin lesions from patients with SSc or LS, determined as the percentage of CD4(+) cells expressing Foxp3 in the inflammatory infiltrate, was significantly reduced compared with other inflammatory skin diseases. These results indicate that although the authors found no defect in the frequency or function of peripheral T(reg) subpopulations, the reduction of CD4(+)Foxp3(+) T(reg) in the skin of patients with SSc may be important in the pathogenesis of the disease.

  7. Fatty Acids, Lipid Mediators, and T-Cell Function

    Science.gov (United States)

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  8. Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients.

    Directory of Open Access Journals (Sweden)

    Brendan Fong

    Full Text Available PURPOSE: Dendritic cell (DC vaccines have recently emerged as an innovative therapeutic option for glioblastoma patients. To identify novel surrogates of anti-tumor immune responsiveness, we studied the dynamic expression of activation and inhibitory markers on peripheral blood lymphocyte (PBL subsets in glioblastoma patients treated with DC vaccination at UCLA. EXPERIMENTAL DESIGN: Pre-treatment and post-treatment PBL from 24 patients enrolled in two Phase I clinical trials of dendritic cell immunotherapy were stained and analyzed using flow cytometry. A univariate Cox proportional hazards model was utilized to investigate the association between continuous immune monitoring variables and survival. Finally, the immune monitoring variables were dichotomized and a recursive partitioning survival tree was built to obtain cut-off values predictive of survival. RESULTS: The change in regulatory T cell (CD3(+CD4(+CD25(+CD127(low frequency in PBL was significantly associated with survival (p = 0.0228; hazard ratio = 3.623 after DC vaccination. Furthermore, the dynamic expression of the negative co-stimulatory molecule, CTLA-4, was also significantly associated with survival on CD3(+CD4(+ T cells (p = 0.0191; hazard ratio = 2.840 and CD3(+CD8(+ T cells (p = 0.0273; hazard ratio = 2.690, while that of activation markers (CD25, CD69 was not. Finally, a recursive partitioning tree algorithm was utilized to dichotomize the post/pre fold change immune monitoring variables. The resultant cut-off values from these immune monitoring variables could effectively segregate these patients into groups with significantly different overall survival curves. CONCLUSIONS: Our results suggest that monitoring the change in regulatory T cell frequencies and dynamic expression of the negative co-stimulatory molecules on peripheral blood T cells, before and after DC vaccination, may predict survival. The cut-off point generated from these data can be utilized in future

  9. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2010-11-01

    Full Text Available MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  10. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    Science.gov (United States)

    Xu, Hui; Yan, Yaping; Williams, Mark S; Carey, Gregory B; Yang, Jingxian; Li, Hongmei; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2010-11-01

    MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  11. The vitamin D receptor and T cell function

    Directory of Open Access Journals (Sweden)

    Martin eKongsbak

    2013-06-01

    Full Text Available The vitamin D receptor (VDR is a nuclear, ligand-dependent transcription factor that in complex with hormonally active vitamin D, 1,25(OH2D3, regulates the expression of more than 900 genes involved in a wide array of physiological functions. The impact of 1,25(OH2D3-VDR signaling on immune function has been the focus of many recent studies as a link between 1,25(OH2D3 and sus-ceptibility to various infections and to development of a variety of inflammatory diseases has been suggested. It is also becoming increasingly clear that microbes slow down immune reactivity by dysregulating the VDR ultimately to increase their chance of survival. Immune modulatory therapies that enhance VDR expression and activity are therefore considered in the clinic today to a greater extent. As T cells are of great importance for both protective immunity and development of inflammatory diseases a variety of studies have been engaged investigating the impact of VDR ex-pression in T cells and found that VDR expression and activity plays an important role in both T cell development, differentiation and effector function. In this review we will analyze current know-ledge of VDR regulation and function in T cells and discuss its importance for immune activity.

  12. Pervasive and stochastic changes in the TCR repertoire of regulatory T-cell-deficient mice.

    Science.gov (United States)

    Zheng, Lingjie; Sharma, Rahul; Kung, John T; Deshmukh, Umesh S; Jarjour, Wael N; Fu, Shu Man; Ju, Shyr-Te

    2008-04-01

    We hypothesize that regulatory T-cell (Treg)-deficient strains have an altered TCR repertoire in part due to the expansion of autoimmune repertoire by self-antigen. We compared the Vbeta family expression profile between B6 and Treg-lacking B6.Cg-Foxp3(sf)(/Y) (B6.sf) mice using fluorescent anti-Vbeta mAbs and observed no changes. However, while the spectratypes of 20 Vbeta families among B6 mice were highly similar, the Vbeta family spectratypes of B6.sf mice were remarkably different from B6 mice and from each other. Significant spectratype changes in many Vbeta families were also observed in Treg-deficient IL-2 knockout (KO) and IL-2Ralpha KO mice. Such changes were not observed with anti-CD3 mAb-treated B6 mice or B6 CD4+CD25- T cells. TCR transgenic (OT-II.sf) mice displayed dramatic reduction of clonotypic TCR with concomitant increase in T cells bearing non-transgenic Vbeta and Valpha families, including T cells with dual receptors expressing reduced levels of transgenic Valpha and endogenous Valpha. Collectively, the data demonstrate that Treg deficiency allows polyclonal expansion of T cells in a stochastic manner, resulting in widespread changes in the TCR repertoire.

  13. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL.

    Science.gov (United States)

    Duell, J; Dittrich, M; Bedke, T; Mueller, T; Eisele, F; Rosenwald, A; Rasche, L; Hartmann, E; Dandekar, T; Einsele, H; Topp, M S

    2017-10-01

    Blinatumomab can induce a complete haematological remission in patients in 46.6% with relapsed/refractory B-precursor acute lymphoblastic leukemia (r/r ALL) resulting in a survival benefit when compared with chemotherapy. Only bone marrow blast counts before therapy have shown a weak prediction of response. Here we investigated the role of regulatory T cells (Tregs), measured by CD4/CD25/FOXP3 expression, in predicting the outcome of immunotherapy with the CD19-directed bispecific T-cell engager construct blinatumomab. Blinatumomab responders (n=22) had an average of 4.82% Tregs (confidence interval (CI): 1.79-8.34%) in the peripheral blood, whereas non-responders (n=20) demonstrated 10.25% Tregs (CI: 3.36-65.9%). All other tested markers showed either no prediction value or an inferior prediction level including blast BM counts and the classical enzyme marker lactate dehydrogenase. With a cutoff of 8.525%, Treg enumeration can identify 100% of all blinatumomab responders and exclude 70% of the non-responders. The effect is facilitated by blinatumomab-activated Tregs, leading to interleukin-10 production, resulting in suppression of T-cell proliferation and reduced CD8-mediated lysis of ALL cells. Proliferation of patients' T cells can be restored by upfront removal of Tregs. Thus, enumeration of Treg identifies r/r ALL patients with a high response rate to blinatumomab. Therapeutic removal of Tregs may convert blinatumomab non-responders to responders.

  14. A cluster of coregulated genes determines TGF-beta-induced regulatory T-cell (Treg) dysfunction in NOD mice.

    Science.gov (United States)

    D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A; Mathis, Diane; Benoist, Christophe

    2011-05-24

    Foxp3(+) regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4(+) T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility.

  15. Human CD8 T cells generated in vitro from hematopoietic stem cells are functionally mature

    Directory of Open Access Journals (Sweden)

    Zúñiga-Pflücker Juan

    2011-03-01

    Full Text Available Abstract Background T cell development occurs within the highly specialized thymus. Cytotoxic CD8 T cells are critical in adaptive immunity by targeting virally infected or tumor cells. In this study, we addressed whether functional CD8 T cells can be generated fully in vitro using human umbilical cord blood (UCB hematopoietic stem cells (HSCs in coculture with OP9-DL1 cells. Results HSC/OP9-DL1 cocultures supported the differentiation of CD8 T cells, which were TCR/CD3hi CD27hi CD1aneg and thus phenotypically resembled mature functional CD8 single positive thymocytes. These in vitro-generated T cells also appeared to be conventional CD8 cells, as they expressed high levels of Eomes and low levels of Plzf, albeit not identical to ex vivo UCB CD8 T cells. Consistent with the phenotypic and molecular characterization, upon TCR-stimulation, in vitro-generated CD8 T cells proliferated, expressed activation markers (MHC-II, CD25, CD38, secreted IFN-γ and expressed Granzyme B, a cytotoxic T-cell effector molecule. Conclusion Taken together, the ability to direct human hematopoietic stem cell or T-progenitor cells towards a mature functional phenotype raises the possibility of establishing cell-based treatments for T-immunodeficiencies by rapidly restoring CD8 effector function, thereby mitigating the risks associated with opportunistic infections.

  16. Trichomonas vaginalis α-Actinin 2 Modulates Host Immune Responses by Inducing Tolerogenic Dendritic Cells via IL-10 Production from Regulatory T Cells.

    Science.gov (United States)

    Lee, Hye-Yeon; Kim, Juri; Ryu, Jae-Sook; Park, Soon-Jung

    2017-08-01

    Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis α-actinin 2, Tvα-actinin 2, has been used to diagnose trichomoniasis. This study was undertaken to examine the role of Tvα-actinin 2 as an antigenic molecule to induce immune responses from humans. Western blot analysis using anti-Tvα-actinin 2 antibodies indicated its presence in the secreted proteins of T. vaginalis. ELISA was employed to measure cytokine production by vaginal epithelial cells, prostate cells, mouse dendritic cells (DCs), or T cells stimulated with T. vaginalis or Tvα-actinin 2 protein. Both T. vaginalis and rTvα-actinin 2 induced cytokine production from epithelial cell lines, including IL-10. Moreover, CD4+CD25- regulatory T cells (Treg cells) incubated with rTvα-actinin 2-treated DCs produced high levels of IL-10. These data indicate that Tvα-actinin 2 modulates immune responses via IL-10 production by Treg cells.

  17. Changes and clinical significance of CD4+CD25+CD127- regulatory T cells in Graves disease

    International Nuclear Information System (INIS)

    Zou Jintao; Yu Peiling; Dong Jingwei; Liao Qihong; Liu Dongliang; Zeng Hongyi

    2012-01-01

    Objective: To investigate the mechanism of Graves disease by observing the changes of CD4 + CD25 + CD127 - regulatory T cells (Treg) population in the patients. Methods: Flow cytometry was used to detect the proportion of CD4 + CD25 + CD127 - Treg of CD4 + T cells in 90 Graves disease patients (Graves disease group) and 50 healthy adults (control group). Thyroid function and autoantibody levels were determined simultaneously. The t test was adopted for comparison between groups. The relationship between CD4 + CD25 + CD127 - Treg and thyroid function was analyzed by linear correlation analysis. Results: The percentages of CD4 + CD25 + CD127 - Treg in Graves disease group and control group were 1.39%±1.09% and 4.59%±1.14% separately. There was significant difference between the two groups (t=16.4, P<0.01). There were negative correlation between CD4 + CD25 + CD127 - Treg percentages and total triiodothyronine, total thyroxine,free triiodothyronine, free thyroxine and thyrotropin receptor antibody,thyroglobulin antibody, thyroid microsomal antibody (r=-0.62, -0.65, -0.56, -0.71, -0.50, -0.15, all P<0.01). Conclusions: The reduction of CD4 + CD25 + CD127 - Treg percentages in Graves disease group and close relations of CD4 + CD25 + CD127 - Treg with thyroid function and thyroid autoantibody levels suggest that CD4 + CD25 + CD127 - Treg decrease in the number may be associated with the onset of Graves disease. CD4 + CD25 + CD127 - may be the specific marker of Treg. (authors)

  18. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature.

