WorldWideScience

Sample records for regulatory phosphorylation site

  1. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase

    Science.gov (United States)

    Bachmann, M.; Shiraishi, N.; Campbell, W. H.; Yoo, B. C.; Harmon, A. C.; Huber, S. C.; Davies, E. (Principal Investigator)

    1996-01-01

    Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin cofactor binding domain of NR, using recombinant NR fragments containing or lacking the phosphorylation site sequence. Studies with NR partial reactions indicated that the block in electron flow caused by phosphorylation also could be localized to the hinge 1 region. A synthetic peptide (NR6) based on the phosphorylation site sequence was phosphorylated readily by NR kinase (NRk) in vitro. NR6 kinase activity tracked the ATP-dependent inactivation of NR during several chromatographic steps and completely inhibited inactivation/phosphorylation of native NR in vitro. Two forms of NRk were resolved by using anion exchange chromatography. Studies with synthetic peptide analogs indicated that both forms of NRk had similar specificity determinants, requiring a basic residue at P-3 (i.e., three amino acids N-terminal to the phosphorylated serine) and a hydrophobic residue at P-5. Both forms are strictly calcium dependent but belong to distinct families of protein kinases because they are distinct immunochemically.

  2. SH3 domain tyrosine phosphorylation--sites, role and evolution.

    Directory of Open Access Journals (Sweden)

    Zuzana Tatárová

    Full Text Available BACKGROUND: SH3 domains are eukaryotic protein domains that participate in a plethora of cellular processes including signal transduction, proliferation, and cellular movement. Several studies indicate that tyrosine phosphorylation could play a significant role in the regulation of SH3 domains. RESULTS: To explore the incidence of the tyrosine phosphorylation within SH3 domains we queried the PhosphoSite Plus database of phosphorylation sites. Over 100 tyrosine phosphorylations occurring on 20 different SH3 domain positions were identified. The tyrosine corresponding to c-Src Tyr-90 was by far the most frequently identified SH3 domain phosphorylation site. A comparison of sequences around this tyrosine led to delineation of a preferred sequence motif ALYD(Y/F. This motif is present in about 15% of human SH3 domains and is structurally well conserved. We further observed that tyrosine phosphorylation is more abundant than serine or threonine phosphorylation within SH3 domains and other adaptor domains, such as SH2 or WW domains. Tyrosine phosphorylation could represent an important regulatory mechanism of adaptor domains. CONCLUSIONS: While tyrosine phosphorylation typically promotes signaling protein interactions via SH2 or PTB domains, its role in SH3 domains is the opposite - it blocks or prevents interactions. The regulatory function of tyrosine phosphorylation is most likely achieved by the phosphate moiety and its charge interfering with binding of polyproline helices of SH3 domain interacting partners.

  3. Mapping of p140Cap phosphorylation sites

    DEFF Research Database (Denmark)

    Repetto, Daniele; Aramu, Simona; Boeri Erba, Elisabetta

    2013-01-01

    phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine...... residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant...

  4. Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR

    Energy Technology Data Exchange (ETDEWEB)

    Marasini, Carlotta, E-mail: marasini@ge.ibf.cnr.it [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy); Galeno, Lauretta; Moran, Oscar [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer CFTR mutations produce cystic fibrosis. Black-Right-Pointing-Pointer Chloride transport depends on the regulatory domain phosphorylation. Black-Right-Pointing-Pointer Regulatory domain is intrinsically disordered. Black-Right-Pointing-Pointer Secondary structure and protein stability change upon phosphorylation. -- Abstract: The regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is the region of the channel that regulates the CFTR activity with multiple phosphorylation sites. This domain is an intrinsically disordered protein, characterized by lack of stable or unique tertiary structure. The disordered character of a protein is directly correlated with its function. The flexibility of RD may be important for its regulatory role: the continuous conformational change may be necessary for the progressive phosphorylation, and thus activation, of the channel. However, the lack of a defined and stable structure results in a considerable limitation when trying to in build a unique molecular model for the RD. Moreover, several evidences indicate significant structural differences between the native, non-phosphorylated state, and the multiple phosphorylated state of the protein. The aim of our work is to provide data to describe the conformations and the thermodynamic properties in these two functional states of RD. We have done the circular dichroism (CD) spectra in samples with a different degree of phosphorylation, from the non-phosphorylated state to a bona fide completely phosphorylated state. Analysis of CD spectra showed that the random coil and {beta}-sheets secondary structure decreased with the polypeptide phosphorylation, at expenses of an increase of {alpha}-helix. This observation lead to interpret phosphorylation as a mechanism favoring a more structured state. We also studied the thermal denaturation curves of the protein in the two

  5. Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR

    International Nuclear Information System (INIS)

    Marasini, Carlotta; Galeno, Lauretta; Moran, Oscar

    2012-01-01

    Highlights: ► CFTR mutations produce cystic fibrosis. ► Chloride transport depends on the regulatory domain phosphorylation. ► Regulatory domain is intrinsically disordered. ► Secondary structure and protein stability change upon phosphorylation. -- Abstract: The regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is the region of the channel that regulates the CFTR activity with multiple phosphorylation sites. This domain is an intrinsically disordered protein, characterized by lack of stable or unique tertiary structure. The disordered character of a protein is directly correlated with its function. The flexibility of RD may be important for its regulatory role: the continuous conformational change may be necessary for the progressive phosphorylation, and thus activation, of the channel. However, the lack of a defined and stable structure results in a considerable limitation when trying to in build a unique molecular model for the RD. Moreover, several evidences indicate significant structural differences between the native, non-phosphorylated state, and the multiple phosphorylated state of the protein. The aim of our work is to provide data to describe the conformations and the thermodynamic properties in these two functional states of RD. We have done the circular dichroism (CD) spectra in samples with a different degree of phosphorylation, from the non-phosphorylated state to a bona fide completely phosphorylated state. Analysis of CD spectra showed that the random coil and β-sheets secondary structure decreased with the polypeptide phosphorylation, at expenses of an increase of α-helix. This observation lead to interpret phosphorylation as a mechanism favoring a more structured state. We also studied the thermal denaturation curves of the protein in the two conditions, monitoring the changes of the mean residue ellipticity measured at 222 nm as a function of temperature

  6. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Gnad, Florian; de Godoy, Lyris M F; Cox, Jürgen

    2009-01-01

    Protein phosphorylation is a fundamental regulatory mechanism that affects many cell signaling processes. Using high-accuracy MS and stable isotope labeling in cell culture-labeling, we provide a global view of the Saccharomyces cerevisiae phosphoproteome, containing 3620 phosphorylation sites ma...

  7. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Directory of Open Access Journals (Sweden)

    Neil Arvin Bretaña

    Full Text Available Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase

  8. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Science.gov (United States)

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  9. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn

    2014-01-01

    In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...... a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...

  10. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database

    DEFF Research Database (Denmark)

    Nühse, Thomas S; Stensballe, Allan; Jensen, Ole N

    2004-01-01

    Functional genomic technologies are generating vast amounts of data describing the presence of transcripts or proteins in plant cells. Together with classical genetics, these approaches broaden our understanding of the gene products required for specific responses. Looking to the future, the focus...... of research must shift to the dynamic aspects of biology: molecular mechanisms of function and regulation. Phosphorylation is a key regulatory factor in all aspects of plant biology; but it is difficult, if not impossible, for most researchers to identify in vivo phosphorylation sites within their proteins...... of interest. We have developed a large-scale strategy for the isolation of phosphopeptides and identification by mass spectrometry (Nühse et al., 2003b). Here, we describe the identification of more than 300 phosphorylation sites from Arabidopsis thaliana plasma membrane proteins. These data...

  11. Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output

    Energy Technology Data Exchange (ETDEWEB)

    Pincus, David; Ryan, Christopher J.; Smith, Richard D.; Brent, Roger; Resnekov, Orna; Hakimi, Mohamed Ali

    2013-03-12

    Cell signaling systems transmit information by post-­translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-­protein coupled receptor (GPCR). We used mass spectrometry-based proteomics to identify sites whose phosphorylation changed when the system was active, and evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of regulated phosphorylation events that contribute to adjust the input-­output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results further suggest that relatively small quantitative influences from individual regulatory phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.

  12. Combining metal oxide affinity chromatography (MOAC and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Weckwerth Wolfram

    2005-11-01

    Full Text Available Abstract Background Protein phosphorylation is accepted as a major regulatory pathway in plants. More than 1000 protein kinases are predicted in the Arabidopsis proteome, however, only a few studies look systematically for in vivo protein phosphorylation sites. Owing to the low stoichiometry and low abundance of phosphorylated proteins, phosphorylation site identification using mass spectrometry imposes difficulties. Moreover, the often observed poor quality of mass spectra derived from phosphopeptides results frequently in uncertain database hits. Thus, several lines of evidence have to be combined for a precise phosphorylation site identification strategy. Results Here, a strategy is presented that combines enrichment of phosphoproteins using a technique termed metaloxide affinity chromatography (MOAC and selective ion trap mass spectrometry. The complete approach involves (i enrichment of proteins with low phosphorylation stoichiometry out of complex mixtures using MOAC, (ii gel separation and detection of phosphorylation using specific fluorescence staining (confirmation of enrichment, (iii identification of phosphoprotein candidates out of the SDS-PAGE using liquid chromatography coupled to mass spectrometry, and (iv identification of phosphorylation sites of these enriched proteins using automatic detection of H3PO4 neutral loss peaks and data-dependent MS3-fragmentation of the corresponding MS2-fragment. The utility of this approach is demonstrated by the identification of phosphorylation sites in Arabidopsis thaliana seed proteins. Regulatory importance of the identified sites is indicated by conservation of the detected sites in gene families such as ribosomal proteins and sterol dehydrogenases. To demonstrate further the wide applicability of MOAC, phosphoproteins were enriched from Chlamydomonas reinhardtii cell cultures. Conclusion A novel phosphoprotein enrichment procedure MOAC was applied to seed proteins of A. thaliana and to

  13. Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin.

    Science.gov (United States)

    Oyama, Midori; Kariya, Yoshinobu; Kariya, Yukiko; Matsumoto, Kana; Kanno, Mayumi; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro

    2018-05-09

    Osteopontin (OPN) is an extracellular glycosylated phosphoprotein that promotes cell adhesion by interacting with several integrin receptors. We previously reported that an OPN mutant lacking five O-glycosylation sites (Thr 134 /Thr 138 /Thr 143 /Thr 147 /Thr 152 ) in the threonine/proline-rich region increased cell adhesion activity and phosphorylation compared with the wild type. However, the role of O-glycosylation in cell adhesion activity and phosphorylation of OPN remains to be clarified. Here, we show that site-specific O-glycosylation in the threonine/proline-rich region of OPN affects its cell adhesion activity and phosphorylation independently and/or synergistically. Using site-directed mutagenesis, we found that OPN mutants with substitution sets of Thr 134 /Thr 138 or Thr 143 /Thr 147 /Thr 152 had decreased and increased cell adhesion activity, respectively. In contrast, the introduction of a single mutation into the O-glycosylation sites had no effect on OPN cell adhesion activity. An adhesion assay using function-blocking antibodies against αvβ3 and β1 integrins, as well as αvβ3 integrin-overexpressing A549 cells, revealed that site-specific O-glycosylation affected the association of OPN with the two integrins. Phosphorylation analyses using phos-tag and LC-MS/MS indicated that phosphorylation levels and sites were influenced by the O-glycosylation status, although the number of O-glycosylation sites was not correlated with the phosphorylation level in OPN. Furthermore, a correlation analysis between phosphorylation level and cell adhesion activity in OPN mutants with the site-specific O-glycosylation showed that they were not always correlated. These results provide conclusive evidence of a novel regulatory mechanism of cell adhesion activity and phosphorylation of OPN by site-specific O-glycosylation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Detection and characterization of 3D-signature phosphorylation site motifs and their contribution towards improved phosphorylation site prediction in proteins

    Directory of Open Access Journals (Sweden)

    Selbig Joachim

    2009-04-01

    Full Text Available Abstract Background Phosphorylation of proteins plays a crucial role in the regulation and activation of metabolic and signaling pathways and constitutes an important target for pharmaceutical intervention. Central to the phosphorylation process is the recognition of specific target sites by protein kinases followed by the covalent attachment of phosphate groups to the amino acids serine, threonine, or tyrosine. The experimental identification as well as computational prediction of phosphorylation sites (P-sites has proved to be a challenging problem. Computational methods have focused primarily on extracting predictive features from the local, one-dimensional sequence information surrounding phosphorylation sites. Results We characterized the spatial context of phosphorylation sites and assessed its usability for improved phosphorylation site predictions. We identified 750 non-redundant, experimentally verified sites with three-dimensional (3D structural information available in the protein data bank (PDB and grouped them according to their respective kinase family. We studied the spatial distribution of amino acids around phosphorserines, phosphothreonines, and phosphotyrosines to extract signature 3D-profiles. Characteristic spatial distributions of amino acid residue types around phosphorylation sites were indeed discernable, especially when kinase-family-specific target sites were analyzed. To test the added value of using spatial information for the computational prediction of phosphorylation sites, Support Vector Machines were applied using both sequence as well as structural information. When compared to sequence-only based prediction methods, a small but consistent performance improvement was obtained when the prediction was informed by 3D-context information. Conclusion While local one-dimensional amino acid sequence information was observed to harbor most of the discriminatory power, spatial context information was identified as

  15. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2008-08-01

    Full Text Available Raj Kumar1, William J Calhoun21Division of Gastroenterology; 2Division of Allergy, Pulmonary, Immunology, Critical Care, and Sleep (APICS, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USAAbstract: Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade

  16. PhosphoBase: a database of phosphorylation sites

    DEFF Research Database (Denmark)

    Blom, Nikolaj; Kreegipuu, Andres; Brunak, Søren

    1998-01-01

    PhosphoBase is a database of experimentally verified phosphorylation sites. Version 1.0 contains 156 entries and 398 experimentally determined phosphorylation sites. Entries are compiled and revised from the literature and from major protein sequence databases such as SwissProt and PIR. The entries...... provide information about the phosphoprotein and the exact position of its phosphorylation sites. Furthermore, part of the entries contain information about kinetic data obtained from enzyme assays on specific peptides. To illustrate the use of data extracted from PhosphoBase we present a sequence logo...... displaying the overall conservation of positions around serines phosphorylated by protein kinase A (PKA). PhosphoBase is available on the WWW at http://www.cbs.dtu.dk/databases/PhosphoBase/....

  17. Phosphorylation of protein kinase A (PKA) regulatory subunit RIα by protein kinase G (PKG) primes PKA for catalytic activity in cells.

    Science.gov (United States)

    Haushalter, Kristofer J; Casteel, Darren E; Raffeiner, Andrea; Stefan, Eduard; Patel, Hemal H; Taylor, Susan S

    2018-03-23

    cAMP-dependent protein kinase (PKAc) is a pivotal signaling protein in eukaryotic cells. PKAc has two well-characterized regulatory subunit proteins, RI and RII (each having α and β isoforms), which keep the PKAc catalytic subunit in a catalytically inactive state until activation by cAMP. Previous reports showed that the RIα regulatory subunit is phosphorylated by cGMP-dependent protein kinase (PKG) in vitro , whereupon phosphorylated RIα no longer inhibits PKAc at normal (1:1) stoichiometric ratios. However, the significance of this phosphorylation as a mechanism for activating type I PKA holoenzymes has not been fully explored, especially in cellular systems. In this study, we further examined the potential of RIα phosphorylation to regulate physiologically relevant "desensitization" of PKAc activity. First, the serine 101 site of RIα was validated as a target of PKGIα phosphorylation both in vitro and in cells. Analysis of a phosphomimetic substitution in RIα (S101E) showed that modification of this site increases PKAc activity in vitro and in cells, even without cAMP stimulation. Numerous techniques were used to show that although Ser 101 variants of RIα can bind PKAc, the modified linker region of the S101E mutant has a significantly reduced affinity for the PKAc active site. These findings suggest that RIα phosphorylation may be a novel mechanism to circumvent the requirement of cAMP stimulus to activate type I PKA in cells. We have thus proposed a model to explain how PKG phosphorylation of RIα creates a "sensitized intermediate" state that is in effect primed to trigger PKAc activity.

  18. Large-scale analysis of phosphorylation site occupancy in eukaryotic proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max

    2012-01-01

    in proteins is currently lacking. We have therefore analyzed the occurrence and occupancy of phosphorylated sites (~ 100,281) in a large set of eukaryotic proteins (~ 22,995). Phosphorylation probability was found to be much higher in both the  termini of protein sequences and this is much pronounced...... maximum randomness. An analysis of phosphorylation motifs indicated that just 40 motifs and a much lower number of associated kinases might account for nearly 50% of the known phosphorylations in eukaryotic proteins. Our results provide a broad picture of the phosphorylation sites in eukaryotic proteins.......Many recent high throughput technologies have enabled large-scale discoveries of new phosphorylation sites and phosphoproteins. Although they have provided a number of insights into protein phosphorylation and the related processes, an inclusive analysis on the nature of phosphorylated sites...

  19. A grammar inference approach for predicting kinase specific phosphorylation sites.

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.

  20. A Grammar Inference Approach for Predicting Kinase Specific Phosphorylation Sites

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner. PMID:25886273

  1. Pinpointing Phosphorylation Sites: Quantitative Filtering and a Novel Site-specific x-Ion Fragment

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Hekmat, Omid; Francavilla, Chiara

    2011-01-01

    Phosphoproteomics deals with the identification and quantification of thousands of phosphopeptides. Localizing the phosphorylation site is however much more difficult than establishing the identity of a phosphorylated peptide. Further, recent findings have raised doubts of the validity of the site......-phase phosphate rearrangement reactions during collision-induced dissociation (CID) and used these spectra to devise a quantitative filter that by comparing signal intensities of putative phosphorylated fragment ions with their nonphosphorylated counterparts allowed us to accurately pinpoint which fragment ions...... contain a phosphorylated residue and which ones do not. We also evaluated higher-energy collisional dissociation (HCD) and found this to be an accurate method for correct phosphorylation site localization with no gas-phase rearrangements observed above noise level. Analyzing a large set of HCD spectra...

  2. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    International Nuclear Information System (INIS)

    Kim, Seon Sook; Lee, Eun Hye; Lee, Kooyeon; Jo, Su-Hyun; Seo, Su Ryeon

    2015-01-01

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression

  3. PhosphoRice: a meta-predictor of rice-specific phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Que Shufu

    2012-02-01

    Full Text Available Abstract Background As a result of the growing body of protein phosphorylation sites data, the number of phosphoprotein databases is constantly increasing, and dozens of tools are available for predicting protein phosphorylation sites to achieve fast automatic results. However, none of the existing tools has been developed to predict protein phosphorylation sites in rice. Results In this paper, the phosphorylation site predictors, NetPhos 2.0, NetPhosK, Kinasephos, Scansite, Disphos and Predphosphos, were integrated to construct meta-predictors of rice-specific phosphorylation sites using several methods, including unweighted voting, unreduced weighted voting, reduced unweighted voting and weighted voting strategies. PhosphoRice, the meta-predictor produced by using weighted voting strategy with parameters selected by restricted grid search and conditional random search, performed the best at predicting phosphorylation sites in rice. Its Matthew's Correlation Coefficient (MCC and Accuracy (ACC reached to 0.474 and 73.8%, respectively. Compared to the best individual element predictor (Disphos_default, PhosphoRice archieved a significant increase in MCC of 0.071 (P Conclusions PhosphoRice is a powerful tool for predicting unidentified phosphorylation sites in rice. Compared to the existing methods, we found that our tool showed greater robustness in ACC and MCC. PhosphoRice is available to the public at http://bioinformatics.fafu.edu.cn/PhosphoRice.

  4. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    International Nuclear Information System (INIS)

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

    2011-01-01

    Highlights: ► Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. ► Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. ► It is a widely believed that MYL2 is a poor substrate for smMLCK. ► In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. ► Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca 2+ sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis–Menten V max and K M for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.

  5. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  6. Phosphorylation of plant plasma membrane H+-ATPase by the heterologous host S. cerevisiae

    DEFF Research Database (Denmark)

    Rudashevskaya, Elena; Ye, Juanying; Young, Clifford

     It is known, that phosphorylation of both plant and yeast plasma membrane H+-ATPase results in enzyme activation or inhibition. Several sites at the regulatory C-terminus of the enzyme have been found to undergo phosphorylation in vivo in both plant and yeast. The C-termini of plant H...... of heterologous system of yeast cells, expressing plant proton pump. Therefore identification of possible regulatory effects by phosphorylation events in plant H+-ATPase in the system is significant. A number of putative phosphorylation sites at regulatory C-domain of H+-ATPase (AHA2) have been point...... functioning of the residues and suggests, that plant H+-ATPase could be regulated by phosphorylation at several sites being in yeast cells. Plant H+-ATPase purified from yeast cells by his-tag affinity chromatography was subjected to IMAC and TiO2 for enrichment of phosphopeptides. The phosphopeptides were...

  7. Identification of the protein kinase C phosphorylation site in neuromodulin

    International Nuclear Information System (INIS)

    Apel, E.D.; Byford, M.F.; Au, D.; Walsh, K.A.; Storm, D.R.

