WorldWideScience

Sample records for regulatory phosphorylation site

  1. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase

    Science.gov (United States)

    Bachmann, M.; Shiraishi, N.; Campbell, W. H.; Yoo, B. C.; Harmon, A. C.; Huber, S. C.; Davies, E. (Principal Investigator)

    1996-01-01

    Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin cofactor binding domain of NR, using recombinant NR fragments containing or lacking the phosphorylation site sequence. Studies with NR partial reactions indicated that the block in electron flow caused by phosphorylation also could be localized to the hinge 1 region. A synthetic peptide (NR6) based on the phosphorylation site sequence was phosphorylated readily by NR kinase (NRk) in vitro. NR6 kinase activity tracked the ATP-dependent inactivation of NR during several chromatographic steps and completely inhibited inactivation/phosphorylation of native NR in vitro. Two forms of NRk were resolved by using anion exchange chromatography. Studies with synthetic peptide analogs indicated that both forms of NRk had similar specificity determinants, requiring a basic residue at P-3 (i.e., three amino acids N-terminal to the phosphorylated serine) and a hydrophobic residue at P-5. Both forms are strictly calcium dependent but belong to distinct families of protein kinases because they are distinct immunochemically.

  2. Determination of regulatory phosphorylation sites in nanogram amounts of a synthetic fragment of ZAP-70 using microprobe NMR and on-line coupled capillary HPLC-NMR

    NARCIS (Netherlands)

    Hentschel, P; Krucker, M; Grynbaum, MD; Putzbach, K; Bischoff, R; Albert, K

    2005-01-01

    The protein kinase ZAP-70 is involved in T-cell activation and interacts with tyrosine-phosphorylated peptide sequences known as immunoreceptor tyrosine activation motifs (ITAMs). We have studied the regulatory phosphorylation sites in the tryptic fragment containing amino acids 485-496 (ALGADDSYYTA

  3. Phosphorylation of the regulatory beta-subunit of protein kinase CK2 by checkpoint kinase Chk1: identification of the in vitro CK2beta phosphorylation site

    DEFF Research Database (Denmark)

    Kristensen, Lars P; Larsen, Martin Røssel; Højrup, Peter;

    2004-01-01

    The regulatory beta-subunit of protein kinase CK2 mediates the formation of the CK2 tetrameric form and it has functions independent of CK2 catalytic subunit through interaction with several intracellular proteins. Recently, we have shown that CK2beta associates with the human checkpoint kinase Chk...... by the modification of Thr213 but it does require the presence of an active Chk1 kinase....

  4. Spatial proximity statistics suggest a regulatory role of protein phosphorylation on compound binding.

    Science.gov (United States)

    Korkuć, Paula; Walther, Dirk

    2016-05-01

    Phosphorylation is an important post-translational modification that regulates protein function by the attachment of negatively charged phosphate groups to phosphorylatable amino acid residues. As a mode of action, an influence of phosphorylation on the binding of compounds to proteins has been discussed and described for a number of proteins in the literature. However, a systematic statistical survey probing for enriched phosphorylation sites close to compound binding sites in support of this notion and with properly chosen random reference distributions has not been presented yet. Using high-resolution protein structures from the Protein Data Bank including their co-crystallized non-covalently bound compounds and experimentally determined phosphorylation sites, we analyzed the pairwise distance distributions of phosphorylation and compound binding sites on protein surfaces. We found that phosphorylation sites are indeed located at significantly closer distances to compounds than expected by chance holding true specifically also for the subset of compound binding sites serving as catalytic sites of metabolic reactions. This tendency was particularly evident when treating phosphorylation sites as collective sets supporting the relevance of phosphorylation hotspots. Interestingly, phosphorylation sites were found to be closer to negatively charged than to positively charged compounds suggesting a stronger modulation of the binding of negatively charged compounds in dependence on phosphorylation status than on positively charged compounds. The enrichment of phosphorylation sites near compound binding sites confirms a regulatory role of phosphorylation in compound binding and provides a solid statistical basis for the literature-reported selected events.

  5. In vivo analysis of Yorkie phosphorylation sites.

    Science.gov (United States)

    Oh, H; Irvine, K D

    2009-04-30

    The co-activator Yorkie (Yki) mediates transcriptional regulation effected by the Drosophila Fat-Warts (Wts)-Hippo (Hpo) pathways. Yki is inhibited by Wts-mediated phosphorylation, and a Wts phosphorylation site at Ser168 has been identified. Here we identify two additional Wts phosphorylation sites on Yki, and examine the respective contribution of all three sites to Yki nuclear localization and activity. Our results show that although Ser168 is the most critical site, all three phosphorylation sites influence Yki localization and activity in vivo, and can be sites of regulation by Wts. Thus, investigations of the role of Yki and its mammalian homolog Yes-associated protein (YAP) in development and oncogenesis should include evaluations of additional sites. The WW domains of Yki are not required for its phosphorylation, but instead are positively required for its activity. We also identify two potential sites of phosphorylation by an unknown kinase, which could influence phosphorylation of Ser168 by Wts, suggesting that there are additional mechanisms for regulating Yki/YAP activity.

  6. Characterizing the Microenvironment Surrounding Phosphorylated Protein Sites

    Institute of Scientific and Technical Information of China (English)

    Shi-Cai Fan; Xue-Gong Zhang

    2005-01-01

    Protein phosphorylation plays an important role in various cellular processes. Due to its high complexity, the mechanism needs to be further studied. In the last few years, many methods have been contributed to this field, but almost all of them investigated the mechanism based on protein sequences around protein sites. In this study, we implement an exploration by characterizing the microenvironment surrounding phosphorylated protein sites with a modified shell model, and obtain some significant properties by the rank-sum test, such as the lack of some classes of residues, atoms, and secondary structures. Furthermore, we find that the depletion of some properties affects protein phosphorylation remarkably. Our results suggest that it is a meaningful direction to explore the mechanism of protein phosphorylation from microenvironment and we expect further findings along with the increasing size of phosphorylation and protein structure data.

  7. Phosphorylation sites within Ebola virus nucleoprotein

    Institute of Scientific and Technical Information of China (English)

    Sora; Yasri; Viroj; Wiwanitkit

    2015-01-01

    To understand the infection process, the viral multiplication and entry to the cell is widely studied. The Ebola virus nucleoprotein is the important problem for the pathological process. Focusing on the specific biological process, the post translational modification is needed. Here, the authors used the bioinformatics study to find the phosphorylation sites within the Ebola virus nucleoprotein and could identify many new sites.

  8. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn

    2014-01-01

    a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...

  9. Phosphorylation sites within Ebola virus nucleoprotein

    Directory of Open Access Journals (Sweden)

    Sora Yasri

    2015-07-01

    Full Text Available To understand the infection process, the viral multiplication and entry to the cell is widely studied. The Ebola virus nucleoprotein is the important problem for the pathological process. Focusing on the specific biological process, the post translational modification is needed. Here, the authors used the bioinformatics study to find the phosphorylation sites within the Ebola virus nucleoprotein and could identify many new sites.

  10. A general strategy for studying multi-site protein phosphorylation using label-free selected reaction monitoring mass spectrometry1

    OpenAIRE

    2011-01-01

    The majority of eukaryotic proteins are phosphorylated in vivo and phosphorylation may be the most common regulatory post-translational modification. Many proteins are phosphorylated at numerous sites, often by multiple kinases, which may have different functional consequences. Understanding biological functions of phosphorylation events requires methods to detect and quantify individual sites within a substrate. Here we outline a general strategy that addresses this need and relies on the hi...

  11. Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR

    Energy Technology Data Exchange (ETDEWEB)

    Marasini, Carlotta, E-mail: marasini@ge.ibf.cnr.it [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy); Galeno, Lauretta; Moran, Oscar [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer CFTR mutations produce cystic fibrosis. Black-Right-Pointing-Pointer Chloride transport depends on the regulatory domain phosphorylation. Black-Right-Pointing-Pointer Regulatory domain is intrinsically disordered. Black-Right-Pointing-Pointer Secondary structure and protein stability change upon phosphorylation. -- Abstract: The regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is the region of the channel that regulates the CFTR activity with multiple phosphorylation sites. This domain is an intrinsically disordered protein, characterized by lack of stable or unique tertiary structure. The disordered character of a protein is directly correlated with its function. The flexibility of RD may be important for its regulatory role: the continuous conformational change may be necessary for the progressive phosphorylation, and thus activation, of the channel. However, the lack of a defined and stable structure results in a considerable limitation when trying to in build a unique molecular model for the RD. Moreover, several evidences indicate significant structural differences between the native, non-phosphorylated state, and the multiple phosphorylated state of the protein. The aim of our work is to provide data to describe the conformations and the thermodynamic properties in these two functional states of RD. We have done the circular dichroism (CD) spectra in samples with a different degree of phosphorylation, from the non-phosphorylated state to a bona fide completely phosphorylated state. Analysis of CD spectra showed that the random coil and {beta}-sheets secondary structure decreased with the polypeptide phosphorylation, at expenses of an increase of {alpha}-helix. This observation lead to interpret phosphorylation as a mechanism favoring a more structured state. We also studied the thermal denaturation curves of the protein in the two

  12. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Brunak, Søren; Olsen, JV

    2010-01-01

    ) or CDK2 were almost fully phosphorylated in mitotic cells. In particular, nuclear proteins and proteins involved in regulating metabolic processes have high phosphorylation site occupancy in mitosis. This suggests that these proteins may be inactivated by phosphorylation in mitotic cells....

  13. Regulatory Phosphorylation of Ikaros by Bruton's Tyrosine Kinase

    Science.gov (United States)

    Zhang, Jian; Ishkhanian, Rita; Uckun, Fatih M.

    2013-01-01

    Diminished Ikaros function has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL), the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros is of paramount importance for normal lymphocyte ontogeny. Here we provide genetic and biochemical evidence for a previously unknown function of Bruton's tyrosine kinase (BTK) as a partner and posttranslational regulator of Ikaros, a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis. We demonstrate that BTK phosphorylates Ikaros at unique phosphorylation sites S214 and S215 in the close vicinity of its zinc finger 4 (ZF4) within the DNA binding domain, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Our results further demonstrate that BTK-induced activating phosphorylation is critical for the optimal transcription factor function of Ikaros. PMID:23977012

  14. Regulatory phosphorylation of Ikaros by Bruton's tyrosine kinase.

    Directory of Open Access Journals (Sweden)

    Hong Ma

    Full Text Available Diminished Ikaros function has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL, the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros is of paramount importance for normal lymphocyte ontogeny. Here we provide genetic and biochemical evidence for a previously unknown function of Bruton's tyrosine kinase (BTK as a partner and posttranslational regulator of Ikaros, a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis. We demonstrate that BTK phosphorylates Ikaros at unique phosphorylation sites S214 and S215 in the close vicinity of its zinc finger 4 (ZF4 within the DNA binding domain, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Our results further demonstrate that BTK-induced activating phosphorylation is critical for the optimal transcription factor function of Ikaros.

  15. An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Heibeck, Tyler H.; Ding, Shi-Jian; Opresko, Lee K.; Zhao, Rui; Schepmoes, Athena A.; Yang, Feng; Tolmachev, Aleksey V.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Wiley, H. S.; Qian, Weijun

    2009-08-01

    Protein tyrosine phosphorylation is a central regulatory mechanism in cell signaling. To extensively characterize the site-specific tyrosine phosphorylation in human cells, we present here a global survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell (HMEC) line by applying anti-phosphotyrosine (pTyr) peptide immunoaffinity purification (IP) coupled with high sensitivity LC-MS/MS. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and an acute stimulated condition with epidermal growth factor (EGF). The estimated false discovery rate is 1.0% as measured by comparison against a scrambled database search. Comparison of these data to the literature showed significant agreement in site matches. Additionally 281 sites were not previously observed in HMEC culture were found. Twenty-nine of these sites have not been reported in any human cell or tissue system. The global profiling also allowed us to examine the phosphorylation stoichiometry differences based on spectral count information. Comparison of the data to a previous global proteome profiling study illustrates that most of the highly phoshorylated proteins are of relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed for many of the identified proteins, suggesting potentially more important functional roles for those highly phosphorylated pTyr sites within a given protein. By mapping to major signaling networks such as EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which should allow us to select interesting targeted involved in a given pathway for more directed studies. This extensive HMEC tyrosine phosphorylation dataset represents an important database

  16. A grammar inference approach for predicting kinase specific phosphorylation sites.

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.

  17. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Sook; Lee, Eun Hye [Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Lee, Kooyeon [Department of Bio-Health Technology, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jo, Su-Hyun, E-mail: suhyunjo@kangwon.ac.kr [Department of Physiology, BK21 Plus Graduate Program, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Seo, Su Ryeon, E-mail: suryeonseo@kangwon.ac.kr [Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2015-04-17

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression.

  18. Mapping of p140Cap phosphorylation sites

    DEFF Research Database (Denmark)

    Repetto, Daniele; Aramu, Simona; Boeri Erba, Elisabetta

    2013-01-01

    Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosp...

  19. Mass Spectrometric Analysis of TRPM6 and TRPM7 Phosphorylation Reveals Regulatory Mechanisms of the Channel-Kinases

    Science.gov (United States)

    Cai, Na; Bai, Zhiyong; Nanda, Vikas; Runnels, Loren W.

    2017-01-01

    TRPM7 and TRPM6 were the first identified bifunctional channels to contain their own kinase domains, but how these channel-kinases are regulated is poorly understood. Previous studies identified numerous phosphorylation sites on TRPM7, but very little is known about TRPM6 phosphorylation or sites on TRPM7 transphosphorylated by TRPM6. Our mass spectrometric analysis of homomeric and heteromeric TRPM7 and TRPM6 channels identified phosphorylation sites on both proteins, as well as several prominent sites on TRPM7 that are commonly modified through autophosphorylation and transphosphorylation by TRPM6. We conducted a series of amino acid substitution analyses and identified S1777, in TRPM7’s catalytic domain, and S1565, in TRPM7’s exchange domain that mediates kinase dimerization, as potential regulatory sites. The phosphomimetic S1777D substitution disrupted catalytic activity, most likely by causing an electrostatic perturbation at the active site. The S1565D phosphomimetic substitution also inactivated the kinase but did so without interfering with kinase dimerization. Molecular modeling indicates that phosphorylation of S1565 is predicted to structurally affect TRPM7’s functionally conserved N/D loop, which is thought to influence the access of substrate to the active site pocket. We propose that phosphorylation of S1565 within the exchange domain functions as a regulatory switch to control TRPM7 catalytic activity. PMID:28220887

  20. The in vivo phosphorylation sites of rat brain dynamin I

    DEFF Research Database (Denmark)

    Graham, Mark E; Anggono, Victor; Bache, Nicolai

    2007-01-01

    tail splice variant dynIxa and was not hierarchical. Co-purified, (32)P-labeled dynIII was phosphorylated at Ser(759), Ser(763), and Ser(853). Ser(853) is homologous to Ser(851) in dynIxa. The results identify all major and several minor phosphorylation sites in dynI and provide the first measure...

  1. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.

    Science.gov (United States)

    Gagné, Jean-Philippe; Moreel, Xavier; Gagné, Pierre; Labelle, Yves; Droit, Arnaud; Chevalier-Paré, Mélissa; Bourassa, Sylvie; McDonald, Darin; Hendzel, Michael J; Prigent, Claude; Poirier, Guy G

    2009-02-01

    Phosphorylation is a very common post-translational modification event known to modulate a wide range of biological responses. Beyond the regulation of protein activity, the interrelation of phosphorylation with other post-translational mechanisms is responsible for the control of diverse signaling pathways. Several observations suggest that phosphorylation of poly(ADP-ribose) polymerase-1 (PARP-1) regulates its activity. There is also accumulating evidence to suggest the establishment of phosphorylation-dependent assembly of PARP-1-associated multiprotein complexes. Although it is relatively straightforward to demonstrate phosphorylation of a defined target, identification of the actual amino acids involved still represents a technical challenge for many laboratories. With the use of a combination of bioinformatics-based predictions tools for generic and kinase-specific phosphorylation sites, in vitro phosphorylation assays and mass spectrometry analysis, we investigated the phosphorylation profile of PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), two major enzymes responsible for poly(ADP-ribose) turnover. Mass spectrometry analysis revealed the phosphorylation of several serine/threonine residues within important regulatory domains and motifs of both enzymes. With the use of in vivo microirradiation-induced DNA damage, we show that altered phosphorylation at specific sites can modify the dynamics of assembly and disassembly of PARP-1 at sites of DNA damage. By documenting and annotating a collection of known and newly identified phosphorylation sites, this targeted proteomics study significantly advances our understanding of the roles of phosphorylation in the regulation of PARP-1 and PARG.

  2. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro.

    Science.gov (United States)

    Roth, G; Kotzka, J; Kremer, L; Lehr, S; Lohaus, C; Meyer, H E; Krone, W; Müller-Wieland, D

    2000-10-27

    Sterol regulatory element-binding protein (SREBP)-1a is a transcription factor sensing cellular cholesterol levels and integrating gene regulatory signals mediated by MAP kinase cascades. Here we report the identification of serine 117 in SREBP-1a as the major phosphorylation site of the MAP kinases Erk1/2. This site was identified by nanoelectrospray mass spectrometry and peptide sequencing of recombinant fusion proteins phosphorylated by Erk1/2 in vitro. Serine 117 was verified as the major phosphorylation site by in vitro mutagenesis. Mutation of serine 117 to alanine abolished Erk2-mediated phosphorylation in vitro and the MAP kinase-related transcriptional activation of SREBP-1a by insulin and platelet-derived growth factor in vivo. Our data indicate that the MAP kinase-mediated effects on SREBP-1a-regulated target genes are linked to this phosphorylation site.

  3. Determining in vivo phosphorylation sites using mass spectrometry.

    Science.gov (United States)

    Breitkopf, Susanne B; Asara, John M

    2012-04-01

    Phosphorylation is the most studied protein post-translational modification (PTM) in biological systems, since it controls cell growth, proliferation, survival, and other processes. High-resolution/high mass accuracy mass spectrometers are used to identify protein phosphorylation sites due to their speed, sensitivity, selectivity, and throughput. The protocols described here focus on two common strategies: (1) identifying phosphorylation sites from individual proteins and small protein complexes, and (2) identifying global phosphorylation sites from whole-cell and tissue extracts. For the first, endogenous or epitope-tagged proteins are typically immunopurified from cell lysates, purified via gel electrophoresis or precipitation, and enzymatically digested into peptides. Samples can be optionally enriched for phosphopeptides using immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO(2)) and then analyzed by microcapillary liquid chromatography/tandem mass spectrometry (LC-MS/MS). Global phosphorylation site analyses that capture pSer/pThr/pTyr sites from biological sources sites are more resource and time consuming and involve digesting the whole-cell lysate, followed by peptide fractionation by strong cation-exchange chromatography, phosphopeptide enrichment by IMAC or TiO(2), and LC-MS/MS. Alternatively, the protein lysate can be fractionated by SDS-PAGE, followed by digestion, phosphopeptide enrichment, and LC-MS/MS. One can also immunoprecipitate only phosphotyrosine peptides using a pTyr antibody followed by LC-MS/MS.

  4. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database

    DEFF Research Database (Denmark)

    Nühse, Thomas S; Stensballe, Allan; Jensen, Ole N;

    2004-01-01

    Functional genomic technologies are generating vast amounts of data describing the presence of transcripts or proteins in plant cells. Together with classical genetics, these approaches broaden our understanding of the gene products required for specific responses. Looking to the future, the focus...... of research must shift to the dynamic aspects of biology: molecular mechanisms of function and regulation. Phosphorylation is a key regulatory factor in all aspects of plant biology; but it is difficult, if not impossible, for most researchers to identify in vivo phosphorylation sites within their proteins...... will be a valuable resource for many fields of plant biology and overcome a major impediment to the elucidation of signal transduction pathways. We present an analysis of the characteristics of phosphorylation sites, their conservation among orthologs and paralogs, and the existence of putative motifs surrounding...

  5. Identification of Phosphorylation Sites Regulating sst3 Somatostatin Receptor Trafficking.

    Science.gov (United States)

    Lehmann, Andreas; Kliewer, Andrea; Günther, Thomas; Nagel, Falko; Schulz, Stefan

    2016-06-01

    The human somatostatin receptor 3 (sst3) is expressed in about 50% of all neuroendocrine tumors and hence a promising target for multireceptor somatostatin analogs. The sst3 receptor is unique among ssts in that it exhibits a very long intracellular C-terminal tail containing a huge number of potential phosphate acceptor sites. Consequently, our knowledge about the functional role of the C-terminal tail in sst3 receptor regulation is very limited. Here, we have generated a series of phosphorylation-deficient mutants that enabled us to determine crucial sites for its agonist-induced β-arrestin mobilization, internalization, and down-regulation. Based on this information, we generated phosphosite-specific antibodies for C-terminal Ser(337)/Thr(341), Thr(348), and Ser(361) that enabled us to investigate the temporal patterns of sst3 phosphorylation and dephosphorylation. We found that the endogenous ligand somatostatin induced a rapid and robust phosphorylation that was completely blocked by the sst3 antagonist NVP-ACQ090. The stable somatostatin analogs pasireotide and octreotide promoted clearly less phosphorylation compared with somatostatin. We also show that sst3 phosphorylation occurred within seconds to minutes, whereas dephosphorylation of the sst3 receptor occurred at a considerable slower rate. In addition, we also identified G protein-coupled receptor kinases 2 and 3 and protein phosphatase 1α and 1β as key regulators of sst3 phosphorylation and dephosphorylation, respectively. Thus, we here define the C-terminal phosphorylation motif of the human sst3 receptor that regulates its agonist-promoted phosphorylation, β-arrestin recruitment, and internalization of this clinically relevant receptor.

  6. Pin1: Intimate involvement with the regulatory protein kinase networks in the global phosphorylation landscape.

    Science.gov (United States)

    Litchfield, David W; Shilton, Brian H; Brandl, Christopher J; Gyenis, Laszlo

    2015-10-01

    Protein phosphorylation is a universal regulatory mechanism that involves an extensive network of protein kinases. The discovery of the phosphorylation-dependent peptidyl-prolyl isomerase Pin1 added an additional layer of complexity to these regulatory networks. We have evaluated interactions between Pin1 and the regulatory kinome and proline-dependent phosphoproteome taking into consideration findings from targeted studies as well as data that has emerged from systematic phosphoproteomic workflows and from curated protein interaction databases. The relationship between Pin1 and the regulatory protein kinase networks is not restricted simply to the recognition of proteins that are substrates for proline-directed kinases. In this respect, Pin1 itself is phosphorylated in cells by protein kinases that modulate its functional properties. Furthermore, the phosphorylation-dependent targets of Pin1 include a number of protein kinases as well as other enzymes such as phosphatases and regulatory subunits of kinases that modulate the actions of protein kinases. As a result of its interactions with numerous protein kinases and their substrates, as well as itself being a target for phosphorylation, Pin1 has an intricate relationship with the regulatory protein kinase and phosphoproteomic networks that orchestrate complex cellular processes and respond to environmental cues. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  8. Insulin-stimulated phosphorylation of protein phosphatase 1 regulatory subunit 12B revealed by HPLC-ESI-MS/MS

    Directory of Open Access Journals (Sweden)

    Pham Kimberly

    2012-09-01

    Full Text Available Abstract Background Protein phosphatase 1 (PP1 is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. Protein phosphatase 1 regulatory subunit 12B (PPP1R12B, one of the regulatory subunits of PP1, can bind to PP1cδ, one of the catalytic subunits of PP1, and modulate the specificity and activity of PP1cδ against its substrates. Phosphorylation of PPP1R12B on threonine 646 by Rho kinase inhibits the activity of the PP1c-PPP1R12B complex. However, it is not currently known whether PPP1R12B phosphorylation at threonine 646 and other sites is regulated by insulin. We set out to identify phosphorylation sites in PPP1R12B and to quantify the effect of insulin on PPP1R12B phosphorylation by using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Results 14 PPP1R12B phosphorylation sites were identified, 7 of which were previously unreported. Potential kinases were predicted for these sites. Furthermore, relative quantification of PPP1R12B phosphorylation sites for basal and insulin-treated samples was obtained by using peak area-based label-free mass spectrometry of fragment ions. The results indicate that insulin stimulates the phosphorylation of PPP1R12B significantly at serine 29 (3.02 ± 0.94 fold, serine 504 (11.67 ± 3.33 fold, and serine 645/threonine 646 (2.34 ± 0.58 fold. Conclusion PPP1R12B was identified as a phosphatase subunit that undergoes insulin-stimulated phosphorylation, suggesting that PPP1R12B might play a role in insulin signaling. This study also identified novel targets for future investigation of the regulation of PPP1R12B not only in insulin signaling in cell models, animal models, and in humans, but also in other signaling pathways.

  9. PhosTryp: a phosphorylation site predictor specific for parasitic protozoa of the family trypanosomatidae

    Directory of Open Access Journals (Sweden)

    Palmeri Antonio

    2011-12-01

    Full Text Available Abstract Background Protein phosphorylation modulates protein function in organisms at all levels of complexity. Parasites of the Leishmania genus undergo various developmental transitions in their life cycle triggered by changes in the environment. The molecular mechanisms that these organisms use to process and integrate these external cues are largely unknown. However Leishmania lacks transcription factors, therefore most regulatory processes may occur at a post-translational level and phosphorylation has recently been demonstrated to be an important player in this process. Experimental identification of phosphorylation sites is a time-consuming task. Moreover some sites could be missed due to the highly dynamic nature of this process or to difficulties in phospho-peptide enrichment. Results Here we present PhosTryp, a phosphorylation site predictor specific for trypansomatids. This method uses an SVM-based approach and has been trained with recent Leishmania phosphosproteomics data. PhosTryp achieved a 17% improvement in prediction performance compared with Netphos, a non organism-specific predictor. The analysis of the peptides correctly predicted by our method but missed by Netphos demonstrates that PhosTryp captures Leishmania-specific phosphorylation features. More specifically our results show that Leishmania kinases have sequence specificities which are different from their counterparts in higher eukaryotes. Consequently we were able to propose two possible Leishmania-specific phosphorylation motifs. We further demonstrate that this improvement in performance extends to the related trypanosomatids Trypanosoma brucei and Trypanosoma cruzi. Finally, in order to maximize the usefulness of PhosTryp, we trained a predictor combining all the peptides from L. infantum, T. brucei and T. cruzi. Conclusions Our work demonstrates that training on organism-specific data results in an improvement that extends to related species. PhosTryp is freely

  10. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  11. Bioinformatics Study of Cancer-Related Mutations within p53 Phosphorylation Site Motifs

    Directory of Open Access Journals (Sweden)

    Xiaona Ji

    2014-07-01

    Full Text Available p53 protein has about thirty phosphorylation sites located at the N- and C-termini and in the core domain. The phosphorylation sites are relatively less mutated than other residues in p53. To understand why and how p53 phosphorylation sites are rarely mutated in human cancer, using a bioinformatics approaches, we examined the phosphorylation site and its nearby flanking residues, focusing on the consensus phosphorylation motif pattern, amino-acid correlations within the phosphorylation motifs, the propensity of structural disorder of the phosphorylation motifs, and cancer mutations observed within the phosphorylation motifs. Many p53 phosphorylation sites are targets for several kinases. The phosphorylation sites match 17 consensus sequence motifs out of the 29 classified. In addition to proline, which is common in kinase specificity-determining sites, we found high propensity of acidic residues to be adjacent to phosphorylation sites. Analysis of human cancer mutations in the phosphorylation motifs revealed that motifs with adjacent acidic residues generally have fewer mutations, in contrast to phosphorylation sites near proline residues. p53 phosphorylation motifs are mostly disordered. However, human cancer mutations within phosphorylation motifs tend to decrease the disorder propensity. Our results suggest that combination of acidic residues Asp and Glu with phosphorylation sites provide charge redundancy which may safe guard against loss-of-function mutations, and that the natively disordered nature of p53 phosphorylation motifs may help reduce mutational damage. Our results further suggest that engineering acidic amino acids adjacent to potential phosphorylation sites could be a p53 gene therapy strategy.

  12. Preventing phosphorylation of sterol regulatory element-binding protein 1a by MAP-kinases protects mice from fatty liver and visceral obesity.

    Science.gov (United States)

    Kotzka, Jorg; Knebel, Birgit; Haas, Jutta; Kremer, Lorena; Jacob, Sylvia; Hartwig, Sonja; Nitzgen, Ulrike; Muller-Wieland, Dirk

    2012-01-01

    The transcription factor sterol regulatory element binding protein (SREBP)-1a plays a pivotal role in lipid metabolism. Using the SREBP-1a expressing human hepatoma cell line HepG2 we have shown previously that human SREBP-1a is phosphorylated at serine 117 by ERK-mitogen-activated protein kinases (MAPK). Using a combination of cell biology and protein chemistry approach we show that SREBP-1a is also target of other MAPK-families, i.e. c-JUN N-terminal protein kinases (JNK) or p38 stress activated MAP kinases. Serine 117 is also the major phosphorylation site in SREBP-1a for JNK. In contrast to that the major phosphorylation sites of p38 MAPK family are serine 63 and threonine 426. Functional analyses reveal that phosphorylation of SREBP-1a does not alter protein/DNA interaction. The identified phosphorylation sites are specific for both kinase families also in cellular context. To provide direct evidence that phosphorylation of SREBP-1a is a regulatory principle of biological and clinical relevance, we generated transgenic mice expressing mature transcriptionally active N-terminal domain of human SREBP-1a variant lacking all identified phosphorylaton sites designed as alb-SREBP-1aΔP and wild type SREBP-1a designed as alb-SREBP-1a liver specific under control of the albumin promoter and a liver specific enhancer. In contrast to alb-SREBP-1a mice the phosphorylation-deficient mice develop no enlarged fatty livers under normocaloric conditions. Phenotypical examination reveales a massive accumulation of adipose tissue in alb-SREBP-1a but not in the phosphorylation deficient alb-SREBP-1aΔP mice. Moreover, preventing phosphorylation of SREBP-1a protects mice also from dyslipidemia. In conclusion, phosphorylation of SREBP-1a by ERK, JNK and p38 MAPK-families resembles a biological principle and plays a significant role, in vivo.

  13. Preventing phosphorylation of sterol regulatory element-binding protein 1a by MAP-kinases protects mice from fatty liver and visceral obesity.

    Directory of Open Access Journals (Sweden)

    Jorg Kotzka

    Full Text Available The transcription factor sterol regulatory element binding protein (SREBP-1a plays a pivotal role in lipid metabolism. Using the SREBP-1a expressing human hepatoma cell line HepG2 we have shown previously that human SREBP-1a is phosphorylated at serine 117 by ERK-mitogen-activated protein kinases (MAPK. Using a combination of cell biology and protein chemistry approach we show that SREBP-1a is also target of other MAPK-families, i.e. c-JUN N-terminal protein kinases (JNK or p38 stress activated MAP kinases. Serine 117 is also the major phosphorylation site in SREBP-1a for JNK. In contrast to that the major phosphorylation sites of p38 MAPK family are serine 63 and threonine 426. Functional analyses reveal that phosphorylation of SREBP-1a does not alter protein/DNA interaction. The identified phosphorylation sites are specific for both kinase families also in cellular context. To provide direct evidence that phosphorylation of SREBP-1a is a regulatory principle of biological and clinical relevance, we generated transgenic mice expressing mature transcriptionally active N-terminal domain of human SREBP-1a variant lacking all identified phosphorylaton sites designed as alb-SREBP-1aΔP and wild type SREBP-1a designed as alb-SREBP-1a liver specific under control of the albumin promoter and a liver specific enhancer. In contrast to alb-SREBP-1a mice the phosphorylation-deficient mice develop no enlarged fatty livers under normocaloric conditions. Phenotypical examination reveales a massive accumulation of adipose tissue in alb-SREBP-1a but not in the phosphorylation deficient alb-SREBP-1aΔP mice. Moreover, preventing phosphorylation of SREBP-1a protects mice also from dyslipidemia. In conclusion, phosphorylation of SREBP-1a by ERK, JNK and p38 MAPK-families resembles a biological principle and plays a significant role, in vivo.

  14. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    Energy Technology Data Exchange (ETDEWEB)

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.; Brent, Roger; Resnekov, Orna; Hakimi, Mohamed Ali

    2013-03-12

    Cell signaling systems transmit information by post-­translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-­protein coupled receptor (GPCR). We used mass spectrometry-based proteomics to identify sites whose phosphorylation changed when the system was active, and evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of regulated phosphorylation events that contribute to adjust the input-­output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results further suggest that relatively small quantitative influences from individual regulatory phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.

  15. Functional Analysis of PKC Phosphorylation Sites on Myelin Protein Zero

    Institute of Scientific and Technical Information of China (English)

    GangXu; MichaelShy; JohnKamhoz; JanneBalsamo

    2003-01-01

    Objective To analyze the function of Protein kinase C(PKC) phosphorylation sites on mylelin protein zero (P0) at adhesion and myelination.Methods Mutations of p0 cyto-plasmic domain motif (RSTK) and adjacent sequence which are targeted by PKC were studied.Results The point mutations in this region or an adjacent serine residue could abolish P0 adhe-sion function. PKCα,along with the PKC binding protein RACK1,were associated with wild type P0.Inhibition of PKC activity abolished the P0 mediated adhesion.Point mutation in the RSTKtarget site that abolished adhesion did not alter the association of PKC with P0,but deletion of a 14 amino acid region,which included the PSTK motif,could abolish the association.Conclusion PKC mediated phosphorylation of specific residues within the cytoplasmic domain of P0 is neces-sary for P0 mediated adhesion.The alteration of this phoporylation can cause demyelinating neu-ropathy in human.

  16. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.

    2007-01-01

    We here present a neural network-based method for the prediction of protein phosphorylation sites in yeast-an important model organism for basic research. Existing protein phosphorylation site predictors are primarily based on mammalian data and show reduced sensitivity on yeast phosphorylation s...

  17. Pinpointing Phosphorylation Sites: Quantitative Filtering and a Novel Site-specific x-Ion Fragment

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Hekmat, Omid; Francavilla, Chiara;

    2011-01-01

    assignments in large-scale phosphoproteomics data sets. To improve methods for site localization, we made use of a synthetic phosphopeptide library and SILAC-labeled peptides from whole cell lysates and analyzed these with high-resolution tandem mass spectrometry on an LTQ Orbitrap Velos. We validated gas...... contain a phosphorylated residue and which ones do not. We also evaluated higher-energy collisional dissociation (HCD) and found this to be an accurate method for correct phosphorylation site localization with no gas-phase rearrangements observed above noise level. Analyzing a large set of HCD spectra...

  18. Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins

    DEFF Research Database (Denmark)

    Diella, F.; Cameron, S.; Gemund, C.

    2004-01-01

    need for an accurate database dedicated to phosphorylation to provide easily retrievable information on phosphoproteins. Description: Phospho. ELM http://phospho.elm.eu.org is a new resource containing experimentally verified phosphorylation sites manually curated from the literature and is developed...... to be phosphorylated by cellular kinases. Additional annotation includes literature references, subcellular compartment, tissue distribution, and information about the signaling pathways involved as well as links to the molecular interaction database MINT. Phospho. ELM version 2.0 contains 1703 phosphorylation site...

  19. Large-scale analysis of phosphorylation site occupancy in eukaryotic proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max

    2012-01-01

    maximum randomness. An analysis of phosphorylation motifs indicated that just 40 motifs and a much lower number of associated kinases might account for nearly 50% of the known phosphorylations in eukaryotic proteins. Our results provide a broad picture of the phosphorylation sites in eukaryotic proteins....

  20. The hinge region of chicken annexin I contains no site for tyrosine phosphorylation.

    Science.gov (United States)

    Sidis, Y; Horseman, N D

    1993-08-30

    Annexin I (AnxI) is a calcium-dependent membrane binding protein which has been implicated in various physiological activities. The region of the chicken anxI cDNA encoding the first 130 amino terminal residues was cloned by reverse transcription PCR in order to determine the relationship of its variable amino-terminal regulatory region with other known annexins. This nucleotide sequence shows 86% identity with pigeon AnxI isoforms, and 57% with its human homolog. The protein encoded by the chicken anxI cDNA lacks the canonical epidermal growth factor receptor/kinase phosphorylation site, which is present in AnxI of other species. In contrast, the putative protein kinase C phosphorylation site of the amino-terminus is present in the chicken AnxI. Whereas the pigeon genome contains two anxI genes, genomic Southern analysis shows that in the chicken AnxI is encoded by only a single gene. These data suggest that AnxI has undergone significant sequence variation in the avians, and clarifies the relationships of the avian anxI genes with their ancestral homologs.

  1. Regulatory light chain phosphorylation increases eccentric contraction-induced injury in skinned fast-twitch fibers.

    Science.gov (United States)

    Childers, Martin K; McDonald, Kerry S

    2004-02-01

    During contraction, activation of Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) results in phosphorylation of myosin's regulatory light chain (RLC), which potentiates force and increases speed of force development over a wide range of [Ca(2+)]. We tested the hypothesis that RLC phosphorylation by MLCK mediates the extent of eccentric contraction-induced injury as measured by force deficit in skinned fast-twitch skeletal muscle fibers. Results indicated that RLC phosphorylation in single skinned rat psoas fibers significantly increased Ca(2+) sensitivity of isometric force; isometric force from 50 +/- 16 to 59 +/- 18 kN/m(2) during maximal Ca(2+) activation; peak absolute power output from 38 +/- 15 to 48 +/- 14 nW during maximal Ca(2+) activation; and the magnitude of contraction-induced force deficit during maximal (pCa 4.5) activation from 26 +/- 9.8 to 35 +/- 9.6%. We conclude that RLC phosphorylation increases force deficits following eccentric contractions, perhaps by increasing the number of force-generating cross-bridges.

  2. Phosphorylation sites of Arabidopsis MAP Kinase Substrate 1 (MKS1)

    DEFF Research Database (Denmark)

    Caspersen, M.B.; Qiu, J.-L.; Zhang, X.

    2007-01-01

    The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophore......The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified...... phosphopeptide detection. As MAP kinases generally phosphorylate serine or threonine followed by proline (Ser/Thr-Pro), theoretical masses of potentially phosphorylated peptides were calculated and mass spectrometric peaks matching these masses were fragmented and searched for a neutral-loss signal...... at approximately 98 Da indicative of phosphorylation. Additionally, mass spectrometric peaks present in the MPK4-treated MKS1, but not in the control peptide map of untreated MKS1, were fragmented. Fragmentation spectra were subjected to a MASCOT database search which identified three of the twelve Ser-Pro serine...

  3. Rapid Identification of Protein Kinase Phosphorylation Site Motifs Using Combinatorial Peptide Libraries.

    Science.gov (United States)

    Miller, Chad J; Turk, Benjamin E

    2016-01-01

    Eukaryotic protein kinases phosphorylate substrates at serine, threonine, and tyrosine residues that fall within the context of short sequence motifs. Knowing the phosphorylation site motif for a protein kinase facilitates designing substrates for kinase assays and mapping phosphorylation sites in protein substrates. Here, we describe an arrayed peptide library protocol for rapidly determining kinase phosphorylation consensus sequences. This method uses a set of peptide mixtures in which each of the 20 amino acid residues is systematically substituted at nine positions surrounding a central site of phosphorylation. Peptide mixtures are arrayed in multiwell plates and analyzed by radiolabel assay with the kinase of interest. The preferred sequence is determined from the relative rate of phosphorylation of each peptide in the array. Consensus peptides based on these sequences typically serve as efficient and specific kinase substrates for high-throughput screening or incorporation into biosensors.

  4. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Gnad, Florian; de Godoy, Lyris M F; Cox, Jürgen

    2009-01-01

    mapped to 1118 proteins, representatively covering the yeast kinome and a multitude of transcription factors. We show that a single false discovery rate for all peptide identifications significantly overestimates occurrence of rare modifications, such as tyrosine phosphorylation in yeast. The identified...... phosphorylation sites are predominantly located on irregularly structured and accessible protein regions. We found high evolutionary conservation of phosphorylated proteins and a large overlap of significantly over-represented motifs with the human phosphoproteome. Nevertheless, phosphorylation events at the site...... level were not highly conserved between yeast and higher eukaryotes, which points to metazoan-specific kinase and substrate families. We constructed a yeast-specific phosphorylation sites predictor on the basis of a support vector machine, which - together with the yeast phosphorylation data...

  5. Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle

    DEFF Research Database (Denmark)

    Højlund, K; Yi, Z; Lefort, N;

    2009-01-01

    AIMS/HYPOTHESIS: Insulin resistance in skeletal muscle is linked to mitochondrial dysfunction in obesity and type 2 diabetes. Emerging evidence indicates that reversible phosphorylation regulates oxidative phosphorylation (OxPhos) proteins. The aim of this study was to identify and quantify site......-specific phosphorylation of the catalytic beta subunit of ATP synthase (ATPsyn-beta) and determine protein abundance of ATPsyn-beta and other OxPhos components in skeletal muscle from healthy and insulin-resistant individuals. METHODS: Skeletal muscle biopsies were obtained from lean, healthy, obese, non-diabetic and type...... 2 diabetic volunteers (each group n = 10) for immunoblotting of proteins, and hypothesis-driven identification and quantification of phosphorylation sites on ATPsyn-beta using targeted nanospray tandem mass spectrometry. Volunteers were metabolically characterised by euglycaemic...

  6. Prediction of PK-specific phosphorylation site based on information entropy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Phosphorylation is a crucial way to control the activity of proteins in many eukaryotic organisms in vivo. Experimental methods to determine phosphorylation sites in substrates are usually restricted by the in vitro condition of enzymes and very intensive in time and labor. Although some in silico methods and web servers have been introduced for automatic detection of phosphorylation sites, sophisticated methods are still in urgent demand to further improve prediction performances. Protein primary se-quences can help predict phosphorylation sites catalyzed by different protein kinase and most com-putational approaches use a short local peptide to make prediction. However, the useful information may be lost if only the conservative residues that are not close to the phosphorylation site are consid-ered in prediction, which would hamper the prediction results. A novel prediction method named IEPP (Information-Entropy based Phosphorylation Prediction) is presented in this paper for automatic de-tection of potential phosphorylation sites. In prediction, the sites around the phosphorylation sites are selected or excluded by their entropy values. The algorithm was compared with other methods such as GSP and PPSP on the ABL, MAPK and PKA PK families. The superior prediction accuracies were ob-tained in various measurements such as sensitivity (Sn) and specificity (Sp). Furthermore, compared with some online prediction web servers on the new discovered phosphorylation sites, IEPP also yielded the best performance. IEPP is another useful computational resource for identification of PK-specific phosphorylation sites and it also has the advantages of simpleness, efficiency and con-venience.

  7. Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1.

    Science.gov (United States)

    Sarg, Bettina; Helliger, Wilfried; Talasz, Heribert; Förg, Barbara; Lindner, Herbert H

    2006-03-10

    H1 histones, isolated from logarithmically growing and mitotically enriched human lymphoblastic T-cells (CCRF-CEM), were fractionated by reversed phase and hydrophilic interaction liquid chromatography, subjected to enzymatic digestion, and analyzed by amino acid sequencing and mass spectrometry. During interphase the four H1 subtypes present in these cells differ in their maximum phosphorylation levels: histone H1.5 is tri-, H1.4 di-, and H1.3 and H1.2, only monophosphorylated. The phosphorylation is site-specific and occurs exclusively on serine residues of SP(K/A)K motifs. The phosphorylation sites of histone H1.5 from mitotically enriched cells were also examined. In contrast to the situation in interphase, at mitosis there were additional phosphorylations, exclusively at threonine residues. Whereas the tetraphosphorylated H1.5 arises from the triphosphosphorylated form by phosphorylation of one of two TPKK motifs in the C-terminal domain, namely Thr137 and Thr154, the pentaphosphorylated H1.5 was the result of phosphorylation of one of the tetraphosphorylated forms at a novel nonconsensus motif at Thr10 in the N-terminal tail. Despite the fact that histone H1.5 has five (S/T)P(K/A)K motifs, all of these motifs were never found to be phosphorylated simultaneously. Our data suggest that phosphorylation of human H1 variants occurs nonrandomly during both interphase and mitosis and that distinct serine- or threonine-specific kinases are involved in different cell cycle phases. The order of increased phosphorylation and the position of modification might be necessary for regulated chromatin decondensation, thus facilitating processes of replication and transcription as well as of mitotic chromosome condensation.

  8. Exploring the intramolecular phosphorylation sites in human Chk2

    DEFF Research Database (Denmark)

    Olsen, Birgitte B; Larsen, Martin R; Boldyreff, Brigitte;

    2008-01-01

    A comparative biochemical analysis was performed using recombinant human protein kinase Chk2 (checkpoint kinase 2) expressed in bacteria and insect cells. Dephosphorylated, inactive, recombinant human Chk2 could be reactivated in a concentration-dependent manner. Despite distinct time....... Mass spectrometric analyses of human recombinant Chk2 isolated from bacteria and insect cells showed distinct differences. The number of phosphorylated residues in human recombinant Chk2 isolated from bacteria was 16, whereas in the case of the recombinant human Chk2 from insect cells it was 8. Except...... for phosphorylated amino acid T378 which was not found in the Chk2 isolated from bacteria, all other phosphorylated residues identified in human Chk2 from insect cells were present also in Chk2 from bacteria....

  9. AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain.

    Science.gov (United States)

    Thaiparambil, Jose T; Eggers, Carrie M; Marcus, Adam I

    2012-08-01

    The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine(172) phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine(19) phosphorylated MRLC (pMRLC(ser19)) and spindle pole-associated pMRLC(ser19) are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLC(ser19) spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLC(ser19) to control spindle orientation via regulation of actin cortex-astral microtubule attachments.

  10. Kinase-specific prediction of protein phosphorylation sites

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Blom, Nikolaj

    2009-01-01

    -substrate specificity. Here, we briefly describe the available resources for predicting kinase-specific phosphorylation from sequence properties. We address the strengths and weaknesses of these resources, which are based on methods ranging from simple consensus patterns to more advanced machine-learning algorithms....... Furthermore, a protocol for the use of the artificial neural network based predictors, NetPhos and NetPhosK, is provided. Finally, we point to possible developments with the intention of providing the community with improved and additional phosphorylation predictors for large-scale modeling of cellular...... signaling networks....

  11. Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis.

    Science.gov (United States)

    Deranieh, Rania M; He, Quan; Caruso, Joseph A; Greenberg, Miriam L

    2013-09-13

    myo-Inositol-3-phosphate synthase (MIPS) plays a crucial role in inositol homeostasis. Transcription of the coding gene INO1 is highly regulated. However, regulation of the enzyme is not well defined. We previously showed that MIPS is indirectly inhibited by valproate, suggesting that the enzyme is post-translationally regulated. Using (32)Pi labeling and phosphoamino acid analysis, we show that yeast MIPS is a phosphoprotein. Mass spectrometry analysis identified five phosphosites, three of which are conserved in the human MIPS. Analysis of phosphorylation-deficient and phosphomimetic site mutants indicated that the three conserved sites in yeast (Ser-184, Ser-296, and Ser-374) and humans (Ser-177, Ser-279, and Ser-357) affect MIPS activity. Both S296A and S296D yeast mutants and S177A and S177D human mutants exhibited decreased enzymatic activity, suggesting that a serine residue is critical at that location. The phosphomimetic mutations S184D (human S279D) and S374D (human S357D) but not the phosphodeficient mutations decreased activity, suggesting that phosphorylation of these two sites is inhibitory. The double mutation S184A/S374A caused an increase in MIPS activity, conferred a growth advantage, and partially rescued sensitivity to valproate. Our findings identify a novel mechanism of regulation of inositol synthesis by phosphorylation of MIPS.

  12. NetPhosBac - A predictor for Ser/Thr phosphorylation sites in bacterial proteins

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Soufi, Boumediene; Jers, Carsten;

    2009-01-01

    predictors on bacterial systems. We used these large bacterial datasets and neural network algorithms to create the first bacteria-specific protein phosphorylation predictor: NetPhosBac. With respect to predicting bacterial phosphorylation sites, NetPhosBac significantly outperformed all benchmark predictors....... Moreover, NetPhosBac predictions of phosphorylation sites in E. coli proteins were experimentally verified on protein and site-specific levels. In conclusion, NetPhosBac clearly illustrates the advantage of taxa-specific predictors and we hope it will provide a useful asset to the microbiological community....

  13. Site-specific phosphorylation of casein kinase 1 δ (CK1δ) regulates its activity towards the circadian regulator PER2.

    Science.gov (United States)

    Eng, Gracie Wee Ling; Edison; Virshup, David M

    2017-01-01

    Circadian rhythms are intrinsic ~24 hour cycles that regulate diverse aspects of physiology, and in turn are regulated by interactions with the external environment. Casein kinase 1 delta (CK1δ, CSNK1D) is a key regulator of the clock, phosphorylating both stabilizing and destabilizing sites on the PER2 protein, in a mechanism known as the phosphoswitch. CK1δ can itself be regulated by phosphorylation on its regulatory domain, but the specific sites involved, and the role this plays in control of circadian rhythms as well as other CK1-dependent processes is not well understood. Using a sensitized PER2::LUC reporter assay, we identified a specific phosphorylation site, T347, on CK1δ, that regulates CK1δ activity towards PER2. A mutant CK1δ T347A was more active in promoting PER2 degradation. This CK1δ regulatory site is phosphorylated in cells in trans by dinaciclib- and staurosporine-sensitive kinases, consistent with their potential regulation by cyclin dependent and other proline-directed kinases. The regulation of CK1δ by site-specific phosphorylation via the cell cycle and other signaling pathways provides a mechanism to couple external stimuli to regulation of CK1δ-dependent pathways including the circadian clock.

  14. Two putative protein kinase CK2 phosphorylation sites are important for Myf-5 activity

    DEFF Research Database (Denmark)

    Winter, B; Kautzner, I; Issinger, O G;

    1997-01-01

    Myf-5, a member of a family of muscle-specific transcription factors, is important for myogenic cell determination and differentiation. Here, we report that Myf-5 protein constitutes a substrate for phosphorylation in vitro by protein kinase CK2. We identified two potential phosphorylation sites ...

  15. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E

    2011-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  16. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.;

    2004-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  17. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E

    2011-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  18. Case study: using sequence homology to identify putative phosphorylation sites in an evolutionarily distant species (honeybee).

    Science.gov (United States)

    Trost, Brett; Napper, Scott; Kusalik, Anthony

    2015-09-01

    The majority of scientific resources are devoted to studying a relatively small number of model species, meaning that the ability to translate knowledge across species is of considerable importance. Obtaining species-specific knowledge enables targeted investigations of the biology and pathobiology of a particular species, and facilitates comparative analyses. Phosphorylation is the most widespread posttranslational modification in eukaryotes, and although many phosphorylation sites have been experimentally identified for some species, little or no data are available for others. Using the honeybee as a test organism, this case study illustrates the process of using protein sequence homology to identify putative phosphorylation sites in a species of interest using experimentally determined sites from other species. A number of issues associated with this process are examined and discussed. Several databases of experimentally determined phosphorylation sites exist; however, it can be difficult for the nonspecialist to ascertain how their contents compare. Thus, this case study assesses the content and comparability of several phosphorylation site databases. Additional issues examined include the efficacy of homology-based phosphorylation site prediction, the impact of the level of evolutionary relatedness between species in making these predictions, the ability to translate knowledge of phosphorylation sites across large evolutionary distances and the criteria that should be used in selecting probable phosphorylation sites in the species of interest. Although focusing on phosphorylation, the issues discussed here also apply to the homology-based cross-species prediction of other posttranslational modifications, as well as to sequence motifs in general. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Identification of a phosphorylation-dependent nuclear localization motif in interferon regulatory factor 2 binding protein 2.

    Directory of Open Access Journals (Sweden)

    Allen C T Teng

    Full Text Available BACKGROUND: Interferon regulatory factor 2 binding protein 2 (IRF2BP2 is a muscle-enriched transcription factor required to activate vascular endothelial growth factor-A (VEGFA expression in muscle. IRF2BP2 is found in the nucleus of cardiac and skeletal muscle cells. During the process of skeletal muscle differentiation, some IRF2BP2 becomes relocated to the cytoplasm, although the functional significance of this relocation and the mechanisms that control nucleocytoplasmic localization of IRF2BP2 are not yet known. METHODOLOGY/PRINCIPAL FINDINGS: Here, by fusing IRF2BP2 to green fluorescent protein and testing a series of deletion and site-directed mutagenesis constructs, we mapped the nuclear localization signal (NLS to an evolutionarily conserved sequence (354ARKRKPSP(361 in IRF2BP2. This sequence corresponds to a classical nuclear localization motif bearing positively charged arginine and lysine residues. Substitution of arginine and lysine with negatively charged aspartic acid residues blocked nuclear localization. However, these residues were not sufficient because nuclear targeting of IRF2BP2 also required phosphorylation of serine 360 (S360. Many large-scale phosphopeptide proteomic studies had reported previously that serine 360 of IRF2BP2 is phosphorylated in numerous human cell types. Alanine substitution at this site abolished IRF2BP2 nuclear localization in C(2C(12 myoblasts and CV1 cells. In contrast, substituting serine 360 with aspartic acid forced nuclear retention and prevented cytoplasmic redistribution in differentiated C(2C(12 muscle cells. As for the effects of these mutations on VEGFA promoter activity, the S360A mutation interfered with VEGFA activation, as expected. Surprisingly, the S360D mutation also interfered with VEGFA activation, suggesting that this mutation, while enforcing nuclear entry, may disrupt an essential activation function of IRF2BP2. CONCLUSIONS/SIGNIFICANCE: Nuclear localization of IRF2BP2 depends on

  20. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC

    DEFF Research Database (Denmark)

    Rosenbaek, L L; Assentoft, M; Pedersen, N B

    2012-01-01

    DAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin-angiotensin-aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1......The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho...

  1. 76 FR 76168 - Regulatory Site Visit Training Program

    Science.gov (United States)

    2011-12-06

    ... HUMAN SERVICES Food and Drug Administration Regulatory Site Visit Training Program AGENCY: Food and Drug... and quality, and the quality of its regulatory efforts and interactions, by providing CBER staff with... coordination of CBER's priorities for staff training as well as the limited available resources for this...

  2. 76 FR 4919 - Regulatory Site Visit Training Program

    Science.gov (United States)

    2011-01-27

    ... HUMAN SERVICES Food and Drug Administration Regulatory Site Visit Training Program AGENCY: Food and Drug... quality, and the quality of its regulatory efforts and interactions, by providing CBER staff with a better... priorities for staff training as well as the limited available resources for this program. In addition to...

  3. IN VITRO ANALYSIS OF τ PHOSPHORYLATION SITES AND ITS BIOLOGICAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective.To explore the association between the abnormal phosphorylation sites found in Alzheimer disease (AD) τ and the inhibition of its biological activity. Methods.Ultracentrifugation,chromatography,manual Edman degradation and autosequence techniques were used to prepare and phosphorylate human recombinant τ ,isolate and purify 32P τ peptides and determine phosphorylation sites. Results.Phosphorylation of τ by casein kinase 1 (CK 1),cyclic AMP dependent protein kinase (PKA) and glycogen synthetase kinase 3 (GSK 3) separately inhibited its biological activity and the inhibition of this activity by GSK 3 was significantly increased if τ was prephosphorylated by CK 1 or PKA.The most potent inhibition was seen by a combined phosphorylation of τ with PKA and GSK 3.The treatment of τ by PKA and GSK 3 combination induced phosphorylation of τ at Ser 195,Ser 198,Ser 199,Ser 202,Thr 205,Thr 231,Ser 235,Ser 262,Ser 356,Ser 404,whereas Thr 181,Ser 184,Ser 262,Ser 356 and Ser 400 were phosphorylated by GSK 3 alone under the same condition. Conclusion.Phosphorylation of τ by PKA plus GSK 3 at Thr 205 might play a key role in τ pathology in AD.

  4. Challenges and strategies for targeted phosphorylation site identification and quantification using mass spectrometry analysis.

    Science.gov (United States)

    Blackburn, Kevin; Goshe, Michael B

    2009-03-01

    Despite its importance, the 'ultimate' method to identify and quantify site-specific protein phosphorylation using mass spectrometry (MS) has yet to be established. This is as much a function of the dynamic range of instrumentation as it is the complexities surrounding the isolation and behavior of phosphopeptides. Phosphorylation site analysis using MS can be quite challenging when analyzing just one protein and quickly becomes a daunting task when attempting to perform proteome-wide measurements. Data-dependent tandem MS-based methods which are useful for the discovery and characterization of novel phosphorylation sites often lack the dynamic range and quantitative aspect required for studying the temporal phases of phosphorylation. While targeted methods such as multiple reaction monitoring do provide a highly specific and quantitative methodology for studying phosphorylation changes over time, they are not suited for initial discovery of previously unreported sites of phosphorylation. Data-independent acquisition represents a relatively new approach for simultaneous qualitative and quantitative sample analysis which holds promise for filling this technological gap.

  5. Distinct and site-specific phosphorylation of the retinoblastoma protein at serine 612 in differentiated cells.

    Directory of Open Access Journals (Sweden)

    Takayuki Hattori

    Full Text Available The retinoblastoma susceptibility protein (pRB is a phosphoprotein that regulates cell cycle progression at the G1/S transition. In quiescent and early G1 cells, pRB predominantly exists in the active hypophosphorylated form. The cyclin/cyclin-dependent protein kinase complexes phosphorylate pRB at the late G1 phase to inactivate pRB. This event leads to the dissociation and activation of E2F family transcriptional factors. At least 12 serine/threonine residues in pRB are phosphorylated in vivo. Although there have been many reports describing bulk phosphorylation of pRB, detail research describing the function of each phosphorylation site remains unknown. Besides its G1/S inhibitory function, pRB is involved in differentiation, prevention of cell death and control of tissue fate. To uncover the function of phosphorylation of pRB in various cellular conditions, we have been investigating phosphorylation of each serine/threonine residue in pRB with site-specific phospho-serine/threonine antibodies. Here we demonstrate that pRB is specifically phosphorylated at Ser612 in differentiated cells in a known kinase-independent manner. We also found that pRB phosphorylated at Ser612 still associates with E2F-1 and tightly binds to nuclear structures including chromatin. Moreover, expression of the Ser612Ala mutant pRB failed to induce differentiation. The findings suggest that phosphorylation of Ser612 provides a distinct function that differs from the function of phosphorylation of other serine/threonine residues in pRB.

  6. Quantitative encoding of a partial agonist effect on individual opioid receptors by multi-site phosphorylation and threshold detection

    Science.gov (United States)

    Lau, Elaine K.; Trester-Zedlitz, Michelle; Trinidad, Jonathan C.; Kotowski, Sarah J.; Krutchinsky, Andrew N.; Burlingame, Alma L.; von Zastrow, Mark

    2013-01-01

    Many drugs act as partial agonists of seven-transmembrane signaling receptors when compared to endogenous ligands. Partial agonism is well described as a 'macroscopic' property manifest at the level of physiological systems or cell populations, but it is not known whether partial agonists encode discrete regulatory information at the 'microscopic' level of individual receptors. We addressed this question by focusing on morphine, a partial agonist drug for µ-type opioid peptide receptors, and combining quantitative mass spectrometry with cell biological analysis to investigate morphine's reduced efficacy for promoting receptor endocytosis when compared to a peptide full agonist. We show that these chemically distinct ligands produce a complex, and qualitatively similar mixture of phosphorylated opioid receptor forms in intact cells. Quantitatively, however, the agonists promote markedly disproportional production of multi-site phosphorylation involving a specific Ser/Thr motif, whose modification at more than one residue is essential for efficient recruitment of the adaptor protein β-arrestin to clathrin-coated pits that mediate subsequent endocytosis of MORs. These results reveal quantitative encoding of agonist-selective endocytosis at the level of individual opioid receptors, based on the conserved biochemical principles of multi-site phosphorylation and threshold detection. PMID:21868358

  7. Characterization of intracellular regions in the human serotonin transporter for phosphorylation sites

    DEFF Research Database (Denmark)

    Sørensen, Lena; Strømgaard, Kristian; Kristensen, Anders S

    2014-01-01

    /dephosphorylation during transporter regulation by multiple pathways. In particular, activation and/or inhibition of kinases including PKC, PKG, p38MAPK, and CaMKII modulate SERT function and trafficking. The molecular mechanisms by which kinase activity is linked to SERT regulation are poorly understood, including...... the identity of specific phosphorylated residues. To elucidate SERT phosphorylation sites, we have generated peptides corresponding to the entire intracellular region of human SERT and performed in vitro phosphorylation assays with a panel of kinases suggested to be involved in SERT regulation or for which...