    Science.gov (United States)

    Kleinschnitz, Christoph; Kraft, Peter; Dreykluft, Angela; Hagedorn, Ina; Göbel, Kerstin; Schuhmann, Michael K; Langhauser, Friederike; Helluy, Xavier; Schwarz, Tobias; Bittner, Stefan; Mayer, Christian T; Brede, Marc; Varallyay, Csanad; Pham, Mirko; Bendszus, Martin; Jakob, Peter; Magnus, Tim; Meuth, Sven G; Iwakura, Yoichiro; Zernecke, Alma; Sparwasser, Tim; Nieswandt, Bernhard; Stoll, Guido; Wiendl, Heinz

    2013-01-24

    We have recently identified T cells as important mediators of ischemic brain damage, but the contribution of the different T-cell subsets is unclear. Forkhead box P3 (FoxP3)-positive regulatory T cells (Tregs) are generally regarded as prototypic anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. In the present study, we examined the role of Tregs after experimental brain ischemia/reperfusion injury. Selective depletion of Tregs in the DEREG mouse model dramatically reduced infarct size and improved neurologic function 24 hours after stroke and this protective effect was preserved at later stages of infarct development. The specificity of this detrimental Treg effect was confirmed by adoptive transfer experiments in wild-type mice and in Rag1(-/-) mice lacking lymphocytes. Mechanistically, Tregs induced microvascular dysfunction in vivo by increased interaction with the ischemic brain endothelium via the LFA-1/ICAM-1 pathway and platelets and these findings were confirmed in vitro. Ablation of Tregs reduced microvascular thrombus formation and improved cerebral reperfusion on stroke, as revealed by ultra-high-field magnetic resonance imaging at 17.6 Tesla. In contrast, established immunoregulatory characteristics of Tregs had no functional relevance. We define herein a novel and unexpected role of Tregs in a primary nonimmunologic disease state.

  19. Chloroquine treatment enhances regulatory T cells and reduces the severity of experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Rodolfo Thomé

    Full Text Available BACKGROUND: The modulation of inflammatory processes is a necessary step, mostly orchestrated by regulatory T (Treg cells and suppressive Dendritic Cells (DCs, to prevent the development of deleterious responses and autoimmune diseases. Therapies that focused on adoptive transfer of Treg cells or their expansion in vivo achieved great success in controlling inflammation in several experimental models. Chloroquine (CQ, an anti-malarial drug, was shown to reduce inflammation, although the mechanisms are still obscure. In this context, we aimed to access whether chloroquine treatment alters the frequency of Treg cells and DCs in normal mice. In addition, the effects of the prophylactic and therapeutic treatment with CQ on Experimental Autoimmune Encephalomyelitis (EAE, an experimental model for human Multiple Sclerosis, was investigated as well. METHODOLOGY/PRINCIPAL FINDINGS: EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG35-55 peptide. C57BL/6 mice were intraperitoneally treated with chloroquine. Results show that the CQ treatment provoked an increase in Treg cells frequency as well as a decrease in DCs. We next evaluated whether prophylactic CQ administration is capable of reducing the clinical and histopathological signs of EAE. Our results demonstrated that CQ-treated mice developed mild EAE compared to controls that was associated with lower infiltration of inflammatory cells in the central nervous system CNS and increased frequency of Treg cells. Also, proliferation of MOG35-55-reactive T cells was significantly inhibited by chloroquine treatment. Similar results were observed when chloroquine was administrated after disease onset. CONCLUSION: We show for the first time that CQ treatment promotes the expansion of Treg cells, corroborating previous reports indicating that chloroquine has immunomodulatory properties. Our results also show that CQ treatment suppress the inflammation in the CNS of

  20. Cell-intrinsic role for NF-kappa B-inducing kinase in peripheral maintenance but not thymic development of Foxp3+ regulatory T cells in mice.

    Directory of Open Access Journals (Sweden)

    Susan E Murray

    Full Text Available NF-κB inducing kinase (NIK, MAP3K14 is a key signaling molecule in non-canonical NF-κB activation, and NIK deficient mice have been instrumental in deciphering the immunologic role of this pathway. Global ablation of NIK prevents lymph node development, impairs thymic stromal development, and drastically reduces B cells. Despite altered thymic selection, T cell numbers are near normal in NIK deficient mice. The exception is CD4(+ regulatory T cells (Tregs, which are reduced in the thymus and periphery. Defects in thymic stroma are known to contribute to impaired Treg generation, but whether NIK also plays a cell intrinsic role in Tregs is unknown. Here, we compared intact mice with single and mixed BM chimeric mice to assess the intrinsic role of NIK in Treg generation and maintenance. We found that while NIK expression in stromal cells suffices for normal thymic Treg development, NIK is required cell-intrinsically to maintain peripheral Tregs. In addition, we unexpectedly discovered a cell-intrinsic role for NIK in memory phenotype conventional T cells that is masked in intact mice, but revealed in BM chimeras. These results demonstrate a novel role for NIK in peripheral regulatory and memory phenotype T cell homeostasis.

  1. Changes in T-cell subpopulations and cytokine network during early period of ibrutinib therapy in chronic lymphocytic leukemia patients: the significant decrease in T regulatory cells number.

    Science.gov (United States)

    Podhorecka, Monika; Goracy, Aneta; Szymczyk, Agnieszka; Kowal, Malgorzata; Ibanez, Blanca; Jankowska-Lecka, Olga; Macheta, Arkadiusz; Nowaczynska, Aleksandra; Drab-Urbanek, Elzbieta; Chocholska, Sylwia; Jawniak, Dariusz; Hus, Marek

    2017-05-23

    B cell receptor (BCR) stimulation signal plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL), and kinase inhibitors directed toward the BCR pathway are now the promising anti-leukemic drugs. Ibrutinib, a Bruton tyrosine kinase inhibitor, demonstrates promising clinical activity in CLL. It is reported that ibrutinib, additionally to directly targeting leukemic cells, also inhibits the interactions of these cells with T cells, macrophages and accessory cells. Assessment of these mechanisms is important because of their non -direct anti-leukemic effects and to identify possible side effects connected with long-term drug administration.The aim of this study was to assess the in vivo effects of ibrutinib on T-cell subpopulations and cytokine network in CLL. The analysis was performed on a group of 19 patients during first month of ibrutinib therapy. The standard multicolor flow cytometry and cytometric bead array methods were used for assessment of T-cell subsets and cytokines/chemokines, respectively.The data obtained indicates that Ibrutinib treatment results in changes in T-cell subpopulations and cytokine network in CLL patients. Particularly, a significant reduction of T regulatory cells in peripheral blood was observed. By targeting these populations of T cells Ibrutinib can stimulate rejection of tumor cells by the immune system.

  2. In vivo expansion of naïve CD4+ CD25(high FOXP3+ regulatory T cells in patients with colorectal carcinoma after IL-2 administration.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Regulatory T cells (T(reg cells are increased in context of malignancies and their expansion can be correlated with higher disease burden and decreased survival. Initially, interleukin 2 (IL-2 has been used as T-cell growth factor in clinical vaccination trials. In murine models, however, a role of IL-2 in development, differentiation, homeostasis, and function of T(reg cells was established. In IL-2 treated cancer patients a further T(reg-cell expansion was described, yet, the mechanism of expansion is still elusive. Here we report that functional T(reg cells of a naïve phenotype--as determined by CCR7 and CD45RA expression--are significantly expanded in colorectal cancer patients. Treatment of 15 UICC stage IV colorectal cancer patients with IL-2 in a phase I/II peptide vaccination trial further enlarges the already increased naïve T(reg-cell pool. Higher frequencies of T-cell receptor excision circles in naïve T(reg cells indicate IL-2 dependent thymic generation of naïve T(reg cells as a mechanism leading to increased frequencies of T(reg cells post IL-2 treatment in cancer patients. This finding could be confirmed in naïve murine T(reg cells after IL-2 administration. These results point to a more complex regulation of T(reg cells in context of IL-2 administration. Future strategies therefore might aim at combining IL-2 therapy with novel strategies to circumvent expansion and differentiation of naïve T(reg cells.

  3. PHENOTYPIC FEATURES OF T REGULATORY CELLS IN EARLY RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    A. S. Avdeeva

    2016-01-01

    Full Text Available Objective: to investigate the count and characteristics of the phenotype of T regulatory cells (Treg in the peripheral blood of healthy donors and patients with early rheumatoid arthritis (RA, by using multicolor flow cytometry.Subjects and methods. The investigation enrolled 39 patients with early RA. The percentage and absolute count of Treg (FoxP3+CD25+, surface CD152+, intracellular CD152+, FoxP3+CD127, CD25+CD127, FoxP3+ICOS+, FoxP3+CD154+; and FoxP3+CD274+ was determined by multicolor flow-cytometry. A control group consisted of 20 healthy donors matched for sex and age with the examined patients.Results and discussion. In the patients included in the study, the median [25th; 75th percentiles] DAS28 was 5.01 [4.2; 5.8]; high, moderate, and low activity showed 22 (48.9%, 20 (44.4%, and 3 (6.7% patients, respectively. The patients with early RA had a lower percentage of FoxP3+CD25+ cells and a lower percentage and absolute count of FoxP3+ICOS+, FoxP3+CD154+, and FoxP3+CD274+ T cells than the healthy donors (p<0.05 in all cases. There was a negative correlation of the percentage of FoxP3+CD25+ cells with C-reactive protein (CRP (r = -0.4, that of intracellular CD152+ with DAS28 (r = -0.35, erythrocyte sedimentation rate (ESR (r = -0.46, and CRP (r=-0.54; that of FoxP3+CD127 with CRP (r = -0.42; that of CD25+CD127 with DAS28 (r = -0.38, Simplified Disease Activity Index (r = -0.41, Clinical Disease Activity Index (r = -0.36, ESR (r = -0.39, and CRP (r = -0.47 (p < 0.05 in all cases.Conclusion. The findings suggest that the functional activity of Treg is impaired in early RA, which has an impact on the activity of the inflammatory process.

  4. Murine neonatal spleen contains natural T and non-T suppressor cells capable of inhibiting adult alloreactive and newborn autoreactive T-cell proliferation.

    Science.gov (United States)

    Hooper, D C; Hoskin, D W; Gronvik, K O; Murgita, R A

    1986-05-01

    The spleen of neonatal mice is known to be a rich source of cells capable of suppressing a variety of immune functions of adult lymphocytes in vitro. From such observations has emerged the concept that the gradual development in ability to express immune functions after birth is due in part to the parallel normal physiological decay of naturally occurring regulatory suppressor cells. There is, however, some confusion in the literature as to the exact nature of the newborn of the newborn inhibitory cell type(s). In contrast to most previous reports which detect only a single type of neonatal suppressor cell, usually a T cell, we show here that newborn spleen harbors both T and non-T inhibitory cells. Both types of suppressor cells could be shown to suppress the proliferative response of adult spleen to alloantigens as well as newborn T cells reacting against self-Ia antigen in the autologous mixed lymphocyte reaction (AMLR). Newborn suppressor T cells were characterized as being non-adherent to Ig-anti-Ig affinity columns, soybean agglutinin receptor negative (SBA-), and susceptible to lysis by anti-T-cell specific antiserum plus complement. Non-T suppressor cells were identified as non-phagocytic, SBA receptor positive (SBA+), and resistant to cytotoxic treatment with anti-T-cell antibodies and complement. The apparent controversy surrounding previous reports as to the T versus non-T nature of newborn suppressor cells can be reconciled by the present observation that both types of inhibitory cells coexist in the spleen. Furthermore, the demonstration that newborn suppressor cells can effectively regulate T-cell proliferative activity mediated by other newborn cells provides more direct support for the contention that such inhibitory cells play a physiological role in controlling immune responsiveness during early ontogeny.