    1990-01-01

    Neuromodulin (P-57, GAP-43, B-50, F-1) is a neurospecific calmodulin binding protein that is phosphorylated by protein kinase C. Phosphorylation by protein kinase C has been shown to abolish the affinity of neuromodulin for calmodulin and the authors have proposed that the concentration of free CaM in neurons may be regulated by phosphorylation and dephosphorylation of neuromodulin. The purpose of this study was to identify the protein kinase C phosphorylation site(s) in neuromodulin using recombinant neuromodulin as a substrate. Toward this end, it was demonstrated that recombinant neuromodulin purified from Escherichia coli and bovine neuromodulin were phosphorylated with similar K m values and stoichiometries and that protein kinase C mediated phosphorylation of both proteins abolished binding to calmodulin-Sepharose. Recombinant neuromodulin was phosphorylated by using protein kinase C and [γ- 32 P]ATP and digested with trypsin, and the resulting peptides were separated by HPLC. Only one 32 P-labeled tryptic peptide was generated from phosphorylated neuromodulin. They conclude that serine-41 is the protein kinase C phosphorylation site of neuromodulin and that phosphorylation of this amino acid residue blocks binding of calmoculin to neuromodulin. The proximity of serine-41 to the calmodulin binding domain in neuromodulin very likely explains the effect of phosphorylation on the affinity of neuromodulin for calmodulin

  8. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.

    2007-01-01

    sites compared to those in humans, suggesting the need for an yeast-specific phosphorylation site predictor. NetPhosYeast achieves a correlation coefficient close to 0.75 with a sensitivity of 0.84 and specificity of 0.90 and outperforms existing predictors in the identification of phosphorylation sites...

  9. The in vivo phosphorylation sites of rat brain dynamin I

    DEFF Research Database (Denmark)

    Graham, Mark E; Anggono, Victor; Bache, Nicolai

    2007-01-01

    -824). To resolve the discrepancy and to better understand the biological roles of dynI phosphorylation, we undertook a systematic identification of all phosphorylation sites in rat brain nerve terminal dynI. Using phosphoamino acid analysis, exclusively phospho-serine residues were found. Thr(780) phosphorylation...... of their relative abundance and relative responses to depolarization. The multiple phospho-sites suggest subtle regulation of synaptic vesicle endocytosis by new protein kinases and new protein-protein interactions. The homologous dynI and dynIII phosphorylation indicates a high mechanistic similarity. The results...

  10. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites.

    Science.gov (United States)

    Gao, Jianjiong; Thelen, Jay J; Dunker, A Keith; Xu, Dong

    2010-12-01

    Reversible protein phosphorylation is one of the most pervasive post-translational modifications, regulating diverse cellular processes in various organisms. High throughput experimental studies using mass spectrometry have identified many phosphorylation sites, primarily from eukaryotes. However, the vast majority of phosphorylation sites remain undiscovered, even in well studied systems. Because mass spectrometry-based experimental approaches for identifying phosphorylation events are costly, time-consuming, and biased toward abundant proteins and proteotypic peptides, in silico prediction of phosphorylation sites is potentially a useful alternative strategy for whole proteome annotation. Because of various limitations, current phosphorylation site prediction tools were not well designed for comprehensive assessment of proteomes. Here, we present a novel software tool, Musite, specifically designed for large scale predictions of both general and kinase-specific phosphorylation sites. We collected phosphoproteomics data in multiple organisms from several reliable sources and used them to train prediction models by a comprehensive machine-learning approach that integrates local sequence similarities to known phosphorylation sites, protein disorder scores, and amino acid frequencies. Application of Musite on several proteomes yielded tens of thousands of phosphorylation site predictions at a high stringency level. Cross-validation tests show that Musite achieves some improvement over existing tools in predicting general phosphorylation sites, and it is at least comparable with those for predicting kinase-specific phosphorylation sites. In Musite V1.0, we have trained general prediction models for six organisms and kinase-specific prediction models for 13 kinases or kinase families. Although the current pretrained models were not correlated with any particular cellular conditions, Musite provides a unique functionality for training customized prediction models

  11. Construction and Deciphering of Human Phosphorylation-Mediated Signaling Transduction Networks.

    Science.gov (United States)

    Zhang, Menghuan; Li, Hong; He, Ying; Sun, Han; Xia, Li; Wang, Lishun; Sun, Bo; Ma, Liangxiao; Zhang, Guoqing; Li, Jing; Li, Yixue; Xie, Lu

    2015-07-02

    Protein phosphorylation is the most abundant reversible covalent modification. Human protein kinases participate in almost all biological pathways, and approximately half of the kinases are associated with disease. PhoSigNet was designed to store and display human phosphorylation-mediated signal transduction networks, with additional information related to cancer. It contains 11 976 experimentally validated directed edges and 216 871 phosphorylation sites. Moreover, 3491 differentially expressed proteins in human cancer from dbDEPC, 18 907 human cancer variation sites from CanProVar, and 388 hyperphosphorylation sites from PhosphoSitePlus were collected as annotation information. Compared with other phosphorylation-related databases, PhoSigNet not only takes the kinase-substrate regulatory relationship pairs into account, but also extends regulatory relationships up- and downstream (e.g., from ligand to receptor, from G protein to kinase, and from transcription factor to targets). Furthermore, PhoSigNet allows the user to investigate the impact of phosphorylation modifications on cancer. By using one set of in-house time series phosphoproteomics data, the reconstruction of a conditional and dynamic phosphorylation-mediated signaling network was exemplified. We expect PhoSigNet to be a useful database and analysis platform benefiting both proteomics and cancer studies.

  12. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Brunak, Søren; Olsen, JV

    2010-01-01

    and phosphorylation sites were grouped according to their cell cycle kinetics and compared to publicly available messenger RNA microarray data. Most detected phosphorylation sites and more than 20% of all quantified proteins showed substantial regulation, mainly in mitotic cells. Kinase-motif analysis revealed global...

  13. The Contribution of Serine 194 Phosphorylation to Steroidogenic Acute Regulatory Protein Function

    OpenAIRE

    Sasaki, Goro; Zubair, Mohamad; Ishii, Tomohiro; Mitsui, Toshikatsu; Hasegawa, Tomonobu; Auchus, Richard J.

    2014-01-01

    The steroidogenic acute regulatory protein (StAR) facilitates the delivery of cholesterol to the inner mitochondrial membrane, where the cholesterol side-chain cleavage enzyme catalyzes the initial step of steroid hormone biosynthesis. StAR was initially identified in adrenocortical cells as a phosphoprotein, the expression and phosphorylation of which were stimulated by corticotropin. A number of in vitro studies have implicated cAMP-dependent phosphorylation at serine 194 (S194, S195 in hum...

  14. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    International Nuclear Information System (INIS)

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the α subunit of G i and other G proteins in solution. However, the occurrence of the phosphorylation of G 1 within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which the α subunits of G i undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with [γ 32 P]ATP and [ 32 P]H 3 PO 4 , respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G iα -despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G zα , or antibodies for both G zα and G iα , precipitated a 40-kDa phosphoprotein

  15. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue

    NARCIS (Netherlands)

    Lea, US; ten Hoopen, F; Provan, F; Kaiser, WM; Meyer, C; Lillo, C

    In wild-type Nicotiana plumbaginifolia Viv. and other higher plants, nitrate reductase (NR) is regulated at the post-translational level and is rapidly inactivated in response to, for example, a light-to-dark transition. This inactivation is caused by phosphorylation of a conserved regulatory serine

  16. Topoisomerase I tyrosine phosphorylation site and the DNA-interactive site

    International Nuclear Information System (INIS)

    Roll, D.; Durban, E.

    1986-01-01

    Phosphorylation of topoisomerase I (topo I) at serine by NII kinase is accompanied by stimulation of enzymatic activity. In contrast, phosphorylation at tyrosine by tyrosine kinase seems to inhibit enzymatic activity. This inhibition may be caused by interference of the phosphorylated tyrosine residue with the interaction of topo I with DNA. To test this, topo I was labeled with crude membrane fraction enriched for EGF-receptor kinase in presence of γ-P32-ATP and electrophoresed on SDS-polyacrylamide gels. Stained topo I bands were excised, dried, digested with trypsin and analyzed on a C18 reverse-phase HPLC column. One major peak of radioactivity eluted at fraction 23 with 20% acetonitrile. To obtain the DNA-interactive site, topo I was incubated with pBR322 DNA labeled by nick-translation followed by DNase I treatment, and electrophoresis on SDS-polyacrylamide gels. Tryptic peptides were generated and analyzed by reverse-phase HPLC. A major peak of radioactivity eluted at fraction 16-18 with 15.5-17% acetonitrile. Studies are in progress to resolve whether (a) the two peptides are different, i.e. the tyrosine-P site and DNA-tyrosine interactive site are localized at different regions of the topo I or (b) the peptide sequences are identical but the covalent attachment of deoxynucleotides altered the peptide's elution from the HPLC column

  17. Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle.

    Science.gov (United States)

    Vichaiwong, Kanokwan; Purohit, Suneet; An, Ding; Toyoda, Taro; Jessen, Niels; Hirshman, Michael F; Goodyear, Laurie J

    2010-10-15

    TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) is a Rab-GAP (GTPase-activating protein) that is highly expressed in skeletal muscle, but little is known about TBC1D1 regulation and function. We studied TBC1D1 phosphorylation on three predicted AMPK (AMP-activated protein kinase) phosphorylation sites (Ser231, Ser660 and Ser700) and one predicted Akt phosphorylation site (Thr590) in control mice, AMPKα2 inactive transgenic mice (AMPKα2i TG) and Akt2-knockout mice (Akt2 KO). Muscle contraction significantly increased TBC1D1 phosphorylation on Ser231 and Ser660, tended to increase Ser700 phosphorylation, but had no effect on Thr590. AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside) also increased phosphorylation on Ser231, Ser660 and Ser700, but not Thr590, whereas insulin only increased Thr590 phosphorylation. Basal and contraction-stimulated TBC1D1 Ser231, Ser660 and Ser700 phosphorylation were greatly reduced in AMPKα2i TG mice, although contraction still elicited a small increase in phosphorylation. Akt2 KO mice had blunted insulin-stimulated TBC1D1 Thr590 phosphorylation. Contraction-stimulated TBC1D1 Ser231 and Ser660 phosphorylation were normal in high-fat-fed mice. Glucose uptake in vivo was significantly decreased in tibialis anterior muscles overexpressing TBC1D1 mutated on four predicted AMPK phosphorylation sites. In conclusion, contraction causes site-specific phosphorylation of TBC1D1 in skeletal muscle, and TBC1D1 phosphorylation on AMPK sites regulates contraction-stimulated glucose uptake. AMPK and Akt regulate TBC1D1 phosphorylation, but there must be additional upstream kinases that mediate TBC1D1 phosphorylation in skeletal muscle.

  18. Specific mixing facilitates the comparative quantification of phosphorylation sites with significant dysregulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Bo [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); Liu, Zheyi; Dong, Mingming; Mao, Jiawei; Zhou, Ye; Chen, Jin [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Fangjun, E-mail: wangfj@dicp.ac.cn [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); Zou, Hanfa [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China)

    2017-01-15

    Mass spectrometry (MS) based quantitative analyses of proteome and proteome post-translational modifications (PTMs) play more and more important roles in biological, pharmaceutical and clinical studies. However, it is still a big challenge to accurately quantify the proteins or proteins PTM sites with extreme relative abundances in comparative protein samples, such as the significantly dysregulated ones. Herein, a novel quantification strategy, Mixing at Specific Ratio (MaSR) before isotope labeling, had been developed to improve the quantification accuracy and coverage of extreme proteins and protein phosphorylation sites. Briefly, the comparative protein samples were firstly mixed together at specific ratios of 9:1 and 1:9 (w/w), followed with mass differentiate light and heavy isotope labeling, respectively. The extreme proteins and protein phosphorylation sites, even if the newly expressed or disappeared ones, could be accurately quantified due to all of the proteins' relative abundances had been adjusted to 2 orders of magnitude (1/9-9) by this strategy. The number of quantified phosphorylation sites with more than 20 folds changes was improved about 10 times in comparative quantification of pervanadate stimulated phosphoproteome of HeLa cells, and 134 newly generated and 21 disappeared phosphorylation sites were solely quantified by the MaSR strategy. The significantly up-regulated phosphorylation sites were mainly involved in the key phosphoproteins regulating the insulin-related pathways, such as PI3K-AKT and RAS-MAPK pathways. Therefore, the MaSR strategy exhibits as a promising way in elucidating the biological processes with significant dysregulations. - Highlights: • All the proteins' relative abundances were adjusted into 2 orders of magnitude (1/9-9). • The quantification accuracy and coverage of extreme proteins and protein phosphorylation sites had been improved. • The newly expressed or disappeared proteins and protein

  19. Current status of the plant phosphorylation site database PhosPhAt and its use as a resource for molecular plant physiology.

    Science.gov (United States)

    Arsova, Borjana; Schulze, Waltraud X

    2012-01-01

    As the most studied post-translational modification, protein phosphorylation is analyzed in a growing number of proteomic experiments. These high-throughput approaches generate large datasets, from which specific spectrum-based information can be hard to find. In 2007, the PhosPhAt database was launched to collect and present Arabidopsis phosphorylation sites identified by mass spectrometry from and for the scientific community. At present, PhosPhAt 3.0 consolidates phosphoproteomics data from 19 published proteomic studies. Out of 5460 listed unique phosphoproteins, about 25% have been identified in at least two independent experimental setups. This is especially important when considering issues of false positive and false negative identification rates and data quality (Durek etal., 2010). This valuable data set encompasses over 13205 unique phosphopeptides, with unambiguous mapping to serine (77%), threonine (17%), and tyrosine (6%). Sorting the functional annotations of experimentally found phosphorylated proteins in PhosPhAt using Gene Ontology terms shows an over-representation of proteins in regulatory pathways and signaling processes. A similar distribution is found when the PhosPhAt predictor, trained on experimentally obtained plant phosphorylation sites, is used to predict phosphorylation sites for the Arabidopsis genome. Finally, the possibility to insert a protein sequence into the PhosPhAt predictor allows species independent use of the prediction resource. In practice, PhosPhAt also allows easy exploitation of proteomic data for design of further targeted experiments.

  20. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    Directory of Open Access Journals (Sweden)

    John G Koland

    2014-01-01

    Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in

  1. Topographical distribution of phosphorylation sites of phosvitins by mass spectrometry.

    Science.gov (United States)

    Czernick, Drew; Liu, Jess; Serge, Dibart; Salih, Erdjan

    2013-05-27

    Phosvitin, derived from the vitellogenin II gene protein, is a highly phosphorylated protein found in egg yolk. A second hypothetical protein has been predicted based on the vitellogenin I gene, but has not been defined at the protein level. Mass spectrometric analysis was used to identify the phosphopeptide sequences and the precise sites of phosphorylation of two phosvitins, phosvitin 1 and phosvitin 2 derived from vitellogenins I and II, respectively. Samples of native phosvitin were subjected to tryptic digestion followed by mass spectrometric analysis: (i) native phosvitin peptides, (ii) after treatment with NaOH, and (iii) after chemical derivatization of P-Ser/P-Thr residues by dithiothreitol under base-catalyzed conditions. A combination of these approaches led to the identification of 68 and 35 phosphopeptides with 89 (81 P-Ser and 8 P-Thr residues) and 62 (57 P-Ser and 5 P-Thr residues) phosphorylation sites of phosvitin 1 and phosvitin 2, respectively. These data for the first time documented on a large scale the major states and sites of phosphorylation of phosvitins with a total of 151 phosphorylation sites. Importantly, the present work also provided the first direct de novo protein amino-acid sequence data for phosvitin 1 protein and evidence for the full expression of vitellogenin I gene. We have for the first time generated a large number of phosphopeptides (~100) and identified 151 phosphorylation sites of phosvitin 1 and phosvitin 2, respectively. Importantly, this study also led to the discovery of a novel phosvitin 1 and provided the first direct de novo protein amino-acid sequence data for the full expression of vitellogenin I gene. There is considerable interest in naturally occurring phosphopeptides/phosphoproteins and their application in biomedical fields and in the food industry because of their molecular characteristics and non-toxic nature, hence, our work opens new avenues to pursue such endeavors. In addition, the results provide

  2. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins.

    Science.gov (United States)

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi

    2016-09-02

    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  3. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  4. Double phosphorylation of the myosin regulatory light chain during rigor mortis of bovine Longissimus muscle.

    Science.gov (United States)

    Muroya, Susumu; Ohnishi-Kameyama, Mayumi; Oe, Mika; Nakajima, Ikuyo; Shibata, Masahiro; Chikuni, Koichi

    2007-05-16

    To investigate changes in myosin light chains (MyLCs) during postmortem aging of the bovine longissimus muscle, we performed two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The results of fluorescent differential gel electrophoresis showed that two spots of the myosin regulatory light chain (MyLC2) at pI values of 4.6 and 4.7 shifted toward those at pI values of 4.5 and 4.6, respectively, by 24 h postmortem when rigor mortis was completed. Meanwhile, the MyLC1 and MyLC3 spots did not change during the 14 days postmortem. Phosphoprotein-specific staining of the gels demonstrated that the MyLC2 proteins at pI values of 4.5 and 4.6 were phosphorylated. Furthermore, possible N-terminal region peptides containing one and two phosphoserine residues were detected in each mass spectrum of the MyLC2 spots at pI values of 4.5 and 4.6, respectively. These results demonstrated that MyLC2 became doubly phosphorylated during rigor formation of the bovine longissimus, suggesting involvement of the MyLC2 phosphorylation in the progress of beef rigor mortis. Bovine; myosin regulatory light chain (RLC, MyLC2); phosphorylation; rigor mortis; skeletal muscle.

  5. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC

    DEFF Research Database (Denmark)

    Rosenbaek, L L; Assentoft, M; Pedersen, N B

    2012-01-01

    The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antib......The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho......-related proline-alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and m...

  6. Identification of a novel phosphorylation site in c-jun directly targeted in vitro by protein kinase D

    International Nuclear Information System (INIS)

    Waldron, Richard T.; Whitelegge, Julian P.; Faull, Kym F.; Rozengurt, Enrique

    2007-01-01

    Protein kinase D (PKD) phosphorylates the c-jun amino-terminal in vitro at site(s) distinct from JNK [C. Hurd, R.T. Waldron, E. Rozengurt, Protein kinase D complexes with c-jun N-terminal kinase via activation loop phosphorylation and phosphorylates the c-jun N-terminus, Oncogene 21 (2002) 2154-2160], but the sites have not been identified. Here, metabolic 32 P-labeling of c-jun protein in COS-7 cells indicated that PKD phosphorylates c-jun in vivo at a site(s) between aa 43-93, a region containing important functional elements. On this basis, the PKD-mediated phosphorylation site(s) was further characterized in vitro using GST-c-jun fusion proteins. PKD did not incorporate phosphate into Ser63 and Ser73, the JNK sites in GST-c-jun(1-89). Rather, PKD and JNK could sequentially phosphorylate distinct site(s) simultaneously. By mass spectrometry of tryptic phosphopeptides, Ser58 interposed between the JNK-binding portion of the delta domain and the adjacent TAD1 was identified as a prominent site phosphorylated in vitro by PKD. These data were further supported by kinase reactions using truncations or point-mutations of GST-c-jun. Together, these data suggest that PKD-mediated phosphorylation modulates c-jun at the level of its N-terminal functional domains

  7. Characterization and validation of new tools for measuring site-specific cardiac troponin I phosphorylation.

    Science.gov (United States)

    Thoemmes, Stephen F; Stutzke, Crystal A; Du, Yanmei; Browning, Michael D; Buttrick, Peter M; Walker, Lori A

    2014-01-31

    Phosphorylation of cardiac troponin I is a well established mechanism by which cardiac contractility is modulated. However, there are a number of phosphorylation sites on TnI which contribute singly or in combination to influence cardiac function. Accordingly, methods for accurately measuring site-specific TnI phosphorylation are needed. Currently, two strategies are employed: mass spectrometry, which is costly, difficult and has a low throughput; and Western blotting using phospho-specific antibodies, which is limited by the availability of reagents. In this report, we describe a cohort of new site-specific TnI phosphoantibodies, generated against physiologically relevant phosphorylation sites, that are superior to the current commercially available antibodies: to phospho-serine 22/23 which shows a >5-fold phospho-specificity for phosphorylated TnI; to phospho-serine 43, which has >3-fold phospho-specificity for phosphorylated TnI; and phospho-serine 150 which has >2-fold phospho-specificity for phosphorylated TnI. These new antibodies demonstrated greater sensitivity and specificity for the phosphorylated TnI than the most widely used commercially available reagents. For example, at a protein load of 20 μg of total cardiac extract, a commercially available antibody recognized both phosphorylated and dephosphorylated TnI to the same degree. At the same protein load our phospho-serine 22/23 antibody exhibited no cross-reactivity with dephosphorylated TnI. These new tools should allow a more accurate assessment and a better understanding of the role of TnI phosphorylation in the response of the heart to pathologic stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay.

    Science.gov (United States)

    Cui, Heying; Loftus, Kyle M; Noell, Crystal R; Solmaz, Sozanne R

    2018-05-03

    Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.

  9. Identification of a phosphorylation-dependent nuclear localization motif in interferon regulatory factor 2 binding protein 2.