  8. Comprehensive analysis of phosphorylation sites in Tensin1 reveals regulation by p38MAPK.

    Science.gov (United States)

    Hall, Emily H; Balsbaugh, Jeremy L; Rose, Kristie L; Shabanowitz, Jeffrey; Hunt, Donald F; Brautigan, David L

    2010-12-01

    Tensin1 is the archetype of a family of focal adhesion proteins. Tensin1 has a phosphotyrosine binding domain that binds the cytoplasmic tail of β-integrin, a Src homology 2 domain that binds focal adhesion kinase, p130Cas, and the RhoGAP called deleted in liver cancer-1, a phosphatase and tensin homology domain that binds protein phosphatase-1α and other regions that bind F-actin. The association between tensin1 and these partners affects cell polarization, migration, and invasion. In this study we analyzed the phosphorylation of human S-tag-tensin1 expressed in HEK293 cells by mass spectrometry. Peptides covering >90% of the sequence initially revealed 50 phosphorylated serine/phosphorylated threonine (pSer/pThr) but no phosphorylated tyrosine (pTyr) sites. Addition of peroxyvanadate to cells to inhibit protein tyrosine phosphatases exposed 10 pTyr sites and addition of calyculin A to cells to inhibit protein phosphatases type 1 and 2A gave a total of 62 pSer/pThr sites. We also characterized two sites modified by O-linked N-acetylglucosamine. Tensin1 F302A, which does not bind protein phosphatase-1, showed > twofold enhanced phosphorylation of seven sites. The majority of pSer/pThr have adjacent proline (Pro) residues and we show endogenous p38 mitogen activated protein kinase (MAPK) associated with and phosphorylated tensin1 in an in vitro kinase assay. Recombinant p38α MAPK also phosphorylated S-tag-tensin1, resulting in decreased binding with deleted in liver cancer-1. Activation of p38 MAPK in cells by sorbitol-induced hyperosmotic stress increased phosphorylation of S-tag-tensin1, which reduced binding to deleted in liver cancer-1 and increased binding to endogenous pTyr proteins, including p130Cas and focal adhesion kinase. These data demonstrate that tensin1 is extensively phosphorylated on Ser/Thr residues in cells and phosphorylation by p38 MAPK regulates the specificity of the tensin1 Src homology 2 domain for binding to different proteins. Tensin1

  9. In Vivo Phosphorylation Site Mapping and Functional Characterization of Arabidopsis Phototropin 1

    Institute of Scientific and Technical Information of China (English)

    Stuart Sullivan; Catriona E. Thomson; Douglas J.Lamont; Matthew A. Jones; John M.Christie

    2008-01-01

    Phototropins (phot1 and phot2) are blue-light receptor kinases controlling a range of responses that optimize the photosynthetic efficiency of plants. Light sensing is mediated by two flavin-binding motifs, known as LOV1 and LOV2,located within the N-terminal region of the protein. Photoexcitation via LOV2 leads to activation of the C-terminal kinase domain and consequently receptor autophosphorylation. However, knowledge of the in-vivo phosphorylation sites for Arabidopsis phototropins is lacking and has impeded progress in elucidating the functional significance of receptor phosphorylation. We have purified phot1 from Arabidopsis and identified the in-vivo sites of receptor phosphorylation by liquid chromatography tandem mass spectrometry. Arabidopsis-derived phot1 binds flavin mononucleotide as chromophore and is phosphorylated at four major sites located upstream of LOV2 (Ser58, Ser85, Ser350, and Ser410), three of which are induced by blue light. Nevertheless, structure-function analysis indicates that the biological activity of phot1 can be attributed to a modular unit comprising the LOV2-kinase region of the protein. Thus, peptide regions upstream of LOV2, including the sites of receptor phosphorylation identified here, do not appear to be important for receptor signaling. By contrast, these regions may be necessary for maximizing stomatal performance and possibly light-induced relocalization of phot1.

  10. HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction.

    Science.gov (United States)

    Tsaousis, Georgios N; Bagos, Pantelis G; Hamodrakas, Stavros J

    2014-02-01

    During the last two decades a large number of computational methods have been developed for predicting transmembrane protein topology. Current predictors rely on topogenic signals in the protein sequence, such as the distribution of positively charged residues in extra-membrane loops and the existence of N-terminal signals. However, phosphorylation and glycosylation are post-translational modifications (PTMs) that occur in a compartment-specific manner and therefore the presence of a phosphorylation or glycosylation site in a transmembrane protein provides topological information. We examine the combination of phosphorylation and glycosylation site prediction with transmembrane protein topology prediction. We report the development of a Hidden Markov Model based method, capable of predicting the topology of transmembrane proteins and the existence of kinase specific phosphorylation and N/O-linked glycosylation sites along the protein sequence. Our method integrates a novel feature in transmembrane protein topology prediction, which results in improved performance for topology prediction and reliable prediction of phosphorylation and glycosylation sites. The method is freely available at http://bioinformatics.biol.uoa.gr/HMMpTM.

  11. Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions

    Science.gov (United States)

    Veredas, Francisco J.; Cantón, Francisco R.; Aledo, J. Carlos

    2017-01-01

    Protein phosphorylation is one of the most prevalent and well-understood protein modifications. Oxidation of protein-bound methionine, which has been traditionally perceived as an inevitable damage derived from oxidative stress, is now emerging as another modification capable of regulating protein activity during stress conditions. However, the mechanism coupling oxidative signals to changes in protein function remains unknown. An appealing hypothesis is that methionine oxidation might serve as a rheostat to control phosphorylation. To investigate this potential crosstalk between phosphorylation and methionine oxidation, we have addressed the co-occurrence of these two types of modifications within the human proteome. Here, we show that nearly all (98%) proteins containing oxidized methionine were also phosphoproteins. Furthermore, phosphorylation sites were much closer to oxidized methionines when compared to non-oxidized methionines. This proximity between modification sites cannot be accounted for by their co-localization within unstructured clusters because it was faithfully reproduced in a smaller sample of structured proteins. We also provide evidence that the oxidation of methionine located within phosphorylation motifs is a highly selective process among stress-related proteins, which supports the hypothesis of crosstalk between methionine oxidation and phosphorylation as part of the cellular defence against oxidative stress. PMID:28079140

  12. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies

    Science.gov (United States)

    Kurosawa, Nobuyuki; Wakata, Yuka; Inobe, Tomonao; Kitamura, Haruki; Yoshioka, Megumi; Matsuzawa, Shun; Kishi, Yoshihiro; Isobe, Masaharu

    2016-01-01

    Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins. PMID:27125496

  13. Differentiation of opioid drug effects by hierarchical multi-site phosphorylation.

    Science.gov (United States)

    Just, Sascha; Illing, Susann; Trester-Zedlitz, Michelle; Lau, Elaine K; Kotowski, Sarah J; Miess, Elke; Mann, Anika; Doll, Christian; Trinidad, Jonathan C; Burlingame, Alma L; von Zastrow, Mark; Schulz, Stefan

    2013-03-01

    Differences in the ability of opioid drugs to promote regulated endocytosis of μ-opioid receptors are related to their tendency to produce drug tolerance and dependence. Here we show that drug-specific differences in receptor internalization are determined by a conserved, 10-residue sequence in the receptor's carboxyl-terminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at serine (S)375, present in the middle of this sequence, but opioids differ markedly in their ability to drive higher-order phosphorylation on flanking residues [threonine (T)370, T376, and T379]. Multi-phosphorylation is required for the endocytosis-promoting activity of this sequence and occurs both sequentially and hierarchically, with S375 representing the initiating site. Higher-order phosphorylation involving T370, T376, and T379 specifically requires GRK2/3 isoforms, and the same sequence controls opioid receptor internalization in neurons. These results reveal a biochemical mechanism differentiating the endocytic activity of opioid drugs.

  14. Mapping of p140Cap phosphorylation sites: the EPLYA and EGLYA motifs have a key role in tyrosine phosphorylation and Csk binding, and are substrates of the Abl kinase.

    Directory of Open Access Journals (Sweden)

    Daniele Repetto

    Full Text Available Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation. p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk, previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors.

  15. Mapping of p140Cap phosphorylation sites: the EPLYA and EGLYA motifs have a key role in tyrosine phosphorylation and Csk binding, and are substrates of the Abl kinase.

    Science.gov (United States)

    Repetto, Daniele; Aramu, Simona; Boeri Erba, Elisabetta; Sharma, Nanaocha; Grasso, Silvia; Russo, Isabella; Jensen, Ole N; Cabodi, Sara; Turco, Emilia; Di Stefano, Paola; Defilippi, Paola

    2013-01-01

    Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk), previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors.

  16. Sites of regulated phosphorylation that control K-Cl cotransporter activity.

    Science.gov (United States)

    Rinehart, Jesse; Maksimova, Yelena D; Tanis, Jessica E; Stone, Kathryn L; Hodson, Caleb A; Zhang, Junhui; Risinger, Mary; Pan, Weijun; Wu, Dianqing; Colangelo, Christopher M; Forbush, Biff; Joiner, Clinton H; Gulcicek, Erol E; Gallagher, Patrick G; Lifton, Richard P

    2009-08-07

    Modulation of intracellular chloride concentration ([Cl(-)](i)) plays a fundamental role in cell volume regulation and neuronal response to GABA. Cl(-) exit via K-Cl cotransporters (KCCs) is a major determinant of [Cl(-)](I); however, mechanisms governing KCC activities are poorly understood. We identified two sites in KCC3 that are rapidly dephosphorylated in hypotonic conditions in cultured cells and human red blood cells in parallel with increased transport activity. Alanine substitutions at these sites result in constitutively active cotransport. These sites are highly phosphorylated in plasma membrane KCC3 in isotonic conditions, suggesting that dephosphorylation increases KCC3's intrinsic transport activity. Reduction of WNK1 expression via RNA interference reduces phosphorylation at these sites. Homologous sites are phosphorylated in all human KCCs. KCC2 is partially phosphorylated in neonatal mouse brain and dephosphorylated in parallel with KCC2 activation. These findings provide insight into regulation of [Cl(-)](i) and have implications for control of cell volume and neuronal function.

  17. Determination of sites of U50,488H-promoted phosphorylation of the mouse κ opioid receptor (KOPR): disconnect between KOPR phosphorylation and internalization.

    Science.gov (United States)

    Chen, Chongguang; Chiu, Yi-Ting; Wu, Wenman; Huang, Peng; Mann, Anika; Schulz, Stefan; Liu-Chen, Lee-Yuan

    2016-02-15

    Phosphorylation sites of KOPR (κ opioid receptor) following treatment with the selective agonist U50,488H {(-)(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidiny)cyclo-hexyl]benzeneacetamide} were identified after affinity purification, SDS/PAGE, in-gel digestion with Glu-C and HPLC-MS/MS. Single- and double-phosphorylated peptides were identified containing phosphorylated Ser(356), Thr(357), Thr(363) and Ser(369) in the C-terminal domain. Antibodies were generated against three phosphopeptides containing pSer(356)/pThr(357), pThr(363) and pSer(369) respectively, and affinity-purified antibodies were found to be highly specific for phospho-KOPR. U50,488H markedly enhanced staining of the KOPR by pThr(363)-, pSer(369)- and pSer(356)/pThr(357)-specific antibodies in immunoblotting, which was blocked by the selective KOPR antagonist norbinaltorphimine. Ser(369) phosphorylation affected Thr(363) phosphorylation and vice versa, and Thr(363) or Ser(369) phosphorylation was important for Ser(356)/Thr(357) phosphorylation, revealing a phosphorylation hierarchy. U50,488H, but not etorphine, promoted robust KOPR internalization, although both were full agonists. U50,488H induced higher degrees of phosphorylation than etorphine at Ser(356)/Thr(357), Thr(363) and Ser(369) as determined by immunoblotting. Using SILAC (stable isotope labelling by amino acids in cell culture) and HPLC-MS/MS, we found that, compared with control (C), U50,488H (U) and etorphine (E) KOPR promoted single phosphorylation primarily at Thr(363) and Ser(369) with U/E ratios of 2.5 and 2 respectively. Both induced double phosphorylation at Thr(363)+Ser(369) and Thr(357)+Ser(369) with U/E ratios of 3.3 and 3.4 respectively. Only U50,488H induced triple phosphorylation at Ser(356)+Thr(357)+Ser(369). An unphosphorylated KOPR-(354-372) fragment containing all of the phosphorylation sites was detected with a C/E/U ratio of 1/0.7/0.4, indicating that ∼60% and ∼30% of the mouse KOPR are phosphorylated

  18. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues

    DEFF Research Database (Denmark)

    Lundby, Alicia; Secher, Anna; Lage, Kasper

    2012-01-01

    across 14 rat organs and tissues. We provide the data set as an easily accessible resource via a web-based database, the CPR PTM Resource. A major fraction of the presented phosphorylation sites are tissue-specific and modulate protein interaction networks that are essential for the function...

  19. Stress-evoked tyrosine phosphorylation of signal regulatory protein α regulates behavioral immobility in the forced swim test.

    Science.gov (United States)

    Ohnishi, Hiroshi; Murata, Takaaki; Kusakari, Shinya; Hayashi, Yuriko; Takao, Keizo; Maruyama, Toshi; Ago, Yukio; Koda, Ken; Jin, Feng-Jie; Okawa, Katsuya; Oldenborg, Per-Arne; Okazawa, Hideki; Murata, Yoji; Furuya, Nobuhiko; Matsuda, Toshio; Miyakawa, Tsuyoshi; Matozaki, Takashi

    2010-08-01

    Severe stress induces changes in neuronal function that are implicated in stress-related disorders such as depression. The molecular mechanisms underlying the response of the brain to stress remain primarily unknown, however. Signal regulatory protein alpha (SIRPalpha) is an Ig-superfamily protein that undergoes tyrosine phosphorylation and binds the protein tyrosine phosphatase Shp2. Here we show that mice expressing a form of SIRPalpha that lacks most of the cytoplasmic region manifest prolonged immobility (depression-like behavior) in the forced swim (FS) test. FS stress induced marked tyrosine phosphorylation of SIRPalpha in the brain of wild-type mice through activation of Src family kinases. The SIRPalpha ligand CD47 was important for such SIRPalpha phosphorylation, and CD47-deficient mice also manifested prolonged immobility in the FS test. Moreover, FS stress-induced tyrosine phosphorylation of both the NR2B subunit of the NMDA subtype of glutamate receptor and the K+-channel subunit Kvbeta2 was regulated by SIRPalpha. Thus, tyrosine phosphorylation of SIRPalpha is important for regulation of depression-like behavior in the response of the brain to stress.

  20. AMP-activated protein kinase phosphorylates EMCV, TMEV and SafV leader proteins at different sites.

    Science.gov (United States)

    Basta, Holly A; Palmenberg, Ann C

    2014-08-01

    Cardioviruses of the Encephalomyocarditis virus (EMCV) and Theilovirus species encode small, amino-terminal proteins called Leaders (L). Phosphorylation of the EMCV L (LE) at two distinct sites by CK2 and Syk kinases is important for virus-induced Nup phosphorylation and nucleocytoplasmic trafficking inhibition. Despite similar biological activities, the LE phosphorylation sites are not conserved in the Theiloviruses, Saffold virus (LS, SafV) or Theiler׳s murine encephalitis virus (LT, TMEV) sequences even though these proteins also become phosphorylated in cells and cell-free extracts. Site prediction algorithms, combined with panels of site-specific protein mutations now identify analogous, but not homologous phosphorylation sites in the Ser/Thr and Theilo protein domains of LT and LS, respectively. In both cases, recombinant AMP-activated kinase (AMPK) was reactive with the proteins at these sites, and also with LE, modifying the same residue recognized by CK2. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions.

    Science.gov (United States)

    Pedersen, Søren W; Albertsen, Louise; Moran, Griffin E; Levesque, Brié; Pedersen, Stine B; Bartels, Lina; Wapenaar, Hannah; Ye, Fei; Zhang, Mingjie; Bowen, Mark E; Strømgaard, Kristian

    2017-09-15

    The postsynaptic density protein of 95 kDa (PSD-95) is a key scaffolding protein that controls signaling at synapses in the brain through interactions of its PDZ domains with the C-termini of receptors, ion channels, and enzymes. PSD-95 is highly regulated by phosphorylation. To explore the effect of phosphorylation on PSD-95, we used semisynthetic strategies to introduce phosphorylated amino acids at four positions within the PDZ domains and examined the effects on interactions with a large set of binding partners. We observed complex effects on affinity. Most notably, phosphorylation at Y397 induced a significant increase in affinity for stargazin, as confirmed by NMR and single molecule FRET. Additionally, we compared the effects of phosphorylation to phosphomimetic mutations, which revealed that phosphomimetics are ineffective substitutes for tyrosine phosphorylation. Our strategy to generate site-specifically phosphorylated PDZ domains provides a detailed understanding of the role of phosphorylation in the regulation of PSD-95 interactions.

  2. Contractions induce phosphorylation of the AMPK site Ser565 in hormone-sensitive lipase in muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia;

    2004-01-01

    Intramyocellular triglyceride is an important energy store which is related to insulin resistance. Mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by epinephrine via PKA...... and by contractions via PKC and ERK. 5' AMP-activated protein kinase (AMPK) is an intracellular fuel gauge which regulates metabolism. In this study we incubated rat soleus muscle to investigate if AMPK influences HSL during 5min of repeated tetanic contractions. An eightfold increase in AMPK activity was accompanied...... by a 2.5-fold increase in phosphorylation of the AMPK-site Ser(565) in HSL (pHSL activation while HSL-Ser(565) phosphorylation was not reduced. The study indicates that during contractions AMPK phosphorylates HSL in Ser(565...

  3. Identification of C-terminal phosphorylation sites of N-formyl peptide receptor-1 (FPR1) in human blood neutrophils.

    Science.gov (United States)

    Maaty, Walid S; Lord, Connie I; Gripentrog, Jeannie M; Riesselman, Marcia; Keren-Aviram, Gal; Liu, Ting; Dratz, Edward A; Bothner, Brian; Jesaitis, Algirdas J

    2013-09-20

    Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu(312)-Arg(322) and Arg(323)-Lys(350)) and extracellular FPR1 peptide (Ile(191)-Arg(201)) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala(323)-Lys(350) only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr(325), Ser(328), Thr(329), Thr(331), Ser(332), Thr(334), and Thr(339). No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nM. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites

  4. Identification of C-terminal Phosphorylation Sites of N-Formyl Peptide Receptor-1 (FPR1) in Human Blood Neutrophils*

    Science.gov (United States)

    Maaty, Walid S.; Lord, Connie I.; Gripentrog, Jeannie M.; Riesselman, Marcia; Keren-Aviram, Gal; Liu, Ting; Dratz, Edward A.; Bothner, Brian; Jesaitis, Algirdas J.

    2013-01-01

    Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu312–Arg322 and Arg323–Lys350) and extracellular FPR1 peptide (Ile191–Arg201) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala323–Lys350 only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr325, Ser328, Thr329, Thr331, Ser332, Thr334, and Thr339. No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nm. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites; and 3) the extent of

  5. Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle

    Energy Technology Data Exchange (ETDEWEB)

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.; Soto-Adames, Felipe N.; Vigoreaux, Jim O.; Maughan, David W.; Irving, Thomas C.; (IIT); (Vermont); (Duke)

    2010-02-02

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axial distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.

  6. Regulatory Considerations of Multi-Unit Site Risk

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inn Seock; Kim, Seoung Rae; Jang, Mi Suk [NESS, Daejeon (Korea, Republic of)

    2016-05-15

    Multiple nuclear power units are typically built on the same site in order to increase power generation for the regional grid, and for economical or other reasons. In the case of the Republic of Korea, the four nuclear plant sites are each expected to hold 6 to 10 units in the near future. Although little attention has been paid to the integral risk of multiple units on the same site thus far, there is a surge of interest in the multi-unit site risk these days especially because of simultaneous, radiological releases at several units (including spent fuel pools) of the Fukushima Daiichi Nuclear Power Station. This paper discusses historical considerations of the site risk in regulatory arena as well as recent developments in this area.

  7. Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes

    Science.gov (United States)

    Vlastaridis, Panayotis; Kyriakidou, Pelagia; Chaliotis, Anargyros; Van de Peer, Yves; Oliver, Stephen G.

    2017-01-01

    Abstract Background: Phosphorylation is the most frequent post-translational modification made to proteins and may regulate protein activity as either a molecular digital switch or a rheostat. Despite the cornucopia of high-throughput (HTP) phosphoproteomic data in the last decade, it remains unclear how many proteins are phosphorylated and how many phosphorylation sites (p-sites) can exist in total within a eukaryotic proteome. We present the first reliable estimates of the total number of phosphoproteins and p-sites for four eukaryotes (human, mouse, Arabidopsis, and yeast). Results: In all, 187 HTP phosphoproteomic datasets were filtered, compiled, and studied along with two low-throughput (LTP) compendia. Estimates of the number of phosphoproteins and p-sites were inferred by two methods: Capture-Recapture, and fitting the saturation curve of cumulative redundant vs. cumulative non-redundant phosphoproteins/p-sites. Estimates were also adjusted for different levels of noise within the individual datasets and other confounding factors. We estimate that in total, 13 000, 11 000, and 3000 phosphoproteins and 230 000, 156 000, and 40 000 p-sites exist in human, mouse, and yeast, respectively, whereas estimates for Arabidopsis were not as reliable. Conclusions: Most of the phosphoproteins have been discovered for human, mouse, and yeast, while the dataset for Arabidopsis is still far from complete. The datasets for p-sites are not as close to saturation as those for phosphoproteins. Integration of the LTP data suggests that current HTP phosphoproteomics appears to be capable of capturing 70 % to 95 % of total phosphoproteins, but only 40 % to 60 % of total p-sites. PMID:28327990

  8. Relationship between site-specific HSL phosphorylation and adipocyte lipolysis in obese women.

    Science.gov (United States)

    Lorente-Cebrián, Silvia; Kulyté, Agné; Hedén, Per; Näslund, Erik; Arner, Peter; Rydén, Mikael

    2011-01-01

    In fat cells of obese humans, basal lipolysis is increased but catecholamine-stimulated lipolysis is blunted. This is linked to decreased expression of hormone-sensitive lipase (HSL). Upon stimulation by cAMP, HSL is phosphorylated at several serine residues (P-Ser(552), P-Ser(649) and P-Ser(650)) leading to enzymatic activation. In contrast, P-Ser(554) prevents phosphorylation at Ser(552) and is thus considered an inactivating site. We hypothesized that differences in HSL phosphorylation could be linked to disturbed adipocyte lipolysis in obesity. Phosphorylation at Ser(552), Ser(554), Ser(650) as well as total HSL and adipose triglyceride lipase (ATGL) protein expression were assessed by Western blot in subcutaneous adipose tissue samples of 32 obese women. Basal and stimulated lipolysis in isolated fat cells were correlated to phosphorylation levels. While there was no correlation between basal lipolysis and P-Ser(650) or P-Ser(554), there was a negative correlation with P-Ser(552) (r = 0.39; p lipolysis. There were no significant correlations between any measure of lipolysis and total levels of HSL and ATGL. In contrast to total HSL and ATGL levels, phosphorylation at Ser(554) and Ser(552), but not at Ser(650), may differentially predict adipocyte lipolysis in vitro. Posttranslational modifications of HSL may therefore constitute an important regulator of adipocyte lipolysis, at least in adipose tissue of obese women. Whether this is also relevant in lean individuals remains to be demonstrated. Copyright © 2011 S. Karger AG, Basel.

  9. Impairments in site-specific AS160 phosphorylation and effects of exercise training

    DEFF Research Database (Denmark)

    Consitt, Leslie A; Van Meter, Jessica; Newton, Christopher A

    2013-01-01

    The purpose of this study was to determine if site-specific phosphorylation at the level of Akt substrate of 160 kDa (AS160) is altered in skeletal muscle from sedentary humans across a wide range of the adult lifespan (18 to 84 years) and if endurance- and/or strength-oriented exercise training...... in whole-body insulin action were associated with impairments in insulin-induced phosphorylation of skeletal muscle AS160 on sites Ser-588, Thr-642, Ser-666 and phospho-Akt substrate (PAS), but not Ser-318 or Ser-751. Twelve weeks of either endurance- or strength-oriented exercise training increased whole...... population and that exercise training is an effective intervention for treating these impairments....

  10. The protein kinase C phosphorylation site on GAP-43 differentially regulates information storage.

    Science.gov (United States)

    Holahan, Matthew; Routtenberg, Aryeh

    2008-01-01

    Protein kinase C (PKC) is known to regulate phosphorylation of substrates such as MARCKS, GAP-43, and the NMDA receptor, all of which have been linked to synaptic plasticity underlying information storage processes. Here we report on three transgenic mice isoforms differentiated both by mutation of the PKC site on GAP-43 as well as by their performance in three learning situations: (1) a radial arm maze task, which evaluates spatial memory and its retention, (2) fear conditioning which assesses contextual memory, and (3) the water maze which also evaluates spatial memory and its retention. The present results show, for the first time to our knowledge, that the phosphorylation state of a single site on an identified brain growth- and plasticity-associated protein differentially regulates performance of three different memory-associated tasks.

  11. Insulin stimulation regulates AS160 and TBC1D1 phosphorylation sites in human skeletal muscle

    DEFF Research Database (Denmark)

    Middelbeek, R J W; Chambers, M A; Tantiwong, P

    2013-01-01

    Individuals with obesity and type 2 diabetes (T2D) are typically insulin resistant, exhibiting impaired skeletal muscle glucose uptake. Animal and cell culture experiments have shown that site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 and TBC1D1 is critical for GLUT4 tr...... translocation facilitating glucose uptake, but their regulation in human skeletal muscle is not well understood....

  12. Differentiation of Opioid Drug Effects by Hierarchical Multi-Site Phosphorylation

    Science.gov (United States)

    Just, Sascha; Illing, Susann; Trester-Zedlitz, Michelle; Lau, Elaine K.; Kotowski, Sarah J.; Miess, Elke; Mann, Anika; Doll, Christian; Trinidad, Jonathan C.; Burlingame, Alma L.; von Zastrow, Mark

    2013-01-01

    Differences in the ability of opioid drugs to promote regulated endocytosis of μ-opioid receptors are related to their tendency to produce drug tolerance and dependence. Here we show that drug-specific differences in receptor internalization are determined by a conserved, 10-residue sequence in the receptor’s carboxyl-terminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at serine (S)375, present in the middle of this sequence, but opioids differ markedly in their ability to drive higher-order phosphorylation on flanking residues [threonine (T)370, T376, and T379]. Multi-phosphorylation is required for the endocytosis-promoting activity of this sequence and occurs both sequentially and hierarchically, with S375 representing the initiating site. Higher-order phosphorylation involving T370, T376, and T379 specifically requires GRK2/3 isoforms, and the same sequence controls opioid receptor internalization in neurons. These results reveal a biochemical mechanism differentiating the endocytic activity of opioid drugs. PMID:23239825

  13. Site directed mutagenesis of Drosophila flightin disrupts phosphorylation and impairs flight muscle structure and mechanics.

    Science.gov (United States)

    Barton, Byron; Ayer, Gretchen; Maughan, David W; Vigoreaux, Jim O

    2007-01-01

    Flightin is a myosin rod binding protein that in Drosophila melanogaster is expressed exclusively in the asynchronous indirect flight muscles (IFM). Hyperphosphorylation of flightin coincides with the completion of myofibril assembly and precedes the emergence of flight competency in young adults. To investigate the role of flightin phosphorylation in vivo we generated three flightin null (fln(0)) Drosophila strains that express a mutant flightin transgene with two (Thr158, Ser 162), three (Ser139, Ser141, Ser145) or all five potential phosphorylation sites mutated to alanines. These amino acid substitutions result in lower than normal levels of flightin accumulation and transgenic strains that are unable to beat their wings. On two dimensional gels of IFM proteins, the transgenic strain with five mutant sites (fln(5STA)) is devoid of all phosphovariants, the transgenic strain with two mutant sites (fln(2TSA)) expresses only the two least acidic of the nine phosphovariants, and the transgenic strain with three mutant sites (fln(3SA)) expresses all nine phosphovariants, as the wild-type strain. These results suggest that phosphorylation of Thr158 and/or Ser162 is necessary for subsequent phosphorylation of other sites. All three transgenic strains show normal, albeit long, IFM sarcomeres in newly eclosed adults. In contrast, sarcomeres in fully mature fln(5STA) and fln(2TSA) adults show extensive breakdown while those in fln(3SA) are not as disordered. The fiber hypercontraction phenotype that characterizes fln(0) is fully evident in fln(5STA) and fln(2TSA) but partially rescued in fln(3SA). Mechanics on skinned fibers from newly eclosed flies show alterations in viscous modulus for fln(5STA) and fln(2TSA) that result in a significant reduction in oscillatory power output. Expression of fln(5STA) and fln(2TSA), but not fln(3SA), in a wild-type (fln(+)/fln(+)) background resulted in a dominant negative effect manifested as flight impairments and hypercontracted IFM

  14. Assessment of current mass spectrometric workflows for the quantification of low abundant proteins and phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Manuel Bauer

    2015-12-01

    Full Text Available The data described here provide a systematic performance evaluation of popular data-dependent (DDA and independent (DIA mass spectrometric (MS workflows currently used in quantitative proteomics. We assessed the limits of identification, quantification and detection for each method by analyzing a dilution series of 20 unmodified and 10 phosphorylated synthetic heavy labeled reference peptides, respectively, covering six orders of magnitude in peptide concentration with and without a complex human cell digest background. We found that all methods performed very similarly in the absence of background proteins, however, when analyzing whole cell lysates, targeted methods were at least 5–10 times more sensitive than directed or DDA methods. In particular, higher stage fragmentation (MS3 of the neutral loss peak using a linear ion trap increased dynamic quantification range of some phosphopeptides up to 100-fold. We illustrate the power of this targeted MS3 approach for phosphopeptide monitoring by successfully quantifying 9 phosphorylation sites of the kinetochore and spindle assembly checkpoint component Mad1 over different cell cycle states from non-enriched pull-down samples. The data are associated to the research article ‘Evaluation of data-dependent and data-independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites׳ (Bauer et al., 2014 [1]. The mass spectrometry and the analysis dataset have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org via the PRIDE partner repository with the dataset identifier PXD000964.

  15. Novel protein phosphorylation site identification in spinach stroma membranes by titanium dioxide microcolumns and tandem mass spectrometry

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Larsen, Martin Røssel; Mohammed, Shabaz

    2006-01-01

    In this work, spinach stroma membrane, instead of thylakoid, has been investigated for the presence of phosphorylated proteins. We identified seven previously unknown phosphorylation sites by taking advantage of TiO(2) phosphopeptides enrichment coupled to mass spectrometric analysis. Upon illumi...

  16. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    Directory of Open Access Journals (Sweden)

    John G Koland

    2014-01-01

    Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in

  17. Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus

    Science.gov (United States)

    Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi

    2007-12-01

    After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and

  18. Asp295 Stabilizes the Active-Site Loop Structure of Pyruvate Dehydrogenase, Facilitating Phosphorylation of Ser292 by Pyruvate Dehydrogenase-Kinase

    Directory of Open Access Journals (Sweden)

    Tripty A. Hirani

    2011-01-01

    Full Text Available We have developed an in vitro system for detailed analysis of reversible phosphorylation of the plant mitochondrial pyruvate dehydrogenase complex, comprising recombinant Arabidopsis thaliana α2β2-heterotetrameric pyruvate dehydrogenase (E1 plus A. thaliana E1-kinase (AtPDK. Upon addition of MgATP, Ser292, which is located within the active-site loop structure of E1α, is phosphorylated. In addition to Ser292, Asp295 and Gly297 are highly conserved in the E1α active-site loop sequences. Mutation of Asp295 to Ala, Asn, or Leu greatly reduced phosphorylation of Ser292, while mutation of Gly297 had relatively little effect. Quantitative two-hybrid analysis was used to show that mutation of Asp295 did not substantially affect binding of AtPDK to E1α. When using pyruvate as a variable substrate, the Asp295 mutant proteins had modest changes in kcat, Km, and kcat/Km values. Therefore, we propose that Asp295 plays an important role in stabilizing the active-site loop structure, facilitating transfer of the γ-phosphate from ATP to the Ser residue at regulatory site one of E1α.

  19. Characterization of a novel phosphorylation site in the sodium–chloride cotransporter, NCC

    Science.gov (United States)

    Rosenbaek, L L; Assentoft, M; Pedersen, N B; MacAulay, N; Fenton, R A

    2012-01-01

    The sodium–chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antibodies targeting pS124-NCC demonstrated a band of 160 kDa in the kidney cortex, but not medulla, which was preabsorbed by a corresponding phosphorylated peptide. Confocal microscopy with kidney tubule segment-specific markers localized pS124-NCC to all distal convoluted tubule cells. Double immunogold electron microscopy demonstrated that pS124-NCC co-localized with total NCC in the apical plasma membrane of distal convoluted tubule cells and intracellular vesicles. Acute treatment of Munich–Wistar rats or vasopressin-deficient Brattleboro rats with the vasopressin type 2 receptor-specific agonist dDAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin–angiotensin–aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1-related proline–alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and mTOR/FRAP) showed weak but significant phosphorylation activity at S124. In oocytes, 36Cl uptake studies combined with biochemical analysis showed decreased activity of plasma membrane-associated NCC when replacing S124 with alanine (A) or aspartic acid (D). In novel tetracycline-inducible MDCKII-NCC cell lines, S124A and S124D mutants were able to traffic to the plasma membrane similarly to wildtype NCC. PMID:22966159

  20. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC.

    Science.gov (United States)

    Rosenbaek, L L; Assentoft, M; Pedersen, N B; MacAulay, N; Fenton, R A

    2012-12-01

    The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antibodies targeting pS124-NCC demonstrated a band of 160 kDa in the kidney cortex, but not medulla, which was preabsorbed by a corresponding phosphorylated peptide. Confocal microscopy with kidney tubule segment-specific markers localized pS124-NCC to all distal convoluted tubule cells. Double immunogold electron microscopy demonstrated that pS124-NCC co-localized with total NCC in the apical plasma membrane of distal convoluted tubule cells and intracellular vesicles. Acute treatment of Munich-Wistar rats or vasopressin-deficient Brattleboro rats with the vasopressin type 2 receptor-specific agonist dDAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin-angiotensin-aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1-related proline-alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and mTOR/FRAP) showed weak but significant phosphorylation activity at S124. In oocytes, (36)Cl uptake studies combined with biochemical analysis showed decreased activity of plasma membrane-associated NCC when replacing S124 with alanine (A) or aspartic acid (D). In novel tetracycline-inducible MDCKII-NCC cell lines, S124A and S124D mutants were able to traffic to the plasma membrane similarly to wildtype NCC.

  1. Linear motif atlas for phosphorylation-dependent signaling

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Jensen, LJ; Diella, F;

    2008-01-01

    Systematic and quantitative analysis of protein phosphorylation is revealing dynamic regulatory networks underlying cellular responses to environmental cues. However, matching these sites to the kinases that phosphorylate them and the phosphorylation-dependent binding domains that may subsequently...... sequence models of linear motifs. The atlas is available as a community resource (http://netphorest.info)....

  2. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL

    Directory of Open Access Journals (Sweden)

    Hastie C James

    2006-01-01

    Full Text Available Abstract Background Pim-1, 2 and 3 are a group of enzymes related to the calcium calmodulin family of protein kinases. Over-expression of Pim-1 and Pim-2 in mice promotes the development of lymphomas, and up-regulation of Pim expression has been observed in several human cancers. Results Here we show that the pim kinases are constitutively active when expressed in HEK-293 cells and are able to phosphorylate the Bcl-2 family member Bad on three residues, Ser112, Ser136 and Ser155 in vitro and in cells. In vitro mapping showed that Pim-2 predominantly phosphorylated Ser112, while Pim-1 phosphorylated Ser112, but also Ser136 and Ser155 at a reduced rate compared to Ser112. Pim-3 was found to be the least specific for Ser112, and the most effective at phosphorylating Ser136 and Ser155. Pim-3 was also able to phosphorylate other sites in Bad in vitro, including Ser170, another potential in vivo site. Mutation of Ser136 to alanine prevented the phosphorylation of Ser112 and Ser155 by Pim kinases in HEK-293 cells, suggesting that this site must be phosphorylated first in order to make the other sites accessible. Pim phosphorylation of Bad was also found to promote the 14-3-3 binding of Bad and block its association with Bcl-XL. Conclusion All three Pim kinase family members predominantly phosphorylate Bad on Ser112 and in addition are capable of phosphorylating Bad on multiple sites associated with the inhibition of the pro-apoptotic function of Bad in HEK-293 cells. This would be consistent with the proposed function of Pim kinases in promoting cell proliferation and preventing cell death.

  3. Identification of phosphorylation sites of proteins by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The phosphorylation sites of two phosphorylated proteins, bovine b-casein and myelin basic protein (MBP), were identified by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry (HPLC-ESI-QITMS). The tryptic digest of each protein was separated by HPLC, the molecular weight of each peptide was determined by ESI-QITMS on line, and MS/MS spectrum of each peptide was simultaneously obtained by the combination of collision-induced desorption (CID) technique and tandem mass spectrometry (MS/MS) of QITMS. The phosphorylated peptide was identified by looking into whether the difference between the observed and predicted molecular weights of a peptide is 80 u or its integral multiple. Then the phosphorylation site was identified through manual interpretation of the MS/MS spectrum of the phosphorylated peptide or automatic SEQUEST data base-searching.

  4. Identification of phosphorylation sites of proteins by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    车发云; 邵晓霞; 夏其昌

    2000-01-01

    The phosphorylation sites of two phosphorylated proteins, bovine β-casein and myelin basic protein (MBP), were identified by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry (HPLC-ESI-QITMS). The tryptic digest of each protein was separated by HPLC, the molecular weight of each peptide was determined by ESI-QITMS on line, and MS/MS spectrum of each peptide was simultaneously obtained by the combination of collision-induced desorption (CID) technique and tandem mass spectrometry (MS/MS) of QITMS. The phosphorylated peptide was identified by looking into whether the difference between the observed and predicted molecular weights of a peptide is 80 u or its integral multiple. Then the phosphorylation site was identified through manual interpretation of the MS/MS spectrum of the phosphorylated peptide or automatic SEQUEST data base-searching.

  5. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development

    Energy Technology Data Exchange (ETDEWEB)

    Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya; Patel, Jitandrakumar R.; Fitzsimons, Daniel P.; Irving, Thomas C.; Moss, Richard L. (IIT); (UW-MED)

    2010-05-25

    Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force, we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.

  6. Newly identified phosphorylation site in the vesicular stomatitis virus P protein is required for viral RNA synthesis.

    Science.gov (United States)

    Mondal, Arindam; Victor, Ken G; Pudupakam, R S; Lyons, Charles E; Wertz, Gail W

    2014-02-01

    The vesicular stomatitis virus (VSV) RNA-dependent RNA polymerase consists of two viral proteins; the large (L) protein is the main catalytic subunit, and the phosphoprotein (P) is an essential cofactor for polymerase function. The P protein interacts with the L protein and the N-RNA template, thus connecting the polymerase to the template. P protein also binds to free N protein to maintain it in a soluble, encapsidation-competent form. Previously, five sites of phosphorylation were identified on the P protein and these sites were reported to be differentially important for mRNA synthesis or genomic replication. The previous studies were carried out by biochemical analysis of portions of the authentic viral P protein or by analysis of bacterium-expressed, exogenously phosphorylated P protein by mutagenesis. However, there has been no systematic biochemical search for phosphorylation sites on authentic, virus-expressed P protein. In this study, we analyzed the P protein isolated from VSV-infected cells for sites of phosphorylation by mass spectrometry. We report the identification of Tyr14 as a previously unidentified phosphorylation site of VSV P and show that it is essential for viral transcription and replication. However, our mass spectral analysis failed to observe the phosphorylation of previously reported C-terminal residues Ser226 and Ser227 and mutagenic analyses did not demonstrate a role for these sites in RNA synthesis.

  7. Good clinical practice regulatory inspections: Lessons for Indian investigator sites

    Directory of Open Access Journals (Sweden)

    R Marwah

    2010-01-01

    Full Text Available Regulatory inspections are important to evaluate the integrity of the data submitted to health authorities (HAs, protect patient safety, and assess adequacy of site/sponsor quality systems to achieve the same. Inspections generally occur after submission of data for marketing approval of an investigational drug. In recent years, there has been a significant increase in number of inspections by different HAs, including in India. The assessors/inspectors generally do a thorough review of site data before inspections. All aspects of ICH-GCP, site infrastructure, and quality control systems are assessed during the inspection. Findings are discussed during the close out meeting and a detailed inspection report issued afterward, which has to be responded to within 15-30 days with effective Corrective and Preventive Action Plan (CAPA. Protocol noncompliance, inadequate/inaccurate records, inadequate drug accountability, informed consent issues, and adverse event reporting were some of the most common findings observed during recent Food and Drug Administration (FDA inspections. Drug development is being increasingly globalized and an increased number of patients enrolled in studies submitted as part of applications come from all over the world including India. Because of the steep increase in research activity in the country, inexperienced sites, and more stakeholders, increased efforts will be required to ensure continuous quality and compliance. HAs have also made clear that enforcement will be increased and be swift, aggressive, and effective.

  8. Widespread site-dependent buffering of human regulatory polymorphism.

    Science.gov (United States)

    Maurano, Matthew T; Wang, Hao; Kutyavin, Tanya; Stamatoyannopoulos, John A

    2012-01-01

    The average individual is expected to harbor thousands of variants within non-coding genomic regions involved in gene regulation. However, it is currently not possible to interpret reliably the functional consequences of genetic variation within any given transcription factor recognition sequence. To address this, we comprehensively analyzed heritable genome-wide binding patterns of a major sequence-specific regulator (CTCF) in relation to genetic variability in binding site sequences across a multi-generational pedigree. We localized and quantified CTCF occupancy by ChIP-seq in 12 related and unrelated individuals spanning three generations, followed by comprehensive targeted resequencing of the entire CTCF-binding landscape across all individuals. We identified hundreds of variants with reproducible quantitative effects on CTCF occupancy (both positive and negative). While these effects paralleled protein-DNA recognition energetics when averaged, they were extensively buffered by striking local context dependencies. In the significant majority of cases buffering was complete, resulting in silent variants spanning every position within the DNA recognition interface irrespective of level of binding energy or evolutionary constraint. The prevalence of complex partial or complete buffering effects severely constrained the ability to predict reliably the impact of variation within any given binding site instance. Surprisingly, 40% of variants that increased CTCF occupancy occurred at positions of human-chimp divergence, challenging the expectation that the vast majority of functional regulatory variants should be deleterious. Our results suggest that, even in the presence of "perfect" genetic information afforded by resequencing and parallel studies in multiple related individuals, genomic site-specific prediction of the consequences of individual variation in regulatory DNA will require systematic coupling with empirical functional genomic measurements.

  9. Widespread site-dependent buffering of human regulatory polymorphism.

    Directory of Open Access Journals (Sweden)

    Matthew T Maurano

    Full Text Available The average individual is expected to harbor thousands of variants within non-coding genomic regions involved in gene regulation. However, it is currently not possible to interpret reliably the functional consequences of genetic variation within any given transcription factor recognition sequence. To address this, we comprehensively analyzed heritable genome-wide binding patterns of a major sequence-specific regulator (CTCF in relation to genetic variability in binding site sequences across a multi-generational pedigree. We localized and quantified CTCF occupancy by ChIP-seq in 12 related and unrelated individuals spanning three generations, followed by comprehensive targeted resequencing of the entire CTCF-binding landscape across all individuals. We identified hundreds of variants with reproducible quantitative effects on CTCF occupancy (both positive and negative. While these effects paralleled protein-DNA recognition energetics when averaged, they were extensively buffered by striking local context dependencies. In the significant majority of cases buffering was complete, resulting in silent variants spanning every position within the DNA recognition interface irrespective of level of binding energy or evolutionary constraint. The prevalence of complex partial or complete buffering effects severely constrained the ability to predict reliably the impact of variation within any given binding site instance. Surprisingly, 40% of variants that increased CTCF occupancy occurred at positions of human-chimp divergence, challenging the expectation that the vast majority of functional regulatory variants should be deleterious. Our results suggest that, even in the presence of "perfect" genetic information afforded by resequencing and parallel studies in multiple related individuals, genomic site-specific prediction of the consequences of individual variation in regulatory DNA will require systematic coupling with empirical functional genomic

  10. Early Site Permit Demonstration Program: Regulatory criteria evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The primary objective of the ESPDP is to demonstrate successfully the use of 10CFR52 to obtain ESPs for one or more US sites for one (or more) ALWR nuclear power plants. It is anticipated that preparation of the ESP application and interaction with NRC during the application review process will result not only in an ESP for the applicant(s) but also in the development of criteria and definition of processes, setting the precedent that facilitates ESPs for subsequent ESP applications. Because siting regulatory processes and acceptance criteria are contained in over 100 separate documents, comprehensive licensing and technical reviews were performed to establish whether the requirements and documentation are self-consistent, whether the acceptance criteria are sufficiently well-defined and clear, and whether the licensing process leading to the issuance of an ESP is unambiguously specified. The results of the technical and licensing evaluations are presented in this report. The purpose, background, and organization of the ESPDP is delineated in Section 1. Section 11 contains flowcharts defining siting application requirements, environmental report requirements, and emergency planning/preparedness requirements for ALWRS. The licensing and technical review results are presented in Section III.

  11. Pervasive hitchhiking at coding and regulatory sites in humans.

    Directory of Open Access Journals (Sweden)

    James J Cai

    2009-01-01

    Full Text Available Much effort and interest have focused on assessing the importance of natural selection, particularly positive natural selection, in shaping the human genome. Although scans for positive selection have identified candidate loci that may be associated with positive selection in humans, such scans do not indicate whether adaptation is frequent in general in humans. Studies based on the reasoning of the MacDonald-Kreitman test, which, in principle, can be used to evaluate the extent of positive selection, suggested that adaptation is detectable in the human genome but that it is less common than in Drosophila or Escherichia coli. Both positive and purifying natural selection at functional sites should affect levels and patterns of polymorphism at linked nonfunctional sites. Here, we search for these effects by analyzing patterns of neutral polymorphism in humans in relation to the rates of recombination, functional density, and functional divergence with chimpanzees. We find that the levels of neutral polymorphism are lower in the regions of lower recombination and in the regions of higher functional density or divergence. These correlations persist after controlling for the variation in GC content, density of simple repeats, selective constraint, mutation rate, and depth of sequencing coverage. We argue that these results are most plausibly explained by the effects of natural selection at functional sites -- either recurrent selective sweeps or background selection -- on the levels of linked neutral polymorphism. Natural selection at both coding and regulatory sites appears to affect linked neutral polymorphism, reducing neutral polymorphism by 6% genome-wide and by 11% in the gene-rich half of the human genome. These findings suggest that the effects of natural selection at linked sites cannot be ignored in the study of neutral human polymorphism.

  12. Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Nicola Horstmann

    2014-05-01

    Full Text Available Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR protein from the major human pathogen group A Streptococcus (GAS influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53 in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65 as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk. Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A or had functional constitutive phosphorylation at T65 (CovR-T65E had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data

  13. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis.

    Science.gov (United States)

    Abbott, Geoffrey W; Butler, Margaret H; Goldstein, Steve A N

    2006-02-01

    MinK-related peptide 2 (MiRP2) and Kv3.4 subunits assemble in skeletal muscle to create subthreshold, voltage-gated potassium channels. MiRP2 acts on Kv3.4 to shift the voltage dependence of activation, speed recovery from inactivation, suppress cumulative inactivation and increase unitary conductance. We previously found an R83H missense mutation in MiRP2 that segregated with periodic paralysis in two families and diminished the effects of MiRP2 on Kv3.4. Here we show that MiRP2 has a single, functional PKC phosphorylation site at serine 82 and that normal MiRP2-Kv3.4 function requires phosphorylation of the site. The R83H variant does not prevent PKC phosphorylation of neighboring S82; rather, the change shifts the voltage dependence of activation and endows MiRP2-Kv3.4 channels with sensitivity to changes in intracellular pH across the physiological range. Thus, current passed by single R83H channels decreases as internal pH is lowered (pK(a) approximately 7.3, consistent with histidine protonation) whereas wild-type channels are largely insensitive. These findings identify a key regulatory domain in MiRP2 and suggest a mechanistic link between acidosis and episodes of periodic paralysis.

  14. Identification of Ca2+/calmodulin-dependent phosphorylation sites of endocytic scaffold ITSN1 by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Morderer D. Ye.

    2015-10-01

    Full Text Available ITSN1 is a scaffold protein involved in endocytosis, signal transduction and cytoskeleton regulation. It has been previously shown that ITSN1 undergoes Ca2+/calmodulin-dependent phosphorylation in vitro. Aim. We intend to identify these phosphorylation sites. Methods. In vitro kinase reaction; liquid chromatography-tandem mass spectrometry (LC/MS/MS. Results. We identified five sites of Ca2+/calmodulin-dependent phosphorylation in the recombinant fragments of ITSN1. Conclusions. We have shown that the ITSN1 coiled-coil region (CCR and the interdomain linkers between EH2 and CCR, SH3A and SH3B, SH3B and SH3C domains were phosphorylated in a Ca2+/calmodulin-dependent manner in vitro.

  15. Rho kinase's role in myosin recruitment to the equatorial cortex of mitotic Drosophila S2 cells is for myosin regulatory light chain phosphorylation.

    Directory of Open Access Journals (Sweden)

    Sara O Dean

    Full Text Available BACKGROUND: Myosin II recruitment to the equatorial cortex is one of the earliest events in establishment of the cytokinetic contractile ring. In Drosophila S2 cells, we previously showed that myosin II is recruited to the furrow independently of F-actin, and that Rho1 and Rok are essential for this recruitment [1]. Rok phosphorylates several cellular proteins, including the myosin regulatory light chain (RLC. METHODOLOGY/PRINCIPAL FINDINGS: Here we express phosphorylation state mimic constructs of the RLC in S2 cells to examine the role of RLC phosphorylation involving Rok in the localization of myosin. Phosphorylation of the RLC is required for myosin localization to the equatorial cortex during mitosis, and the essential role of Rok in this localization and for cytokinesis is to maintain phosphorylation of the RLC. The ability to regulate the RLC phosphorylation state spatio-temporally is not essential for the myosin localization. Furthermore, the essential role of Citron in cytokinesis is not phosphorylation of the RLC. CONCLUSIONS/SIGNIFICANCE: We conclude that the Rho1 pathway leading to myosin localization to the future cytokinetic furrow is relatively straightforward, where only Rok is needed, and it is only needed to maintain phosphorylation of the myosin RLC.

  16. Use of a Phosphorylation Site Mutant To Identify Distinct Modes of Gene Repression by the Control of Virulence Regulator (CovR) in Streptococcus pyogenes.

    Science.gov (United States)

    Horstmann, Nicola; Sahasrabhojane, Pranoti; Yao, Hui; Su, Xiaoping; Shelburne, Samuel A

    2017-09-15

    Control of the virulence regulator/sensor kinase (CovRS) two-component system (TCS) serves as a model for investigating the impact of signaling pathways on the pathogenesis of Gram-positive bacteria. However, the molecular mechanisms by which CovR, an OmpR/PhoB family response regulator, controls virulence gene expression are poorly defined, partly due to the labile nature of its aspartate phosphorylation site. To better understand the regulatory effect of phosphorylated CovR, we generated the phosphorylation site mutant strain 10870-CovR-D53E, which we predicted to have a constitutive CovR phosphorylation phenotype. Interestingly, this strain showed CovR activity only for a subset of the CovR regulon, which allowed for classification of CovR-influenced genes into D53E-regulated and D53E-nonregulated groups. Inspection of the promoter sequences of genes belonging to each group revealed distinct promoter architectures with respect to the location and number of putative CovR-binding sites. Electrophoretic mobility shift analysis demonstrated that recombinant CovR-D53E protein retains its ability to bind promoter DNA from both CovR-D53E-regulated and -nonregulated groups, implying that factors other than mere DNA binding are crucial for gene regulation. In fact, we found that CovR-D53E is incapable of dimerization, a process thought to be critical to OmpR/PhoB family regulator function. Thus, our global analysis of CovR-D53E indicates dimerization-dependent and dimerization-independent modes of CovR-mediated repression, thereby establishing distinct mechanisms by which this critical regulator coordinates virulence gene expression.IMPORTANCEStreptococcus pyogenes causes a wide variety of diseases, ranging from superficial skin and throat infections to life-threatening invasive infections. To establish these various disease manifestations, Streptococcus pyogenes requires tightly coordinated production of its virulence factor repertoire. Here, the response regulator Cov

  17. Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation

    Science.gov (United States)

    Zhang, Linsheng; Fried, Florence B.; Guo, Hong

    2008-01-01

    RUNX1/AML1 regulates lineage-specific genes during hematopoiesis and stimulates G1 cell-cycle progression. Within RUNX1, S48, S303, and S424 fit the cyclin-dependent kinase (cdk) phosphorylation consensus, (S/T)PX(R/K). Phosphorylation of RUNX1 by cdks on serine 303 was shown to mediate destabilization of RUNX1 in G2/M. We now use an in vitro kinase assay, phosphopeptide-specific antiserum, and the cdk inhibitor roscovitine to demonstrate that S48 and S424 are also phosphorylated by cdk1 or cdk6 in hematopoietic cells. S48 phosphorylation of RUNX1 paralleled total RUNX1 levels during cell-cycle progression, S303 was more effectively phosphorylated in G2/M, and S424 in G1. Single, double, and triple mutation of the cdk sites to the partially phosphomimetic aspartic acid mildly reduced DNA affinity while progressively increasing transactivation of a model reporter. Mutation to alanine increased DNA affinity, suggesting that in other gene or cellular contexts phosphorylation of RUNX1 by cdks may reduce transactivation. The tripleD RUNX1 mutant rescued Ba/F3 cells from inhibition of proliferation by CBFβ-SMMHC more effectively than the tripleA mutant. Together these findings indicate that cdk phosphorylation of RUNX1 potentially couples stem/progenitor proliferation and lineage progression. PMID:18003885

  18. β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer's disease-related sites.

    Directory of Open Access Journals (Sweden)

    Danielle Frost

    Full Text Available Harmine, a β-carboline alkaloid, is a high affinity inhibitor of the dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A protein. The DYRK1A gene is located within the Down Syndrome Critical Region (DSCR on chromosome 21. We and others have implicated DYRK1A in the phosphorylation of tau protein on multiple sites associated with tau pathology in Down Syndrome and in Alzheimer's disease (AD. Pharmacological inhibition of this kinase may provide an opportunity to intervene therapeutically to alter the onset or progression of tau pathology in AD. Here we test the ability of harmine, and numerous additional β-carboline compounds, to inhibit the DYRK1A dependent phosphorylation of tau protein on serine 396, serine 262/serine 356 (12E8 epitope, and threonine 231 in cell culture assays and in vitro phosphorylation assays. Results demonstrate that the β-carboline compounds (1 potently reduce the expression of all three phosphorylated forms of tau protein, and (2 inhibit the DYRK1A catalyzed direct phosphorylation of tau protein on serine 396. By assaying several β-carboline compounds, we define certain chemical groups that modulate the affinity of this class of compounds for inhibition of tau phosphorylation.

  19. Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD.

    Science.gov (United States)

    Yamashita, Takenari; Teramoto, Sayaka; Kwak, Shin

    2016-06-01

    TAR DNA-binding protein-43 (TDP-43) pathology, which includes the presence of abnormal TDP-43-containing inclusions with a loss of nuclear TDP-43 in affected neurons, is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and/or frontotemporal lobar degeneration (FTLD). TDP-43 in the pathological brains and spinal cords of ALS/FTLD patients is abnormally fragmented and phosphorylated. It is believed that the generation of aggregation-prone TDP-43 fragments initiates TDP-43 pathology, and we previously reported that calpain has an important role in the generation of such aggregation-prone TDP-43 fragments. However, the role of phosphorylation in TDP-43 pathology has not been largely elucidated, despite previous observations that several kinases and their kinases are involved in TDP-43 phosphorylation. Here, we investigated the role of TDP-43 phosphorylation in the calpain-dependent cleavage of TDP-43 and found that phosphorylated, full-length TDP-43 and calpain-dependent TDP-43 fragments were more resistant to cleavage by calpain than endogenous full-length TDP-43 was. These results suggest that both phosphorylated and calpain-cleaved TDP-43 fragments persist intracellularly for a length of time that is sufficient for self-aggregation, thereby serving as seeds for inclusions. Copyright © 2015 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  20. Determination of GPCR Phosphorylation Status: Establishing a Phosphorylation Barcode.

    Science.gov (United States)

    Prihandoko, Rudi; Bradley, Sophie J; Tobin, Andrew B; Butcher, Adrian J

    2015-06-01

    G protein-coupled receptors (GPCRs) are rapidly phosphorylated following agonist occupation in a process that mediates receptor uncoupling from its cognate G protein, a process referred to as desensitization. In addition, this process provides a mechanism by which receptors can engage with arrestin adaptor molecules and couple to downstream signaling pathways. The importance of this regulatory process has been highlighted recently by the understanding that ligands can direct receptor signaling along one pathway in preference to another, the phenomenon of signaling bias that is partly mediated by the phosphorylation status or phosphorylation barcode of the receptor. Methods to determine the phosphorylation status of a GPCR in vitro and in vivo are necessary to understand not only the physiological mechanisms involved in GPCR signaling, but also to fully examine the signaling properties of GPCR ligands. This unit describes detailed methods for determining the overall phosphorylation pattern on a receptor (the phosphorylation barcode), as well as mass spectrometry approaches that can define the precise sites that become phosphorylated. These techniques, coupled with the generation and characterization of receptor phosphorylation-specific antibodies, provide a full palate of techniques necessary to determine the phosphorylation status of any given GPCR subtype.

  1. The active site of oxidative phosphorylation and the origin of hyperhomocysteinemia in aging and dementia.

    Science.gov (United States)

    McCully, Kilmer S

    2015-01-01

    The active site of oxidative phosphorylation and adenosine triphosphate (ATP) synthesis in mitochondria is proposed to consist of two molecules of thioretinamide bound to cobalamin, forming thioretinaco, complexed with ozone, oxygen, nicotinamide adenine dinucleotide. and inorganic phosphate, TR2CoO3O2NAD(+)H2PO4(-). Reduction of the pyridinium nitrogen of the nicotinamide group by an electron from electron transport complexes initiates polymerization of phosphate with adenosine diphosphate, yielding nicotinamide riboside and ATP bound to thioretinaco ozonide oxygen. A second electron reduces oxygen to hydroperoxyl radical, releasing ATP from the active site. A proton gradient is created within F1F0 ATPase complexes of mitochondria by reaction of protons with reduced nicotinamide riboside and with hydroperoxyl radical, yielding reduced nicotinamide riboside and hydroperoxide. The hyperhomocysteinemia of aging and dementia is attributed to decreased synthesis of adenosyl methionine by thioretinaco ozonide and ATP, causing decreased allosteric activation of cystathionine synthase and decreased allosteric inhibition of methylenetetrahydrofolate reductase and resulting in dysregulation of methionine metabolism.

  2. Identification and characterization of columbid annexin Icp37. Insights into the evolution of annexin I phosphorylation sites.

    Science.gov (United States)

    Haigler, H T; Mangili, J A; Gao, Y; Jones, J; Horseman, N D

    1992-09-25

    Annexin I (AnxI) contains phosphorylation sites in its "hinge region" that have been implicated in the regulation of cell growth and/or differentiation. A pigeon (Columba livia) isoform of this protein, annexin Icp35 (cp35), has a very similar amino acid sequence overall but an unrelated sequence that lacks phosphorylation sites in the hinge region. We now report the identification and characterization of annexin Icp37 (cp37) from pigeon. Genomic cloning and Southern blot analysis demonstrated that cp37 and cp35 were encoded by separated genes. Prolactin induced the expression of cp35 mRNA but not cp37. The amino acid sequence of cp37 was deduced from a cDNA clone and found to share 93 and 75% sequence identity with cp35 and human AnxI, respectively. The amino acid sequence of cp37 bore similarities to both AnxI and cp35 in the critical hinge region. Like AnxI, cp37 contained consensus phosphorylation sites in its amino acid sequence and was phosphorylated on tyrosine by the EGF receptor/kinase and on serine by protein kinase C in vitro. Despite the functional similarities between cp37 and AnxI, the nucleotide sequence that encoded the hinge region of cp37 was very similar to the analogous region of cp35, but different from that of AnxI. We propose that certain features shared by cp37 and AnxI are the products of convergent evolution. The fact that evolution independently selected for two annexin I-like genes (cp37 and anxI) encoding analogous phosphorylation sites is strong evidence that phosphorylation is important for the regulation of the biological activity of these proteins.

  3. Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, Kurt; Staehr, Peter; Hansen, Bo Falck;

    2003-01-01

    In type 2 diabetes, insulin activation of muscle glycogen synthase (GS) is impaired. This defect plays a major role for the development of insulin resistance and hyperglycemia. In animal muscle, insulin activates GS by reducing phosphorylation at both NH(2)- and COOH-terminal sites, but the mecha...

  4. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages.