  5. Function and regulation of LAG3 on CD4+CD25- T cells in non-small cell lung cancer.

    Science.gov (United States)

    Ma, Qin-Yun; Huang, Da-Yu; Zhang, Hui-Jun; Wang, Shaohua; Chen, Xiao-Feng

    2017-11-15

    LAG3 is a surface molecule found on a subset of immune cells. The precise function of LAG3 appears to be context-dependent. In this study, we investigated the effect of LAG3 on CD4 + CD25 - T cells from non-small cell lung cancer (NSCLC) patients. We found that in the peripheral blood mononuclear cells of NSCLC patients, LAG3 was significantly increased in CD4 + T cells directly ex vivo and primarily in the CD4 + CD25 - fraction, which was regulated by prolonged TCR stimulation and the presence of IL-27. TCR stimulation also increased CD25 expression, but not Foxp3 expression, in LAG3-expressing CD4 + CD25 - cells Compared to LAG3-nonexpressing CD4 + CD25 - cells, LAG3-expressing CD4 + CD25 - cells presented significantly higher levels of PD1 and TIM3, two inhibitory receptors best described in exhausted CD8 + T effector cells. LAG3-expressing CD4 + CD25 - cells also presented impaired proliferation compared with LAG3-nonexpressing CD4 + CD25 - cells but could be partially rescued by inhibiting both PD1 and TIM3. Interestingly, CD8 + T cells co-incubated with LAG3-expressing CD4 + CD25 - cells at equal cell numbers demonstrated significantly lower proliferation than CD8 + T cells incubated alone. Co-culture with CD8 + T cell and LAG3-expressing CD4 + CD25 - T cell also upregulated soluble IL-10 level in the supernatant, of which the concentration was positively correlated with the number of LAG3-expressing CD4 + CD25 - T cells. In addition, we found that LAG3-expressing CD4 + CD25 - T cells infiltrated the resected tumors and were present at higher frequencies of in metastases than in primary tumors. Taken together, these data suggest that LAG3-expressing CD4 + CD25 - T cells represent another regulatory immune cell type with potential to interfere with anti-tumor immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Nfatc2 and Tob1 have non-overlapping function in T cell negative regulation and tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Sarah L May

    Full Text Available Nfatc2 and Tob1 are intrinsic negative regulators of T cell activation. Nfatc2-deficient and Tob1-deficient T cells show reduced thresholds of activation; however, whether these factors have independent or overlapping roles in negative regulation of T cell responses has not been previously examined. Here, we show that Nfatc2 knockout (KO but not Tob1 KO mice have age-associated accumulation of persistently activated T cells in vivo and expansion of the CD44+ memory cell compartment and age-associated lymphocytic infiltrates in visceral organs, without significant changes in numbers of CD4+CD25+Foxp3+ regulatory T cells (Treg. In vitro, CD4+CD25- "conventional" T cells (Tconvs from both KO strains showed greater proliferation than wild type (WT Tconvs. However, while Tregs from Nfatc2 KO mice retained normal suppressive function, Tregs from Tob1 KOs had enhanced suppressive activity. Nfatc2 KO Tconvs expanded somewhat more rapidly than WT Tconvs under conditions of homeostatic proliferation, but their accelerated growth capacity was negated, at least acutely, in a lymphoreplete environment. Finally, Nfatc2 KO mice developed a previously uncharacterized increase in B-cell malignancies, which was not accelerated by the absence of Tob1. The data thus support the prevailing hypothesis that Nfatc2 and Tob1 are non-redundant regulators of lymphocyte homeostasis.

  7. Tolerance induced by anti-DNA Ig peptide in (NZB×NZW)F1 lupus mice impinges on the resistance of effector T cells to suppression by regulatory T cells.

    Science.gov (United States)

    Yu, Yiyun; Liu, Yaoyang; Shi, Fu-Dong; Zou, Hejian; Hahn, Bevra H; La Cava, Antonio

    2012-03-01

    We have previously shown that immune tolerance induced by the anti-DNA Ig peptide pCons in (NZB×NZW)F(1) (NZB/W) lupus mice prolonged survival of treated animals and delayed the appearance of autoantibodies and glomerulonephritis. Part of the protection conferred by pCons could be ascribed to the induction of regulatory T cells (T(Reg)) that suppressed the production of anti-DNA antibodies in a p38 MAPK-dependent fashion. Here we show that another effect of pCons in the induction of immune tolerance in NZB/W lupus mice is the facilitation of effector T cell suppression by T(Reg). These new findings indicate that pCons exerts protective effects in NZB/W lupus mice by differentially modulating the activity of different T cell subsets, implying new considerations in the design of T(Reg)-based approaches to modulate T cell autoreactivity in SLE. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Donor-Derived Regulatory Dendritic Cell Infusion Maintains Donor-Reactive CD4+CTLA4hi T Cells in Non-Human Primate Renal Allograft Recipients Treated with CD28 Co-Stimulation Blockade

    Directory of Open Access Journals (Sweden)

    Mohamed B. Ezzelarab

    2018-02-01

    Full Text Available Donor-derived regulatory dendritic cell (DCreg infusion before transplantation, significantly prolongs renal allograft survival in non-human primates. This is associated with enhanced expression of the immunoregulatory molecules cytotoxic T-lymphocyte-associated antigen (Ag 4 (CTLA4 and programmed cell death protein 1 (PD1 by host donor-reactive T cells. In rodents and humans, CD28 co-stimulatory pathway blockade with the fusion protein CTLA4:Ig (CTLA4Ig is associated with reduced differentiation and development of regulatory T cells (Treg. We hypothesized that upregulation of CTLA4 by donor-reactive CD4+ T cells in DCreg-infused recipients treated with CTLA4Ig, might be associated with higher incidences of donor-reactive CD4+ T cells with a Treg phenotype. In normal rhesus monkeys, allo-stimulated CD4+CTLA4hi, but not CD4+CTLA4med/lo T cells exhibited a regulatory phenotype, irrespective of PD1 expression. CTLA4Ig significantly reduced the incidence of CD4+CTLA4hi, but not CD4+CTLA4med/lo T cells following allo-stimulation, associated with a significant reduction in the CD4+CTLA4hi/CD4+CTLA4med/lo T cell ratio. In CTLA4Ig-treated renal allograft recipient monkeys, there was a marked reduction in circulating donor-reactive CD4+CTLA4hi T cells. In contrast, in CTLA4Ig-treated monkeys with DCreg infusion, no such reduction was observed. In parallel, the donor-reactive CD4+CTLA4hi/CD4+CTLA4med/lo T cell ratio was reduced significantly in graft recipients without DCreg infusion, but increased in those given DCreg. These observations suggest that pre-transplant DCreg infusion promotes and maintains donor-reactive CD4+CTLA4hi T cells with a regulatory phenotype after transplantation, even in the presence of CD28 co-stimulation blockade.

  9. A Novel Function for the Streptococcus pneumoniae Aminopeptidase N: Inhibition of T Cell Effector Function through Regulation of TCR Signaling

    Directory of Open Access Journals (Sweden)

    Lance K. Blevins

    2017-11-01

    Full Text Available Streptococcus pneumoniae (Spn causes a variety of disease states including fatal bacterial pneumonia. Our previous finding that introduction of Spn into an animal with ongoing influenza virus infection resulted in a CD8+ T cell population with reduced effector function gave rise to the possibility of direct regulation by pneumococcal components. Here, we show that treatment of effector T cells with lysate derived from Spn resulted in inhibition of IFNγ and tumor necrosis factor α production as well as of cytolytic granule release. Spn aminopeptidase N (PepN was identified as the inhibitory bacterial component and surprisingly, this property was independent of the peptidase activity found in this family of proteins. Inhibitory activity was associated with reduced activation of ZAP-70, ERK1/2, c-Jun N-terminal kinase, and p38, demonstrating the ability of PepN to negatively regulate TCR signaling at multiple points in the cascade. These results reveal a novel immune regulatory function for a bacterial aminopeptidase.

  10. An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Chao

    Full Text Available Sepsis remains an important cause of death worldwide, and vigorous immune responses during sepsis could be beneficial for bacterial clearance but at the price of collateral damage to self tissues. Mesenchymal stem cells (MSCs have been found to modulate the immune system and attenuate sepsis. In the present study, MSCs derived from bone marrow and umbilical cord were used and compared. With a cecal ligation and puncture (CLP model, the mechanisms of MSC-mediated immunoregulation during sepsis were studied by determining the changes of circulating inflammation-associated cytokine profiles and peripheral blood mononuclear cells 18 hours after CLP-induced sepsis. In vitro, bone marrow-derived MSCs (BMMSCs and umbilical cord-derived MSCs (UCMSCs showed a similar morphology and surface marker expression. UCMSCs had stronger potential for osteogenesis but lower for adipogenesis than BMMSCs. Compared with rats receiving PBS only after CLP, the percentage of circulating CD3+CD4+CD25+ regulatory T (Treg cells and the ratio of Treg cells/T cells were elevated significantly in rats receiving MSCs. Further experiment regarding Treg cell function demonstrated that the immunosuppressive capacity of Treg cells from rats with CLP-induced sepsis was decreased, but could be restored by administration of MSCs. Compared with rats receiving PBS only after CLP, serum levels of interleukin-6 and tumor necrosis factor-α were significantly lower in rats receiving MSCs after CLP. There were no differences between BMMSCs and UCMSCs. In summary, this work provides the first in vivo evidence that administering BMMSCs or UCMSCs to rats with CLP-induced sepsis could increase circulating CD3+CD4+CD25+ Treg cells and Treg cells/T cells ratio, enhance Treg cell suppressive function, and decrease serum levels of interleukin-6 and tumor necrosis factor-α, suggesting the immunomodulatory association of Treg cells and MSCs during sepsis.

  11. Narcolepsy Type 1 Is Associated with a Systemic Increase and Activation of Regulatory T Cells and with a Systemic Activation of Global T Cells.

    Science.gov (United States)

    Lecendreux, Michel; Churlaud, Guillaume; Pitoiset, Fabien; Regnault, Armelle; Tran, Tu Anh; Liblau, Roland; Klatzmann, David; Rosenzwajg, Michelle

    2017-01-01

    Narcolepsy is a rare neurologic disorder characterized by excessive daytime sleepiness, cataplexy and disturbed nocturnal sleep patterns. Narcolepsy type 1 (NT1) has been shown to result from a selective loss of hypothalamic hypocretin-secreting neurons with patients typically showing low CSF-hypocretin levels (NT1 could be an immune-mediated pathology. Moreover, susceptibility to NT1 has recently been associated with several pathogens, particularly with influenza A H1N1 virus either through infection or vaccination. The goal of this study was to compare peripheral blood immune cell populations in recent onset pediatric NT1 subjects (post or non-post 2009-influenza A H1N1 vaccination) to healthy donors. We demonstrated an increased number of central memory CD4+ T cells (CD62L+ CD45RA-) associated to an activated phenotype (increase in CD69 and CD25 expression) in NT1 patients. Percentage and absolute count of regulatory T cells (Tregs) in NT1 patients were increased associated with an activated phenotype (increase in GITR and LAP expression), and of activated memory phenotype. Cytokine production by CD4+ and CD8+ T cells after activation was not modified in NT1 patients. In H1N1 vaccinated NT1 patients, absolute counts of CD3+, CD8+ T cells, and B cells were increased compared to non-vaccinated NT1 patients. These results support a global T cell activation in NT1 patients and thus support a T cell-mediated autoimmune origin of NT1, but do not demonstrate the pathological role of H1N1 prophylactic vaccination. They should prompt further studies of T cells, particularly of Tregs (such as suppression and proliferation antigen specific assays, and also T-cell receptor sequencing), in NT1.