    Directory of Open Access Journals (Sweden)

    Allen C T Teng

    Full Text Available Interferon regulatory factor 2 binding protein 2 (IRF2BP2 is a muscle-enriched transcription factor required to activate vascular endothelial growth factor-A (VEGFA expression in muscle. IRF2BP2 is found in the nucleus of cardiac and skeletal muscle cells. During the process of skeletal muscle differentiation, some IRF2BP2 becomes relocated to the cytoplasm, although the functional significance of this relocation and the mechanisms that control nucleocytoplasmic localization of IRF2BP2 are not yet known.Here, by fusing IRF2BP2 to green fluorescent protein and testing a series of deletion and site-directed mutagenesis constructs, we mapped the nuclear localization signal (NLS to an evolutionarily conserved sequence (354ARKRKPSP(361 in IRF2BP2. This sequence corresponds to a classical nuclear localization motif bearing positively charged arginine and lysine residues. Substitution of arginine and lysine with negatively charged aspartic acid residues blocked nuclear localization. However, these residues were not sufficient because nuclear targeting of IRF2BP2 also required phosphorylation of serine 360 (S360. Many large-scale phosphopeptide proteomic studies had reported previously that serine 360 of IRF2BP2 is phosphorylated in numerous human cell types. Alanine substitution at this site abolished IRF2BP2 nuclear localization in C(2C(12 myoblasts and CV1 cells. In contrast, substituting serine 360 with aspartic acid forced nuclear retention and prevented cytoplasmic redistribution in differentiated C(2C(12 muscle cells. As for the effects of these mutations on VEGFA promoter activity, the S360A mutation interfered with VEGFA activation, as expected. Surprisingly, the S360D mutation also interfered with VEGFA activation, suggesting that this mutation, while enforcing nuclear entry, may disrupt an essential activation function of IRF2BP2.Nuclear localization of IRF2BP2 depends on phosphorylation near a conserved NLS. Changes in phosphorylation status

  10. Novel Tyrosine Phosphorylation Sites in Rat Skeletal Muscle Revealed by Phosphopeptide Enrichment and HPLC-ESI-MS/MS

    Science.gov (United States)

    Zhang, Xiangmin; Højlund, Kurt; Luo, Moulun; Meyer, Christian; Thangiah, Geetha; Yi, Zhengping

    2012-01-01

    Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (tyrosine phosphorylation sites have been identified in mammalian skeletal muscle to date. Here, we used immunoprecipitation of phosphotyrosine peptides prior to HPLC-ESI-MS/MS analysis to improve the discovery of tyrosine phosphorylation in relatively small skeletal muscle biopsies from rats. This resulted in the identification of 87 distinctly localized tyrosine phosphorylation sites in 46 muscle proteins. Among them, 31 appear to be novel. The tyrosine phosphorylated proteins included major enzymes in the glycolytic pathway and glycogen metabolism, sarcomeric proteins, and proteins involved in Ca2+ homeostasis and phosphocreatine resynthesis. Among proteins regulated by insulin, we found tyrosine phosphorylation sites in glycogen synthase, and two of its inhibitors, GSK-3α and DYRK1A. Moreover, tyrosine phosphorylation sites were identified in several MAP kinases and a protein tyrosine phosphatase, SHPTP2. These results provide the largest catalogue of mammalian skeletal muscle tyrosine phosphorylation sites to date and provide novel targets for the investigation of human skeletal muscle phosphoproteins in various disease states. PMID:22609512

  11. Effects of kinase inhibitors and potassium phosphate (KPi) on site-specific phosphorylation of branched chain α-ketoacid dehydrogenase (BCKDH)

    International Nuclear Information System (INIS)

    Kuntz, M.J.; Shimomura, Y.; Ozawa, T.; Harris, R.A.

    1987-01-01

    BCKDH is phosphorylated by a copurifying kinase at two serine residues on the Elα subunit. Phosphorylation of both sites occurs at about the same rate initially, but inactivation is believed associated only with site 1 phosphorylation. The effects of KPi and known inhibitors of BCKDH kinase, α-chloroisocaproate (CIC) and branched chain α-ketoacids (BCKA), on the phosphorylation of purified rat liver BCKDH were studied. Site-specific phosphorylation was quantitated by thin-layer electrophoresis of tryptic peptides followed by densitometric scanning of autoradiograms. Addition of 5 mM KPi was found necessary to stabilize the BCKDH activity at 37 0 C. Increasing the KPi to 50 mM dramatically increased the CIC and BCKA inhibition of site 1 and site 2 phosphorylation. The finding of enhanced sensitivity of inhibitors with 50 mM KPi may facilitate identification of physiologically important kinase effectors. Regardless of the KPi concentration, CIC and the BCKA showed much more effective inhibition of site 2 than site 1 phosphorylation. Although site 1 is the primary inactivating site, predominant inhibition of site 2 phosphorylation may provide a means of modulating kinase/phosphatase control of BCKDH activity under steady state conditions

  12. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in constitutive activation of the enzyme in vivo and nitrite accumulation.

    Science.gov (United States)

    Lillo, Cathrine; Lea, Unni S; Leydecker, Marie-Thérèse; Meyer, Christian

    2003-09-01

    In wild-type Nicotiana plumbaginifolia and other higher plants, nitrate reductase (NR) is rapidly inactivated/activated in response to dark/light transitions. Inactivation of NR is believed to be caused by phosphorylation at a special conserved regulatory Ser residue, Ser 521, and interactions with divalent cations and inhibitory 14-3-3 proteins. A transgenic N. plumbaginifolia line (S(521)) was constructed where the Ser 521 had been changed by site-directed mutagenesis into Asp. This mutation resulted in complete abolishment of inactivation in response to light/dark transitions or other treatments known to inactivate NR. During prolonged darkness, NR in wild-type plants is in the inactivated form, whereas NR in the S(521) line is always in the active form. Differences in degradation rate between NR from S(521) and lines with non-mutated NR were not found. Kinetic constants like Km values for NADH and NO3(-) were not changed, but a slightly different pH profile was observed for mutated NR as opposed to non-mutated NR. Under optimal growth conditions, the phenotype of the S(521) plants was not different from the wild type (WT). However, when plants were irrigated with high nitrate concentration, 150 mM, the transgenic plants accumulated nitrite in darkness, and young leaves showed chlorosis.

  13. The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: Involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end

    DEFF Research Database (Denmark)

    Fuglsang, Anja T; Borch, Jonas; Bych, Katrine

    2003-01-01

    14-3-3 proteins constitute a family of well conserved proteins interacting with a large number of phosphorylated binding partners in eukaryotic cells. The plant plasma membrane H+-ATPase is an unusual target in that a unique phosphothreonine motif (946YpTV, where pT represents phosphothreonine...... of the Arabidopsis plasma membrane H+-ATPase isoform 2 (AHA2). Following site-directed mutagenesis within the 45 C-terminal residues of AHA2, we conclude that, in addition to the 946YpTV motif, a number of residues located further upstream are required for phosphorylation-independent binding of 14-3-3. Among these...

  14. Phosphorylation of dynamin I on Ser-795 by protein kinase C blocks its association with phospholipids

    DEFF Research Database (Denmark)

    Powell, K A; Valova, V A; Malladi, C S

    2000-01-01

    Dynamin I is phosphorylated in nerve terminals exclusively in the cytosolic compartment and in vitro by protein kinase C (PKC). Dephosphorylation is required for synaptic vesicle retrieval, suggesting that its phosphorylation affects its subcellular localization. An in vitro phospholipid binding ...... assay was established that prevents lipid vesiculation and dynamin lipid insertion into the lipid. Dynamin I bound the phospholipid in a concentration-dependent and saturable manner, with an apparent affinity of 230 +/- 51 nM. Optimal binding occurred with mixtures of phosphatidylserine...... the phosphorylation site in PKCalpha-phosphorylated dynamin I as a single site at Ser-795, located near a binding site for the SH3 domain of p85, the regulatory subunit of phosphatidylinositol 3-kinase. However, phosphorylation had no effect on dynamin binding to a bacterially expressed p85-SH3 domain. Thus...

  15. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue.

    Science.gov (United States)

    Lea, Unni S; Ten Hoopen, Floor; Provan, Fiona; Kaiser, Werner M; Meyer, Christian; Lillo, Cathrine

    2004-05-01

    In wild-type Nicotiana plumbaginifolia Viv. and other higher plants, nitrate reductase (NR) is regulated at the post-translational level and is rapidly inactivated in response to, for example, a light-to-dark transition. This inactivation is caused by phosphorylation of a conserved regulatory serine residue, Ser 521 in tobacco, and interaction with divalent cations or polyamines, and 14-3-3 proteins. The physiological importance of the post-translational NR modulation is presently under investigation using a transgenic N. plumbaginifolia line. This line expresses a mutated tobacco NR where Ser 521 has been changed into aspartic acid (Asp) by site-directed mutagenesis, resulting in a permanently active NR enzyme. When cut leaves or roots of this line (S(521)) were placed in darkness in a buffer containing 50 mM KNO(3), nitrite was excreted from the tissue at rates of 0.08-0.2 micromol (g FW)(-1) h(-1) for at least 5 h. For the control transgenic plant (C1), which had the regulatory serine of NR intact, nitrite excretion was low and halted completely after 1-3 h. Without nitrate in the buffer in which the tissue was immersed, nitrite excretion was also low for S(521), although 20-40 micromol (g FW)(-1) nitrate was present inside the tissue. Apparently, stored nitrate was not readily available for reduction in darkness. Leaf tissue and root segments of S(521) also emitted much more nitric oxide (NO) than the control. Importantly, NO emission from leaf tissue of S(521) was higher in the dark than in the light, opposite to what was usually observed when post-translational NR modulation was operating.

  16. Astrocytic connexin hemichannels are regulated by PKC phosphorylation in an isoform-specific manner

    DEFF Research Database (Denmark)

    MacAulay, N.; Alstrom, J. S.; Hansen, D. B.

    2017-01-01

    /activation of PKC and by mutational disruption of the proposed PKC-phosphorylation sites. Cx30 hemichannel activity, in contrast, was down-regulated by PKC activation, in a manner suggesting PKC-mediated channel closure. No single PKC consensus site could be assigned to this regulatory property by mutational...

  17. In vitro phosphorylation of insulin receptor substrate 1 by protein kinase C-zeta: functional analysis and identification of novel phosphorylation sites.

    Science.gov (United States)

    Sommerfeld, Mark R; Metzger, Sabine; Stosik, Magdalene; Tennagels, Norbert; Eckel, Jürgen

    2004-05-18

    Protein kinase C-zeta (PKC-zeta) participates both in downstream insulin signaling and in the negative feedback control of insulin action. Here we used an in vitro approach to identify PKC-zeta phosphorylation sites within insulin receptor substrate 1 (IRS-1) and to characterize the functional implications. A recombinant IRS-1 fragment (rIRS-1(449)(-)(664)) containing major tyrosine motifs for interaction with phosphatidylinositol (PI) 3-kinase strongly associated to the p85alpha subunit of PI 3-kinase after Tyr phosphorylation by the insulin receptor. Phosphorylation of rIRS-1(449)(-)(664) by PKC-zeta induced a prominent inhibition of this process with a mixture of classical PKC isoforms being less effective. Both PKC-zeta and the classical isoforms phosphorylated rIRS-1(449)(-)(664) on Ser(612). However, modification of this residue did not reduce the affinity of p85alpha binding to pTyr-containing peptides (amino acids 605-615 of rat IRS-1), as determined by surface plasmon resonance. rIRS-1(449)(-)(664) was then phosphorylated by PKC-zeta using [(32)P]ATP and subjected to tryptic phosphopeptide mapping based on two-dimensional HPLC coupled to mass spectrometry. Ser(498) and Ser(570) were identified as novel phosphoserine sites targeted by PKC-zeta. Both sites were additionally confirmed by phosphopeptide mapping of the corresponding Ser --> Ala mutants of rIRS-1(449)(-)(664). Ser(570) was specifically targeted by PKC-zeta, as shown by immunoblotting with a phosphospecific antiserum against Ser(570) of IRS-1. Binding of p85alpha to the S570A mutant was less susceptible to inhibition by PKC-zeta, when compared to the S612A mutant. In conclusion, our in vitro data demonstrate a strong inhibitory action of PKC-zeta at the level of IRS-1/PI 3-kinase interaction involving multiple serine phosphorylation sites. Whereas Ser(612) appears not to participate in the negative control of insulin signaling, Ser(570) may at least partly contribute to this process.

  18. PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    International Nuclear Information System (INIS)

    Greene, Michael W.; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-01-01

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCδ on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCδ-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCδ catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1

  19. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.

    Science.gov (United States)

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V

    2017-01-01

    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  20. Impairments in site-specific AS160 phosphorylation and effects of exercise training

    DEFF Research Database (Denmark)

    Consitt, Leslie A; Van Meter, Jessica; Newton, Christopher A

    2013-01-01

    The purpose of this study was to determine if site-specific phosphorylation at the level of Akt substrate of 160 kDa (AS160) is altered in skeletal muscle from sedentary humans across a wide range of the adult lifespan (18 to 84 years) and if endurance- and/or strength-oriented exercise training ...... population and that exercise training is an effective intervention for treating these impairments.......The purpose of this study was to determine if site-specific phosphorylation at the level of Akt substrate of 160 kDa (AS160) is altered in skeletal muscle from sedentary humans across a wide range of the adult lifespan (18 to 84 years) and if endurance- and/or strength-oriented exercise training...... in whole-body insulin action were associated with impairments in insulin-induced phosphorylation of skeletal muscle AS160 on sites Ser-588, Thr-642, Ser-666 and phospho-Akt substrate (PAS), but not Ser-318 or Ser-751. Twelve weeks of either endurance- or strength-oriented exercise training increased whole...

  1. O-GlcNAc modification: why so intimately associated with phosphorylation?

    Directory of Open Access Journals (Sweden)

    Ande Sudharsana R

    2011-01-01

    Full Text Available Abstract Post-translational modification of proteins at serine and threonine side chains by β-N-acetylglucosamine (O-GlcNAc mediated by the enzyme β-N-acetylglucosamine transferase has been emerging as a fundamental regulatory mechanism encompassing a wide range of proteins involved in cell division, metabolism, transcription and cell signaling. Furthermore, an extensive interplay between O-GlcNAc modification and serine/threonine phosphorylation in a variety of proteins has been reported to exist. However, our understanding of the regulatory mechanisms involved in O-GlcNAc modification and its interplay with serine/threonine phosphorylation in proteins is still elusive. Recent success in the mapping of O-GlcNAc modification sites in proteins as a result of technological advancement in mass spectrometry have revealed two important clues which may be inherently connected to the regulation of O-GlcNAc modification and its interplay with phosphorylation in proteins. First, almost all O-GlcNAc modified proteins are known phospho proteins. Second, the prevalence of tyrosine phosphorylation among O-GlcNAc modified proteins is exceptionally higher (~68% than its normal occurrence (~2% alone. We hypothesize that phosphorylation may be a requisite for O-GlcNAc modification and tyrosine phosphorylation plays a role in the interplay between O-GlcNAc modification and serine/threonine phosphorylation in proteins. In other words, the interplay between O-GlcNAc modification and phosphorylation is not limited to serine/threonine phosphorylation but also includes tyrosine phosphorylation. Our hypothesis provides an opportunity to understand the underlying mechanism involved in O-GlcNAc modification and its interplay with serine/threonine phosphorylation in proteins. Furthermore, implication of our hypothesis extends to tyrosine kinase signaling.

  2. Src kinase regulation by phosphorylation and dephosphorylation

    International Nuclear Information System (INIS)

    Roskoski, Robert

    2005-01-01

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPα, PTPε, and PTPλ. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined

  3. Identification of steroid-binding and phosphorylated sites within the glucocorticoid receptor

    International Nuclear Information System (INIS)

    Smith, L.I.

    1989-01-01

    The primary goal of these studies was to localize the steroid-binding and phosphorylated sites of the glucocorticoid receptor. The synthetic steroid, dexamethasone 21-mesylate (DM) forms a covalent thioether bond via the sulfhydryl group of a cysteine residue in the receptor. To determine the covalent site of attachment of this ligand, receptors in WEHI-7 mouse thymoma cells were labeled with [ 3 H]DM and purified with a monoclonal antibody. The receptor was completely digested with trypsin and a single peptide covalently labeled with steroid identified by reversed-phase HPLC. This peptide was analyzed by automated Edman degradation to determine the location of the steroid-labeled residue. A similar analysis was performed on an overlapping peptide produced by Staphylococcus aureus protease digestion. Analysis of tryptic peptides from receptors labeled with both [ 3 H]DM and L-[ 35 S]methionine indicated that this peptide contained methionine. These analyses, coupled with the published amino acid sequence of the receptor, identified Cysteine-644 in the steroid-binding domain of the mouse glucocorticoid receptor as the residue involved in covalent steroid-binding. A synthetic peptide representing amino acids 640-650 of the mouse receptor was prepared and analyzed to confirm the identification. These biochemical studies represent a direct demonstration of an amino acid important in receptor function. It has been proposed that the receptor functions through a phosphorylation-dephosphorylation cycle to explain the dependence of hormone binding capacity upon cellular ATP. The glucocorticoid receptor has been shown to be a phosphoprotein. As an initial step to identifying a role of phosphorylation in receptor action, phosphorylated sites within the functional domains of the protein were identified

  4. Phos-tag-based analysis of myosin regulatory light chain phosphorylation in human uterine myocytes.

    Directory of Open Access Journals (Sweden)

    Hector N Aguilar

    Full Text Available The 'phosphate-binding tag' (phos-tag reagent enables separation of phospho-proteins during SDS-PAGE by impeding migration proportional to their phosphorylation stoichiometry. Western blotting can then be used to detect and quantify the bands corresponding to the phospho-states of a target protein. We present a method for quantification of data regarding phospho-states derived from phos-tag SDS-PAGE. The method incorporates corrections for lane-to-lane loading variability and for the effects of drug vehicles thus enabling the comparison of multiple treatments by using the untreated cellular set-point as a reference. This method is exemplified by quantifying the phosphorylation of myosin regulatory light chain (RLC in cultured human uterine myocytes.We have evaluated and validated the concept that, when using an antibody (Ab against the total-protein, the sum of all phosphorylation states in a single lane represents a 'closed system' since all possible phospho-states and phosphoisotypes are detected. Using this approach, we demonstrate that oxytocin (OT and calpeptin (Calp induce RLC kinase (MLCK- and rho-kinase (ROK-dependent enhancements in phosphorylation of RLC at T18 and S19. Treatment of myocytes with a phorbol ester (PMA induced phosphorylation of S1-RLC, which caused a mobility shift in the phos-tag matrices distinct from phosphorylation at S19.We have presented a method for analysis of phospho-state data that facilitates quantitative comparison to a reference control without the use of a traditional 'loading' or 'reference' standard. This analysis is useful for assessing effects of putative agonists and antagonists where all phospho-states are represented in control and experimental samples. We also demonstrated that phosphorylation of RLC at S1 is inducible in intact uterine myocytes, though the signal in the resting samples was not sufficiently abundant to allow quantification by the approach used here.

  5. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation

    DEFF Research Database (Denmark)

    Hendriks, Ivo A; Lyon, David; Young, Clifford

    2017-01-01

    that were co-modified by ubiquitylation, acetylation and methylation. Notably, 9% of the identified SUMOylome occurred proximal to phosphorylation, and numerous SUMOylation sites were found to be fully dependent on prior phosphorylation events. SUMO-proximal phosphorylation occurred primarily in a proline......-directed manner, and inhibition of cyclin-dependent kinases dynamically affected co-modification. Collectively, we present a comprehensive analysis of the SUMOylated proteome, uncovering the structural preferences for SUMO and providing system-wide evidence for a remarkable degree of cross-talk between...

  6. Identification and functional analysis of novel phosphorylation sites in the RNA surveillance protein Upf1.

    Science.gov (United States)

    Lasalde, Clarivel; Rivera, Andrea V; León, Alfredo J; González-Feliciano, José A; Estrella, Luis A; Rodríguez-Cruz, Eva N; Correa, María E; Cajigas, Iván J; Bracho, Dina P; Vega, Irving E; Wilkinson, Miles F; González, Carlos I

    2014-02-01

    One third of inherited genetic diseases are caused by mRNAs harboring premature termination codons as a result of nonsense mutations. These aberrant mRNAs are degraded by the Nonsense-Mediated mRNA Decay (NMD) pathway. A central component of the NMD pathway is Upf1, an RNA-dependent ATPase and helicase. Upf1 is a known phosphorylated protein, but only portions of this large protein have been examined for phosphorylation sites and the functional relevance of its phosphorylation has not been elucidated in Saccharomyces cerevisiae. Using tandem mass spectrometry analyses, we report the identification of 11 putative phosphorylated sites in S. cerevisiae Upf1. Five of these phosphorylated residues are located within the ATPase and helicase domains and are conserved in higher eukaryotes, suggesting a biological significance for their phosphorylation. Indeed, functional analysis demonstrated that a small carboxy-terminal motif harboring at least three phosphorylated amino acids is important for three Upf1 functions: ATPase activity, NMD activity and the ability to promote translation termination efficiency. We provide evidence that two tyrosines within this phospho-motif (Y-738 and Y-742) act redundantly to promote ATP hydrolysis, NMD efficiency and translation termination fidelity.

  7. Determination of sites of U50,488H-promoted phosphorylation of the mouse κ opioid receptor (KOPR): disconnect between KOPR phosphorylation and internalization.