    Science.gov (United States)

    Clark, Kristopher; MacKenzie, Kirsty F; Petkevicius, Kasparas; Kristariyanto, Yosua; Zhang, Jiazhen; Choi, Hwan Geun; Peggie, Mark; Plater, Lorna; Pedrioli, Patrick G A; McIver, Ed; Gray, Nathanael S; Arthur, J Simon C; Cohen, Philip

    2012-10-16

    Macrophages acquire strikingly different properties that enable them to play key roles during the initiation, propagation, and resolution of inflammation. Classically activated (M1) macrophages produce proinflammatory mediators to combat invading pathogens and respond to tissue damage in the host, whereas regulatory macrophages (M2b) produce high levels of anti-inflammatory molecules, such as IL-10, and low levels of proinflammatory cytokines, like IL-12, and are important for the resolution of inflammatory responses. A central problem in this area is to understand how the formation of regulatory macrophages can be promoted at sites of inflammation to prevent and/or alleviate chronic inflammatory and autoimmune diseases. Here, we demonstrate that the salt-inducible kinases (SIKs) restrict the formation of regulatory macrophages and that their inhibition induces striking increases in many of the characteristic markers of regulatory macrophages, greatly stimulating the production of IL-10 and other anti-inflammatory molecules. We show that SIK inhibitors elevate IL-10 production by inducing the dephosphorylation of cAMP response element-binding protein (CREB)-regulated transcriptional coactivator (CRTC) 3, its dissociation from 14-3-3 proteins and its translocation to the nucleus where it enhances a gene transcription program controlled by CREB. Importantly, the effects of SIK inhibitors on IL-10 production are lost in macrophages that express a drug-resistant mutant of SIK2. These findings identify SIKs as a key molecular switch whose inhibition reprograms macrophages to an anti-inflammatory phenotype. The remarkable effects of SIK inhibitors on macrophage function suggest that drugs that target these protein kinases may have therapeutic potential for the treatment of inflammatory and autoimmune diseases.

  5. PhosphoBase, a database of phosphorylation sites: release 2.0

    DEFF Research Database (Denmark)

    Kreegipuu, A.; Blom, Nikolaj; Brunak, Søren

    1999-01-01

    PhosphoBase contains information about phosphorylated residues in proteins and data about peptide phosphorylation by a variety of protein kinases. The data are collected from literature and compiled into a common format. The current release of PhosphoBase (October 1998, version 2.0) comprises 414...

  6. Microtubule Destabilizer KIF2A Undergoes Distinct Site-Specific Phosphorylation Cascades that Differentially Affect Neuronal Morphogenesis

    Directory of Open Access Journals (Sweden)

    Tadayuki Ogawa

    2015-09-01

    Full Text Available Neurons exhibit dynamic structural changes in response to extracellular stimuli. Microtubules (MTs provide rapid and dramatic cytoskeletal changes within the structural framework. However, the molecular mechanisms and signaling networks underlying MT dynamics remain unknown. Here, we have applied a comprehensive and quantitative phospho-analysis of the MT destabilizer KIF2A to elucidate the regulatory mechanisms of MT dynamics within neurons in response to extracellular signals. Interestingly, we identified two different sets of KIF2A phosphorylation profiles that accelerate (A-type and brake (B-type the MT depolymerization activity of KIF2A. Brain-derived neurotrophic factor (BDNF stimulates PAK1 and CDK5 kinases, which decrease the MT depolymerizing activity of KIF2A through B-type phosphorylation, resulting in enhanced outgrowth of neural processes. In contrast, lysophosphatidic acid (LPA induces ROCK2 kinase, which suppresses neurite outgrowth from round cells via A-type phosphorylation. We propose that these two mutually exclusive forms of KIF2A phosphorylation differentially regulate neuronal morphogenesis during development.

  7. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    Full Text Available Mechanical stress that arises due to deformation of the extracellular matrix (ECM either stretches or compresses cells. The cellular response to stretching has been actively studied. For example, stretching induces phosphorylation of the myosin regulatory light chain (MRLC via the RhoA/RhoA-associated protein kinase (ROCK pathway, resulting in increased cellular tension. In contrast, the effects of compressive stress on cellular functions are not fully resolved. The mechanisms for sensing and differentially responding to stretching and compressive stress are not known. To address these questions, we investigated whether phosphorylation levels of MRLC were affected by compressive stress. Contrary to the response in stretching cells, MRLC was dephosphorylated 5 min after cells were subjected to compressive stress. Compressive loading induced activation of myosin phosphatase mediated via the dephosphorylation of myosin phosphatase targeting subunit 1 (Thr853. Because myosin phosphatase targeting subunit 1 (Thr853 is phosphorylated only by ROCK, compressive loading may have induced inactivation of ROCK. However, GTP-bound RhoA (active form increased in response to compressive stress. The compression-induced activation of RhoA and inactivation of its effector ROCK are contradictory. This inconsistency was due to phosphorylation of RhoA (Ser188 that reduced affinity of RhoA to ROCK. Treatment with the inhibitor of protein kinase A that phosphorylates RhoA (Ser188 induced suppression of compression-stimulated MRLC dephosphorylation. Incidentally, stretching induced phosphorylation of MRLC, but did not affect phosphorylation levels of RhoA (Ser188. Together, our results suggest that RhoA phosphorylation is an important process for MRLC dephosphorylation by compressive loading, and for distinguishing between stretching and compressing cells.

  8. ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Selbig Joachim

    2007-06-01

    Full Text Available Abstract Background In the last decade, techniques were established for the large scale genome-wide analysis of proteins, RNA, and metabolites, and database solutions have been developed to manage the generated data sets. The Golm Metabolome Database for metabolite data (GMD represents one such effort to make these data broadly available and to interconnect the different molecular levels of a biological system 1. As data interpretation in the light of already existing data becomes increasingly important, these initiatives are an essential part of current and future systems biology. Results A mass spectral library consisting of experimentally derived tryptic peptide product ion spectra was generated based on liquid chromatography coupled to ion trap mass spectrometry (LC-IT-MS. Protein samples derived from Arabidopsis thaliana, Chlamydomonas reinhardii, Medicago truncatula, and Sinorhizobium meliloti were analysed. With currently 4,557 manually validated spectra associated with 4,226 unique peptides from 1,367 proteins, the database serves as a continuously growing reference data set and can be used for protein identification and quantification in uncharacterized biological samples. For peptide identification, several algorithms were implemented based on a recently published study for peptide mass fingerprinting 2 and tested for false positive and negative rates. An algorithm which considers intensity distribution for match correlation scores was found to yield best results. For proof of concept, an LC-IT-MS analysis of a tryptic leaf protein digest was converted to mzData format and searched against the mass spectral library. The utility of the mass spectral library was also tested for the identification of phosphorylated tryptic peptides. We included in vivo phosphorylation sites of Arabidopsis thaliana proteins and the identification performance was found to be improved compared to genome-based search algorithms. Protein identification by Pro

  9. Functional analysis of the BRI1 receptor kinase by Thr-for-Ser substitution in a regulatory autophosphorylation site

    Directory of Open Access Journals (Sweden)

    Man-Ho eOh

    2015-07-01

    Full Text Available BRI1 becomes highly phosphorylated in vivo upon perception of the ligand, brassinolide, as a result of autophosphorylation and transphosphorylation by its co-receptor kinase, BAK1. Important autophosphorylation sites include those involved in activation of kinase activity and those that are inhibitory, such as Ser-891. The inhibitory sites are autophosphorylated after kinase activation has been achieved and are postulated to contribute to deactivation of the kinase. The function of phosphosites is usually tested by substituting a non-phosphorylatable residue or an acidic residue that can act as a phosphomimetic. What has typically not been examined is substitution of a Thr for a Ser phosphosite (or vice versa but given that Thr and Ser are not equivalent amino acids this type of substitution may represent a new approach to engineer regulatory phosphorylation. In the present study with BRI1, we substituted Thr at the Ser-891 phosphosite to generate the S891T directed mutant. The recombinant Flag-BRI1 (S891T cytoplasmic domain protein (the S891T protein was catalytically active and phosphorylation occurred at the engineered Thr-891 site. However, the S891T recombinant protein autophosphorylated more slowly than the wild type protein during expression in E. coli. As a result, activation of peptide kinase activity (measured in vitro was delayed as was transphosphorylation of bacterial proteins in situ. Stable transgenic expression of BRI1 (S891T-Flag in Arabidopsis bri1-5 plants did not fully rescue the brassinosteroid (BR phenotype indicating that BR signaling was constrained. Our working model is that restricted signaling in the S891T plants occurs as a result of the reduced rate of activation of the mutant BRI1 kinase by autophosphorylation. These results provide the platform for future studies to critically test this new model in vivo and establish Ser-Thr substitutions at phosphosites as an interesting approach to consider with other protein

  10. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Directory of Open Access Journals (Sweden)

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  11. Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Taylor, Eric B.; Witczak, Carol A.

    2010-01-01

    TBC1D4 (also known as AS160) regulates GLUT4 translocation and glucose uptake in adipocytes and skeletal muscle. Its mode of action involves phosphorylation of Serine (S)/Threonine (T) residues by upstream kinases resulting in inactivation of Rab-GAP activity leading to GLUT4 mobilization....... The majority of known phosphorylation sites on TBC1D4 lie within the Akt consensus motif and are phosphorylated by insulin stimulation. However, the 5 AMP activated protein kinase (AMPK) and other kinases may also phosphorylate TBC1D4, and therefore we hypothesized the presence of additional phosphorylation...... sites. Mouse skeletal muscles were contracted or stimulated with 5-aminoimidazole-4-carboxmide riboside (AICAR) and muscle lysates were subjected to mass spectrometry analyses resulting in identification of novel putative phosphorylation sites on TBC1D4. The surrounding amino acid sequence predicted...

  12. Reduction of Ambiguity in Phosphorylation-site Localization in Large-scale Phosphopeptide Profiling by Data Filter using Unique Mass Class Information

    Energy Technology Data Exchange (ETDEWEB)

    Madar, Inamul Hasan; Back, Seunghoon; Mun, Donggi; Kim, Hokeun; Lee, Sangwon [Korea Univ., Seoul (Korea, Republic of); Jung, Jae Hun; Kim, Kwang Pyo [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-03-15

    The rapid development of shotgun proteomics is paving the way for extensive proteome profiling, while providing extensive information on various post translational modifications (PTMs) that occur to a proteome of interest. For example, the current phosphoproteomic methods can yield more than 10,000 phosphopeptides identified from a proteome sample. Despite these developments, it remains a challenging issue to pinpoint the true phosphorylation sites, especially when multiple sites are possible for phosphorylation in the peptides. We developed the Phospho-UMC filter, which is a simple method of localizing the site of phosphorylation using unique mass classes (UMCs) information to differentiate phosphopeptides with different phosphorylation sites and increase the confidence in phosphorylation site localization. The method was applied to large scale phosphopeptide profiling data and was demonstrated to be effective in the reducing ambiguity associated with the tandem mass spectrometric data analysis of phosphopeptides.

  13. Identification of a novel phosphorylation site in adipose triglyceride lipase as a regulator of lipid droplet localization.

    Science.gov (United States)

    Xie, Xitao; Langlais, Paul; Zhang, Xiaodong; Heckmann, Bradlee L; Saarinen, Alicia M; Mandarino, Lawrence J; Liu, Jun

    2014-06-15

    Adipose triglyceride lipase (ATGL), the rate-limiting enzyme for triacylglycerol (TG) hydrolysis, has long been known to be a phosphoprotein. However, the potential phosphorylation events that are involved in the regulation of ATGL function remain incompletely defined. Here, using a combinatorial proteomics approach, we obtained evidence that at least eight different sites of ATGL can be phosphorylated in adipocytes. Among them, Thr³⁷² resides within the hydrophobic region known to mediate lipid droplet (LD) targeting. Although it had no impact on the TG hydrolase activity, substitution of phosphorylation-mimic Asp for Thr³⁷² eliminated LD localization and LD-degrading capacity of ATGL expressed in HeLa cells. In contrast, mutation of Thr³⁷² to Ala gave a protein that bound LDs and functioned the same as the wild-type protein. In nonstimulated adipocytes, the Asp mutation led to decreased LD association and basal lipolytic activity of ATGL, whereas the Ala mutation produced opposite effects. Moreover, the LD translocation of ATGL upon β-adrenergic stimulation was also compromised by the Asp mutation. In accord with these findings, the Ala mutation promoted and the Asp mutation attenuated the capacity of ATGL to mediate lipolysis in adipocytes under both basal and stimulated conditions. Collectively, these studies identified Thr³⁷² as a novel phosphorylation site that may play a critical role in determining subcellular distribution as well as lipolytic action of ATGL.

  14. Putative Phosphorylation Sites On WCA Domain of HA2 Is Essential For Helicoverpa armigera Single Nucleopolyhedrovirus Replication

    Institute of Scientific and Technical Information of China (English)

    Yi-pin Lv; Qian Wang; Chun-chen Wu; Rong Juan Pei; Yuan Zhou; Yun Wang; Xin-wen Chen

    2011-01-01

    Protein phosphorylation is one of the most common post-translational modification processes that play an essential role in regulating protein functionality.The Helicoverpa armigera single nucleopolyhedrovirus (HearNPv) orf2-encoded nucleocapsid protein HA2 participates in orchestration of virus-induced actin polymerization through its WCA domain,in which phosphorylation status are supposed to be critical in respect to actin polymerization.In the present study,two putative phosphorylation sites (232Thr and 250Ser) and a highly conserved Serine (245Ser) on the WCA domain of HA2 were mutated,and their phenotypes were characterized by reintroducing the mutated HA2 into the HearNPV genome.Viral infectivity assays demonstrated that only the recombinant HearNPV bearing HA2 mutation at 245Ser can produce infectious virions,both 232Tbr and 250Ser mutations were lethal to the virus.However,actin polymerization assay demonstrated that all the three viruses bearing HA2 mutations were still capable of initiating actin polymerization in the host nucleus,which indicated the putative phosphorylation sites on HA2 may contribute to HearNPV replication through another unidentified pathway.

  15. P70S6 Kinase Phosphorylation: A New Site to Assess Pharmacodynamy of Sirolimus

    Directory of Open Access Journals (Sweden)

    Jun-Yu Wang

    2015-01-01

    Full Text Available Background: The phosphorylation of p70S6 kinase (p70S6K represents an important target for sensitive detection on pharmacodynamic effects of sirolimus, but the methods of assessing p70S6K phosphorylation are still unclear. The aim of this study was to investigate p70S6K phosphorylation located down-stream of the mammalian target of rapamycin (mTOR pathway in peripheral blood mononuclear cells (PBMCs of liver transplant patients through different methods. Methods: Seventy-five liver transplant recipients from Beijing Chaoyang Hospital of the Capital Medical University were analyzed in this study. Patients were divided into three groups, patient treated with sirolimus (n = 22, patient treated with tacrolimus (n = 30, patient treated with cyclosporine (n = 23. The p70S6K phosphorylation of PBMCs in patients and healthy control (HC, n = 12 were analyzed by phospho-flow cytometry and Western blotting. A correlation analysis of data from phospho-flow cytometry and Western blotting was performed. Intra-assay variability of p70S6K phosphorylation in HC and different patients were measured. Results: Intra-assay variability of p70S6K phosphorylation in phospho-flow cytometry was from 4.1% to 8.4% and in Western blotting was from 8.2% to 18%. The p70S6K phosphorylation in patients receiving a sirolimus (19.5 ± 7.7 was significantly lower than in HC (50.1 ± 11.3, P < 0.001, tacrolimus (37.7 ± 15.7, P < 0.001 or cyclosporine treated patients (41.7 ± 11.7, P < 0.001. The p70S6K phosphorylation in HC (50.1 ± 11.3 was significantly higher than in tacrolimus (37.7 ± 15.7, P < 0.01 or cyclosporine-treated patients (41.7 ± 11.7, P < 0.01. There was correlation between data from phospho-flow cytometry and data from Western blotting (r = 0.88, P < 0.001. Conclusions: The degree of mTOR inhibition by assessing p70S6K phosphorylation was established by phospho-flow cytometry and Western blotting. Assessment of p70S6K phosphorylation may play an adjunct role to

  16. P70S6 Kinase Phosphorylation: A New Site to Assess Pharmacodynamy of Sirolimus

    Institute of Scientific and Technical Information of China (English)

    Jun-Yu Wang; Hua Fan

    2015-01-01

    Background:The phosphorylation ofp70S6 kinase (p70S6K) represents an important target for sensitive detection on pharmacodynamic effects of sirolimus,but the methods of assessing p70S6K phosphorylation are still unclear.The aim of this study was to investigate p70S6K phosphorylation located down-stream of the mammalian target ofrapamycin (mTOR) pathway in peripheral blood mononuclear cells (PBMCs) of liver transplant patients through different methods.Methods:Seventy-five liver transplant recipients from Beijing Chaoyang Hospital of the Capital Medical University were analyzed in this study.Patients were divided into three groups,patient treated with sirolimus (n =22),patient treated with tacrolimus (n =30),patient treated with cyclosporine (n =23).The p70S6K phosphorylation of PBMCs in patients and healthy control (HC,n =12) were analyzed by phospho-flow cytometry and Western blotting.A correlation analysis of data from phospho-flow cytometry and Western blotting was performed.Intra-assay variability of p70S6K phosphorylation in HC and different patients were measured.Results:Intra-assay variability ofp70S6K phosphorylation in phospho-flow cytometry was from 4.1% to 8.4% and in Western blotting was from 8.2% to 18%.The p70S6K phosphorylation in patients receiving a sirolimus (19.5 ± 7.7) was significantly lower than in HC (50.1 ± 11.3,P < 0.001),tacrolimus (37.7 ± 15.7,P < 0.001) or cyclosporine treated patients (41.7 ± 11.7,P < 0.001).The p70S6K phosphorylation in HC (50.1± 11.3) was significantly higher than in tacrolimus (37.7 ± 15.7,P < 0.01) or cyclosporine-treated patients (41.7 ± 11.7,P < 0.01).There was correlation between data from phospho-flow cytometry and data from Westem blotting (r =0.88,P < 0.001).Conclusions:The degree of mTOR inhibition by assessing p70S6K phosphorylation was established by phospho-flow cytometry and Westem blotting.Assessment of p70S6K phosphorylation may play an adjunct role to on pharmacodynamically

  17. Direct Evidence for a Phenylalanine Site in the Regulatory Domain of Phenylalanine Hydroxylase

    OpenAIRE

    Li, Jun; Ilangovan, Udayar; Daubner, S. Colette; Hinck, Andrew P.; Fitzpatrick, Paul F.

    2010-01-01

    The hydroxylation of phenylalanine to tyrosine by the liver enzyme phenylalanine hydroxylase is regulated by the level of phenylalanine. Whether there is a distinct allosteric binding site for phenylalanine outside of the active site has been unclear. The enzyme contains an N-terminal regulatory domain that extends through Thr117. The regulatory domain of rat phenylalanine hydroxylase was expressed in E. coli. The purified protein behaves as a dimer on a gel filtration column. In the presence...

  18. Study of O-Phosphorylation Sites in Proteins Involved in Photosynthesis-Related Processes in Synechocystis sp. Strain PCC 6803: Application of the SRM Approach.

    Science.gov (United States)

    Angeleri, Martina; Muth-Pawlak, Dorota; Aro, Eva-Mari; Battchikova, Natalia

    2016-12-02

    O-Phosphorylation has been shown in photosynthesis-related proteins in a cyanobacterium Synechocystis sp. strain PCC 6803 (thereafter Synechocystis 6803), suggesting that phosphorylation of S, T, and Y residues might be important in photosynthesis-related processes. Investigation of biological roles of these phosphorylation events requires confident knowledge of the phosphorylated sites and prospects for their individual assessment. We performed phosphoproteomic analysis of Synechocystis 6803 using TiO2 enrichment of the phosphopeptides, followed by LC-MS/MS, and discovered 367 phosphorylation sites in 190 proteins participating in various cellular functions. Furthermore, we focused on the large group of phosphoproteins that are involved in light harvesting, photosynthesis-driven electron flow, photoprotection, and CO2 fixation. The SRM approach was applied to verify/improve assignments of phosphorylation sites in these proteins and to investigate possibilities for analysis of phosphopeptide isomers. The SRM assays were designed for peptides comprising 45 phosphorylation sites. The assays contain peptide iRT values and Q1/Q3 transitions comprising those discriminating between phosphopeptide isoforms. The majority of investigated phosphopeptides and phosphorylated isoforms could be individually assessed with the SRM technique. The assays could be potentially used in future quantitative studies to evaluate an extent of phosphorylation in photosynthesis-related proteins in Synechocystis 6803 cells challenged with various environmental stresses.

  19. pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model

    Directory of Open Access Journals (Sweden)

    Schneider Georg

    2007-01-01

    Full Text Available Abstract Background Protein kinase A (cAMP-dependent kinase, PKA is a serine/threonine kinase, for which ca. 150 substrate proteins are known. Based on a refinement of the recognition motif using the available experimental data, we wished to apply the simplified substrate protein binding model for accurate prediction of PKA phosphorylation sites, an approach that was previously successful for the prediction of lipid posttranslational modifications and of the PTS1 peroxisomal translocation signal. Results Approximately 20 sequence positions flanking the phosphorylated residue on both sides have been found to be restricted in their sequence variability (region -18...+23 with the site at position 0. The conserved physical pattern can be rationalized in terms of a qualitative binding model with the catalytic cleft of the protein kinase A. Positions -6...+4 surrounding the phosphorylation site are influenced by direct interaction with the kinase in a varying degree. This sequence stretch is embedded in an intrinsically disordered region composed preferentially of hydrophilic residues with flexible backbone and small side chain. This knowledge has been incorporated into a simplified analytical model of productive binding of substrate proteins with PKA. Conclusion The scoring function of the pkaPS predictor can confidently discriminate PKA phosphorylation sites from serines/threonines with non-permissive sequence environments (sensitivity of ~96% at a specificity of ~94%. The tool "pkaPS" has been applied on the whole human proteome. Among new predicted PKA targets, there are entirely uncharacterized protein groups as well as apparently well-known families such as those of the ribosomal proteins L21e, L22 and L6. Availability The supplementary data as well as the prediction tool as WWW server are available at http://mendel.imp.univie.ac.at/sat/pkaPS. Reviewers Erik van Nimwegen (Biozentrum, University of Basel, Switzerland, Sandor Pongor (International

  20. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    Science.gov (United States)

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  1. X-ray diffraction analysis of the effects of myosin regulatory light chain phosphorylation and butanedione monoxime on skinned skeletal muscle fibers

    Science.gov (United States)

    Kimura, Masako; Li, Zhao-bo; Ohno, Tetsuo; Takemori, Shigeru; Hoh, Joseph F. Y.; Yagi, Naoto

    2016-01-01

    The phosphorylation of the myosin regulatory light chain (RLC) is an important modulator of skeletal muscle performance and plays a key role in posttetanic potentiation and staircase potentiation of twitch contractions. The structural basis for these phenomena within the filament lattice has not been thoroughly investigated. Using a synchrotron radiation source at SPring8, we obtained X-ray diffraction patterns from skinned rabbit psoas muscle fibers before and after phosphorylation of myosin RLC in the presence of myosin light chain kinase, calmodulin, and calcium at a concentration below the threshold for tension development ([Ca2+] = 10−6.8 M). After phosphorylation, the first myosin layer line slightly decreased in intensity at ∼0.05 nm−1 along the equatorial axis, indicating a partial loss of the helical order of myosin heads along the thick filament. Concomitantly, the (1,1/1,0) intensity ratio of the equatorial reflections increased. These results provide a firm structural basis for the hypothesis that phosphorylation of myosin RLC caused the myosin heads to move away from the thick filaments towards the thin filaments, thereby enhancing the probability of interaction with actin. In contrast, 2,3-butanedione monoxime (BDM), known to inhibit contraction by impeding phosphate release from myosin, had exactly the opposite effects on meridional and equatorial reflections to those of phosphorylation. We hypothesize that these antagonistic effects are due to the acceleration of phosphate release from myosin by phosphorylation and its inhibition by BDM, the consequent shifts in crossbridge equilibria leading to opposite changes in abundance of the myosin-ADP-inorganic phosphate complex state associated with helical order of thick filaments. PMID:26911280

  2. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor.

    Science.gov (United States)

    Lehmann, Andreas; Kliewer, Andrea; Schütz, Dagmar; Nagel, Falko; Stumm, Ralf; Schulz, Stefan

    2014-04-25

    The somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis. Unlike somatostatin, pasireotide stimulates a selective phosphorylation of S341 and S343 of the human sst2 receptor followed by a partial receptor internalization. Here, we show that exchange of S341 and S343 by alanine is sufficient to block pasireotide-driven internalization, whereas mutation of T353, T354, T356 and T359 to alanine is required to strongly inhibited both octreotide- and somatostatin-induced internalization. Yet, combined mutation of T353, T354, T356 and T359 is not sufficient to prevent somatostatin-driven β-arrestin mobilization and receptor desensitization. Replacement of all fourteen carboxyl-terminal serine and threonine residues by alanine completely abrogates sst2 receptor internalization and β-arrestin mobilization in HEK293 cells. Together, our findings demonstrate for the first time that agonist-selective sst2 receptor internalization is regulated by multi-site phosphorylation of its carboxyl-terminal tail.

  3. Epidermal Growth Factor Stimulates Extracellular-Signal Regulated Kinase Phosphorylation of a Novel Site on Cytoplasmic Dynein Intermediate Chain 2

    Directory of Open Access Journals (Sweden)

    Andrew D. Catling

    2013-02-01

    Full Text Available Extracellular-signal regulated kinase (ERK signaling is required for a multitude of physiological and patho-physiological processes. However, the identities of the proteins that ERK phosphorylates to elicit these responses are incompletely known. Using an affinity purification methodology of general utility, here we identify cytoplasmic dynein intermediate chain 2 (DYNC1I-2, IC-2 as a novel substrate for ERK following epidermal growth factor receptor stimulation of fibroblasts. IC-2 is a subunit of cytoplasmic dynein, a minus-end directed motor protein necessary for transport of diverse cargos along microtubules. Emerging data support the hypothesis that post-translational modification regulates dynein but the signaling mechanisms used are currently unknown. We find that ERK phosphorylates IC-2 on a novel, highly conserved Serine residue proximal to the binding site for the p150Glued subunit of the cargo adapter dynactin. Surprisingly, neither constitutive phosphorylation nor a phosphomimetic substitution of this Serine influences binding of p150Glued to IC-2. These data suggest that ERK phosphorylation of IC-2 regulates dynein function through mechanisms other than its interaction with dynactin.

  4. Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation.

    Directory of Open Access Journals (Sweden)

    Andrea Venerando

    Full Text Available By mass spectrometry analysis of mouse Cystic Fibrosis Transmembrane-conductance Regulator (mCFTR expressed in yeast we have detected 21 phosphopeptides accounting for 22 potential phospho-residues, 12 of which could be unambiguously assigned. Most are conserved in human CFTR (hCFTR and the majority cluster in the Regulatory Domain, lying within consensus sequences for PKA, as identified in previous mammalian studies. This validates our yeast expression model. A number of phospho-residues were novel and human conserved, notably mouse Ser670, Ser723, Ser737, and Thr1467, that all lie in acidic sequences, compatible with their phosphorylation by protein kinase CK2. Thr1467 is localized in the C-terminal tail, embedded in a functionally important and very acidic sequence (EETEEE which displays an optimal consensus for protein kinase CK2. Herein, we show that Thr1467, homologous to human Thr1471 is readily phosphorylated by CK2. Indeed a 42 amino acid peptide encompassing the C-terminal segment of human CFTR is readily phosphorylated at Thr1471 with favorable kinetics (Km 1.7 µM by CK2 holoenzyme, but neither by its isolated catalytic subunit nor by other acidophilic Ser/Thr kinases (CK1, PLK2/3, GCK/FAM20C. Our finding that by treating CFTR expressing BHK cells with the very specific CK2 inhibitor CX4945, newly synthesized wild type CFTR (and even more its Phe508del mutant accumulates more abundantly than in the absence of CK2 inhibitor, supports the conclusion that phosphorylation of CFTR by CK2 correlates with decreased stability of the protein.

  5. Epileptogenesis and epileptic maturation in phosphorylation site-specific SNAP-25 mutant mice.

    Science.gov (United States)

    Watanabe, Shigeru; Yamamori, Saori; Otsuka, Shintaro; Saito, Masanori; Suzuki, Eiji; Kataoka, Masakazu; Miyaoka, Hitoshi; Takahashi, Masami

    2015-09-01

    Snap25(S187A/S187A) mouse is a knock-in mouse with a single amino acid substitution at a protein kinase C-dependent phosphorylation site of the synaptosomal-associated protein of 25 kDa (SNAP-25), which is a target-soluble NSF attachment protein receptor (t-SNARE) protein essential for neurotransmitter release. Snap25(S187A/S187A) mice exhibit several distinct phenotypes, including reductions in dopamine and serotonin release in the brain, anxiety-like behavior, and cognitive dysfunctions. Homozygous mice show spontaneous epileptic convulsions, and about 15% of the mice die around three weeks after birth. The remaining mice survive for almost two years and exhibit spontaneous recurrent seizures throughout their lifetime. Here, we conducted long-term continuous video electroencephalogram recording of the mice and analyzed the process of epileptogenesis and epileptic maturation in detail. Spikes and slow-wave discharges (SWDs) were observed in the cerebral cortex and thalamus before epileptic convulsions began. SWDs showed several properties similar to those observed in absence seizures including (1) lack of in the hippocampus, (2) movement arrest during SWDs, and (3) inhibition by ethosuximide. Multiple generalized seizures occurred in all homozygous mice around three weeks after birth. However, seizure generation stopped within several days, and a seizure-free latent period began. Following a spike-free quiet period, the number of spikes increased gradually, and epileptic seizures reappeared. Subsequently, spontaneous seizures occurred cyclically throughout the life of the mice, and several progressive changes in seizure frequency, seizure duration, seizure cycle interval, seizure waveform, and the number and waveform of epileptic discharges during slow-wave sleep occurred with different time courses over 10 weeks. Anxiety-related behaviors appeared suddenly within three days after epileptic seizures began and were delayed markedly by oral administration of

  6. Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids.

    Science.gov (United States)

    Ludgate, Laurie; Ning, Xiaojun; Nguyen, David H; Adams, Christina; Mentzer, Laura; Hu, Jianming

    2012-11-01

    Phosphorylation of the hepadnavirus core protein C-terminal domain (CTD) is important for viral RNA packaging, reverse transcription, and subcellular localization. Hepadnavirus capsids also package a cellular kinase. The identity of the host kinase that phosphorylates the core CTD or gets packaged remains to be resolved. In particular, both the human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) core CTDs harbor several conserved serine/threonine-proline (S/T-P) sites whose phosphorylation state is known to regulate CTD functions. We report here that the endogenous kinase in the HBV capsids was blocked by chemical inhibitors of the cyclin-dependent kinases (CDKs), in particular, CDK2 inhibitors. The kinase phosphorylated the HBV CTD at the serine-proline (S-P) sites. Furthermore, we were able to detect CDK2 in purified HBV capsids by immunoblotting. Purified CDK2 phosphorylated the S/T-P sites of the HBV and DHBV CTD in vitro. Inhibitors of CDKs, of CDK2 in particular, decreased both HBV and DHBV CTD phosphorylation in vivo. Moreover, CDK2 inhibitors blocked DHBV CTD phosphorylation, specifically at the S/T-P sites, in a mammalian cell lysate. These results indicate that cellular CDK2 phosphorylates the functionally critical S/T-P sites of the hepadnavirus core CTD and is incorporated into viral capsids.

  7. US Department of Energy wind turbine candidate site program: the regulatory process

    Energy Technology Data Exchange (ETDEWEB)

    Greene, M.R.; York, K.R.

    1982-06-01

    Sites selected in 1979 as tentative sites for installation of a demonstration MOD-2 turbine are emphasized. Selection as a candidate site in this program meant that the US Department of Energy (DOE) designated the site as eligible for a DOE-purchased and installed meteorological tower. The regulatory procedures involved in the siting and installation of these meteorological towers at the majority of the candidate sites are examined. An attempt is also made, in a preliminary fashion, to identify the legal and regulatory procedures that would be required to put up a turbine at each of these candidate sites. The information provided on each of these sites comes primarily from utility representatives, supplemented by conversations with state and local officials. The major findings are summarized on the following: federal requirements, state requirements, local requirements, land ownership, wind rights, and public attitudes.

  8. Distinct pools of cdc25C are phosphorylated on specific TP sites and differentially localized in human mitotic cells.

    Directory of Open Access Journals (Sweden)

    Celine Franckhauser

    Full Text Available BACKGROUND: The dual specificity phosphatase cdc25C was the first human cdc25 family member found to be essential in the activation of cdk1/cyclin B1 that takes place at the entry into mitosis. Human cdc25C is phosphorylated on Proline-dependent SP and TP sites when it becomes active at mitosis and the prevalent model is that this phosphorylation/activation of cdc25C would be part of an amplification loop with cdk1/cyclin B1. METHODOLOGY/PRINCIPAL FINDINGS: Using highly specific antibodies directed against cdc25C phospho-epitopes, pT67 and pT130, we show here that these two phospho-forms of cdc25C represent distinct pools with differential localization during human mitosis. Phosphorylation on T67 occurs from prophase and the cdc25C-pT67 phospho-isoform closely localizes with condensed chromosomes throughout mitosis. The phospho-T130 form of cdc25C arises in late G2 and associates predominantly with centrosomes from prophase to anaphase B where it colocalizes with Plk1. As shown by immunoprecipitation of each isoform, these two phospho-forms are not simultaneously phosphorylated on the other mitotic TP sites or associated with one another. Phospho-T67 cdc25C co-precipitates with MPM2-reactive proteins while pT130-cdc25C is associated with Plk1. Interaction and colocalization of phosphoT130-cdc25C with Plk1 demonstrate in living cells, that the sequence around pT130 acts as a true Polo Box Domain (PBD binding site as previously identified from in vitro peptide screening studies. Overexpression of non-phosphorylatable alanine mutant forms for each isoform, but not wild type cdc25C, strongly impairs mitotic progression showing the functional requirement for each site-specific phosphorylation of cdc25C at mitosis. CONCLUSIONS/SIGNIFICANCE: These results show for the first time that in human mitosis, distinct phospho-isoforms of cdc25C exist with different localizations and interacting partners, thus implying that the long-standing model of a cdc25C

  9. LRRK2 Kinase Activity and Biology are Not Uniformly Predicted by its Autophosphorylation and Cellular Phosphorylation Site Status

    Directory of Open Access Journals (Sweden)

    April eReynolds

    2014-06-01

    Full Text Available Missense mutations in the Leucine Rich Repeat protein Kinase 2 (LRRK2 gene are the most common genetic predisposition to develop Parkinson’s disease (PD LRRK2 is a large multi-domain phosphoprotein with a GTPase domain and a serine/threonine protein kinase domain whose activity is implicated in neuronal toxicity; however the precise mechanism is unknown. LRRK2 autophosphorylates on several serine/threonine residues across the enzyme and is found constitutively phosphorylated on Ser910, Ser935, Ser955 and Ser973, which are proposed to be regulated by upstream kinases. Here we investigate the phosphoregulation at these sites by analyzing the effects of disease-associated mutations Arg1441Cys, Arg1441Gly, Ala1442Pro, Tyr1699Cys, Ile2012Thr, Gly2019Ser, and Ile2020Thr. We also studied alanine substitutions of phosphosite serines 910, 935, 955 and 973 and specific LRRK2 inhibition on autophosphorylation of LRRK2 Ser1292, Thr1491, Thr2483 and phosphorylation at the cellular sites. We found that mutants in the Roc-COR domains, including Arg1441Cys, Arg1441His, Ala1442Pro and Tyr1699Cys, can positively enhance LRRK2 kinase activity while concomitantly inducing the dephosphorylation of the cellular sites. Mutation of the cellular sites individually did not affect LRRK2 intrinsic kinase activity; however, Ser910/935/955/973Ala mutations trended toward increased kinase activity of LRRK2. Increased cAMP levels did not lead to increased LRRK2 cellular site phosphorylation, 14-3-3 binding or kinase activity. In cells, inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser1292 by Calyculin A and okadaic acid sensitive phosphatases, while the cellular sites are dephosphorylated by Calyculin A sensitive phosphatases. These findings indicate that comparative analysis of both Ser1292 and Ser910/935/955/973 phosphorylation sites will provide important and distinct measures of LRRK2 kinase and biological activity in vitro and in vivo.

  10. Identification of the allosteric regulatory site of insulysin.

    Directory of Open Access Journals (Sweden)

    Nicholas Noinaj

    Full Text Available BACKGROUND: Insulin degrading enzyme (IDE is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP. PRINCIPAL FINDINGS: The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.

  11. Identification of the Allosteric Regulatory Site of Insulysin

    Energy Technology Data Exchange (ETDEWEB)

    Noinaj, Nicholas; Bhasin, Sonia K.; Song, Eun Suk; Scoggin, Kirsten E.; Juliano, Maria A.; Juliano, Luiz; Hersh, Louis B.; Rodgers, David W.; Gerrard, Juliet Ann

    2011-06-24

    Background Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP. Principal Findings The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant) with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits. Conclusions/Significance Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.

  12. Identification of the Allosteric Regulatory Site of Insulysin

    Energy Technology Data Exchange (ETDEWEB)

    Noinaj, Nicholas; Bhasin, Sonia K.; Song, Eun Suk; Scoggin, Kirsten E.; Juliano, Maria A.; Juliano, Luiz; Hersh, Louis B.; Rodgers, David W. (U. Sao Paulo); (Kentucky)

    2012-05-25

    Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the A{beta} peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP. The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant) with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits. Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.

  13. Activation of a GTP-binding protein and a GTP-binding-protein-coupled receptor kinase (beta-adrenergic-receptor kinase-1) by a muscarinic receptor m2 mutant lacking phosphorylation sites.

    Science.gov (United States)

    Kameyama, K; Haga, K; Haga, T; Moro, O; Sadée, W

    1994-12-01

    A mutant of the human muscarinic acetylcholine receptor m2 subtype (m2 receptor), lacking a large part of the third intracellular loop, was expressed and purified using the baculovirus/insect cell culture system. The mutant was not phosphorylated by beta-adrenergic-receptor kinase, as expected from the previous assignment of phosphorylation sites to the central part of the third intracellular loop. However, the m2 receptor mutant was capable of stimulating beta-adrenergic-receptor-kinase-1-mediated phosphorylation of a glutathione S-transferase fusion protein containing the m2 phosphorylation sites in an agonist-dependent manner. Both mutant and wild-type m2 receptors reconstituted with the guanine-nucleotide-binding regulatory proteins (G protein), G(o) and G(i)2, displayed guanine-nucleotide-sensitive high-affinity agonist binding, as assessed by displacement of [3H]quinuclidinyl-benzilate binding with carbamoylcholine, and both stimulated guanosine 5'-3-O-[35S]thiotriphosphate ([35S]GTP[S]) binding in the presence of carbamoylcholine and GDP. The Ki values of carbamoylcholine effects on [3H]quinuclidinyl-benzilate binding were indistinguishable for the mutant and wild-type m2 receptors. Moreover, the phosphorylation of the wild-type m2 receptor by beta-adrenergic-receptor kinase-1 did not affect m2 interaction with G proteins as assessed by the binding of [3H]quinuclidinyl benzilate or [35S]GTP[S]. These results indicate that (a) the m2 receptor serves both as an activator and as a substrate of beta-adrenergic-receptor kinase, and (b) a large part of the third intracellular loop of the m2 receptor does not contribute to interaction with G proteins and its phosphorylation by beta-adrenergic-receptor kinase does not uncouple the receptor and G proteins in reconstituted lipid vesicles.

  14. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B

    DEFF Research Database (Denmark)

    Stofega, M R; Herrington, J; Billestrup, Nils;

    2000-01-01

    that the SH2 domains of SHP-2 bind directly to tyrosyl phosphorylated GHR from GH-treated cells. Tyrosine-to-phenylalanine mutation of tyrosine 595 of rat GHR greatly diminishes association of the SH2 domains of SHP-2 with GHR, and tyrosine-to-phenylalanine mutation of tyrosine 487 partially reduces...... phosphorylation. Consistent with the effects on STAT5B phosphorylation, tyrosine-to-phenylalanine mutation of tyrosine 595 prolongs the duration of tyrosyl phosphorylation of GHR and JAK2. These data suggest that tyrosine 595 is a major site of interaction of GHR with SHP-2, and that GHR-bound SHP-2 negatively...

  15. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Science.gov (United States)

    Karaca, Mehmet; Liu, Yuanbo; Zhang, Zhentao; De Silva, Dinuka; Parker, Joel S; Earp, H Shelton; Whang, Young E

    2015-01-01

    Reactivation of androgen receptor (AR) may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  16. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Directory of Open Access Journals (Sweden)

    Mehmet Karaca

    Full Text Available Reactivation of androgen receptor (AR may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  17. Preventing Phosphorylation of Sterol Regulatory Element-Binding Protein 1a by MAP-Kinases Protects Mice from Fatty Liver and Visceral Obesity

    OpenAIRE

    Jorg Kotzka; Birgit Knebel; Jutta Haas; Lorena Kremer; Sylvia Jacob; Sonja Hartwig; Ulrike Nitzgen; Dirk Muller-Wieland

    2012-01-01

    The transcription factor sterol regulatory element binding protein (SREBP)-1a plays a pivotal role in lipid metabolism. Using the SREBP-1a expressing human hepatoma cell line HepG2 we have shown previously that human SREBP-1a is phosphorylated at serine 117 by ERK-mitogen-activated protein kinases (MAPK). Using a combination of cell biology and protein chemistry approach we show that SREBP-1a is also target of other MAPK-families, i.e. c-JUN N-terminal protein kinases (JNK) or p38 stress acti...

  18. Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics.

    Science.gov (United States)

    Colson, Brett A; Thompson, Andrew R; Espinoza-Fonseca, L Michel; Thomas, David D

    2016-03-22

    We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility.

  19. Differentiation of Opioid Drug Effects by Hierarchical Multi-Site Phosphorylation

    OpenAIRE

    Just, Sascha; Illing, Susann; Trester-Zedlitz, Michelle; Lau, Elaine K.; Kotowski, Sarah J.; Miess, Elke; Mann, Anika; Doll, Christian; Trinidad, Jonathan C.; Burlingame, Alma L; von Zastrow, Mark; Schulz, Stefan

    2013-01-01

    Differences in the ability of opioid drugs to promote regulated endocytosis of μ-opioid receptors are related to their tendency to produce drug tolerance and dependence. Here we show that drug-specific differences in receptor internalization are determined by a conserved, 10-residue sequence in the receptor’s carboxyl-terminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at serine (S)375, present in the middle of this sequence, but opioids differ markedly in their ability...

  20. Novel binding partners and differentially regulated phosphorylation sites clarify Eps8 as a multi-functional adaptor.

    Directory of Open Access Journals (Sweden)

    Debbie L Cunningham

    Full Text Available Eps8 is involved in both cell signalling and receptor trafficking. It is a known phosphorylation substrate for two proteins involved in the fibroblast growth factor receptor (FGFR signalling pathway: the receptor itself and Src. Here we report a differential proteomic analysis of Eps8 aimed to identify specific FGFR and Src family kinase dependent phosphosites and co-associated phosphodependent binding partners. This study reveals a total of 22 Eps8 pTyr and pSer/Thr phosphorylation sites, including those that are dependent on Src family and FGFR kinase activity. Peptide affinity purification of proteins that bind to a selection of the pTyr phosphosites has identified a range of novel Eps8 binding partners including members of the intracellular vesicle trafficking machinery (clathrin and AP-2, proteins which have been shown to regulate activated receptor trafficking (NBR1 and Vav2, and proteins involved in receptor signalling (IRS4 and Shp2. Collectively this study significantly extends the understanding of Eps8 post-translational modification by regulated phosphorylation, identifies novel Eps8 binding partners implicated in receptor trafficking and signalling, and confirms the functions of Eps8 at the nexus of receptor signalling and vesicular trafficking.

  1. Biological data warehousing system for identifying transcriptional regulatory sites from gene expressions of microarray data.

    Science.gov (United States)

    Tsou, Ann-Ping; Sun, Yi-Ming; Liu, Chia-Lin; Huang, Hsien-Da; Horng, Jorng-Tzong; Tsai, Meng-Feng; Liu, Baw-Juine

    2006-07-01

    Identification of transcriptional regulatory sites plays an important role in the investigation of gene regulation. For this propose, we designed and implemented a data warehouse to integrate multiple heterogeneous biological data sources with data types such as text-file, XML, image, MySQL database model, and Oracle database model. The utility of the biological data warehouse in predicting transcriptional regulatory sites of coregulated genes was explored using a synexpression group derived from a microarray study. Both of the binding sites of known transcription factors and predicted over-represented (OR) oligonucleotides were demonstrated for the gene group. The potential biological roles of both known nucleotides and one OR nucleotide were demonstrated using bioassays. Therefore, the results from the wet-lab experiments reinforce the power and utility of the data warehouse as an approach to the genome-wide search for important transcription regulatory elements that are the key to many complex biological systems.

  2. Isocitrate dehydrogenase from Streptococcus mutans: biochemical properties and evaluation of a putative phosphorylation site at Ser102.

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available Isocitrate deyhdrogenase (IDH is a reversible enzyme in the tricarboxylic acid cycle that catalyzes the NAD(P(+-dependent oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG and the NAD(PH/CO2-dependent reductive carboxylation of αKG to isocitrate. The IDH gene from Streptococcus mutans was fused with the icd gene promoter from Escherichia coli to initiate its expression in the glutamate auxotrophic strain E. coli Δicd::kan(r of which the icd gene has been replaced by kanamycin resistance gene. The expression of S. mutans IDH (SmIDH may restore the wild-type phenotype of the icd-defective strain on minimal medium without glutamate. The molecular weight of SmIDH was estimated to be 70 kDa by gel filtration chromatography, suggesting a homodimeric structure. SmIDH was divalent cation-dependent and Mn(2+ was found to be the most effective cation. The optimal pH of SmIDH was 7.8 and the maximum activity was around 45°C. SmIDH was completely NAD(+ dependent and its apparent Km for NAD(+ was 137 μM. In order to evaluate the role of the putative phosphorylation site at Ser102 in catalysis, two "stably phosphorylated" mutants were constructed by converting Ser102 into Glu102 or Asp102 in SmIDH to mimick a constitutively phosphorylated state. Meanwhile, the functional roles of another four amino acids (threonine, glycine, alanine and tyrosine containing variant size of side chains were investigated. The replacement of Asp102 or Glu102 totally inactivated the enzyme, while the S102T, S102G, S102A and S102Y mutants decreased the affinity to isocitrate and only retained 16.0%, 2.8%, 3.3% and 1.1% of the original activity, respectively. These results reveal that Ser102 plays important role in substrate binding and is required for the enzyme function. Also, Ser102 in SmIDH is a potential phosphorylation site, indicating that the ancient NAD-dependent IDHs might be the underlying origin of "phosphorylation mechanism" used by their bacterial

  3. Isocitrate dehydrogenase from Streptococcus mutans: biochemical properties and evaluation of a putative phosphorylation site at Ser102.

    Science.gov (United States)

    Wang, Peng; Song, Ping; Jin, Mingming; Zhu, Guoping

    2013-01-01

    Isocitrate deyhdrogenase (IDH) is a reversible enzyme in the tricarboxylic acid cycle that catalyzes the NAD(P)(+)-dependent oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG) and the NAD(P)H/CO2-dependent reductive carboxylation of αKG to isocitrate. The IDH gene from Streptococcus mutans was fused with the icd gene promoter from Escherichia coli to initiate its expression in the glutamate auxotrophic strain E. coli Δicd::kan(r) of which the icd gene has been replaced by kanamycin resistance gene. The expression of S. mutans IDH (SmIDH) may restore the wild-type phenotype of the icd-defective strain on minimal medium without glutamate. The molecular weight of SmIDH was estimated to be 70 kDa by gel filtration chromatography, suggesting a homodimeric structure. SmIDH was divalent cation-dependent and Mn(2+) was found to be the most effective cation. The optimal pH of SmIDH was 7.8 and the maximum activity was around 45°C. SmIDH was completely NAD(+) dependent and its apparent Km for NAD(+) was 137 μM. In order to evaluate the role of the putative phosphorylation site at Ser102 in catalysis, two "stably phosphorylated" mutants were constructed by converting Ser102 into Glu102 or Asp102 in SmIDH to mimick a constitutively phosphorylated state. Meanwhile, the functional roles of another four amino acids (threonine, glycine, alanine and tyrosine) containing variant size of side chains were investigated. The replacement of Asp102 or Glu102 totally inactivated the enzyme, while the S102T, S102G, S102A and S102Y mutants decreased the affinity to isocitrate and only retained 16.0%, 2.8%, 3.3% and 1.1% of the original activity, respectively. These results reveal that Ser102 plays important role in substrate binding and is required for the enzyme function. Also, Ser102 in SmIDH is a potential phosphorylation site, indicating that the ancient NAD-dependent IDHs might be the underlying origin of "phosphorylation mechanism" used by their bacterial NADP

  4. Role of phospholemman phosphorylation sites in mediating kinase-dependent regulation of the Na+-K+-ATPase.

    Science.gov (United States)

    Han, Fei; Bossuyt, Julie; Martin, Jody L; Despa, Sanda; Bers, Donald M

    2010-12-01

    Phospholemman (PLM) is a major target for phosphorylation mediated by both PKA (at Ser68) and PKC (at both Ser63 and Ser68) in the heart. In intact cardiac myocytes, PLM associates with and inhibits Na(+)-K(+)-ATPase (NKA), mainly by reducing its affinity for internal Na(+). The inhibition is relieved upon PLM phosphorylation by PKA or PKC. The aim here was to distinguish the role of the Ser63 and Ser68 PLM phosphorylation sites in mediating kinase-induced modulation of NKA function. We expressed wild-type (WT) PLM and S63A, S68A, and AA (Ser63 and Ser68 to alanine double mutant) PLM mutants in HeLa cells that stably express rat NKA-α(1) and we measured the effect of PKA and PKC activation on NKA-mediated intracellular Na(+) concentration decline. PLM expression (WT or mutant) significantly decreased the apparent NKA affinity for internal Na(+) and had no significant effect on the maximum pump rate (V(max)). PKA activation with forskolin (20 μM) restored NKA Na(+) affinity in cells expressing WT but not AA PLM and did not affect V(max) in either case. Similarly, PKC activation with 300 nM phorbol 12,13-dibutyrate increased NKA Na(+) affinity in cells expressing WT, S63A, and S68A PLM and had no effect in cells expressing AA PLM. Neither forskolin nor phorbol 12,13-dibutyrate affected NKA function in the absence of PLM. We conclude that PLM phosphorylation at either Ser63 or Ser68 is both necessary and sufficient for completely relieving the PLM-induced NKA inhibition.

  5. The in vivo phosphorylation sites in multiple isoforms of amphiphysin I from rat brain nerve terminals

    DEFF Research Database (Denmark)

    Craft, George E; Graham, Mark E; Bache, Nicolai;

    2008-01-01

    -proline-directed kinases, Ser-626, -250, -252, and -539, contained low amounts of 32P and were not depolarization-responsive. At least one alternatively spliced amphI isoform was identified in synaptosomes as being constitutively phosphorylated because it did not incorporate 32P during the 1-h labeling period. Multiple......, incorporating 16 and 23% of the 32P. The multiple phosphopeptides containing Ser-268, Ser-276, Ser-272, and Ser-285 had 27% of the 32P. Evidence for a role for at least one proline-directed protein kinase and one non-proline-directed kinase was obtained. Four phosphosites predicted for non...

  6. Identification of phosphorylation sites for adenosine 3',5'-cyclic phosphate dependent protein kinase on the voltage-sensitive sodium channel from Electrophorus electricus.

    Science.gov (United States)

    Emerick, M C; Agnew, W S

    1989-10-17

    The voltage-sensitive sodium channel from the electroplax of Electrophorus electricus is selectively phosphorylated by the catalytic subunit of cyclic-AMP-dependent protein kinase (protein kinase A) but not by protein kinase C. Under identical limiting conditions, the protein was phosphorylated 20% as rapidly as the synthetic model substrate kemptamide. A maximum of 1.7 +/- 0.6 equiv of phosphate is incorporated per mole. Phosphoamino acid analysis revealed labeled phosphoserine and phosphothreonine at a constant ratio of 3.3:1. Seven distinct phosphopeptides were identified among tryptic fragments prepared from radiolabeled, affinity-purified protein and resolved by HPLC. The three most rapidly labeled fragments were further purified and sequenced. Four phosphorylated amino acids were identified deriving from three consensus phosphorylation sites. These were serine 6, serine 7, and threonine 17 from the amino terminus and a residue within 47 amino acids of the carboxyl terminus, apparently serine 1776. The alpha-subunits of brain sodium channels, like the electroplax protein, are readily phosphorylated by protein kinase A. However, these are also phosphorylated by protein kinase C and exhibit a markedly different pattern of incorporation. Each of three brain alpha-subunits displays an approximately 200 amino acid segment between homologous repeat domains I and II, which is missing from the electroplax and skeletal muscle proteins [Noda et al. (1986) Nature (London) 320, 188; Kayano et al. (1988) FEBS Lett. 228, 1878; Trimmer et al. (1989) Neuron 3, 33]. Most of the phosphorylation of the brain proteins occurs on a cluster of consensus phosphorylation sites located in this segment. This contrasts with the pattern of highly active sites on the amino and carboxyl termini of the electroplax protein. The detection of seven labeled tryptic phosphopeptides compared to the maximal labeling stoichiometry of approximately 2 suggests that many of the acceptor sites on the

  7. Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation.

    Science.gov (United States)

    Du, J; Tao, Z H; Li, J; Liu, Y K; Gan, L

    2015-10-05

    We constructed hepatocellular carcinoma (HCC) cells that stably express stathmin with a Ser25 phosphorylation site mutation (stathmin S25A). We used the polymerase chain reaction for site-directed mutagenesis, constructed a stathmin S25A plasmid, and verified the results by restriction enzyme cleavage and sequencing technology. Using the liposome transfection method, stathmin wild-type and S25A HCCLM6 cells were established, which were identified by western blotting. The sequencing report of the stathmin S25A plasmid showed that stathmin serine at position 25 had mutated into alanine. Stable cells transfected with stathmin wild-type and S25A plasmids were constructed. Using western blotting, we confirmed that the expression level of stathmin pS25 in the stathmin S25A cells was reduced than that in the stathmin wild-type and HCCLM6 control cells (P stathmin S25A HCCLM6 cells, which offer an experimental model for further investigation of the molecular mechanism of stathmin phosphorylation in hepatocarcinogenesis.

  8. Regulatory supervision of sites for spent fuel and radioactive waste storage in the Russian northwest.

    Science.gov (United States)

    Shandala, N K; Sneve, M K; Smith, G M; Kiselev, M F; Kochetkov, O A; Savkin, M N; Simakov, A V; Novikova, N Ya; Titov, A V; Romanov, V V; Seregin, V A; Filonova, A V; Semenova, M P

    2008-12-01

    In the 1960s two technical bases for the Northern Fleet were created in the Russian northwest at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, receiving and storing radioactive waste and spent nuclear fuel. No further waste was received after 1985, and the technical bases have since been re-categorised as temporary storage sites. The handling of these materials to put them into a safe condition is especially hazardous because of their degraded state. This paper describes regulatory activities which have been carried out to support the supervision of radiological protection during recovery of waste and spent fuel, and to support regulatory decisions on overall site remediation. The work described includes: an assessment of the radiation situation on-site; the development of necessary additional regulatory rules and standards for radiation protection assurance for workers and the public during remediation; and the completion of an initial threat assessment to identify regulatory priorities. Detailed consideration of measures for the control of radiation exposure of workers and radiation exposure of the public during and after operations and emergency preparedness and response are complete and provided in sister papers. The continuing requirements for regulatory activities relevant to the development and implementation of on-going and future remediation activities are also outlined. The Norwegian Radiation Protection Authority supports the work, as part of the Norwegian Government's plan of action to promote improvements in radiation protection and nuclear safety in northwest Russia.

  9. Serine 77 in the PDZ domain of PICK1 is a protein kinase Cα phosphorylation site regulated by lipid membrane binding

    DEFF Research Database (Denmark)

    Ammendrup-Johnsen, Ina; Thorsen, Thor Seneca; Gether, Ulrik

    2012-01-01

    PICK1 (protein interacting with C kinase 1) contains an N-terminal protein binding PDZ domain and a C-terminal lipid binding BAR domain. PICK1 plays a key role in several physiological processes, including synaptic plasticity. However, little is known about the cellular mechanisms governing...... the activity of PICK1 itself. Here we show that PICK1 is a substrate in vitro both for PKCα (protein kinase Cα), as previously shown, and for CaMKIIα (Ca(2+)-calmodulin-dependent protein kinase IIα). By mutation of predicted phosphorylation sites, we identify Ser77 in the PDZ domain as a major phosphorylation...... for optimal phosphorylation. Binding of PKCα to the PICK1 PDZ domain was not required for phosphorylation, but a PDZ domain peptide ligand reduced the overall level of phosphorylation ~30%. The phosphomimic S77D reduced the extent of cytosolic clustering of eYFP-PICK1 in COS7 cells and thereby conceivably its...

  10. The M3 phosphorylation site is required for trafficking and biological roles of PIN-FORMED1, 2, and 7 in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Daeeun Ki

    2016-09-01

    Full Text Available Asymmetrically localized PIN-FORMED (PIN auxin efflux carriers play key roles in regulating directional intercellular auxin movement, generating local auxin gradients, and diverse auxin-mediated growth and development. The polar localization of PINs is controlled by phosphorylation in the central hydrophilic loop (HL of PINs. Although the M3 phosphorylation site, including phosphorylatable 5 Ser/Thr residues, is conserved among long HL-PINs, its native role has only been characterized in PIN3. In this study, we examined the role of M3 phosphorylation site of PIN1, PIN2, and PIN7 in intracellular trafficking, phosphorylation, and biological functions of those PINs in their native expressing tissues. Phosphorylation-defective mutations of the phosphorylatable residues in the M3 site of PIN1-HL led to alteration in subcellular polarity of PIN1 and caused defects in PIN1-mediated biological functions such as cotyledon development, phyllotaxy of vegetative leaves, and development of reproductive organs. The M3 mutations of PIN7 interfered with its polar recycling in the root columella cell in response to gravity stimulus and partially disrupted root gravitropism. On the other hand, the M3 site of PIN2 was shown to be necessary for its targeting to the plasma membrane. In vitro phosphorylation assay showed that the M3 phosphorylation residues of PIN1 are the partial targets by PINOID kinase. Our data suggest that the M3 phosphorylation site is functionally conserved among long HL-PINs by playing roles for their subcellular trafficking and auxin-mediated developmental processes.

  11. The M3 Phosphorylation Site Is Required for Trafficking and Biological Roles of PIN-FORMED1, 2, and 7 in Arabidopsis

    Science.gov (United States)

    Ki, Daeeun; Sasayama, Daisuke; Cho, Hyung-Taeg

    2016-01-01

    Asymmetrically localized PIN-FORMED (PIN) auxin efflux carriers play key roles in regulating directional intercellular auxin movement, generating local auxin gradients, and diverse auxin-mediated growth and development. The polar localization of PINs is controlled by phosphorylation in the central hydrophilic loop (HL) of PINs. Although the M3 phosphorylation site, including phosphorylatable 5 Ser/Thr residues, is conserved among long HL-PINs, its native role has only been characterized in PIN3. In this study, we examined the role of M3 phosphorylation site of PIN1, PIN2, and PIN7 in intracellular trafficking, phosphorylation, and biological functions of those PINs in their native expressing tissues. Phosphorylation-defective mutations of the phosphorylatable residues in the M3 site of PIN1-HL led to alteration in subcellular polarity of PIN1 and caused defects in PIN1-mediated biological functions such as cotyledon development, phyllotaxy of vegetative leaves, and development of reproductive organs. The M3 mutations of PIN7 interfered with its polar recycling in the root columella cell in response to gravity stimulus and partially disrupted root gravitropism. On the other hand, the M3 site of PIN2 was shown to be necessary for its targeting to the plasma membrane. In vitro phosphorylation assay showed that the M3 phosphorylation residues of PIN1 are the partial targets by PINOID kinase. Our data suggest that the M3 phosphorylation site is functionally conserved among long HL-PINs by playing roles for their subcellular trafficking and auxin-mediated developmental processes.

  12. Polo Kinase Phosphorylates Miro to Control ER-Mitochondria Contact Sites and Mitochondrial Ca(2+) Homeostasis in Neural Stem Cell Development.