  12. GenomeRunner web server: regulatory similarity and differences define the functional impact of SNP sets.

    Science.gov (United States)

    Dozmorov, Mikhail G; Cara, Lukas R; Giles, Cory B; Wren, Jonathan D

    2016-08-01

    The growing amount of regulatory data from the ENCODE, Roadmap Epigenomics and other consortia provides a wealth of opportunities to investigate the functional impact of single nucleotide polymorphisms (SNPs). Yet, given the large number of regulatory datasets, researchers are posed with a challenge of how to efficiently utilize them to interpret the functional impact of SNP sets. We developed the GenomeRunner web server to automate systematic statistical analysis of SNP sets within a regulatory context. Besides defining the functional impact of SNP sets, GenomeRunner implements novel regulatory similarity/differential analyses, and cell type-specific regulatory enrichment analysis. Validated against literature- and disease ontology-based approaches, analysis of 39 disease/trait-associated SNP sets demonstrated that the functional impact of SNP sets corresponds to known disease relationships. We identified a group of autoimmune diseases with SNPs distinctly enriched in the enhancers of T helper cell subpopulations, and demonstrated relevant cell type-specificity of the functional impact of other SNP sets. In summary, we show how systematic analysis of genomic data within a regulatory context can help interpreting the functional impact of SNP sets. GenomeRunner web server is freely available at http://www.integrativegenomics.org/ mikhail.dozmorov@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells

    Science.gov (United States)

    Harker-Murray, Paul; Porter, Stephen B.; Merkel, Sarah C.; Londer, Aryel; Taylor, Dawn K.; Bina, Megan; Panoskaltsis-Mortari, Angela; Rubinstein, Pablo; Van Rooijen, Nico; Golovina, Tatiana N.; Suhoski, Megan M.; Miller, Jeffrey S.; Wagner, John E.; June, Carl H.; Riley, James L.

    2008-01-01

    Previously, we showed that human umbilical cord blood (UCB) regulatory T cells (Tregs) could be expanded approximately 100-fold using anti-CD3/28 monoclonal antibody (mAb)–coated beads to provide T-cell receptor and costimulatory signals. Because Treg numbers from a single UCB unit are limited, we explored the use of cell-based artificial antigen-presenting cells (aAPCs) preloaded with anti-CD3/28 mAbs to achieve higher levels of Treg expansion. Compared with beads, aAPCs had similar expansion properties while significantly increasing transforming growth factor β (TGF-β) secretion and the potency of Treg suppressor function. aAPCs modified to coexpress OX40L or 4-1BBL expanded UCB Tregs to a significantly greater extent than bead- or nonmodified aAPC cultures, reaching mean expansion levels exceeding 1250-fold. Despite the high expansion and in contrast to studies using other Treg sources, neither OX40 nor 4-1BB signaling of UCB Tregs reduced in vitro suppression. UCB Tregs expanded with 4-1BBL expressing aAPCs had decreased levels of proapoptotic bim. UCB Tregs expanded with nonmodified or modified aAPCs versus beads resulted in higher survival associated with increased Treg persistence in a xeno-geneic graft-versus-host disease lethality model. These data offer a novel approach for UCB Treg expansion using aAPCs, including those coexpressing OX40L or 4-1BBL. PMID:18645038

  14. Active site-targeted covalent irreversible inhibitors of USP7 impair the functions of Foxp3+ T-regulatory cells by promoting ubiquitination of Tip60.

    Directory of Open Access Journals (Sweden)

    Feng Wang

    Full Text Available Accumulation of Foxp3+ T-regulatory (Treg cells in the tumor microenvironment is associated with tumor immune evasion and poor patient outcome in the case of many solid tumors. Current therapeutic strategies for blocking Treg functions are not Treg-specific, and display only modest and transient efficacy. Recent studies revealed that ubiquitin-specific protease 7 (USP7 is essential for Treg functions by stabilizing expression of Tip60 and Foxp3, which together are central to the development and maintenance of the Treg cell lineage. Pharmacological inhibition of USP7 is therefore a promising strategy for suppressing Treg functions and promoting anti-tumor immunity. Previously, we reported the P5091 series of small molecule USP7 inhibitors and demonstrated their direct anti-tumor activity in vivo using xenograft models. However, the precise mechanism of action of these compounds was not well defined. In this study, we report the development and characterization of P217564, a second-generation USP7 inhibitor with improved potency and selectivity. P217564 selectively targets the catalytic cleft of USP7 and modifies its active site cysteine (C223 by forming a covalent adduct. Irreversible inhibition of USP7 results in durable downstream biological responses in cells, including down-regulation of Tip60 and consequent impairment of Treg suppressive function. In addition, we demonstrate that both USP7 and various USP7 substrates are subjected to Lys48-mediated ubiquitin modification, consistent with increased proteasomal degradation of these proteins because of USP7 inhibition.

  15. Granzyme A Is Required for Regulatory T-Cell Mediated Prevention of Gastrointestinal Graft-versus-Host Disease.

    Directory of Open Access Journals (Sweden)

    Sarvari Velaga

    Full Text Available In our previous work we could identify defects in human regulatory T cells (Tregs likely favoring the development of graft-versus-host disease (GvHD following allogeneic stem cell transplantation (SCT. Treg transcriptome analyses comparing GvHD and immune tolerant patients uncovered regulated gene transcripts highly relevant for Treg cell function. Moreover, granzyme A (GZMA also showed a significant lower expression at the protein level in Tregs of GvHD patients. GZMA induces cytolysis in a perforin-dependent, FAS-FASL independent manner and represents a cell-contact dependent mechanism for Tregs to control immune responses. We therefore analyzed the functional role of GZMA in a murine standard model for GvHD. For this purpose, adoptively transferred CD4+CD25+ Tregs from gzmA-/- mice were analyzed in comparison to their wild type counterparts for their capability to prevent murine GvHD. GzmA-/- Tregs home efficiently to secondary lymphoid organs and do not show phenotypic alterations with respect to activation and migration properties to inflammatory sites. Whereas gzmA-/- Tregs are highly suppressive in vitro, Tregs require GZMA to rescue hosts from murine GvHD, especially regarding gastrointestinal target organ damage. We herewith identify GZMA as critical effector molecule of human Treg function for gastrointestinal immune response in an experimental GvHD model.

  16. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice.

    Science.gov (United States)

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-04-30

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments.

  17. Helios expression in regulatory T cells promotes immunosuppression, angiogenesis and the growth of leukemia cells in pediatric acute lymphoblastic leukemia.

    Science.gov (United States)

    Li, Xue; Li, Dong; Huang, Xiaoyang; Zhou, Panpan; Shi, Qing; Zhang, Bing; Ju, Xiuli

    2018-04-01

    Regulatory T cells (Tregs) characterized by the transcription factor forkhead box P3 (FoxP3) are crucial for maintaining immune tolerance and preventing autoimmunity. However, FoxP3 does not function alone and Helios is considered a potential candidate for defining Treg subsets. In this study, we investigated the expression and function of Helios for identifying Tregs in childhood precursor B-cell acute lymphoblastic leukemia (pre-B ALL). Our results demonstrated that patients with pre-B ALL had a higher percentage of Helios + FoxP3 + CD4 + Tregs. And there was a positive correlation between the expression of Helios and the suppressive function of Tregs, the risk gradation of ALL. Helios in combination with CD4 and FoxP3 may be an effective way to detect functional Tregs in pre-B ALL by promoting the secretion of transforming growth factor (TGF)-β1. Furthermore, Helios + Tregs could regulate angiogenesis in the BM niche of pre-B ALL via the VEGFA/VEGFR2 pathway. We also found Helios + Tregs decreased apoptosis rate of nalm-6 cells by up-regulating the expression of anti-apoptosis protein Bcl-2. In summary, these data strongly imply the physiological importance of Helios expression in Tregs, and suggest that the manipulation of Helios may serve as a novel strategy for cancer immunotherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Rapid and selective expansion of nonclonotypic T cells in regulatory T cell-deficient, foreign antigen-specific TCR-transgenic scurfy mice: antigen-dependent expansion and TCR analysis.

    Science.gov (United States)

    Sharma, Rahul; Ju, Angela Chiao-Ying; Kung, John T; Fu, Shu Man; Ju, Shyr-Te

    2008-11-15

    Foreign Ag-specific TCR-transgenic (Tg) mice contain a small fraction of T cells bearing the endogenous Vbeta and Valpha chains as well as a population expressing an intermediate level of Tg TCR. Importantly, these minor nonclonotypic populations contain > or = 99% of the CD4(+)Foxp3(+) regulatory T cells (Treg) and, despite low overall Treg expression, peripheral tolerance is maintained. In the OT-II TCR (OVA-specific, Vbeta5(high)Valpha2(high)) Tg scurfy (Sf) mice (OT-II Sf) that lack Treg, nonclonotypic T cells markedly expanded in the periphery but not in the thymus. Expanded T cells expressed memory/effector phenotype and were enriched in blood and inflamed lungs. In contrast, Vbeta5(high)Valpha2(high) clonotypic T cells were not expanded, displayed the naive phenotype, and found mainly in the lymph nodes. Importantly, Vbeta5(neg) T cells were able to transfer multiorgan inflammation in Rag1(-/-) recipients. T cells bearing dual TCR (dual Vbeta or dual Valpha) were demonstrated frequently in the Vbeta5(int) and Valpha2(int) populations. Our study demonstrated that in the absence of Treg, the lack of peripheral expansion of clonotypic T cells is due to the absence of its high-affinity Ag OVA. Thus, the rapid expansion of nonclonotypic T cells in OT-II Sf mice must require Ag (self and foreign) with sufficient affinity. Our study has implications with respect to the roles of Ag and dual TCR in the selection and regulation of Treg and Treg-controlled Ag-dependent T cell expansion in TCR Tg and TCR Tg Sf mice, respectively.

  19. T helper cells in leprosy: An update.

    Science.gov (United States)

    Saini, Chaman; Tarique, Mohd; Rai, Reeta; Siddiqui, Anisuddin; Khanna, Neena; Sharma, Alpana

    2017-04-01

    Leprosy is an ancient disease caused by gram positive, rod shaped bacilli called Mycobacterium leprae. Patients present with varied clinico-pathological disease depending on the host immune response to Mycobacterium leprae. Thus tuberculoid (TT) and lepromatous (LL) patients represent two ends of a spectrum where the former shows limited disease, high T cell mediate immune (CMI) response and low antibody (HI) levels in serum. In contrast the latter has low T cell and high humoral immune response i.e antibody levels. The mechanisms underlying these differences have been investigated intensely; however, there is no consensus on the primary immunological basis. Over three decades, Th1 and Th2 paradigm were thought to underling tuberculoid and lepromatous disease respectively. However many patients were shown to have mixed Th1/Th2 pattern of (IFN-γ/IL-4) cytokines. The present review was undertaken with a view to understand the T cells and cytokine dysregulation in leprosy. In recent years the sub classes of T cells that are Regulatory in nature (Treg) have been implicated in immune diseases where they were shown to suppress T cell functions. Additionally Th17 cells secreting IL-17A, IL17F, were implicated in immune inflammation. Taken together these regulatory cells may play a part in influencing immune responses in leprosy. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  20. Calpain 4 is not necessary for LFA-1-mediated function in CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Sarah A Wernimont

    2010-05-01

    Full Text Available T cell activation and immune synapse formation require the appropriate activation and clustering of the integrin, LFA-1. Previous work has reported that the calpain family of calcium-dependent proteases are important regulators of integrin activation and modulate T cell adhesion and migration. However, these studies have been limited by the use of calpain inhibitors, which have known off-target effects.Here, we used a LoxP/CRE system to specifically deplete calpain 4, a small regulatory calpain subunit required for expression and activity of ubiquitously expressed calpains 1 and 2, in CD4+ T cells. CD4+ and CD8+ T cells developed normally in Capn4(F/F:CD4-CRE mice and had severely diminished expression of Calpain 1 and 2, diminished talin proteolysis and impaired casein degradation. Calpain 4-deficient T cells showed no difference in adhesion or migration on the LFA-1 ligand ICAM-1 compared to control T cells. Moreover, there was no impairment in conjugation between Capn4(F/F:CD4-CRE T cells and antigen presenting cells, and the conjugates were still capable of polarizing LFA-1, PKC-theta and actin to the immune synapse. Furthermore, T cells from Capn4(F/F:CD4-CRE mice showed normal proliferation in response to either anti-CD3/CD28 coated beads or cognate antigen-loaded splenocytes. Finally, there were no differences in the rates of apoptosis following extrinsic and intrinsic apoptotic stimuli.Our findings demonstrate that calpain 4 is not necessary for LFA-1-mediated adhesion, conjugation or migration. These results challenge previous reports that implicate a central role for calpains in the regulation of T cell LFA-1 function.