    Science.gov (United States)

    Chen, Chongguang; Chiu, Yi-Ting; Wu, Wenman; Huang, Peng; Mann, Anika; Schulz, Stefan; Liu-Chen, Lee-Yuan

    2016-02-15

    Phosphorylation sites of KOPR (κ opioid receptor) following treatment with the selective agonist U50,488H {(-)(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidiny)cyclo-hexyl]benzeneacetamide} were identified after affinity purification, SDS/PAGE, in-gel digestion with Glu-C and HPLC-MS/MS. Single- and double-phosphorylated peptides were identified containing phosphorylated Ser(356), Thr(357), Thr(363) and Ser(369) in the C-terminal domain. Antibodies were generated against three phosphopeptides containing pSer(356)/pThr(357), pThr(363) and pSer(369) respectively, and affinity-purified antibodies were found to be highly specific for phospho-KOPR. U50,488H markedly enhanced staining of the KOPR by pThr(363)-, pSer(369)- and pSer(356)/pThr(357)-specific antibodies in immunoblotting, which was blocked by the selective KOPR antagonist norbinaltorphimine. Ser(369) phosphorylation affected Thr(363) phosphorylation and vice versa, and Thr(363) or Ser(369) phosphorylation was important for Ser(356)/Thr(357) phosphorylation, revealing a phosphorylation hierarchy. U50,488H, but not etorphine, promoted robust KOPR internalization, although both were full agonists. U50,488H induced higher degrees of phosphorylation than etorphine at Ser(356)/Thr(357), Thr(363) and Ser(369) as determined by immunoblotting. Using SILAC (stable isotope labelling by amino acids in cell culture) and HPLC-MS/MS, we found that, compared with control (C), U50,488H (U) and etorphine (E) KOPR promoted single phosphorylation primarily at Thr(363) and Ser(369) with U/E ratios of 2.5 and 2 respectively. Both induced double phosphorylation at Thr(363)+Ser(369) and Thr(357)+Ser(369) with U/E ratios of 3.3 and 3.4 respectively. Only U50,488H induced triple phosphorylation at Ser(356)+Thr(357)+Ser(369). An unphosphorylated KOPR-(354-372) fragment containing all of the phosphorylation sites was detected with a C/E/U ratio of 1/0.7/0.4, indicating that ∼60% and ∼30% of the mouse KOPR are phosphorylated

  8. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL

    Directory of Open Access Journals (Sweden)

    Hastie C James

    2006-01-01

    Full Text Available Abstract Background Pim-1, 2 and 3 are a group of enzymes related to the calcium calmodulin family of protein kinases. Over-expression of Pim-1 and Pim-2 in mice promotes the development of lymphomas, and up-regulation of Pim expression has been observed in several human cancers. Results Here we show that the pim kinases are constitutively active when expressed in HEK-293 cells and are able to phosphorylate the Bcl-2 family member Bad on three residues, Ser112, Ser136 and Ser155 in vitro and in cells. In vitro mapping showed that Pim-2 predominantly phosphorylated Ser112, while Pim-1 phosphorylated Ser112, but also Ser136 and Ser155 at a reduced rate compared to Ser112. Pim-3 was found to be the least specific for Ser112, and the most effective at phosphorylating Ser136 and Ser155. Pim-3 was also able to phosphorylate other sites in Bad in vitro, including Ser170, another potential in vivo site. Mutation of Ser136 to alanine prevented the phosphorylation of Ser112 and Ser155 by Pim kinases in HEK-293 cells, suggesting that this site must be phosphorylated first in order to make the other sites accessible. Pim phosphorylation of Bad was also found to promote the 14-3-3 binding of Bad and block its association with Bcl-XL. Conclusion All three Pim kinase family members predominantly phosphorylate Bad on Ser112 and in addition are capable of phosphorylating Bad on multiple sites associated with the inhibition of the pro-apoptotic function of Bad in HEK-293 cells. This would be consistent with the proposed function of Pim kinases in promoting cell proliferation and preventing cell death.

  9. Phosphorylation of Threonine 794 on Tie1 by Rac1/PAK1 Reveals a Novel Angiogenesis Regulatory Pathway.

    Directory of Open Access Journals (Sweden)

    Jessica L Reinardy

    Full Text Available The endothelial receptor tyrosine kinase (RTK Tie1 was discovered over 20 years ago, yet its precise function and mode of action remain enigmatic. To shed light on Tie1's role in endothelial cell biology, we investigated a potential threonine phosphorylation site within the juxtamembrane domain of Tie1. Expression of a non-phosphorylatable mutant of this site (T794A in zebrafish (Danio rerio significantly disrupted vascular development, resulting in fish with stunted and poorly branched intersomitic vessels. Similarly, T794A-expressing human umbilical vein endothelial cells formed significantly shorter tubes with fewer branches in three-dimensional Matrigel cultures. However, mutation of T794 did not alter Tie1 or Tie2 tyrosine phosphorylation or downstream signaling in any detectable way, suggesting that T794 phosphorylation may regulate a Tie1 function independent of its RTK properties. Although T794 is within a consensus Akt phosphorylation site, we were unable to identify a physiological activator of Akt that could induce T794 phosphorylation, suggesting that Akt is not the physiological Tie1-T794 kinase. However, the small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1, which is required for angiogenesis and capillary morphogenesis, was found to associate with phospho-T794 but not the non-phosphorylatable T794A mutant. Pharmacological activation of Rac1 induced downstream activation of p21-activated kinase (PAK1 and T794 phosphorylation in vitro, and inhibition of PAK1 abrogated T794 phosphorylation. Our results provide the first demonstration of a signaling pathway mediated by Tie1 in endothelial cells, and they suggest that a novel feedback loop involving Rac1/PAK1 mediated phosphorylation of Tie1 on T794 is required for proper angiogenesis.

  10. Phosphorylation regulates human T-cell leukemia virus type 1 Rex function

    Directory of Open Access Journals (Sweden)

    Ward Michael

    2009-11-01

    Full Text Available Abstract Background Human T-cell leukemia virus type 1 (HTLV-1 is a pathogenic complex deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-1 Rex (Rex-1 is a phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore, it has been proposed that Rex-1 function may be regulated through site-specific phosphorylation. Results We conducted a phosphoryl mapping of Rex-1 over-expressed in transfected 293 T cells using a combination of affinity purification and liquid chromatography tandem mass spectrometry. We achieved 100% physical coverage of the Rex-1 polypeptide and identified five novel phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence of two previously identified residues, Ser-70 and Thr-174, but found no evidence of phosphorylation at Ser-177. The functional significance of these phosphorylation events was evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that phosphorylation at Ser-97 and Thr-174 is critical for Rex-1 function. Conclusion We have mapped completely the site-specific phosphorylation of Rex-1 identifying a total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this work is the first to completely map the phosphorylation sites in Rex-1 and provides important insight into

  11. Mechanism of phosphoryl transfer and protein-protein interaction in the PTS system-an NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, P.; Klevit, R.E. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    HPr and Enzyme IIA{sup Glc} are two of the components of the bacterial PTS (phosphoenolpyruvate: sugar phosphotranferase system) and are involved in the phosphorylation and concomitant translocation of sugars across the membrane. These PTS protein complexes also regulate sugar transport. HPr, phosphorylated at a histidine N1 site by Enzyme I and phosphoenol pyruvate, transfers the phosphoryl group to a histidine N3 position in Enzyme IIA{sup Glc}. HPrs from Gram-positive bacteria undergo regulatory phosphorylation at Ser{sup 46}, whereby phosphorylation of the histidine residue is inhibited. Conversely, histidine phosphorylation inhibits phosphorylation at Ser{sup 46}. HPrs from Gram-negative bacteria possess a serine residue at position 46, but do not undergo regulatory phosphorylation. HPr forms an open-faced sandwich structure with a four-strand S-sheet and 2 to 3 helices lying on top of the sheet. The active-site histidine and Ser{sup 46} occur in conformationally flexible regions. P-His-HPr from the Gram-positive bacterium Bacillus subtilus has been investigated by both homonuclear and heteronuclear two-dimensional and three-dimensional NMR experiments using an in-situ enzymatic regeneration system to maintain a constant level of P-His-HPr. The results show that localized conformational changes occur in the vicinity of the active-site histidine and also near Ser{sup 46}. HPr-Enzyme IIA{sup Glc} complexes from both Bacillus subtilis and Gram-negative Escherichia coli were also studied by a variety of {sup 15}N-edited two-dimensional NMR experiments, which were performed on uniformly {sup 15}N-labeled HPr complexed to unlabeled Enzyme IIA{sup Glc}. The complex is in fast exchange with a molecular weight of about 27 kDa. The focus of our work is to assess the changes undergone by HPr (the smaller of the two components), and so all the experiments were performed with excess Enzyme IIA present in the system.

  12. A CK2 site is reversibly phosphorylated in the photosystem II subunit CP29.

    Science.gov (United States)

    Testi, M G; Croce, R; Polverino-De Laureto, P; Bassi, R

    1996-12-16

    Protein phosphorylation is a major mechanism in the regulation of protein function. In chloroplast thylakoids several photosystem II subunits, including the major antenna light-harvesting complex II and several core complex components, are reversibly phosphorylated depending on the redox state of the electron carriers. A previously unknown reversible phosphorylation event has recently been described on the CP29 subunit which leads to conformational changes and protection from cold stress (Bergantino, E., Dainese, P., Cerovic, Z. Sechi, S. and Bassi, R. (1995) J. Biol Chem. 270, 8474-8481). In this study, we have identified the phosphorylation site on the N-terminal, stroma-exposed domain, showing that it is located in a sequence not homologous to the other members of the Lhc family. The phosphorylated sequence is unique in chloroplast membranes since it meets the requirements for CK2 (casein kinase II) kinases. The possibility that this phosphorylation is involved in a signal transduction pathway is discussed.

  13. P³DB 3.0: From plant phosphorylation sites to protein networks.

    Science.gov (United States)

    Yao, Qiuming; Ge, Huangyi; Wu, Shangquan; Zhang, Ning; Chen, Wei; Xu, Chunhui; Gao, Jianjiong; Thelen, Jay J; Xu, Dong

    2014-01-01

    In the past few years, the Plant Protein Phosphorylation Database (P(3)DB, http://p3db.org) has become one of the most significant in vivo data resources for studying plant phosphoproteomics. We have substantially updated P(3)DB with respect to format, new datasets and analytic tools. In the P(3)DB 3.0, there are altogether 47 923 phosphosites in 16 477 phosphoproteins curated across nine plant organisms from 32 studies, which have met our multiple quality standards for acquisition of in vivo phosphorylation site data. Centralized by these phosphorylation data, multiple related data and annotations are provided, including protein-protein interaction (PPI), gene ontology, protein tertiary structures, orthologous sequences, kinase/phosphatase classification and Kinase Client Assay (KiC Assay) data--all of which provides context for the phosphorylation event. In addition, P(3)DB 3.0 incorporates multiple network viewers for the above features, such as PPI network, kinase-substrate network, phosphatase-substrate network, and domain co-occurrence network to help study phosphorylation from a systems point of view. Furthermore, the new P(3)DB reflects a community-based design through which users can share datasets and automate data depository processes for publication purposes. Each of these new features supports the goal of making P(3)DB a comprehensive, systematic and interactive platform for phosphoproteomics research.

  14. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.

    2004-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  15. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E

    2011-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  16. Structure of smAKAP and its regulation by PKA-mediated phosphorylation

    Science.gov (United States)

    Burgers, Pepijn P.; Bruystens, Jessica; Burnley, Rebecca J.; Nikolaev, Viacheslav O.; Keshwani, Malik; Wu, Jian; Janssen, Bert J. C.; Taylor, Susan S.; Heck, Albert J. R.; Scholten, Arjen

    2016-01-01

    The A-kinase anchoring protein (AKAP) smAKAP has three extraordinary features; it is very small, it is anchored directly to membranes by acyl motifs, and it interacts almost exclusively with the type I regulatory subunits (RI) of cAMP-dependent kinase (PKA). Here, we determined the crystal structure of smAKAP’s A-kinase binding domain (smAKAP-AKB) in complex with the dimerization/docking (D/D) domain of RIα which reveals an extended hydrophobic interface with unique interaction pockets that drive smAKAP’s high specificity for RI subunits. We also identify a conserved PKA phosphorylation site at Ser66 in the AKB domain which we predict would cause steric clashes and disrupt binding. This correlates with in vivo colocalization and fluorescence polarization studies, where Ser66 AKB phosphorylation ablates RI binding. Hydrogen/deuterium exchange studies confirm that the AKB helix is accessible and dynamic. Furthermore, full-length smAKAP as well as the unbound AKB is predicted to contain a break at the phosphorylation site, and circular dichroism measurements confirm that the AKB domain loses its helicity following phosphorylation. As the active site of PKA’s catalytic subunit does not accommodate α-helices, we predict that the inherent flexibility of the AKB domain enables its phosphorylation by PKA. This represents a novel mechanism, whereby activation of anchored PKA can terminate its binding to smAKAP affecting the regulation of localized cAMP signaling events. PMID:27028580

  17. Microtubule Destabilizer KIF2A Undergoes Distinct Site-Specific Phosphorylation Cascades that Differentially Affect Neuronal Morphogenesis

    Directory of Open Access Journals (Sweden)

    Tadayuki Ogawa

    2015-09-01

    Full Text Available Neurons exhibit dynamic structural changes in response to extracellular stimuli. Microtubules (MTs provide rapid and dramatic cytoskeletal changes within the structural framework. However, the molecular mechanisms and signaling networks underlying MT dynamics remain unknown. Here, we have applied a comprehensive and quantitative phospho-analysis of the MT destabilizer KIF2A to elucidate the regulatory mechanisms of MT dynamics within neurons in response to extracellular signals. Interestingly, we identified two different sets of KIF2A phosphorylation profiles that accelerate (A-type and brake (B-type the MT depolymerization activity of KIF2A. Brain-derived neurotrophic factor (BDNF stimulates PAK1 and CDK5 kinases, which decrease the MT depolymerizing activity of KIF2A through B-type phosphorylation, resulting in enhanced outgrowth of neural processes. In contrast, lysophosphatidic acid (LPA induces ROCK2 kinase, which suppresses neurite outgrowth from round cells via A-type phosphorylation. We propose that these two mutually exclusive forms of KIF2A phosphorylation differentially regulate neuronal morphogenesis during development.

  18. GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection.

    Science.gov (United States)

    Xue, Yu; Liu, Zexian; Cao, Jun; Ma, Qian; Gao, Xinjiao; Wang, Qingqi; Jin, Changjiang; Zhou, Yanhong; Wen, Longping; Ren, Jian

    2011-03-01

    As the most important post-translational modification of proteins, phosphorylation plays essential roles in all aspects of biological processes. Besides experimental approaches, computational prediction of phosphorylated proteins with their kinase-specific phosphorylation sites has also emerged as a popular strategy, for its low-cost, fast-speed and convenience. In this work, we developed a kinase-specific phosphorylation sites predictor of GPS 2.1 (Group-based Prediction System), with a novel but simple approach of motif length selection (MLS). By this approach, the robustness of the prediction system was greatly improved. All algorithms in GPS old versions were also reserved and integrated in GPS 2.1. The online service and local packages of GPS 2.1 were implemented in JAVA 1.5 (J2SE 5.0) and freely available for academic researches at: http://gps.biocuckoo.org.

  19. Novel protein phosphorylation site identification in spinach stroma membranes by titanium dioxide microcolumns and tandem mass spectrometry

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Larsen, Martin Røssel; Mohammed, Shabaz

    2006-01-01

    In this work, spinach stroma membrane, instead of thylakoid, has been investigated for the presence of phosphorylated proteins. We identified seven previously unknown phosphorylation sites by taking advantage of TiO(2) phosphopeptides enrichment coupled to mass spectrometric analysis. Upon...

  20. Multiple phosphorylation sites at the C-terminus regulate nuclear import of HCMV DNA polymerase processivity factor ppUL44

    International Nuclear Information System (INIS)

    Alvisi, Gualtiero; Marin, Oriano; Pari, Gregory; Mancini, Manuela; Avanzi, Simone; Loregian, Arianna; Jans, David A.; Ripalti, Alessandro

    2011-01-01

    The processivity factor of human cytomegalovirus DNA polymerase, phosphoprotein ppUL44, is essential for viral replication. During viral infection ppUL44 is phosphorylated by the viral kinase pUL97, but neither the target residues on ppUL44 nor the effect of phosphorylation on ppUL44's activity are known. We report here that ppUL44 is phosphorylated when transiently expressed in mammalian cells and coimmunoprecipitates with cellular kinases. Of three potential phosphorylation sites (S413, S415, S418) located upstream of ppUL44's nuclear localization signal (NLS) and one (T427) within the NLS itself, protein kinase CK2 (CK2) specifically phosphorylates S413, to trigger a cascade of phosphorylation of S418 and S415 by CK1 and CK2, respectively. Negative charge at the CK2/CK1 target serine residues facilitates optimal nuclear accumulation of ppUL44, whereas negative charge on T427, a potential cyclin-dependent 1 phosphorylation site, strongly decreases nuclear accumulation. Thus, nuclear transport of ppUL44 is finely tuned during viral infection through complex phosphorylation events.

  1. Identification of serine 348 on the apelin receptor as a novel regulatory phosphorylation site in apelin-13-induced G protein-independent biased signaling.

    Science.gov (United States)

    Chen, Xiaoyu; Bai, Bo; Tian, Yanjun; Du, Hui; Chen, Jing

    2014-11-07

    Phosphorylation plays vital roles in the regulation of G protein-coupled receptor (GPCR) functions. The apelin and apelin receptor (APJ) system is involved in the regulation of cardiovascular function and central control of body homeostasis. Here, using tandem mass spectrometry, we first identified phosphorylated serine residues in the C terminus of APJ. To determine the role of phosphorylation sites in APJ-mediated G protein-dependent and -independent signaling and function, we induced a mutation in the C-terminal serine residues and examined their effects on the interaction between APJ with G protein or GRK/β-arrestin and their downstream signaling. Mutation of serine 348 led to an elimination of both GRK and β-arrestin recruitment to APJ induced by apelin-13. Moreover, APJ internalization and G protein-independent ERK signaling were also abolished by point mutation at serine 348. In contrast, this mutant at serine residues had no demonstrable impact on apelin-13-induced G protein activation and its intracellular signaling. These findings suggest that mutation of serine 348 resulted in inactive GRK/β-arrestin. However, there was no change in the active G protein thus, APJ conformation was biased. These results provide important information on the molecular interplay and impact of the APJ function, which may be extrapolated to design novel drugs for cardiac hypertrophy based on this biased signal pathway. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Mimicking the phosphorylation of Rsp5 in PKA site T761 affects its function and cellular localization.

    Science.gov (United States)

    Jastrzebska, Zaneta; Kaminska, Joanna; Chelstowska, Anna; Domanska, Anna; Rzepnikowska, Weronika; Sitkiewicz, Ewa; Cholbinski, Piotr; Gourlay, Campbell; Plochocka, Danuta; Zoladek, Teresa

    2015-12-01

    Rsp5 ubiquitin ligase belongs to the Nedd4 family of proteins, which affect a wide variety of processes in the cell. Here we document that Rsp5 shows several phosphorylated variants of different mobility and the migration of the phosphorylated forms of Rsp5 was faster for the tpk1Δ tpk3Δ mutant devoid of two alternative catalytic subunits of protein kinase A (PKA), indicating that PKA possibly phosphorylates Rsp5 in vivo. We demonstrated by immunoprecipitation and Western blot analysis of GFP-HA-Rsp5 protein using the anti-phospho PKA substrate antibody that Rsp5 is phosphorylated in PKA sites. Rsp5 contains the sequence 758-RRFTIE-763 with consensus RRXS/T in the catalytic HECT domain and four other sites with consensus RXXS/T, which might be phosphorylated by PKA. The strain bearing the T761D substitution in Rsp5 which mimics phosphorylation grew more slowly at 28°C and did not grow at 37°C, and showed defects in pre-tRNA processing and protein sorting. The rsp5-T761D strain also demonstrated a reduced ability to form colonies, an increase in the level of reactive oxygen species (ROS) and hypersensitivity to ROS-generating agents. These results indicate that PKA may downregulate many functions of Rsp5, possibly affecting its activity. Rsp5 is found in the cytoplasm, nucleus, multivesicular body and cortical patches. The rsp5-T761D mutation led to a strongly increased cortical localization while rsp5-T761A caused mutant Rsp5 to locate more efficiently in internal spots. Rsp5-T761A protein was phosphorylated less efficiently in PKA sites under specific growth conditions. Our data suggests that Rsp5 may be phosphorylated by PKA at position T761 and that this regulation is important for its localization and function. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1

    DEFF Research Database (Denmark)

    Argetsinger, L S; Hsu, G W; Myers, M G

    1995-01-01

    ), the principle substrate of the insulin receptor. Tyrosyl phosphorylation of IRS-1 is a critical step in insulin signaling and provides binding sites for proteins with the appropriate Src homology 2 domains, including the 85-kDa regulatory subunit of phosphatidylinositol (PI) 3'-kinase. In 3T3-F442A fibroblasts......., Campbell, G. S., Allevato, G., Billestrup, N., Norstedt, G., and Carter-Su, C. (1994) J. Biol. Chem. 269, 21709-21717). When other cytokines that activate JAK2 were tested for the ability to stimulate the tyrosyl phosphorylation of IRS-1, stimulation was detected with interferon-gamma and leukemia...... to JAK2. GH is also shown to stimulate binding of IRS-1 to the 85-kDa regulatory subunit of PI 3'-kinase. The ability of GH to stimulate tyrosyl phosphorylation of IRS-1 and its association with PI 3'-kinase provides a biochemical basis for responses shared by insulin and GH including the well...