    Science.gov (United States)

    Lee, Seongsoo; Lee, Kyu-Sun; Huh, Sungun; Liu, Song; Lee, Do-Yeon; Hong, Seung Hyun; Yu, Kweon; Lu, Bingwei

    2016-04-18

    Mitochondria play central roles in buffering intracellular Ca²⁺ transients. While basal mitochondrial Ca²⁺ (Ca²⁺ mito) is needed to maintain organellar physiology, Ca²⁺ mito overload can lead to cell death. How Ca²⁺ mito homeostasis is regulated is not well understood. Here we show that Miro, a known component of the mitochondrial transport machinery, regulates Drosophila neural stem cell (NSC) development through Ca²⁺ mito homeostasis control, independent of its role in mitochondrial transport. Miro interacts with Ca²⁺ transporters at the ER-mitochondria contact site (ERMCS). Its inactivation causes Ca²⁺ mito depletion and metabolic impairment, whereas its overexpression results in Ca²⁺ mito overload, mitochondrial morphology change, and apoptotic response. Both conditions impaired NSC lineage progression. Ca²⁺ mito homeostasis is influenced by Polo-mediated phosphorylation of a conserved residue in Miro, which positively regulates Miro localization to, and the integrity of, ERMCS. Our results elucidate a regulatory mechanism underlying Ca²⁺ mito homeostasis and how its dysregulation may affect NSC metabolism/development and contribute to disease.

  13. Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    Science.gov (United States)

    Nebl, Thomas; Prieto, Judith Helena; Kapp, Eugene; Smith, Brian J.; Williams, Melanie J.; Yates, John R.; Cowman, Alan F.; Tonkin, Christopher J.

    2011-01-01

    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component. PMID:21980283

  14. A phosphorylation cascade controls the degradation of active SREBP1.

    Science.gov (United States)

    Bengoechea-Alonso, Maria T; Ericsson, Johan

    2009-02-27

    Sterol regulatory element-binding proteins (SREBPs) are a family of transcription factors that regulates cholesterol and lipid metabolism. The active forms of these transcription factors are targeted by a number of post-translational modifications, including phosphorylation. Phosphorylation of Thr-426 and Ser-430 in SREBP1a creates a docking site for the ubiquitin ligase Fbw7, resulting in the degradation of the transcription factor. Here, we identify a novel phosphorylation site in SREBP1a, Ser-434, which regulates the Fbw7-dependent degradation of SREBP1. We demonstrate that both SREBP1a and SREBP1c are phosphorylated on this residue (Ser-410 in SREBP1c). Importantly, we demonstrate that the mature form of endogenous SREBP1 is phosphorylated on Ser-434. Glycogen synthase kinase-3 phosphorylates Ser-434, and the phosphorylation of this residue is attenuated in response to insulin signaling. Interestingly, phosphorylation of Ser-434 promotes the glycogen synthase kinase-3-dependent phosphorylation of Thr-426 and Ser-430 and destabilizes SREBP1. Consequently, mutation of Ser-434 blocks the interaction between SREBP1 and Fbw7 and attenuates Fbw7-dependent degradation of SREBP1. Importantly, insulin fails to enhance the levels of mature SREBP1 in cells lacking Fbw7. Thus, the degradation of mature SREBP1 is controlled by cross-talk between multiple phosphorylated residues in its C-terminal domain and the phosphorylation of Ser-434 could function as a molecular switch to control these processes.

  15. Threonine(175), a novel pathological phosphorylation site on tau protein linked to multiple tauopathies.

    Science.gov (United States)

    Moszczynski, Alexander J; Yang, Wencheng; Hammond, Robert; Ang, Lee Cyn; Strong, Michael J

    2017-01-11

    Microtubule associated protein tau (tau) deposition is associated with a spectrum of neurodegenerative diseases collectively termed tauopathies. We have previously shown that amyotrophic lateral sclerosis (ALS) with cognitive impairment (ALSci) is associated with tau phosphorylation at Thr(175) and that this leads to activation of GSK3β which then induces phosphorylation at tau Thr(231). This latter step leads to dissociation of tau from microtubules and pathological tau fibril formation. To determine the extent to which this pathway is unique to ALS, we have investigated the expression of pThr(175) tau and pThr(231) tau across a range of frontotemporal degenerations. Representative sections from the superior frontal cortex, anterior cingulate cortex (ACC), amygdala, hippocampal formation, basal ganglia, and substantia nigra were selected from neuropathologically confirmed cases of Alzheimer's disease (AD; n = 3), vascular dementia (n = 2), frontotemporal lobar degeneration (FTLD; n = 4), ALS (n = 5), ALSci (n = 6), Parkinson's disease (PD; n = 5), corticobasal degeneration (CBD; n = 2), diffuse Lewy body dementia (DLBD; n = 2), mixed DLBD (n = 3), multisystem atrophy (MSA; n = 6) and Pick's disease (n = 1) and three neuropathologically-normal control groups aged 50-60 (n = 6), 60-70 (n = 6) and 70-80 (n = 8). Sections were examined using a panel of phospho-tau antibodies (pSer(208,210), pThr(217), pThr(175), pThr(231), pSer(202) and T22 (oligomeric tau)). Across diseases, phospho-tau load was most prominent in layers II/III of the entorhinal cortex, amygdala and hippocampus. This is in contrast to the preferential deposition of phospho-tau in the ACC and frontal cortex in ALSci. Controls showed pThr(175) tau expression only in the 7(th) decade of life and only in the presence of tau pathology and tau oligomers. With the exception of DLBD, we observed pThr(175) co-localizing with pThr(231) in the same cell

  16. Protein kinase A (PKA) phosphorylation of Na+/K+-ATPase opens intracellular C-terminal water pathway leading to third Na+-binding site in molecular dynamics simulations

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Nissen, Poul; Mouritsen, Ole G.;

    2012-01-01

    Phosphorylation is one of the major mechanisms for posttranscriptional modification of proteins. The addition of a compact, negatively charged moiety to a protein can significantly change its function and localization by affecting its structure and interaction network. We have used all-atom Molec...... the effects of S936 phosphorylation. The results establish a structural association of S936 with the C-terminus of NKA and indicate that phosphorylation of S936 can modulate pumping activity by changing the accessibility to the ion-binding site....

  17. Site-specific phosphorylation of the DNA damage response mediator rad9 by cyclin-dependent kinases regulates activation of checkpoint kinase 1.

    Directory of Open Access Journals (Sweden)

    Carla Manuela Abreu

    2013-04-01

    Full Text Available The mediators of the DNA damage response (DDR are highly phosphorylated by kinases that control cell proliferation, but little is known about the role of this regulation. Here we show that cell cycle phosphorylation of the prototypical DDR mediator Saccharomyces cerevisiae Rad9 depends on cyclin-dependent kinase (CDK complexes. We find that a specific G2/M form of Cdc28 can phosphorylate in vitro the N-terminal region of Rad9 on nine consensus CDK phosphorylation sites. We show that the integrity of CDK consensus sites and the activity of Cdc28 are required for both the activation of the Chk1 checkpoint kinase and its interaction with Rad9. We have identified T125 and T143 as important residues in Rad9 for this Rad9/Chk1 interaction. Phosphorylation of T143 is the most important feature promoting Rad9/Chk1 interaction, while the much more abundant phosphorylation of the neighbouring T125 residue impedes the Rad9/Chk1 interaction. We suggest a novel model for Chk1 activation where Cdc28 regulates the constitutive interaction of Rad9 and Chk1. The Rad9/Chk1 complex is then recruited at sites of DNA damage where activation of Chk1 requires additional DDR-specific protein kinases.

  18. An information transmission model for transcription factor binding at regulatory DNA sites.

    Science.gov (United States)

    Tan, Mingfeng; Yu, Dong; Jin, Yuan; Dou, Lei; Li, Beiping; Wang, Yuelan; Yue, Junjie; Liang, Long

    2012-06-06

    Computational identification of transcription factor binding sites (TFBSs) is a rapid, cost-efficient way to locate unknown regulatory elements. With increased potential for high-throughput genome sequencing, the availability of accurate computational methods for TFBS prediction has never been as important as it currently is. To date, identifying TFBSs with high sensitivity and specificity is still an open challenge, necessitating the development of novel models for predicting transcription factor-binding regulatory DNA elements. Based on the information theory, we propose a model for transcription factor binding of regulatory DNA sites. Our model incorporates position interdependencies in effective ways. The model computes the information transferred (TI) between the transcription factor and the TFBS during the binding process and uses TI as the criterion to determine whether the sequence motif is a possible TFBS. Based on this model, we developed a computational method to identify TFBSs. By theoretically proving and testing our model using both real and artificial data, we found that our model provides highly accurate predictive results. In this study, we present a novel model for transcription factor binding regulatory DNA sites. The model can provide an increased ability to detect TFBSs.

  19. Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Kemp Bruce E

    2008-05-01

    Full Text Available Abstract Background We have previously described an approach to predicting the substrate specificity of serine-threonine protein kinases. The method, named Predikin, identifies key conserved substrate-determining residues in the kinase catalytic domain that contact the substrate in the region of the phosphorylation site and so determine the sequence surrounding the phosphorylation site. Predikin was implemented originally as a web application written in Javascript. Results Here, we describe a new version of Predikin, completely revised and rewritten as a modular framework that provides multiple enhancements compared with the original. Predikin now consists of two components: (i PredikinDB, a database of phosphorylation sites that links substrates to kinase sequences and (ii a Perl module, which provides methods to classify protein kinases, reliably identify substrate-determining residues, generate scoring matrices and score putative phosphorylation sites in query sequences. The performance of Predikin as measured using receiver operator characteristic (ROC graph analysis equals or surpasses that of existing comparable methods. The Predikin website has been redesigned to incorporate the new features. Conclusion New features in Predikin include the use of SQL queries to PredikinDB to generate predictions, scoring of predictions, more reliable identification of substrate-determining residues and putative phosphorylation sites, extended options to handle protein kinase and substrate data and an improved web interface. The new features significantly enhance the ability of Predikin to analyse protein kinases and their substrates. Predikin is available at http://predikin.biosci.uq.edu.au.

  20. The in vitro phosphorylation of p53 by calcium-dependent protein kinase C--characterization of a protein-kinase-C-binding site on p53.

    Science.gov (United States)

    Delphin, C; Huang, K P; Scotto, C; Chapel, A; Vincon, M; Chambaz, E; Garin, J; Baudier, J

    1997-05-01

    We show that, in vitro, Ca2+-dependent protein kinase C (PKC) phosphorylates recombinant murine p53 protein on several residues contained within a conserved basic region of 25 amino acids, located in the C-terminal part of the protein. Accordingly, synthetic p53-(357-381)-peptide is phosphorylated by PKC at multiple Ser and Thr residues, including Ser360, Thr365, Ser370 and Thr377. We also establish that p53-(357-381)-peptide at micromolar concentrations has the ability to stimulate sequence-specific DNA binding by p53. That stimulation is lost upon phosphorylation by PKC. To further characterise the mechanisms that regulate PKC-dependent phosphorylation of p53-(357-381)-peptide, the phosphorylation of recombinant p53 and p53-(357-381)-peptide by PKC were compared. The results suggest that phosphorylation of full-length p53 on the C-terminal PKC sites is highly dependent on the accessibility of the phosphorylation sites and that a domain on p53 distinct from p53-(357-381)-peptide is involved in binding PKC. Accordingly, we have identified a conserved 27-amino-acid peptide, p53-(320-346)-peptide, within the C-terminal region of p53 and adjacent to residues 357-381 that interacts with PKC in vitro. The interaction between p53-(320-346)-peptide and PKC inhibits PKC autophosphorylation and the phosphorylation of substrates, including p53-(357-381)-peptide, neurogranin and histone H1. Conventional Ca2+-dependent PKC alpha, beta and gamma and the catalytic fragment of PKC (PKM) were nearly equally susceptible to inhibition by p53-(320-346)-peptide. The Ca2+-independent PKC delta was much less sensitive to inhibition. The significance of these findings for understanding the in vivo phosphorylation of p53 by PKC are discussed.

  1. Phosphorylation of plant plasma membrane H+-ATPase by the heterologous host S.cerevisiae

    DEFF Research Database (Denmark)

    L. Rudashevskaya, Elena; Ye, Juanying; Jensen, Ole Nørregaard

    +-ATPases are app. 60 amino acid residues longer than their yeast homologous. Yeast is found to phosphorylate at least one residue within the plant C-terminus. At the same time a wide range of investigations on structure, function, regulation and interaction of H+-ATPase is carried out with implication...... It is known, that phosphorylation of both plant and yeast plasma membrane H+-ATPase results in enzyme activation or inhibition. Several sites at the regulatory C-terminus of the enzyme have been found to undergo phosphorylation in vivo in both plant and yeast. The C-termini of plant H...... of heterologous system of yeast cells, expressing plant proton pump. Therefore identification of possible regulatory effects by phosphorylation events in plant H+-ATPase in the system is significant. A number of putative phosphorylation sites at regulatory C-domain of H+-ATPase (AHA2) have been point...

  2. An acidic loop and cognate phosphorylation sites define a molecular switch that modulates ubiquitin charging activity in Cdc34-like enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Ranzani, Valeria; Tripodi, Farida;

    2011-01-01

    elements in one of the larger families of E2 enzymes: an acidic insertion in β4α2 loop in the proximity of the catalytic cysteine and two conserved key serine residues within the catalytic domain, which are phosphorylated by CK2. Our investigations, using yeast Cdc34 as a model, through 2.5 µs molecular......E2 ubiquitin-conjugating enzymes are crucial mediators of protein ubiquitination, which strongly influence the ultimate fate of the target substrates. Recently, it has been shown that the activity of several enzymes of the ubiquitination pathway is finely tuned by phosphorylation, an ubiquitous...... mechanism for cellular regulation, which modulates protein conformation. In this contribution, we provide the first rationale, at the molecular level, of the regulatory mechanism mediated by casein kinase 2 (CK2) phosphorylation of E2 Cdc34-like enzymes. In particular, we identify two co-evolving signature...

  3. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.

    Science.gov (United States)

    Xu, Feifei; Yang, Ting; Sheng, Yuan; Zhong, Ting; Yang, Mi; Chen, Yun

    2014-12-05

    As one of the most studied post-translational modifications (PTM), protein phosphorylation plays an essential role in almost all cellular processes. Current methods are able to predict and determine thousands of phosphorylation sites, whereas stoichiometric quantification of these sites is still challenging. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based targeted proteomics is emerging as a promising technique for site-specific quantification of protein phosphorylation using proteolytic peptides as surrogates of proteins. However, several issues may limit its application, one of which relates to the phosphopeptides with different phosphorylation sites and the same mass (i.e., isobaric phosphopeptides). While employment of site-specific product ions allows for these isobaric phosphopeptides to be distinguished and quantified, site-specific product ions are often absent or weak in tandem mass spectra. In this study, linear algebra algorithms were employed as an add-on to targeted proteomics to retrieve information on individual phosphopeptides from their common spectra. To achieve this simultaneous quantification, a LC-MS/MS-based targeted proteomics assay was first developed and validated for each phosphopeptide. Given the slope and intercept of calibration curves of phosphopeptides in each transition, linear algebraic equations were developed. Using a series of mock mixtures prepared with varying concentrations of each phosphopeptide, the reliability of the approach to quantify isobaric phosphopeptides containing multiple phosphorylation sites (≥ 2) was discussed. Finally, we applied this approach to determine the phosphorylation stoichiometry of heat shock protein 27 (HSP27) at Ser78 and Ser82 in breast cancer cells and tissue samples.

  4. The plastid casein kinase 2 phosphorylates Rubisco activase at the Thr-78 site but is not essential for regulation of Rubisco activation state

    Directory of Open Access Journals (Sweden)

    Sang Yeol eKim

    2016-03-01

    Full Text Available Rubisco activase (RCA is essential for the activation of Rubisco, the carboxylating enzyme of photosynthesis. In Arabidopsis, RCA is composed of a large RCAα and small RCAβ isoform that are formed by alternative splicing of a single gene (At2g39730. The activity of Rubisco is controlled in response to changes in irradiance by regulation of RCA activity, which is known to involve a redox-sensitive disulfide bond located in the carboxy-terminal extension of the RCAα subunit. Additionally, phosphorylation of RCA threonine-78 (Thr-78 has been reported to occur in the dark suggesting that phosphorylation may also be associated with dark-inactivation of RCA and deactivation of Rubisco. In the present study, we developed site-specific antibodies to monitor phosphorylation of RCA at the Thr-78 site and used non-reducing SDS-PAGE to monitor the redox status of the RCAα subunit. By immunoblotting, phosphorylation of both RCA isoforms occurred at low light and in the dark and feeding peroxide or DTT to leaf segments indicated that redox status of the chloroplast stroma was a critical factor controlling RCA phosphorylation. Use of a knockout mutant identified the plastid-targeted casein kinase 2 (cpCK2α as the major protein kinase involved in RCA phosphorylation. Studies with recombinant cpCK2α and synthetic peptide substrates identified acidic residues at the -1, +2 and +3 positions surrounding Thr-78 as strong positive recognition elements. The cpck2 knockout mutant had strongly reduced phosphorylation at the Thr-78 site but was similar to wild type plants in terms of induction kinetics of photosynthesis following transfer from darkness or low light to high light, suggesting that if phosphorylation of RCA Thr-78 plays a direct role it would be redundant to redox regulation for control of Rubisco activation state under normal conditions.

  5. Multiple repeats of Helicobacter pylori CagA EPIYA-C phosphorylation sites predict risk of gastric ulcer in Iran.

    Science.gov (United States)

    Honarmand-Jahromy, Sahar; Siavoshi, Farideh; Malekzadeh, Reza; Sattari, Taher Nejad; Latifi-Navid, Saeid

    2015-12-01

    Biological activity of Helicobacter pylori oncoprotein CagA is determined by a diversity in the tyrosine phosphorylation motif sites. In the present study, the diversity and the type of the H. pylori CagA EPIYA motifs and their association with gastric ulcer (GU) and duodenal ulcer (DU) in Iranian dyspeptic patients were assessed. PCR amplification, sequencing, and bioinformatic analysis were performed to determine the pattern of CagA EPIYA motifs. Of 168 H. pylori cagA(+) strains, the frequency of ABC was 93.50%, ABCCC 5.40%, ABC + ABCCC 0.6% and ABCC 0.6%. There was no EPIYA-D segment. The ABCCC pattern of EPIYA motif was more frequent in the H. pylori isolates from GU (8/50, 16%) than in those from chronic gastritis (CG) (0/81, 0%) (P = 0). In contrast, The ABC pattern of EPIYA motif was less frequent in the H. pylori isolates from GU (41/50, 82%) than in those from CG (80/81, 98.80%) (Age-sex-adjusted odds ratio (OR) = 0.020, 95% CI = 0.002-0.259; P = 0.003). The distribution of the ABC motif was almost the same in H. pylori isolates from CG (98.80%) and DU diseases (97.30%). There was no significant association between the number of CagA EPIYA-C segment and DU (P > 0.05). We have proposed that CagA from Iranian H. pylori strains were Western type and all strains had active phosphorylation sites. The three EPIYA-C motifs of CagA were more frequently observed in the H. pylori strains from GU; thus it might be an important biomarker for predicting the GU risk in Iran.

  6. Direct evidence for a phenylalanine site in the regulatory domain of phenylalanine hydroxylase.

    Science.gov (United States)

    Li, Jun; Ilangovan, Udayar; Daubner, S Colette; Hinck, Andrew P; Fitzpatrick, Paul F

    2011-01-15

    The hydroxylation of phenylalanine to tyrosine by the liver enzyme phenylalanine hydroxylase is regulated by the level of phenylalanine. Whether there is a distinct allosteric binding site for phenylalanine outside of the active site has been unclear. The enzyme contains an N-terminal regulatory domain that extends through Thr117. The regulatory domain of rat phenylalanine hydroxylase was expressed in Escherichia coli. The purified protein behaves as a dimer on a gel filtration column. In the presence of phenylalanine, the protein elutes earlier from the column, consistent with a conformational change in the presence of the amino acid. No change in elution is seen in the presence of the non-activating amino acid proline. ¹H-¹⁵N HSQC NMR spectra were obtained of the ¹⁵N-labeled protein alone and in the presence of phenylalanine or proline. A subset of the peaks in the spectrum exhibits chemical shift perturbation in the presence of phenylalanine, consistent with binding of phenylalanine at a specific site. No change in the NMR spectrum is seen in the presence of proline. These results establish that the regulatory domain of phenylalanine hydroxylase can bind phenylalanine, consistent with the presence of an allosteric site for the amino acid.

  7. Comparative Analysis of Regulatory Motif Discovery Tools for Transcription Factor Binding Sites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the post-genomic era, identification of specific regulatory motifs or transcription factor binding sites (TFBSs) in non-coding DNA sequences, which is essential to elucidate transcriptional regulatory networks, has emerged as an obstacle that frustrates many researchers. Consequently, numerous motif discovery tools and correlated databases have been applied to solving this problem. However, these existing methods, based on different computational algorithms, show diverse motif prediction efficiency in non-coding DNA sequences. Therefore, understanding the similarities and differences of computational algorithms and enriching the motif discovery literatures are important for users to choose the most appropriate one among the online available tools. Moreover, there still lacks credible criterion to assess motif discovery tools and instructions for researchers to choose the best according to their own projects. Thus integration of the related resources might be a good approach to improve accuracy of the application. Recent studies integrate regulatory motif discovery tools with experimental methods to offer a complementary approach for researchers, and also provide a much-needed model for current researches on transcriptional regulatory networks. Here we present a comparative analysis of regulatory motif discovery tools for TFBSs.

  8. Quantification of rapid Myosin regulatory light chain phosphorylation using high-throughput in-cell Western assays: comparison to Western immunoblots.

    Directory of Open Access Journals (Sweden)

    Hector N Aguilar

    Full Text Available BACKGROUND: Quantification of phospho-proteins (PPs is crucial when studying cellular signaling pathways. Western immunoblotting (WB is commonly used for the measurement of relative levels of signaling intermediates in experimental samples. However, WB is in general a labour-intensive and low-throughput technique. Because of variability in protein yield and phospho-signal preservation during protein harvesting, and potential loss of antigen during protein transfer, WB provides only semi-quantitative data. By comparison, the "in-cell western" (ICW technique has high-throughput capacity and requires less extensive sample preparation. Thus, we compared the ICW technique to WB for measuring phosphorylated myosin regulatory light chain (PMLC(20 in primary cultures of uterine myocytes to assess their relative specificity, sensitivity, precision, and quantification of biologically relevant responses. METHODOLOGY/PRINCIPAL FINDINGS: ICWs are cell-based microplate assays for quantification of protein targets in their cellular context. ICWs utilize a two-channel infrared (IR scanner (Odyssey(R to quantify signals arising from near-infrared (NIR fluorophores conjugated to secondary antibodies. One channel is dedicated to measuring the protein of interest and the second is used for data normalization of the signal in each well of the microplate. Using uterine myocytes, we assessed oxytocin (OT-stimulated MLC(20 phosphorylation measured by ICW and WB, both using NIR fluorescence. ICW and WB data were comparable regarding signal linearity, signal specificity, and time course of phosphorylation response to OT. CONCLUSION/SIGNIFICANCE: ICW and WB yield comparable biological data. The advantages of ICW over WB are its high-throughput capacity, improved precision, and reduced sample preparation requirements. ICW might provide better sensitivity and precision with low-quantity samples or for protocols requiring large numbers of samples. These features make the ICW

  9. Identification of the binding sites of regulatory proteins in bacterial genomes

    OpenAIRE

    Li, Hao; Rhodius, Virgil; Gross, Carol; Siggia, Eric D.

    2002-01-01

    We present an algorithm that extracts the binding sites (represented by position-specific weight matrices) for many different transcription factors from the regulatory regions of a genome, without the need for delineating groups of coregulated genes. The algorithm uses the fact that many DNA-binding proteins in bacteria bind to a bipartite motif with two short segments more conserved than the intervening region. It identifies all statistically significant patterns of the form W1NxW2, where W1...

  10. Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Based on our recent finding that cardiac myosin binding protein C (cMyBP-C phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302, DAD (Asp273-Ala282-Asp302, SAS (Ser273-Ala282-Ser302, and t/t (cMyBP-C null genotypes, and the results were compared to transgenic mice expressing wide-type (WT cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi, and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc, and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.

  11. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.

    Science.gov (United States)

    Vomastek, Tomás; Iwanicki, Marcin P; Burack, W Richard; Tiwari, Divya; Kumar, Devanand; Parsons, J Thomas; Weber, Michael J; Nandicoori, Vinay Kumar

    2008-11-01

    Identifying direct substrates of mitogen-activated protein kinases (MAPKs) and understanding how those substrates are selected is central to understanding how these ubiquitously activated enzymes generate diverse biological responses. In previous work, we identified several new candidate substrates for the MAPK ERK2 (extracellular signal-regulated kinase 2), including the nuclear pore complex protein Tpr (translocated promoter region). In this report, we identify sites on Tpr for ERK2 phosphorylation and binding and demonstrate their functional interaction. ERK2 phosphorylation and dimerization are necessary for ERK2-Tpr binding, and this occurs through a DEF (docking site for ERK2, FXF) domain on Tpr. Surprisingly, the DEF domain and the phosphorylation sites displayed positive cooperativity to promote ERK2 binding to Tpr, in contrast to substrates where phosphorylation reduces binding. Ectopic expression or depletion of Tpr resulted in decreased movement of activated ERK2 from the cytoplasm to the nucleus, implying a role for Tpr in ERK2 translocation. Collectively, the data provide direct evidence that a component of the nuclear pore complex is a bona fide substrate of ERK2 in vivo and that activated ERK2 stably associates with this substrate after phosphorylation, where it could play a continuing role in nuclear pore function. We propose that Tpr is both a substrate and a scaffold for activated ERKs.

  12. Shutoff and agonist-triggered internalization of protease-activated receptor 1 can be separated by mutation of putative phosphorylation sites in the cytoplasmic tail.

    Science.gov (United States)

    Hammes, S R; Shapiro, M J; Coughlin, S R

    1999-07-20

    The thrombin receptor PAR1 becomes rapidly phosphorylated upon activation by either thrombin or exogenous SFLLRN agonist peptide. Substitution of alanine for all serine and threonine residues in the receptor's cytoplasmic carboxyl-terminal tail ablated phosphorylation and yielded a receptor defective in both shutoff and agonist-triggered internalization. These observations suggested that activation-dependent phosphorylation of PAR1's cytoplasmic tail is required for both shutoff and agonist-triggered internalization. To identify the phosphorylation site(s) that are necessary for these functions, we generated three mutant receptors in which alanine was substituted for serine and threonine residues in the amino-terminal, middle, and carboxyl-terminal thirds of PAR1's cytoplasmic tail. When stably expressed in fibroblasts, all three mutated receptors were rapidly phosphorylated in response to agonist, while a mutant in which all serines and threonines in the cytoplasmic tail were converted to alanines was not. This result suggests that phosphorylation can occur at multiple sites in PAR1's cytoplasmic tail. Alanine substitutions in the N-terminal and C-terminal portions of the tail had no effect on either receptor shutoff or agonist-triggered internalization. By contrast, alanine substitutions in the "middle" serine cluster between Ser(391) and Ser(406) yielded a receptor with considerably slower shutoff of signaling after thrombin activation than the wild type. Surprisingly, this same mutant was indistinguishable from the wild type in agonist-triggered internalization and degradation. Overexpression of G protein-coupled receptor kinase 2 (GRK2) and GRK3 "suppressed" the shutoff defect of the S --> A (391-406) mutant, consistent with this defect being due to altered receptor phosphorylation. These results suggest that specific phosphorylation sites are required for rapid receptor shutoff, but phosphorylation at multiple alternative sites is sufficient for agonist

  13. Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to one 14-3-3ζ dimer.

    Science.gov (United States)

    Molzan, Manuela; Ottmann, Christian

    2012-11-02

    C-RAF kinase is a central component of the Ras-RAF-MEK (mitogen-activated protein kinase/extracellular signal-regulated kinase)-ERK (extracellular signal-regulated kinase) pathway, which has been shown to be activated in 30% of human tumors. 14-3-3 proteins inactivate C-RAF by binding to the two N-terminal phosphorylation-dependent binding sites surrounding S233 and S259. 14-3-3 proteins can bind two target sequences located on one polypeptide chain simultaneously, thereby increasing binding affinity compared to single-site binding and possibly allowing regulated 14-3-3 binding through gatekeeper phosphorylation. To date, it was unclear whether 14-3-3 proteins can bind the two N-terminal phosphorylation-dependent binding sites of C-RAF simultaneously. Fluorescence polarization using phosphorylated peptides demonstrated that S233 is the low-affinity and S259 is the high-affinity binding site, while simultaneous engagement of both sites by 14-3-3ζ enhances affinity compared to single-site binding. Determination of a 1:1 stoichiometry for the di-phosphorylated peptide binding to one 14-3-3ζ dimer with isothermal titration calorimetry was supported by the crystal structure of the 14-3-3ζ/C-RAFpS233,pS259 complex. Cellular localization studies validate the significance of these sites for cytoplasmic retention of C-RAF, suggesting an extended mechanism of RAF regulation by 14-3-3 proteins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Structures of KaiC Circadian Clock Mutant Proteins: A New Phosphorylation Site at T426 and Mechanisms of Kinase, ATPase and Phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Pattanayek, Rekha; Mori, Tetsuya; Xu, Yao; Pattanayek, Sabuj; Johnson, Carl H.; Egli, Martin; (Vanderbilt)

    2010-09-02

    The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by three proteins, KaiA, KaiB and KaiC. Homo-hexameric KaiC displays kinase, phosphatase and ATPase activities; KaiA enhances KaiC phosphorylation and KaiB antagonizes KaiA. Phosphorylation and dephosphorylation of the two known sites in the C-terminal half of KaiC subunits, T432 and S431, follow a strict order (TS {yields} pTS {yields} pTpS {yields} TpS {yields} TS) over the daily cycle, the origin of which is not understood. To address this void and to analyze the roles of KaiC active site residues, in particular T426, we determined structures of single and double P-site mutants of S. elongatus KaiC. The conformations of the loop region harboring P-site residues T432 and S431 in the crystal structures of six KaiC mutant proteins exhibit subtle differences that result in various distances between Thr (or Ala/Asn/Glu) and Ser (or Ala/Asp) residues and the ATP {gamma}-phosphate. T432 is phosphorylated first because it lies consistently closer to P{gamma}. The structures of the S431A and T432E/S431A mutants reveal phosphorylation at T426. The environments of the latter residue in the structures and functional data for T426 mutants in vitro and in vivo imply a role in dephosphorylation. We provide evidence for a third phosphorylation site in KaiC at T426. T426 and S431 are closely spaced and a KaiC subunit cannot carry phosphates at both sites simultaneously. Fewer subunits are phosphorylated at T426 in the two KaiC mutants compared to phosphorylated T432 and/or S431 residues in the structures of wt and other mutant KaiCs, suggesting that T426 phosphorylation may be labile. The structures combined with functional data for a host of KaiC mutant proteins help rationalize why S431 trails T432 in the loss of its phosphate and shed light on the mechanisms of the KaiC kinase, ATPase and phosphatase activities.

  15. CDK1-mediated phosphorylation of the RIIalpha regulatory subunit of PKA works as a molecular switch that promotes dissociation of RIIalpha from centrosomes at mitosis.

    Science.gov (United States)

    Carlson, C R; Witczak, O; Vossebein, L; Labbé, J C; Skålhegg, B S; Keryer, G; Herberg, F W; Collas, P; Taskén, K

    2001-09-01

    Protein kinase A regulatory subunit RIIalpha is tightly bound to centrosomal structures during interphase through interaction with the A-kinase anchoring protein AKAP450, but dissociates and redistributes from centrosomes at mitosis. The cyclin B-p34(cdc2) kinase (CDK1) has been shown to phosphorylate RIIalpha on T54 and this has been proposed to alter the subcellular localization of RIIalpha. We have made stable transfectants from an RIIalpha-deficient leukemia cell line (Reh) that expresses either wild-type or mutant RIIalpha (RIIalpha(T54E)). When expressed, RIIalpha detaches from centrosomes at mitosis and dissociates from its centrosomal location in purified nucleus-centrosome complexes by incubation with CDK1 in vitro. By contrast, centrosomal RIIalpha(T54E) is not redistributed at mitosis, remains mostly associated with centrosomes during all phases of the cell cycle and cannot be solubilized by CDK1 in vitro. Furthermore, RIIalpha is solubilized from particular cell fractions and changes affinity for AKAP450 in the presence of CDK1. D and V mutations of T54 also reduce affinity for the N-terminal RII-binding domain of AKAP450, whereas small neutral residues do not change affinity detected by surface plasmon resonance. In addition, only RIIalpha(T54E) interacts with AKAP450 in a RIPA-soluble extract from mitotic cells. Finally, microtubule repolymerization from mitotic centrosomes of the RIIalpha(T54E) transfectant is poorer and occurs at a lower frequency than that of RIIalpha transfectants. Our results suggest that T54 phosphorylation of RIIalpha by CDK1 might serve to regulate the centrosomal association of PKA during the cell cycle.

  16. Site-specific phosphorylation of Tau protein is associated with deacetylation of microtubules in mouse spermatogenic cells during meiosis.

    Science.gov (United States)

    Inoue, Hiroki; Hiradate, Yuuki; Shirakata, Yoshiki; Kanai, Kenta; Kosaka, Keita; Gotoh, Aina; Fukuda, Yasuhiro; Nakai, Yutaka; Uchida, Takafumi; Sato, Eimei; Tanemura, Kentaro

    2014-05-29

    Tau is one of the microtubule-associated proteins and a major component of paired helical filaments, a hallmark of Alzheimer's disease. Its expression has also been indicated in the testis. However, its function and modification in the testis have not been established. Here, we analyzed the dynamics of phosphorylation patterns during spermatogenesis. The expression of Tau protein and its phosphorylation were shown in the mouse testis. Immunohistochemistry revealed that the phosphorylation was strongly detected during meiosis. Correspondingly, the expression of acetylated tubulin was inversely weakened during meiosis. These results suggest that phosphorylation of Tau protein contributes to spermatogenesis, especially in meiosis.

  17. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex.

    Directory of Open Access Journals (Sweden)

    Thomas Nebl

    2011-09-01

    Full Text Available Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca²⁺-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of ³²[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca²⁺-dependent phosphorylation patterns on three of its components--GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component.

  18. Characterization of phosphorylation sites in the cytoplasmic domain of the 300 kDa mannose-6-phosphate receptor

    DEFF Research Database (Denmark)

    Rosorius, O; Mieskes, G; Issinger, O G;

    1993-01-01

    kinases phosphorylate the cytoplasmic tail exclusively on serine residues. Inhibition studies using synthetic peptides, partial sequencing of isolated tryptic phosphopeptides and co-migration with tryptic phosphopeptides from MPR 300 labelled in vivo showed that (i) PKA phosphorylates the cytoplasmic MPR...... which may play a role in the transport function of MPR 300 and/or interaction with other proteins....

  19. Phosphorylation of Cdc5 regulates its accumulation

    Directory of Open Access Journals (Sweden)

    Simpson-Lavy Kobi J

    2011-12-01

    Full Text Available Abstract Background Cdc5 (polo kinase/Plk1 is a highly conserved key regulator of the S. cerevisiae cell cycle from S-phase until cytokinesis. However, much of the regulatory mechanisms that govern Cdc5 remain to be determined. Cdc5 is phosphorylated on up to 10 sites during mitosis. In this study, we investigated the function of phosphorylation site T23, the only full consensus Cdk1 (Cdc28 phosphorylation site present. Findings Cdc5T23A introduces a degron that reduces its cellular amount to undetectable levels, which are nevertheless sufficient for normal cell proliferation. The degron acts in cis and is reversed by N-terminal GFP-tagging. Cdk1 kinase activity is required to maintain Cdc5 levels during G2. This, Cdk1 inhibited, Cdc5 degradation is APC/CCdh1 independent and requires new protein synthesis. Cdc5T23E is hyperactive, and reduces the levels of Cdc5 (in trans and drastically reduces Clb2 levels. Conclusions Phosphorylation of Cdc5 by Cdk1 is required to maintain Cdc5 levels during G2. However, phosphorylation of T23 (probably by Cdk1 caps Cdc5 and other CLB2 cluster protein accumulation, preventing potential protein toxicity, which may arise from their overexpression or from APC/CCdh1 inactivation.

  20. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    Science.gov (United States)

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  1. A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites

    DEFF Research Database (Denmark)

    Dang, Pham My-Chan; Stensballe, Allan; Boussetta, Tarek

    2006-01-01

    Neutrophil NADPH oxidase plays a key role in host defense and in inflammation by releasing large amounts of superoxide and other ROSs. Proinflammatory cytokines such as GM-CSF and TNF-alpha prime ROS production by neutrophils through unknown mechanisms. Here we used peptide sequencing by tandem......-CSF-induced phosphorylation of Ser345, while p38 MAPK inhibitor abrogated TNF-alpha-induced phosphorylation of Ser345. Transfection of HL-60 cells with a mutated p47phox (S345A) inhibited GM-CSF- and TNF-alpha-induced priming of ROS production. This event was also inhibited in neutrophils by a cell-permeable peptide...... containing a TAT-p47phox-Ser345 sequence. Furthermore, ROS generation, p47phox-Ser345 phosphorylation, and ERK1/2 and p38 MAPK phosphorylation were increased in synovial neutrophils from rheumatoid arthritis (RA) patients, and TAT-Ser345 peptide inhibited ROS production by these primed neutrophils...

  2. Characterization of an upstream regulatory element of adenovirus L1 poly (A) site.

    Science.gov (United States)

    Liu, Li

    2005-06-20

    The transition from early to late stage infection by adenovirus involves a change in mRNA expression from the adenovirus major late transcription unit (AdMLTU). This early to late switch centers around alternative selection of one of five poly (A) sites (L1-L5) that code for the major structural proteins of Adenovirus. During the early stage of infection, steady state mRNA is primarily derived from the L1 poly (A) site. During the late stage of infection, each of the MLTU poly (A) sites is represented in the steady state mRNA pool (Falck-Pedersen, E., Logan, J., 1989. Regulation of poly(A) site selection in adenovirus. J. Virol. 63 (2), 532-541.). Using transient transfection of a plasmid expressing Chloramphenicol Acetyl Transferase with a tandem poly (A) minigene system (L13) (DeZazzo, J.D., Falck-Pedersen, E., Imperiale, M.J., 1991. Sequences regulating temporal poly(A) site switching in the adenovirus major late transcription unit. Mol. Cell. Biol. 11 (12), 5977-5984; Prescott, J., Falck-Pedersen, E., 1994. Sequence elements upstream of the 3' cleavage site confer substrate strength to the adenovirus L1 and L3 polyadenylation sites. Mol. Cell. Biol. 14 (7), 4682-4693.), it has been demonstrated that the promoter-proximal L1 poly (A) site which is poorly recognized by the 3' end processing machinery, contains an upstream repressor element (URE) that influences steady state levels of mRNA (Prescott, J.C., Liu, L., Falck-Pedersen, E., 1997. Sequence-mediated regulation of adenovirus gene expression by repression of mRNA accumulation. Mol. Cell. Biol. 17 (4), 2207-2216.). In this study, we have further characterized the elements that mediate L1URE function. These studies indicate that the L1 upstream regulatory element (L1 URE) contains a complex RNA architecture that serves to repress gene expression through multiple sub-effectors. The L1URE functions when located upstream of a heterologous poly (A) site, and is able to strongly suppress steady state m

  3. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins.

    Science.gov (United States)

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi

    2016-09-01

    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  4. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.; Reshetnikova, L.; Brown, J. H.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.

  5. Monocular deprivation delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice.

    Science.gov (United States)

    Fu, Tao; Su, Qing; Xi, Ping; Han, Song; Li, Junfa

    2015-03-01

    Synapsins as a family of presynaptic terminal phosphoprotein participates in neuronal development, but their role in the synaptic plasticity of visual cortex is unclear. In this study, the impact of monocular deprivation (MD) on dynamic changes of isoform-specific protein expression and site 1 phosphorylation of synapsins in visual cortex of the postnatal mice were observed by using the technique of Western blot analysis. The results showed that the total (T-) protein levels of synapsins including the isoform of Ia/b, IIa/b and IIIa were about 21-26% of adult level in visual cortex of mice at postnatal 7 days (P7), and then the T-synapsin Ia/b and IIb could quickly reach adult level at P35. However, the T-synapsin IIa and IIIa increased more slowly (71-74% at P35), and then kept increasing in the visual cortex of mice at P60. Unlike to the changes of T-synapsins, the level of phosphorylated (P-) synapsin Ia/b (not IIa/b and IIIa) at site 1 increased with development to the highest level at P21, and then decreased rapidly to a low level in visual cortex of mice at P35-60. In addition, we found that the levels of P-synapsin Ia/b increased significantly in left visual cortex of P28 and P35 (not P21 and P42) mice with 1-week MD of right eye; and no significant changes of T-synapsins were observed in both left and right sides of visual cortex in P21-42 mice with MD treatment. These results suggested that the isoform-specific protein expression and site-1 phosphorylation of synapsins might play a different role in the synaptic plasticity of visual cortex, and MD delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice.

  6. [Effect of electroacupuncture on phosphorylation of NR2B at Tyr 1742 site in the spinal dorsal horn of CFA rats].

    Science.gov (United States)

    Liang, Yi; Fang, Jian-Qiao; Fang, Jun-Fan; Du, Jun-Ying; Qiu, Yu-Jie; Liu, Jin

    2013-10-01

    To observe the effect of electroacupuncture (EA) on phosphorylation of spinal NR2B at Tyr 1742 site in complete Freund's adjuvant (CFA) induced inflammatory pain rats. METHods Forty male Sprague Dawley rats were randomly divided into normal group (N group, n = 10), the model group (CFA group, n = 15), and the EA group (n = 15). The inflammatory pain model was established by subcutaneous injecting CFA (0.1 mL per rat) into the right hind paw. Paw withdrawal thresholds (PWTs) were measured before CFA injection (as the base), as well as at 24 h, 25 h, 3rd day, and 7th day after CFA injection. Phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn at the 3rd day post-injection were detected using immunohistochemical assay. PWTs in the CFA group were significantly lower than those of the N group at every detective time point post-injection (P CFA group at 25 h and 3rd day post-injection (P CFA group was up-regulated. Compared with the CFA group, the ratio of p-NR2B positive cells in the ispilateral spinal dorsal horn of rats showed a decreasing tendency in the EA group. EA might effectively inhibit CFA-induced inflammatory pain possibly associated with down-regulating phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn.

  7. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites

    KAUST Repository

    Kulakovskiy, Ivan V.

    2011-08-18

    Motivation: Modern experimental methods provide substantial information on protein-DNA recognition. Studying arrangements of transcription factor binding sites (TFBSs) of interacting transcription factors (TFs) advances understanding of the transcription regulatory code. Results: We constructed binding motifs for TFs forming a complex with HIF-1α at the erythropoietin 3\\'-enhancer. Corresponding TFBSs were predicted in the segments around transcription start sites (TSSs) of all human genes. Using the genome-wide set of regulatory regions, we observed several strongly preferred distances between hypoxia-responsive element (HRE) and binding sites of a particular cofactor protein. The set of preferred distances was called as a preferred pair distance template (PPDT). PPDT dramatically depended on the TF and orientation of its binding sites relative to HRE. PPDT evaluated from the genome-wide set of regulatory sequences was used to detect significant PPDT-consistent binding site pairs in regulatory regions of hypoxia-responsive genes. We believe PPDT can help to reveal the layout of eukaryotic regulatory segments. © The Author 2011. Published by Oxford University Press. All rights reserved.

  8. Functional effects of diphosphomimetic mutations at cAbl-mediated phosphorylation sites on Rad51 recombinase activity.

    Science.gov (United States)

    Alligand, Brendan; Le Breton, Magali; Marquis, Damien; Vallette, François; Fleury, Fabrice

    2017-08-01

    Homologous Recombination enables faithful repair of the deleterious double strand breaks of DNA. This pathway relies on Rad51 to catalyze homologous DNA strand exchange. Rad51 is known to be phosphorylated in a sequential manner on Y315 and then on Y54, but the effect of such phosphorylation on Rad51 function remains poorly understood. We have developed a phosphomimetic model in order to study all the phosphorylation states. With the purified phosphomimetic proteins we performed in vitro assays to determine the activity of Rad51. Here we demonstrate the inhibitory effect of the double phosphomimetic mutant and suggest that it may be due to a defect in nucleofilament formation. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  10. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  11. Pdx1 is post-translationally modified in vivo and serine 61 is the principal site of phosphorylation

    DEFF Research Database (Denmark)

    Frogne, Thomas; Sylvestersen, Kathrine Beck; Kubicek, Stefan

    2012-01-01

    Maintaining sufficient levels of Pdx1 activity is a prerequisite for proper regulation of blood glucose homeostasis and beta cell function. Mice that are haploinsufficient for Pdx1 display impaired glucose tolerance and lack the ability to increase beta cell mass in response to decreased insulin...... alanine scanning and mass spectrometry we map this phosphorylation to serine 61 in both Min6 cells and in exogenous Pdx1 over-expressed in HEK293 cells. A single phosphorylation is also present in cultured islets but it remains unaffected by changes in glucose levels. It is present during embryogenesis...

  12. Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene

    DEFF Research Database (Denmark)

    Phylactides, M.; Rowntree, R.; Nuthall, H.

    2002-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene shows a complex pattern of expression, with temporal and spatial regulation that is not accounted for by elements in the promoter. One approach to identifying the regulatory elements for CFTR is the mapping of DNase I...... hypersensitive sites (DHS) within the locus. We previously identified at least 12 clusters of DHS across the CFTR gene and here further evaluate DHS in introns 2,3,10,16,17a, 18, 20 and 21 to assess their functional importance in regulation of CFTR gene expression. Transient transfections of enhancer....../reporter constructs containing the DHS regions showed that those in introns 20 and 21 augmented the activity of the CFTR promoter. Structural analysis of the DNA sequence at the DHS suggested that only the one intron 21 might be caused by inherent DNA structures. Cell specificity of the DHS suggested a role...

  13. Ser-634 and Ser-636 of Kaposi’s sarcoma-associated herpesvirus RTA are involved in transactivation and are potential CDK9 phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Wan-Hua eTsai

    2012-02-01

    Full Text Available The replication and transcription activator (RTA of Kaposi’s sarcoma-associated herpesvirus (KSHV, K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity-purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal (527KKRK530 and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ~30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that 634SPSP637 motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ~30% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full

  14. Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method

    DEFF Research Database (Denmark)

    Steen, Hanno; Pandey, Akhilesh; Andersen, Jens S

    2002-01-01

    Signal transduction pathways involve cascades of events, such as formation of second messengers and protein complexes that alter the activities of proteins. This can ultimately lead to changes in gene expression in response to the stimuli. Reversible phosphorylation of proteins is an important...

  15. The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel.

    NARCIS (Netherlands)

    Balkom, B.W.M. van; Savelkoul, P.J.M.; Markovich, D.; Hofman, E.; Nielsen, S.; Sluijs, P. van der; Deen, P.M.T.

    2002-01-01

    In renal collecting ducts, a vasopressin-induced cAMP increase results in the phosphorylation of aquaporin-2 (AQP2) water channels at Ser-256 and its redistribution from intracellular vesicles to the apical membrane. Hormones that activate protein kinase C (PKC) proteins counteract this process. To

  16. Direct analysis of tau from PSP brain identifies new phosphorylation sites and a major fragment of N-terminally cleaved tau containing four microtubule-binding repeats.

    Science.gov (United States)

    Wray, Selina; Saxton, Malcolm; Anderton, Brian H; Hanger, Diane P

    2008-06-01

    Tangles containing hyperphosphorylated aggregates of insoluble tau are a pathological hallmark of progressive supranuclear palsy (PSP). Several phosphorylation sites on tau in PSP have been identified using phospho-specific antibodies, but no sites have been determined by direct sequencing due to the difficulty in enriching insoluble tau from PSP brain. We describe a new method to enrich insoluble PSP-tau and report eight phosphorylation sites [Ser46, Thr181, Ser202, Thr217, Thr231, Ser235, Ser396/Ser400 (one site) and Thr403/Ser404 (one site)] identified by mass spectrometry. We also describe a 35 kDa C-terminal tau fragment (tau35), lacking the N-terminus of tau but containing four microtubule-binding repeats (4R), that is present only in neurodegenerative disorders in which 4R tau is over-represented. Tau35 was readily detectable in PSP, corticobasal degeneration and 4R forms of fronto-temporal dementia with parkinsonism linked to chromosome 17, but was absent from control, Alzheimer's disease and Pick's disease brain. Our findings suggest the aggregatory characteristics of PSP-tau differ from those of insoluble tau in Alzheimer's disease brain and this might be related to the presence of a C-terminal cleavage product of tau.

  17. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup;

    2014-01-01

    There is increasing evidence that multiple proteins involved in key regulatory processes in mitochondria are phosphorylated in mammalian tissues. Insulin regulates glucose metabolism by phosphorylation-dependent signaling and has been shown to stimulate ATP synthesis in human skeletal muscle. Here...... the majority of novel sites. Phosphorylation sites detected more often or exclusively in insulin-stimulated samples include multiple sites in mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle, and fatty acid metabolism, as well as several components of the newly defined......, we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...

  18. Limitations of on-site dairy farm regulatory debits as milk quality predictors.

    Science.gov (United States)

    Borneman, Darand L; Stiegert, Kyle; Ingham, Steve

    2015-03-01

    In the United States, compliance with grade A raw fluid milk regulatory standards is assessed via laboratory milk quality testing and by on-site inspection of producers (farms). This study evaluated the correlation between on-site survey debits being marked and somatic cell count (SCC) or standard plate count (SPC) laboratory results for 1,301 Wisconsin grade A dairy farms in 2012. Debits recorded on the survey form were tested as predictors of laboratory results utilizing ordinary least squares regression to determine if results of the current method for on-site evaluation of grade A dairy farms accurately predict SCC and SPC test results. Such a correlation may indicate that current methods of on-site inspection serve the primary intended purpose of assuring availability of high-quality milk. A model for predicting SCC was estimated using ordinary least squares regression methods. Step-wise selected regressors of grouped debit items were able to predict SCC levels with some degree of accuracy (adjusted R2=0.1432). Specific debit items, seasonality, and farm size were the best predictors of SCC levels. The SPC data presented an analytical challenge because over 75% of the SPC observations were at or below a 25,000 cfu/mL threshold but were recorded by testing laboratories as at the threshold value. This classic censoring problem necessitated the use of a Tobit regression approach. Even with this approach, prediction of SPC values based on on-site survey criteria was much less successful (adjusted R2=0.034) and provided little support for the on-site survey system as a way to inform farmers about making improvements that would improve SPC. The lower level of correlation with SPC may indicate that factors affecting SPC are more varied and differ from those affecting SCC. Further, unobserved deficiencies in postmilking handling and storage sanitation could enhance bacterial growth and increase SPC, whereas postmilking sanitation will have no effect on SCC because

  19. The Mechanism of Phosphoryl Transfer Reaction and the Role of Active Site Residues on the Basis of Ribokinase-Like Kinases

    Directory of Open Access Journals (Sweden)

    Edyta Dyguda

    2004-04-01

    Full Text Available The role of ribokinase-like carbohydrate kinases consists in ATP dependent phosphorylation of small molecules containing hydroxymethyl group. Although they differ substantially in structural terms and exhibit a broad substrate specificity, some family-wide conserved features can be distinguished suggesting the common mode of action. 4-methyl-5-β-hydroxyethylthiazole kinase (Thz kinase was chosen as a representative model and the mechanism proposed in X-ray crystal structure paper provided the basis for calculations. In particular, the possible role of several active site residues (Arg121 and Cys198 among others and of the two magnesium ions was examined. Static and dynamic catalytic fields for the reaction were generated revealing the most favourable environment for the preferential transition state stabilization. An attempt to model the phosphoryl transfer reaction as well as to investigate the influence of the cysteine residue on the reaction course at the semiempirical PM3 level of theory was undertaken.

  20. The coproporphyrin ferrochelatase of Staphylococcus aureus : mechanistic insights into a regulatory iron binding site.

    Science.gov (United States)

    Hobbs, Charlie; Reid, J D; Shepherd, Mark

    2017-09-01

    The majority of characterised ferrochelatase enzymes catalyse the final step of classical haem synthesis, inserting ferrous iron into protoporphyrin IX. However, for the recently-discovered coproporphyrin-dependent pathway, ferrochelatase catalyses the penultimate reaction where ferrous iron is inserted into coproporphyrin III. Ferrochelatase enzymes from the bacterial phyla Firmicutes and Actinobacteria have previously been shown to insert iron into coproporphyrin, and those from Bacillus subtilis and Staphylococcus aureus are known to be inhibited by elevated iron concentrations. The work herein reports a Km (coproporphyrin III) for S. aureus ferrochelatase of 1.5 µM and it is shown that elevating the iron concentration increases the Km for coproporphyrin III, providing a potential explanation for the observed iron-mediated substrate inhibition. Together, structural modelling, site-directed mutagenesis, and kinetic analyses confirm residue Glu271 as being essential for the binding of iron to the inhibitory regulatory site on S. aureus ferrochelatase, providing a molecular explanation for the observed substrate inhibition patterns. This work therefore has implications for how haem biosynthesis in S. aureus is regulated by iron availability. ©2017 The Author(s).

  1. SNP2TFBS – a database of regulatory SNPs affecting predicted transcription factor binding site affinity

    Science.gov (United States)

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-01

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. PMID:27899579

  2. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but

  3. A new method for splice site prediction based on the sequence patterns of splicing signals and regulatory elements

    Institute of Scientific and Technical Information of China (English)

    SUN ZongXiao; SANG LingJie; JU LiNing; ZHU HuaiQiu

    2008-01-01

    It is of significance for splice site prediction to develop novel algorithms that combine the sequence patterns of regulatory elements such as enhancers and silencers with the patterns of splicing signals. In this paper, a statistical model of splicing signals was built based on the entropy density profile (EDP) method, weight array method (WAM) and κ test; moreover, the model of splicing regulatory elements was developed by an unsupervised self-learning method to detect motifs associated with regulatory elements. With two models incorporated, a multi-level support vector machine (SVM) system was de-vised to perform ab initio prediction for splice sites originating from DNA sequence in eukaryotic ge-home. Results of large scale tests on human genomic splice sites show that the new method achieves a comparative high performance in splice site prediction. The method is demonstrated to be with at least the same level of performance and usually better performance than the existing SpliceScan method based on modeling regulatory elements, and shown to have higher accuracies than the traditional methods with modeling splicing signals such as the GeneSplicer. In particular, the method has evident advantage over splice site prediction for the genes with lower GC content.

  4. Cell confluence induces switching from proliferation to migratory signaling by site-selective phosphorylation of PDGF receptors on lipid raft platforms.

    Science.gov (United States)

    Szöőr, Árpád; Ujlaky-Nagy, László; Tóth, Gábor; Szöllősi, János; Vereb, György

    2016-02-01

    Platelet derived growth factor receptors (PDGFR) play an important role in tumor pathogenesis and are frequently overexpressed in glioblastoma. Earlier we have shown that only confluent glioblastoma cell cultures exhibit a biphasic calcium transient upon PDGF stimulation. Here, we examined how the change in cell density leads to differential cellular responses to the same PDGF stimulus. PDGF beta receptors and their specific phosphotyrosine residues were fluorescently co-labeled on A172 and T98G glioblastoma cells. The distribution in cell membrane microdomains (lipid rafts) and the phosphorylation state of PDGFR was measured by confocal microscopy and quantitated by digital image processing. Corresponding bulk data were obtained by Western blotting. Activation of relevant downstream signaling pathways was assessed by immunofluorescence in confocal microscopy and by Western blot analysis. Functional outcomes were confirmed with bulk and single cell proliferation assays and motility measurements. In non-confluent (sparse) cultures PDGF-BB stimulation significantly increased phosphorylation of Tyr716 specific for the Ras/MAPK pathway and Tyr751 specific for the phosphoinositide 3-kinase/Akt pathway. As cell monolayers reached confluence, Tyr771 and Tyr1021 were the prominently phosphorylated residues. Tyr771 serves as adaptor for Ras-GAP, which inactivates the MAPK pathway, and Tyr1021 feeds into the phospholipase C-gamma/PKC pathway. Coherent with this, MAPK phosphorylation, Ki-67 positivity and proliferation dominated in dispersed cells, and could be abolished with inhibitors of the MAPK pathway. At the same time, RhoA activation, redistribution of cortactin to leading edges, and increased motility were the prominent output features in confluent cultures. Importantly, the stimulus-evoked confluence-specific changes in the phosphorylation of tyrosine residues occurred mainly in GM1-rich lipid microdomains (rafts). These observations suggest that the same stimulus is

  5. A site-specific phosphorylation of the focal adhesion kinase controls the formation of spheroid cell clusters.

    Science.gov (United States)

    Beck, Hans Christian; Gosau, Martin; Kristensen, Lars Peter; Morsczeck, Christian

    2014-07-01

    Human dental follicle cells (DFCs) are ectomesenchymal multipotent stem cells that form spheroid cell clusters (SCCs) under serum free medium cell culture conditions (SFM). Until today, molecular mechanisms for the formation of SCCs are unknown. In this study a quantitative phosphoproteomics approach revealed regulated phosphorylated proteins in SCCs, which were derived from DFCs after 24 and 48 h in SFM. These regulated proteins were categorized using the Kyoto encyclopedia of genes and genomes program. Here, cellular processes and signaling pathway were identified such as the focal adhesion kinase (FAK) signaling pathway. In addition to the phosphoproteomics approach we showed that a specific phosphorylation of FAK (Y397) was required for the formation of SCCs. In conclusion, this study disclosed the phosphoproteome of SCCs for the first time and showed that the FAK signaling pathway is required for the formation of SCCs.

  6. A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites

    DEFF Research Database (Denmark)

    Dang, Pham My-Chan; Stensballe, Allan; Boussetta, Tarek

    2006-01-01

    Neutrophil NADPH oxidase plays a key role in host defense and in inflammation by releasing large amounts of superoxide and other ROSs. Proinflammatory cytokines such as GM-CSF and TNF-alpha prime ROS production by neutrophils through unknown mechanisms. Here we used peptide sequencing by tandem...... mass spectrometry to show that GM-CSF and TNF-alpha induce phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase, in human neutrophils. As Ser345 is located in the MAPK consensus sequence, we tested the effects of MAPK inhibitors. Inhibitors of the ERK1/2 pathway abrogated GM......-CSF-induced phosphorylation of Ser345, while p38 MAPK inhibitor abrogated TNF-alpha-induced phosphorylation of Ser345. Transfection of HL-60 cells with a mutated p47phox (S345A) inhibited GM-CSF- and TNF-alpha-induced priming of ROS production. This event was also inhibited in neutrophils by a cell-permeable peptide...

  7. Pdx1 is post-translationally modified in vivo and serine 61 is the principal site of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Thomas Frogne

    Full Text Available Maintaining sufficient levels of Pdx1 activity is a prerequisite for proper regulation of blood glucose homeostasis and beta cell function. Mice that are haploinsufficient for Pdx1 display impaired glucose tolerance and lack the ability to increase beta cell mass in response to decreased insulin signaling. Several studies have shown that post-translational modifications are regulating Pdx1 activity through intracellular localization and binding to co-factors. Understanding the signaling cues converging on Pdx1 and modulating its activity is therefore an attractive approach in diabetes treatment. We employed a novel technique called Nanofluidic Proteomic Immunoassay to characterize the post-translational profile of Pdx1. Following isoelectric focusing in nano-capillaries, this technology relies on a pan specific antibody for detection and it therefore allows the relative abundance of differently charged protein species to be examined simultaneously. In all eukaryotic cells tested we find that the Pdx1 protein separates into four distinct peaks whereas Pdx1 protein from bacteria only produces one peak. Of the four peaks in eukaryotic cells we correlate one of them to a phosphorylation Using alanine scanning and mass spectrometry we map this phosphorylation to serine 61 in both Min6 cells and in exogenous Pdx1 over-expressed in HEK293 cells. A single phosphorylation is also present in cultured islets but it remains unaffected by changes in glucose levels. It is present during embryogenesis but is not required for pancreas development.