  1. IL-4/IL-13 Heteroreceptor Influences Th17 Cell Conversion and Sensitivity to Regulatory T Cell Suppression To Restrain Experimental Allergic Encephalomyelitis.

    Science.gov (United States)

    Barik, Subhasis; Ellis, Jason S; Cascio, Jason A; Miller, Mindy M; Ukah, Tobechukwu K; Cattin-Roy, Alexis N; Zaghouani, Habib

    2017-10-01

    IL-4 and IL-13 have been defined as anti-inflammatory cytokines that can counter myelin-reactive T cells and modulate experimental allergic encephalomyelitis. However, it is not known whether endogenous IL-4 and IL-13 contribute to the maintenance of peripheral tolerance and whether their function is coordinated with T regulatory cells (Tregs). In this study, we used mice in which the common cytokine receptor for IL-4 and IL-13, namely the IL-4Rα/IL-13Rα1 (13R) heteroreceptor (HR), is compromised and determined whether the lack of signaling by endogenous IL-4 and IL-13 through the HR influences the function of effector Th1 and Th17 cells in a Treg-dependent fashion. The findings indicate that mice-deficient for the HR (13R -/- ) are more susceptible to experimental allergic encephalomyelitis than mice sufficient for the HR (13R +/+ ) and develop early onset and more severe disease. Moreover, Th17 cells from 13R -/- mice had reduced ability to convert to Th1 cells and displayed reduced sensitivity to suppression by Tregs relative to Th17 effectors from 13R +/+ mice. These observations suggest that IL-4 and IL-13 likely operate through the HR and influence Th17 cells to convert to Th1 cells and to acquire increased sensitivity to suppression, leading to control of immune-mediated CNS inflammation. These previously unrecognized findings shed light on the intricacies underlying the contribution of cytokines to peripheral tolerance and control of autoimmunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Il [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Kim, Seung Hyun [Div. of AIDS, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Park, Jin Wook; Park, Yeong-Min [Dept. of Microbiology and Immunology, College of Medicine, Pusan National University, Yang-San (Korea, Republic of); Lee, Sang Eun, E-mail: ondalgl@cdc.go.kr [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of)

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  3. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    International Nuclear Information System (INIS)

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy; Chattopadhyay, Samit

    2015-01-01

    T reg cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T reg cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T reg phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T reg cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T reg cells in SMAR1 −/− mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T reg cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T reg physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T reg cells. • SMAR1 −/− T reg cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1 −/− mice. • Both Foxp3 and SMAR1 maintain T reg phenotype that controls colitis

  4. Regulatory B and T cell responses in patients with autoimmune thyroid disease and healthy controls

    DEFF Research Database (Denmark)

    Kristensen, Birte

    2016-01-01

    Autoimmune diseases occur due to faulty self-tolerance. Graves' disease (GD) and Hashimoto's thyroiditis (HT) are classic examples of organ-specific autoimmune diseases. GD is an auto-antibody-mediated disease where autoantibodies are produced against the thyroid stimulating hormone receptor (TSHR...... (Bregs) and regulatory T cells (Tregs) were investigated in the context of GD and HT. First, we studied the role of the thyroid self-antigen, thyroglobulin (TG) in healthy donors. The self-antigen TG, but not the foreign recall antigen tetanus toxoid (TT), was able to induce interleukin 10 (IL-10......) secretion by B cells and CD4+ T cells. These IL-10 producing B cells (B10 cells) from healthy donors were enriched with the CD5+ and CD24hi phenotype. In addition, TG was able to induce IL-6 production by B cells. In contrast, TT induced production of Th1-type pro-inflammatory cytokines including interferon...

  5. Regulatory T cells in induced sputum of asthmatic children: association with inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Hamzaoui Agnès

    2010-02-01

    Full Text Available Abstract Background and objective CD4+CD25+ regulatory T (Treg cells play an essential role in maintaining immune homeostasis. In this study, we investigated whether the induced sputum (IS pool and the function of CD4+CD25+ Treg cells are altered in asthma pediatric patients. Methods Treg activity was studied in the IS of 40 asthmatic children. CD3+ cells were analyzed for the expression of FoxP3 mRNA by real time reverse transcription-polymerase chain reaction (RT-PCR. IS cells from asthmatics and controls were stained for Treg markers and analyzed by flow cytometry. We also studied the ability of Treg cells to differentiate monocytes toward alternatively activated macrophages (AAM, and to suppress proinflammatory cytokines. Results (i Mild and moderate asthmatics had significantly decreased expression of FoxP3/β-actin mRNA and decreased proportions of CD4+CD25highFoxP3+ cells compared to healthy children; (ii patients with moderate asthma had even lower proportions of FoxP3 expression compared to mild asthmatic patients; (iii monocytes cultured with Treg cells displayed typical features of AAM, including up-regulated expression of CD206 (macrophage mannose receptor and CD163 (hemoglobin scavenger receptor, and an increased production of chemokine ligand 18 (CCL18. In addition, Treg cells from asthmatics have a reduced capacity to suppress LPS-proinflammatory cytokine production from monocytes/macrophages (IL-1, IL-6 and TNF-α. Conclusion Asthma pediatric patients display a decreased bronchial Treg population. The impaired bronchial Treg activity is associated with disease severity.

  6. A cluster of coregulated genes determines TGF-β–induced regulatory T-cell (Treg) dysfunction in NOD mice

    Science.gov (United States)

    D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A.; Mathis, Diane; Benoist, Christophe

    2011-01-01

    Foxp3+ regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4+ T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility. PMID:21543717

  7. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection.

    Science.gov (United States)

    Li, Haijun; Zhai, Naicui; Wang, Zhongfeng; Song, Hongxiao; Yang, Yang; Cui, An; Li, Tianyang; Wang, Guangyi; Niu, Junqi; Crispe, Ian Nicholas; Su, Lishan; Tu, Zhengkun

    2017-09-12

    HBV infection represents a major health problem worldwide, but the immunological mechanisms by which HBV causes chronic persistent infection remain only partly understood. Recently, cell subsets with suppressive features have been recognised among monocytes and natural killer (NK) cells. Here we examine the effects of HBV on monocytes and NK cells. Monocytes and NK cells derived from chronic HBV-infected patients and healthy controls were purified and characterised for phenotype, gene expression and cytokines secretion by flow cytometry, quantitative real-time (qRT)-PCR, ELISA and western blotting. Culture and coculture of monocytes and NK cells were used to determine NK cell activation, using intracellular cytokines staining. In chronic HBV infection, monocytes express higher levels of PD-L1, HLA-E, interleukin (IL)-10 and TGF-β, and NK cells express higher levels of PD-1, CD94 and IL-10, compared with healthy individuals. HBV employs hepatitis B surface antigen (HBsAg) to induce suppressive monocytes with HLA-E, PD-L1, IL-10 and TGF-β expression via the MyD88/NFκB signalling pathway. HBV-treated monocytes induce NK cells to produce IL-10, via PD-L1 and HLA-E signals. Such NK cells inhibit autologous T cell activation. Our findings reveal an immunosuppressive cascade, in which HBV generates suppressive monocytes, which initiate regulatory NK cells differentiation resulting in T cell inhibition. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models.

    Directory of Open Access Journals (Sweden)

    Li Shen

    Full Text Available Immunosuppressive factors such as regulatory T cells (Tregs limit the efficacy of immunotherapies. Histone deacetylase (HDAC inhibitors have been reported to have antitumor activity in different malignancies and immunomodulatory effects. Herein, we report the Tregs-targeting and immune-promoting effect of a class I specific HDAC inhibitor, entinostat, in combination with either IL-2 in a murine renal cell carcinoma (RENCA model or a survivin-based vaccine therapy (SurVaxM in a castration resistant prostate cancer (CR Myc-CaP model.RENCA or CR Myc-CaP tumors were implanted orthotopically or subcutaneously, respectively. Inoculated mice were randomized into four treatment groups: vehicle, entinostat, cytokine or vaccine, and combination. Tregs in the blood were assessed by FACS analysis. Real time quantitative PCR and Western blot analysis of isolated T cell subpopulations from spleen were performed to determine Foxp3 gene and protein expression. The suppressive function of Tregs was tested by T cell proliferation assay. Low dose (5 mg/kg entinostat reduced Foxp3 levels in Tregs and this was associated with enhanced tumor growth inhibition in combination with either IL-2 or a SurVaxM vaccine. Entinostat down-regulated Foxp3 expression transcriptionally and blocked Tregs suppressive function without affecting T effector cells (Teffs. In vitro low dose entinostat (0.5 µM induced STAT3 acetylation and a specific inhibitor of STAT3 partially rescued entinostat-induced down-regulation of Foxp3, suggesting that STAT3 signaling is involved in Foxp3 down-regulation by entinostat.These results demonstrate a novel immunomodulatory effect of class I HDAC inhibition and provide a rationale for the clinical testing of entinostat to enhance cancer immunotherapy.

  9. Sequence analysis of the MYC oncogene involved in the t(8;14)(q24;q11) chromosome translocation in a human leukemia T-cell line indicates that putative regulatory regions are not altered

    International Nuclear Information System (INIS)

    Finver, S.N.; Nishikura, K.; Finger, L.R.; Haluska, F.G.; Finan, J.; Nowell, P.C.; Croce, C.M.

    1988-01-01

    The authors cloned the translocation-associated and homologous normal MYC alleles from SKW-3, a leukemia T-cell line with the t(8; 14)(q24; q11) translocation, and determined the sequence of the MYC oncogene first exon and flanking 5' putative regulatory regions. S1 nuclease protection experiments utilizing a MYC first exon probe demonstrated transcriptional deregulation of the MYC gene associated with the T-cell receptor α locus on the 8q + chromosome of SKW-3 cells. Nucleotide sequence analysis of the translocation-associated (8q +) MYC allele identified a single base substitution within the upstream flanking region; the homologous nontranslocated allele contained an additional substitution and a two-base deletion. None of the deletions or substitutions localized to putative 5' regulatory regions. The MYC first exon sequence was germ line in both alleles. These results demonstrate that alterations within the putative 5' MYC regulatory regions are not necessarily involved in MYC deregulation in T-cell leukemias, and they show that juxtaposition of the T-cell receptor α locus to a germ-line MYC oncogene results in MYC deregulation

  10. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    Energy Technology Data Exchange (ETDEWEB)

    Mirlekar, Bhalchandra; Patil, Sachin [Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411007 (India); Bopanna, Ramanamurthy [Experimental Animal Facility, National Centre for Cell Science, Ganeshkhind, Pune 411007 (India); Chattopadhyay, Samit, E-mail: samit@nccs.res.in [Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411007 (India)

    2015-08-21

    T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.

  11. Circulating regulatory Tfh cells are enriched in patients with chronic hepatitis B infection and induce the differentiation of regulatory B cells.