  4. Ex vivo modulation of the Foxo1 phosphorylation state does not lead to dysfunction of T regulatory cells.

    Directory of Open Access Journals (Sweden)

    Kristen Kelley Penberthy

    Full Text Available Peripheral regulatory CD4+ T cells (Treg cells prevent maladaptive inflammatory responses to innocuous foreign antigens. Treg cell dysfunction has been linked to many inflammatory diseases, including allergic airway inflammation. Glucocorticoids that are used to treat allergic airway inflammation and asthma are thought to work in part by promoting Treg cell differentiation; patients who are refractory to these drugs have defective induction of anti-inflammatory Treg cells. Previous observations suggest that Treg cells deficient in the transcription factor FoxO1 are pro-inflammatory, and that FoxO1 activity is regulated by its phosphorylation status and nuclear localization. Here, we asked whether altering the phosphorylation state of FoxO1 through modulation of a regulatory phosphatase might affect Treg cell function. In a mouse model of house dust mite-induced allergic airway inflammation, we observed robust recruitment of Treg cells to the lungs and lymph nodes of diseased mice, without an apparent increase in the Treg cytokine interleukin-10 in the airways. Intriguingly, expression of PP2A, a serine/threonine phosphatase linked to the regulation of FoxO1 phosphorylation, was decreased in the mediastinal lymph nodes of HDM-treated mice, mirroring the decreased PP2A expression seen in peripheral blood monocytes of glucocorticoid-resistant asthmatic patients. When we asked whether modulation of PP2A activity alters Treg cell function via treatment with the PP2A inhibitor okadaic acid, we observed increased phosphorylation of FoxO1 and decreased nuclear localization. However, dysregulation of FoxO1 did not impair Treg cell differentiation ex vivo or cause Treg cells to adopt a pro-inflammatory phenotype. Moreover, inhibition of PP2A activity did not affect the suppressive function of Treg cells ex vivo. Collectively, these data suggest that modulation of the phosphorylation state of FoxO1 via PP2A inhibition does not modify Treg cell function ex

  5. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues

    DEFF Research Database (Denmark)

    Lundby, Alicia; Secher, Anna; Lage, Kasper

    2012-01-01

    Deregulated cellular signalling is a common hallmark of disease, and delineating tissue phosphoproteomes is key to unravelling the underlying mechanisms. Here we present the broadest tissue catalogue of phosphoproteins to date, covering 31,480 phosphorylation sites on 7,280 proteins quantified ac...

  6. Molecular mechanism of APC/C activation by mitotic phosphorylation.

    Science.gov (United States)

    Zhang, Suyang; Chang, Leifu; Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-05-12

    In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our

  7. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.

    Science.gov (United States)

    Xu, Feifei; Yang, Ting; Sheng, Yuan; Zhong, Ting; Yang, Mi; Chen, Yun

    2014-12-05

    As one of the most studied post-translational modifications (PTM), protein phosphorylation plays an essential role in almost all cellular processes. Current methods are able to predict and determine thousands of phosphorylation sites, whereas stoichiometric quantification of these sites is still challenging. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based targeted proteomics is emerging as a promising technique for site-specific quantification of protein phosphorylation using proteolytic peptides as surrogates of proteins. However, several issues may limit its application, one of which relates to the phosphopeptides with different phosphorylation sites and the same mass (i.e., isobaric phosphopeptides). While employment of site-specific product ions allows for these isobaric phosphopeptides to be distinguished and quantified, site-specific product ions are often absent or weak in tandem mass spectra. In this study, linear algebra algorithms were employed as an add-on to targeted proteomics to retrieve information on individual phosphopeptides from their common spectra. To achieve this simultaneous quantification, a LC-MS/MS-based targeted proteomics assay was first developed and validated for each phosphopeptide. Given the slope and intercept of calibration curves of phosphopeptides in each transition, linear algebraic equations were developed. Using a series of mock mixtures prepared with varying concentrations of each phosphopeptide, the reliability of the approach to quantify isobaric phosphopeptides containing multiple phosphorylation sites (≥ 2) was discussed. Finally, we applied this approach to determine the phosphorylation stoichiometry of heat shock protein 27 (HSP27) at Ser78 and Ser82 in breast cancer cells and tissue samples.

  8. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong-Jun; Kang, Hana [KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co, Seoul (Korea, Republic of); Kim, Min Young [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Lee, Jung Eun; Kim, Sung Jin; Nam, Seon Young; Kim, Ji Young; Kim, Hee Sun [KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co, Seoul (Korea, Republic of); Pyo, Suhkneung [College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do (Korea, Republic of); Yang, Kwang Hee, E-mail: kwangheey@khnp.co.kr [KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co, Seoul (Korea, Republic of)

    2016-04-01

    Purpose: To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Methods and Materials: Splenocytes and IM-9 cells were uniformly irradiated with various doses of a {sup 137}Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. Results: First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Conclusion: Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast.

  9. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation.

    Science.gov (United States)

    Cho, Seong-Jun; Kang, Hana; Kim, Min Young; Lee, Jung Eun; Kim, Sung Jin; Nam, Seon Young; Kim, Ji Young; Kim, Hee Sun; Pyo, Suhkneung; Yang, Kwang Hee

    2016-04-01

    To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Splenocytes and IM-9 cells were uniformly irradiated with various doses of a (137)Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation

    International Nuclear Information System (INIS)

    Cho, Seong-Jun; Kang, Hana; Kim, Min Young; Lee, Jung Eun; Kim, Sung Jin; Nam, Seon Young; Kim, Ji Young; Kim, Hee Sun; Pyo, Suhkneung; Yang, Kwang Hee

    2016-01-01

    Purpose: To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Methods and Materials: Splenocytes and IM-9 cells were uniformly irradiated with various doses of a "1"3"7Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. Results: First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Conclusion: Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast.

  11. Characterization of phosphorylation sites in the cytoplasmic domain of the 300 kDa mannose-6-phosphate receptor

    DEFF Research Database (Denmark)

    Rosorius, O; Mieskes, G; Issinger, O G

    1993-01-01

    The human 300 kDa mannose-6-phosphate receptor (MPR 300) is phosphorylated in vivo at serine residues of its cytoplasmic domain. Two-dimensional separation can resolve tryptic phosphopeptides into four major species. To identify the kinases involved in MPR 300 phosphorylation and the phosphorylat......The human 300 kDa mannose-6-phosphate receptor (MPR 300) is phosphorylated in vivo at serine residues of its cytoplasmic domain. Two-dimensional separation can resolve tryptic phosphopeptides into four major species. To identify the kinases involved in MPR 300 phosphorylation...... and the phosphorylation sites the entire coding sequence of the cytoplasmic tail was expressed in Escherichia coli. The isolated cytoplasmic domain was used as a substrate for four purified serine/threonine kinases [casein kinase II (CK II), protein kinase A (PKA), protein kinase C and Ca2+/calmodulin kinase]. All...... kinases phosphorylate the cytoplasmic tail exclusively on serine residues. Inhibition studies using synthetic peptides, partial sequencing of isolated tryptic phosphopeptides and co-migration with tryptic phosphopeptides from MPR 300 labelled in vivo showed that (i) PKA phosphorylates the cytoplasmic MPR...

  12. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    International Nuclear Information System (INIS)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H.; Jiao, Jing; You, Jianxin

    2014-01-01

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells

  13. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H. [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Jiao, Jing [Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); You, Jianxin, E-mail: jianyou@mail.med.upenn.edu [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2014-07-08

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells.

  14. Removal of regulatory controls for materials and sites

    International Nuclear Information System (INIS)

    2004-01-01

    Issues with the removal of regulatory controls are very important on the agenda of the regulatory authorities dealing with radioactive waste management (RWM). These issues arise prominently in decommissioning and in site remediation, and decisions can be very wide ranging having potentially important economic impacts and reaching outside the RWM area. The RWMC Regulators Forum started to address these issues by holding a topical discussion at its meeting in March 2003. Ths present document collates the national regulatory positions in the area of removal of regulatory controls. A summary of the national positions is also provided. The document is up to date to April 2004. (authors)

  15. Role of regulatory body related to siting

    International Nuclear Information System (INIS)

    Asmis, G.J.K.

    1981-11-01

    The role of a regulatory body, the Atomic Energy Control Board of Canada, in the siting process is discussed. A description of the Board's legal structure and safety criteria is followed by an example of the implementation of these criteria in relation to the siting of the Darlington nuclear power plant, with particular reference to external hazards such as tornadoes, earthquakes and explosions

  16. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    International Nuclear Information System (INIS)

    Kewley, Robyn J.; Whitelaw, Murray L.

    2005-01-01

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer

  17. Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT).

    Science.gov (United States)

    Bauer, Christina; Göbel, Klaus; Nagaraj, Nagarjuna; Colantuoni, Christian; Wang, Mengxi; Müller, Udo; Kremmer, Elisabeth; Rottach, Andrea; Leonhardt, Heinrich

    2015-02-20

    TET proteins oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine and thus provide a possible means for active DNA demethylation in mammals. Although their catalytic mechanism is well characterized and the catalytic dioxygenase domain is highly conserved, the function of the regulatory regions (the N terminus and the low-complexity insert between the two parts of the dioxygenase domains) is only poorly understood. Here, we demonstrate that TET proteins are subject to a variety of post-translational modifications that mostly occur at these regulatory regions. We mapped TET modification sites at amino acid resolution and show for the first time that TET1, TET2, and TET3 are highly phosphorylated. The O-linked GlcNAc transferase, which we identified as a strong interactor with all three TET proteins, catalyzes the addition of a GlcNAc group to serine and threonine residues of TET proteins and thereby decreases both the number of phosphorylation sites and site occupancy. Interestingly, the different TET proteins display unique post-translational modification patterns, and some modifications occur in distinct combinations. In summary, our results provide a novel potential mechanism for TET protein regulation based on a dynamic interplay of phosphorylation and O-GlcNAcylation at the N terminus and the low-complexity insert region. Our data suggest strong cross-talk between the modification sites that could allow rapid adaption of TET protein localization, activity, or targeting due to changing environmental conditions as well as in response to external stimuli. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Regulatory requirements for groundwater monitoring networks at hazardous waste sites

    International Nuclear Information System (INIS)

    Keller, J.F.

    1989-10-01

    In the absence of an explicit national mandate to protect groundwater quality, operators of active and inactive hazardous waste sites must use a number of statutes and regulations as guidance for detecting, correcting, and preventing groundwater contamination. The objective of this paper is to provide a framework of the technical and regulatory considerations that are important to the development of groundwater monitoring programs at hazardous waste sites. The technical site-specific needs and regulatory considerations, including existing groundwater standards and classifications, will be presented. 14 refs., 2 tabs

  19. The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock.

    Science.gov (United States)

    Chiu, Joanna C; Vanselow, Jens T; Kramer, Achim; Edery, Isaac

    2008-07-01

    A common feature of animal circadian clocks is the progressive phosphorylation of PERIOD (PER) proteins, which is highly dependent on casein kinase Idelta/epsilon (CKIdelta/epsilon; termed DOUBLETIME [DBT] in Drosophila) and ultimately leads to the rapid degradation of hyperphosphorylated isoforms via a mechanism involving the F-box protein, beta-TrCP (SLIMB in Drosophila). Here we use the Drosophila melanogaster model system, and show that a key step in controlling the speed of the clock is phosphorylation of an N-terminal Ser (S47) by DBT, which collaborates with other nearby phosphorylated residues to generate a high-affinity atypical SLIMB-binding site on PER. DBT-dependent increases in the phospho-occupancy of S47 are temporally gated, dependent on the centrally located DBT docking site on PER and partially counterbalanced by protein phosphatase activity. We propose that the gradual DBT-mediated phosphorylation of a nonconsensus SLIMB-binding site establishes a temporal threshold for when in a daily cycle the majority of PER proteins are tagged for rapid degradation. Surprisingly, most of the hyperphosphorylation is unrelated to direct effects on PER stability. We also use mass spectrometry to map phosphorylation sites on PER, leading to the identification of a number of "phospho-clusters" that explain several of the classic per mutants.

  20. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Directory of Open Access Journals (Sweden)

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  1. LRRK2 Kinase Activity and Biology are Not Uniformly Predicted by its Autophosphorylation and Cellular Phosphorylation Site Status

    Directory of Open Access Journals (Sweden)

    April eReynolds

    2014-06-01

    Full Text Available Missense mutations in the Leucine Rich Repeat protein Kinase 2 (LRRK2 gene are the most common genetic predisposition to develop Parkinson’s disease (PD LRRK2 is a large multi-domain phosphoprotein with a GTPase domain and a serine/threonine protein kinase domain whose activity is implicated in neuronal toxicity; however the precise mechanism is unknown. LRRK2 autophosphorylates on several serine/threonine residues across the enzyme and is found constitutively phosphorylated on Ser910, Ser935, Ser955 and Ser973, which are proposed to be regulated by upstream kinases. Here we investigate the phosphoregulation at these sites by analyzing the effects of disease-associated mutations Arg1441Cys, Arg1441Gly, Ala1442Pro, Tyr1699Cys, Ile2012Thr, Gly2019Ser, and Ile2020Thr. We also studied alanine substitutions of phosphosite serines 910, 935, 955 and 973 and specific LRRK2 inhibition on autophosphorylation of LRRK2 Ser1292, Thr1491, Thr2483 and phosphorylation at the cellular sites. We found that mutants in the Roc-COR domains, including Arg1441Cys, Arg1441His, Ala1442Pro and Tyr1699Cys, can positively enhance LRRK2 kinase activity while concomitantly inducing the dephosphorylation of the cellular sites. Mutation of the cellular sites individually did not affect LRRK2 intrinsic kinase activity; however, Ser910/935/955/973Ala mutations trended toward increased kinase activity of LRRK2. Increased cAMP levels did not lead to increased LRRK2 cellular site phosphorylation, 14-3-3 binding or kinase activity. In cells, inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser1292 by Calyculin A and okadaic acid sensitive phosphatases, while the cellular sites are dephosphorylated by Calyculin A sensitive phosphatases. These findings indicate that comparative analysis of both Ser1292 and Ser910/935/955/973 phosphorylation sites will provide important and distinct measures of LRRK2 kinase and biological activity in vitro and in vivo.

  2. Human herpesvirus 6B induces phosphorylation of p53 in its regulatory domain by a CK2- and p38-independent pathway

    DEFF Research Database (Denmark)

    Øster, Bodil; Bundgaard, B; Hupp, T R

    2008-01-01

    Here, we demonstrate that human herpesvirus 6B (HHV-6B) infection upregulates the tumour suppressor p53 and induces phosphorylation of p53 at Ser392. Interestingly, phosphorylation at the equivalent site has previously been shown to correlate with p53 tumour suppression in murine models. Although...

  3. Identification and quantitation of signal molecule-dependent protein phosphorylation

    KAUST Repository

    Groen, Arnoud J.

    2013-09-03

    Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving 15N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins). © Springer Science+Business Media New York 2013.

  4. Large-scale analysis of in Vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Nühse, Thomas S; Stensballe, Allan; Jensen, Ole N

    2003-01-01

    specificity. We investigated the potential of IMAC in combination with capillary liquid chromatography coupled to tandem mass spectrometry for the identification of plasma membrane phosphoproteins of Arabidopsis. Without chemical modification of peptides, over 75% pure phosphopeptides were isolated from...... plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage...... of monophosphorylated peptides. Among the identified sequences, six originated from different isoforms of the plasma membrane H(+)-ATPase and defined two previously unknown phosphorylation sites at the regulatory C terminus. The potential for large-scale identification of phosphorylation sites on plasma membrane...

  5. Myosin light chain kinase phosphorylation in tracheal smooth muscle

    International Nuclear Information System (INIS)

    Stull, J.T.; Hsu, L.C.; Tansey, M.G.; Kamm, K.E.

    1990-01-01

    Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in 32 P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+

  6. Phosphorylation sites of Arabidopsis MAP Kinase Substrate 1 (MKS1)

    DEFF Research Database (Denmark)

    Caspersen, M.B.; Qiu, J.-L.; Zhang, X.

    2007-01-01

    The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophore......The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified...... phosphopeptide detection. As MAP kinases generally phosphorylate serine or threonine followed by proline (Ser/Thr-Pro), theoretical masses of potentially phosphorylated peptides were calculated and mass spectrometric peaks matching these masses were fragmented and searched for a neutral-loss signal...... at approximately 98 Da indicative of phosphorylation. Additionally, mass spectrometric peaks present in the MPK4-treated MKS1, but not in the control peptide map of untreated MKS1, were fragmented. Fragmentation spectra were subjected to a MASCOT database search which identified three of the twelve Ser-Pro serine...

  7. Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM.

    Science.gov (United States)

    Zhou, Yi; Lee, Ji-Hoon; Jiang, Wenxia; Crowe, Jennie L; Zha, Shan; Paull, Tanya T

    2017-01-05

    Ataxia-telangiectasia mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, Kurt; Staehr, Peter; Hansen, Bo Falck

    2003-01-01

    In type 2 diabetes, insulin activation of muscle glycogen synthase (GS) is impaired. This defect plays a major role for the development of insulin resistance and hyperglycemia. In animal muscle, insulin activates GS by reducing phosphorylation at both NH(2)- and COOH-terminal sites......, but the mechanism involved in human muscle and the defect in type 2 diabetes remain unclear. We studied the effect of insulin at physiological concentrations on glucose metabolism, insulin signaling and phosphorylation of GS in skeletal muscle from type 2 diabetic and well-matched control subjects during euglycemic......-hyperinsulinemic clamps. Analysis using phospho-specific antibodies revealed that insulin decreases phosphorylation of sites 3a + 3b in human muscle, and this was accompanied by activation of Akt and inhibition of glycogen synthase kinase-3alpha. In type 2 diabetic subjects these effects of insulin were fully intact...

  9. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex.

    Directory of Open Access Journals (Sweden)

    Thomas Nebl

    2011-09-01

    Full Text Available Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca²⁺-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of ³²[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca²⁺-dependent phosphorylation patterns on three of its components--GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component.

  10. Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles.

    Science.gov (United States)

    Ackermann, Maegen A; Ward, Christopher W; Gurnett, Christina; Kontrogianni-Konstantopoulos, Aikaterini

    2015-08-19

    Myosin Binding Protein-C slow (sMyBP-C), encoded by MYBPC1, comprises a family of regulatory proteins of skeletal muscles that are phosphorylated by PKA and PKC. MYBPC1 missense mutations are linked to the development of Distal Arthrogryposis-1 (DA-1). Although structure-function details for this myopathy are evolving, function is undoubtedly driven by sequence variations and post-translational modifications in sMyBP-C. Herein, we examined the phosphorylation profile of sMyBP-C in mouse and human fast-twitch skeletal muscles. We used Flexor Digitorum Brevis (FDB) isolated from young (~2-months old) and old (~14-months old) wild type and mdx mice, and human Abductor Hallucis (AH) and gastrocnemious muscles carrying the DA-1 mutations. Our results indicate both constitutive and differential phosphorylation of sMyBP-C in aged and diseased muscles. We report a 7-35% reduction in the phosphorylation levels of select sites in old wild type and young or old mdx FDB mouse muscles, compared to young wild type tissue. Similarly, we observe a 30-70% decrease in the phosphorylation levels of all PKA and PKC phospho-sites in the DA-1 AH, but not gastrocnemius, muscle. Overall, our studies show that the phosphorylation pattern of sMyBP-C is differentially regulated in response to age and disease, suggesting that phosphorylation plays important roles in these processes.

  11. The in vivo phosphorylation sites in multiple isoforms of amphiphysin I from rat brain nerve terminals

    DEFF Research Database (Denmark)

    Craft, George E; Graham, Mark E; Bache, Nicolai

    2008-01-01

    : serines 250, 252, 262, 268, 272, 276, 285, 293, 496, 514, 539, and 626 and Thr-310. These were distributed into two clusters around the proline-rich domain and the C-terminal Src homology 3 domain. Hierarchical phosphorylation of Ser-262 preceded phosphorylation of Ser-268, -272, -276, and -285. Off......, incorporating 16 and 23% of the 32P. The multiple phosphopeptides containing Ser-268, Ser-276, Ser-272, and Ser-285 had 27% of the 32P. Evidence for a role for at least one proline-directed protein kinase and one non-proline-directed kinase was obtained. Four phosphosites predicted for non-proline...... that are either dynamically turning over or constitutively phosphorylated in nerve terminals and improve understanding of the role of individual amphI sites or phosphosite clusters in synaptic SVE....