  8. The role of CTCF binding sites in the 3' immunoglobulin heavy chain regulatory region.

    Science.gov (United States)

    Birshtein, Barbara K

    2012-01-01

    The immunoglobulin heavy chain locus undergoes a series of DNA rearrangements and modifications to achieve the construction and expression of individual antibody heavy chain genes in B cells. These events affect variable regions, through VDJ joining and subsequent somatic hypermutation, and constant regions through class switch recombination (CSR). Levels of IgH expression are also regulated during B cell development, resulting in high levels of secreted antibodies from fully differentiated plasma cells. Regulation of these events has been attributed primarily to two cis-elements that work from long distances on their target sequences, i.e., an ∼1 kb intronic enhancer, Eμ, located between the V region segments and the most 5' constant region gene, Cμ; and an ∼40 kb 3' regulatory region (3' RR) that is located downstream of the most 3' C(H) gene, Cα. The 3' RR is a candidate for an "end" of B cell-specific regulation of the Igh locus. The 3' RR contains several B cell-specific enhancers associated with DNase I hypersensitive sites (hs1-4), which are essential for CSR and for high levels of IgH expression in plasma cells. Downstream of this enhancer-containing region is a region of high-density CTCF binding sites, which extends through hs5, 6, and 7 and further downstream. CTCF, with its enhancer-blocking activities, has been associated with all mammalian insulators and implicated in multiple chromosomal interactions. Here we address the 3' RR CTCF-binding region as a potential insulator of the Igh locus, an independent regulatory element and a predicted modulator of the activity of 3' RR enhancers. Using chromosome conformation capture technology, chromatin immunoprecipitation, and genetic approaches, we have found that the 3' RR with its CTCF-binding region interacts with target sequences in the V(H), Eμ, and C(H) regions through DNA looping as regulated by protein binding. This region impacts on B cell-specific Igh processes at different stages of B cell

  9. The role of CTCF binding sites in the 3’ immunoglobulin heavy chain regulatory region

    Directory of Open Access Journals (Sweden)

    Barbara K Birshtein

    2012-11-01

    Full Text Available The immunoglobulin heavy chain locus undergoes a series of DNA rearrangements and modifications to achieve the construction and expression of individual antibody heavy chain genes in B cells. These events affect variable regions, through VDJ joining and subsequent somatic hypermutation, and constant regions through class switch recombination. Levels of IgH expression are also regulated during B cell development, resulting in high levels of secreted antibodies from fully-differentiated plasma cells. Regulation of these events has been attributed primarily to two cis-elements that work from long distances on their target sequences, i.e., an ~1 kb intronic enhancer, Eμ, located between the V region segments and the most 5′ constant region gene, Cμ; and an ~40 kb 3′ regulatory region (3′ RR that is located downstream of the most 3′ CH gene, Cα. The 3′ RR is a candidate for an end of B cell-specific regulation of the Igh locus. The 3′ RR contains several B cell-specific enhancers associated with DNase I hypersensitive sites (hs1-4, which are essential for class switch recombination and for high levels of IgH expression in plasma cells. Downstream of this enhancer-containing region is a region of high-density CTCF binding sites, which extends through hs5, 6, and 7 and further downstream. CTCF, with its enhancer-blocking activities, has been associated with all mammalian insulators and implicated in multiple chromosomal interactions. Here we address the 3′ RR CTCF-binding region as a potential insulator of the Igh locus, an independent regulatory element and a predicted modulator of the activity of 3’ RR enhancers. Using chromosome conformation capture technology, chromatin immunoprecipitation and genetic approaches, we have found that the 3’ RR with its CTCF binding region interacts with target sequences in the VH, Eμ and CH regions through DNA looping as regulated by protein binding. This region impacts on B cell-specific Igh

  10. Nitration of JAK-2 at the 1007Y-1008Y activation epitope impedes phosphorylation at this site: defining a GH, AKT/protein kinase B and nitric oxide synthase axis

    Science.gov (United States)

    Generalized liver protein tyrosine nitration (3’-nitrotyrosine, 3’-NT) increases in vivo after GH injection with immunohistocellular patterns strikingly similar to those we observed for a specific nitration of JAK2 at its 1007Y-1008Y regulatory phosphorylation epitope following proinflammatory chall...

  11. Developing a strategy and closure criteria for radioactive and mixed waste sites in the ORNL remedial action program: Regulatory interface

    Energy Technology Data Exchange (ETDEWEB)

    Trabalka, J.R.

    1987-09-01

    Some options for stabilization and treatment of contaminated sites can theoretically provide a once-and-for-all solution (e.g., removal or destruction of contaminants). Most realizable options, however, leave contaminants in place (in situ), potentially isolated by physical or chemical, but more typically, by hydrologic measures. As a result of the dynamic nature of the interactions between contaminants, remedial measures, and the environment, in situ stablization measures are likely to have limited life spans, and maintenance and monitoring of performance become an essential part of the scheme. The length of formal institutional control over the site and related questions about future uses of the land and waters are of paramount importance. Unique features of the ORNL site and environs appear to be key ingredients in achieving the very long term institutional control necessary for successful financing and implementation of in situ stabilization. Some formal regulatory interface is necessary to ensure that regulatory limitations and new guidance which can affect planning and implementation of the ORNL Remedial Action Program are communicated to ORNL staff and potential technical and financial limitations which can affect schedules or alternatives for achievement of long-term site stabilization and the capability to meet environmental regulations are provided to regulatory bodies as early as possible. Such an interface should allow decisions on closure criteria to be based primarily on technical merit and protection of human health and the environment. A plan for interfacing with federal and state regulatory authorities is described. 93 refs., 1 fig., 4 tabs.

  12. Cytoplasmic retention of Xenopus nuclear factor 7 before the mid blastula transition uses a unique anchoring mechanism involving a retention domain and several phosphorylation sites.

    Science.gov (United States)

    Li, X; Shou, W; Kloc, M; Reddy, B A; Etkin, L D

    1994-01-01

    Xenopus nuclear factor 7 (xnf7) is a maternally expressed protein that belongs to the B-box zinc finger gene family consisting of transcription factors, protooncogenes, and ribonucleoproteins. Its function is regulated by retention in the cytoplasm from oocyte maturation until the mid blastula transition (MBT) when it reenters the nucleus. We defined a 22-amino acid cytoplasmic retention domain (CRD) in xnf7 that functioned cooperatively with two phosphorylation sites within the xnf7 molecule to retain the protein in the cytoplasm until the MBT. Deletion of this region or mutations in the phosphorylation sites resulted in the early entry of xnf7 into the nucleus. A mutation changing one of the phosphorylation sites to a glutamic acid resulted in the prolonged retention of the xnf7 protein in the cytoplasm until stages 9-10, well past the MBT. Additionally, a mutant form of xnf7 possessing a second nuclear localization signal at the COOH terminus was retained in the cytoplasm. This suggests that retention of xnf7 was not due to the masking of its NLS as is the case with NFkB and dorsal but was due to a novel anchoring mechanism in which the CRD interacts with an anchor protein. The CRD sequence is also found in another B-box zinc finger protein that is also retained in the cytoplasm until the MBT in the newt. Therefore, we believe that this may be an important mechanism whereby the function of a number of nuclear proteins is regulated during development.

  13. NPM phosphorylation stimulates Cdk1, overrides G2/M checkpoint and increases leukemic blasts in mice.

    Science.gov (United States)

    Du, Wei; Zhou, Yun; Pike, Suzette; Pang, Qishen

    2010-02-01

    An elevated level of nucleophosmin (NPM) is often found in actively proliferative cells including human tumors. To identify the regulatory role for NPM phosphorylation in proliferation and cell cycle control, a series of mutants targeting the consensus cyclin-dependent kinase (CDK) phosphorylation sites was created to mimic or abrogate either single-site or multi-site phosphorylation. Simultaneous inactivation of two CDK phosphorylation sites at Ser10 and Ser70 (NPM-AA) induced G(2)/M cell cycle arrest, phosphorylation of Cdk1 at Tyr15 (Cdc2(Tyr15)) and increased cytoplasmic accumulation of Cdc25C. Strikingly, stress-induced Cdk1(Tyr15) and Cdc25C sequestration was suppressed by expression of a phosphomimetic NPM mutant created on the same CDK sites (S10E/S70E, NPM-EE). Further analysis revealed that phosphorylation of NPM at both Ser10 and Ser70 was required for proper interaction between Cdk1 and Cdc25C. Moreover, NPM-EE directly bound to Cdc25C and prevented phosphorylation of Cdc25C at Ser216 during mitosis. Finally, NPM-EE overrided stress-induced G(2)/M arrest and increased leukemia blasts in a NOD/SCID xenograft model. Thus, these findings reveal a novel function of NPM on regulation of cell cycle progression, in which phosphorylation of NPM controls cell cycle progression at G(2)/M transition through modulation of Cdk1 and Cdc25C activities.

  14. Translocation of human ribosomal protein S3 to sites of DNA damage is dependant on ERK-mediated phosphorylation following genotoxic stress.

    Science.gov (United States)

    Yadavilli, Sridevi; Hegde, Vijay; Deutsch, Walter A

    2007-10-01

    Besides its role in translation and ribosome maturation, human ribosomal protein S3 (hS3) is implicated in DNA damage recognition as reflected by its affinity for abasic sites and 7,8-dihydro-8-oxoguanine (8-oxoG) residues in DNA in vitro. Here, we demonstrate that hS3 is capable of carrying out both roles by its ex vivo translocation from the cytoplasm to the nucleus as a consequence of genotoxic stress. The translocation of hS3 is dependent on ERK1/2-mediated phosphorylation of a threonine residue (T42) of hS3. Two different ectopically expressed site-directed mutants of T42 failed to respond to conditions of genotoxic stress, thus providing a link between DNA damage and ERK1/2 dependent phosphorylation of hS3. Lastly, hS3 was traced in exposed cells to its co-localization with 8-oxoG foci, raising the possibility that hS3 is a member of a cellular DNA damage response pathway that results in its interaction with sites of DNA damage.

  15. Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon beta-adrenergic stimulation in normal and failing hearts.

    Science.gov (United States)

    Xiao, Bailong; Zhong, Guofeng; Obayashi, Masakazu; Yang, Dongmei; Chen, Keyun; Walsh, Michael P; Shimoni, Yakhin; Cheng, Heping; Ter Keurs, Henk; Chen, S R Wayne

    2006-05-15

    We have recently shown that RyR2 (cardiac ryanodine receptor) is phosphorylated by PKA (protein kinase A/cAMP-dependent protein kinase) at two major sites, Ser-2030 and Ser-2808. In the present study, we examined the properties and physiological relevance of phosphorylation of these two sites. Using site- and phospho-specific antibodies, we demonstrated that Ser-2030 of both recombinant and native RyR2 from a number of species was phosphorylated by PKA, indicating that Ser-2030 is a highly conserved PKA site. Furthermore, we found that the phosphorylation of Ser-2030 responded to isoproterenol (isoprenaline) stimulation in rat cardiac myocytes in a concentration- and time-dependent manner, whereas Ser-2808 was already substantially phosphorylated before beta-adrenergic stimulation, and the extent of the increase in Ser-2808 phosphorylation after beta-adrenergic stimulation was much less than that for Ser-2030. Interestingly, the isoproterenol-induced phosphorylation of Ser-2030, but not of Ser-2808, was markedly inhibited by PKI, a specific inhibitor of PKA. The basal phosphorylation of Ser-2808 was also insensitive to PKA inhibition. Moreover, Ser-2808, but not Ser-2030, was stoichiometrically phosphorylated by PKG (protein kinase G). In addition, we found no significant phosphorylation of RyR2 at the Ser-2030 PKA site in failing rat hearts. Importantly, isoproterenol stimulation markedly increased the phosphorylation of Ser-2030, but not of Ser-2808, in failing rat hearts. Taken together, these observations indicate that Ser-2030, but not Ser-2808, is the major PKA phosphorylation site in RyR2 responding to PKA activation upon beta-adrenergic stimulation in both normal and failing hearts, and that RyR2 is not hyperphosphorylated by PKA in heart failure. Our results also suggest that phosphorylation of RyR2 at Ser-2030 may be an important event associated with altered Ca2+ handling and cardiac arrhythmia that is commonly observed in heart failure upon beta

  16. Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon β-adrenergic stimulation in normal and failing hearts

    Science.gov (United States)

    Xiao, Bailong; Zhong, Guofeng; Obayashi, Masakazu; Yang, Dongmei; Chen, Keyun; Walsh, Michael P.; Shimoni, Yakhin; Cheng, Heping; ter Keurs, Henk; Chen, S. R. Wayne

    2006-01-01

    We have recently shown that RyR2 (cardiac ryanodine receptor) is phosphorylated by PKA (protein kinase A/cAMP-dependent protein kinase) at two major sites, Ser-2030 and Ser-2808. In the present study, we examined the properties and physiological relevance of phosphorylation of these two sites. Using site- and phospho-specific antibodies, we demonstrated that Ser-2030 of both recombinant and native RyR2 from a number of species was phosphorylated by PKA, indicating that Ser-2030 is a highly conserved PKA site. Furthermore, we found that the phosphorylation of Ser-2030 responded to isoproterenol (isoprenaline) stimulation in rat cardiac myocytes in a concentration- and time-dependent manner, whereas Ser-2808 was already substantially phosphorylated before β-adrenergic stimulation, and the extent of the increase in Ser-2808 phosphorylation after β-adrenergic stimulation was much less than that for Ser-2030. Interestingly, the isoproterenol-induced phosphorylation of Ser-2030, but not of Ser-2808, was markedly inhibited by PKI, a specific inhibitor of PKA. The basal phosphorylation of Ser-2808 was also insensitive to PKA inhibition. Moreover, Ser-2808, but not Ser-2030, was stoichiometrically phosphorylated by PKG (protein kinase G). In addition, we found no significant phosphorylation of RyR2 at the Ser-2030 PKA site in failing rat hearts. Importantly, isoproterenol stimulation markedly increased the phosphorylation of Ser-2030, but not of Ser-2808, in failing rat hearts. Taken together, these observations indicate that Ser-2030, but not Ser-2808, is the major PKA phosphorylation site in RyR2 responding to PKA activation upon β-adrenergic stimulation in both normal and failing hearts, and that RyR2 is not hyperphosphorylated by PKA in heart failure. Our results also suggest that phosphorylation of RyR2 at Ser-2030 may be an important event associated with altered Ca2+ handling and cardiac arrhythmia that is commonly observed in heart failure upon

  17. Mutation of putative GRK phosphorylation sites in the cannabinoid receptor 1 (CB1R) confers resistance to cannabinoid tolerance and hypersensitivity to cannabinoids in mice.

    Science.gov (United States)

    Morgan, Daniel J; Davis, Brian J; Kearn, Chris S; Marcus, David; Cook, Alex J; Wager-Miller, Jim; Straiker, Alex; Myoga, Michael H; Karduck, Jeffrey; Leishman, Emma; Sim-Selley, Laura J; Czyzyk, Traci A; Bradshaw, Heather B; Selley, Dana E; Mackie, Ken

    2014-04-09

    For many G-protein-coupled receptors (GPCRs), including cannabinoid receptor 1 (CB1R), desensitization has been proposed as a principal mechanism driving initial tolerance to agonists. GPCR desensitization typically requires phosphorylation by a G-protein-coupled receptor kinase (GRK) and interaction of the phosphorylated receptor with an arrestin. In simple model systems, CB1R is desensitized by GRK phosphorylation at two serine residues (S426 and S430). However, the role of these serine residues in tolerance and dependence for cannabinoids in vivo was unclear. Therefore, we generated mice where S426 and S430 were mutated to nonphosphorylatable alanines (S426A/S430A). S426A/S430A mutant mice were more sensitive to acutely administered delta-9-tetrahydrocannabinol (Δ(9)-THC), have delayed tolerance to Δ(9)-THC, and showed increased dependence for Δ(9)-THC. S426A/S430A mutants also showed increased responses to elevated levels of endogenous cannabinoids. CB1R desensitization in the periaqueductal gray and spinal cord following 7 d of treatment with Δ(9)-THC was absent in S426A/S430A mutants. Δ(9)-THC-induced downregulation of CB1R in the spinal cord was also absent in S426A/S430A mutants. Cultured autaptic hippocampal neurons from S426A/S430A mice showed enhanced endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and reduced agonist-mediated desensitization of DSE. These results indicate that S426 and S430 play major roles in the acute response to, tolerance to, and dependence on cannabinoids. Additionally, S426A/S430A mice are a novel model for studying pathophysiological processes thought to involve excessive endocannabinoid signaling such as drug addiction and metabolic disease. These mice also validate the approach of mutating GRK phosphorylation sites involved in desensitization as a general means to confer exaggerated signaling to GPCRs in vivo.

  18. A Site-Specific Phosphorylation of the Focal Adhesion Kinase Controls the Formation of Spheroid Cell Clusters

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Gosau, Martin; Kristensen, Lars Peter

    2014-01-01

    Human dental follicle cells (DFCs) are ectomesenchymal multipotent stem cells that form spheroid cell clusters (SCCs) under serum free medium cell culture conditions (SFM). Until today, molecular mechanisms for the formation of SCCs are unknown. In this study a quantitative phosphoproteomics...... approach revealed regulated phosphorylated proteins in SCCs, which were derived from DFCs after 24 and 48 h in SFM. These regulated proteins were categorized using the Kyoto encyclopedia of genes and genomes program. Here, cellular processes and signaling pathway were identified such as the focal adhesion...

  19. Disruption of the interface between the pleckstrin homology (PH) and kinase domains of Akt protein is sufficient for hydrophobic motif site phosphorylation in the absence of mTORC2.

    Science.gov (United States)

    Warfel, Noel A; Niederst, Matt; Newton, Alexandra C

    2011-11-11

    The pro-survival kinase Akt requires phosphorylation at two conserved residues, the activation loop site (Thr-308) and the hydrophobic motif site (Ser-473), for maximal activation. Previous reports indicate that mTORC2 is necessary for phosphorylation of the hydrophobic motif and that this site is not phosphorylated in cells lacking components of the mTORC2 complex, such as Sin1. Here we show that Akt can be phosphorylated at the hydrophobic motif site (Ser-473) in the absence of mTORC2. First, increasing the levels of PIP(3) in Sin1(-/-) MEFs by (i) expression of a constitutively active PI3K or (ii) relief of a negative feedback loop on PI3K by prolonged inhibition of mTORC1 or S6K is sufficient to rescue hydrophobic motif phosphorylation of Akt. The resulting accumulation of PIP(3) at the plasma membrane results in Ser-473 phosphorylation. Second, constructs of Akt in which the PH domain is constitutively disengaged from the kinase domain are phosphorylated at the hydrophobic motif site in Sin1(-/-) MEFs; both myristoylated-Akt and Akt lacking the PH domain are phosphorylated at Ser-473. Thus, disruption of the interface between the PH and kinase domains of Akt bypasses the requirement for mTORC2. In summary, these data support a model in which Akt can be phosphorylated at Ser-473 and activated in the absence of mTORC2 by mechanisms that depend on removal of the PH domain from the kinase domain.

  20. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    Science.gov (United States)

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. The bacterial-type phosphoenolpyruvate carboxylase isozyme from developing castor oil seeds is subject to in vivo regulatory phosphorylation at serine-451.

    Science.gov (United States)

    Dalziel, Katie J; O'Leary, Brendan; Brikis, Carolyne; Rao, Srinath K; She, Yi-Min; Cyr, Terry; Plaxton, William C

    2012-04-01

    Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled anaplerotic enzyme situated at a pivotal branch point of plant carbohydrate-metabolism. In developing castor oil seeds (COS) a novel allosterically-densensitized 910-kDa Class-2 PEPC hetero-octameric complex arises from a tight interaction between 107-kDa plant-type PEPC and 118-kDa bacterial-type PEPC (BTPC) subunits. Mass spectrometry and immunoblotting with anti-phosphoSer451 specific antibodies established that COS BTPC is in vivo phosphorylated at Ser451, a highly conserved target residue that occurs within an intrinsically disordered region. This phosphorylation was enhanced during COS development or in response to depodding. Kinetic characterization of a phosphomimetic (S451D) mutant indicated that Ser451 phosphorylation inhibits the catalytic activity of BTPC subunits within the Class-2 PEPC complex.

  2. Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel alpha subunit.

    Science.gov (United States)

    Cantrell, A R; Smith, R D; Goldin, A L; Scheuer, T; Catterall, W A

    1997-10-01

    Phosphorylation of brain Na+ channel alpha subunits by cAMP-dependent protein kinase (PKA) decreases peak Na+ current in cultured brain neurons and in mammalian cells and Xenopus oocytes expressing cloned brain Na+ channels. We have studied PKA regulation of Na+ channel function by activation of D1-like dopamine receptors in acutely isolated hippocampal neurons using whole-cell voltage-clamp recording techniques. The D1 agonist SKF 81297 reversibly reduced peak Na+ current in a concentration-dependent manner. No changes in the voltage dependence or kinetics of activation or inactivation were observed. This effect was mediated by PKA, as it was mimicked by application of the PKA activator Sp-5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3', 5'-monophosphorothioate(cBIMPS) and was inhibited by the specific PKA inhibitor peptide PKAI5-24. cBIMPS had similar effects on type IIA brain Na+ channel alpha subunits expressed in tsA-201 cells, but no effect was observed on a mutant Na+ channel alpha subunit in which serine residues in five PKA phosphorylation sites in the intracellular loop connecting domains I and II (LI-II) had been replaced by alanine. A single mutation, S573A, similarly eliminated cBIMPS modulation. Thus, activation of D1-like dopamine receptors results in PKA-dependent phosphorylation of specific sites in LI-II of the Na+ channel alpha subunit, causing a reduction in Na+ current. Such modulation is expected to exert a profound influence on overall neuronal excitability. Dopaminergic input to the hippocampus from the mesocorticolimbic system may exert this influence in vivo.

  3. Preparation of Na+,K+-ATPase with near maximal specific activity and phosphorylation capacity: evidence that the reaction mechanism involves all of the sites.

    Science.gov (United States)

    Martin, D W; Sachs, J R

    1999-06-01

    The phosphorylation capacity of Na+,K+-ATPase preparations in common use is much less than expected on the basis of the molecular weight of the enzyme deduced from cDNA sequences. This has led to the popularity of half-of-the-sites or flip-flop models for the enzyme reaction mechanism. We have prepared Na+,K+-ATPase from nasal salt glands of salt-adapted ducks which has a phosphorylation capacity and specific activity near the theoretical maxima. Preparations with specific activities of >60 micromol (mg of protein)-1 min-1 at 37 degrees C had phosphorylation capacities of >60 nmol/mg of protein, and the rate of turnover of the enzyme was 9690 min-1, within the range reported for the enzyme from other sources. The fraction of the maximal specific activity of the enzyme compared well with the fraction of the protein on SDS-PAGE which was alpha and beta chains, especially at the highest specific activity which indicates that all of the alphabeta protomers are active. The gels of the most reactive preparations contained only alpha and beta chains, but less active preparations contained a number of extraneous proteins. The major contaminant was actin. The preparation did not contain any protein which migrated in the molecular weight range of the gamma subunit. The subunit composition of the enzyme was alpha1 and beta1 only. This is the first report of a pure, homogeneous, fully active preparation of the protein. Reaction models which incorporate a half-of-the-sites or flip-flop mechanism do not apply to this enzyme.

  4. Quantitative encoding of a partial agonist effect on individual opioid receptors by multi-site phosphorylation and threshold detection

    OpenAIRE

    Lau, Elaine K.; Trester-Zedlitz, Michelle; Trinidad, Jonathan C.; Kotowski, Sarah J.; Krutchinsky, Andrew N.; Burlingame, Alma L; von Zastrow, Mark

    2011-01-01

    Many drugs act as partial agonists of seven-transmembrane signaling receptors when compared to endogenous ligands. Partial agonism is well described as a 'macroscopic' property manifest at the level of physiological systems or cell populations, but it is not known whether partial agonists encode discrete regulatory information at the 'microscopic' level of individual receptors. We addressed this question by focusing on morphine, a partial agonist drug for µ-type opioid peptide receptors, and ...

  5. Post-translational serine/threonine phosphorylation and lysine acetylation: a novel regulatory aspect of the global nitrogen response regulator GlnR in S. coelicolor M145.

    Directory of Open Access Journals (Sweden)

    Rafat Amin

    2016-08-01

    Full Text Available Soil-dwelling Streptomyces bacteria such as S. coelicolor have to constantly adapt to the nitrogen (N availability in their habitat. Thus, strict transcriptional and post-translational control of the N-assimilation is fundamental for survival of this species. GlnR is a global response regulator that controls transcription of the genes related to the N-assimilation in S. coelicolor and other members of the Actinomycetales. GlnR represents an atypical orphan response regulator that is not activated by the phosphorylation of the conserved aspartate residue (Asp 50. We have applied transcriptional analysis, LC-MS/MS analysis and electrophoretic mobility shift assays (EMSAs to understand the regulation of GlnR in S. coelicolor M145. The expression of glnR and GlnR-target genes was revisited under four different N-defined conditions and a complex N-rich condition. Although, the expression of selected GlnR-target genes was strongly responsive to changing N-concentrations, the glnR expression itself was independent of the N-availability. Using LC-MS/MSanalysis we demonstrated that GlnR was post-translationally modified. The post-translational modifications of GlnR comprise phosphorylation of the serine/threonine residues and acetylation of lysine residues. In the complex N-rich medium GlnR was phosphorylated on six serine/ threonine residues and acetylated on one lysine residue. Under defined N-excess conditions only two phosphorylated residues were detected whereas under defined N-limiting conditions no phosphorylation was observed. GlnR phosphorylation is thus clearly correlated with N-rich conditions. Furthermore, GlnR was acetylated on four lysine residues independently of the N-concentration in the defined media and on only one lysine residue in the complex N-rich medium. Using EMSAs we demonstrated that phosphorylation inhibited the binding of GlnR to its targets genes, whereas acetylation had little influence on the formation of GlnR-DNA complex

  6. HDAC2 phosphorylation-dependent KIf5 deacetylation and RARα acetylation induced by RAR agonist switch the transcription regulatory programs of p21 in VSMCs

    Institute of Scientific and Technical Information of China (English)

    Bin Zheng; Mei Han; Ya-nan Shu; Yimg-jie Li; Sui-bing Miao; Xin-hua Zhang; Hui-jing Shi; Tian zhang; Jin-kun Wen

    2011-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) occurs in hypertension,atherosclerosis and restenosis after angioplasty,leading to pathophysiological vascular remodeling.As an important growth arrest gene,p21 plays critical roles in vascular remodeling.Regulation of p21 expression by retinoic acid receptor (RAR) and its ligand has important implications for control of pathological vascular remodeling.Nevertheless,the mechanism of RAR-mediated p21 expression in VSMCs remains poorly understood.Here,we show that,under basal conditions,RARa forms a complex with histone deacetylase 2 (HDAC2) and Krüppel-like factor 5 (KIf5) at the p21 promoter to inhibit its expression.Upon RARα agonist stimulation,HDAC2 is phosphorylated by CK2α.Phosphorylation of HDAC2,on the one hand,promotes its dissociation from RARα,thus allowing the liganded-RARα to interact with co-activators; on the other hand,it increases its interaction with KIf5,thus leading to deacetylation of Klf5.Deacetylation of KIf5 facilitates its dissociation from thep21 promoter,relieving its repressive effect on thep21 promoter.Interference with HDAC2 phosphorylation by either CK2α knockdown or the use of phosphorylation-deficient mutant of HDAC2 prevents the dissociation of KIf5 from the p21 promoter and impairs RAR agonist-induced p21 activation.Our results reveal a novel mechanism involving a phosphorylation-deacetylation cascade that functions to remove the basal repression complex from the p21 promoter upon RAR agonlst treatment,allowing for optimum agonistinduced p21 expression.

  7. Functional Analysis of Multiple Transcription Factor Sites in a Regulatory Element of Human ε-Globin Gene

    Institute of Scientific and Technical Information of China (English)

    Chun-Hui HOU; Jian HUANG; Ruo-Lan QIAN

    2004-01-01

    The developmental control of the human ε-globin gene expression is mediated by transcriptional regulatory elements in the 5' flanking DNA of this gene. A previously identified negative regulatory element (-3028 to -2902 bp, termed ε-NRAII) was analyzed and one putative NF-κB site and two GATA sites locate at -3004 bp, -2975 bp and -2948 bp were characterized. Electrophoresis mobility shift assay (EMSA)showed that the putative NF-κB site was specifically bound by nuclear proteins of K562 cells. Data obtained from transient transfection showed that the expression of reporter gene could be upregulated about 50% or 100% respectively when ε-NRAII was inserted upstream of the SV40 promoter or ε-globin gene proximal promoter (-177 bp to +1 bp), suggesting that ε-NRAII might not be a classic silencer. Mutation in the putative NF-κB site or in the GATA site (at-2975 bp) slightly reduced the expression of reporter gene driven by SV40 promoter or ε-globin gene proximal promoter. However, the mutation of GATA site at -2948 bp remarkably reduced the reporter gene activity driven by SV40 promoter, but not by ε-globin gene proximal promoter. Further mutation analysis showed that the negative effect of mutation in GATA site at -2948 bp on SV40 promoter was not affected by the mutation of the putative NF-κB site, whereas it could be abolished by the mutation of GATA site at -2975 bp. Furthermore, the mutation of both GATA sites could synergistically reduce the reporter gene activity driven by ε-globin gene proximal promoter. Those results suggested that ε-NRAII might function differently on the SV40 promoter and ε-globin gene proximal promoter.

  8. Environmental Regulatory Compliance Plan for Site Characterization; Yucca Mountain Site, Nevada Research and Development Area, Nevada: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    The DOE is committed to conduct its operations in an environmentally safe and sound manner, and will comply with applicable environmental statutes and regulations. These objectives are described in DOE Order 5400.1 (Environmental Protection Program Requirements). This document -- the Environmental Regulatory Compliance Plan (ERCP) -- is one method of implementing the policy set forth in DOE Order 5400.1 and the NWPA. The ERCP describes the plan by which the DOE will comply with applicable Federal environmental statutes and regulations. The ERCP also discusses how DOE will address State and local environmental statutes and regulations. 180 refs., 27 figs., 1 tab.

  9. Phosphorylation of plant plasma membrane H+-ATPase by the heterologous host S.cerevisiae

    DEFF Research Database (Denmark)

    L. Rudashevskaya, Elena; Ye, Juanying; Jensen, Ole Nørregaard

     It is known, that phosphorylation of both plant and yeast plasma membrane H+-ATPase results in enzyme activation or inhibition. Several sites at the regulatory C-terminus of the enzyme have been found to undergo phosphorylation in vivo in both plant and yeast. The C-termini of plant H......+-ATPases are app. 60 amino acid residues longer than their yeast homologous. Yeast is found to phosphorylate at least one residue within the plant C-terminus. At the same time a wide range of investigations on structure, function, regulation and interaction of H+-ATPase is carried out with implication......-mutated to alanine residues (to prevent possible phosphorylation) or aspartate residues (to mimic phosphorylation of residue) and the mutated aha2 enzyme expressed in the yeast strain RS-72. Most of the mutations show positive or negative effect on yeast growth in functional complementation assays. It shows in vivo...

  10. A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles

    DEFF Research Database (Denmark)

    Wagner, Sebastian Alexander; Beli, Petra; Weinert, Brian Tate;

    2011-01-01

    Post-translational modification of proteins by ubiquitin is a fundamentally important regulatory mechanism. However, proteome-wide analysis of endogenous ubiquitylation remains a challenging task, and almost always has relied on cells expressing affinity tagged ubiquitin. Here we combine single-s...

  11. O-GlcNAc modification: why so intimately associated with phosphorylation?

    Directory of Open Access Journals (Sweden)

    Ande Sudharsana R

    2011-01-01

    Full Text Available Abstract Post-translational modification of proteins at serine and threonine side chains by β-N-acetylglucosamine (O-GlcNAc mediated by the enzyme β-N-acetylglucosamine transferase has been emerging as a fundamental regulatory mechanism encompassing a wide range of proteins involved in cell division, metabolism, transcription and cell signaling. Furthermore, an extensive interplay between O-GlcNAc modification and serine/threonine phosphorylation in a variety of proteins has been reported to exist. However, our understanding of the regulatory mechanisms involved in O-GlcNAc modification and its interplay with serine/threonine phosphorylation in proteins is still elusive. Recent success in the mapping of O-GlcNAc modification sites in proteins as a result of technological advancement in mass spectrometry have revealed two important clues which may be inherently connected to the regulation of O-GlcNAc modification and its interplay with phosphorylation in proteins. First, almost all O-GlcNAc modified proteins are known phospho proteins. Second, the prevalence of tyrosine phosphorylation among O-GlcNAc modified proteins is exceptionally higher (~68% than its normal occurrence (~2% alone. We hypothesize that phosphorylation may be a requisite for O-GlcNAc modification and tyrosine phosphorylation plays a role in the interplay between O-GlcNAc modification and serine/threonine phosphorylation in proteins. In other words, the interplay between O-GlcNAc modification and phosphorylation is not limited to serine/threonine phosphorylation but also includes tyrosine phosphorylation. Our hypothesis provides an opportunity to understand the underlying mechanism involved in O-GlcNAc modification and its interplay with serine/threonine phosphorylation in proteins. Furthermore, implication of our hypothesis extends to tyrosine kinase signaling.

  12. Site-directed mutagenesis of the cAMP-binding sites of the recombinant type I regulatory subunit of cAMP-dependent protein kinase.

    Science.gov (United States)

    Kuno, T; Shuntoh, H; Sakaue, M; Saijoh, K; Takeda, T; Fukuda, K; Tanaka, C

    1988-06-30

    The type I regulatory subunit (R-I) of rat brain cAMP-dependent protein kinase was expressed in E. coli and site-directed mutagenesis was used to substitute amino acids in the putative cAMP-binding sites. The wild-type recombinant R-I bound 2 mol of cAMP/mol subunit, while two mutant R-Is with a single amino acid substitution in one of the two intrachain cAMP-binding sites (clone N153:a glutamate for Gly-200, and clone C254:an aspartate for Gly-324) bound 1 mol of cAMP/mol subunit. When these two substitutions were made in one mutant, cAMP did not bind to this mutant, indicating that binding of cAMP to N153 or C254 was to their nonmutated sites. Competition experiments with site-selective analogs and dissociation of bound cAMP from mutant R-Is provided evidence for strong intrachain interactions between the two classes of cAMP-binding sites in R-I.

  13. Innovative Regulatory and Technical Approaches for the U.S. Army Corp of Engineers' Linde FUSRAP Site Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, J. T.; Coutts, P. W.; Franz, J.; Boyle, J. D.; Rogers, B. C.

    2002-02-27

    The U.S. Department of Energy (USDOE) created the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to identify, investigate, and cleanup or control radiological contamination at sites used by the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) from the 1940s through the 1960s. The USDOE had identified 46 sites in the program and finished remediation at 24 of the smaller ones before the end of 1997. With the passage of the Energy and Water Resources Appropriation Act of 1998 the United States Army Corps of Engineers (USACE) was designated by Congress with responsibility to manage and execute the FUSRAP. The Linde Site located in Tonawanda, New York was operated by the MED from 1942-1946 to extract uranium from several high-grade ores. This natural uranium was subsequently enriched in U-235 elsewhere in the United States and ultimately used to produce energy or weapons. Though in the process of reviewing alternative disposal options by 1995, the USDOE had operated FUSRAP with a strategy requiring virtually all materials remediated be disposed of at only one Nuclear Regulatory Commission licensed facility. The change in management of the FUSRAP in 1997 allowed the disposal policy of low levels of radioactively contaminated materials found at the remaining sites to be reexamined. This paper presents some of the innovative regulatory and technical approaches employed at the Linde Site that are resulting in project cost savings while meeting applicable or relevant and appropriate requirements as well as fulfilling commitments made to the local community.

  14. PP2A(Cdc55) Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation.

    Science.gov (United States)

    Godfrey, Molly; Touati, Sandra A; Kataria, Meghna; Jones, Andrew; Snijders, Ambrosius P; Uhlmann, Frank

    2017-02-02

    In the quantitative model of cell-cycle control, progression from G1 through S phase and into mitosis is ordered by thresholds of increasing cyclin-dependent kinase (Cdk) activity. How such thresholds are read out by substrates that respond with the correct phosphorylation timing is not known. Here, using the budding yeast model, we show that the abundant PP2A(Cdc55) phosphatase counteracts Cdk phosphorylation during interphase and delays phosphorylation of late Cdk substrates. PP2A(Cdc55) specifically counteracts phosphorylation on threonine residues, and consequently, we find that threonine-directed phosphorylation occurs late in the cell cycle. Furthermore, the late phosphorylation of a model substrate, Ndd1, depends on threonine identity of its Cdk target sites. Our results support a model in which Cdk-counteracting phosphatases contribute to cell-cycle ordering by imposing Cdk thresholds. They also unveil a regulatory principle based on the phosphoacceptor amino acid, which is likely to apply to signaling pathways beyond cell-cycle control. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome

    DEFF Research Database (Denmark)

    Mann, Matthias; Ong, Shao En; Grønborg, Mads

    2002-01-01

    In signal transduction in eukaryotes, protein phosphorylation is a key event. To understand signaling processes, we must first acquire an inventory of phosphoproteins and their phosphorylation sites under different conditions. Because phosphorylation is a dynamic process, elucidation of signaling...

  16. A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts.

    Science.gov (United States)

    Ingre, Caroline; Landers, John E; Rizik, Naji; Volk, Alexander E; Akimoto, Chizuru; Birve, Anna; Hübers, Annemarie; Keagle, Pamela J; Piotrowska, Katarzyna; Press, Rayomand; Andersen, Peter Munch; Ludolph, Albert C; Weishaupt, Jochen H

    2013-06-01

    Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have very recently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, we performed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporal dementia (FTLD) patients for PFN1 mutations to get further insight into the spectrum and pathogenic relevance of this gene for the complete ALS/FTLD continuum. Four hundred twelve familial and 260 sporadic ALS cases and 16 ALS/FTLD cases from Germany, the Nordic countries, and the United States were screened for PFN1 mutations. Phenotypes of patients carrying PFN1 mutations were studied. In a German ALS family we identified the novel heterozygous PFN1 mutation p.Thr109Met, which was absent in controls. This novel mutation abrogates a phosphorylation site in profilin 1. The recently described p.Gln117Gly sequence variant was found in another familial ALS patient from the United States. The ALS patients with mutations in PFN1 displayed spinal onset motor neuron disease without overt cognitive involvement. PFN1 mutations were absent in patients with motor neuron disease and dementia, and in patients with only FTLD. We provide further evidence that PFN1 mutations can cause ALS as a Mendelian dominant trait. Patients carrying PFN1 mutations reported so far represent the "classic" ALS end of the ALS-FTLD spectrum. The novel p.Thr109Met mutation provides additional proof-of-principle that mutant proteins involved in the regulation of cytoskeletal dynamics can cause motor neuron degeneration. Moreover, this new mutation suggests that fine-tuning of actin polymerization by phosphorylation of profilin 1 might be necessary for motor neuron survival.

  17. Regulatory O-GlcNAcylation sites on FoxO1 are yet to be identified

    Energy Technology Data Exchange (ETDEWEB)

    Fardini, Yann [INSERM, U1016, Institut Cochin, Paris (France); CNRS, UMR8104, Paris (France); Université Paris Descartes, Sorbonne Paris Cité, Paris (France); Perez-Cervera, Yobana [Structural and Functional Glycobiology Unit, Lille 1 University, CNRS (UMR 8576), IFR 117, Villeneuve d' Ascq (France); Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca (Mexico); Camoin, Luc [INSERM, U1068, CRCM, Marseille Protéomique IBiSA, Marseille, F-13009 (France); Institut Paoli-Calmettes Team, Cell Polarity, Cell Signaling and Cancer, Marseille, F-13009 (France); Aix-Marseille Université, F-13284, Marseille (France); CNRS, UMR7258, CRCM, Marseille, F-13009 (France); Pagesy, Patrick [INSERM, U1016, Institut Cochin, Paris (France); CNRS, UMR8104, Paris (France); Université Paris Descartes, Sorbonne Paris Cité, Paris (France); Lefebvre, Tony [Structural and Functional Glycobiology Unit, Lille 1 University, CNRS (UMR 8576), IFR 117, Villeneuve d' Ascq (France); Issad, Tarik, E-mail: tarik.issad@inserm.fr [INSERM, U1016, Institut Cochin, Paris (France); CNRS, UMR8104, Paris (France); Université Paris Descartes, Sorbonne Paris Cité, Paris (France)

    2015-06-26

    O-GlcNAcylation is a reversible post-translational modification that regulates cytosolic and nuclear proteins. We and others previously demonstrated that FoxO1 is O-GlcNAcylated in different cell types, resulting in an increase in its transcriptional activity. Four O-GlcNAcylation sites were identified in human FOXO1 but directed mutagenesis of each site individually had modest (T317) or no effect (S550, T648, S654) on its O-GlcNAcylation status and transcriptional activity. Moreover, the consequences of mutating all four sites had not been investigated. In the present work, we mutated these sites in the mouse Foxo1 and found that mutation of all four sites did not decrease Foxo1 O-GlcNAcylation status and transcriptional activity, and would even tend to increase them. In an attempt to identify other O-GlcNAcylation sites, we immunoprecipitated wild-type O-GlcNAcylated Foxo1 and analysed the tryptic digest peptides by mass spectrometry using High-energy Collisional Dissociation. We identified T646 as a new O-GlcNAcylation site on Foxo1. However, site directed mutagenesis of this site individually or together with all four previously identified residues did not impair Foxo1 O-GlcNAcylation and transcriptional activity. These results suggest that residues important for the control of Foxo1 activity by O-GlcNAcylation still remain to be identified. - Highlights: • We mutate four previously identified O-GlcNAcylation sites on Foxo1. • Unexpectedly, these mutations do not reduce Foxo1 O-GlcNAcylation. • These mutation do not reduce Foxo1 transcriptional activity. • We identify a new O-GlcNAcylation site on Foxo1 by mass spectrometry. • Mutation of this site increases Foxo1 transcriptional activity.

  18. Gene Regulatory Network Analysis Reveals Differences in Site-specific Cell Fate Determination in Mammalian Brain

    Directory of Open Access Journals (Sweden)

    Gokhan eErtaylan

    2014-12-01

    Full Text Available Neurogenesis - the generation of new neurons - is an ongoing process that persists in the adult mammalian brain of several species, including humans. In this work we analyze two discrete brain regions: the subventricular zone (SVZ lining the walls of the lateral ventricles; and the subgranular zone (SGZ of the dentate gyrus of the hippocampus in mice and shed light on the SVZ and SGZ specific neurogenesis. We propose a computational model that relies on the construction and analysis of region specific gene regulatory networks from the publicly available data on these two regions. Using this model a number of putative factors involved in neuronal stem cell (NSC identity and maintenance were identified. We also demonstrate potential gender and niche-derived differences based on cell surface and nuclear receptors via Ar, Hif1a and Nr3c1.We have also conducted cell fate determinant analysis for SVZ NSC populations to Olfactory Bulb interneurons and SGZ NSC populations to the granule cells of the Granular Cell Layer. We report thirty-one candidate cell fate determinant gene pairs, ready to be validated. We focus on Ar - Pax6 in SVZ and Sox2 - Ncor1 in SGZ. Both pairs are expressed and localized in the suggested anatomical structures as shown by in situ hybridization and found to physically interact.Finally, we conclude that there are fundamental differences between SGZ and SVZ neurogenesis. We argue that these regulatory mechanisms are linked to the observed differential neurogenic potential of these regions. The presence of nuclear and cell surface receptors in the region specific regulatory circuits indicate the significance of niche derived extracellular factors, hormones and region specific factors such as the oxygen sensitivity, dictating SGZ and SVZ specific neurogenesis.

  19. Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1

    DEFF Research Database (Denmark)

    Schwessinger, Benjamin; Roux, Milena; Kadota, Yasuhiro;

    2011-01-01

    Plants rely heavily on receptor-like kinases (RLKs) for perception and integration of external and internal stimuli. The Arabidopsis regulatory leucine-rich repeat RLK (LRR-RLK) BAK1 is involved in steroid hormone responses, innate immunity, and cell death control. Here, we describe the different......Plants rely heavily on receptor-like kinases (RLKs) for perception and integration of external and internal stimuli. The Arabidopsis regulatory leucine-rich repeat RLK (LRR-RLK) BAK1 is involved in steroid hormone responses, innate immunity, and cell death control. Here, we describe...... the differential regulation of three different BAK1-dependent signaling pathways by a novel allele of BAK1, bak1-5. Innate immune signaling mediated by the BAK1-dependent RKs FLS2 and EFR is severely compromised in bak1-5 mutant plants. However, bak1-5 mutants are not impaired in BR signaling or cell death control...... of FLS2 or EFR with BAK1 in planta, revealing another pathway specific mechanistic difference. The specific suppression of FLS2- and EFR-dependent signaling in bak1-5 is not due to a differential interaction of BAK1-5 with the respective ligand-binding RK but requires BAK1-5 kinase activity. Overall our...

  20. Phosphorylation regulates fibrillation of an aggregation core peptide in the second repeat of microtubule-binding domain of human tau.

    Science.gov (United States)

    Inoue, Masafumi; Kaida, Shinji; Nakano, Shun; Annoni, Chiara; Nakata, Eiji; Konno, Takashi; Morii, Takashi

    2014-11-15

    Hyperphosphorylation of the microtubule-associated protein tau is believed to play a crucial role in the neurofibrillary tangles formation in Alzheimer’s disease brain. In this study, fibril formation of peptides containing the critical sequences for tau aggregation VQIINK and a plausible serine phosphorylation site of tau at its C-terminal was investigated. All the peptides formed fibrils with the typical cross-b structural core. However, stability of the fibrils was highly sensitive to the pH conditions for the phosphorylated VQIINK peptide, suggesting a regulatory role of phosphorylation for the amyloid-formation of tau.

  1. Artificial islands for cluster-siting of offshore energy facilities: an assessment of the legal and regulatory framework

    Energy Technology Data Exchange (ETDEWEB)

    Backstrom, T.D.; Baram, M.

    1976-06-01

    One of the ways in which offshore coastal regions can be used in energy development is examined, namely through the construction of offshore islands for the siting of energy-related facilities. The purpose of the study is to review and assess the significant sectors of this accumulation of legal and regulatory authority, in order that those proposing and supervising such offshore development can formulate suggestions for coordination and rational allocation of responsibility. The potential demands on offshore resources are considerably greater than many would expect. In addition to offshore drilling and other mineral exploitation, there is increasing interest in safety of navigation, harvest and aquaculture of living marine resources, recreation, and preservation of uniquely valuable marine landscapes and ecosystems. Within this dynamic context, the offshore implications of the energy needs of the United States must be fully evaluated. New energy installations might be appropriately sited offshore on artificial islands. This legal and regulatory assessment contains little case law, new Congressional enactments, or proposed regulations and is, in general, a first-order analysis of the legal context for a new concept--the multiple-facility artificial island--which has not yet been tested, but which merits serious study as an alternative for uses of the offshore regions to meet energy requirements. An extensive bibliography containing 254 citations is included.

  2. Interaction of the regulatory and catalytic subunits of cAMP-dependent protein kinase. Electrostatic sites on the type Ialpha regulatory subunit.

    Science.gov (United States)

    Gibson, R M; Ji-Buechler, Y; Taylor, S S

    1997-06-27

    Since a basic surface on the catalytic (C) subunit of cAMP-dependent protein kinase is important for binding to the regulatory (R) subunit, acidic residues in R were sought that might contribute to R-C interaction. Using differential labeling by a water-soluble carbodiimide (Buechler, T. A., and Taylor, S. S. (1990) Biochemistry 29, 1937-1943), seven specific carboxylates in RIalpha were identified that were protected from chemical modification in the holoenzyme; each was then replaced with Ala. Of these, rRI(E15A/E106A/D107A)), rRI(E105A), rRI(D140A), rRI(E143A), and rRI(D258A) all were defective in holoenzyme formation and define negative electrostatic surfaces on RIalpha. An additional conserved carboxylate, Glu101 in RIalpha and the equivalent, Glu99 in RIIalpha were mutated to Ala. Replacement of Glu101 had no effect while rRII(E99A) was very defective. RIalpha and RIIalpha thus differ in the molecular details of how they recognize C. Unlike wild-type RI, two additional mutants, rRI(D170A) and rRI(K242A), inhibited C-subunit stoichiometrically in the presence of cAMP and show increases in both on- and off-rates. Asp170, which contributes directly to the hydrogen bonding network in cAMP-binding site A, thus contributes also to holoenzyme stability.

  3. Geologic uncertainty in a regulatory environment: An example from the potential Yucca Mountain nuclear waste repository site

    Science.gov (United States)

    Rautman, C. A.; Treadway, A. H.

    1991-11-01

    Regulatory geologists are concerned with predicting the performance of sites proposed for waste disposal or for remediation of existing pollution problems. Geologic modeling of these sites requires large-scale expansion of knowledge obtained from very limited sampling. This expansion induces considerable uncertainty into the geologic models of rock properties that are required for modeling the predicted performance of the site. One method for assessing this uncertainty is through nonparametric geostatistical simulation. Simulation can produce a series of equiprobable models of a rock property of interest. Each model honors measured values at sampled locations, and each can be constructed to emulate both the univariate histogram and the spatial covariance structure of the measured data. Computing a performance model for a number of geologic simulations allows evaluation of the effects of geologic uncertainty. A site may be judged acceptable if the number of failures to meet a particular performance criterion produced by these computations is sufficiently low. A site that produces too many failures may be either unacceptable or simply inadequately described. The simulation approach to addressing geologic uncertainty is being applied to the potential high-level nuclear waste repository site at Yucca Mountain, Nevada, U.S.A. Preliminary geologic models of unsaturated permeability have been created that reproduce observed statistical properties reasonably well. A spread of unsaturated groundwater travel times has been computed that reflects the variability of those geologic models. Regions within the simulated models exhibiting the greatest variability among multiple runs are candidates for obtaining the greatest reduction in uncertainty through additional site characterization.

  4. Environmental Protection Department Operations and Regulatory Affairs Division Contingency Plan for Site 300 Waste Accumulation Area(s)

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R

    2005-07-14

    , referred to as the ''Site-Specific Plan'', contains site-specific information for the WAA(s). Site-specific plans are included in Appendix D. A copy of the Contingency Plan (including the site-specific plans) will be distributed to regulatory agencies and to public service organizations, such as local fire departments and hospitals that may be called on to provide emergency services. A copy of the General Plan with the appropriate site-specific plan will be located at the WAA(s), so it can be used in the case of an emergency.

  5. PR65A phosphorylation regulates PP2A complex signaling.

    Directory of Open Access Journals (Sweden)

    Kumar Kotlo

    Full Text Available Serine-threonine Protein phosphatase 2 A (PP2A, a member of the PPP family of phosphatases, regulates a variety of essential cellular processes, including cell-cycling, DNA replication, transcription, translation, and secondary signaling pathways. In the heart, increased PP2A activity/signaling has been linked to cardiac remodeling, contractile dysfunction and, in failure, arrythmogenicity. The core PP2A complex is a hetero-trimeric holoenzyme consisting of a 36 kDa catalytic subunit (PP2Ac; a regulatory scaffold subunit of 65 kDa (PR65A or PP2Aa; and one of at least 18 associated variable regulatory proteins (B subunits classified into 3 families. In the present study, three in vivo sites of phosphorylation in cardiac PR65A are identified (S303, T268, S314. Using HEK cells transfected with recombinant forms of PR65A with phosphomimetic (P-PR65A and non-phosphorylated (N-PR65A amino acid substitutions at these sites, these phosphorylations were shown to inhibit the interaction of PR65A with PP2Ac and PP2A holoenzyme signaling. Forty-seven phospho-proteins were increased in abundance in HEK cells transfected with P-PR65A versus N-PR65A by phospho-protein profiling using 2D-DIGE analysis on phospho-enriched whole cell protein extracts. Among these proteins were elongation factor 1α (EF1A, elongation factor 2, heat shock protein 60 (HSP60, NADPH-dehydrogenase 1 alpha sub complex, annexin A, and PR65A. Compared to controls, failing hearts from the Dahl rat had less phosphorylated PR65A protein abundance and increased PP2A activity. Thus, PR65A phosphorylation is an in vivo mechanism for regulation of the PP2A signaling complex and increased PP2A activity in heart failure.

  6. 24 CFR 1710.15 - Regulatory exemption-multiple site subdivision-determination required.

    Science.gov (United States)

    2010-04-01

    ... should be aware of. The following are some of those risks: The future value of land is uncertain and... expense. If the land is not served by a central sewage system and/or water system, you should contact the local authorities to determine whether a permit will be given for an on-site sewage disposal system...

  7. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    Science.gov (United States)

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent.

  8. ATPase-dependent auto-phosphorylation of the open condensin hinge diminishes DNA binding.

    Science.gov (United States)

    Akai, Yuko; Kanai, Ryuta; Nakazawa, Norihiko; Ebe, Masahiro; Toyoshima, Chikashi; Yanagida, Mitsuhiro

    2014-12-01

    Condensin, which contains two structural maintenance of chromosome (SMC) subunits and three regulatory non-SMC subunits, is essential for many chromosomal functions, including mitotic chromosome condensation and segregation. The ATPase domain of the SMC subunit comprises two termini connected by a long helical domain that is interrupted by a central hinge. The role of the ATPase domain has remained elusive. Here we report that the condensin SMC subunit of the fission yeast Schizosaccharomyces pombe is phosphorylated in a manner that requires the presence of the intact SMC ATPase Walker motif. Principal phosphorylation sites reside in the conserved, glycine-rich stretch at the hinge interface surrounded by the highly basic DNA-binding patch. Phosphorylation reduces affinity for DNA. Consistently, phosphomimetic mutants produce severe mitotic phenotypes. Structural evidence suggests that prior opening (though slight) of the hinge is necessary for phosphorylation, which is implicated in condensin's dissociation from and its progression along DNA.

  9. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1.

    Science.gov (United States)

    Höckner, Sebastian; Neumann-Arnold, Lea; Seufert, Wolfgang

    2016-07-15

    The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1.

  10. Phosphorylation at Ser²⁶ in the ATP-binding site of Ca²⁺/calmodulin-dependent kinase II as a mechanism for switching off the kinase activity.

    Science.gov (United States)

    Yilmaz, Mehtap; Gangopadhyay, Samudra S; Leavis, Paul; Grabarek, Zenon; Morgan, Kathleen G

    2013-02-07

    CaMKII (Ca²⁺/calmodulin-dependent kinase II) is a serine/threonine phosphotransferase that is capable of long-term retention of activity due to autophosphorylation at a specific threonine residue within each subunit of its oligomeric structure. The γ isoform of CaMKII is a significant regulator of vascular contractility. Here, we show that phosphorylation of CaMKII γ at Ser²⁶, a residue located within the ATP-binding site, terminates the sustained activity of the enzyme. To test the physiological importance of phosphorylation at Ser²⁶, we generated a phosphospecific Ser²⁶ antibody and demonstrated an increase in Ser²⁶ phosphorylation upon depolarization and contraction of blood vessels. To determine if the phosphorylation of Ser²⁶ affects the kinase activity, we mutated Ser²⁶ to alanine or aspartic acid. The S26D mutation mimicking the phosphorylated state of CaMKII causes a dramatic decrease in Thr²⁸⁷ autophosphorylation levels and greatly reduces the catalytic activity towards an exogenous substrate (autocamtide-3), whereas the S26A mutation has no effect. These data combined with molecular modelling indicate that a negative charge at Ser²⁶ of CaMKII γ inhibits the catalytic activity of the enzyme towards its autophosphorylation site at Thr²⁸⁷ most probably by blocking ATP binding. We propose that Ser²⁶ phosphorylation constitutes an important mechanism for switching off CaMKII activity.

  11. Protein phosphatase 2A is regulated by PKCα-dependent phosphorylation of its targeting subunit B56α at Ser41

    DEFF Research Database (Denmark)

    Kirchhefer, Uwe; Heinick, Alexander; König, Simone

    2014-01-01

    with the appropriate regulatory B subunit families, namely B55, B56, PR72 or PR93/PR110. It has been suggested that additional levels of regulating PP2A function may result from the phosphorylation of B56 isoforms. In this study, we identified a novel phosphorylation site at Ser41 of B56α. This phosphoamino acid....... This interplay between PKCα and PP2A represents a new mechanism to regulate important cellular functions like cellular Ca2+ homeostasis....

  12. Phosphorylation of a specific cdk site in E2F-1 affects its electrophoretic mobility and promotes pRB-binding in vitro

    DEFF Research Database (Denmark)

    Peeper, D S; Keblusek, P; Helin, K;

    1995-01-01

    of the retinoblastoma gene (pRB). We find that E2F-1 proteins are heterogeneously phosphorylated in insect cells, as a result of which they migrate as a doublet on SDS-polyacrylamide gels. This electrophoretic shift is shown to be dependent upon specific phosphorylation of E2F-1 on serine-375 (S375), near the p...... affinity of pRB in vitro. These results suggest a novel way of regulating E2F-1 activity, namely by cell-cycle-dependent phosphorylation of this transcription factor....

  13. Phosphorylation regulates human T-cell leukemia virus type 1 Rex function

    Directory of Open Access Journals (Sweden)

    Ward Michael

    2009-11-01

    Full Text Available Abstract Background Human T-cell leukemia virus type 1 (HTLV-1 is a pathogenic complex deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-1 Rex (Rex-1 is a phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore, it has been proposed that Rex-1 function may be regulated through site-specific phosphorylation. Results We conducted a phosphoryl mapping of Rex-1 over-expressed in transfected 293 T cells using a combination of affinity purification and liquid chromatography tandem mass spectrometry. We achieved 100% physical coverage of the Rex-1 polypeptide and identified five novel phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence of two previously identified residues, Ser-70 and Thr-174, but found no evidence of phosphorylation at Ser-177. The functional significance of these phosphorylation events was evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that phosphorylation at Ser-97 and Thr-174 is critical for Rex-1 function. Conclusion We have mapped completely the site-specific phosphorylation of Rex-1 identifying a total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this work is the first to completely map the phosphorylation sites in Rex-1 and provides important insight into

  14. Genome-Wide Mapping of Collier In Vivo Binding Sites Highlights Its Hierarchical Position in Different Transcription Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Mathilde de Taffin

    Full Text Available Collier, the single Drosophila COE (Collier/EBF/Olf-1 transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles.

  15. A competitive regulatory mechanism discriminates between juxtaposed splice sites and pri-miRNA structures.

    Science.gov (United States)

    Mattioli, Chiara; Pianigiani, Giulia; Pagani, Franco

    2013-10-01

    We have explored the functional relationships between spliceosome and Microprocessor complex activities in a novel class of microRNAs (miRNAs), named Splice site Overlapping (SO) miRNAs, whose pri-miRNA hairpins overlap splice sites. We focused on the evolutionarily conserved SO miR-34b, and we identified two indispensable elements for recognition of its 3' splice site: a branch point located in the hairpin and a downstream purine-rich exonic splicing enhancer. In minigene systems, splicing inhibition owing to exonic splicing enhancer deletion or AG 3'ss mutation increases miR-34b levels. Moreover, small interfering-mediated silencing of Drosha and/or DGCR8 improves splicing efficiency and abolishes miR-34b production. Thus, the processing of this 3' SO miRNA is regulated in an antagonistic manner by the Microprocessor and the spliceosome owing to competition between these two machineries for the nascent transcript. We propose that this novel mechanism is commonly used to regulate the relative amount of SO miRNA and messenger RNA produced from primary transcripts.

  16. Lens fiber connexin turnover and caspase-3-mediated cleavage are regulated alternately by phosphorylation.

    Science.gov (United States)

    Yin, Xinye; Liu, Jialu; Jiang, Jean X

    2008-05-01

    Lens connexins are phosphorylated in vivo; however, the function and regulation of the phosphorylation remain largely unknown. We have previously identified an in vivo phosphorylation site, Ser(364), at the COOH terminus of lens connexin (Cx) Cx45.6 and phosphorylation appears to regulate connexin protein turnover. To assess the specific mechanism of Ser(364) phosphorylation in Cx45.6, exogenous wild type and Ser(364) mutant Cx45.6 were expressed in primary lens cultures through retroviral infection. Cx45.6 turnover was attenuated primarily by proteasomal inhibitors and to a lesser extent by lysosomal inhibitors. Furthermore, the level of Cx45.6 protein in ubiquitin co-expressed cells was significantly reduced as compared to the cells expressing Cx45.6 alone. Moreover, overexpression of ubiquitin led to a more significant decrease in wild type Cx45.6 than Cx45.6(S364A), a mutant deficient of phosphorylation site at Ser(364), although we did not detect any difference in the levels of ubiquitination between wild type and mutant Cx45.6. Interestingly, the mutant mimicking constitutive phosphorylation, Cx45.6(S364D), partially prevented the cleavage of Cx45.6 by caspase-3. Together, our data suggest that phosphorylation of Cx45.6 at Ser(364) appears to stimulate Cx45.6 turnover primarily through proteasome pathway and this phosphorylation inhibits the cleavage of Cx45.6 by caspase-3. These findings provide further insights into regulatory mechanism of the specific phosphorylation of connexins in the lens.