    Science.gov (United States)

    Wang, Rongxin; Xie, Ruiling; Song, Zongchang

    2018-04-15

    Chronic hepatitis B virus (HBV) infection is a complex disease with dysregulations in the immune system. Follicular helper T (Tfh) cells are professional B helper cells that are crucial to the development of antibody responses and are involved in a variety of diseases. In this study, we examined the circulating Tfh cells in patients with chronic HBV infection. We observed that CD3 + CD4 + CXCR5 + circulating Tfh cells contained a CD25 + Foxp3 + Treg-like subset that was significantly enriched in patients with chronic HBV infections. The CD25 + Tfh subset presented distinctive cytokine secretion profile, such as lower interferon (IFN)-γ and interleukin (IL)-17, and higher transforming growth factor (TGF)-β secretion, compared to the CD25 - Tfh subset. When incubated with autologous naive CD10 - CD27 - CD19 + B cells, the CD25 + Tfh subset was less capable of mediating CD20 -/lo CD38 + plasmablast differentiation than the CD25 - Tfh subset. In terms of Ig production, CD25 + Tfh cells were more potent at inducing IgM but less potent at inducing IgG and IgA than CD25 - Tfh cells. Interestingly, B cells following incubation with CD25 + Tfh cells presented elevated regulatory function, with higher production of IL-10 and enhanced capacity of suppressing autologous CD8 + T cell inflammation. In the chronic HBV-infected patients, the frequency of IL-10 + B cells and the HBV viral load were positively correlated with the frequency of CD25 + Foxp3 + CD4 + CXCR5 + Tfh cells. Together, this study presented that CD25 + Foxp3 + Treg-like Tfh cells were enriched in chronic HBV-infected patients and could promote regulatory B cell functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.

    Science.gov (United States)

    Hsu, Peter; Nanan, Ralph

    2014-10-01

    In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia.

    Science.gov (United States)

    Zhu, Liuluan; Kong, Yaxian; Zhang, Jianhong; Claxton, David F; Ehmann, W Christopher; Rybka, Witold B; Palmisiano, Neil D; Wang, Ming; Jia, Bei; Bayerl, Michael; Schell, Todd D; Hohl, Raymond J; Zeng, Hui; Zheng, Hong

    2017-06-19

    T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) and programmed cell death protein 1 (PD-1) are important inhibitory receptors that associate with T cell exhaustion in acute myeloid leukemia (AML). In this study, we aimed to determine the underlying transcriptional mechanisms regulating these inhibitory pathways. Specifically, we investigated the role of transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) in T cell response and transcriptional regulation of TIGIT and PD-1 in AML. Peripheral blood samples collected from patients with AML were used in this study. Blimp-1 expression was examined by flow cytometry. The correlation of Blimp-1 expression to clinical characteristics of AML patients was analyzed. Phenotypic and functional studies of Blimp-1-expressing T cells were performed using flow cytometry-based assays. Luciferase reporter assays and ChIP assays were applied to assess direct binding and transcription activity of Blimp-1. Using siRNA to silence Blimp-1, we further elucidated the regulatory role of Blimp-1 in the TIGIT and PD-1 expression and T cell immune response. Blimp-1 expression is elevated in T cells from AML patients. Consistent with exhaustion, Blimp-1 + T cells upregulate multiple inhibitory receptors including PD-1 and TIGIT. In addition, they are functionally impaired manifested by low cytokine production and decreased cytotoxicity capacity. Importantly, the functional defect is reversed by inhibition of Blimp-1 via siRNA knockdown. Furthermore, Blimp-1 binds to the promoters of PD-1 and TIGIT and positively regulates their expression. Our study demonstrates an important inhibitory effect of Blimp-1 on T cell response in AML; thus, targeting Blimp-1 and its regulated molecules to improve the immune response may provide effective leukemia therapeutics.

  14. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Liuluan Zhu

    2017-06-01

    Full Text Available Abstract Background T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM domain (TIGIT and programmed cell death protein 1 (PD-1 are important inhibitory receptors that associate with T cell exhaustion in acute myeloid leukemia (AML. In this study, we aimed to determine the underlying transcriptional mechanisms regulating these inhibitory pathways. Specifically, we investigated the role of transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1 in T cell response and transcriptional regulation of TIGIT and PD-1 in AML. Methods Peripheral blood samples collected from patients with AML were used in this study. Blimp-1 expression was examined by flow cytometry. The correlation of Blimp-1 expression to clinical characteristics of AML patients was analyzed. Phenotypic and functional studies of Blimp-1-expressing T cells were performed using flow cytometry-based assays. Luciferase reporter assays and ChIP assays were applied to assess direct binding and transcription activity of Blimp-1. Using siRNA to silence Blimp-1, we further elucidated the regulatory role of Blimp-1 in the TIGIT and PD-1 expression and T cell immune response. Results Blimp-1 expression is elevated in T cells from AML patients. Consistent with exhaustion, Blimp-1+ T cells upregulate multiple inhibitory receptors including PD-1 and TIGIT. In addition, they are functionally impaired manifested by low cytokine production and decreased cytotoxicity capacity. Importantly, the functional defect is reversed by inhibition of Blimp-1 via siRNA knockdown. Furthermore, Blimp-1 binds to the promoters of PD-1 and TIGIT and positively regulates their expression. Conclusions Our study demonstrates an important inhibitory effect of Blimp-1 on T cell response in AML; thus, targeting Blimp-1 and its regulated molecules to improve the immune response may provide effective leukemia therapeutics.

  15. Ex vivo generation of human alloantigen-specific regulatory T cells from CD4(posCD25(high T cells for immunotherapy.

    Directory of Open Access Journals (Sweden)

    Jorieke H Peters

    Full Text Available BACKGROUND: Regulatory T cell (Treg based immunotherapy is a potential treatment for several immune disorders. By now, this approach proved successful in preclinical animal transplantation and auto-immunity models. In these models the success of Treg based immunotherapy crucially depends on the antigen-specificity of the infused Treg population. For the human setting, information is lacking on how to generate Treg with direct antigen-specificity ex vivo to be used for immunotherapy. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate that in as little as two stimulation cycles with HLA mismatched allogeneic stimulator cells and T cell growth factors a very high degree of alloantigen-specificity was reached in magnetic bead isolated human CD4(posCD25(high Treg. Efficient increases in cell numbers were obtained. Primary allogeneic stimulation appeared a prerequisite in the generation of alloantigen-specific Treg, while secondary allogeneic or polyclonal stimulation with anti-CD3 plus anti-CD28 monoclonal antibodies enriched alloantigen-specificity and cell yield to a similar extent. CONCLUSIONS/SIGNIFICANCE: The ex vivo expansion protocol that we describe will very likely increase the success of clinical Treg-based immunotherapy, and will help to induce tolerance to selected antigens, while minimizing general immune suppression. This approach is of particular interest for recipients of HLA mismatched transplants.

  16. Indirect presentation in the thymus limits naive and regulatory T-cell differentiation by promoting deletion of self-reactive thymocytes.

    Science.gov (United States)

    Yap, Jin Yan; Wirasinha, Rushika C; Chan, Anna; Howard, Debbie R; Goodnow, Christopher C; Daley, Stephen R

    2018-02-07

    Acquisition of T-cell central tolerance involves distinct pathways of self-antigen presentation to thymocytes. One pathway termed indirect presentation requires a self-antigen transfer step from thymic epithelial cells (TECs) to bone marrow-derived cells before the self-antigen is presented to thymocytes. The role of indirect presentation in central tolerance is context-dependent, potentially due to variation in self-antigen expression, processing and presentation in the thymus. Here, we report experiments in mice in which TECs expressed a membrane-bound transgenic self-antigen, hen egg lysozyme (HEL), from either the insulin (insHEL) or thyroglobulin (thyroHEL) promoter. Intrathymic HEL expression was less abundant and more confined to the medulla in insHEL mice compared with thyroHEL mice. When indirect presentation was impaired by generating mice lacking MHC class II expression in bone marrow-derived antigen-presenting cells, insHEL-mediated thymocyte deletion was abolished, whereas thyroHEL-mediated deletion occurred at a later stage of thymocyte development and Foxp3 + regulatory T-cell differentiation increased. Indirect presentation increased the strength of T-cell receptor signalling that both self-antigens induced in thymocytes, as assessed by Helios expression. Hence, indirect presentation limits the differentiation of naive and regulatory T cells by promoting deletion of self-reactive thymocytes. © 2018 John Wiley & Sons Ltd.

  17. iPSC-Derived Regulatory Dendritic Cells Inhibit Allograft Rejection by Generating Alloantigen-Specific Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Songjie Cai

    2017-05-01

    Full Text Available Regulatory dendritic cell (DCregs-based immunotherapy is a potential therapeutic tool for transplant rejection. We generated DCregs from murine induced pluripotent stem cells (iPSCs, which could remain in a “stable immature stage” even under strong stimulation. Harnessing this characteristic, we hypothesized that iPS-DCregs worked as a negative vaccine to generate regulatorycells (Tregs, and induced donor-specific allograft acceptance. We immunized naive CBA (H-2Kk mice with B6 (H-2Kb iPS-DCregs and found that Tregs (CD4+CD25+FOXP3+ significantly increased in CBA splenocytes. Moreover, immunized CBA recipients permanently accepted B6 cardiac grafts in a donor-specific pattern. We demonstrated mechanistically that donor-type iPS-DCregs triggered transforming growth factor β1 secretion, under which the donor-antigen peptides directed naive CD4+ T cells to differentiate into donor-specific FOXP3+ Tregs instead of into effector T cells in vivo. These findings highlight the potential of iPS-DCregs as a key cell therapy resource in clinical transplantation.

  18. Effects of MicroRNA on Regulatory T Cells and Implications for Adoptive Cellular Therapy to Ameliorate Graft-versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Keli L. Hippen

    2018-01-01

    Full Text Available Regulatory T cells (Tregs are key mediators of the immune system. MicroRNAs (miRNAs are a family of ~22 nucleotide non-coding RNAs that are processed from longer precursors by the RNases Drosha and Dicer. miRNA regulates protein expression posttranscriptionally through mRNA destabilization or translational silencing. A critical role for miRNA in Treg function was initially discovered when both Dicer and Drosha knockout (KO mice were found to develop a fatal autoimmune disease phenotypically similar to Foxp3 KO mice.

  19. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32

    Directory of Open Access Journals (Sweden)

    Sugiyama Hideaki

    2011-05-01

    Full Text Available Abstract Background Elevated numbers of regulatory T cells (Tregs have been implicated in certain cancers. Depletion of Tregs has been shown to increase anti-tumor immunity. Tregs also play a critical role in the suppression of autoimmune responses. The study of Tregs has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32, also known as Glycoprotein A Repetitions Predominant (GARP, has been postulated as a novel surface marker of activated Tregs. However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of Tregs expressing LRRC32. Results Using naturally-occurring freshly isolated Tregs, we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ Tregs are distinct from LRRC32- Tregs with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ Tregs are more potent suppressors than LRRC32- Tregs. Conclusions A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent Treg populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of Tregs and the refinement of immunotherapeutic strategies aimed at targeting these cells.

  20. Narcolepsy Type 1 Is Associated with a Systemic Increase and Activation of Regulatory T Cells and with a Systemic Activation of Global T Cells.

    Directory of Open Access Journals (Sweden)

    Michel Lecendreux

    Full Text Available Narcolepsy is a rare neurologic disorder characterized by excessive daytime sleepiness, cataplexy and disturbed nocturnal sleep patterns. Narcolepsy type 1 (NT1 has been shown to result from a selective loss of hypothalamic hypocretin-secreting neurons with patients typically showing low CSF-hypocretin levels (<110 pg/ml. This specific loss of hypocretin and the strong association with the HLA-DQB1*06:02 allele led to the hypothesis that NT1 could be an immune-mediated pathology. Moreover, susceptibility to NT1 has recently been associated with several pathogens, particularly with influenza A H1N1 virus either through infection or vaccination. The goal of this study was to compare peripheral blood immune cell populations in recent onset pediatric NT1 subjects (post or non-post 2009-influenza A H1N1 vaccination to healthy donors. We demonstrated an increased number of central memory CD4+ T cells (CD62L+ CD45RA- associated to an activated phenotype (increase in CD69 and CD25 expression in NT1 patients. Percentage and absolute count of regulatory T cells (Tregs in NT1 patients were increased associated with an activated phenotype (increase in GITR and LAP expression, and of activated memory phenotype. Cytokine production by CD4+ and CD8+ T cells after activation was not modified in NT1 patients. In H1N1 vaccinated NT1 patients, absolute counts of CD3+, CD8+ T cells, and B cells were increased compared to non-vaccinated NT1 patients. These results support a global T cell activation in NT1 patients and thus support a T cell-mediated autoimmune origin of NT1, but do not demonstrate the pathological role of H1N1 prophylactic vaccination. They should prompt further studies of T cells, particularly of Tregs (such as suppression and proliferation antigen specific assays, and also T-cell receptor sequencing, in NT1.