  12. Netherlands Electricity Regulatory Service DTe. Internet site

    International Nuclear Information System (INIS)

    1999-01-01

    The implementation of the Dutch Electricity Law and the observance of compliance with the law is commissioned to the Netherlands Electricity Regulatory Service DTe. Their Internet site contains several full-text documents related to the tasks of DTe (mainly with respect to tariffs and transportation of electricity)

  13. The role of glucocorticoid receptor phosphorylation in Mcl-1 and NOXA gene expression

    Directory of Open Access Journals (Sweden)

    Demonacos Constantinos

    2010-02-01

    Full Text Available Abstract Background The cyclin-dependent kinase (CDK and mitogen-activated protein kinase (MAPK mediated phosphorylation of glucocorticoid receptor (GR exerts opposite effects on GR transcriptional activity and affects other posttranslational modifications within this protein. The major phosphorylation site of human GR targeted by MAPK family is the serine 226 and multiple kinase complexes phosphorylate receptor at the serine 211 residue. We hypothesize that GR posttranslational modifications are involved in the determination of the cellular fate in human lymphoblastic leukemia cells. We investigated whether UV signalling through alternative GR phosphorylation determined the cell type specificity of glucocorticoids (GCs mediated apoptosis. Results We have identified putative Glucocorticoid Response Elements (GREs within the promoter regulatory regions of the Bcl-2 family members NOXA and Mcl-1 indicating that they are direct GR transcriptional targets. These genes were differentially regulated in CEM-C7-14, CEM-C1-15 and A549 cells by glucocorticoids and JNK pathway. In addition, our results revealed that the S211 phosphorylation was dominant in CEM-C7-14, whereas the opposite was the case in CEM-C1-15 where prevalence of S226 GR phosphorylation was observed. Furthermore, multiple GR isoforms with cell line specific patterns were identified in CEM-C7-14 cells compared to CEM-C1-15 and A549 cell lines with the same antibodies. Conclusions GR phosphorylation status kinetics, and site specificity as well as isoform variability differ in CEM-C7-14, CEM-C1-15, and A549 cells. The positive or negative response to GCs induced apoptosis in these cell lines is a consequence of the variable equilibrium of NOXA and Mcl-1 gene expression potentially mediated by alternatively phosphorylated GR, as well as the balance of MAPK/CDK pathways controlling GR phosphorylation pattern. Our results provide molecular base and valuable knowledge for improving the GC

  14. SIMAC - A phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Robinson, Phillip J

    2008-01-01

    spectrometric analysis, such as immobilized metal affinity chromatography or titanium dioxide the coverage of the phosphoproteome of a given sample is limited. Here we report a simple and rapid strategy - SIMAC - for sequential separation of mono-phosphorylated peptides and multiply phosphorylated peptides from...... and an optimized titanium dioxide chromatographic method. More than double the total number of identified phosphorylation sites was obtained with SIMAC, primarily from a three-fold increase in recovery of multiply phosphorylated peptides....

  15. Distinct pools of cdc25C are phosphorylated on specific TP sites and differentially localized in human mitotic cells.

    Directory of Open Access Journals (Sweden)

    Celine Franckhauser

    Full Text Available BACKGROUND: The dual specificity phosphatase cdc25C was the first human cdc25 family member found to be essential in the activation of cdk1/cyclin B1 that takes place at the entry into mitosis. Human cdc25C is phosphorylated on Proline-dependent SP and TP sites when it becomes active at mitosis and the prevalent model is that this phosphorylation/activation of cdc25C would be part of an amplification loop with cdk1/cyclin B1. METHODOLOGY/PRINCIPAL FINDINGS: Using highly specific antibodies directed against cdc25C phospho-epitopes, pT67 and pT130, we show here that these two phospho-forms of cdc25C represent distinct pools with differential localization during human mitosis. Phosphorylation on T67 occurs from prophase and the cdc25C-pT67 phospho-isoform closely localizes with condensed chromosomes throughout mitosis. The phospho-T130 form of cdc25C arises in late G2 and associates predominantly with centrosomes from prophase to anaphase B where it colocalizes with Plk1. As shown by immunoprecipitation of each isoform, these two phospho-forms are not simultaneously phosphorylated on the other mitotic TP sites or associated with one another. Phospho-T67 cdc25C co-precipitates with MPM2-reactive proteins while pT130-cdc25C is associated with Plk1. Interaction and colocalization of phosphoT130-cdc25C with Plk1 demonstrate in living cells, that the sequence around pT130 acts as a true Polo Box Domain (PBD binding site as previously identified from in vitro peptide screening studies. Overexpression of non-phosphorylatable alanine mutant forms for each isoform, but not wild type cdc25C, strongly impairs mitotic progression showing the functional requirement for each site-specific phosphorylation of cdc25C at mitosis. CONCLUSIONS/SIGNIFICANCE: These results show for the first time that in human mitosis, distinct phospho-isoforms of cdc25C exist with different localizations and interacting partners, thus implying that the long-standing model of a cdc25C

  16. Distinct phosphorylation sites on the ghrelin receptor, GHSR1a, establish a code that determines the functions of ß-arrestins

    Science.gov (United States)

    Bouzo-Lorenzo, Monica; Santo-Zas, Icía; Lodeiro, Maria; Nogueiras, Rubén; Casanueva, Felipe F.; Castro, Marian; Pazos, Yolanda; Tobin, Andrew B; Butcher, Adrian J.; Camiña, Jesús P.

    2016-01-01

    The growth hormone secretagogue receptor, GHSR1a, mediates the biological activities of ghrelin, which includes the secretion of growth hormone, as well as the stimulation of appetite, food intake and maintenance of energy homeostasis. Mapping phosphorylation sites on GHSR1a and knowledge of how these sites control specific functional consequences unlocks new strategies for the development of therapeutic agents targeting individual functions. Herein, we have identified the phosphorylation of different sets of sites within GHSR1a which engender distinct functionality of ß-arrestins. More specifically, the Ser362, Ser363 and Thr366 residues at the carboxyl-terminal tail were primarily responsible for ß-arrestin 1 and 2 binding, internalization and ß-arrestin-mediated proliferation and adipogenesis. The Thr350 and Ser349 are not necessary for ß-arrestin recruitment, but are involved in the stabilization of the GHSR1a-ß-arrestin complex in a manner that determines the ultimate cellular consequences of ß-arrestin signaling. We further demonstrated that the mitogenic and adipogenic effect of ghrelin were mainly dependent on the ß-arrestin bound to the phosphorylated GHSR1a. In contrast, the ghrelin function on GH secretion was entirely mediated by G protein signaling. Our data is consistent with the hypothesis that the phosphorylation pattern on the C terminus of GHSR1a determines the signaling and physiological output. PMID:26935831

  17. Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating

    DEFF Research Database (Denmark)

    Moeller, Hanne B; Macaulay, Nanna; Knepper, Mark A

    2009-01-01

    demonstrated that lack of phosphorylation at S256, S261, S264, or S269 had no effect on AQP2 unit water transport. Similarly, no effect on AQP2 unit water transport was observed for the 264D and 269D forms, indicating that phosphorylation of the COOH-terminal tail of AQP2 is not involved in gating......Arginine vasopressin (AVP)-regulated phosphorylation of the water channel aquaporin-2 (AQP2) at serine 256 (S256) is essential for its accumulation in the apical plasma membrane of collecting duct principal cells. In this study, we examined the role of additional AVP-regulated phosphorylation sites...... in the COOH-terminal tail of AQP2 on protein function. When expressed in Xenopus laevis oocytes, prevention of AQP2 phosphorylation at S256A (S256A-AQP2) reduced osmotic water permeability threefold compared with wild-type (WT) AQP2-injected oocytes. In contrast, prevention of AQP2 single phosphorylation at S...

  18. Early Site Permit Demonstration Program: Regulatory criteria evaluation report

    International Nuclear Information System (INIS)

    1993-03-01

    The primary objective of the Early Site Plan Demonstration Program (ESPDP) is to demonstrate successfully the use of 10CFR52 to obtain ESPs for one or more US sites for one (or more) ALWR nuclear power plants. It is anticipated that preparation of the ESP application and interaction with NRC during the application review process will result not only in an ESP for the applicant(s) but also in the development of criteria and definition of processes, setting the precedent that facilitates ESPs for subsequent ESP applications. Because siting regulatory processes and acceptance criteria are contained in over 100 separate documents, comprehensive licensing and technical reviews were performed to establish whether the requirements and documentation are self-consistent, whether the acceptance criteria are sufficiently well-defined and clear, and whether the licensing process leading to the issuance of an ESP is unambiguously specified. This document provides appendices A and B of this report. Appendix A contains a list of regulations, regulatory guidance, and acceptance criteria; Appendix B contains a cross-reference index of siting-related documentation

  19. beta2-adaptin is constitutively de-phosphorylated by serine/threonine protein phosphatase PP2A and phosphorylated by a staurosporine-sensitive kinase

    DEFF Research Database (Denmark)

    Lauritsen, Jens Peter Holst; Menné, C; Kastrup, J

    2000-01-01

    Clathrin-mediated endocytosis includes cycles of assembly and disassembly of the clathrin-coated vesicle constituents. How these cycles are regulated is still not fully known but previous studies have indicated that phosphorylation of coat subunits may play a role. Here we describe that beta2-ada...... the hypothesis that phosphorylation/de-phosphorylation of coat proteins plays a regulatory role in the assembly/disassembly cycle of clathrin-coated vesicles.......Clathrin-mediated endocytosis includes cycles of assembly and disassembly of the clathrin-coated vesicle constituents. How these cycles are regulated is still not fully known but previous studies have indicated that phosphorylation of coat subunits may play a role. Here we describe that beta2......-adaptin undergoes cycles of phosphorylation/de-phosphorylation in intact cells. Thus, beta2-adaptin was constitutively de-phosphorylated by serine/threonine protein phosphatase 2A and phosphorylated by a staurosporine-sensitive kinase in vivo. Confocal laser scanning microscopy demonstrated...

  20. Importance of tyrosine phosphorylation in receptor kinase complexes.

    Science.gov (United States)

    Macho, Alberto P; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-05-01

    Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Regulatory Support of Treatment of Savannah River Site Purex Waste

    International Nuclear Information System (INIS)

    Reid, L.T.

    2009-01-01

    This paper describes the support given by federal and state regulatory agencies to Savannah River Site (SRS) during the treatment of an organic liquid mixed waste from the Plutonium Extraction (Purex) process. The support from these agencies allowed (SRS) to overcome several technical and regulatory barriers and treat the Purex waste such that it met LDR treatment standards. (authors)

  2. Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments.

    LENUS (Irish Health Repository)

    Yates, Darran M

    2009-04-01

    Neurofilaments are the intermediate filaments of neurons and are synthesised in neuronal cell bodies and then transported through axons. Neurofilament light chain (NFL) is a principal component of neurofilaments, and phosphorylation of NFL head domain is believed to regulate the assembly of neurofilaments. However, the role that NFL phosphorylation has on transport of neurofilaments is poorly understood. To address this issue, we monitored axonal transport of phosphorylation mutants of NFL. We mutated four known phosphorylation sites in NFL head domain to either preclude phosphorylation, or mimic permanent phosphorylation. Mutation to preclude phosphorylation had no effect on transport but mutation of three sites to mimic permanent phosphorylation inhibited transport. Mutation of all four sites together to mimic permanent phosphorylation proved especially potent at inhibiting transport and also disrupted neurofilament assembly. Our results suggest that NFL head domain phosphorylation is a regulator of neurofilament axonal transport.

  3. US Department of Energy wind turbine candidate site program: the regulatory process

    Energy Technology Data Exchange (ETDEWEB)

    Greene, M.R.; York, K.R.

    1982-06-01

    Sites selected in 1979 as tentative sites for installation of a demonstration MOD-2 turbine are emphasized. Selection as a candidate site in this program meant that the US Department of Energy (DOE) designated the site as eligible for a DOE-purchased and installed meteorological tower. The regulatory procedures involved in the siting and installation of these meteorological towers at the majority of the candidate sites are examined. An attempt is also made, in a preliminary fashion, to identify the legal and regulatory procedures that would be required to put up a turbine at each of these candidate sites. The information provided on each of these sites comes primarily from utility representatives, supplemented by conversations with state and local officials. The major findings are summarized on the following: federal requirements, state requirements, local requirements, land ownership, wind rights, and public attitudes.

  4. Screening Phosphorylation Site Mutations in Yeast Acetyl-CoA Carboxylase Using Malonyl-CoA Sensor to Improve Malonyl-CoA-Derived Product.

    Science.gov (United States)

    Chen, Xiaoxu; Yang, Xiaoyu; Shen, Yu; Hou, Jin; Bao, Xiaoming

    2018-01-01

    Malonyl-coenzyme A (malonyl-CoA) is a critical precursor for the biosynthesis of a variety of biochemicals. It is synthesized by the catalysis of acetyl-CoA carboxylase (Acc1p), which was demonstrated to be deactivated by the phosphorylation of Snf1 protein kinase in yeast. In this study, we designed a synthetic malonyl-CoA biosensor and used it to screen phosphorylation site mutations of Acc1p in Saccharomyces cerevisiae . Thirteen phosphorylation sites were mutated, and a combination of three site mutations in Acc1p, S686A, S659A, and S1157A, was found to increase malonyl-CoA availability. ACC1 S686AS659AS1157A expression also improved the production of 3-hydroxypropionic acid, a malonyl-CoA-derived chemical, compared to both wild type and the previously reported ACC1 S659AS1157A mutation. This mutation will also be beneficial for other malonyl-CoA-derived products.

  5. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr

    2015-01-01

    by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were...... also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent....

  6. Regulatory requirements of the integrated technology demonstration program, Savannah River Site (U)

    International Nuclear Information System (INIS)

    Bergren, C.L.

    1992-01-01

    The integrated demonstration program at the Savannah River Site (SRS) involves demonstration, testing and evaluation of new characterization, monitoring, drilling and remediation technologies for soils and groundwater impacted by organic solvent contamination. The regulatory success of the demonstration program has developed as a result of open communications between the regulators and the technical teams involved. This open dialogue is an attempt to allow timely completion of applied environmental restoration demonstrations while meeting all applicable regulatory requirements. Simultaneous processing of multiple regulatory documents (satisfying RCRA, CERCLA, NEPA and various state regulations) has streamlined the overall permitting process. Public involvement is achieved as various regulatory documents are advertised for public comment consistent with the site's community relations plan. The SRS integrated demonstration has been permitted and endorsed by regulatory agencies, including the Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control. EPA headquarters and regional offices are involved in DOE's integrated Demonstration Program. This relationship allows for rapid regulatory acceptance while reducing federal funding and time requirements. (author)

  7. Insulin stimulation regulates AS160 and TBC1D1 phosphorylation sites in human skeletal muscle

    DEFF Research Database (Denmark)

    Middelbeek, R J W; Chambers, M A; Tantiwong, P

    2013-01-01

    Individuals with obesity and type 2 diabetes (T2D) are typically insulin resistant, exhibiting impaired skeletal muscle glucose uptake. Animal and cell culture experiments have shown that site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 and TBC1D1 is critical for GLUT4 tr...

  8. Threonine phosphorylation of rat liver glycogen synthase

    International Nuclear Information System (INIS)

    Arino, J.; Arro, M.; Guinovart, J.J.

    1985-01-01

    32 P-labeled glycogen synthase specifically immunoprecipitated from 32 P-phosphate incubated rat hepatocytes contains, in addition to [ 32 P] phosphoserine, significant levels of [ 32 P] phosphothreonine. When the 32 P-immunoprecipitate was cleaved with CNBr, the [ 32 P] phosphothreonine was recovered in the large CNBr fragment (CB-2, Mapp 28 Kd). Homogeneous rat liver glycogen synthase was phosphorylated by all the protein kinases able to phosphorylate CB-2 in vitro. After analysis of the immunoprecipitated enzyme for phosphoaminoacids, it was observed that only casein kinase II was able to phosphorylate on threonine and 32 P-phosphate was only found in CB-2. These results demonstrate that rat liver glycogen synthase is phosphorylated at threonine site(s) contained in CB-2 and strongly indicate that casein kinase II may play a role in the ''in vivo'' phosphorylation of liver glycogen synthase. This is the first protein kinase reported to phosphorylate threonine residues in liver glycogen synthase

  9. Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle.

    Science.gov (United States)

    Copeland, O'Neal; Sadayappan, Sakthivel; Messer, Andrew E; Steinen, Ger J M; van der Velden, Jolanda; Marston, Steven B

    2010-12-01

    A unique feature of MyBP-C in cardiac muscle is that it has multiple phosphorylation sites. MyBP-C phosphorylation, predominantly by PKA, plays an essential role in modulating contractility as part of the cellular response to β-adrenergic stimulation. In vitro studies indicate MyBP-C can be phosphorylated at Serine 273, 282, 302 and 307 (mouse sequence) but little is known about the level of MyBP-C phosphorylation or the sites phosphorylated in heart muscle. Since current methodologies are limited in specificity and are not quantitative we have investigated the use of phosphate affinity SDS-PAGE together with a total anti MyBP-C antibody and a range of phosphorylation site-specific antibodies for the main sites (Ser-273, -282 and -302). With these newly developed methods we have been able to make a detailed quantitative analysis of MyBP-C phosphorylation in heart tissue in situ. We have found that MyBP-C is highly phosphorylated in non-failing human (donor) heart or mouse heart; tris and tetra-phosphorylated species predominate and less than 10% of MyBP-C is unphosphorylated (0, 9.3 ± 1%: 1P, 13.4 ± 2.7%: 2P, 10.5 ± 3.3%: 3P, 28.7 ± 3.7%: 4P, 36.4 ± 2.7%, n=21). Total phosphorylation was 2.7 ± 0.07 mol Pi/mol MyBP-C. In contrast in failing heart and in myectomy samples from HCM patients the majority of MyBP-C was unphosphorylated. Total phosphorylation levels were 23% of normal in failing heart myofibrils (0, 60.1 ± 2.8%: 1P, 27.8 ± 2.8%: 2P, 4.8 ± 2.0%: 3P, 3.7 ± 1.2%: 4P, 2.8 ± 1.3%, n=19) and 39% of normal in myectomy samples. The site-specific antibodies showed a distinctive distribution pattern of phosphorylation sites in the multiple phosphorylation level species. We found that phosphorylated Ser-273, Ser-282 and Ser-302 were all present in the 4P band of MyBP-C but none of them were significant in the 1P band, indicating that there must be at least one other site of MyBP-C phosphorylation in human heart. The pattern of phosphorylation at the

  10. The phosphorylation-dependent regulation of nuclear SREBP1 during mitosis links lipid metabolism and cell growth

    Science.gov (United States)

    Bengoechea-Alonso, Maria Teresa; Ericsson, Johan

    2016-01-01

    ABSTRACT The SREBP transcription factors are major regulators of lipid metabolism. Disturbances in lipid metabolism are at the core of several health issues facing modern society, including cardiovascular disease, obesity and diabetes. In addition, the role of lipid metabolism in cancer cell growth is receiving increased attention. Transcriptionally active SREBP molecules are unstable and rapidly degraded in a phosphorylation-dependent manner by Fbw7, a ubiquitin ligase that targets several cell cycle regulatory proteins for degradation. We have previously demonstrated that active SREBP1 is stabilized during mitosis. We have now delineated the mechanisms involved in the stabilization of SREBP1 in mitotic cells. This process is initiated by the phosphorylation of a specific serine residue in nuclear SREBP1 by the mitotic kinase Cdk1. The phosphorylation of this residue creates a docking site for a separate mitotic kinase, Plk1. Plk1 interacts with nuclear SREBP1 in mitotic cells and phosphorylates a number of residues in the C-terminal domain of the protein, including a threonine residue in close proximity of the Fbw7 docking site in SREBP1. The phosphorylation of these residues by Plk1 blocks the interaction between SREBP1 and Fbw7 and attenuates the Fbw7-dependent degradation of nuclear SREBP1 during cell division. Inactivation of SREBP1 results in a mitotic defect, suggesting that SREBP1 could regulate cell division. We propose that the mitotic phosphorylation and stabilization of nuclear SREBP1 during cell division provides a link between lipid metabolism and cell proliferation. Thus, the current study provides additional support for the emerging hypothesis that SREBP-dependent lipid metabolism may be important for cell growth. PMID:27579997

  11. Regulatory requirements for nuclear power plant site selection in Malaysia-a review.

    Science.gov (United States)

    Basri, N A; Hashim, S; Ramli, A T; Bradley, D A; Hamzah, K

    2016-12-01

    Malaysia has initiated a range of pre-project activities in preparation for its planned nuclear power programme. Clearly one of the first steps is the selection of sites that are deemed suitable for the construction and operation of a nuclear power plant. Here we outline the Malaysian regulatory requirements for nuclear power plant site selection, emphasizing details of the selection procedures and site characteristics needed, with a clear focus on radiation safety and radiation protection in respect of the site surroundings. The Malaysia Atomic Energy Licensing Board (AELB) site selection guidelines are in accord with those provided in International Atomic Energy Agency (IAEA) and United Stated Nuclear Regulatory Commission (USNRC) documents. To enhance the suitability criteria during selection, as well as to assist in the final decision making process, possible assessments using the site selection characteristics and information are proposed.

  12. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly

    Directory of Open Access Journals (Sweden)

    Danming Tang

    2012-09-01

    GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.