  17. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

    2008-04-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

  18. Phosphorylation-dependent regulation of nuclear localization and functions of integrin-linked kinase

    Science.gov (United States)

    Acconcia, Filippo; Barnes, Christopher J.; Singh, Rajesh R.; Talukder, Amjad H.; Kumar, Rakesh

    2007-01-01

    Integrin-linked kinase (ILK) is a phosphorylated protein that regulates physiological processes that overlap with those regulated by p21-activated kinase 1 (PAK1). Here we report the possible role of ILK phosphorylation by PAK1 in ILK-mediated signaling and intracellular translocation. We found that PAK1 phosphorylates ILK at threonine-173 and serine-246 in vitro and in vivo. Depletion of PAK1 decreased the levels of endogenous ILK phosphorylation in vivo. Mutation of PAK1 phosphorylation sites on ILK to alanine reduced cell motility and cell proliferation. Biochemical fractionation, confocal microscopy, and chromatin-interaction analyses of human cells revealed that ILK localizes predominantly in the cytoplasm but also resides in the nucleus. Transfection of MCF-7 cells with point mutants ILK-T173A, ILK-S246A, or ILK-T173A; S246A (ILK-DM) altered ILK localization. Selective depletion of PAK1 dramatically increased the nuclear and focal point accumulation of ILK, further demonstrating a role for PAK1 in ILK translocation. We also identified functional nuclear localization sequence and nuclear export sequence motifs in ILK, delineated an apparently integral role for ILK in maintaining normal nuclear integrity, and established that ILK interacts with the regulatory region of the CNKSR3 gene chromatin to negatively modulate its expression. Together, these results suggest that ILK is a PAK1 substrate, undergoes phosphorylation-dependent shuttling between the cell nucleus and cytoplasm, and interacts with gene-regulatory chromatin. PMID:17420447

  19. Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating

    DEFF Research Database (Denmark)

    Moeller, Hanne B; Macaulay, Nanna; Knepper, Mark A;

    2009-01-01

    in the COOH-terminal tail of AQP2 on protein function. When expressed in Xenopus laevis oocytes, prevention of AQP2 phosphorylation at S256A (S256A-AQP2) reduced osmotic water permeability threefold compared with wild-type (WT) AQP2-injected oocytes. In contrast, prevention of AQP2 single phosphorylation at S...... demonstrated that lack of phosphorylation at S256, S261, S264, or S269 had no effect on AQP2 unit water transport. Similarly, no effect on AQP2 unit water transport was observed for the 264D and 269D forms, indicating that phosphorylation of the COOH-terminal tail of AQP2 is not involved in gating...

  20. Protein phosphorylation and photorespiration.

    Science.gov (United States)

    Hodges, M; Jossier, M; Boex-Fontvieille, E; Tcherkez, G

    2013-07-01

    Photorespiration allows the recycling of carbon atoms of 2-phosphoglycolate produced by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenase activity, as well as the removal of potentially toxic metabolites. The photorespiratory pathway takes place in the light, encompasses four cellular compartments and interacts with several other metabolic pathways and functions. Therefore, the regulation of this cycle is probably of paramount importance to plant metabolism, however, our current knowledge is poor. To rapidly respond to changing conditions, proteins undergo a number of different post-translational modifications that include acetylation, methylation and ubiquitylation, but protein phosphorylation is probably the most common. The reversible covalent addition of a phosphate group to a specific amino acid residue allows the modulation of protein function, such as activity, subcellular localisation, capacity to interact with other proteins and stability. Recent data indicate that many photorespiratory enzymes can be phosphorylated, and thus it seems that the photorespiratory cycle is, in part, regulated by protein phosphorylation. In this review, the known phosphorylation sites of each Arabidopsis thaliana photorespiratory enzyme and several photorespiratory-associated proteins are described and discussed. A brief account of phosphoproteomic protocols is also given since the published data compiled in this review are the fruit of this approach.

  1. Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites.

    Science.gov (United States)

    Qin, Zhaohui S; McCue, Lee Ann; Thompson, William; Mayerhofer, Linda; Lawrence, Charles E; Liu, Jun S

    2003-04-01

    The identification of co-regulated genes and their transcription-factor binding sites (TFBS) are key steps toward understanding transcription regulation. In addition to effective laboratory assays, various computational approaches for the detection of TFBS in promoter regions of coexpressed genes have been developed. The availability of complete genome sequences combined with the likelihood that transcription factors and their cognate sites are often conserved during evolution has led to the development of phylogenetic footprinting. The modus operandi of this technique is to search for conserved motifs upstream of orthologous genes from closely related species. The method can identify hundreds of TFBS without prior knowledge of co-regulation or coexpression. Because many of these predicted sites are likely to be bound by the same transcription factor, motifs with similar patterns can be put into clusters so as to infer the sets of co-regulated genes, that is, the regulons. This strategy utilizes only genome sequence information and is complementary to and confirmative of gene expression data generated by microarray experiments. However, the limited data available to characterize individual binding patterns, the variation in motif alignment, motif width, and base conservation, and the lack of knowledge of the number and sizes of regulons make this inference problem difficult. We have developed a Gibbs sampling-based Bayesian motif clustering (BMC) algorithm to address these challenges. Tests on simulated data sets show that BMC produces many fewer errors than hierarchical and K-means clustering methods. The application of BMC to hundreds of predicted gamma-proteobacterial motifs correctly identified many experimentally reported regulons, inferred the existence of previously unreported members of these regulons, and suggested novel regulons.

  2. Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin.

    Science.gov (United States)

    Zhou, Guo-Lei; Zhang, Haitao; Wu, Huhehasi; Ghai, Pooja; Field, Jeffrey

    2014-12-01

    Cell signaling can control the dynamic balance between filamentous and monomeric actin by modulating actin regulatory proteins. One family of actin regulating proteins that controls actin dynamics comprises cyclase-associated proteins 1 and 2 (CAP1 and 2, respectively). However, cell signals that regulate CAPs remained unknown. We mapped phosphorylation sites on mouse CAP1 and found S307 and S309 to be regulatory sites. We further identified glycogen synthase kinase 3 as a kinase phosphorylating S309. The phosphomimetic mutant S307D/S309D lost binding to its partner cofilin and, when expressed in cells, caused accumulation of actin stress fibers similar to that in cells with reduced CAP expression. In contrast, the non-phosphorylatable S307A/S309A mutant showed drastically increased cofilin binding and reduced binding to actin. These results suggest that the phosphorylation serves to facilitate release of cofilin for a subsequent cycle of actin filament severing. Moreover, our results suggest that S307 and S309 function in tandem; neither the alterations in binding cofilin and/or actin, nor the defects in rescuing the phenotype of the enlarged cell size in CAP1 knockdown cells was observed in point mutants of either S307 or S309. In summary, we identify a novel regulatory mechanism of CAP1 through phosphorylation.

  3. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover.

    Directory of Open Access Journals (Sweden)

    Caroline Sirichandra

    Full Text Available BACKGROUND: Genetic evidence in Arabidopsis thaliana indicates that members of the Snf1-Related Kinases 2 family (SnRK2 are essential in mediating various stress-adaptive responses. Recent reports have indeed shown that one particular member, Open Stomata (OST1, whose kinase activity is stimulated by the stress hormone abscisic acid (ABA, is a direct target of negative regulation by the core ABA co-receptor complex composed of PYR/PYL/RCAR and clade A Protein Phosphatase 2C (PP2C proteins. METHODOLOGY/PRINCIPAL FINDINGS: Here, the substrate preference of OST1 was interrogated at a genome-wide scale. We phosphorylated in vitro a bank of semi-degenerate peptides designed to assess the relative phosphorylation efficiency on a positionally fixed serine or threonine caused by systematic changes in the flanking amino acid sequence. Our results designate the ABA-responsive-element Binding Factor 3 (ABF3, which controls part of the ABA-regulated transcriptome, as a genuine OST1 substrate. Bimolecular Fluorescence Complementation experiments indicate that ABF3 interacts directly with OST1 in the nuclei of living plant cells. In vitro, OST1 phosphorylates ABF3 on multiple LXRXXpS/T preferred motifs including T451 located in the midst of a conserved 14-3-3 binding site. Using an antibody sensitive to the phosphorylated state of the preferred motif, we further show that ABF3 is phosphorylated on at least one such motif in response to ABA in vivo and that phospho-T451 is important for stabilization of ABF3. CONCLUSIONS/SIGNIFICANCE: All together, our results suggest that OST1 phosphorylates ABF3 in vivo on T451 to create a 14-3-3 binding motif. In a wider physiological context, we propose that the long term responses to ABA that require sustained gene expression is, in part, mediated by the stabilization of ABFs driven by ABA-activated SnRK2s.

  4. Large-scale analysis of in Vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Nühse, Thomas S; Stensballe, Allan; Jensen, Ole N

    2003-01-01

    plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage...... of monophosphorylated peptides. Among the identified sequences, six originated from different isoforms of the plasma membrane H(+)-ATPase and defined two previously unknown phosphorylation sites at the regulatory C terminus. The potential for large-scale identification of phosphorylation sites on plasma membrane...

  5. Does positive selection drive transcription factor binding site turnover? A test with Drosophila cis-regulatory modules.

    Directory of Open Access Journals (Sweden)

    Bin Z He

    2011-04-01

    Full Text Available Transcription factor binding site(s (TFBS gain and loss (i.e., turnover is a well-documented feature of cis-regulatory module (CRM evolution, yet little attention has been paid to the evolutionary force(s driving this turnover process. The predominant view, motivated by its widespread occurrence, emphasizes the importance of compensatory mutation and genetic drift. Positive selection, in contrast, although it has been invoked in specific instances of adaptive gene expression evolution, has not been considered as a general alternative to neutral compensatory evolution. In this study we evaluate the two hypotheses by analyzing patterns of single nucleotide polymorphism in the TFBS of well-characterized CRM in two closely related Drosophila species, Drosophila melanogaster and Drosophila simulans. An important feature of the analysis is classification of TFBS mutations according to the direction of their predicted effect on binding affinity, which allows gains and losses to be evaluated independently along the two phylogenetic lineages. The observed patterns of polymorphism and divergence are not compatible with neutral evolution for either class of mutations. Instead, multiple lines of evidence are consistent with contributions of positive selection to TFBS gain and loss as well as purifying selection in its maintenance. In discussion, we propose a model to reconcile the finding of selection driving TFBS turnover with constrained CRM function over long evolutionary time.

  6. BAY 61-3606, CDKi, and Sodium Butyrate Treatments Modulate p53 Protein Level and Its Site-Specific Phosphorylation in Human Vestibular Schwannomas In Vitro

    Directory of Open Access Journals (Sweden)

    Rohan Mitra

    2014-01-01

    Full Text Available This study is done to evaluate the effect of spleen tyrosine kinase inhibitor (BAY 61-3606, cyclin-dependent kinase inhibitor (CDKi, and sodium butyrate (Na-Bu on the level and phosphorylation of p53 protein and its binding to murine double minute 2 (MDM2 homologue in human vestibular schwannomas (VS. Primary cultures of the tumor tissues were treated individually with optimum concentrations of these small molecules in vitro. The results indicate modulation of p53 protein status and its binding ability to MDM2 in treated samples as compared to the untreated control. The three individual treatments reduced the level of total p53 protein. These treatments also decreased Ser392 and Ser15 phosphorylated p53 in tumor samples of young patients and Ser315 phosphorylated p53 in old patients. Basal level of Thr55 phosphorylated p53 protein was present in all VS samples and it remained unchanged after treatments. The p53 protein from untreated VS samples showed reduced affinity to MDM2 binding in vitro and it increased significantly after treatments. The MDM2/p53 ratio increased approximately 3-fold in the treated VS tumor samples as compared to the control. The differential p53 protein phosphorylation status perhaps could play an important role in VS tumor cell death due to these treatments that we reported previously.

  7. Cell Cycle-dependent Changes in Localization and Phosphorylation of the Plasma Membrane Kv2.1 K+ Channel Impact Endoplasmic Reticulum Membrane Contact Sites in COS-1 Cells.

    Science.gov (United States)

    Cobb, Melanie M; Austin, Daniel C; Sack, Jon T; Trimmer, James S

    2015-12-04

    The plasma membrane (PM) comprises distinct subcellular domains with diverse functions that need to be dynamically coordinated with intracellular events, one of the most impactful being mitosis. The Kv2.1 voltage-gated potassium channel is conditionally localized to large PM clusters that represent specialized PM:endoplasmic reticulum membrane contact sites (PM:ER MCS), and overexpression of Kv2.1 induces more exuberant PM:ER MCS in neurons and in certain heterologous cell types. Localization of Kv2.1 at these contact sites is dynamically regulated by changes in phosphorylation at one or more sites located on its large cytoplasmic C terminus. Here, we show that Kv2.1 expressed in COS-1 cells undergoes dramatic cell cycle-dependent changes in its PM localization, having diffuse localization in interphase cells, and robust clustering during M phase. The mitosis-specific clusters of Kv2.1 are localized to PM:ER MCS, and M phase clustering of Kv2.1 induces more extensive PM:ER MCS. These cell cycle-dependent changes in Kv2.1 localization and the induction of PM:ER MCS are accompanied by increased mitotic Kv2.1 phosphorylation at several C-terminal phosphorylation sites. Phosphorylation of exogenously expressed Kv2.1 is significantly increased upon metaphase arrest in COS-1 and CHO cells, and in a pancreatic β cell line that express endogenous Kv2.1. The M phase clustering of Kv2.1 at PM:ER MCS in COS-1 cells requires the same C-terminal targeting motif needed for conditional Kv2.1 clustering in neurons. The cell cycle-dependent changes in localization and phosphorylation of Kv2.1 were not accompanied by changes in the electrophysiological properties of Kv2.1 expressed in CHO cells. Together, these results provide novel insights into the cell cycle-dependent changes in PM protein localization and phosphorylation.

  8. Light-Induced Phosphorylation of Crystallins in the Retinal Pigment Epithelium

    Science.gov (United States)

    Lee, Hyunju; Chung, Hyewon; Lee, Sung Haeng; Jahng, Wan Jin

    2017-01-01

    Protein phosphorylations have essential regulatory roles in visual signaling. Previously, we found that phosphorylation of several proteins in the retina and the retinal pigment epithelium (RPE) is involved in anti-apoptotic signaling under oxidative stress conditions, including light exposure. In this study, we used a phosphoprotein enrichment strategy to evaluate the light-induced phosphoproteome of primary bovine RPE cells. Phosphoprotein-enriched extracts from bovine RPE cells exposed to light or dark conditions for 1 hour were separated by 2D SDS-PAGE. Serine and tyrosine phosphorylation were visualized by 2D phospho western blotting and specific phosphorylation sites were analyzed by tandem mass spectrometry. Light induced a marked increase in tyrosine phosphorylation of beta crystallin A3 and A4. The most abundant light-induced up-regulated phosphoproteins were crystallins of 15–25-kDa, including beta crystallin S and zeta crystallin. Phosphorylation of beta crystallin suggests an anti-apoptotic chaperone function in the RPE. Other chaperones, cytoskeletal proteins, and proteins involved in energy balance were expressed at higher levels in the dark. A detailed analysis of RPE phosphoproteins provides a molecular basis for understanding light-induced signal transduction and anti-apoptosis mechanisms. Our data indicates that phosphorylation of crystallins likely represents an important mechanism for RPE shielding from physiological and pathophysiological light-induced oxidative injury. PMID:21094180

  9. The role of glucocorticoid receptor phosphorylation in Mcl-1 and NOXA gene expression

    Directory of Open Access Journals (Sweden)

    Demonacos Constantinos

    2010-02-01

    Full Text Available Abstract Background The cyclin-dependent kinase (CDK and mitogen-activated protein kinase (MAPK mediated phosphorylation of glucocorticoid receptor (GR exerts opposite effects on GR transcriptional activity and affects other posttranslational modifications within this protein. The major phosphorylation site of human GR targeted by MAPK family is the serine 226 and multiple kinase complexes phosphorylate receptor at the serine 211 residue. We hypothesize that GR posttranslational modifications are involved in the determination of the cellular fate in human lymphoblastic leukemia cells. We investigated whether UV signalling through alternative GR phosphorylation determined the cell type specificity of glucocorticoids (GCs mediated apoptosis. Results We have identified putative Glucocorticoid Response Elements (GREs within the promoter regulatory regions of the Bcl-2 family members NOXA and Mcl-1 indicating that they are direct GR transcriptional targets. These genes were differentially regulated in CEM-C7-14, CEM-C1-15 and A549 cells by glucocorticoids and JNK pathway. In addition, our results revealed that the S211 phosphorylation was dominant in CEM-C7-14, whereas the opposite was the case in CEM-C1-15 where prevalence of S226 GR phosphorylation was observed. Furthermore, multiple GR isoforms with cell line specific patterns were identified in CEM-C7-14 cells compared to CEM-C1-15 and A549 cell lines with the same antibodies. Conclusions GR phosphorylation status kinetics, and site specificity as well as isoform variability differ in CEM-C7-14, CEM-C1-15, and A549 cells. The positive or negative response to GCs induced apoptosis in these cell lines is a consequence of the variable equilibrium of NOXA and Mcl-1 gene expression potentially mediated by alternatively phosphorylated GR, as well as the balance of MAPK/CDK pathways controlling GR phosphorylation pattern. Our results provide molecular base and valuable knowledge for improving the GC

  10. The role of glucocorticoid receptor phosphorylation in Mcl-1 and NOXA gene expression

    Science.gov (United States)

    2010-01-01

    Background The cyclin-dependent kinase (CDK) and mitogen-activated protein kinase (MAPK) mediated phosphorylation of glucocorticoid receptor (GR) exerts opposite effects on GR transcriptional activity and affects other posttranslational modifications within this protein. The major phosphorylation site of human GR targeted by MAPK family is the serine 226 and multiple kinase complexes phosphorylate receptor at the serine 211 residue. We hypothesize that GR posttranslational modifications are involved in the determination of the cellular fate in human lymphoblastic leukemia cells. We investigated whether UV signalling through alternative GR phosphorylation determined the cell type specificity of glucocorticoids (GCs) mediated apoptosis. Results We have identified putative Glucocorticoid Response Elements (GREs) within the promoter regulatory regions of the Bcl-2 family members NOXA and Mcl-1 indicating that they are direct GR transcriptional targets. These genes were differentially regulated in CEM-C7-14, CEM-C1-15 and A549 cells by glucocorticoids and JNK pathway. In addition, our results revealed that the S211 phosphorylation was dominant in CEM-C7-14, whereas the opposite was the case in CEM-C1-15 where prevalence of S226 GR phosphorylation was observed. Furthermore, multiple GR isoforms with cell line specific patterns were identified in CEM-C7-14 cells compared to CEM-C1-15 and A549 cell lines with the same antibodies. Conclusions GR phosphorylation status kinetics, and site specificity as well as isoform variability differ in CEM-C7-14, CEM-C1-15, and A549 cells. The positive or negative response to GCs induced apoptosis in these cell lines is a consequence of the variable equilibrium of NOXA and Mcl-1 gene expression potentially mediated by alternatively phosphorylated GR, as well as the balance of MAPK/CDK pathways controlling GR phosphorylation pattern. Our results provide molecular base and valuable knowledge for improving the GC based therapies of

  11. JNK1ß1 is phosphorylated during expression in E. coli and in vitro by MKK4 at three identical novel sites

    CSIR Research Space (South Africa)

    Owen, GR

    2013-03-01

    Full Text Available /T/Y kinases may be responsible for the phosphorylation of JNK1β1 during expression, as initially suggested by Yang and Lui [13]. It has been found recently that, while few S/T/Y kinases have been directly identified in prokaryotes, at least 80 bacterial.... This points at the prospect that prokaryotic kinases may recognise eukaryotic phosphorylation motifs, or that there may be degree of evolutionary relatedness between prokaryotes and eukaryotes. We are however not able to affirmatively conclude that JNK1β1...

  12. SIMAC - A phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Robinson, Phillip J

    2008-01-01

    spectrometric analysis, such as immobilized metal affinity chromatography or titanium dioxide the coverage of the phosphoproteome of a given sample is limited. Here we report a simple and rapid strategy - SIMAC - for sequential separation of mono-phosphorylated peptides and multiply phosphorylated peptides from...... and an optimized titanium dioxide chromatographic method. More than double the total number of identified phosphorylation sites was obtained with SIMAC, primarily from a three-fold increase in recovery of multiply phosphorylated peptides....

  13. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue.

    Science.gov (United States)

    Watt, Matthew J; Holmes, Anna G; Pinnamaneni, Srijan K; Garnham, Andrew P; Steinberg, Gregory R; Kemp, Bruce E; Febbraio, Mark A

    2006-03-01

    Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser(563) and Ser(660), the PKA regulatory sites, and Ser(565), the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by approximately 80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser(563) and Ser(660) phosphorylation were increased by 27% at 15 min (P HSL Ser(565) phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser(660) was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser(660) but not Ser(563) phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser(660) phosphorylation. Taken together, these data indicate that HSL activity is maintained in the face of AMPK activation as a result of

  14. The autophosphorylation and p34cdc2 phosphorylation sites of casein kinase-2 beta-subunit are not essential for reconstituting the fully-active heterotetrameric holoenzyme

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Issinger, O G;

    1993-01-01

    Two mutants of human casein kinase-2 beta-subunit with short deletions at either their amino (delta 1-4) or carboxy (delta 209-215) terminal side have been created that have lost the capability to undergo autophosphorylation and p34cdc2 mediated phosphorylation, respectively. Both mutants give rise...

  15. Different papillomaviruses have different repertoires of transcription factor binding sites: convergence and divergence in the upstream regulatory region

    Directory of Open Access Journals (Sweden)

    Alonso Ángel

    2006-03-01

    Full Text Available Abstract Background Papillomaviruses (PVs infect stratified squamous epithelia in warm-blooded vertebrates and have undergone a complex evolutionary process. The control of the expression of the early ORFs in PVs depends on the binding of cellular and viral transcription factors to the upstream regulatory region (URR of the virus. It is believed that there is a core of transcription factor binding sites (TFBS common to all PVs, with additional individual differences, although most of the available information focuses only on a handful of viruses. Results We have studied the URR of sixty-one PVs, covering twenty different hosts. We have predicted the TFBS present in the URR and analysed these results by principal component analysis and genetic algorithms. The number and nature of TFBS in the URR might be much broader than thus far described, and different PVs have different repertoires of TFBS. Conclusion There are common fingerprints in the URR in PVs that infect primates, although the ancestors of these viruses diverged a long time ago. Additionally, there are obvious differences between the URR of alpha and beta PVs, despite these PVs infect similar histological cell types in the same host, i.e. human. A thorough analysis of the TFBS in the URR might provide crucial information about the differential biology of cancer-associated PVs.

  16. Multisite phosphorylation of the Sum1 transcriptional repressor by S-phase kinases controls exit from meiotic prophase in yeast.

    Science.gov (United States)

    Corbi, Daniel; Sunder, Sham; Weinreich, Michael; Skokotas, Aikaterini; Johnson, Erica S; Winter, Edward

    2014-06-01

    Activation of the meiotic transcription factor Ndt80 is a key regulatory transition in the life cycle of Saccharomyces cerevisiae because it triggers exit from pachytene and entry into meiosis. The NDT80 promoter is held inactive by a complex containing the DNA-binding protein Sum1 and the histone deacetylase Hst1. Meiosis-specific phosphorylation of Sum1 by the protein kinases Cdk1, Ime2, and Cdc7 is required for NDT80 expression. Here, we show that the S-phase-promoting cyclin Clb5 activates Cdk1 to phosphorylate most, and perhaps all, of the 11 minimal cyclin-dependent kinase (CDK) phospho-consensus sites (S/T-P) in Sum1. Nine of these sites can individually promote modest levels of meiosis, yet these sites function in a quasiadditive manner to promote substantial levels of meiosis. Two Cdk1 sites and an Ime2 site individually promote high levels of meiosis, likely by preparing Sum1 for phosphorylation by Cdc7. Chromatin immunoprecipitation reveals that the phosphorylation sites are required for removal of Sum1 from the NDT80 promoter. We also find that Sum1, but not its partner protein Hst1, is required to repress NDT80 transcription. Thus, while the phosphorylation of Sum1 may lead to dissociation from DNA by influencing Hst1, it is the presence of Sum1 on DNA that determines whether NDT80 will be expressed.

  17. Multisite Phosphorylation of the Sum1 Transcriptional Repressor by S-Phase Kinases Controls Exit from Meiotic Prophase in Yeast

    Science.gov (United States)

    Corbi, Daniel; Sunder, Sham; Weinreich, Michael; Skokotas, Aikaterini; Johnson, Erica S.

    2014-01-01

    Activation of the meiotic transcription factor Ndt80 is a key regulatory transition in the life cycle of Saccharomyces cerevisiae because it triggers exit from pachytene and entry into meiosis. The NDT80 promoter is held inactive by a complex containing the DNA-binding protein Sum1 and the histone deacetylase Hst1. Meiosis-specific phosphorylation of Sum1 by the protein kinases Cdk1, Ime2, and Cdc7 is required for NDT80 expression. Here, we show that the S-phase-promoting cyclin Clb5 activates Cdk1 to phosphorylate most, and perhaps all, of the 11 minimal cyclin-dependent kinase (CDK) phospho-consensus sites (S/T-P) in Sum1. Nine of these sites can individually promote modest levels of meiosis, yet these sites function in a quasiadditive manner to promote substantial levels of meiosis. Two Cdk1 sites and an Ime2 site individually promote high levels of meiosis, likely by preparing Sum1 for phosphorylation by Cdc7. Chromatin immunoprecipitation reveals that the phosphorylation sites are required for removal of Sum1 from the NDT80 promoter. We also find that Sum1, but not its partner protein Hst1, is required to repress NDT80 transcription. Thus, while the phosphorylation of Sum1 may lead to dissociation from DNA by influencing Hst1, it is the presence of Sum1 on DNA that determines whether NDT80 will be expressed. PMID:24710277

  18. Functional homology between the yeast regulatory proteins GAL4 and LAC9: LAC9-mediated transcriptional activation in Kluyveromyces lactis involves protein binding to a regulatory sequence homologous to the GAL4 protein-binding site.

    OpenAIRE

    Breunig, K D; Kuger, P

    1987-01-01

    As shown previously, the beta-galactosidase gene of Kluyveromyces lactis is transcriptionally regulated via an upstream activation site (UASL) which contains a sequence homologous to the GAL4 protein-binding site in Saccharomyces cerevisiae (M. Ruzzi, K.D. Breunig, A.G. Ficca, and C.P. Hollenberg, Mol. Cell. Biol. 7:991-997, 1987). Here we demonstrate that the region of homology specifically binds a K. lactis regulatory protein. The binding activity was detectable in protein extracts from wil...

  19. Efficient autophosphorylation and phosphorylation of the beta-subunit by casein kinase-2 require the integrity of an acidic cluster 50 residues downstream from the phosphoacceptor site

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Pinna, L A;

    1994-01-01

    -64 are also involved in the process of autophosphorylation, possibly by means of a loop formation. The results obtained with the COOH-terminal-deleted mutants support the view that reconstitution of a functional holoenzyme must occur to allow efficient autophosphorylation. Polylysine prevents...... mutants reconstituting a tetrameric holoenzyme. Only with the three largest COOH-terminal deletion mutants beta delta 150-215, beta delta 171-215, and beta delta 181-215 is no significant alpha-subunit autophosphorylation observed. The phosphorylation of the beta-subunit mutants added in large molar...... excess to CK-2 holoenzyme (either native or recombinant) is also severely impaired by Ala for Glu/Asp substitutions at position 5,6 and in the 55-64 region and by the deletion of the COOH-terminal segments 150-215 and 171-215. Such a phosphorylation is inhibited by polylysine, with the exception...

  20. Studies on the Energy-coupling Sites of Photophosphorylation: V. Phosphorylation Efficiencies (P/e(2)) Associated with Aerobic Photooxidation of Artificial Electron Donors.

    Science.gov (United States)

    Ort, D R; Izawa, S

    1974-03-01

    The rate of Hill reaction can be measured accurately as O(2) uptake (the Mehler reaction) if a rapidly autoxidizable electron acceptor (e.g., methylviologen) is used. However, when an artificial electron donor-ascorbate couple (or ascorbate alone) replaces the natural donor, water, the rate of O(2) consumption is no longer a reliable measure of the electron flux, because superoxide radical reactions contribute to O(2) uptake. Such radical reactions, however, can be suppressed by adding enough superoxide dismutase to the reaction mixture. Indeed in all of the photosystem I- and photosystem II-donor reactions tested (except with benzidine which was tested without ascorbate added), the O(2) uptake was inhibited by 30 to 50% by the addition of superoxide dismutase. The rate of phosphorylation was totally unaffected by the enzyme. The reasessment of the phosphorylation efficiencies thus made by the use of superoxide dismutase led us to the following conclusions. The phosphorylation efficiency associated with the transfer of electrons from a donor to methlylviologen (than to O(2)) through both photosystems II and I is practically independent of the donor used-catechol, benzidine, p-aminophenol, dicyanohydroquinone, or water. The P/e(2) ratio is 1.0 +/- 0.1. Only ascorbate gives a slightly lower value (P/e(2) = 0.9). (NH(2)OH-treated, non-water-splitting chloroplasts were used for reactions with these artificial donors.) The phosphorylation efficiency associated with DCMU-insensitive, photosystem I-mediated transfer of electrons from a donor to methylviologen (then to O(2)) is again largely independent of the donor used, such as diaminodurene, diaminotoluene, and reduced 2,6-dichlorphenol-indophenol. The P/e(2) ratio is 0.6 +/- 0.08.

  1. Akt2 influences glycogen synthase activity in human skeletal muscle through regulation of NH2-terminal (sites 2+2a) phosphorylation

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Birk, Jesper Bratz; Richter, Erik;

    2013-01-01

    was positively associated with pAkt-T308 (P=0.01) and Akt2 activity (P=0.04), but not pAkt-S473 or IRS-1-PI3K activity. Furthermore, pAkt-T308 and Akt2 activity were negatively associated with NH(2)-terminal GS phosphorylation (P=0.001 for both), which in turn was negatively associated with insulin-stimulated GS...

  2. Quantitative and dynamic analysis of PTEN phosphorylation by NMR.

    Science.gov (United States)

    Cordier, Florence; Chaffotte, Alain; Wolff, Nicolas

    2015-05-01

    The dual lipid and protein phosphatase PTEN is a tumor suppressor controlling key biological processes, such as cell growth, proliferation and neuro-survival. Its activity and intracellular trafficking is finely regulated notably by multi-site phosphorylation of its C-terminal tail. The reversible and highly dynamic character of these regulatory events confers a temporal dimension to the cell for triggering crucial decisions. In this review, we describe how a recently developed time-resolved NMR spectroscopy approach unveils the dynamic establishment of the phosphorylation events of PTEN C-terminal tail controlled by CK2 and GSK3β kinases. Two cascades of reactions have been identified, in vitro and in extracts of human neuroblastoma cells. They are triggered independently on two nearby clusters of sites (S380-S385 and S361-S370) and occur on different timescales. In each cascade, the reactions follow an ordered model with a distributive kinetic mechanism. The vision of these cascades as two delay timers activating distinct or time-delayed regulatory responses gives a temporal dimension on PTEN regulation and is discussed in relation to the known functional roles of each cluster. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Use of enhancer trapping to identify pathogen-induced regulatory events spatially restricted to plant-microbe interaction sites.

    Science.gov (United States)

    Schroeder, Mercedes; Tsuchiya, Tokuji; He, Shuilin; Eulgem, Thomas

    2016-04-01

    Plant genes differentially expressed during plant-pathogen interactions can be important for host immunity or can contribute to pathogen virulence. Large-scale transcript profiling studies, such as microarray- or mRNA-seq-based analyses, have revealed hundreds of genes that are differentially expressed during plant-pathogen interactions. However, transcriptional responses limited to a small number of cells at infection sites can be difficult to detect using these approaches, as they are under-represented in the whole-tissue datasets typically generated by such methods. This study examines the interactions between Arabidopsis thaliana (Arabidopsis) and the pathogenic oomycete Hyaloperonospora arabidopsidis (Hpa) by enhancer trapping to uncover novel plant genes involved in local infection responses. We screened a β-glucuronidase (GUS) reporter-based enhancer-trap population for expression patterns related to Hpa infection. Several independent lines exhibited GUS expression in leaf mesophyll cells surrounding Hpa structures, indicating a regulatory response to pathogen infection. One of these lines contained a single enhancer-trap insertion in an exon of At1g08800 (MyoB1, Myosin Binding Protein 1) and was subsequently found to exhibit reduced susceptibility to Hpa. Two additional Arabidopsis lines with T-DNA insertions in exons of MyoB1 also exhibited approximately 30% fewer spores than wild-type plants. This study demonstrates that our enhancer-trapping strategy can result in the identification of functionally relevant pathogen-responsive genes. Our results further suggest that MyoB1 either positively contributes to Hpa virulence or negatively affects host immunity against this pathogen.

  4. CagA-positive Helicobacter pylori strain containing three EPIYA C phosphorylation sites produces increase of G cell and decrease of D cell in experimentally infected gerbils (Meriones unguiculatus).

    Science.gov (United States)

    Júnior, Moacir Ferreira; Batista, Sérgio de Assis; Barbuto, Rafael Calvão; Gomes, Adriana Dias; Queiroz, Dulciene Maria Magalhães; Araújo, Ivana Duval; Caliari, Marcelo Vidigal

    2016-09-01

    Human infection by Helicobacter pylori is associated with an increase in the number of gastrin-producing G cells and a concomitant decrease of somatostatin-producing D cells. However, to our knowledge, changes in G and D cell numbers in response to infection with H. pylori CagA-positive strains containing different number of EPIYA-C phosphorylation sites have not been analyzed to date. Therefore, the aim of this study was to perform a quantitative analysis of the number of G and D cells in Mongolian gerbils challenged with H. pylori strains with different numbers of EPIYA-C motifs. Mongolian gerbils were inoculated with isogenic H. pylori strains containing one to three phosphorylation sites. Mucosal fragments were evaluated by morphometry and immunohistochemistry using primary polyclonal rabbit anti-gastrin and anti-somatostatin antibodies. Positive cells were counted using an image analyzer. Forty-five days after infection, there was a decrease in the number of D cells and an increase in the G/D cell ratio in the group with three EPIYA-C. Six months after infection, there was a progressive and significant increase in the number of G cells and in the G/D cell ratio, with a concomitant decrease in the number of D cells, especially in the three EPIYA-C group. CagA-positive H. pylori strains containing a large number of EPIYA-C phosphorylation sites induce a decrease in D cell number and an increase in G cell number and G/D ratio, which were correlated with the number of inflammatory cells of the lamina propria. Copyright © 2016 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. Molecular mechanism of APC/C activation by mitotic phosphorylation.

    Science.gov (United States)

    Zhang, Suyang; Chang, Leifu; Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-05-12

    In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our

  6. Role of the Herpes Simplex Virus 1 Us3 Kinase Phosphorylation Site and Endocytosis Motifs in the Intracellular Transport and Neurovirulence of Envelope Glycoprotein B ▿

    Science.gov (United States)

    Imai, Takahiko; Arii, Jun; Minowa, Atsuko; Kakimoto, Aya; Koyanagi, Naoto; Kato, Akihisa; Kawaguchi, Yasushi

    2011-01-01

    Herpes simplex virus 1 (HSV-1) Us3 protein kinase phosphorylates threonine at position 887 (Thr-887) in the cytoplasmic tail of envelope glycoprotein B (gB) in infected cells. This phosphorylation downregulates cell surface expression of gB and plays a role in viral pathogenesis in the mouse herpes stromal keratitis model. In the present study, we demonstrated that Us3 phosphorylation of gB Thr-887 upregulated the accumulation of endocytosed gB from the surfaces of infected cells. We also showed that two motifs in the cytoplasmic tail of gB, tyrosine at position 889 (Tyr-889) and dileucines at positions 871 and 872, were required for efficient downregulation of gB cell surface expression and upregulation of accumulation of endocytosed gB in infected cells. A systematic analysis of mutations in these three sequences in gB suggested that the expression of gB on the surfaces of infected cells was downregulated in part by the increase in the accumulation of endocytosed gB, which was coordinately and tightly regulated by the three gB trafficking signals. Tyr-889 appeared to be of predominant importance in regulating the intracellular transport of gB and was linked to HSV-1 neurovirulence in mice following intracerebral infection. These observations support the hypothesis that HSV-1 evolved the three gB sequences for proper regulation of gB intracellular transport and that this regulation plays a critical role in diverse aspects of HSV-1 pathogenesis. PMID:21389132

  7. Identification of the phosphorylation site of the histidine kinase of E. coli AtoS-AtoC two-component system

    OpenAIRE

    Filippou, P.S.; Kasemian, L. D.; Panagiotidis, C A; Kyriakidis, D A

    2008-01-01

    Abstract Journal URL: http://www3.interscience.wiley.com/journal/119877016/tocgroup The sensor histidine kinase AtoS together with AtoC/Az constitute a two-component signal transduction system (TCS) in E. coli, involved in the regulation of the atoDAEB operon. Upon activation by acetoacetate, AtoS autophosphorylates and subsequently phosphorylates AtoC which is essential for the transcriptional regulation of the atoDAEB operon, the products of which are involved in the catabolism of sho...

  8. Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter.

    Science.gov (United States)

    Wang, Meng; Banerjee, Kasturi; Baker, Harriet; Cave, John W

    2015-02-01

    Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis and its gene proximal promoter ( electromobility shift assays showed that brain-region specific complexes assemble on these motifs. These studies also identified a non-canonical CRE binding (CREB) protein recognition element in the proximal promoter. Together, these studies provide a detailed analysis of evolutionary conservation within the TH promoter and identify potential cis-regulatory motifs that underlie a core set of regulatory mechanisms in mammals.

  9. Review of decision methodologies for evaluating regulatory actions affecting public health and safety. [Nuclear industry site selection

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, P.L.; McDonald, C.L.; Schilling, A.H.

    1976-12-01

    This report examines several aspects of the problems and choices facing the governmental decision maker who must take regulatory actions with multiple decision objectives and attributes. Particular attention is given to the problems facing the U.S. Nuclear Regulatory Commission (NRC) and to the decision attribute of chief concern to NRC, the protection of human health and safety, with emphasis on nuclear power plants. The study was undertaken to provide background information for NRC to use in refining its process of value/impact assessment of proposed regulatory actions. The principal conclusion is that approaches to rationally consider the value and impact of proposed regulatory actions are available. These approaches can potentially improve the decision-making process and enable the agency to better explain and defend its decisions. They also permit consistent examination of the impacts, effects of uncertainty and sensitivity to various assumptions of the alternatives being considered. Finally, these approaches can help to assure that affected parties are heard and that technical information is used appropriately and to the extent possible. The principal aspects of the regulatory decision problem covered in the report are: the legal setting for regulatory decisions which affect human health and safety, elements of the decision-making process, conceptual approaches to decision making, current approaches to decision making in several Federal agencies, and the determination of acceptable risk levels.

  10. The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: Involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end

    DEFF Research Database (Denmark)

    Fuglsang, Anja T; Borch, Jonas; Bych, Katrine

    2003-01-01

    ) in the extreme C-terminal end of the H+-ATPase interacts with the binding cleft of 14-3-3 protein (Wurtele, M., Jelich-Ottmann, C., Wittinghofer, A., and Oecking, C. (2003) EMBO J. 22, 987-994). We report binding of 14-3-3 protein to a nonphosphorylated peptide representing the 34 C-terminal residues...

  11. Phosphorylation of hepatitis C virus RNA polymerases ser29 and ser42 by protein kinase C-related kinase 2 regulates viral RNA replication.

    Science.gov (United States)

    Han, Song-Hee; Kim, Seong-Jun; Kim, Eun-Jung; Kim, Tae-Eun; Moon, Jae-Su; Kim, Geon-Woo; Lee, Seung-Hoon; Cho, Kun; Yoo, Jong Shin; Son, Woo Sung; Rhee, Jin-Kyu; Han, Seung Hyun; Oh, Jong-Won

    2014-10-01

    Hepatitis C virus (HCV) nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase (RdRp), is the key enzyme for HCV RNA replication. We previously showed that HCV RdRp is phosphorylated by protein kinase C-related kinase 2 (PRK2). In the present study, we used biochemical and reverse-genetics approaches to demonstrate that HCV NS5B phosphorylation is crucial for viral RNA replication in cell culture. Two-dimensional phosphoamino acid analysis revealed that PRK2 phosphorylates NS5B exclusively at its serine residues in vitro and in vivo. Using in vitro kinase assays and mass spectrometry, we identified two phosphorylation sites, Ser29 and Ser42, in the Δ1 finger loop region that interacts with the thumb subdomain of NS5B. Colony-forming assays using drug-selectable HCV subgenomic RNA replicons revealed that preventing phosphorylation by Ala substitution at either Ser29 or Ser42 impairs HCV RNA replication. Furthermore, reverse-genetics studies using HCV infectious clones encoding phosphorylation-defective NS5B confirmed the crucial role of these PRK2 phosphorylation sites in viral RNA replication. Molecular-modeling studies predicted that the phosphorylation of NS5B stabilizes the interactions between its Δ1 loop and thumb subdomain, which are required for the formation of the closed conformation of NS5B known to be important for de novo RNA synthesis. Collectively, our results provide evidence that HCV NS5B phosphorylation has a positive regulatory role in HCV RNA replication. While the role of RNA-dependent RNA polymerases (RdRps) in viral RNA replication is clear, little is known about their functional regulation by phosphorylation. In this study, we addressed several important questions about the function and structure of phosphorylated hepatitis C virus (HCV) nonstructural protein 5B (NS5B). Reverse-genetics studies with HCV replicons encoding phosphorylation-defective NS5B mutants and analysis of their RdRp activities revealed previously unidentified

  12. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in the United States. Preliminary background report

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    This report is one of a series of preliminary reports describing the laws and regulatory programs of the United States and each of the 50 states affecting the siting and operation of energy generating facilities likely to be used in Integrated Community Energy Systems (ICES). Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES. This report describes laws and regulatory programs in the United States. Subsequent reports will (1) describe public utility rate regulatory procedures and practices as they might affect an ICES, (2) analyze each of the aforementioned regulatory programs to identify impediments to the development of ICES, and (3) recommend potential changes in legislation and regulatory practices and procedures to overcome such impediments.

  13. Specific serine-proline phosphorylation and glycogen synthase kinase 3β-directed subcellular targeting of stathmin 3/Sclip in neurons.

    Science.gov (United States)

    Devaux, Sara; Poulain, Fabienne E; Devignot, Véronique; Lachkar, Sylvie; Irinopoulou, Theano; Sobel, André

    2012-06-22

    During nervous system development, neuronal growth, migration, and functional morphogenesis rely on the appropriate control of the subcellular cytoskeleton including microtubule dynamics. Stathmin family proteins play major roles during the various stages of neuronal differentiation, including axonal growth and branching, or dendritic development. We have shown previously that stathmins 2 (SCG10) and 3 (SCLIP) fulfill distinct, independent and complementary regulatory roles in axonal morphogenesis. Although the two proteins have been proposed to display the four conserved phosphorylation sites originally identified in stathmin 1, we show here that they possess distinct phosphorylation sites within their specific proline-rich domains (PRDs) that are differentially regulated by phosphorylation by proline-directed kinases involved in the control of neuronal differentiation. ERK2 or CDK5 phosphorylate the two proteins but with different site specificities. We also show for the first time that, unlike stathmin 2, stathmin 3 is a substrate for glycogen synthase kinase (GSK) 3β both in vitro and in vivo. Interestingly, stathmin 3 phosphorylated at its GSK-3β target site displays a specific subcellular localization at neuritic tips and within the actin-rich peripheral zone of the growth cone of differentiating hippocampal neurons in culture. Finally, pharmacological inhibition of GSK-3β induces a redistribution of stathmin 3, but not stathmin 2, from the periphery toward the Golgi region of neurons. Stathmin proteins can thus be either regulated locally or locally targeted by specific phosphorylation, each phosphoprotein of the stathmin family fulfilling distinct and specific roles in the control of neuronal differentiation.

  14. Phosphorylation-independent dual-site binding of the FHA domain of KIF13 mediates phosphoinositide transport via centaurin [alpha]1

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yufeng; Tempel, Wolfram; Wang, Hui; Yamada, Kaori; Shen, Limin; Senisterra, Guillermo A.; MacKenzie, Farrell; Chishti, Athar H.; Park, Hee-Won (Toronto); (UICM)

    2011-11-07

    Phosphatidylinositol 3,4,5-triphosphate (PIP3) plays a key role in neuronal polarization and axon formation. PIP3-containing vesicles are transported to axon tips by the kinesin KIF13B via an adaptor protein, centaurin {alpha}1 (CENTA1). KIF13B interacts with CENTA1 through its forkhead-associated (FHA) domain. We solved the crystal structures of CENTA1 in ligand-free, KIF13B-FHA domain-bound, and PIP3 head group (IP4)-bound conformations, and the CENTA1/KIF13B-FHA/IP4 ternary complex. The first pleckstrin homology (PH) domain of CENTA1 specifically binds to PIP3, while the second binds to both PIP3 and phosphatidylinositol 3,4-biphosphate (PI(3,4)P2). The FHA domain of KIF13B interacts with the PH1 domain of one CENTA1 molecule and the ArfGAP domain of a second CENTA1 molecule in a threonine phosphorylation-independent fashion. We propose that full-length KIF13B and CENTA1 form heterotetramers that can bind four phosphoinositide molecules in the vesicle and transport it along the microtubule.

  15. Analysis of mitotic phosphorylation of Borealin

    Directory of Open Access Journals (Sweden)

    Date Dipali A

    2007-01-01

    Full Text Available Abstract Background The main role of the chromosomal passenger complex is to ensure that Aurora B kinase is properly localized and activated before and during mitosis. Borealin, a member of the chromosomal passenger complex, shows increased expression during G2/M phases and is involved in targeting the complex to the centromere and the spindle midzone, where it ensures proper chromosome segregation and cytokinesis. Borealin has a consensus CDK1 phosphorylation site, threonine 106 and can be phosphorylated by Aurora B Kinase at serine 165 in vitro. Results Here, we show that Borealin is phosphorylated during mitosis in human cells. Dephosphorylation of Borealin occurs as cells exit mitosis. The phosphorylated form of Borealin is found in an INCENP-containing complex in mitosis. INCENP-containing complexes from cells in S phase are enriched in the phosphorylated form suggesting that phosphorylation may encourage entry of Borealin into the chromosomal passenger complex. Although Aurora B Kinase is found in complexes that contain Borealin, it is not required for the mitotic phosphorylation of Borealin. Mutation of T106 or S165 of Borealin to alanine does not alter the electrophoretic mobility shift of Borealin. Experiments with cyclohexamide and the phosphatase inhibitor sodium fluoride suggest that Borealin is phosphorylated by a protein kinase that can be active in interphase and mitosis and that the phosphorylation may be regulated by a short-lived phosphatase that is active in interphase but not mitosis. Conclusion Borealin is phosphorylated during mitosis. Neither residue S165, T106 nor phosphorylation of Borealin by Aurora B Kinase is required to generate the mitotic, shifted form of Borealin. Suppression of phosphorylation during interphase is ensured by a labile protein, possibly a cell cycle regulated phosphatase.

  16. Propofol directly increases tau phosphorylation.

    Directory of Open Access Journals (Sweden)

    Robert A Whittington

    Full Text Available In Alzheimer's disease (AD and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of

  17. BAD Phosphorylation: A Novel Link between Apoptosis and Cancer

    OpenAIRE

    Polzien, Lisa

    2011-01-01

    BAD (Bcl-2 antagonist of cell death, Bcl-2 associated death promoter) is a pro-apoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Although much attention has been devoted to the identification of phosphorylation sites in murine BAD (mBAD), little data are available with respect to phosphorylation of human BAD (hBAD) protein. In this work, we investigated the quantitative contribution of BAD targeting kinases in phosphorylating se...

  18. Multisite phosphorylation provides an effective and flexible mechanism for switch-like protein degradation.

    Science.gov (United States)

    Varedi K, S Marjan; Ventura, Alejandra C; Merajver, Sofia D; Lin, Xiaoxia Nina

    2010-12-13

    Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically. Inspired by experimental observations on the Sic1 protein and a previous intriguing theoretical conjecture, we develop a model to examine in detail the degradation dynamics of a protein featuring multiple phosphorylation sites and a threshold site number for elimination in response to a kinase signal. Our model explains the role of multiple phosphorylation sites, compared to a single site, in the regulation of protein degradation. A single-site protein cannot convert a graded input of kinase increase to much sharper output, whereas multisite phosphorylation is capable of generating a highly switch-like temporal profile of the substrate protein with two characteristics: a temporal threshold and rapid decrease beyond the threshold. We introduce a measure termed temporal response coefficient to quantify the extent to which a response in the time domain is switch-like and further investigate how this property is determined by various factors including the kinase input, the total number of sites, the threshold site number for elimination, the order of phosphorylation, the kinetic parameters, and site preference. Some interesting and experimentally verifiable predictions include that the non-degradable fraction of the substrate protein exhibits a more switch-like temporal profile; a sequential system is more switch-like, while a random system has the advantage of increased robustness; all the parameters, including the total number of sites, the threshold site number for elimination and the kinetic parameters synergistically

  19. Groundwater contamination from waste management sites: The interaction between risk-based engineering design and regulatory policy: 1. Methodology

    Science.gov (United States)

    Massmann, Joel; Freeze, R. Allan

    1987-02-01

    This paper puts in place a risk-cost-benefit analysis for waste management facilities that explicitly recognizes the adversarial relationship that exists in a regulated market economy between the owner/operator of a waste management facility and the government regulatory agency under whose terms the facility must be licensed. The risk-cost-benefit analysis is set up from the perspective of the owner/operator. It can be used directly by the owner/operator to assess alternative design strategies. It can also be used by the regulatory agency to assess alternative regulatory policy, but only in an indirect manner, by examining the response of an owner/operator to the stimuli of various policies. The objective function is couched in terms of a discounted stream of benefits, costs, and risks over an engineering time horizon. Benefits are in the form of revenues for services provided; costs are those of construction and operation of the facility. Risk is defined as the cost associated with the probability of failure, with failure defined as the occurrence of a groundwater contamination event that violates the licensing requirements established for the facility. Failure requires a breach of the containment structure and contaminant migration through the hydrogeological environment to a compliance surface. The probability of failure can be estimated on the basis of reliability theory for the breach of containment and with a Monte-Carlo finite-element simulation for the advective contaminant transport. In the hydrogeological environment the hydraulic conductivity values are defined stochastically. The probability of failure is reduced by the presence of a monitoring network operated by the owner/operator and located between the source and the regulatory compliance surface. The level of reduction in the probability of failure depends on the probability of detection of the monitoring network, which can be calculated from the stochastic contaminant transport simulations. While

  20. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in the United States. Preliminary background report

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    This report is a summary of a series of preliminary reports describing the laws and regulatory programs of the United states and each of the 50 states affecting the siting and operation of energy generating facilities likely to be used in Integrated Community Energy Systems (ICES). A brief summary of public utility regulatory programs, energy facility siting programs, and municipal franchising authority is presented in this report to identify how such programs and authority may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES. Subsequent reports will (1) describe public utility rate regulatory procedures and practices as they might affect an ICES, (2) analyze each of the aforementioned regulatory programs to identify impediments to the development of ICES, and (3) recommend potential changes in legislation and regulatory practices and procedures to overcome such impediments.

  1. MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice.

    Science.gov (United States)

    Gupta, Arun; Hunt, Clayton R; Hegde, Muralidhar L; Chakraborty, Sharmistha; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh, Mayank; Ramnarain, Deepti B; Hittelman, Walter N; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K; Ludwig, Thomas; Pandita, Raj K; Tyler, Jessica K; Pandita, Tej K

    2014-07-10

    Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.

  2. MOF Phosphorylation by ATM Regulates 53BP1-Mediated Double-Strand Break Repair Pathway Choice

    Directory of Open Access Journals (Sweden)

    Arun Gupta

    2014-07-01

    Full Text Available Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ or homologous recombination (HR. Here, we report that double-strand breaks (DSBs induce ATM-dependent MOF (a histone H4 acetyl-transferase phosphorylation (p-T392-MOF and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.

  3. MOF phosphorylation by ATM regulates 53BP1-mediated DSB repair pathway choice

    Science.gov (United States)

    Gupta, Arun; Hunt, Clayton R.; Hegdec, Muralidhar L.; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh1, Mayank; Ramnarain, Deepti B.; Hittelman, Walter N.; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K.; Ludwig, Thomas; Pandita, Raj K.; Tyler, Jessica K.; Pandita, Tej K.

    2014-01-01

    Cell cycle phase is a critical determinant of the choice between DNA damage repair by non-homologous end joining (NHEJ) or homologous recombination (HR). Here we report that DSBs induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF co-localizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S- and G2-phase but not G1-phase cells. Expression of MOF-T392A also reverses the reduction in DSB associated 53BP1 seen in wild type S/G2-phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair and decreased cell survival following irradiation. These data support a model whereby ATM mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2-phase. PMID:24953651

  4. Effect of Phosphorylation on Hydrogen-Bonding Interactions of the Active Site Histidine of the Phosphocarrier Protein HPr of the Phosphoenolpyruvate-Dependent Phosphotransferase System Determined by 15N NMR Spectroscopy

    NARCIS (Netherlands)

    Dijk, Alard A. van; Lange, Liesbeth C.M. de; Bachovchin, William W.; Robillard, George T.

    1990-01-01

    The phosphocarrier protein HPr of the phosphoenolpyruvate-dependent sugar transport system of Escherichia coli can exist in a phosphorylated and a nonphosphorylated form. During phosphorylation, the phosphoryl group is carried on a histidine residue, His15. The hydrogen-bonding state of this histidi

  5. The site specific demethylation in the 5'-regulatory area of NMDA receptor 2B subunit gene associated with CIE-induced up-regulation of transcription.

    Directory of Open Access Journals (Sweden)

    Mei Qiang

    Full Text Available BACKGROUND: The NMDA receptor represents a particularly important site of ethanol action in the CNS. We recently reported that NMDA receptor 2B (NR2B gene expression was persistently up-regulated following chronic intermittent ethanol (CIE treatment. Increasing evidence that epigenetic mechanisms are involved in dynamic and long-lasting regulation of gene expression in multiple neuroadaptive processes prompted us to investigate the role of DNA methylation in mediating CIE-induced up-regulation of NR2B gene transcription. To dissect the changes of DNA methylation in the NR2B gene, we have screened a large number of CpG sites within its 5'-regulatory area following CIE treatment. METHODS: Primary cortical cultured neurons were subjected to ethanol treatment in a CIE paradigm. Bisulfite conversion followed by pyrosequencing was used for quantitative measurement and analysis of CpG methylation status within the 5'-regulatory area of the NR2B gene; chromatin immunoprecipitation (ChIP assay was used to examine DNA levels associated with methylation and transcription factor binding. Electrophoretic mobility shift assay (EMSA and in vitro DNA methylation assays were performed to determine the direct impact of DNA methylation on the interaction between DNA and transcription factor and promoter activity. RESULTS: Analysis of individual CpG methylation sites within the NR2B 5'regulatory area revealed three regions with clusters of site-specific CpG demethylation following CIE treatment and withdrawal. This was confirmed by ChIP showing similar decreases of methylated DNA in the same regions. The CIE-induced demethylation is characterized by being located near certain transcription factor binding sequences, AP-1 and CRE, and occurred during treatment as well as after ethanol withdrawal. Furthermore, the increase in vitro of methylated DNA decreased transcription factor binding activity and promoter activity. An additional ChIP assay indicated that the CIE

  6. Identification and quantification of the phosphorylated ovalbumin by high resolution mass spectrometry under dry-heating treatment.

    Science.gov (United States)

    Wang, Hui; Tu, Zong-Cai; Liu, Guang-Xian; Zhang, Lu; Chen, Yuan

    2016-11-01

    The specific phosphorylation sites and degree of phosphorylation (DP) at each site are directly related to protein's structure and functional properties. Thus, characterizing the introduced phosphate groups is of great importance. This study was to monitor the phosphorylation sites, DP and the number of phosphorylation sites in P-Oval achieved by dry heating in the presence of pyrophosphate for 1, 2 and 5days by using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Two phosphorylation sites were found in natural ovalbumin, but the number of phosphorylation sites increased to 8, 8 and 10 after dry-heating phosphorylation for 1, 2 and 5days, respectively. In addition, dual-phosphorylated peptides were detected for samples without extensive heating. The phosphorylation sites were found to be mainly on Ser residues, which could be the preferred phosphorylation site for dry heating in the presence of pyrophosphate.

  7. [Regional differences in the level of ERK1/2 phosphorylation and expression of the myogenic regulatory factors following electrostimulation with different mechanic and metabolic action on the gastrocnemius muscle].

    Science.gov (United States)

    Borzykh, A A; Kuz'min, I V; Lysenko, E A; Vinogradova, O L

    2014-01-01

    Effect of high-frequency electrical stimulation of the sciatic nerve on ERK1/2 kinase phosphorylation and mRNA expression in MyoD (myogenic regulation factor) and myogenin in the red (RGM) and white (WGM) parts of the medial head in rat's m. gastrocnemius was studied. Two stimulation regimes were equalized both lengthwise and in total effort but differed in duration and number of contractions and, therefore, in mechanic and metabolic effects on the muscle. It was shown that growth of the number of phosphorylated ERK1/2 was particularly high in WCM due to application of the protocol for multiple short-time contractions. Whatever the stimulation regime, MyoD mRNA expression in RGM and WGM increases to the same extent, whereas myogenin mRNA expression does not change. Consequently, the regime with the predominantly mechanic effect is favorable to activation of the ERK signaling pathway in glycolytic myofibers.

  8. Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions.

    Science.gov (United States)

    Bozoky, Zoltan; Krzeminski, Mickael; Muhandiram, Ranjith; Birtley, James R; Al-Zahrani, Ateeq; Thomas, Philip J; Frizzell, Raymond A; Ford, Robert C; Forman-Kay, Julie D

    2013-11-19

    Intrinsically disordered proteins play crucial roles in regulatory processes and often function as protein interaction hubs. Here, we present a detailed characterization of a full-length disordered hub protein region involved in multiple dynamic complexes. We performed NMR, CD, and fluorescence binding studies on the nonphosphorylated and highly PKA-phosphorylated human cystic fibrosis transmembrane conductance regulator (CFTR) regulatory region, a ∼200-residue disordered segment involved in phosphorylation-dependent regulation of channel trafficking and gating. Our data provide evidence for dynamic, phosphorylation-dependent, multisite interactions of various segments of the regulatory region for its intra- and intermolecular partners, including the CFTR nucleotide binding domains 1 and 2, a 42-residue peptide from the C terminus of CFTR, the SLC26A3 sulphate transporter and antisigma factor antagonist (STAS) domain, and 14-3-3β. Because of its large number of binding partners, multivalent binding of individually weak sites facilitates rapid exchange between free and bound states to allow the regulatory region to engage with different partners and generate a graded or rheostat-like response to phosphorylation. Our results enrich the understanding of how disordered binding segments interact with multiple targets. We present structural models consistent with our data that illustrate this dynamic aspect of phospho-regulation of CFTR by the disordered regulatory region.

  9. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Lindemose, Søren; Jensen, Michael Krogh; de Velde, Jan Van

    2014-01-01

    regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application...... of complementary functional genomics filters, makes it possible to translate, for each TF, protein binding microarray data into a set of high-quality target genes. With this approach, we confirm NAC target genes reported from independent in vivo analyses. We emphasize that candidate target gene sets together......Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve...

  10. Multistep phosphorylation systems: tunable components of biological signaling circuits.

    Science.gov (United States)

    Valk, Evin; Venta, Rainis; Ord, Mihkel; Faustova, Ilona; Kõivomägi, Mardo; Loog, Mart

    2014-11-05

    Multisite phosphorylation of proteins is a powerful signal processing mechanism that plays crucial roles in cell division and differentiation as well as in disease. We recently demonstrated a novel phenomenon in cell cycle regulation by showing that cyclin-dependent kinase-dependent multisite phosphorylation of a crucial substrate is performed sequentially in the N-to-C terminal direction along the disordered protein. The process is controlled by key parameters, including the distance between phosphorylation sites, the distribution of serines and threonines in sites, and the position of docking motifs. According to our model, linear patterns of phosphorylation along disordered protein segments determine the signal-response function of a multisite phosphorylation switch. Here we discuss the general advantages and engineering principles of multisite phosphorylation networks as processors of kinase signals. We also address the idea of using the mechanistic logic of linear multisite phosphorylation networks to design circuits for synthetic biology applications.

  11. Mapping the UDP-N-acetylglucosamine regulatory site of human glucosamine-6P synthase by saturation-transfer difference NMR and site-directed mutagenesis.

    Science.gov (United States)

    Assrir, Nadine; Richez, Celine; Durand, Philippe; Guittet, Eric; Badet, Bernard; Lescop, Ewen; Badet-Denisot, Marie-Ange

    2014-02-01

    The enzyme glucosamine-6P Synthase (Gfat, L-glutamine:D-fructose-6P amidotransferase) is involved in the hexosamine biosynthetic pathway and catalyzes the formation of glucosamine-6P from the substrates d-fructose-6-phosphate and l-glutamine. In eukaryotic cells, Gfat is inhibited by UDPGlcNAc, the end product of the biochemical pathway. In this work we present the dissection of the binding and inhibition properties of this feedback inhibitor and of its fragments by a combination of STD-NMR experiments and inhibition measurements on the wild type human enzyme (hGfat) as well as on site-directed mutants. We demonstrate that the UDPGlcNAc binding site is located in the isomerase domain of hGfat. Two amino acid residues (G445 and G461) located at the bottom of the binding site are identified to play a key role in the specificity of UDPGlcNAc inhibition of hGfat activity vs its bacterial Escherichia coli counterpart. We also show that UDPGlcNAc subcomponents have distinct features: the nucleotidic moiety is entirely responsible for binding whereas the N-acetyl group is mandatory for inhibition but not for binding, and the sugar moiety acts as a linker between the nucleotidic and N-acetyl groups. Combining these structural recognition determinants therefore appears as a promising strategy to selectively inhibit hGfat, which may for example help reduce complications in diabetes.