  1. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis

    Science.gov (United States)

    Breser, Maria L.; Lino, Andreia C.; Motrich, Ruben D.; Godoy, Gloria J.; Demengeot, Jocelyne; Rivero, Virginia E.

    2016-01-01

    Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence. PMID:27624792

  2. SA-4-1BBL costimulation inhibits conversion of conventional CD4+ T cells into CD4+ FoxP3+ T regulatory cells by production of IFN-γ.

    Directory of Open Access Journals (Sweden)

    Shravan Madireddi

    Full Text Available Tumors convert conventional CD4(+ T cells into induced CD4(+CD25(+FoxP3(+ T regulatory (iTreg cells that serve as an effective means of immune evasion. Therefore, the blockade of conventional CD4(+ T cell conversion into iTreg cells represents an attractive target for improving the efficacy of various immunotherapeutic approaches. Using a novel form of 4-1BBL molecule, SA-4-1BBL, we previously demonstrated that costimulation via 4-1BB receptor renders both CD4(+and CD8(+ T effector (Teff cells refractory to inhibition by Treg cells and increased intratumoral Teff/Treg cell ratio that correlated with therapeutic efficacy in various preclinical tumor models. Building on these studies, we herein show for the first time, to our knowledge, that signaling through 4-1BB inhibits antigen- and TGF-β-driven conversion of naïve CD4(+FoxP3(- T cells into iTreg cells via stimulation of IFN-γ production by CD4(+FoxP3(- T cells. Importantly, treatment with SA-4-1BBL blocked the conversion of CD4(+FoxP3(- T cells into Treg cells by EG.7 tumors. Taken together with our previous studies, these results show that 4-1BB signaling negatively modulate Treg cells by two distinct mechanisms: i inhibiting the conversion of CD4(+FoxP3(- T cells into iTreg cells and ii endowing Teff cells refractory to inhibition by Treg cells. Given the dominant role of Treg cells in tumor immune evasion mechanisms, 4-1BB signaling represents an attractive target for favorably tipping the Teff:Treg balance toward Teff cells with important implications for cancer immunotherapy.

  3. Regulatory T cells predict the time to initial treatment in early stage chronic lymphocytic leukemia.

    Science.gov (United States)

    Weiss, Lukas; Melchardt, Thomas; Egle, Alexander; Grabmer, Christoph; Greil, Richard; Tinhofer, Inge

    2011-05-15

    Early stage chronic lymphocytic leukemia is characterized by a highly variable course of disease. Because it is believed that regulatory T cells (T(regs) ) are potent suppressors of antitumor immunity, the authors hypothesized that increased T(regs) may favor disease progression. T(reg) levels (cluster of differentiation 3 [CD3]-positive, [CD4]-positive, CD25-positive, and CD127-negative) in peripheral blood from 102 patients were analyzed by flow cytometry. Statistical analysis was used to evaluate correlations with clinical data. The relative T(reg) numbers in CD4-positive T cells were significantly greater in patients with chronic lymphocytic leukemia compared with the numbers in a control group of 170 healthy individuals (P = .001). Patients were divided into 2 groups using a median T(reg) value of 9.7% (the percentage of CD4-positive T cells). Patients with higher T(reg) levels had a significantly shorter time to initial treatment (median, 5.9 years) compared with patients who had lower T(reg) levels (median, 11.7 years; log-rank P = .019). Furthermore, T(reg) levels (the percentage of CD4-positive T cells) had significant prognostic power to predict the time to initial treatment in univariate analysis (P = .023) and in multivariate Cox regression analysis that included the variables Rai stage, immunoglobulin heavy-chain variable region gene mutational status, chromosomal aberrations, and CD38 expression (P = .028). Higher T(reg) levels had significant and independent prognostic power for predicting the time to initial treatment in patients with low to intermediate stage chronic lymphocytic leukemia. 2010 American Cancer Society.

  4. Glucocorticoid-induced TNF receptor family related protein ligand [GITR-L] is requisite for optimal functioning of regulatory CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Gongxian eLiao

    2014-02-01

    Full Text Available Glucocorticoid-Induced Tumor necrosis factor Receptor family-related protein (GITR, TNFRSF18, CD357 is constitutively expressed on regulatory T cells (Tregs and is inducible on effector T cells (Teffs. In this report, we examine the role of GITR-Ligand (GITR-L, which is expressed by antigen presenting cells, on the development and expansion of Tregs. We found that GITR-L is dispensable for the development of naturally occurring FoxP3+ Treg cells in the thymus. However, the expansion of Treg in GITR-L-/- mice is impaired after injection of the dendritic cells (DCs inducing factor Flt3 ligand. Furthermore, DCs from the liver of GITR-L-/- mice were less efficient in inducing proliferation of antigen-specific Treg cells in vitro than the same cells from WT littermates. Upon gene transfer of ovalbumin into hepatocytes of GITR-L-/- FoxP3(GFP reporter mice using adeno-associated virus (AAV8-OVA the number of antigen-specific Treg in liver and spleen is reduced. The reduced number of Tregs resulted in an increase in the number of ovalbumin specific CD8+ T effector cells. This is highly significant because proliferation of antigen specific CD8+ cells itself is dependent on the presence of GITR-L, as shown by in vitro experiments and by adoptive transfers into GITR-L-/-Rag-/- and Rag-/- mice that had received AAV8-OVA. Surprisingly, administering αCD3 significantly reduced the numbers of FoxP3+ Treg cells in the liver and spleen of GITR-L-/- but not WT mice. Because soluble Fc-GITR-L partially rescues αCD3 induced in vitro depletion of the CD103+ subset of FoxP3+CD4+ Treg cells, we conclude that expression of GITR-L by antigen presenting cells is requisite for optimal Treg-mediated regulation of immune responses including those in response during gene transfer.

  5. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    Science.gov (United States)

    Zheng, Bin; van Bergenhenegouwen, Jeroen; Overbeek, Saskia; van de Kant, Hendrik J G; Garssen, Johan; Folkerts, Gert; Vos, Paul; Morgan, Mary E; Kraneveld, Aletta D

    2014-01-01

    While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus) and Bifidobacterium breve (B. breve) on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC), and in vivo, using murine dextran sodium sulfate (DSS) colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th) 17 and regulatory T cell (Treg) subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  6. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    Full Text Available While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus and Bifidobacterium breve (B. breve on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC, and in vivo, using murine dextran sodium sulfate (DSS colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th 17 and regulatory T cell (Treg subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  7. Increased frequency of CD8+ and CD4+ regulatory T cells in chronic lymphocytic leukemia: association with disease progression.

    Science.gov (United States)

    Jadidi-Niaragh, Farhad; Yousefi, Mehdi; Memarian, Ali; Hojjat-Farsangi, Mohammad; Khoshnoodi, Jalal; Razavi, Seyed Mohsen; Jeddi-Tehrani, Mahmood; Shokri, Fazel

    2013-02-01

    Little is known regarding the immunobiology of regulatory T (Treg) cells in hematopoietic malignancies, particularly in chronic lymphocytic leukemia (CLL). In the present study, we showed that the frequencies of CD8(+) and CD4(+) Treg cells were significantly increased in progressive as compared with indolent CLL patients and normal subjects. Enriched CD4(+) Treg cells induced a similar level of inhibition in polyclonally activated B cells and effector T cells from CLL patients and normal subjects. Our results suggest that the increase in circulating Treg cells may result in downregulation of tumor-specific immune response, leading to tumor expansion and disease progression.

  8. Induction of granzyme B expression in T-cell receptor/CD28-stimulated human regulatory T cells is suppressed by inhibitors of the PI3K-mTOR pathway

    Directory of Open Access Journals (Sweden)

    Kelley Todd W

    2009-11-01

    Full Text Available Abstract Background Regulatory T cells (Tregs can employ a cell contact- and granzyme B-dependent mechanism to mediate suppression of bystander T and B cells. Murine studies indicate that granzyme B is involved in the Treg-mediated suppression of anti-tumor immunity in the tumor microenvironment and in the Treg-mediated maintenance of allograft survival. In spite of its central importance, a detailed study of granzyme B expression patterns in human Tregs has not been performed. Results Our data demonstrated that natural Tregs freshly isolated from the peripheral blood of normal adults lacked granzyme B expression. Tregs subjected to prolonged TCR and CD28 triggering, in the presence of IL-2, expressed high levels of granzyme B but CD3 stimulation alone or IL-2 treatment alone failed to induce granzyme B. Treatment of Tregs with the mammalian target of rapamycin (mTOR inhibitor, rapamycin or the PI3 kinase (PI3K inhibitor LY294002 markedly suppressed granzyme B expression. However, neither rapamycin, as previously reported by others, nor LY294002 inhibited Treg proliferation or induced significant cell death in TCR/CD28/IL-2 stimulated cells. The proliferation rate of Tregs was markedly higher than that of CD4+ conventional T cells in the setting of rapamycin treatment. Tregs expanded by CD3/CD28/IL-2 stimulation without rapamycin demonstrated increased in vitro cytotoxic activity compared to Tregs expanded in the presence of rapamycin in both short term (6 hours and long term (48 hours cytotoxicity assays. Conclusion TCR/CD28 mediated activation of the PI3K-mTOR pathway is important for granyzme B expression but not proliferation in regulatory T cells. These findings may indicate that suppressive mechanisms other than granzyme B are utilized by rapamycin-expanded Tregs.

  9. The Alpha-Melanocyte Stimulating Hormone Induces Conversion of Effector T Cells into Treg Cells

    Directory of Open Access Journals (Sweden)

    Andrew W. Taylor

    2011-01-01

    Full Text Available The neuropeptide alpha-melanocyte stimulating hormone (α-MSH has an important role in modulating immunity and homeostasis. The production of IFN-γ by effector T cells is suppressed by α-MSH, while TGF-β production is promoted in the same cells. Such α-MSH-treated T cells have immune regulatory activity and suppress hypersensitivity, autoimmune diseases, and graft rejection. Previous characterizations of the α-MSH-induced Treg cells showed that the cells are CD4+ T cells expressing the same levels of CD25 as effector T cells. Therefore, we further analyzed the α-MSH-induced Treg cells for expression of effector and regulatory T-cell markers. Also, we examined the potential for α-MSH-induced Treg cells to be from the effector T-cell population. We found that the α-MSH-induced Treg cells are CD25+  CD4+ T cells that share similar surface markers as effector T cells, except that they express on their surface LAP. Also, the α-MSH treatment augments FoxP3 message in the effector T cells, and α-MSH induction of regulatory activity was limited to the effector CD25+ T-cell population. Therefore, α-MSH converts effector T cells into Treg cells, which suppress immunity targeting specific antigens and tissues.

  10. T Cells and Pathogenesis of Hantavirus Cardiopulmonary Syndrome and Hemorrhagic Fever with Renal Syndrome

    Directory of Open Access Journals (Sweden)

    Francis A. Ennis

    2011-07-01

    Full Text Available We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS and hemorrhagic fever with renal syndrome (HFRS may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell responses negatively correlated with disease severity, but in another report the number of regulatory T cells, which are thought to suppress T cell responses, negatively correlated with disease severity. In rat experiments, in which hantavirus causes persistent infection, depletion of regulatory T cells helped infected rats clear virus without inducing immunopathology. These seemingly contradictory findings may suggest delicate balance in T cell responses between protection and immunopathogenesis. Both too strong and too weak T cell responses may lead to severe disease. It is important to clarify the role of T cells in these diseases for better treatment (whether to suppress T cell functions and protection (vaccine design which may need to take into account viral factors and the influence of HLA on T cell responses.