  13. Assessment of current mass spectrometric workflows for the quantification of low abundant proteins and phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Manuel Bauer

    2015-12-01

    Full Text Available The data described here provide a systematic performance evaluation of popular data-dependent (DDA and independent (DIA mass spectrometric (MS workflows currently used in quantitative proteomics. We assessed the limits of identification, quantification and detection for each method by analyzing a dilution series of 20 unmodified and 10 phosphorylated synthetic heavy labeled reference peptides, respectively, covering six orders of magnitude in peptide concentration with and without a complex human cell digest background. We found that all methods performed very similarly in the absence of background proteins, however, when analyzing whole cell lysates, targeted methods were at least 5–10 times more sensitive than directed or DDA methods. In particular, higher stage fragmentation (MS3 of the neutral loss peak using a linear ion trap increased dynamic quantification range of some phosphopeptides up to 100-fold. We illustrate the power of this targeted MS3 approach for phosphopeptide monitoring by successfully quantifying 9 phosphorylation sites of the kinetochore and spindle assembly checkpoint component Mad1 over different cell cycle states from non-enriched pull-down samples. The data are associated to the research article ‘Evaluation of data-dependent and data-independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites׳ (Bauer et al., 2014 [1]. The mass spectrometry and the analysis dataset have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org via the PRIDE partner repository with the dataset identifier PXD000964.

  14. Analysis of Protein Phosphorylation and Its Functional Impact on Protein-Protein Interactions via Text Mining of the Scientific Literature.

    Science.gov (United States)

    Wang, Qinghua; Ross, Karen E; Huang, Hongzhan; Ren, Jia; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N

    2017-01-01

    Post-translational modifications (PTMs) are one of the main contributors to the diversity of proteoforms in the proteomic landscape. In particular, protein phosphorylation represents an essential regulatory mechanism that plays a role in many biological processes. Protein kinases, the enzymes catalyzing this reaction, are key participants in metabolic and signaling pathways. Their activation or inactivation dictate downstream events: what substrates are modified and their subsequent impact (e.g., activation state, localization, protein-protein interactions (PPIs)). The biomedical literature continues to be the main source of evidence for experimental information about protein phosphorylation. Automatic methods to bring together phosphorylation events and phosphorylation-dependent PPIs can help to summarize the current knowledge and to expose hidden connections. In this chapter, we demonstrate two text mining tools, RLIMS-P and eFIP, for the retrieval and extraction of kinase-substrate-site data and phosphorylation-dependent PPIs from the literature. These tools offer several advantages over a literature search in PubMed as their results are specific for phosphorylation. RLIMS-P and eFIP results can be sorted, organized, and viewed in multiple ways to answer relevant biological questions, and the protein mentions are linked to UniProt identifiers.

  15. Phosphorylation of the Epstein-Barr virus nuclear antigen 2

    DEFF Research Database (Denmark)

    Grässer, F A; Göttel, S; Haiss, P

    1992-01-01

    A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK......-1. The CK-2 specific phosphorylation site was localized in the 140 C-terminal amino acids using a recombinant trpE-C-terminal fusion protein. In a similar experiment, the 58 N-terminal amino acids expressed as a recombinant trpE-fusion protein were not phosphorylated. Phosphorylation of a synthetic...

  16. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    Science.gov (United States)

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  17. Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA

    International Nuclear Information System (INIS)

    Smet-Nocca, Caroline; Launay, Hélène; Wieruszeski, Jean-Michel; Lippens, Guy; Landrieu, Isabelle

    2013-01-01

    The Pin1 protein plays a critical role in the functional regulation of the hyperphosphorylated neuronal Tau protein in Alzheimer’s disease and is by itself regulated by phosphorylation. We have used Nuclear Magnetic Resonance (NMR) spectroscopy to both identify the PKA phosphorylation site in the Pin1 WW domain and investigate the functional consequences of this phosphorylation. Detection and identification of phosphorylation on serine/threonine residues in a globular protein, while mostly occurring in solvent-exposed flexible loops, does not lead to chemical shift changes as obvious as in disordered proteins and hence does not necessarily shift the resonances outside the spectrum of the folded protein. Other complications were encountered to characterize the extent of the phosphorylation, as part of the 1 H, 15 N amide resonances around the phosphorylation site are specifically broadened in the unphosphorylated state. Despite these obstacles, NMR spectroscopy was an efficient tool to confirm phosphorylation on S16 of the WW domain and to quantify the level of phosphorylation. Based on this analytical characterization, we show that WW phosphorylation on S16 abolishes its binding capacity to a phosphorylated Tau peptide. A reduced conformational heterogeneity and flexibility of the phospho-binding loop upon S16 phosphorylation could account for part of the decreased affinity for its phosphorylated partner. Additionally, a structural model of the phospho-WW obtained by molecular dynamics simulation and energy minimization suggests that the phosphate moiety of phospho-S16 could compete with the phospho-substrate.

  18. Protein kinase A (PKA) phosphorylation of Na+/K+-ATPase opens intracellular C-terminal water pathway leading to third Na+-binding site in molecular dynamics simulations

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Nissen, Poul; Mouritsen, Ole G.

    2012-01-01

    -atom Molecular Dynamics (MD) simulations to investigate the structural consequences of phosphorylating the Na+/K+- ATPase (NKA) residue S936, which is the best characterized phosphorylation site in NKA, targeted in vivo by Protein Kinase A (PKA) (1-3). The MD simulations suggest that S936 phosphorylation opens......Phosphorylation is one of the major mechanisms for posttranscriptional modification of proteins. The addition of a compact, negatively charged moiety to a protein can significantly change its function and localization by affecting its structure and interaction network. We have used all...... a C-terminal hydrated pathway leading to D926, a transmembrane residue proposed to form part of the third sodium ion-binding site (4). Simulations of a S936E mutant form, for which only subtle effects are observed when expressed in Xenopus oocytes and studied with electrophysiology, does not mimic...

  19. Metastasis-associated protein Mts1 (S100A4) inhibits CK2-mediated phosphorylation and self-assembly of the heavy chain of nonmuscle myosin

    DEFF Research Database (Denmark)

    Kriajevska, M; Bronstein, I B; Scott, D J

    2000-01-01

    a regulatory role in the myosin assembly. In the presence of calcium, Mts1 binds at the C-terminal end of the myosin heavy chain close to the site of phosphorylation by protein kinase CK2 (Ser1944). In the present study, we have shown that interaction of Mts1 with the human platelet myosin or C...

  20. Fibronectin phosphorylation by ecto-protein kinase

    International Nuclear Information System (INIS)

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru

    1988-01-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with [γ- 32 ]ATP for 10 min at 37 degree C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with [γ- 32 P]ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation

  1. Raptor is phosphorylated by cdc2 during mitosis.

    Directory of Open Access Journals (Sweden)

    Dana M Gwinn

    2010-02-01

    Full Text Available The appropriate control of mitotic entry and exit is reliant on a series of interlocking signaling events that coordinately drive the biological processes required for accurate cell division. Overlaid onto these signals that promote orchestrated cell division are checkpoints that ensure appropriate mitotic spindle formation, a lack of DNA damage, kinetochore attachment, and that each daughter cell has the appropriate complement of DNA. We recently discovered that AMP-activated protein kinase (AMPK modulates the G2/M phase of cell cycle progression in part through its suppression of mammalian target of rapamycin (mTOR signaling. AMPK directly phosphorylates the critical mTOR binding partner raptor inhibiting mTORC1 (mTOR-raptor rapamycin sensitive mTOR kinase complex 1. As mTOR has been previously tied to mitotic control, we examined further how raptor may contribute to this process.We have discovered that raptor becomes highly phosphorylated in cells in mitosis. Utilizing tandem mass spectrometry, we identified a number of novel phosphorylation sites in raptor, and using phospho-specific antibodies demonstrated that raptor becomes phosphorylated on phospho-serine/threonine-proline sites in mitosis. A combination of site-directed mutagenesis in a tagged raptor cDNA and analysis with a series of new phospho-specific antibodies generated against different sites in raptor revealed that Serine 696 and Threonine 706 represent two key sites in raptor phosphorylated in mitosis. We demonstrate that the mitotic cyclin-dependent kinase cdc2/CDK1 is the kinase responsible for phosphorylating these sites, and its mitotic partner Cyclin B efficiently coimmunoprecipitates with raptor in mitotic cells.This study demonstrates that the key mTOR binding partner raptor is directly phosphorylated during mitosis by cdc2. This reinforces previous studies suggesting that mTOR activity is highly regulated and important for mitotic progression, and points to a direct

  2. Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA

    Energy Technology Data Exchange (ETDEWEB)

    Smet-Nocca, Caroline, E-mail: caroline.smet@univ-lille1.fr; Launay, Helene; Wieruszeski, Jean-Michel; Lippens, Guy; Landrieu, Isabelle, E-mail: isabelle.landrieu@univ-lille1.fr [Universite de Lille-Nord de France, Institut Federatif de Recherches 147, CNRS UMR 8576 (France)

    2013-04-15

    The Pin1 protein plays a critical role in the functional regulation of the hyperphosphorylated neuronal Tau protein in Alzheimer's disease and is by itself regulated by phosphorylation. We have used Nuclear Magnetic Resonance (NMR) spectroscopy to both identify the PKA phosphorylation site in the Pin1 WW domain and investigate the functional consequences of this phosphorylation. Detection and identification of phosphorylation on serine/threonine residues in a globular protein, while mostly occurring in solvent-exposed flexible loops, does not lead to chemical shift changes as obvious as in disordered proteins and hence does not necessarily shift the resonances outside the spectrum of the folded protein. Other complications were encountered to characterize the extent of the phosphorylation, as part of the {sup 1}H,{sup 15}N amide resonances around the phosphorylation site are specifically broadened in the unphosphorylated state. Despite these obstacles, NMR spectroscopy was an efficient tool to confirm phosphorylation on S16 of the WW domain and to quantify the level of phosphorylation. Based on this analytical characterization, we show that WW phosphorylation on S16 abolishes its binding capacity to a phosphorylated Tau peptide. A reduced conformational heterogeneity and flexibility of the phospho-binding loop upon S16 phosphorylation could account for part of the decreased affinity for its phosphorylated partner. Additionally, a structural model of the phospho-WW obtained by molecular dynamics simulation and energy minimization suggests that the phosphate moiety of phospho-S16 could compete with the phospho-substrate.

  3. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, Kazuyasu [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan); Kimura, Yukihiro [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Honjoh, Chisato [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Third Department of Internal Medicine, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Yamauchi, Shota; Takeuchi, Kenji [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan); Sada, Kiyonao, E-mail: ksada@u-fukui.ac.jp [Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, Fukui 910-1193 (Japan); Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193 (Japan)

    2014-03-10

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 446} in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr{sup 183} and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 426} of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr{sup 426} is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr{sup 426} was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr{sup 426} following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation.

  4. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells

    International Nuclear Information System (INIS)

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjoh, Chisato; Yamauchi, Shota; Takeuchi, Kenji; Sada, Kiyonao

    2014-01-01

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr 174 , Tyr 183 and Tyr 446 in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr 183 and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr 174 , Tyr 183 and Tyr 426 of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr 426 is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr 426 was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr 426 following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation

  5. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling.

    Science.gov (United States)

    Dai, Cheng; Xue, Hong-Wei

    2010-06-02

    The plant hormone gibberellin (GA) is crucial for multiple aspects of plant growth and development. To study the relevant regulatory mechanisms, we isolated a rice mutant earlier flowering1, el1, which is deficient in a casein kinase I that has critical roles in both plants and animals. el1 had an enhanced GA response, consistent with the suppression of EL1 expression by exogenous GA(3). Biochemical characterization showed that EL1 specifically phosphorylates the rice DELLA protein SLR1, proving a direct evidence for SLR1 phosphorylation. Overexpression of SLR1 in wild-type plants caused a severe dwarf phenotype, which was significantly suppressed by EL1 deficiency, indicating the negative effect of SLR1 on GA signalling requires the EL1 function. Further studies showed that the phosphorylation of SLR1 is important for maintaining its activity and stability, and mutation of the candidate phosphorylation site of SLR1 results in the altered GA signalling. This study shows EL1 a novel and key regulator of the GA response and provided important clues on casein kinase I activities in GA signalling and plant development.

  6. Regulation of protein phosphorylation in oat mitochondria

    International Nuclear Information System (INIS)

    Pike, C.; Kopeck, K.; Sceppa, E.

    1989-01-01

    We sought to identify phosphorylated proteins in isolated oat mitocchondria and to characterize the enzymatic and regulatory properties of the protein kinase(s). Mitochondria from oats (Avena sativa L. cv. Garry) were purified on Percoll gradients. Mitochondria were incubated with 32 P-γ-ATP; proteins were separated by SDS-PAGE. A small number of bands was detected on autoradiograms, most prominently at 70 kD and 42 kD; the latter band has been tentatively identified as a subunit of the pyruvate dehydrogenase complex, a well-known phosphoprotein. The protein kinase(s) could also phosphorylate casein, but not histone. Spermine enhanced the phosphorylation of casein and inhibited the phosphorylation of the 42 kD band. These studies were carried out on both intact and burst mitochondria. Control by calcium and other ions was investigated. The question of the action of regulators on protein kinase or protein phosphatase was studied by the use of 35 S-adenosine thiotriphosphate

  7. dbPAF: an integrative database of protein phosphorylation in animals and fungi.

    Science.gov (United States)

    Ullah, Shahid; Lin, Shaofeng; Xu, Yang; Deng, Wankun; Ma, Lili; Zhang, Ying; Liu, Zexian; Xue, Yu

    2016-03-24

    Protein phosphorylation is one of the most important post-translational modifications (PTMs) and regulates a broad spectrum of biological processes. Recent progresses in phosphoproteomic identifications have generated a flood of phosphorylation sites, while the integration of these sites is an urgent need. In this work, we developed a curated database of dbPAF, containing known phosphorylation sites in H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. pombe and S. cerevisiae. From the scientific literature and public databases, we totally collected and integrated 54,148 phosphoproteins with 483,001 phosphorylation sites. Multiple options were provided for accessing the data, while original references and other annotations were also present for each phosphoprotein. Based on the new data set, we computationally detected significantly over-represented sequence motifs around phosphorylation sites, predicted potential kinases that are responsible for the modification of collected phospho-sites, and evolutionarily analyzed phosphorylation conservation states across different species. Besides to be largely consistent with previous reports, our results also proposed new features of phospho-regulation. Taken together, our database can be useful for further analyses of protein phosphorylation in human and other model organisms. The dbPAF database was implemented in PHP + MySQL and freely available at http://dbpaf.biocuckoo.org.

  8. Characterization and Prediction of Protein Phosphorylation Hotspots in Arabidopsis thaliana.

    Science.gov (United States)

    Christian, Jan-Ole; Braginets, Rostyslav; Schulze, Waltraud X; Walther, Dirk

    2012-01-01

    The regulation of protein function by modulating the surface charge status via sequence-locally enriched phosphorylation sites (P-sites) in so called phosphorylation "hotspots" has gained increased attention in recent years. We set out to identify P-hotspots in the model plant Arabidopsis thaliana. We analyzed the spacing of experimentally detected P-sites within peptide-covered regions along Arabidopsis protein sequences as available from the PhosPhAt database. Confirming earlier reports (Schweiger and Linial, 2010), we found that, indeed, P-sites tend to cluster and that distributions between serine and threonine P-sites to their respected closest next P-site differ significantly from those for tyrosine P-sites. The ability to predict P-hotspots by applying available computational P-site prediction programs that focus on identifying single P-sites was observed to be severely compromised by the inevitable interference of nearby P-sites. We devised a new approach, named HotSPotter, for the prediction of phosphorylation hotspots. HotSPotter is based primarily on local amino acid compositional preferences rather than sequence position-specific motifs and uses support vector machines as the underlying classification engine. HotSPotter correctly identified experimentally determined phosphorylation hotspots in A. thaliana with high accuracy. Applied to the Arabidopsis proteome, HotSPotter-predicted 13,677 candidate P-hotspots in 9,599 proteins corresponding to 7,847 unique genes. Hotspot containing proteins are involved predominantly in signaling processes confirming the surmised modulating role of hotspots in signaling and interaction events. Our study provides new bioinformatics means to identify phosphorylation hotspots and lays the basis for further investigating novel candidate P-hotspots. All phosphorylation hotspot annotations and predictions have been made available as part of the PhosPhAt database at http://phosphat.mpimp-golm.mpg.de.

  9. Shared regulatory sites are abundant in the human genome and shed light on genome evolution and disease pleiotropy.

    Science.gov (United States)

    Tong, Pin; Monahan, Jack; Prendergast, James G D

    2017-03-01

    Large-scale gene expression datasets are providing an increasing understanding of the location of cis-eQTLs in the human genome and their role in disease. However, little is currently known regarding the extent of regulatory site-sharing between genes. This is despite it having potentially wide-ranging implications, from the determination of the way in which genetic variants may shape multiple phenotypes to the understanding of the evolution of human gene order. By first identifying the location of non-redundant cis-eQTLs, we show that regulatory site-sharing is a relatively common phenomenon in the human genome, with over 10% of non-redundant regulatory variants linked to the expression of multiple nearby genes. We show that these shared, local regulatory sites are linked to high levels of chromatin looping between the regulatory sites and their associated genes. In addition, these co-regulated gene modules are found to be strongly conserved across mammalian species, suggesting that shared regulatory sites have played an important role in shaping human gene order. The association of these shared cis-eQTLs with multiple genes means they also appear to be unusually important in understanding the genetics of human phenotypes and pleiotropy, with shared regulatory sites more often linked to multiple human phenotypes than other regulatory variants. This study shows that regulatory site-sharing is likely an underappreciated aspect of gene regulation and has important implications for the understanding of various biological phenomena, including how the two and three dimensional structures of the genome have been shaped and the potential causes of disease pleiotropy outside coding regions.

  10. In silico assessment of phosphorylation and O-β-GlcNAcylation sites in human NPC1 protein critical for Ebola virus entry.

    Science.gov (United States)

    Basharat, Zarrin; Yasmin, Azra

    2015-08-01

    Ebola is a highly pathogenic enveloped virus responsible for deadly outbreaks of severe hemorrhagic fever. It enters human cells by binding a multifunctional cholesterol transporter Niemann-Pick C1 (NPC1) protein. Post translational modification (PTM) information for NPC1 is crucial to understand Ebola virus (EBOV) entry and action due to changes in phosphorylation or glycosylation at the binding site. It is difficult and costly to experimentally assess this type of interaction, so in silico strategy was employed. Identification of phosphorylation sites, including conserved residues that could be possible targets for 21 predicted kinases was followed by interplay study between phosphorylation and O-β-GlcNAc modification of NPC1. Results revealed that only 4 out of 48 predicted phosphosites exhibited O-β-GlcNAc activity. Predicted outcomes were integrated with residue conservation and 3D structural information. Three Yin Yang sites were located in the α-helix regions and were conserved in studied vertebrate and mammalian species. Only one modification site S425 was found in β-turn region located near the N-terminus of NPC1 and was found to differ in pig, mouse, cobra and humans. The predictions suggest that Yin Yang sites may not be important for virus attachment to NPC1, whereas phosphosite 473 may be important for binding and hence entry of Ebola virus. This information could be useful in addressing further experimental studies and therapeutic strategies targeting PTM events in EBOV entry. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Radio-ecological characterization and radiological assessment in support of regulatory supervision of legacy sites in northwest Russia

    International Nuclear Information System (INIS)

    Sneve, M.K.; Kiselev, M.; Shandala, N.K.

    2014-01-01

    The Norwegian Radiation Protection Authority has been implementing a regulatory cooperation program in the Russian Federation for over 10 years, as part of the Norwegian government's Plan of Action for enhancing nuclear and radiation safety in northwest Russia. The overall long-term objective has been the enhancement of safety culture and includes a special focus on regulatory supervision of nuclear legacy sites. The initial project outputs included appropriate regulatory threat assessments, to determine the hazardous situations and activities which are most in need of enhanced regulatory supervision. In turn, this has led to the development of new and updated norms and standards, and related regulatory procedures, necessary to address the often abnormal conditions at legacy sites. This paper presents the experience gained within the above program with regard to radio-ecological characterization of Sites of Temporary Storage for spent nuclear fuel and radioactive waste at Andreeva Bay and Gremikha in the Kola Peninsula in northwest Russia. Such characterization is necessary to support assessments of the current radiological situation and to support prospective assessments of its evolution. Both types of assessments contribute to regulatory supervision of the sites. Accordingly, they include assessments to support development of regulatory standards and guidance concerning: control of radiation exposures to workers during remediation operations; emergency preparedness and response; planned radionuclide releases to the environment; development of site restoration plans, and waste treatment and disposal. Examples of characterization work are presented which relate to terrestrial and marine environments at Andreeva Bay. The use of this data in assessments is illustrated by means of the visualization and assessment tool (DATAMAP) developed as part of the regulatory cooperation program, specifically to help control radiation exposure in operations and to support

  12. Phosphorylation variation during the cell cycle scales with structural propensities of proteins.

    Directory of Open Access Journals (Sweden)

    Stefka Tyanova

    Full Text Available Phosphorylation at specific residues can activate a protein, lead to its localization to particular compartments, be a trigger for protein degradation and fulfill many other biological functions. Protein phosphorylation is increasingly being studied at a large scale and in a quantitative manner that includes a temporal dimension. By contrast, structural properties of identified phosphorylation sites have so far been investigated in a static, non-quantitative way. Here we combine for the first time dynamic properties of the phosphoproteome with protein structural features. At six time points of the cell division cycle we investigate how the variation of the amount of phosphorylation correlates with the protein structure in the vicinity of the modified site. We find two distinct phosphorylation site groups: intrinsically disordered regions tend to contain sites with dynamically varying levels, whereas regions with predominantly regular secondary structures retain more constant phosphorylation levels. The two groups show preferences for different amino acids in their kinase recognition motifs - proline and other disorder-associated residues are enriched in the former group and charged residues in the latter. Furthermore, these preferences scale with the degree of disorderedness, from regular to irregular and to disordered structures. Our results suggest that the structural organization of the region in which a phosphorylation site resides may serve as an additional control mechanism. They also imply that phosphorylation sites are associated with different time scales that serve different functional needs.