  12. Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments.

    LENUS (Irish Health Repository)

    Yates, Darran M

    2009-04-01

    Neurofilaments are the intermediate filaments of neurons and are synthesised in neuronal cell bodies and then transported through axons. Neurofilament light chain (NFL) is a principal component of neurofilaments, and phosphorylation of NFL head domain is believed to regulate the assembly of neurofilaments. However, the role that NFL phosphorylation has on transport of neurofilaments is poorly understood. To address this issue, we monitored axonal transport of phosphorylation mutants of NFL. We mutated four known phosphorylation sites in NFL head domain to either preclude phosphorylation, or mimic permanent phosphorylation. Mutation to preclude phosphorylation had no effect on transport but mutation of three sites to mimic permanent phosphorylation inhibited transport. Mutation of all four sites together to mimic permanent phosphorylation proved especially potent at inhibiting transport and also disrupted neurofilament assembly. Our results suggest that NFL head domain phosphorylation is a regulator of neurofilament axonal transport.

  13. CONREAL : conserved regulatory elements anchored alignment algorithm for identification of transcription factor binding sites by phylogenetic footprinting

    NARCIS (Netherlands)

    Berezikov, Eugene; Guryev, Victor; Plasterk, Ronald H A; Cuppen, Edwin

    2004-01-01

    Prediction of transcription-factor target sites in promoters remains difficult due to the short length and degeneracy of the target sequences. Although the use of orthologous sequences and phylogenetic footprinting approaches may help in the recognition of conserved and potentially functional sequen

  14. Single molecule studies of force-induced S2 site exposure in the mammalian Notch negative regulatory domain.

    Science.gov (United States)

    Ploscariu, Nicoleta; Kuczera, Krzysztof; Malek, Katarzyna E; Wawrzyniuk, Magdalena; Dey, Ashim; Szoszkiewicz, Robert

    2014-05-08

    Notch signaling in metazoans is responsible for key cellular processes related to embryonic development and tissue homeostasis. Proteolitic cleavage of the S2 site within an extracellular NRR domain of Notch is a key early event in Notch signaling. We use single molecule force-extension (FX) atomic force microscopy (AFM) to study force-induced exposure of the S2 site in the NRR domain from mouse Notch 1. Our FX AFM measurements yield a histogram of N-to-C termini lengths, which we relate to conformational transitions within the NRR domain. We detect four classes of such conformational transitions. From our steered molecular dynamics (SMD) results, we associate first three classes of such events with the S2 site exposure. AFM experiments yield their mean unfolding forces as 69 ± 42, 79 ± 45, and 90 ± 50 pN, respectively, at 400 nm/s AFM pulling speeds. These forces are matched by the SMD results recalibrated to the AFM force loading rates. Next, we provide a conditional probability analysis of the AFM data to support the hypothesis that a whole sequence of conformational transitions within those three clases is the most probable pathway for the force-induced S2 site exposure. Our results support the hypothesis that force-induced Notch activation requires ligand binding to exert mechanical force not in random but in several strokes and over a substantial period of time.

  15. Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pultz, Dennis; Bennetzen, Martin V; Rødkær, Steven Vestergaard

    2012-01-01

    Synthesis, degradation, and metabolism of fatty acids are strictly coordinated to meet the nutritional and energetic needs of cells and organisms. In the absence of exogenous fatty acids, proliferation and growth of the yeast Saccharomyces cerevisiae depends on endogenous synthesis of fatty acids...... identified as being regulated in a temporal manner in response to inhibition of fatty acid synthesis by cerulenin. By bioinformatic analysis of these phosphorylation events, we have identified the cell cycle kinases Cdc28 and Pho85, the PAK kinase Ste20 as well as the protein kinase Sch9 as central mediators...

  16. A PLC-γ1 Feedback Pathway Regulates Lck Substrate Phosphorylation at the T-Cell Receptor and SLP-76 Complex.

    Science.gov (United States)

    Belmont, Judson; Gu, Tao; Mudd, Ashley; Salomon, Arthur R

    2017-08-04

    Phospholipase C gamma 1 (PLC-γ1) occupies a critically important position in the T-cell signaling pathway. While its functions as a regulator of both Ca(2+) signaling and PKC-family kinases are well characterized, PLC-γ1's role in the regulation of early T-cell receptor signaling events is incompletely understood. Activation of the T-cell receptor leads to the formation of a signalosome complex between SLP-76, LAT, PLC-γ1, Itk, and Vav1. Recent studies have revealed the existence of both positive and negative feedback pathways from SLP-76 to the apical kinase in the pathway, Lck. To determine if PLC-γ1 contributes to the regulation of these feedback networks, we performed a quantitative phosphoproteomic analysis of PLC-γ1-deficient T cells. These data revealed a previously unappreciated role for PLC-γ1 in the positive regulation of Zap-70 and T-cell receptor tyrosine phosphorylation. Conversely, PLC-γ1 negatively regulated the phosphorylation of SLP-76-associated proteins, including previously established Lck substrate phosphorylation sites within this complex. While the positive and negative regulatory phosphorylation sites on Lck were largely unchanged, Tyr(192) phosphorylation was elevated in Jgamma1. The data supports a model wherein Lck's targeting, but not its kinase activity, is altered by PLC-γ1, possibly through Lck Tyr(192) phosphorylation and increased association of the kinase with protein scaffolds SLP-76 and TSAd.

  17. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, Kazuyasu [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan); Kimura, Yukihiro [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Honjoh, Chisato [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Third Department of Internal Medicine, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Yamauchi, Shota; Takeuchi, Kenji [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan); Sada, Kiyonao, E-mail: ksada@u-fukui.ac.jp [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan)

    2014-03-10

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 446} in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr{sup 183} and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 426} of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr{sup 426} is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr{sup 426} was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr{sup 426} following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation.

  18. Effects of Phosphorylation of β Subunits of Phycocyanins on State Transition in the Model Cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Chen, Zhuo; Zhan, Jiao; Chen, Ying; Yang, Mingkun; He, Chenliu; Ge, Feng; Wang, Qiang

    2015-10-01

    Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a model cyanobacterium and has been used extensively for studies concerned with photosynthesis and environmental adaptation. Although dozens of protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted, only a few substrate proteins are known in Synechocystis. In this study, we report 194 in vivo phosphorylation sites from 149 proteins in Synechocystis, which were identified using a combination of peptide pre-fractionation, TiO(2) enrichment and liquid chromatograpy-tandem mass spectrometry (LC-MS/MS) analysis. These phosphorylated proteins are implicated in diverse biological processes, such as photosynthesis. Among all identified phosphoproteins involved in photosynthesis, the β subunits of phycocyanins (CpcBs) were found to be phosphorylated on Ser22, Ser49, Thr94 and Ser154. Four non-phosphorylated mutants were constructed by using site-directed mutagenesis. The in vivo characterization of the cpcB mutants showed a slower growth under high light irradiance and displayed fluorescence quenching to a lower level and less efficient energy transfer inside the phycobilisome (PBS). Notably, the non-phosphorylated mutants exhibited a slower state transition than the wild type. The current results demonstrated that the phosphorylation status of CpcBs affects the energy transfer and state transition of photosynthesis in Synechocystis. This study provides novel insights into the molecular mechanisms of protein phosphorylation in the regulation of photosynthesis in cyanobacteria and may facilitate the elucidation of the entire regulatory network by linking kinases to their physiological substrates. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Characterisation of multiple regulatory domains spanning the major transcriptional start site of the FUS gene, a candidate gene for motor neurone disease.

    Science.gov (United States)

    Khursheed, Kejhal; Wilm, Thomas P; Cashman, Christine; Quinn, John P; Bubb, Vivien J; Moss, Diana J

    2015-01-21

    Fused-In-Sarcoma (FUS) is a candidate gene for neurological disorders including motor neurone disease and Parkinson׳s disease in addition to various types of cancer. Recently it has been reported that over expression of FUS causes motor neurone disease in mouse models hence mutations leading to changes in gene expression may contribute to the development of neurodegenerative disease. Genome evolutionary conservation was used to predict important cis-acting DNA regulators of the FUS gene promoter that direct transcription. The putative regulators identified were analysed in reporter gene assays in cells and in chick embryos. Our analysis indicated in addition to regulatory domains 5' of the transcriptional start site an important regulatory domain resides in intron 1 of the gene itself. This intronic domain functioned both in cell lines and in vivo in the neural tube of the chick embryo including developing motor neurones. Our data suggest the interaction of multiple domains including intronic domains are involved in expression of FUS. A better understanding of the regulation of expression of FUS may give insight into how its stimulus inducible expression may be associated with neurological disorders.

  20. Mapping the ribosomal protein S7 regulatory binding site on mRNA of the E. coli streptomycin operon.

    Science.gov (United States)

    Surdina, A V; Rassokhin, T I; Golovin, A V; Spiridonova, V A; Kopylov, A M

    2010-07-01

    In this work it is shown by deletion analysis that an intercistronic region (ICR) approximately 80 nucleotides in length is necessary for interaction with recombinant E. coli S7 protein (r6hEcoS7). A model is proposed for the interaction of S7 with two ICR sites-region of hairpin bifurcations and Shine-Dalgarno sequence of cistron S7. A de novo RNA binding site for heterologous S7 protein of Thermus thermophilus (r6hTthS7) was constructed by selection of a combinatorial RNA library based on E. coli ICR: it has only a single supposed protein recognition site in the region of bifurcation. The SERW technique was used for selection of two intercistronic RNA libraries in which five nucleotides of a double-stranded region, adjacent to the bifurcation, had the randomized sequence. One library contained an authentic AG (-82/-20) pair, while in the other this pair was replaced by AU. A serwamer capable of specific binding to r6hTthS7 was selected; it appeared to be the RNA68 mutant with eight nucleotide mutations. The serwamer binds to r6hTthS7 with the same affinity as homologous authentic ICR of str mRNA binds to r6hEcoS7; apparent dissociation constants are 89 +/- 43 and 50 +/- 24 nM, respectively.

  1. Mechanism of phosphoryl transfer and protein-protein interaction in the PTS system-an NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, P.; Klevit, R.E. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    HPr and Enzyme IIA{sup Glc} are two of the components of the bacterial PTS (phosphoenolpyruvate: sugar phosphotranferase system) and are involved in the phosphorylation and concomitant translocation of sugars across the membrane. These PTS protein complexes also regulate sugar transport. HPr, phosphorylated at a histidine N1 site by Enzyme I and phosphoenol pyruvate, transfers the phosphoryl group to a histidine N3 position in Enzyme IIA{sup Glc}. HPrs from Gram-positive bacteria undergo regulatory phosphorylation at Ser{sup 46}, whereby phosphorylation of the histidine residue is inhibited. Conversely, histidine phosphorylation inhibits phosphorylation at Ser{sup 46}. HPrs from Gram-negative bacteria possess a serine residue at position 46, but do not undergo regulatory phosphorylation. HPr forms an open-faced sandwich structure with a four-strand S-sheet and 2 to 3 helices lying on top of the sheet. The active-site histidine and Ser{sup 46} occur in conformationally flexible regions. P-His-HPr from the Gram-positive bacterium Bacillus subtilus has been investigated by both homonuclear and heteronuclear two-dimensional and three-dimensional NMR experiments using an in-situ enzymatic regeneration system to maintain a constant level of P-His-HPr. The results show that localized conformational changes occur in the vicinity of the active-site histidine and also near Ser{sup 46}. HPr-Enzyme IIA{sup Glc} complexes from both Bacillus subtilis and Gram-negative Escherichia coli were also studied by a variety of {sup 15}N-edited two-dimensional NMR experiments, which were performed on uniformly {sup 15}N-labeled HPr complexed to unlabeled Enzyme IIA{sup Glc}. The complex is in fast exchange with a molecular weight of about 27 kDa. The focus of our work is to assess the changes undergone by HPr (the smaller of the two components), and so all the experiments were performed with excess Enzyme IIA present in the system.

  2. Fibronectin phosphorylation by ecto-protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru (Meiji Institute of Health Science, Odawara (Japan))

    1988-12-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with ({gamma}-{sup 32})ATP for 10 min at 37{degree}C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with ({gamma}-{sup 32}P)ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.

  3. The role of eNOS phosphorylation in causing drug-induced vascular injury.

    Science.gov (United States)

    Tobin, Grainne A McMahon; Zhang, Jun; Goodwin, David; Stewart, Sharron; Xu, Lin; Knapton, Alan; González, Carlos; Bancos, Simona; Zhang, Leshuai; Lawton, Michael P; Enerson, Bradley E; Weaver, James L

    2014-06-01

    Previously we found that regulation of eNOS is an important part of the pathogenic process of Drug-induced vascular injury (DIVI) for PDE4i. The aims of the current study were to examine the phosphorylation of eNOS in mesentery versus aorta at known regulatory sites across DIVI-inducing drug classes and to compare changes across species. We found that phosphorylation at S615 in rats was elevated 35-fold 2 hr after the last dose of CI-1044 in mesentery versus 3-fold in aorta. Immunoprecipitation studies revealed that many of the upstream regulators of eNOS activation were associated with eNOS in 1 or more signalosome complexes. Next rats were treated with drugs from 4 other classes known to cause DIVI. Each drug was given alone and in combination with SIN-1 (NO donor) or L-NAME (eNOS inhibitor), and the level of eNOS phosphorylation in mesentery and aorta tissue was correlated with the extent of vascular injury and measured serum nitrite. Drugs or combinations produced altered serum nitrite levels as well as vascular injury score in the mesentery. The results suggested that phosphorylation of S615 may be associated with DIVI activity. Studies with the species-specific A2A adenosine agonist CI-947 in rats versus primates showed a similar pattern.

  4. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.

    Science.gov (United States)

    Hosseinpour, Batool; Bakhtiarizadeh, Mohammad Reza; Khosravi, Pegah; Ebrahimie, Esmaeil

    2013-12-01

    Self-proliferation and differentiation into distinct cell types have been made stem cell as a promising target for regenerative medicine. Several key genes can regulate self-renewal and pluripotency of embryonic stem cells (hESCs). They work together and build a transcriptional hierarchy. Coexpression and coregulation of genes control by common regulatory elements on the promoter regions. Consequently, distinct organization and combination of transcription factor binding sites (TFBSs modules) on promoter regions, in view of order and distance, lead to a common specific expression pattern within a set of genes. To gain insights into transcriptional regulation of hESCs, we selected promoter regions of eleven common expressed hESC genes including SOX2, LIN28, STAT3, NANOG, LEFTB, TDGF1, POU5F1, FOXD3, TERF1, REX1 and GDF3 to predict activating regulatory modules on promoters and discover key corresponding transcription factors. Then, promoter regions in human genome were explored for modules and 328 genes containing the same modules were detected. Using microarray data, we verified that 102 of 328 genes commonly upregulate in hESCs. Also, using output data of DNA-protein interaction assays, we found that 42 of all predicted genes are targets of SOX2, NANOG and POU5F1. Additionally, a protein interaction network of hESC genes was constructed based on biological processes, and interestingly, 126 downregulated genes along with upregulated ones identified by promoter analysis were predicted in the network. Based on the results, we suggest that the identified genes, coregulating with common hESC genes, represent a novel approach for gene discovery based on whole genome promoter analysis irrespective of gene expression. Altogether, promoter profiling can be used to expand hESC transcriptional regulatory circuitry by analysis of shared functional sequences between genes. This approach provides a clear image on underlying regulatory mechanism of gene expression profile and

  5. Lessons Learned from WIPP Site Characteriztion, Performance Assessment, and Regulatory Review Related to Radionuclide Migration through Water-Conducting Features

    Energy Technology Data Exchange (ETDEWEB)

    Beauheim, R.L.: Larson. K.W.

    1998-11-11

    Many lessons have been learned over the past 24 years as the Waste Isolation Pilot Plant (WIPP) project has progressed from initial site characterization to final licensing that may be of relevance to other nuclear-waste-disposal projects. These lessons pertain to the manner in which field and laboratory investigations are planned, how experiments are interpreted, how conceptual and numerical models are developed and simplified~ and how defensibility and credibility are achieved and maintained. These lessons include 1) Site characterization and performance assessment (PA) should evolve together through an iterative process, with neither activity completely dominating the other. 2) Defensibility and credibility require a much greater depth of understanding than can be represented in PA models. 3) Experimentalists should be directly involved in model and parameter abstraction and simplification for PA. 4) External expert review should be incorporated at all stages of a project~ not just after an experiment or modeling activity is completed. 5) Key individuals should be retained for the life of a project or a process must be established to transfer their working knowledge to new individuals. 6) An effective QA program needs to be stable and consistent for the duration of a project and rests on best scientific practices. All of these lessons relate to the key point that consideration must be given from the earliest planning stages to maximizing the defensibility and credibility of all work.

  6. Regulatory guidance document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) Program Management System Manual requires preparation of the OCRWM Regulatory Guidance Document (RGD) that addresses licensing, environmental compliance, and safety and health compliance. The document provides: regulatory compliance policy; guidance to OCRWM organizational elements to ensure a consistent approach when complying with regulatory requirements; strategies to achieve policy objectives; organizational responsibilities for regulatory compliance; guidance with regard to Program compliance oversight; and guidance on the contents of a project-level Regulatory Compliance Plan. The scope of the RGD includes site suitability evaluation, licensing, environmental compliance, and safety and health compliance, in accordance with the direction provided by Section 4.6.3 of the PMS Manual. Site suitability evaluation and regulatory compliance during site characterization are significant activities, particularly with regard to the YW MSA. OCRWM`s evaluation of whether the Yucca Mountain site is suitable for repository development must precede its submittal of a license application to the Nuclear Regulatory Commission (NRC). Accordingly, site suitability evaluation is discussed in Chapter 4, and the general statements of policy regarding site suitability evaluation are discussed in Section 2.1. Although much of the data and analyses may initially be similar, the licensing process is discussed separately in Chapter 5. Environmental compliance is discussed in Chapter 6. Safety and Health compliance is discussed in Chapter 7.

  7. Using a Consensus Conference to Characterize Regulatory Concerns Regarding Bioremediation of Radionuclides and Heavy Metals in Mixed Waste at DOE Sites

    Energy Technology Data Exchange (ETDEWEB)

    Denise Lach; Stephanie Sanford

    2006-09-01

    A consensus workshop was developed and convened with ten state regulators to characterize concerns regarding emerging bioremediation technology to be used to clean-up radionuclides and heavy metals in mixed wastes at US DOE sites. Two questions were explored: integrated questions: (1) What impact does participation in a consensus workshop have on the knowledge, attitudes, and practices of state regulators regarding bioremediation technology? (2) How effective is a consensus workshop as a strategy for eliciting and articulating regulators’ concerns regarding the use of bioremediation to clean up radionuclides and heavy metals in mixed wastes at U.S. Department of Energy Sites around the county? State regulators met together for five days over two months to learn about bioremediation technology and develop a consensus report of their recommendations regarding state regulatory concerns. In summary we found that panel members: - quickly grasped the science related to bioremediation and were able to effectively interact with scientists working on complicated issues related to the development and implementation of the technology; - are generally accepting of in situ bioremediation, but concerned about costs, implementation (e.g., institutional controls), and long-term effectiveness of the technology; - are concerned equally about technological and implementation issues; and - believed that the consensus workshop approach to learning about bioremediation was appropriate and useful. Finally, regulators wanted decision makers at US DOE to know they are willing to work with DOE regarding innovative approaches to clean-up at their sites, and consider a strong relationship between states and the DOE as critical to any effective clean-up. They do not want perceive themselves to be and do not want others to perceive them as barriers to successful clean-up at their sites.

  8. A Crystallographic Snapshot of Tyrosine Trans-phosphorylation in Action

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Xu, C; Ma, J; Eliseenkova, A; Li, W; Pollock, P; Pitteloud, N; Miller, W; Neubert, T; Mohammadi, M

    2008-01-01

    Tyrosine trans-phosphorylation is a key event in receptor tyrosine kinase signaling, yet, the structural basis for this process has eluded definition. Here, we present the crystal structure of the FGF receptor 2 kinases caught in the act of trans-phosphorylation of Y769, the major C-terminal phosphorylation site. The structure reveals that enzyme- and substrate-acting kinases engage each other through elaborate and specific interactions not only in the immediate vicinity of Y769 and the enzyme active site, but also in regions that are as much of 18 {angstrom} away from D626, the catalytic base in the enzyme active site. These interactions lead to an unprecedented level of specificity and precision during the trans-phosphorylation on Y769. Time-resolved mass spectrometry analysis supports the observed mechanism of trans-phosphorylation. Our data provide a molecular framework for understanding the mechanism of action of Kallmann syndrome mutations and the order of trans-phosphorylation reactions in FGFRs. We propose that the salient mechanistic features of Y769 trans-phosphorylation are applicable to trans-phosphorylation of the equivalent major phosphorylation sites in many other RTKs.

  9. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism.

    Science.gov (United States)

    Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-03-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.

  10. Apm4, the mu subunit of yeast AP-2 interacts with Pkc1, and mutation of the Pkc1 consensus phosphorylation site Thr176 inhibits AP-2 recruitment to endocytic sites

    Science.gov (United States)

    Chapa-y-Lazo, Bernardo; Ayscough, Kathryn R

    2014-01-01

    The AP-2 endocytic adaptor has been extensively characterized in mammalian cells and is considered to play a role both in cargo binding and in formation of endocytic sites. However, despite our detailed knowledge of mechanistic aspects of endocytic complex assembly and disassembly in the model organism Saccharomyces cerevisiae, no function of AP-2 had been described in wild-type yeast under normal growth conditions. A recent study however revealed that disruption of the complex caused by deletion of the gene encoding its mu subunit (APM4) caused defects in cell polarity such that responses to pheromone, nutritional status and cell wall damage were affected. Furthermore, a homozygous deletion of the mu subunit gene in Candida albicans affected its ability to grow hyphae. Direct binding to the yeast cell wall stress sensor Mid2 was detected, and in an apm4 deletion strain Mid2 showed reduced re-localization to the mother bud neck region following cell wall damage with calcofluor or to the mating projection tip. Here we demonstrate an interaction between Apm4 and the yeast cell wall integrity pathway component Pkc1 and show that mutation of the predicted Pkc1 site in the Apm4 hinge region affects recruitment of the AP-2 complex to endocytic sites. PMID:25346786

  11. Roles of “junk phosphorylation” in modulating biomolecular association of phosphorylated proteins?

    DEFF Research Database (Denmark)

    Tan, Chris Soon Heng; Jørgensen, Claus; Linding, Rune

    2010-01-01

    Protein phosphorylation dynamically regulates cellular activities in response to environmental cues. Sequence conservation analysis of recent proteome-wide phosphorylation data revealed that many previously unidentified phosphorylation sites are not well-conserved leading to the proposal that man...... evolutionary approaches to interpret physiological important sites....

  12. 对监管现场防控模式问题的思考%Thinking About the Issue of the Regulatory Site Control Mode

    Institute of Scientific and Technical Information of China (English)

    戴荣法

    2011-01-01

    监狱安全在监狱全局工作中居首要地位。罪犯现场防控必须要遵循一定的原则;其防控模式以"五大防控系统"为基本框架,以"五大重点"为罪犯现场防控的关键点,以全面落实"四大禁止措施"为监管现场防控的着力点,以民警直接管理主导罪犯现场全程管控为重要手段,以发现异常、有效处置为罪犯现场防控的核心要求。目前,现行罪犯现场防控工作存在缺陷需要创新监管措施。%The safety of the prison plays the primary, role in the overall prison work. The criminal regulatory site control must obey certain principle and its' mode is based on tile "Five Control Systems" . We should focus on the crime spot control, which means the key point is "the five key points" ; and we should take the "Four Forbidden Measures" as the focal point. The prison police should take directly management of the criminal spot, and use the full control as the important mean, and it is the nuclear requirement of the criminal spot dealt effectively. At present, the prevention and control of crime scene have defect and need creative regulatory measures.

  13. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial...... phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial...... physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein...

  14. Phosphoproteome analysis of E-coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation

    DEFF Research Database (Denmark)

    Macek, B.; Gnad, F.; Soufi, Boumediene

    2008-01-01

    we use a recently developed proteomics approach based on phosphopeptide enrichment and high accuracy MS to analyze the phosphoproteome of the model Gram-negative bacterium Escherichia coli. We report 81 phosphorylation sites on 79 E. coli proteins, with distribution of Ser/Thr/Tyr phosphorylation...... sites 68%/23%/9%. Despite their phylogenetic distance, phosphoproteomes of E. coli and B. subtilis show striking similarity in size, classes of phosphorylated proteins, and distribution of Ser/Thr/Tyr phosphorylation sites. By combining the two datasets, we created the largest phosphorylation site...

  15. Overlapping protein-binding sites within a negative regulatory element modulate the brain-preferential expression of the human HPRT gene

    Energy Technology Data Exchange (ETDEWEB)

    Rincon-Limas, D.E.; Amaya-Manzanares, E.; Nino-Rosales, M.L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    The hypoxanthine phosphoribosyltransferase (HPRT) gene, whose deficiency in humans causes the Lesch-Nyhan syndrome, is constitutively expressed at low levels in all tissues but at higher levels in the brain, the significance and mechanism of which is unknown. Towards dissecting this molecular mechanism, we have previously identified a 182 bp element (hHPRT-NE) within the 5{prime}-flanking region of the human HPRT gene which is involved not only in conferring neuronal specificity but also in repressing gene expression in non-neuronal tissues. Here we report that this element interacts with different nuclear proteins, some of which are present specifically in neuronal cells (complex I) and others of which are present in cells showing constitutive expression of the gene (complex II). In addition, we found that complex I factors are expressed in human NT2/D1 cells following induction of neuronal differentiation by retinoic acid. This finding correlates with an increase of HPRT gene transcription following neuronal differentiation, as demonstrated by RT-PCR and RNAase protection assays. We also mapped the binding sites for both complexes to a 60 bp region which, when tested by transient transfections in cultured fibroblasts, functioned as a repressor element. Methylation interference footprinting revealed a minimal unique DNA motif as the binding site for nuclear proteins from both neuronal and non-neuronal sources. Moreover, UV-crosslinking experiments showed that both complexes are formed by the association of several distinct proteins. Strikingly, site-directed mutagenesis of the footprinted region indicated that different nucleotides are essential for the association of these two complexes. These data suggest that differential formation of DNA-protein complexes at this regulatory domain could be a major determinant in the brain-preferential expression of the human HPRT gene.

  16. Compartment-Specific Phosphorylation of Squid Neurofilaments.

    Science.gov (United States)

    Grant, Philip; Pant, Harish C

    2016-01-01

    Studies of the giant axon and synapse of third-order neurons in the squid stellate ganglion have provided a vast literature on neuronal physiology and axon transport. Large neuronal size also lends itself to comparative biochemical studies of cell body versus axon. These have focused on the regulation of synthesis, assembly, posttranslational modification and function of neuronal cytoskeletal proteins (microtubules (MTs) and neurofilaments (NFs)), the predominant proteins in axoplasm. These contribute to axonal organization, stability, transport, and impulse transmission responsible for rapid contractions of mantle muscles underlying jet propulsion. Studies of vertebrate NFs have established an extensive literature on NF structure, organization, and function; studies of squid NFs, however, have made it possible to compare compartment-specific regulation of NF synthesis, assembly, and function in soma versus axoplasm. Since NFs contain over 100 eligible sites for phosphorylation by protein kinases, the compartment-specific patterns of phosphorylation have been a primary focus of biochemical studies. We have learned that NF phosphorylation is tightly compartmentalized; extensive phosphorylation occurs only in the axonal compartment in squid and in vertebrate neurons. This extensive phosphorylation plays a key role in organizing NFs, in association with microtubules (MTs), into a stable, dynamic functional lattice that supports axon growth, diameter, impulse transmission, and synaptic activity. To understand how cytoskeletal phosphorylation is topographically regulated, the kinases and phosphatases, bound to NFs isolated from cell bodies and axoplasm, have also been studied.

  17. RegPhos 2.0: an updated resource to explore protein kinase-substrate phosphorylation networks in mammals.

    Science.gov (United States)

    Huang, Kai-Yao; Wu, Hsin-Yi; Chen, Yi-Ju; Lu, Cheng-Tsung; Su, Min-Gang; Hsieh, Yun-Chung; Tsai, Chih-Ming; Lin, Kuo-I; Huang, Hsien-Da; Lee, Tzong-Yi; Chen, Yu-Ju

    2014-01-01

    Protein phosphorylation catalyzed by kinases plays crucial roles in regulating a variety of intracellular processes. Owing to an increasing number of in vivo phosphorylation sites that have been identified by mass spectrometry (MS)-based proteomics, the RegPhos, available online at http://csb.cse.yzu.edu.tw/RegPhos2/, was developed to explore protein phosphorylation networks in human. In this update, we not only enhance the data content in human but also investigate kinase-substrate phosphorylation networks in mouse and rat. The experimentally validated phosphorylation sites as well as their catalytic kinases were extracted from public resources, and MS/MS phosphopeptides were manually curated from research articles. RegPhos 2.0 aims to provide a more comprehensive view of intracellular signaling networks by integrating the information of metabolic pathways and protein-protein interactions. A case study shows that analyzing the phosphoproteome profile of time-dependent cell activation obtained from Liquid chromatography-mass spectrometry (LC-MS/MS) analysis, the RegPhos deciphered not only the consistent scheme in B cell receptor (BCR) signaling pathway but also novel regulatory molecules that may involve in it. With an attempt to help users efficiently identify the candidate biomarkers in cancers, 30 microarray experiments, including 39 cancerous versus normal cells, were analyzed for detecting cancer-specific expressed genes coding for kinases and their substrates. Furthermore, this update features an improved web interface to facilitate convenient access to the exploration of phosphorylation networks for a group of genes/proteins. Database URL: http://csb.cse.yzu.edu.tw/RegPhos2/

  18. The phosphorylation-dependent regulation of nuclear SREBP1 during mitosis links lipid metabolism and cell growth

    Science.gov (United States)

    Bengoechea-Alonso, Maria Teresa; Ericsson, Johan

    2016-01-01

    ABSTRACT The SREBP transcription factors are major regulators of lipid metabolism. Disturbances in lipid metabolism are at the core of several health issues facing modern society, including cardiovascular disease, obesity and diabetes. In addition, the role of lipid metabolism in cancer cell growth is receiving increased attention. Transcriptionally active SREBP molecules are unstable and rapidly degraded in a phosphorylation-dependent manner by Fbw7, a ubiquitin ligase that targets several cell cycle regulatory proteins for degradation. We have previously demonstrated that active SREBP1 is stabilized during mitosis. We have now delineated the mechanisms involved in the stabilization of SREBP1 in mitotic cells. This process is initiated by the phosphorylation of a specific serine residue in nuclear SREBP1 by the mitotic kinase Cdk1. The phosphorylation of this residue creates a docking site for a separate mitotic kinase, Plk1. Plk1 interacts with nuclear SREBP1 in mitotic cells and phosphorylates a number of residues in the C-terminal domain of the protein, including a threonine residue in close proximity of the Fbw7 docking site in SREBP1. The phosphorylation of these residues by Plk1 blocks the interaction between SREBP1 and Fbw7 and attenuates the Fbw7-dependent degradation of nuclear SREBP1 during cell division. Inactivation of SREBP1 results in a mitotic defect, suggesting that SREBP1 could regulate cell division. We propose that the mitotic phosphorylation and stabilization of nuclear SREBP1 during cell division provides a link between lipid metabolism and cell proliferation. Thus, the current study provides additional support for the emerging hypothesis that SREBP-dependent lipid metabolism may be important for cell growth. PMID:27579997

  19. Regulatory agencies and regulatory risk

    OpenAIRE

    Knieps, Günter; Weiß, Hans-Jörg

    2007-01-01

    The aim of this paper is to show that regulatory risk is due to the discretionary behaviour of regulatory agencies, caused by a too extensive regulatory mandate provided by the legislator. The normative point of reference and a behavioural model of regulatory agencies based on the positive theory of regulation are presented. Regulatory risk with regard to the future behaviour of regulatory agencies is modelled as the consequence of the ex ante uncertainty about the relative influence of inter...

  20. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    Science.gov (United States)

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  1. Phosphorylation of the Epstein-Barr virus nuclear antigen 2

    DEFF Research Database (Denmark)

    Grässer, F A; Göttel, S; Haiss, P

    1992-01-01

    A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK...

  2. Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2.

    Science.gov (United States)

    Gloeckner, Christian Johannes; Boldt, Karsten; von Zweydorf, Felix; Helm, Sandra; Wiesent, Ludwig; Sarioglu, Hakan; Ueffing, Marius

    2010-04-05

    Mutations in leucine-rich repeat kinase 2 (LRRK2) that increase its kinase activity associate with familial forms of Parkinson disease (PD). As phosphorylation determines the functional state of most protein kinases, we systematically mapped LRRK2 phosphorylation sites by mass spectrometry. Our analysis revealed a high degree of constitutive phosphorylation in a narrow serine-rich region preceding the LRR-domain. Allowing de novo autophosphorylation of purified LRRK2 in an in vitro autokinase assay prior to mass spectrometric analysis, we discovered multiple sites of autophosphorylation. Solely serine and threonine residues were found phosphorylated suggesting LRRK2 as a true serine threonine kinase. Autophosphorylation mainly targets the ROC GTPase domain and its clustering around the GTP binding pocket of ROC suggests cross-regulatory activity between kinase and Roc domain. In conclusion, the phosphoprotein LRRK2 functions as an autocatalytically active serine threonine kinase. Clustering of phosphosites within two discrete domains suggest that phosphorylation may regulate its biological functions in a yet unknown fashion.

  3. Phosphorylation Modulates Ameloblastin Self-assembly and Ca2+ Binding

    Directory of Open Access Journals (Sweden)

    Øystein Stakkestad

    2017-07-01

    Full Text Available Ameloblastin (AMBN, an important component of the self-assembled enamel extra cellular matrix, contains several in silico predicted phosphorylation sites. However, to what extent these sites actually are phosphorylated and the possible effects of such post-translational modifications are still largely unknown. Here we report on in vitro experiments aimed at investigating what sites in AMBN are phosphorylated by casein kinase 2 (CK2 and protein kinase A (PKA and the impact such phosphorylation has on self-assembly and calcium binding. All predicted sites in AMBN can be phosphorylated by CK2 and/or PKA. The experiments show that phosphorylation, especially in the exon 5 derived part of the molecule, is inversely correlated with AMBN self-assembly. These results support earlier findings suggesting that AMBN self-assembly is mostly dependent on the exon 5 encoded region of the AMBN gene. Phosphorylation was significantly more efficient when the AMBN molecules were in solution and not present as supramolecular assemblies, suggesting that post-translational modification of AMBN must take place before the enamel matrix molecules self-assemble inside the ameloblast cell. Moreover, phosphorylation of exon 5, and the consequent reduction in self-assembly, seem to reduce the calcium binding capacity of AMBN suggesting that post-translational modification of AMBN also can be involved in control of free Ca2+ during enamel extra cellular matrix biomineralization. Finally, it is speculated that phosphorylation can provide a functional crossroad for AMBN either to be phosphorylated and act as monomeric signal molecule during early odontogenesis and bone formation, or escape phosphorylation to be subsequently secreted as supramolecular assemblies that partake in enamel matrix structure and mineralization.

  4. Regulatory and institutional issues impending cleanup at US Department of Energy sites: Perspectives gained from an office of environmental restoration workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, W E; Gephart, J M; Gephart, R E; Quinn, R D; Stevenson, L A

    1991-05-01

    The US Department of Energy's (DOE) nuclear weapons and energy operations are conducted across a nation-wide industrial complex engaged in a variety of manufacturing, processing, testing, and research and development activities. The overall mission of DOE Office of Environmental Restoration and Waste Management (EM) is to protect workers, the public, and the environment from waste materials generated by past, current, and future DOE activities and to bring the DOE complex into compliance with all applicable laws, regulations, and agreements related to health, safety, and the environment. EM addresses this broad mandate through related and interdependent programs that include corrective actions, waste operations, environmental restoration, and technology development. The EM Office of Environmental Restoration (EM-40) recognizes the importance of implementing a complex-wide process to identify and resolve those issues that may impede progress towards site cleanup. As a first step in this process, FM-40 sponsored an exercise to identify and characterize major regulatory and institutional issues and to formulate integrated action steps towards their resolution. This report is the first product of that exercise. It is intended that the exercise described here will mark the beginning of an ongoing process of issue identification, tracking, and resolution that will benefit cleanup activities across the DOE complex.

  5. A two-component regulatory system in transcriptional control of photosystem stoichiometry: redox-dependent and sodium ion-dependent phosphoryl transfer from cyanobacterial histidine kinase Hik2 to response regulators Rre1 and RppA

    Directory of Open Access Journals (Sweden)

    Iskander Mohamed Ibrahim

    2016-02-01

    Full Text Available I hereby submit the above-titled manuscript for publication in Frontiers in Plant Science. The research reported is original and novel. No part of it is submitted for publication elsewhere.We report on regulation and interactions of a unique histidine sensor kinase, Hik2. Hik2 is found in all known cyanobacteria, but has no previously identified functional response regulator. Here we show that it transfers phosphate rapidly, in vitro, to two response regulators, termed Rre1 and RppA. Hik2 is of special importance in being indispensable to cyanobacteria, and in being the closest cyanobacterial homologue of the uniquely conserved Chloroplast Sensor Kinase (CSK, which couples photosynthetic electron transport to gene transcription. Hik2 function is so important that it has survived the transition from cyanobacterium to eukaryotic sub-cellular organelle. Hik2 is likely to be a redox sensor involved in adjustment of the stoichiometry of photosystems I and II of oxygenic photosynthesis. We show that Hik2 also responds to the specific presence of sodium ions. These regulatory controls and the bifurcated signal transduction pathway indicated by two response regulators lead to a proposal for integration of photosynthetic light-acclimation with response to salt stress.

  6. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides

    Science.gov (United States)

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.

    2016-09-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes.

  7. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.

    Science.gov (United States)

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea

    2017-04-01

    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  8. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor I with chromatin.

    Science.gov (United States)

    Jeffery, Daniel C B; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28-1 mutant and to a lesser extent in a cdc7-1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly.

  9. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor i with chromatin

    Science.gov (United States)

    Jeffery, Daniel CB; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28–1 mutant and to a lesser extent in a cdc7–1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly. PMID:25602519

  10. Protein phosphorylation in bcterial signaling and regulation

    KAUST Repository

    Mijakovic, Ivan

    2016-01-26

    In 2003, it was demonstrated for the first time that bacteria possess protein-tyrosine kinases (BY-kinases), capable of phosphorylating other cellular proteins and regulating their activity. It soon became apparent that these kinases phosphorylate a number of protein substrates, involved in different cellular processes. More recently, we found out that BY-kinases can be activated by several distinct protein interactants, and are capable of engaging in cross-phosphorylation with other kinases. Evolutionary studies based on genome comparison indicate that BY-kinases exist only in bacteria. They are non-essential (present in about 40% bacterial genomes), and their knockouts lead to pleiotropic phenotypes, since they phosphorylate many substrates. Surprisingly, BY-kinase genes accumulate mutations at an increased rate (non-synonymous substitution rate significantly higher than other bacterial genes). One direct consequence of this phenomenon is no detectable co-evolution between kinases and their substrates. Their promiscuity towards substrates thus seems to be “hard-wired”, but why would bacteria maintain such promiscuous regulatory devices? One explanation is the maintenance of BY-kinases as rapidly evolving regulators, which can readily adopt new substrates when environmental changes impose selective pressure for quick evolution of new regulatory modules. Their role is clearly not to act as master regulators, dedicated to triggering a single response, but they might rather be employed to contribute to fine-tuning and improving robustness of various cellular responses. This unique feature makes BY-kinases a potentially useful tool in synthetic biology. While other bacterial kinases are very specific and their signaling pathways insulated, BY-kinase can relatively easily be engineered to adopt new substrates and control new biosynthetic processes. Since they are absent in humans, and regulate some key functions in pathogenic bacteria, they are also very promising

  11. Phosphorylation of the Epstein-Barr virus nuclear antigen 2

    DEFF Research Database (Denmark)

    Grässer, F A; Göttel, S; Haiss, P

    1992-01-01

    A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK......-1. The CK-2 specific phosphorylation site was localized in the 140 C-terminal amino acids using a recombinant trpE-C-terminal fusion protein. In a similar experiment, the 58 N-terminal amino acids expressed as a recombinant trpE-fusion protein were not phosphorylated. Phosphorylation of a synthetic...

  12. Identification and quantitation of signal molecule-dependent protein phosphorylation

    KAUST Repository

    Groen, Arnoud J.

    2013-09-03

    Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving 15N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins). © Springer Science+Business Media New York 2013.

  13. Regulation of Ceramide Synthase by Casein Kinase 2-dependent Phosphorylation in Saccharomyces cerevisiae*

    Science.gov (United States)

    Fresques, Tara; Niles, Brad; Aronova, Sofia; Mogri, Huzefa; Rakhshandehroo, Taha; Powers, Ted

    2015-01-01

    Complex sphingolipids are important components of eukaryotic cell membranes and, together with their biosynthetic precursors, including sphingoid long chain bases and ceramides, have important signaling functions crucial for cell growth and survival. Ceramides are produced at the endoplasmic reticulum (ER) membrane by a multicomponent enzyme complex termed ceramide synthase (CerS). In budding yeast, this complex is composed of two catalytic subunits, Lac1 and Lag1, as well as an essential regulatory subunit, Lip1. Proper formation of ceramides by CerS has been shown previously to require the Cka2 subunit of casein kinase 2 (CK2), a ubiquitous enzyme with multiple cellular functions, but the precise mechanism involved has remained unidentified. Here we present evidence that Lac1 and Lag1 are direct targets for CK2 and that phosphorylation at conserved positions within the C-terminal cytoplasmic domain of each protein is required for optimal CerS activity. Our data suggest that phosphorylation of Lac1 and Lag1 is important for proper localization and distribution of CerS within the ER membrane and that phosphorylation of these sites is functionally linked to the COP I-dependent C-terminal dilysine ER retrieval pathway. Together, our data identify CK2 as an important regulator of sphingolipid metabolism, and additionally, because both ceramides and CK2 have been implicated in the regulation of cancer, our findings may lead to an enhanced understanding of their relationship in health and disease. PMID:25429105

  14. Regulation of ceramide synthase by casein kinase 2-dependent phosphorylation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fresques, Tara; Niles, Brad; Aronova, Sofia; Mogri, Huzefa; Rakhshandehroo, Taha; Powers, Ted

    2015-01-16

    Complex sphingolipids are important components of eukaryotic cell membranes and, together with their biosynthetic precursors, including sphingoid long chain bases and ceramides, have important signaling functions crucial for cell growth and survival. Ceramides are produced at the endoplasmic reticulum (ER) membrane by a multicomponent enzyme complex termed ceramide synthase (CerS). In budding yeast, this complex is composed of two catalytic subunits, Lac1 and Lag1, as well as an essential regulatory subunit, Lip1. Proper formation of ceramides by CerS has been shown previously to require the Cka2 subunit of casein kinase 2 (CK2), a ubiquitous enzyme with multiple cellular functions, but the precise mechanism involved has remained unidentified. Here we present evidence that Lac1 and Lag1 are direct targets for CK2 and that phosphorylation at conserved positions within the C-terminal cytoplasmic domain of each protein is required for optimal CerS activity. Our data suggest that phosphorylation of Lac1 and Lag1 is important for proper localization and distribution of CerS within the ER membrane and that phosphorylation of these sites is functionally linked to the COP I-dependent C-terminal dilysine ER retrieval pathway. Together, our data identify CK2 as an important regulator of sphingolipid metabolism, and additionally, because both ceramides and CK2 have been implicated in the regulation of cancer, our findings may lead to an enhanced understanding of their relationship in health and disease.

  15. Phosphorylation-independent activity of atypical response regulators of Helicobacter pylori.

    Science.gov (United States)

    Schär, Jennifer; Sickmann, Albert; Beier, Dagmar

    2005-05-01

    The genome of the gastric pathogen Helicobacter pylori harbors a remarkably low number of regulatory genes, including three and five open reading frames encoding two-component histidine kinases and response regulators, respectively, which are putatively involved in transcriptional regulation. Two of the response regulator genes, hp1043 and hp166, proved to be essential for cell growth, and inactivation of the response regulator gene hp1021 resulted in a severe growth defect, as indicated by a small-colony phenotype. The sequences of the receiver domains of response regulators HP1043 and HP1021 differ from the consensus sequence of the acidic pocket of the receiver domain which is involved in the phosphotransfer reaction from the histidine kinase to the response regulator. Using a genetic complementation system, we demonstrated that the function of response regulator HP166, which is essential for cell growth, can be provided by a mutated derivative carrying a D52N substitution at the site of phosphorylation. We found that the atypical receiver sequences of HP1043 and HP1021 are not crucial for the function of these response regulators. Phosphorylation of the receiver domains of HP1043 and HP1021 is not needed for response regulator function and may not occur at all. Thus, the phosphorylation-independent action of these regulators differs from the well-established two-component paradigm.

  16. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly

    Directory of Open Access Journals (Sweden)

    Danming Tang

    2012-09-01

    GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.

  17. dbPPT: a comprehensive database of protein phosphorylation in plants.

    Science.gov (United States)

    Cheng, Han; Deng, Wankun; Wang, Yongbo; Ren, Jian; Liu, Zexian; Xue, Yu

    2014-01-01

    As one of the most important protein post-translational modifications, the reversible phosphorylation is critical for plants in regulating a variety of biological processes such as cellular metabolism, signal transduction and responses to environmental stress. Numerous efforts especially large-scale phosphoproteome profiling studies have been contributed to dissect the phosphorylation signaling in various plants, while a large number of phosphorylation events were identified. To provide an integrated data resource for further investigations, here we present a comprehensive database of dbPPT (database of Phosphorylation site in PlanTs, at http://dbppt.biocuckoo.org), which contains experimentally identified phosphorylation sites in proteins from plants. The phosphorylation sites in dbPPT were manually curated from the literatures, whereas datasets in other public databases were also integrated. In total, there were 82,175 phosphorylation sites in 31,012 proteins from 20 plant organisms in dbPPT, presenting a larger quantity of phosphorylation sites and a higher coverage of plant species in comparison with other databases. The proportions of residue types including serine, threonine and tyrosine were 77.99, 17.81 and 4.20%, respectively. All the phosphoproteins and phosphorylation sites in the database were critically annotated. Since the phosphorylation signaling in plants attracted great attention recently, such a comprehensive resource of plant protein phosphorylation can be useful for the research community. Database URL: http://dbppt.biocuckoo.or

  18. Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system.

    Directory of Open Access Journals (Sweden)

    Grégory Baronian

    Full Text Available Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.

  19. Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system.

    Science.gov (United States)

    Baronian, Grégory; Ginda, Katarzyna; Berry, Laurence; Cohen-Gonsaud, Martin; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara; Molle, Virginie

    2015-01-01

    Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.

  20. Phosphorylation of the viral coat protein regulates RNA virus infection

    Directory of Open Access Journals (Sweden)

    Hoover HS

    2016-11-01

    Full Text Available Haley S Hoover, C Cheng Kao Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA Abstract: Coat proteins (CPs are the most abundant protein produced during a viral infection. CPs have been shown to regulate the infection processes of RNA viruses, including RNA replication and gene expression. The numerous activities of the CP in infection are likely to require regulation, possibly through posttranslational modifications. Protein posttranslational modifications are involved in signal transduction, expanding and regulating protein function, and responding to changes in the environment. Accumulating evidence suggests that phosphorylation of viral CPs is involved in the regulation of the viral infection process from enabling virion disassembly to regulation of viral protein synthesis and replication. CP phosphorylation also affects viral trafficking and virion assembly. This review focuses on the regulatory roles that phosphorylation of CPs has in the life cycle of viruses with RNA genomes. Keywords: viral capsid protein, posttranslational modification, phosphorylation, protein–RNA interaction

  1. Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Catherine Vilchèze

    2014-05-01

    Full Text Available Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown. Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele, mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that were shortened by 4-6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M. tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology. Overall, these results highlight for the first time the role of

  2. Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis.

    Science.gov (United States)

    Vilchèze, Catherine; Molle, Virginie; Carrère-Kremer, Séverine; Leiba, Jade; Mourey, Lionel; Shenai, Shubhada; Baronian, Grégory; Tufariello, Joann; Hartman, Travis; Veyron-Churlet, Romain; Trivelli, Xavier; Tiwari, Sangeeta; Weinrick, Brian; Alland, David; Guérardel, Yann; Jacobs, William R; Kremer, Laurent

    2014-05-01

    Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown. Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele, mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that were shortened by 4-6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M. tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology. Overall, these results highlight for the first time the role of Ser/Thr kinase

  3. Absolute Phosphorylation Stoichiometry Analysis by Motif-Targeting Quantitative Mass Spectrometry.

    Science.gov (United States)

    Tsai, Chia-Feng; Ku, Wei-Chi; Chen, Yu-Ju; Ishihama, Yasushi

    2017-01-01

    Direct measurement of site-specific phosphorylation stoichiometry can unambiguously distinguish whether the degree of phosphorylation is regulated by upstream kinase/phosphatase activity or by transcriptional regulation to alter protein expression level. Here, we describe a motif-targeting quantitative proteomic approach that integrates dephosphorylation, isotope tag labeling, and enzymatic kinase reaction for large-scale phosphorylation stoichiometry measurement of the human proteome.

  4. Phosphorylation Variation during the Cell Cycle Scales with Structural Propensities of Proteins

    DEFF Research Database (Denmark)

    Tyanova, S.; Frishman, D.; Cox, J.;

    2013-01-01

    of the cell division cycle we investigate how the variation of the amount of phosphorylation correlates with the protein structure in the vicinity of the modified site. We find two distinct phosphorylation site groups: intrinsically disordered regions tend to contain sites with dynamically varying levels...

  5. PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Marko Kostic

    2015-10-01

    Full Text Available Mitochondrial Ca2+ overload is a critical, preceding event in neuronal damage encountered during neurodegenerative and ischemic insults. We found that loss of PTEN-induced putative kinase 1 (PINK1 function, implicated in Parkinson disease, inhibits the mitochondrial Na+/Ca2+ exchanger (NCLX, leading to impaired mitochondrial Ca2+ extrusion. NCLX activity was, however, fully rescued by activation of the protein kinase A (PKA pathway. We further show that PKA rescues NCLX activity by phosphorylating serine 258, a putative regulatory NCLX site. Remarkably, a constitutively active phosphomimetic mutant of NCLX (NCLXS258D prevents mitochondrial Ca2+ overload and mitochondrial depolarization in PINK1 knockout neurons, thereby enhancing neuronal survival. Our results identify an mitochondrial Ca2+ transport regulatory pathway that protects against mitochondrial Ca2+ overload. Because mitochondrial Ca2+ dyshomeostasis is a prominent feature of multiple disorders, the link between NCLX and PKA may offer a therapeutic target.

  6. Characterization of serine 916 as an in vivo autophosphorylation site for protein kinase D/Protein kinase Cmu.

    Science.gov (United States)

    Matthews, S A; Rozengurt, E; Cantrell, D

    1999-09-10

    Activation of the serine kinase protein kinase D (PKD)/PKCmicro is controlled by the phosphorylation of two serine residues within its activation loop via a PKC-dependent signaling cascade. In this study we have identified the C-terminal serine 916 residue as an in vivo phosphorylation site within active PKD/PKCmu. An antibody that recognized PKD/PKCmu proteins specifically phosphorylated on the serine 916 residue was generated and used to show that phosphorylation of Ser-916 is induced by phorbol ester treatment of cells. Thus, the pS916 antibody is a useful tool to study the regulation of PKD/PKCmu activity in vivo. Antigen receptor ligation of T and B lymphocytes also induced phosphorylation of the serine 916 residue of PKD/PKCmu. Furthermore the regulatory FcgammaRIIB receptor, which mediates vital negative feedback signals to the B cell antigen receptor complex, inhibited the antigen receptor-induced activation and serine 916 phosphorylation of PKD/PKCmu. The degree of serine 916 phosphorylation during lymphocyte activation and inhibition exactly correlated with the activation status of PKD/PKCmu. Moreover, using different mutants of PKD/PKCmu, we show that serine 916 is not trans-phosphorylated by an upstream kinase but is rather an autophosphorylation event that occurs following activation of PKD/PKCmu.

  7. Phosphorylation of Astrin Regulates Its Kinetochore Function.

    Science.gov (United States)

    Chung, Hee Jin; Park, Ji Eun; Lee, Nam Soo; Kim, Hongtae; Jang, Chang-Young

    2016-08-19

    The error-free segregation of chromosomes, which requires the precisely timed search and capture of chromosomes by spindles during early mitotic and meiotic cell division, is responsible for genomic stability and is achieved by the spindle assembly checkpoint in the metaphase-anaphase transition. Mitotic kinases orchestrate M phase events, such as the reorganization of cell architecture and kinetochore (KT) composition with the exquisite phosphorylation of mitotic regulators, to ensure timely and temporal progression. However, the molecular mechanisms underlying the changes of KT composition for stable spindle attachment during mitosis are poorly understood. Here, we show that the sequential action of the kinase Cdk1 and the phosphatase Cdc14A control spindle attachment to KTs. During prophase, the mitotic spindle protein Spag5/Astrin is transported into centrosomes by Kinastrin and phosphorylated at Ser-135 and Ser-249 by Cdk1, which, in prometaphase, is loaded onto the spindle and targeted to KTs. We also demonstrate that Cdc14A dephosphorylates Astrin, and therefore the overexpression of Cdc14A sequesters Astrin in the centrosome and results in aberrant chromosome alignment. Mechanistically, Plk1 acts as an upstream kinase for Astrin phosphorylation by Cdk1 and targeting phospho-Astrin to KTs, leading to the recruitment of outer KT components, such as Cenp-E, and the stable attachment of spindles to KTs. These comprehensive findings reveal a regulatory circuit for protein targeting to KTs that controls the KT composition change of stable spindle attachment and chromosome integrity.

  8. Structural and regulatory elements of HCV NS5B polymerase--β-loop and C-terminal tail--are required for activity of allosteric thumb site II inhibitors.

    Directory of Open Access Journals (Sweden)

    Sarah E Boyce

    Full Text Available Elucidation of the mechanism of action of the HCV NS5B polymerase thumb site II inhibitors has presented a challenge. Current opinion holds that these allosteric inhibitors stabilize the closed, inactive enzyme conformation, but how this inhibition is accomplished mechanistically is not well understood. Here, using a panel of NS5B proteins with mutations in key regulatory motifs of NS5B--the C-terminal tail and β-loop--in conjunction with a diverse set of NS5B allosteric inhibitors, we show that thumb site II inhibitors possess a distinct mechanism of action. A combination of enzyme activity studies and direct binding assays reveals that these inhibitors require both regulatory elements to maintain the polymerase inhibitory activity. Removal of either element has little impact on the binding affinity of thumb site II inhibitors, but significantly reduces their potency. NS5B in complex with a thumb site II inhibitor displays a characteristic melting profile that suggests stabilization not only of the thumb domain but also the whole polymerase. Successive truncations of the C-terminal tail and/or removal of the β-loop lead to progressive destabilization of the protein. Furthermore, the thermal unfolding transitions characteristic for thumb site II inhibitor-NS5B complex are absent in the inhibitor-bound constructs in which interactions between C-terminal tail and β-loop are abolished, pointing to the pivotal role of both regulatory elements in communication between domains. Taken together, a comprehensive picture of inhibition by compounds binding to thumb site II emerges: inhibitor binding provides stabilization of the entire polymerase in an inactive, closed conformation, propagated via coupled interactions between the C-terminal tail and β-loop.

  9. Possible dual regulatory circuits involving AtS6K1 in the regulation of plant cell cycle and growth.

    Science.gov (United States)

    Shin, Yun-jeong; Kim, Sunghan; Du, Hui; Choi, Soonyoung; Verma, Desh Pal S; Cheon, Choong-Ill

    2012-05-01

    The role of Arabidopsis S6 Kinase 1 (AtS6K1), a downstream target of TOR kinase, in controlling plant growth and ribosome biogenesis was characterized after generating transgenic plants expressing AtS6K1 under auxin-inducible promoter. Down regulation of selected cell cycle regulatory genes upon auxin treatment was observed in the transgenic plants, confirming the negative regulatory role of AtS6K1 in the plant cell cycle progression reported earlier. Callus tissues established from these transgenic plants grew to larger cell masses with more number of enlarged cells than untransformed control, demonstrating functional implication of AtS6K1 in the control of plant cell size. The observed negative correlation between the expression of AtS6K1 and the cell cycle regulatory genes, however, was completely reversed in protoplasts generated from the transgenic plants expressing AtS6K1, suggesting a possible existence of dual regulatory mechanism of the plant cell cycle regulation mediated by AtS6K1. An alternative method of kinase assay, termed "substrate-mediated kinase pull down", was employed to examine the additional phosphorylation on other domains of AtS6K1 and verified the phosphorylation of both amino- and carboxy-terminal domains, which is a novel finding regarding the phosphorylation target sites on plant S6Ks by upstream regulatory kinases. In addition, this kinase assay under the stress conditions revealed the salt- and sugar-dependencies of AtS6K1 phosphorylations.

  10. Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM.

    Science.gov (United States)

    Zhou, Yi; Lee, Ji-Hoon; Jiang, Wenxia; Crowe, Jennie L; Zha, Shan; Paull, Tanya T

    2017-01-05

    Ataxia-telangiectasia mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice.

  11. Phosphorylation of ATPase subunits of the 26S proteasome.

    Science.gov (United States)

    Mason, G G; Murray, R Z; Pappin, D; Rivett, A J

    1998-07-01

    The 26S proteasome complex plays a major role in the non-lysosomal degradation of intracellular proteins. Purified 26S proteasomes give a pattern of more than 40 spots on 2D-PAGE gels. The positions of subunits have been identified by mass spectrometry of tryptic peptides and by immunoblotting with subunit-specific antipeptide antibodies. Two-dimensional polyacrylamide gel electrophoresis of proteasomes immunoprecipitated from [32P]phosphate-labelled human embryo lung L-132 cells revealed the presence of at least three major phosphorylated polypeptides among the regulatory subunits as well as the C8 and C9 components of the core 20S proteasome. Comparison with the positions of the regulatory polypeptides revealed a minor phosphorylated form to be S7 (MSS1). Antibodies against S4, S6 (TBP7) and S12 (MOV34) all cross-reacted at the position of major phosphorylated polypeptides suggesting that several of the ATPase subunits may be phosphorylated. The phosphorylation of S4 was confirmed by double immunoprecipitation experiments in which 26S proteasomes were immunoprecipitated as above and dissociated and then S4 was immunoprecipitated with subunit-specific antibodies. Antibodies against the non-ATPase subunit S10, which has been suggested by others to be phosphorylated, did not coincide with the position of a phosphorylated polypeptide. Some differences were observed in the 2D-PAGE pattern of proteasomes immunoprecipitated from cultured cells compared to purified rat liver 26S proteasomes suggesting possible differences in subunit compositions of 26S proteasomes.

  12. Phosphorylation of proteins during human myometrial contractions: A phosphoproteomic approach.

    Science.gov (United States)

    Hudson, Claire A; López Bernal, Andrés

    2017-01-22

    Phasic myometrial contractility is a key component of human parturition and the contractions are driven by reversible phosphorylation of myosin light chains catalyzed by the calcium (Ca(2+))-dependent enzyme myosin light chain kinase (MYLK). Other yet unknown phosphorylation or de-phosphorylation events may contribute to myometrial contraction and relaxation. In this study we have performed a global phosphoproteomic analysis of human myometrial tissue using tandem mass tagging to detect changes in the phosphorylation status of individual myometrial proteins during spontaneous and oxytocin-driven phasic contractions. We were able to detect 22 individual phosphopeptides whose relative ratio changed (fold > 2 or contraction. The most significant changes in phosphorylation were to MYLK on serine 1760, a site associated with reductions in calmodulin binding and subsequent kinase activity. Phosphorylated MYLK (ser1760) increased significantly during spontaneous (9.83 ± 3.27 fold, P contractions and we were able to validate these data using immunoblotting. Pathway analysis suggested additional proteins involved in calcium signalling, cGMP-PRKG signalling, adrenergic signalling and oxytocin signalling were also phosphorylated during contractions. This study demonstrates that a global phosphoproteomic analysis of myometrial tissue is a sensitive approach to detect changes in the phosphorylation of proteins during myometrial contractions, and provides a platform for further validation of these changes and for identification of their functional significance.