  11. Regulatory dendritic cell therapy: from rodents to clinical application.

    Science.gov (United States)

    Raïch-Regué, Dalia; Glancy, Megan; Thomson, Angus W

    2014-10-01

    Dendritic cells (DC) are highly-specialized, bone marrow-derived antigen-presenting cells that induce or regulate innate and adaptive immunity. Regulatory or "tolerogenic" DC play a crucial role in maintaining self tolerance in the healthy steady-state. These regulatory innate immune cells subvert naïve or memory T cell responses by various mechanisms. Regulatory DC (DCreg) also exhibit the ability to induce or restore T cell tolerance in many animal models of autoimmune disease or transplant rejection. There is also evidence that adoptive transfer of DCreg can regulate T cell responses in non-human primates and humans. Important insights gained from in vitro studies and animal models have led recently to the development of clinical grade human DCreg, with potential to treat autoimmune disease or enhance transplant survival while reducing patient dependency on immunosuppressive drugs. Phase I trials have been conducted in type-1 diabetes and rheumatoid arthritis, with results that emphasize the feasibility and safety of DCreg therapy. This mini-review will outline how observations made using animal models have been translated into human use, and discuss the challenges faced in further developing this form of regulatory immune cell therapy in the fields of autoimmunity and transplantation. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells

    International Nuclear Information System (INIS)

    Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng; Chen, Yuan-Wu; Kuo, Yu-Liang; Yu, Chiao-Chi; Chang, Hao-Ming; Chan, De-Chuan; Huang, Shing-Hwa

    2015-01-01

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs

  13. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Gu-Jiun [Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC (China); Sytwu, Huey-Kang [Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, ROC (China); Yu, Jyh-Cherng [Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Chen, Yuan-Wu [School of Dentistry, National Defense Medical Center, Taipei, Taiwan, ROC (China); Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Kuo, Yu-Liang [Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC (China); School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan, ROC (China); Yu, Chiao-Chi [Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC (China); Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Chang, Hao-Ming; Chan, De-Chuan [Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Huang, Shing-Hwa, E-mail: h610129@gmail.com [Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC (China); Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China)

    2015-01-15

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs.

  14. X-linked inhibitor of apoptosis regulates T cell effector function

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Bourbonnière, Lyne; Moore, Craig S

    2007-01-01

    To understand how the balance between pro- and anti-apoptotic signals influences effector function in the immune system, we studied the X-linked inhibitor of apoptosis (XIAP), an endogenous regulator of cellular apoptosis. Real-time PCR showed increased XIAP expression in blood of mice with exper......To understand how the balance between pro- and anti-apoptotic signals influences effector function in the immune system, we studied the X-linked inhibitor of apoptosis (XIAP), an endogenous regulator of cellular apoptosis. Real-time PCR showed increased XIAP expression in blood of mice...... dramatically reduced within the CNS. Flow cytometry showed an 88-93% reduction in T cells. The proportion of TUNEL(+) apoptotic CD4(+) T cells in the CNS was increased from Neurons...... and oligodendrocytes were not affected; neither did apoptosis increase in liver, where XIAP knockdown also occurred. ASO-XIAP increased susceptibility of T cells to activation-induced apoptosis in vitro. Our results identify XIAP as a critical controller of apoptotic susceptibility of effector T cell function...

  15. Hematopoietic chimerism and transplantation tolerance: a role for regulatory T cells

    Directory of Open Access Journals (Sweden)

    Lise ePasquet

    2011-12-01

    Full Text Available The major obstacle in transplantation medicine is rejection of donor tissues by the host’s immune system. Immunosuppressive drugs can delay but not prevent loss of transplants, and their efficiency is strongly impacted by inter-individual pharmacokinetic differences. Moreover, due to the global immunosuppression induced and to the broad distribution of their targets amongst human tissues, these drugs have severe side effects. Induction of donor-specific non-responsiveness (i.e. immunological tolerance to transplants would solve these problems and would substantially ameliorate patients’ quality of life. It is widely believed that bone marrow or hematopoietic stem cell transplantation, and resulting (mixed hematopoietic chimerism, invariably leads to immunological tolerance to organs of the same donor. A careful analysis of the literature, reviewed here, indeed shows that chimerism consistently prolongs allograft survival. However, in absence of additional conditioning leading to the development of active regulatory mechanisms, it does not prevent chronic rejection. A central role for active tolerance in transplantation-tolerance is also supported by recent data showing that genuine immunological tolerance to organ allografts can be achieved by combining induction of hematopoietic chimerism with infusion of regulatory T lymphocytes. Therefore, conditioning regimens that lead to the establishment of hematopoietic chimerism plus active regulatory mechanisms appear required for induction of genuine tolerance to allogeneic grafts.

  16. Selection and characterization of T-cell variants lacking molecules involved in T-cell activation (T3 T-cell receptor, T44, and T11): analysis of the functional relationship among different pathways of activation

    International Nuclear Information System (INIS)

    Moretta, A.; Poggi, A.; Olive, D.; Bottino, C.; Fortis, C.; Pantaleo, G.; Moretta, L.

    1987-01-01

    A clone of the interleukin 2-producing Jurkat leukemia cell line termed JA3 (surface phenotype, T3 + , Ti + , T44 + , T11 + , T40 + ) has been used to induce and select cell variants lacking surface molecules involved in T-cell activation. Following 200 rad of γ-radiation (1 rad = 0.01 Gy), cells were treated with monoclonal antibodies (mAbs) directed to T3, Ti, T44, or T11 antigen and complement. After growth of the residual cells in culture, negative cells were cloned under limiting conditions. Depending on the specificity of the mAb used for the immunoselection, three groups of variants were obtained. (i) The use of mAbs directed to T3 or Ti resulted in cell variants that expressed the T3 - Ti - T44 + Leu1 + T11 + T40 + 4F2 + HLA class I + surface phenotype. (ii) Immunoselection with anti-T44 mAb resulted in 2 variants that shared the T3 - Ti - T44 - Leu1 - T11 - T40 - 4F2 - HLA class I + phenotype. (iii) Cell treatment with anti-T11 mAb resulted in 15 variants characterized by the lack of T11 antigen expression and of all the other T-cell-specific surface antigens. Therefore, it appears that the different sets of JA3 cell variants, like T cells at discrete stages of intrathymic differentiation, may follow a coordinated expression of surface differentiation antigens. Analysis of the functional responsiveness of the three distinct groups of JA3 cell variants to different stimuli showed that all produced interleukin 2 in response to A23187 calcium ionophore plus phorbol 12-myristate 13-acetate

  17. The Pathology of T Cells in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Anselm Mak

    2014-01-01

    Full Text Available Systemic lupus erythematosus (SLE is characterized by the production of a wide array of autoantibodies. Thus, the condition was traditionally classified as a “B-cell disease”. Compelling evidence has however shown that without the assistance of the helper T lymphocytes, it is indeed difficult for the “helpless” B cells to become functional enough to trigger SLE-related inflammation. T cells have been recognized to be crucial in the pathogenicity of SLE through their capabilities to communicate with and offer enormous help to B cells for driving autoantibody production. Recently, a number of phenotypic and functional alterations which increase the propensity to trigger lupus-related inflammation have been identified in lupus T cells. Here, potential mechanisms involving alterations in T-cell receptor expressions, postreceptor downstream signalling, epigenetics, and oxidative stress which favour activation of lupus T cells will be discussed. Additionally, how regulatory CD4+, CD8+, and γδ T cells tune down lupus-related inflammation will be highlighted. Lastly, while currently available outcomes of clinical trials evaluating therapeutic agents which manipulate the T cells such as calcineurin inhibitors indicate that they are at least as efficacious and safe as conventional immunosuppressants in treating lupus glomerulonephritis, larger clinical trials are undoubtedly required to validate these as-yet favourable findings.

  18. Regulatory T cell frequencies and phenotypes following anti-viral vaccination.

    Directory of Open Access Journals (Sweden)

    A Charlotte M T de Wolf

    Full Text Available Regulatory T cells (Treg function in the prevention of excessive inflammation and maintenance of immunological homeostasis. However, these cells may also interfere with resolution of infections or with immune reactions following vaccination. Effects of Treg on vaccine responses are nowadays investigated, but the impact of vaccination on Treg homeostasis is still largely unknown. This may be a relevant safety aspect, since loss of tolerance through reduced Treg may trigger autoimmunity. In exploratory clinical trials, healthy adults were vaccinated with an influenza subunit vaccine plus or minus the adjuvant MF59®, an adjuvanted hepatitis B subunit vaccine or a live attenuated yellow fever vaccine. Frequencies and phenotypes of resting (rTreg and activated (aTreg subpopulations of circulating CD4+ Treg were determined and compared to placebo immunization. Vaccination with influenza vaccines did not result in significant changes in Treg frequencies and phenotypes. Vaccination with the hepatitis B vaccine led to slightly increased frequencies of both rTreg and aTreg subpopulations and a decrease in expression of functionality marker CD39 on aTreg. The live attenuated vaccine resulted in a decrease in rTreg frequency, and an increase in expression of activation marker CD25 on both subpopulations, possibly indicating a conversion from resting to migratory aTreg due to vaccine virus replication. To study the more local effects of vaccination on Treg in lymphoid organs, we immunized mice and analyzed the CD4+ Treg frequency and phenotype in draining lymph nodes and spleen. Vaccination resulted in a transient local decrease in Treg frequency in lymph nodes, followed by a systemic Treg increase in the spleen. Taken together, we showed that vaccination with vaccines with an already established safe profile have only minimal impact on frequencies and characteristics of Treg over time. These findings may serve as a bench-mark of inter-individual variation

  19. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    Directory of Open Access Journals (Sweden)

    Rossana Domenis

    Full Text Available A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression, proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs. Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  20. Increased degradation of ATP is driven by memory regulatory T cells in kidney transplantation tolerance.

    Science.gov (United States)

    Durand, Maxim; Dubois, Florian; Dejou, Cécile; Durand, Eugénie; Danger, Richard; Chesneau, Mélanie; Brosseau, Carole; Guerif, Pierrick; Soulillou, Jean-Paul; Degauque, Nicolas; Eliaou, Jean-François; Giral, Magali; Bonnefoy, Nathalie; Brouard, Sophie

    2018-05-01

    Regulatory T cells were recently proposed as the central actor in operational tolerance after renal transplantation. Tolerant patients harbor increased FoxP3hi memory Treg frequency and increased demethylation in the Foxp3 Treg-specific demethylated region when compared to stable kidney recipients and exhibit greater memory Treg suppressive capacities and higher expression of the ectonucleotidase CD39. However, in this particular and unique situation the mechanisms of action of Tregs were not identified. Thus, we analyzed the ability of memory Tregs to degrade extracellular ATP in tolerant patients, healthy volunteers, and patients with stable graft function under immunosuppression and determined the role of immunosuppressive drugs on this process. The conserved proportion of memory Tregs leads to the establishment of a pro-tolerogenic balance in operationally tolerant patients. Memory Tregs in tolerant patients display normal capacity to degrade extracellular ATP/ADP. In contrast, memory Tregs from patients with stable graft function do not have this ability. Finally, in vitro, immunosuppressive drugs may favor the lower proportion of memory Tregs in stable patients, but they have no effect on CD39-dependent ATP degradation and do not explain memory Treg lack of extracellular ATP/ADP degradation ability. Thus, intrinsic active regulatory mechanisms may act long after immunosuppressive drug arrest in operationally tolerant patients and may contribute to kidney allograft tolerance via the maintenance of CD39 Treg function. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.