  13. Phosphorylation of the Goodpasture antigen by type A protein kinases.

    Science.gov (United States)

    Revert, F; Penadés, J R; Plana, M; Bernal, D; Johansson, C; Itarte, E; Cervera, J; Wieslander, J; Quinones, S; Saus, J

    1995-06-02

    Collagen IV is the major component of basement membranes. The human alpha 3 chain of collagen IV contains an antigenic domain called the Goodpasture antigen that is the target for the circulating immunopathogenic antibodies present in patients with Goodpasture syndrome. Characteristically, the gene region encoding the Goodpasture antigen generates multiple alternative products that retain the antigen amino-terminal region with a five-residue motif (KRGDS). The serine therein appears to be the major in vitro cAMP-dependent protein kinase phosphorylation site in the isolated antigen and can be phosphorylated in vitro by two protein kinases of approximately 50 and 41 kDa associated with human kidney plasma membrane, suggesting that it can also be phosphorylated in vivo. Consistent with this, the Goodpasture antigen is isolated from human kidney in phosphorylated and non-phosphorylated forms and only the non-phosphorylated form is susceptible to phosphorylation in vitro. Since this motif is exclusive to the human alpha 3(IV) chain and includes the RGD cell adhesion motif, its phosphorylation might play a role in pathogenesis and influence cell attachment to basement membrane.

  14. Protein tyrosine phosphorylation in streptomycetes.

    Science.gov (United States)

    Waters, B; Vujaklija, D; Gold, M R; Davies, J

    1994-07-01

    Using phosphotyrosine-specific antibodies, we demonstrate that in several Streptomyces spp. a variety of proteins are phosphorylated on tyrosine residues. Tyrosine phosphorylation was found in a number of Streptomyces species including Streptomyces lividans, Streptomyces hygroscopicus and Streptomyces lavendulae. Each species exhibited a unique pattern of protein tyrosine phosphorylation. Moreover, the patterns of tyrosine phosphorylation varied during the growth phase and were also influenced by culture conditions. We suggest that metabolic shifts during the complex growth cycle of these filamentous bacteria, and possibly secondary metabolic pathways, may be controlled by the action of protein tyrosine kinases and phosphatases, as has been demonstrated in signal transduction pathways in eukaryotic organisms.

  15. Vasopressin regulation of multisite phosphorylation of UT-A1 in the inner medullary collecting duct.

    Science.gov (United States)

    Hoban, Carol A; Black, Lauren N; Ordas, Ronald J; Gumina, Diane L; Pulous, Fadi E; Sim, Jae H; Sands, Jeff M; Blount, Mitsi A

    2015-01-01

    Vasopressin signaling is critical for the regulation of urea transport in the inner medullary collecting duct (IMCD). Increased urea permeability is driven by a vasopressin-mediated elevation of cAMP that results in the direct phosphorylation of urea transporter (UT)-A1. The identification of cAMP-sensitive phosphorylation sites, Ser(486) and Ser(499), in the rat UT-A1 sequence was the first step in understanding the mechanism of vasopressin action on the phosphorylation-dependent modulation of urea transport. To investigate the significance of multisite phosphorylation of UT-A1 in response to elevated cAMP, we used highly specific and sensitive phosphosite antibodies to Ser(486) and Ser(499) to determine cAMP action at each phosphorylation site. We found that phosphorylation at both sites was rapid and sustained. Furthermore, the rate of phosphorylation of the two sites was similar in both mIMCD3 cells and rat inner medullary tissue. UT-A1 localized to the apical membrane in response to vasopressin was phosphorylated at Ser(486) and Ser(499). We confirmed that elevated cAMP resulted in increased phosphorylation of both sites by PKA but not through the vasopressin-sensitive exchange protein activated by cAMP pathway. These results elucidate the multisite phosphorylation of UT-A1 in response to cAMP, thus providing the beginning of understanding the intracellular factors underlying vasopressin stimulation of urea transport in the IMCD.

  16. Protein phosphorylation and its role in archaeal signal transduction.

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C; Albers, Sonja-Verena; Siebers, Bettina

    2016-09-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies.

  17. Phosphorylation of rat aquaporin-4 at Ser(111) is not required for channel gating

    DEFF Research Database (Denmark)

    Assentoft, Mette; Kaptan, Shreyas; Fenton, Robert A

    2013-01-01

    of a phosphorylation of AQP4.Ser(111) recorded no phosphorylation-induced change in water permeability. A phospho-specific antibody, exclusively recognizing AQP4 when phosphorylated on Ser(111) , failed to detect phosphorylation in cell lysate of rat brain stimulated by conditions proposed to induce phosphorylation...... is therefore of therapeutic interest. Phosphorylation of some aquaporins has been proposed to regulate their water permeability via gating of the channel itself. Protein kinase (PK)-dependent phosphorylation of Ser(111) has been reported to increase the water permeability of AQP4 expressed in an astrocytic...... cell line. This possibility was, however, questioned based on the crystal structure of the human AQP4. Our study aimed to resolve if Ser(111) was indeed a site involved in phosphorylation-mediated gating of AQP4. The water permeability of AQP4-expressing Xenopus oocytes was not altered by a range...

  18. Protein Synthesis Initiation Factors: Phosphorylation and Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning

    2009-06-15

    The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

  19. Prediction of regulatory elements

    DEFF Research Database (Denmark)

    Sandelin, Albin

    2008-01-01

    Finding the regulatory mechanisms responsible for gene expression remains one of the most important challenges for biomedical research. A major focus in cellular biology is to find functional transcription factor binding sites (TFBS) responsible for the regulation of a downstream gene. As wet-lab...

  20. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Vermont. Preliminary background report

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the Vermont Public Service Board (PSC). The PSB is comprised of three members appointed by the governor with the advice and consent of the senate. PSB members serve six year terms. Members must be free from any employment or pecuniary interests in any company subject to the supervision of the PSB. Local governments retain little regulatory authority over public utilities. Local governments are responsible for regulating the use of streets and other public property, but any person aggrieved by a local decision may appeal to the PSB within thirty days. The PSB is to review the local action at a public hearing and its decision is final. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  1. Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training

    DEFF Research Database (Denmark)

    Vind, B. F.; Pehmøller, Christian; Treebak, Jonas Thue

    2011-01-01

    AIMS/HYPOTHESIS: Insulin-mediated glucose disposal rates (R (d)) are reduced in type 2 diabetic patients, a process in which intrinsic signalling defects are thought to be involved. Phosphorylation of TBC1 domain family, member 4 (TBC1D4) is at present the most distal insulin receptor signalling...... mU min(-1) m(-2)) clamp, we obtained M. vastus lateralis biopsies from 13 obese type 2 diabetic and 13 obese, non-diabetic control individuals before and after 10 weeks of endurance exercise-training. RESULTS: Before training, reductions in insulin-stimulated R (d), together with impaired insulin...

  2. Phosphorylation of chicken growth hormone

    Energy Technology Data Exchange (ETDEWEB)

    Aramburo, C.; Montiel, J.L. (Universidad Nacional Autonoma de Mexico (Mexico)); Donoghue, D.; Scanes, C.G. (Rutgers Univ., New Brunswick, NJ (USA)); Berghman, L.R. (Laboratory for Neuroendocrinology and Immunological Biotechnology, Louvain (Belgium))

    1990-01-01

    The possibility that chicken growth hormone (cGH) can be phosphorylated has been examined. Both native and biosynthetic cGH were phosphorylated by cAMP-dependent protein kinase (and {gamma}-{sup 32}P-ATP). The extent of phosphorylation was however less than that observed with ovine prolactin. Under the conditions employed, glycosylated cGH was not phosphorylated. Chicken anterior pituitary cells in primary culture were incubated in the presence of {sup 32}P-phosphate. Radioactive phosphate was incorporated in vitro into the fraction immunoprecipitable with antisera against cGH. Incorporation was increased with cell number and time of incubation. The presence of GH releasing factor (GRF) increased the release of {sup 32}P-phosphate labeled immunoprecipitable GH into the incubation media but not content of immunoprecipitable GH in the cells. The molecular weight of the phosphorylated immunoreactive cGH in the cells corresponded to cGH dimer.

  3. Structural Basis for Inactivation of the Human Pyruvate Dehydrogenase Complex by Phosphorylation: Role of Disordered Phosphorylation Loops

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masato; Wynn, R. Max; Chuang, Jacinta L.; Tso, Shih-Chia; Machius, Mischa; Li, Jun; Chuang, David T. (UTSMC)

    2009-09-11

    We report the crystal structures of the phosporylated pyruvate dehydrogenase (E1p) component of the human pyruvate dehydrogenase complex (PDC). The complete phosphorylation at Ser264-{alpha} (site 1) of a variant E1p protein was achieved using robust pyruvate dehydrogenase kinase 4 free of the PDC core. We show that unlike its unmodified counterpart, the presence of a phosphoryl group at Ser264-{alpha} prevents the cofactor thiamine diphosphate-induced ordering of the two loops carrying the three phosphorylation sites. The disordering of these phosphorylation loops is caused by a previously unrecognized steric clash between the phosphoryl group at site 1 and a nearby Ser266-{alpha}, which nullifies a hydrogen-bonding network essential for maintaining the loop conformations. The disordered phosphorylation loops impede the binding of lipoyl domains of the PDC core to E1p, negating the reductive acetylation step. This results in the disruption of the substrate channeling in the PDC, leading to the inactivation of this catalytic machine.

  4. Current Regulations and Regulatory Actions

    Science.gov (United States)

    This site will provide basic information on clean air permitting under the title V operating permits program, provide access to state and regional permitting programs, and maintain access to proposed and final regulatory requirements.

  5. Tumor suppressor PTEN affects tau phosphorylation: deficiency in the phosphatase activity of PTEN increases aggregation of an FTDP-17 mutant Tau

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2006-07-01

    Full Text Available Abstract Background Aberrant hyperphosphorylation of tau protein has been implicated in a variety of neurodegenerative disorders. Although a number of protein kinases have been shown to phosphorylate tau in vitro and in vivo, the molecular mechanisms by which tau phosphorylation is regulated pathophysiologically are largely unknown. Recently, a growing body of evidence suggests a link between tau phosphorylation and PI3K signaling. In this study, phosphorylation, aggregation and binding to the microtubule of a mutant frontal temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17 tau in the presence of tumor suppressor PTEN, a major regulatory component in PI3K signaling, were investigated. Results Phosphorylation of the human mutant FTDP-17 tau, T40RW, was evaluated using different phospho-tau specific antibodies in the presence of human wild-type or phosphatase activity null mutant PTEN. Among the evaluated phosphorylation sites, the levels of Ser214 and Thr212 phospho-tau proteins were significantly decreased in the presence of wild-type PTEN, and significantly increased when the phosphatase activity null mutant PTEN was ectopically expressed. Fractionation of the mutant tau transfected cells revealed a significantly increased level of soluble tau in cytosol when wild-type PTEN was expressed, and an elevated level of SDS-soluble tau aggregates in the presence of the mutant PTEN. In addition, the filter/trap assays detected more SDS-insoluble mutant tau aggregates in the cells overexpressing the mutant PTEN compared to those in the cells overexpressing wild-type PTEN and control DNA. This notion was confirmed by the immunocytochemical experiment which demonstrated that the overexpression of the phosphatase activity null mutant PTEN caused the mutant tau to form aggregates in the COS-7 cells. Conclusion Tumor suppressor PTEN can alleviate the phosporylation of the mutant FTDP-17 tau at specific sites, and the phosphatase activity

  6. Phytophthora infestans specific phosphorylation patterns and new putative control targets.

    Science.gov (United States)

    Frades, Itziar; Andreasson, Erik

    2016-04-01

    In this study we applied biomathematical searches of gene regulatory mechanisms to learn more about oomycete biology and to identify new putative targets for pesticides or biological control against Phytophthora infestans. First, oomycete phylum-specific phosphorylation motifs were found by discriminative n-gram analysis. We found 11.600 P. infestans specific n-grams, mapping 642 phosphoproteins. The most abundant group among these related to phosphatidylinositol metabolism. Due to the large number of possible targets found and our hypothesis that multi-level control is a sign of usefulness as targets for intervention, we identified overlapping targets with a second screen. This was performed to identify proteins dually regulated by small RNA and phosphorylation. We found 164 proteins to be regulated by both sRNA and phosphorylation and the dominating functions where phosphatidylinositol signalling/metabolism, endocytosis, and autophagy. Furthermore we performed a similar regulatory study and discriminative n-gram analysis of proteins with no clear orthologs in other species and proteins that are known to be unique to P. infestans such as the RxLR effectors, Crinkler (CRN) proteins and elicitins. We identified CRN proteins with specific phospho-motifs present in all life stages. PITG_12626, PITG_14042 and PITG_23175 are CRN proteins that have species-specific phosphorylation motifs and are subject to dual regulation.

  7. Mechanism of Ribonuclease III Catalytic Regulation by Serine Phosphorylation

    Science.gov (United States)

    Gone, Swapna; Alfonso-Prieto, Mercedes; Paudyal, Samridhdi; Nicholson, Allen W.

    2016-05-01

    Ribonuclease III (RNase III) is a conserved, gene-regulatory bacterial endonuclease that cleaves double-helical structures in diverse coding and noncoding RNAs. RNase III is subject to multiple levels of control, reflective of its global regulatory functions. Escherichia coli (Ec) RNase III catalytic activity is known to increase during bacteriophage T7 infection, reflecting the expression of the phage-encoded protein kinase, T7PK. However, the mechanism of catalytic enhancement is unknown. This study shows that Ec-RNase III is phosphorylated on serine in vitro by purified T7PK, and identifies the targets as Ser33 and Ser34 in the N-terminal catalytic domain. Kinetic experiments reveal a 5-fold increase in kcat and a 1.4-fold decrease in Km following phosphorylation, providing a 7.4–fold increase in catalytic efficiency. Phosphorylation does not change the rate of substrate cleavage under single-turnover conditions, indicating that phosphorylation enhances product release, which also is the rate-limiting step in the steady-state. Molecular dynamics simulations provide a mechanism for facilitated product release, in which the Ser33 phosphomonoester forms a salt bridge with the Arg95 guanidinium group, thereby weakening RNase III engagement of product. The simulations also show why glutamic acid substitution at either serine does not confer enhancement, thus underscoring the specific requirement for a phosphomonoester.

  8. 75 FR 34962 - Pennsylvania Regulatory Program

    Science.gov (United States)

    2010-06-21

    ... another site is more suitable based upon engineering, geology, economics, transportation systems, and... to the actual language of state regulatory programs and program amendments because each program is...

  9. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in California. Preliminary background report

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Constitution of the State of California grants to the Legislature control over persons and private corporations that own or operate a line, plant, or system for the production, generation, or transmission of heat, light, water, or power to be furnished either directly or indirectly to or for the public. The Constitution establishes the Public Utilities Commission and grants certain specific powers to the PUC, including the power to fix rates, establish rules and prescribe a uniform system of accounts. The Constitution also recognizes that the Legislature has plenary power to confer additional authority and jurisdiction upon the PUC. The Constitution prohibits regulation by a city, county, or other municipal body of matters over which the Legislature has granted regulatory power to the PUC. This provision does not, however, impair the right of any city to grant franchises for public utilities. The California legislature has enacted the California Public Utilities Code and has designated the PUC as the agency to implement the regulatory provisions of the Code. The Public Utilities Commission consists of five members appointed by the governor and approved by the senate, a majority of the membership concurring, for staggered 6-year terms. Certain limited powers over the conduct of public utilities may still be exercised by municipalities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  10. Antibody microarray analyses of signal transduction protein expression and phosphorylation during porcine oocyte maturation.

    Science.gov (United States)

    Pelech, Steven; Jelinkova, Lucie; Susor, Andrej; Zhang, Hong; Shi, Xiaoqing; Pavlok, Antonin; Kubelka, Michal; Kovarova, Hana

    2008-07-01

    Kinex antibody microarray analyses was used to investigate the regulation of 188 protein kinases, 24 protein phosphatases, and 170 other regulatory proteins during meiotic maturation of immature germinal vesicle (GV+) pig oocytes to maturing oocytes that had completed meiosis I (MI), and fully mature oocytes arrested at metaphase of meiosis II (MII). Increases in apparent protein levels of protein kinases accounted for most of the detected changes during the GV to MI transition, whereas reduced protein kinase levels and increased protein phosphorylation characterized the MI to MII transition. During the MI to MII period, many of the MI-associated increased levels of the proteins and phosphosites were completely or partially reversed. The regulation of these proteins were also examined in parallel during the meiotic maturation of bovine, frog, and sea star oocytes with the Kinex antibody microarray. Western blotting analyses confirmed altered expression levels of Bub1A, IRAK4, MST2, PP4C, and Rsk2, and the phosphorylation site changes in the kinases Erk5 (T218 + Y220), FAK (S722), GSK3-beta (Y216), MEK1 (S217 + S221) and PKR1 (T451), and nucleophosmin/B23 (S4) during pig oocyte maturation.

  11. Casein kinase II phosphorylates lens connexin 45.6 and is involved in its degradation.

    Science.gov (United States)

    Yin, X; Jedrzejewski, P T; Jiang, J X

    2000-03-10

    Connexin (Cx) 45.6, an avian counterpart of rodent Cx50, is phosphorylated in vivo, but the sites and function of the phosphorylation have not been elucidated. Our peptide mapping experiments showed that the Ser(363) site in the carboxyl (COOH) terminus of Cx45.6 was phosphorylated and that this site is within casein kinase (CK) II consensus sequence, although showing some similarity to CKI sequence. The peptide containing Ser(363) could be phosphorylated in vitro by CKII, but not by CKI. Furthermore, CKII phosphorylated Cx45.6 in embryonic lens membrane and the fusion protein containing the COOH terminus of Cx45.6. Two-dimensional peptide mapping experiments showed that one of the Cx45.6 peptides phosphorylated in vivo migrated to the same spot as one of those phosphorylated by CKII in vitro. Furthermore, CKII activity could be detected in lens lysates. To assess the function of this phosphorylation event, exogenous wild type and mutant Cx45.6 (Ser(363) --> Ala) were expressed in lens primary cultures by retroviral infection. The mutant Cx45.6 was shown to be more stable having a longer half-life compared with wild type Cx45.6. Together, the evidence suggests that CKII is likely a kinase responsible for the Ser(363) phosphorylation, leading to the destablization and degradation of Cx45.6. The connexin degradation induced by phosphorylation has a broad functional significance in the regulation of gap junctions in vivo.

  12. Temporal pattern of ICAM-I mediated regulatory T cell recruitment to sites of inflammation in adoptive transfer model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sebastian Doerck

    Full Text Available Migration of immune cells to the target organ plays a key role in autoimmune disorders like multiple sclerosis (MS. However, the exact underlying mechanisms of this active process during autoimmune lesion pathogenesis remain elusive. To test if pro-inflammatory and regulatory T cells migrate via a similar molecular mechanism, we analyzed the expression of different adhesion molecules, as well as the composition of infiltrating T cells in an in vivo model of MS, adoptive transfer experimental autoimmune encephalomyelitis in rats. We found that the upregulation of ICAM-I and VCAM-I parallels the development of clinical disease onset, but persists on elevated levels also in the phase of clinical remission. However, the composition of infiltrating T cells found in the developing versus resolving lesion phase changed over time, containing increased numbers of regulatory T cells (FoxP3 only in the phase of clinical remission. In order to test the relevance of the expression of cell adhesion molecules, animals were treated with purified antibodies to ICAM-I and VCAM-I either in the phase of active disease or in early remission. Treatment with a blocking ICAM-I antibody in the phase of disease progression led to a milder disease course. However, administration during early clinical remission aggravates clinical symptoms. Treatment with anti-VCAM-I at different timepoints had no significant effect on the disease course. In summary, our results indicate that adhesion molecules are not only important for capture and migration of pro-inflammatory T cells into the central nervous system, but also permit access of anti-inflammatory cells, such as regulatory T cells. Therefore it is likely to assume that intervention at the blood brain barrier is time dependent and could result in different therapeutic outcomes depending on the phase of CNS lesion development.

  13. Identification and structural characterization of two 14-3-3 binding sites in the human peptidylarginine deiminase type VI.

    Science.gov (United States)

    Rose, Rolf; Rose, Micheline; Ottmann, Christian

    2012-10-01

    The regulation and function of peptidylarginine deiminase isoform VI (PAD6), which is a highly abundant protein associated with the cytoplasmic lattices in mammalian oocytes, is poorly understood so far. It has been shown previously, that 14-3-3 proteins, a class of regulatory adapter proteins ubiquitous in eukaryotes, bind to PAD6 in vivo in a phosphorylation dependent manner. Here we identify possible 14-3-3 binding sites in human PAD6 by in silico methods, looking for conserved, surface exposed serine residues. Two of these sites were confirmed as 14-3-3 binding sites by fluorescence polarization competition and X-ray crystallography. We furthermore suggest a role of RSK-type kinases in the phosphorylation of one of these two binding sites and provide evidence in the form of in vitro kinase assays with p70S6 kinase and RSK1. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment.

    Directory of Open Access Journals (Sweden)

    Thomas H Sanderson

    Full Text Available Recent advancements in isolation techniques for cytochrome c (Cytc have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.

  15. Directional and quantitative phosphorylation networks

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Linding, Rune

    2008-01-01

    for unravelling phosphorylation-mediated cellular interaction networks. In particular, we will discuss how the combination of new quantitative mass-spectrometric technologies and computational algorithms together are enhancing mapping of these largely uncharted dynamic networks. By combining quantitative...

  16. Association between intrinsic disorder and serine/threonine phosphorylation in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Gajinder Pal Singh

    2015-01-01

    Full Text Available Serine/threonine phosphorylation is an important mechanism that is involved in the regulation of protein function. In eukaryotes, phosphorylation occurs predominantly in intrinsically disordered regions of proteins. Though serine/threonine phosphorylation and protein disorder are much less prevalent in prokaryotes, some bacteria have high levels of serine/threonine phosphorylation and disorder, including the medically important M. tuberculosis. Here I show that serine/threonine phosphorylation sites in M. tuberculosis are highly enriched in intrinsically disordered regions, indicating similarity in the substrate recognition mechanisms of eukaryotic and M. tuberculosis kinases. Serine/threonine phosphorylation has been linked to the pathogenicity and survival of M. tuberculosis. Thus, a better understanding of how its kinases recognize their substrates could have important implications in understanding and controlling the biology of this deadly pathogen. These results also indicate that the association between serine/threonine phosphorylation and disorder is not a feature restricted to eukaryotes.

  17. The mammalian circadian clock protein period counteracts cryptochrome in phosphorylation dynamics of circadian locomotor output cycles kaput (CLOCK).

    Science.gov (United States)

    Matsumura, Ritsuko; Tsuchiya, Yoshiki; Tokuda, Isao; Matsuo, Takahiro; Sato, Miho; Node, Koichi; Nishida, Eisuke; Akashi, Makoto

    2014-11-14

    The circadian transcription factor CLOCK exhibits a circadian oscillation in its phosphorylation levels. Although it remains unclear whether this phosphorylation contributes to circadian rhythm generation, it has been suggested to be involved in transcriptional activity, intracellular localization, and degradative turnover of CLOCK. Here, we obtained direct evidence that CLOCK phosphorylation may be essential for autonomous circadian oscillation in clock gene expression. Importantly, we found that the circadian transcriptional repressors Cryptochrome (CRY) and Period (PER) showed an opposite effect on CLOCK phosphorylation; CRY impaired BMAL1-dependent CLOCK phosphorylation, whereas PER protected the phosphorylation against CRY. Interestingly, unlike PER1 and PER2, PER3 did not exert a protective action, which correlates with the phenotypic differences among mice lacking the Per genes. Further studies on the regulatory mechanism of CLOCK phosphorylation would thus lead to elucidation of the mechanism of CRY-mediated transcriptional repression and an understanding of the true role of PER in the negative feedback system.

  18. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis.

    Science.gov (United States)

    Liang, Xiubin; Da Paula, Ana Carina; Bozóky, Zoltán; Zhang, Hui; Bertrand, Carol A; Peters, Kathryn W; Forman-Kay, Julie D; Frizzell, Raymond A

    2012-03-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)-regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression. The 14-3-3β, γ, and ε isoforms were expressed in airway cells and interacted with CFTR in coimmunoprecipitation assays. Forskolin stimulation (15 min) increased 14-3-3β and ε binding to immature and mature CFTR (bands B and C), and 14-3-3 overexpression increased CFTR bands B and C and cell surface band C. In pulse-chase experiments, 14-3-3β increased the synthesis of immature CFTR, reduced its degradation rate, and increased conversion of immature to mature CFTR. Conversely, 14-3-3β knockdown decreased CFTR B and C bands (70 and 55%) and elicited parallel reductions in cell surface CFTR and forskolin-stimulated anion efflux. In vitro, 14-3-3β interacted with the CFTR regulatory region, and by nuclear magnetic resonance analysis, this interaction occurred at known PKA phosphorylated sites. In coimmunoprecipitation assays, forskolin stimulated the CFTR/14-3-3β interaction while reducing CFTR's interaction with coat protein complex 1 (COP1). Thus 14-3-3 binding to phosphorylated CFTR augments its biogenesis by reducing retrograde retrieval of CFTR to the endoplasmic reticulum. This mechanism permits cAMP/PKA stimulation to make more CFTR available for anion secretion.

  19. Phosphoproteome analysis of streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation

    DEFF Research Database (Denmark)

    Manteca, Angel; Ye, Juanying; Sánchez, Jesús

    2011-01-01

    Streptomycetes are bacterial species that undergo a complex developmental cycle that includes programmed cell death (PCD) events and sporulation. They are widely used in biotechnology because they produce most clinically relevant secondary metabolites. Although Streptomyces coelicolor is one...... events were detected during the presporulation and sporulation stages (80%). Most of these phosphorylations were not reported before in Streptomyces, and included sporulation factors, transcriptional regulators, protein kinases and other regulatory proteins. Several of the identified phosphorylated...

  20. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation.

    Science.gov (United States)

    Liu, Siqi; Cai, Xin; Wu, Jiaxi; Cong, Qian; Chen, Xiang; Li, Tuo; Du, Fenghe; Ren, Junyao; Wu, You-Tong; Grishin, Nick V; Chen, Zhijian J

    2015-03-13

    During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway. Copyright © 2015, American Association for the Advancement of Science.

  1. Regulatory Anatomy

    DEFF Research Database (Denmark)

    Hoeyer, Klaus

    2015-01-01

    This article proposes the term “safety logics” to understand attempts within the European Union (EU) to harmonize member state legislation to ensure a safe and stable supply of human biological material for transplants and transfusions. With safety logics, I refer to assemblages of discourses, le...... they arise. In short, I expose the regulatory anatomy of the policy landscape....

  2. Phosphorylation-independent regulation of the diguanylate cyclase WspR.

    Directory of Open Access Journals (Sweden)

    Nabanita De

    2008-03-01

    Full Text Available Environmental signals that trigger bacterial pathogenesis and biofilm formation are mediated by changes in the level of cyclic dimeric guanosine monophosphate (c-di-GMP, a unique eubacterial second messenger. Tight regulation of cellular c-di-GMP concentration is governed by diguanylate cyclases and phosphodiesterases, which are responsible for its production and degradation, respectively. Here, we present the crystal structure of the diguanylate cyclase WspR, a conserved GGDEF domain-containing response regulator in Gram-negative bacteria, bound to c-di-GMP at an inhibitory site. Biochemical analyses revealed that feedback regulation involves the formation of at least three distinct oligomeric states. By switching from an active to a product-inhibited dimer via a tetrameric assembly, WspR utilizes a novel mechanism for modulation of its activity through oligomerization. Moreover, our data suggest that these enzymes can be activated by phosphodiesterases. Thus, in addition to the canonical pathways via phosphorylation of the regulatory domains, both product and enzyme concentration contribute to the coordination of c-di-GMP signaling. A structural comparison reveals resemblance of the oligomeric states to assemblies of GAF domains, widely used regulatory domains in signaling molecules conserved from archaea to mammals, suggesting a similar mechanism of regulation.

  3. Ultradeep Human Phosphoproteome Reveals a Distinct Regulatory Nature of Tyr and Ser/Thr-Based Signaling

    Directory of Open Access Journals (Sweden)

    Kirti Sharma

    2014-09-01

    Full Text Available Regulatory protein phosphorylation controls normal and pathophysiological signaling in eukaryotic cells. Despite great advances in mass-spectrometry-based proteomics, the extent, localization, and site-specific stoichiometry of this posttranslational modification (PTM are unknown. Here, we develop a stringent experimental and computational workflow, capable of mapping more than 50,000 distinct phosphorylated peptides in a single human cancer cell line. We detected more than three-quarters of cellular proteins as phosphoproteins and determined very high stoichiometries in mitosis or growth factor signaling by label-free quantitation. The proportion of phospho-Tyr drastically decreases as coverage of the phosphoproteome increases, whereas Ser/Thr sites saturate only for technical reasons. Tyrosine phosphorylation is maintained at especially low stoichiometric levels in the absence of specific signaling events. Unexpectedly, it is enriched on higher-abundance proteins, and this correlates with the substrate KM values of tyrosine kinases. Our data suggest that P-Tyr should be considered a functionally separate PTM of eukaryotic proteomes.

  4. Phosphorylation-dependent translocation of glycogen synthase to a novel structure during glycogen resynthesis

    DEFF Research Database (Denmark)

    Prats, Clara; Cadefau, Joan A; Cussó, Roser;

    2005-01-01

    . Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed...... structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism...

  5. The Impact of Phosphorylation on Electron Capture Dissociation of Proteins: A Top-Down Perspective

    Science.gov (United States)

    Chen, Bifan; Guo, Xiao; Tucholski, Trisha; Lin, Ziqing; McIlwain, Sean; Ge, Ying

    2017-09-01

    Electron capture dissociation (ECD) is well suited for the characterization of phosphoproteins, with which labile phosphate groups are generally preserved during the fragmentation process. However, the impact of phosphorylation on ECD fragmentation of intact proteins remains unclear. Here, we have performed a systematic investigation of the phosphorylation effect on ECD of intact proteins by comparing the ECD cleavages of mono-phosphorylated α-casein, multi-phosphorylated β-casein, and immunoaffinity-purified phosphorylated cardiac troponin I with those of their unphosphorylated counterparts, respectively. In contrast to phosphopeptides, phosphorylation has significantly reduced deleterious effects on the fragmentation of intact proteins during ECD. On a global scale, the fragmentation patterns are highly comparable between unphosphorylated and phosphorylated precursors under the same ECD conditions, despite a slight decrease in the number of fragment ions observed for the phosphorylated forms. On a local scale, single phosphorylation of intact proteins imposes minimal effects on fragmentation near the phosphorylation sites, but multiple phosphorylations in close proximity result in a significant reduction of ECD bond cleavages. [Figure not available: see fulltext.

  6. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.

    Science.gov (United States)

    Robinson, Kelly A; Ou, Wei-Lin; Guan, Xinyu; Sugamori, Kim S; Bandyopadhyay, Abhishek; Ernst, Oliver P; Mitchell, Jane

    2015-12-01

    Invertebrate visual opsins are G protein-coupled receptors coupled to retinoid chromophores that isomerize reversibly between inactive rhodopsin and active metarhodopsin upon absorption of photons of light. The squid visual system has an arrestin protein that binds to metarhodopsin to block signaling to Gq and activation of phospholipase C. Squid rhodopsin kinase (SQRK) can phosphorylate both metarhodopsin and arrestin, a dual role that is unique among the G protein-coupled receptor kinases. The sites and role of arrestin phosphorylation by SQRK were investigated here using recombinant proteins. Arrestin was phosphorylated on serine 392 and serine 397 in the C-terminus. Unphosphorylated arrestin bound to metarhodopsin and phosphorylated metarhodopsin with similar high affinities (Kd 33 and 21 nM respectively), while phosphorylation of arrestin reduced the affinity 3- to 5-fold (Kd 104 nM). Phosphorylation of metarhodopsin slightly increased the dissociation of arrestin observed during a 1 hour incubation. Together these studies suggest a unique role for SQRK in phosphorylating both receptor and arrestin and inhibiting the binding of these two proteins in the squid visual system. Invertebrate visual systems are inactivated by arrestin binding to metarhodopsin that does not require receptor phosphorylation. Here we show that squid rhodopsin kinase phosphorylates arrestin on two serines (S392,S397) in the C-terminus and phosphorylation decreases the affinity of arrestin for squid metarhodopsin. Metarhodopsin phosphorylation has very little effect on arrestin binding but does increase arrestin dissociation.

  7. Structural basis for Mep2 ammonium transceptor activation by phosphorylation.

    Science.gov (United States)

    van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C

    2016-04-18

    Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation.

  8. Chemistry of Phosphorylated Formaldehyde Derivatives. Part I

    Directory of Open Access Journals (Sweden)

    Vasily P. Morgalyuk

    2014-08-01

    Full Text Available The underinvestigated derivatives of unstable phosphorylated formaldehyde acetals and some of the structurally related compounds, such as thioacetals, aminonitriles, aminomethylphosphinoyl compounds, are considered. Separately considered are halogen aminals of phosphorylated formaldehyde, acetals of phosphorylated formaldehyde of H-phosphinate-type and a phosphorylated gem-diol of formaldehyde. Synthetic methods, chemical properties and examples of practical applications are given.

  9. Enhanced interaction between pseudokinase and kinase domains in Gcn2 stimulates eIF2α phosphorylation in starved cells.

    Science.gov (United States)

    Lageix, Sebastien; Rothenburg, Stefan; Dever, Thomas E; Hinnebusch, Alan G

    2014-05-01

    The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α, from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2α phosphorylation in amino acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand, uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn- substitutions cluster in predicted helices E and I (αE and αI) of the YKD. We also identified Gcd- substitutions, evoking constitutive activation of Gcn2, mapping in αI of the YKD. Interestingly, αI Gcd- substitutions enhance YKD-KD interactions in vitro, whereas Gcn- substitutions in αE and αI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd- substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational change that increases access of the YKD to sites of allosteric activation in the adjoining KD.

  10. Regulation of phenylalanine hydroxylase: conformational changes upon phosphorylation detected by H/D exchange and mass spectrometry.

    Science.gov (United States)

    Li, Jun; Fitzpatrick, Paul F

    2013-07-15

    The enzyme phenylalanine hydroxylase catalyzes the hydroxylation of excess phenylalanine in the liver to tyrosine. The enzyme is regulated allosterically by phenylalanine and by phosphorylation of Ser16. Hydrogen/deuterium exchange monitored by mass spectrometry has been used to gain insight into any structural change upon phosphorylation. Peptides in both the catalytic and regulatory domains show increased deuterium incorporation into the phosphorylated protein. Deuterium is incorporated into fewer peptides than when the enzyme is activated by phenylalanine, and the incorporation is slower. This establishes that the conformational change upon phosphorylation of phenylalanine hydroxylase is different from and less extensive than that upon phenylalanine activation.

  11. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity.

    Science.gov (United States)

    Xu, Xiang; Zhao, Jingyue; Xu, Zhen; Peng, Baozhen; Huang, Qiuhua; Arnold, Eddy; Ding, Jianping

    2004-08-06

    Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate, and regulation of the enzymatic activity of IDHs is crucial for their biological functions. Bacterial IDHs are reversibly regulated by phosphorylation of a strictly conserved serine residue at the active site. Eukaryotic NADP-dependent IDHs (NADP-IDHs) have been shown to have diverse important biological functions; however, their regulatory mechanism remains unclear. Structural studies of human cytosolic NADP-IDH (HcIDH) in complex with NADP and in complex with NADP, isocitrate, and Ca2+ reveal three biologically relevant conformational states of the enzyme that differ substantially in the structure of the active site and in the overall structure. A structural segment at the active site that forms a conserved alpha-helix in all known NADP-IDH structures assumes a loop conformation in the open, inactive form of HcIDH; a partially unraveled alpha-helix in the semi-open, intermediate form; and an alpha-helix in the closed, active form. The side chain of Asp279 of this segment occupies the isocitrate-binding site and forms hydrogen bonds with Ser94 (the equivalent of the phosphorylation site in bacterial IDHs) in the inactive form and chelates the metal ion in the active form. The structural data led us to propose a novel self-regulatory mechanism for HcIDH that mimics the phosphorylation mechanism used by the bacterial homologs, consistent with biochemical and biological data. This mechanism might be applicable to other eukaryotic NADP-IDHs. The results also provide insights into the recognition and specificity of substrate and cofactor by eukaryotic NADP-IDHs.

  12. Cellular Functions Regulated by Phosphorylation of EGFR on Tyr845

    Directory of Open Access Journals (Sweden)

    Ken-ichi Sato

    2013-05-01

    Full Text Available The Src gene product (Src and the epidermal growth factor receptor (EGFR are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845 in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase. A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.

  13. Response to Nuclear Regulatory Commission`s ten questions pertaining to site-specific models for use in the license termination rule: Multimedia Environmental Pollutant Assessment System (MEPAS)

    Energy Technology Data Exchange (ETDEWEB)

    Buck, J.W.; Whelan, G.; Strenge, D.L.; Hoopes, B.L.; McDonald, J.P.; Castleton, K.J.; Pelton, M.A.; Gelston, G.M.; Taira, R.Y. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-05-01

    This paper is in response to the US Nuclear Regulatory Commission (NRC) ten questions posed at the Modeling Workshop held November 13 and 14, 1997. The ten questions were developed in advance of the workshop to allow model developers to prepare a presentation at the Workshop. This paper is an expanded version of the Multimedia Environmental Pollutant Assessment System (MEPAS) presentation given at the Modeling Workshop by Pacific Northwest National Laboratory (PNNL) staff. This paper is organized by the ten questions asked by the NRC, each section devoted to a single question. The current version of methodology is MEPAS 3.2 (NRC 1997) and the discussion in this paper will pertain to that version. In some cases, MEPAS 4.0, which is currently being developed under the Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) (Whelan et al. 1997), will be referenced to inform the reader of potential capabilities in the near future. A separate paper is included in the document that discusses the FRAMES concept.

  14. Steroidogenic acute regulatory protein in white sturgeon (Acipenser transmontanus): cDNA cloning, sites of expression and transcript abundance in corticosteroidogenic tissue after an acute stressor.

    Science.gov (United States)

    Kusakabe, Makoto; Zuccarelli, Micah D; Nakamura, Ikumi; Young, Graham

    2009-06-01

    The white sturgeon, Acipenser transmontanus, is a primitive bony fish that is recognized as an important emerging species for aquaculture. However, many aspects of its stress and reproductive physiology remain unclear. These processes are controlled by various steroid hormones. In order to investigate the regulation of steroidogenesis associated with acute stress in sturgeon, a cDNA-encoding steroidogenic acute regulatory protein (StAR) was isolated from white sturgeon. The putative amino acid sequence of sturgeon StAR shares high homology (over 60%) with other vertebrates. Phylogenetic analysis grouped sturgeon StAR within Actinopterygii, but it was clearly segregated from teleost StARs. RT-PCR analysis revealed that transcripts were most abundant in yellow corpuscles found throughout the kidney and weaker signals were detected in gonad and kidney. Very weak signals were also detected in brain and spleen by quantitative real-time PCR. In situ hybridization revealed that StAR is expressed in the cells of yellow corpuscles. No significant changes in StAR gene expression were detected in response to an acute handling stress. These results suggest that StAR is highly conserved throughout vertebrates, but the expression of the functional protein during the stress response may be partially regulated post-transcriptionally.

  15. Phylogenetic divergence of CD47 interactions with human signal regulatory protein alpha reveals locus of species specificity. Implications for the binding site.

    Science.gov (United States)

    Subramanian, Shyamsundar; Boder, Eric T; Discher, Dennis E

    2007-01-19

    Cell-cell interactions between ubiquitously expressed integrin-associated protein (CD47) and its counterreceptor signal regulatory protein (SIRPalpha) on phagocytes regulate a wide range of adhesive signaling processes, including the inhibition of phagocytosis as documented in mice. We show that CD47-SIRPalpha binding interactions are different between mice and humans, and we exploit phylogenetic divergence to identify the species-specific binding locus on the immunoglobulin domain of human CD47. All of the studies are conducted in the physiological context of membrane protein display on Chinese hamster ovary (CHO) cells. Novel quantitative flow cytometry analyses with CD47-green fluorescent protein and soluble human SIRPalpha as a probe show that neither human CD47 nor SIRPalpha requires glycosylation for interaction. Human CD47-expressing CHO cells spread rapidly on SIRPalpha-coated glass surfaces, correlating well with the spreading of primary human T cells. In contrast, CHO cells expressing mouse CD47 spread minimally and show equally weak binding to soluble human SIRPalpha. Further phylogenetic analyses and multisite substitutions of the CD47 Ig domain show that human to cow mutation of a cluster of seven residues on adjacent strands near the middle of the domain decreases the association constant for human SIRPalpha to about one-third that of human CD47. Direct tests of cell-cell adhesion between human monocytes and CD47-displaying CHO cells affirm the species specificity as well as the importance of the newly identified binding locus in cell-cell interactions.

  16. Adjusting ammonium uptake via phosphorylation.

    Science.gov (United States)

    Lanquar, Viviane; Frommer, Wolf B

    2010-06-01

    In plants, AMT/MEP/Rh superfamily mediates high affinity ammonium uptake. AMT/MEP transporters form a trimeric complex, which requires a productive interaction between subunits in order to be functional. The AMT/MEP C-terminal domain is highly conserved in more than 700 AMT homologs from cyanobacteria to higher plants with no cases found to be lacking this domain. AMT1;1 exists in active and inactive states, probably controlled by the spatial positioning of the C-terminus. Ammonium triggers the phosphorylation of a conserved threonine residue (T460) in the C-terminus of AMT1;1 in a time- and concentration-dependent manner. The T460 phosphorylation level correlates with a decrease of root ammonium uptake. We propose that ammonium-induced phosphorylation modulates ammonium uptake as a general mechanism to protect against ammonium toxicity.

  17. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Maryland. Preliminary background report

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities in Maryland is vested in the Public Service Commission under the authority of the Public Service Commission Law. The Commission consists of five commissioners who are appointed by the governor with the advice and consent of the Senate. Commissioners must be or become citizens of Maryland, at least three are to serve full time, and one of the commissioners is to be nominated as chairman. The tenure of each commissioner is six years and their terms are on a staggered schedule. Commissioners are eligible for reappointment. The Public Service Commission Law provides that the Commission's powers an jurisdiction shall extend to the full extent permitted by the Constitution and laws of the United States. Local governments in Maryland are not given regulatory power over public service companies. The only power that local governments have over the operations of utilities is the power to grant franchises. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  18. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Maine. Preliminary background report

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The Maine Supreme Court holds that the regulation of the operations of public utilities is an exercise of the police powers of the state. The legislature has delegated such regulatory authority to the Maine Public Utilities Commission (PUC). The statutes provide no role for local government in the regulation of public utilities. The PUC consists of three full time members, appointed by the Governor subject to review by the Joint Standing Committee on Public Utilities and to confirmation by the Legislature. They each serve seven year terms. One member is designated by the Governor as chairman. The Commission appoints a secretary, assistant secretary, director of transportation, and, with the approval of the Attorney General, a general counsel. A member of the PUC cannot have any official or professional connection or relation with or hold any stock or securities in any public utility. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  19. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Iowa. Preliminary background report

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the Iowa State Commerce Commission. The Commission is comprised of three members appointed by the governor with the approval of two-thirds of the senate. Commissioners are appointed for six-year terms. They must be free from employment or pecuniary interests in any public utility. Although the right to grant franchises is specifically reserved for municipalities, local governments exercise no regulatory authority over the provision of utility services by public utilities. Municipally-owned utilities, however, are specifically excepted from rate regulation by the Commission. The regulation of rates charged by municipally-owned utilities is the responsibility of local governments. The Commission is given no authority to review decisions of local governments with respect to rates. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  20. Identification of a NF-kB site in the negative regulatory element (εNRAII) of human ε-globin gene and its binding protein NF-κB p50 in the nuclei of K562 cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The developmental control of the human ε-globin gene expression is mediated by transcription regulatory elements in the 5' flanking DNA of this gene. Sequence analysis has revealed a DNA motif (GGGGAATTTGCT) similar to NF-κB consensus sequence resides in the negative regulatory element (-3028bp ~ -2902bp, termed ε-NRAII) 5' to the cap site of this gene. NRF DNA fragment (-3010bp ~-2986bp) containing the NF-κB motif similar sequence was synthesized and used in electrophoresis mobility shift assay (EMSA) and competitive analysis. Data showed that a protein factor from nuclear extracts of K562 cells specifically interacted with NRF DNA fragment. The synthetic NF DNA fragment (containing NF-κB consensus sequence) could competed for the protein binding, but MNF DNA fragment (mutated NF-κB motif) could not, suggesting that the binding protein is a member of NF-κB/Rel family. Western blot assay demonstrated that the molecular weight of NF-κB protein in the nuclei of K562 cells is 50ku. We suggested that NF-κB p50 may play an important role in the regulation of human ε-globin gene expression.

  1. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in South Carolina. Preliminary background report

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    Pursuant to constitutional South Carolina mandate the General Assembly has created the Public Service Commission. The Commission is composed of seven members elected to four year terms by the General Assembly. One commissioner is elected from each of seven districts corresponding to the congressional districts as they existed as of January 1, 1930. The commissioners elect one of their members as chairman. The South Carolina statutes contain separate chapters dealing with the regulation of public utilities and electric utilities. Public utility includes the furnishing of gas or heat (other than by means of electricity) to the public. While the Commission is granted general supervisory and regulatory powers over public utilities and electric utilities, total governments retain some control over electrical utilities. All municipality's have the power to grant exclusive franchises to such utilities for the furnishing of light to the municipality and its inhabitants. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  2. Phosphorylation of nucleoporin Tpr governs its differential localization and is required for its mitotic function.

    Science.gov (United States)

    Rajanala, Kalpana; Sarkar, Anshuk; Jhingan, Gagan Deep; Priyadarshini, Raina; Jalan, Manisha; Sengupta, Sagar; Nandicoori, Vinay Kumar

    2014-08-15

    A major constituent of the nuclear basket region of the nuclear pore complex (NPC), nucleoporin Tpr, plays roles in regulating multiple important processes. We have previously established that Tpr is phosphorylated in both a MAP-kinase-dependent and MAP-kinase-independent manner, and that Tpr acts as both a substrate and as a scaffold for ERK2 (also known as MAPK1). Here, we report the identification of S2059 and S2094 as the major novel ERK-independent phosphorylation sites and T1677, S2020, S2023 and S2034 as additional ERK-independent phosphorylation sites found in the Tpr protein in vivo. Our results suggest that protein kinase A phosphorylates the S2094 residue and that the site is hyperphosphorylated during mitosis. Furthermore, we find that Tpr is phosphorylated at the S2059 residue by CDK1 and the phosphorylated form distinctly localizes with chromatin during telophase. Abrogation of S2059 phosphorylation abolishes the interaction of Tpr with Mad1, thus compromising the localization of both Mad1 and Mad2 proteins, resulting in cell cycle defects. The identification of novel phosphorylation sites on Tpr and the observations presented in this study allow better understanding of Tpr functions.

  3. Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Hofmeister, Marlene Vind; Rosenbaek, Lena L;

    2010-01-01

    The thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is important for renal electrolyte balance and its phosphorylation causes an increase in its transport activity and cellular localization. Here, we generated phospho-specific antibodies against two conserved N-terminal phosphorylation sites...

  4. Tousled-like kinases phosphorylate Asf1 to promote histone supply during DNA replication

    DEFF Research Database (Denmark)

    Kamalyukova, Ilnaz M; Young, Clifford; Strømme, Caroline B

    2014-01-01

    During DNA replication, nucleosomes are rapidly assembled on newly synthesized DNA to restore chromatin organization. Asf1, a key histone H3-H4 chaperone required for this process, is phosphorylated by Tousled-like kinases (TLKs). Here, we identify TLK phosphorylation sites by mass spectrometry a...

  5. Nucleoside phosphorylation in amide solutions

    Science.gov (United States)

    Schoffstall, A. M.; Kokko, B.

    1978-01-01

    The paper deals with phosphorylation in possible prebiotic nonaqueous solvents. To this end, phosphorylation of nucleosides using inorganic phosphates in amide solutions is studied at room and elevated temperatures. Reaction proceeds most readily in formamide and N-methylformamide. Products obtained at elevated temperature are nucleotides, nucleoside 2',3'-cyclic phosphates, and when the phosphate concentration is high, nucleoside diphosphates. At room temperature, adenosine afforded a mixture of nucleotides, but none of the cyclic nucleotide. Conditions leading to the highest relative percentage of cyclic nucleotide involve the use of low concentrations of phosphate and an excess of nucleoside.

  6. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr;

    2015-01-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichin......Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat...

  7. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Florida. Preliminary background report

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the Florida Public Service Commission. The Commission is comprised of five members appointed by the governor with the approval of the senate. The governor must choose his appointees from a list of persons recommended by the nine-person Florida Public Service Commission Nominating Council. Commissioners serve either three- or four-year terms. They must be free from any employment or pecuniary interests in any utility subject to the jurisdiction of the Commission. Within the purview of its powers, the authority of the Commission supersedes that of local governments. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  8. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in New Hampshire. Preliminary background report

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    Public utilities in New Hampshire are regulated by the Public Utilities Commission. The Commission is comprised of three members appointed for six-year terms by the Governor with the advice and consent of the council. Members of the Commission must be free from any employment or pecuniary interests in any public utility. The Commission is charged with the general regulation and supervision of public utilities. Within the purview of its powers, the authority of the Commission supercedes that of local government. The Commission may suspend the operation of local zoning laws. Local governments do retain the right to license the use of public ways by utilities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  9. Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression.

    Science.gov (United States)

    Jones, Bart G; Penkert, Rhiannon R; Xu, Beisi; Fan, Yiping; Neale, Geoff; Gearhart, Patricia J; Hurwitz, Julia L

    2016-09-01

    Females and males differ in antibody isotype expression patterns and in immune responses to foreign- and self-antigens. For example, systemic lupus erythematosus is a condition that associates with the production of isotype-skewed anti-self antibodies, and exhibits a 9:1 female:male disease ratio. To explain differences between B cell responses in males and females, we sought to identify direct interactions of the estrogen receptor (ER) with the immunoglobulin heavy chain locus. This effort was encouraged by our previous identification of estrogen response elements (ERE) in heavy chain switch (S) regions. We conducted a full-genome chromatin immunoprecipitation analysis (ChIP-seq) using DNA from LPS-activated B cells and an ERα-specific antibody. Results revealed ER binding to a wide region of DNA, spanning sequences from the JH cluster to Cδ, with peaks in Eμ and Sμ sites. Additional peaks of ERα binding were coincident with hs1,2 and hs4 sites in the 3' regulatory region (3'RR) of the heavy chain locus. This first demonstration of direct binding of ER to key regulatory elements in the immunoglobulin locus supports our hypothesis that estrogen and other nuclear hormone receptors and ligands may directly influence antibody expression and class switch recombination (CSR). Our hypothesis encourages the conduct of new experiments to evaluate the consequences of ER binding. A better understanding of ER:DNA interactions in the immunoglobulin heavy chain locus, and respective mechanisms, may ultimately translate to better control of antibody expression, better protection against pathogens, and prevention of pathologies caused by auto-immune disease.

  10. 75 FR 20868 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-04-21

    ... Issuance and Availability of Regulatory Guide 1.68.2, Revision 2, ``Initial Startup Test Program to... review of applications for permits and licenses. Revision 2 of Regulatory Guide 1.68.2, ``Initial Startup... Regulatory Guide 1.68.2, Revision 2 are available through the NRC's public Web site under ``Regulatory...

  11. Advances in characterizing ubiquitylation sites by mass spectrometry

    DEFF Research Database (Denmark)

    Sylvestersen, K.B.; Young, C.; Nielsen, M.L.

    2013-01-01

    The attachment of one or more ubiquitin moieties to proteins plays a central regulatory mechanism in eukaryotic cells. Protein ubiquitylation regulates numerous cellular processes, including protein degradation, signal transduction, DNA repair and cell division. The characterization of ubiquityla......The attachment of one or more ubiquitin moieties to proteins plays a central regulatory mechanism in eukaryotic cells. Protein ubiquitylation regulates numerous cellular processes, including protein degradation, signal transduction, DNA repair and cell division. The characterization......-scale identification of ubiquitylation sites by peptide-level enrichment strategies. The discovery that ubiquitylation is a widespread modification similar to phosphorylation and acetylation suggests cross-talk may also occur at the post translational modification level. © 2012 Elsevier Ltd....

  12. Stress-induced Start Codon Fidelity Regulates Arsenite-inducible Regulatory Particle-associated Protein (AIRAP) Translation*

    Science.gov (United States)

    Zach, Lolita; Braunstein, Ilana; Stanhill, Ariel

    2014-01-01

    Initial steps in protein synthesis are highly regulated processes as they define the reading frame of the translation machinery. Eukaryotic translation initiation is a process facilitated by numerous factors (eIFs), aimed to form a “scanning” mechanism toward the initiation codon. Translation initiation of the main open reading frame (ORF) in an mRNA transcript has been reported to be regulated by upstream open reading frames (uORFs) in a manner of re-initiation. This mode of regulation is governed by the phosphorylation status of eIF2α and controlled by cellular stresses. Another mode of translational initiation regulation is leaky scanning, and this regulatory process has not been extensively studied. We have identified arsenite-inducible regulatory particle-associated protein (AIRAP) transcript to be translationally induced during arsenite stress conditions. AIRAP transcript contains a single uORF in a poor-kozak context. AIRAP translation induction is governed by means of leaky scanning and not re-initiation. This induction of AIRAP is solely dependent on eIF1 and the uORF kozak context. We show that eIF1 is phosphorylated under specific conditions that induce protein misfolding and have biochemically characterized this site of phosphorylation. Our data indicate that leaky scanning like re-initiation is responsive to stress conditions and that leaky scanning can induce ORF translation by bypassing poor kozak context of a single uORF transcript. PMID:24898249

  13. Tyrosine phosphorylation in human lymphomas

    NARCIS (Netherlands)

    Haralambieva, E; Jones, M.; Roncador, GM; Cerroni, L; Lamant, L; Ott, G; Rosenwald, A; Sherman, C; Thorner, P; Kusec, R; Wood, KM; Campo, E; Falini, B; Ramsay, A; Marafioti, T; Stein, H; Kluin, PM; Pulford, K; Mason, DY

    2002-01-01

    In a previous study, we showed that the high level of protein tyrosine phosphorylation present in lymphomas containing an anaplastic lymphoma kinase (ALK) can be demonstrated in routinely processed paraffin tissue sections using immunolabelling techniques. In the present study we investigated

  14. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    Energy Technology Data Exchange (ETDEWEB)

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  15. Thiamine phosphorylated derivatives and bioelectrogenesis.

    Science.gov (United States)

    Schoffeniels, E

    1983-09-01

    Kinetic as well as thermodynamic considerations favour the idea that the change in sodium conductance explaining the action potential, must result from a bimolecular reaction system. The fact that thiamine phosphorylated derivatives are associated with the specific protein forming the sodium channel could well mean that these thiamine derivatives and more specifically thiamine triphosphate are directly involved in the conductance change.

  16. Biocatalytic asymmetric phosphorylation of mevalonate

    NARCIS (Netherlands)

    Matsumi, R.; Hellriegel, C.; Schoenenberger, B.; Milesi, T.; Oost, van der J.; Wohlgemuth, R.

    2014-01-01

    The excellent selectivity of the mevalonate kinase-catalyzed phosphorylation of mevalonate simplifies lengthy multi-step routes to (R)-mevalonate-5-phosphate to a one-step biocatalytic reaction, because the phosphate group can be transferred directly and without any additional reaction steps

  17. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.

    Science.gov (United States)

    Heidemann, Martin; Hintermair, Corinna; Voß, Kirsten; Eick, Dirk

    2013-01-01

    The eukaryotic RNA polymerase II (RNAPII) catalyzes the transcription of all protein encoding genes and is also responsible for the generation of small regulatory RNAs. RNAPII has evolved a unique domain composed of heptapeptide repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the C-terminus (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation patterns of serine residues in CTD during gene transcription coordinate the recruitment of factors to the elongating RNAPII and to the nascent transcript. Recent studies identified threonine 4 and tyrosine 1 as new CTD modifications and thereby expanded the "CTD code". In this review, we focus on CTD phosphorylation and its function in the RNAPII transcription cycle. We also discuss in detail the limitations of the phosphospecific CTD antibodies, which are used in all studies. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.

  18. Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities.

    Science.gov (United States)

    Alappat, Elizabeth C; Feig, Christine; Boyerinas, Benjamin; Volkland, Jörg; Samuels, Martin; Murmann, Andrea E; Thorburn, Andrew; Kidd, Vincent J; Slaughter, Clive A; Osborn, Stephanie L; Winoto, Astar; Tang, Wei-Jen; Peter, Marcus E

    2005-08-05

    FADD is essential for death receptor (DR)-induced apoptosis. However, it is also critical for cell cycle progression and proliferation, activities that are regulated by phosphorylation of its C-terminal Ser194, which has also been implicated in sensitizing cancer cells to chemotherapeutic drugs and in regulating FADD's intracellular localization. We now demonstrate that casein kinase Ialpha (CKIalpha) phosphorylates FADD at Ser194 both in vitro and in vivo. FADD-CKIalpha association regulates the subcellular localization of FADD, and phosphorylated FADD was found to colocalize with CKIalpha on the spindle poles in metaphase. Inhibition of CKIalpha diminished FADD phosphorylation, prevented the ability of Taxol to arrest cells in mitosis, and blocked mitogen-induced proliferation of mouse splenocytes. In contrast, a low level of cycling splenocytes from mice expressing FADD with a mutated phosphorylation site was insensitive to CKI inhibition. These data suggest that phosphorylation of FADD by CKI is a crucial event during mitosis.

  19. Insulin Induces Phosphorylation of Serine Residues of Translationally Controlled Tumor Protein in 293T Cells

    Directory of Open Access Journals (Sweden)

    Jeehye Maeng

    2015-04-01

    Full Text Available Insulin induces the activation of Na,K-ATPase while translationally controlled tumor protein (TCTP inhibits this enzyme and the associated pump activity. Because binding of insulin with its membrane receptor is known to mediate the phosphorylation of multiple intracellular proteins, phosphorylation of TCTP by insulin might be related to the sodium pump regulation. We therefore examined whether insulin induces TCTP phosphorylation in embryonic kidney 293T cells. Using immunoprecipitation and Western blotting, we found that insulin phosphorylates serine (Ser residues of TCTP. Following fractionation of the insulin-treated cells into cytosol and membrane fractions, phosphorylated TCTP at its Ser residue (p-Ser-TCTP was detected exclusively in the cytosolic part and not in the membrane fraction. Phosphorylation of TCTP reached maximum in about 10 min after insulin treatment in 293T cells. In studies of cell-type specificity of insulin-mediated phosphorylation of TCTP, insulin did not phosphorylate TCTP in HeLa cells. Computational prediction and immunoprecipitation using several constructs having Ser to Ala mutation at potential p-Ser sites of TCTP revealed that insulin phosphorylated the serine-9 and -15 residues of TCTP. Elucidations of how insulin-mediated TCTP phosphorylation promotes Na,K-ATPase activation, may offer potential therapeutic approaches to diseases associated with vascular activity and sodium pump dysregulation.

  20. CK2 phosphorylation inactivates DNA binding by the papillomavirus E1 and E2 proteins.

    Science.gov (United States)

    Schuck, Stephen; Ruse, Cristian; Stenlund, Arne

    2013-07-01

    Papillomaviruses have complex life cycles that are understood only superficially. Although it is well established that the viral E1 and E2 proteins play key roles in controlling viral transcription and DNA replication, how these factors are regulated is not well understood. Here, we demonstrate that phosphorylation by the protein kinase CK2 controls the biochemical activities of the bovine papillomavirus E1 and E2 proteins by modifying their DNA binding activity. Phosphorylation at multiple sites in the N-terminal domain in E1 results in the loss of sequence-specific DNA binding activity, a feature that is also conserved in human papillomavirus (HPV) E1 proteins. The bovine papillomavirus (BPV) E2 protein, when phosphorylated by CK2 on two specific sites in the hinge, also loses its site-specific DNA binding activity. Mutation of these sites in E2 results in greatly increased levels of latent viral DNA replication, indicating that CK2 phosphorylation of E2 is a negative regulator of viral DNA replication during latent viral replication. In contrast, mutation of the N-terminal phosphorylation sites in E1 has no effect on latent viral DNA replication. We propose that the phosphorylation of the N terminus of E1 plays a role only in vegetative viral DNA replication, and consistent with such a role, caspase 3 cleavage of E1, which has been shown to be necessary for vegetative viral DNA replication, restores the DNA binding activity to phosphorylated E1.