  13. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor.

    Science.gov (United States)

    Lehmann, Andreas; Kliewer, Andrea; Schütz, Dagmar; Nagel, Falko; Stumm, Ralf; Schulz, Stefan

    2014-04-25

    The somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis. Unlike somatostatin, pasireotide stimulates a selective phosphorylation of S341 and S343 of the human sst2 receptor followed by a partial receptor internalization. Here, we show that exchange of S341 and S343 by alanine is sufficient to block pasireotide-driven internalization, whereas mutation of T353, T354, T356 and T359 to alanine is required to strongly inhibited both octreotide- and somatostatin-induced internalization. Yet, combined mutation of T353, T354, T356 and T359 is not sufficient to prevent somatostatin-driven β-arrestin mobilization and receptor desensitization. Replacement of all fourteen carboxyl-terminal serine and threonine residues by alanine completely abrogates sst2 receptor internalization and β-arrestin mobilization in HEK293 cells. Together, our findings demonstrate for the first time that agonist-selective sst2 receptor internalization is regulated by multi-site phosphorylation of its carboxyl-terminal tail. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases.

    Science.gov (United States)

    Schlaepfer, D D; Hunter, T

    1996-10-01

    Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase (PTK) that associates with integrin receptors and participates in extracellular matrix-mediated signal transduction events. We showed previously that the c-Src nonreceptor PTK and the Grb2 SH2/SH3 adaptor protein bound directly to FAK after fibronectin stimulation (D. D. Schlaepfer, S.K. Hanks, T. Hunter, and P. van der Geer, Nature [London] 372:786-791, 1994). Here, we present evidence that c-Src association with FAK is required for Grb2 binding to FAK. Using a tryptic phosphopeptide mapping approach, the in vivo phosphorylation of the Grb2 binding site on FAK (Tyr-925) was detected after fibronectin stimulation of NIH 3T3 cells and was constitutively phosphorylated in v-Src-transformed NIH 3T3 cells. In vitro, c-Src phosphorylated FAK Tyr-925 in a glutathione S-transferase-FAK C-terminal domain fusion protein, whereas FAK did not. Using epitope-tagged FAK constructs, transiently expressed in human 293 cells, we determined the effect of site-directed mutations on c-Src and Grb2 binding to FAK. Mutation of FAK Tyr-925 disrupted Grb2 binding, whereas mutation of the c-Src binding site on FAK (Tyr-397) disrupted both c-Src and Grb2 binding to FAK in vivo. These results support a model whereby Src-family PTKs are recruited to FAK and focal adhesions following integrin-induced autophosphorylation and exposure of FAK Tyr-397. Src-family binding and phosphorylation of FAK at Tyr-925 creates a Grb2 SH2-domain binding site and provides a link to the activation of the Ras signal transduction pathway. In Src-transformed cells, this pathway may be constitutively activated as a result of FAK Tyr-925 phosphorylation in the absence of integrin stimulation.

  15. Novel Role of Src in Priming Pyk2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    Full Text Available Proline-rich tyrosine kinase 2 (Pyk2 is a member of the focal adhesion kinase (FAK family of non-receptor tyrosine kinases and plays an important role in diverse cellular events downstream of the integrin-family of receptors, including cell migration, proliferation and survival. Here, we have identified a novel role for Src kinase in priming Pyk2 phosphorylation and subsequent activation upon cell attachment on the integrin-ligand fibronectin. By using complementary methods, we show that Src activity is indispensable for the initial Pyk2 phosphorylation on the Y402 site observed in response to cell attachment. In contrast, the initial fibronectin-induced autophosphorylation of FAK in the homologous Y397 site occurs in a Src-independent manner. We demonstrate that the SH2-domain of Src is required for Src binding to Pyk2 and for Pyk2 phosphorylation at sites Y402 and Y579. Moreover, Y402 phosphorylation is a prerequisite for the subsequent Y579 phosphorylation. While this initial phosphorylation of Pyk2 by Src is independent of Pyk2 kinase activity, subsequent autophosphorylation of Pyk2 in trans is required for full Pyk2 phosphorylation and activation. Collectively, our studies reveal a novel function of Src in priming Pyk2 (but not FAK phosphorylation and subsequent activation downstream of integrins, and shed light on the signaling events that regulate the function of Pyk2.

  16. Infection with CagA-positive Helicobacter pylori strain containing three EPIYA C phosphorylation sites is associated with more severe gastric lesions in experimentally infected Mongolian gerbils (Meriones unguiculatus).

    Science.gov (United States)

    Ferreira Júnior, M; Batista, S A; Vidigal, P V T; Cordeiro, A A C; Oliveira, F M S; Prata, L O; Diniz, A E T; Barral, C M; Barbuto, R C; Gomes, A D; Araújo, I D; Queiroz, D M M; Caliari, M V

    2015-04-27

    Infection with Helicobacter pylori strains containing high number of EPIYA-C phosphorylation sites in the CagA is associated with significant gastritis and increased risk of developing pre-malignant gastric lesions and gastric carcinoma. However, these findings have not been reproduced in animal models yet. Therefore, we investigated the effect on the gastric mucosa of Mongolian gerbil (Meriones unguiculatus) infected with CagA-positive H. pylori strains exhibiting one or three EPIYA-C phosphorilation sites. Mongolian gerbils were inoculated with H. pylori clonal isolates containing one or three EPIYA-C phosphorylation sites. Control group was composed by uninfected animals challenged with Brucella broth alone. Gastric fragments were evaluated by the modified Sydney System and digital morphometry. Clonal relatedness between the isolates was considered by the identical RAPD-PCR profiles and sequencing of five housekeeping genes, vacA i/d region and of oipA. The other virulence markers were present in both isolates (vacA s1i1d1m1, iceA2, and intact dupA). CagA of both isolates was translocated and phosphorylated in AGS cells. After 45 days of infection, there was a significant increase in the number of inflammatory cells and in the area of the lamina propria in the infected animals, notably in those infected by the CagA-positive strain with three EPIYA-C phosphorylation sites. After six months of infection, a high number of EPIYA-C phosphorylation sites was associated with progressive increase in the intensity of gastritis and in the area of the lamina propria. Atrophy, intestinal metaplasia, and dysplasia were also observed more frequently in animals infected with the CagA-positive isolate with three EPIYA-C sites.  We conclude that infection with H. pylori strain carrying a high number of CagA EPIYA-C phosphorylation sites is associated with more severe gastric lesions in an animal model of H. pylori infection.

  17. Infection with CagA-positive Helicobacter pylori strain containing three EPIYA C phosphorylation sites is associated with more severe gastric lesions in experimentally infected Mongolian gerbils (Meriones unguiculatus

    Directory of Open Access Journals (Sweden)

    M. Ferreira Júnior

    2015-04-01

    Full Text Available Infection with Helicobacter pylori strains containing high number of EPIYA-C phosphorylation sites in the CagA is associated with significant gastritis and increased risk of developing pre-malignant gastric lesions and gastric carcinoma. However, these findings have not been reproduced in animal models yet. Therefore, we investigated the effect on the gastric mucosa of Mongolian gerbil (Meriones unguiculatus infected with CagA-positive H. pylori strains exhibiting one or three EPIYA-C phosphorilation sites. Mongolian gerbils were inoculated with H. pylori clonal isolates containing one or three EPIYA-C phosphorylation sites. Control group was composed by uninfected animals challenged with Brucella broth alone. Gastric fragments were evaluated by the modified Sydney System and digital morphometry. Clonal relatedness between the isolates was considered by the identical RAPD-PCR profiles and sequencing of five housekeeping genes, vacA i/d region and of oipA. The other virulence markers were present in both isolates (vacA s1i1d1m1, iceA2, and intact dupA. CagA of both isolates was translocated and phosphorylated in AGS cells. After 45 days of infection, there was a significant increase in the number of inflammatory cells and in the area of the lamina propria in the infected animals, notably in those infected by the CagA-positive strain with three EPIYA-C phosphorylation sites. After six months of infection, a high number of EPIYA-C phosphorylation sites was associated with progressive increase in the intensity of gastritis and in the area of the lamina propria. Atrophy, intestinal metaplasia, and dysplasia were also observed more frequently in animals infected with the CagA-positive isolate with three EPIYA-C sites.  We conclude that infection with H. pylori strain carrying a high number of CagA EPIYA-C phosphorylation sites is associated with more severe gastric lesions in an animal model of H. pylori infection.

  18. Prediction of transcriptional regulatory sites in the complete genome sequence of Escherichia coli K-12.

    Science.gov (United States)

    Thieffry, D; Salgado, H; Huerta, A M; Collado-Vides, J

    1998-06-01

    As one of the best-characterized free-living organisms, Escherichia coli and its recently completed genomic sequence offer a special opportunity to exploit systematically the variety of regulatory data available in the literature in order to make a comprehensive set of regulatory predictions in the whole genome. The complete genome sequence of E.coli was analyzed for the binding of transcriptional regulators upstream of coding sequences. The biological information contained in RegulonDB (Huerta, A.M. et al., Nucleic Acids Res.,26,55-60, 1998) for 56 different transcriptional proteins was the support to implement a stringent strategy combining string search and weight matrices. We estimate that our search included representatives of 15-25% of the total number of regulatory binding proteins in E.coli. This search was performed on the set of 4288 putative regulatory regions, each 450 bp long. Within the regions with predicted sites, 89% are regulated by one protein and 81% involve only one site. These numbers are reasonably consistent with the distribution of experimental regulatory sites. Regulatory sites are found in 603 regions corresponding to 16% of operon regions and 10% of intra-operonic regions. Additional evidence gives stronger support to some of these predictions, including the position of the site, biological consistency with the function of the downstream gene, as well as genetic evidence for the regulatory interaction. The predictions described here were incorporated into the map presented in the paper describing the complete E.coli genome (Blattner,F.R. et al., Science, 277, 1453-1461, 1997). The complete set of predictions in GenBank format is available at the url: http://www. cifn.unam.mx/Computational_Biology/E.coli-predictions ecoli-reg@cifn.unam.mx, collado@cifn.unam.mx

  19. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites

    KAUST Repository

    Kulakovskiy, Ivan V.

    2011-08-18

    Motivation: Modern experimental methods provide substantial information on protein-DNA recognition. Studying arrangements of transcription factor binding sites (TFBSs) of interacting transcription factors (TFs) advances understanding of the transcription regulatory code. Results: We constructed binding motifs for TFs forming a complex with HIF-1α at the erythropoietin 3\\'-enhancer. Corresponding TFBSs were predicted in the segments around transcription start sites (TSSs) of all human genes. Using the genome-wide set of regulatory regions, we observed several strongly preferred distances between hypoxia-responsive element (HRE) and binding sites of a particular cofactor protein. The set of preferred distances was called as a preferred pair distance template (PPDT). PPDT dramatically depended on the TF and orientation of its binding sites relative to HRE. PPDT evaluated from the genome-wide set of regulatory sequences was used to detect significant PPDT-consistent binding site pairs in regulatory regions of hypoxia-responsive genes. We believe PPDT can help to reveal the layout of eukaryotic regulatory segments. © The Author 2011. Published by Oxford University Press. All rights reserved.

  20. Radio-ecological characterization and radiological assessment in support of regulatory supervision of legacy sites in northwest Russia.

    Science.gov (United States)

    Sneve, M K; Kiselev, M; Shandala, N K

    2014-05-01

    The Norwegian Radiation Protection Authority has been implementing a regulatory cooperation program in the Russian Federation for over 10 years, as part of the Norwegian government's Plan of Action for enhancing nuclear and radiation safety in northwest Russia. The overall long-term objective has been the enhancement of safety culture and includes a special focus on regulatory supervision of nuclear legacy sites. The initial project outputs included appropriate regulatory threat assessments, to determine the hazardous situations and activities which are most in need of enhanced regulatory supervision. In turn, this has led to the development of new and updated norms and standards, and related regulatory procedures, necessary to address the often abnormal conditions at legacy sites. This paper presents the experience gained within the above program with regard to radio-ecological characterization of Sites of Temporary Storage for spent nuclear fuel and radioactive waste at Andreeva Bay and Gremikha in the Kola Peninsula in northwest Russia. Such characterization is necessary to support assessments of the current radiological situation and to support prospective assessments of its evolution. Both types of assessments contribute to regulatory supervision of the sites. Accordingly, they include assessments to support development of regulatory standards and guidance concerning: control of radiation exposures to workers during remediation operations; emergency preparedness and response; planned radionuclide releases to the environment; development of site restoration plans, and waste treatment and disposal. Examples of characterization work are presented which relate to terrestrial and marine environments at Andreeva Bay. The use of this data in assessments is illustrated by means of the visualization and assessment tool (DATAMAP) developed as part of the regulatory cooperation program, specifically to help control radiation exposure in operations and to support

  1. Insulin increase in MAP kinase phosphorylation is shifted to early time-points by overexpressing APS, while Akt phosphorylation is not influenced.

    Science.gov (United States)

    Onnockx, Sheela; Xie, Jingwei; Degraef, Chantal; Erneux, Christophe; Pirson, Isabelle

    2009-09-10

    Upon insulin stimulation, the adaptor protein APS is recruited to the insulin receptor and tyrosine phosphorylated. APS initiates the insulin-induced TC10 cascade which participates to GLUT4 translocation to the plasma membrane. Nevertheless, the molecular mechanism that governs APS and its SH2 and PH domains action on the insulin transduction cascade is not yet fully understood. Here, we show that APS co-immunoprecipitates with the class I PI 3-kinase regulatory subunit p85, through its SH2 domain but that APS does not modulate neither PtdIns(3,4,5)P3 levels nor Akt phosphorylation provoked by insulin. We have confirmed a previously described positive effect of APS overexpression on insulin-induced MAPK phosphorylation upregulation. Consequently, we analyzed the role of SH2 and PH domains of APS in the APS increased MAPK phosphorylation observed upon insulin stimulation and correlated this with the membrane localization of the protein. The effect observed on MAPK phosphorylation requires the intact PH binding domain of APS as well as its SH2 domain.

  2. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism.

    Science.gov (United States)

    Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-03-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.

  3. Synthesis of Isomeric Phosphoubiquitin Chains Reveals that Phosphorylation Controls Deubiquitinase Activity and Specificity

    Directory of Open Access Journals (Sweden)

    Nicolas Huguenin-Dezot

    2016-07-01

    Full Text Available Ubiquitin is post-translationally modified by phosphorylation at several sites, but the consequences of these modifications are largely unknown. Here, we synthesize multi-milligram quantities of ubiquitin phosphorylated at serine 20, serine 57, and serine 65 via genetic code expansion. We use these phosphoubiquitins for the enzymatic assembly of 20 isomeric phosphoubiquitin dimers, with different sites of isopeptide linkage and/or phosphorylation. We discover that phosphorylation of serine 20 on ubiquitin converts UBE3C from a dual-specificity E3 ligase into a ligase that primarily synthesizes K48 chains. We profile the activity of 31 deubiquitinases on the isomeric phosphoubiquitin dimers in 837 reactions, and we discover that phosphorylation at distinct sites in ubiquitin can activate or repress cleavage of a particular linkage by deubiquitinases and that phosphorylation at a single site in ubiquitin can control the specificity of deubiquitinases for distinct ubiquitin linkages.

  4. Quantification of rapid Myosin regulatory light chain phosphorylation using high-throughput in-cell Western assays: comparison to Western immunoblots.

    Directory of Open Access Journals (Sweden)

    Hector N Aguilar

    2010-04-01

    Full Text Available Quantification of phospho-proteins (PPs is crucial when studying cellular signaling pathways. Western immunoblotting (WB is commonly used for the measurement of relative levels of signaling intermediates in experimental samples. However, WB is in general a labour-intensive and low-throughput technique. Because of variability in protein yield and phospho-signal preservation during protein harvesting, and potential loss of antigen during protein transfer, WB provides only semi-quantitative data. By comparison, the "in-cell western" (ICW technique has high-throughput capacity and requires less extensive sample preparation. Thus, we compared the ICW technique to WB for measuring phosphorylated myosin regulatory light chain (PMLC(20 in primary cultures of uterine myocytes to assess their relative specificity, sensitivity, precision, and quantification of biologically relevant responses.ICWs are cell-based microplate assays for quantification of protein targets in their cellular context. ICWs utilize a two-channel infrared (IR scanner (Odyssey(R to quantify signals arising from near-infrared (NIR fluorophores conjugated to secondary antibodies. One channel is dedicated to measuring the protein of interest and the second is used for data normalization of the signal in each well of the microplate. Using uterine myocytes, we assessed oxytocin (OT-stimulated MLC(20 phosphorylation measured by ICW and WB, both using NIR fluorescence. ICW and WB data were comparable regarding signal linearity, signal specificity, and time course of phosphorylation response to OT.ICW and WB yield comparable biological data. The advantages of ICW over WB are its high-throughput capacity, improved precision, and reduced sample preparation requirements. ICW might provide better sensitivity and precision with low-quantity samples or for protocols requiring large numbers of samples. These features make the ICW technique an excellent tool for the study of phosphorylation endpoints

  5. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    Science.gov (United States)

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  6. [Effect of electroacupuncture on phosphorylation of NR2B at Tyr 1742 site in the spinal dorsal horn of CFA rats].

    Science.gov (United States)

    Liang, Yi; Fang, Jian-Qiao; Fang, Jun-Fan; Du, Jun-Ying; Qiu, Yu-Jie; Liu, Jin

    2013-10-01

    To observe the effect of electroacupuncture (EA) on phosphorylation of spinal NR2B at Tyr 1742 site in complete Freund's adjuvant (CFA) induced inflammatory pain rats. METHods Forty male Sprague Dawley rats were randomly divided into normal group (N group, n = 10), the model group (CFA group, n = 15), and the EA group (n = 15). The inflammatory pain model was established by subcutaneous injecting CFA (0.1 mL per rat) into the right hind paw. Paw withdrawal thresholds (PWTs) were measured before CFA injection (as the base), as well as at 24 h, 25 h, 3rd day, and 7th day after CFA injection. Phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn at the 3rd day post-injection were detected using immunohistochemical assay. PWTs in the CFA group were significantly lower than those of the N group at every detective time point post-injection (P CFA group at 25 h and 3rd day post-injection (P CFA group was up-regulated. Compared with the CFA group, the ratio of p-NR2B positive cells in the ispilateral spinal dorsal horn of rats showed a decreasing tendency in the EA group. EA might effectively inhibit CFA-induced inflammatory pain possibly associated with down-regulating phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn.

  7. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Directory of Open Access Journals (Sweden)

    Mehmet Karaca

    Full Text Available Reactivation of androgen receptor (AR may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  8. Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system.

    Science.gov (United States)

    Baronian, Grégory; Ginda, Katarzyna; Berry, Laurence; Cohen-Gonsaud, Martin; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara; Molle, Virginie

    2015-01-01

    Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.

  9. Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system.

    Directory of Open Access Journals (Sweden)

    Grégory Baronian

    Full Text Available Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.

  10. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoying [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Xu, Xingbo [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Zeisberg, Elisabeth M. [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany); Zeisberg, Michael, E-mail: mzeisberg@med.uni-goettingen.de [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany)

    2016-04-08

    Phosphate is an essential constituent of critical cellular functions including energy metabolism, nucleic acid synthesis and phosphorylation-dependent cell signaling. Increased plasma phosphate levels are an independent risk factor for lowered life-expectancy as well as for heart and kidney failure. Nevertheless, direct cellular effects of elevated phosphate concentrations within the microenvironment are poorly understood and have been largely neglected in favor of phosphor-regulatory hormones. Because interstitial fibrosis is the common determinant of chronic progressive kidney disease, and because fibroblasts are major mediators of fibrogenesis, we here explored the effect of high extracellular phosphate levels on renal fibroblasts. We demonstrate that high inorganic phosphate directly induces fibrotic fibroblast activation associated with increased proliferative activity, increased expression of α-smooth muscle actin and increased synthesis of type I collagen. We further demonstrate that such fibroblast activation is dependent on phosphate influx, aberrant phosphorylation of DNA methyltransferase DNMT1 and aberrant CpG island promoter methylation. In summary, our studies demonstrate that elevated phosphate concentrations induce pro-fibrotic fibroblast activation independent of phospho-regulatory hormones. - Highlights: • We exposed human kidney fibroblasts to media containing 1 mM or 3 mM phosphate. • Increased phosphate influx causes phosphorylation of DNA methyltransferase Dnmt1. • Phosphorylated Dnmt1 causes promoter methylation and transcriptional silencing of RASAL1. • Depletion of RASAL1 causes increased intrinsic Ras-GTP activity and fibroblast activation. • Inorganic phosphate causes fibroblast activation independent of phospho-regulatory hormones.

  11. Tyrosine Phosphorylation of Jak2 in the JH2 Domain Inhibits Cytokine Signaling

    OpenAIRE

    Feener, Edward P.; Rosario, Felicia; Dunn, Sarah L.; Stancheva, Zlatina; Myers, Martin G.

    2004-01-01

    Jak family tyrosine kinases mediate signaling by cytokine receptors to regulate diverse biological processes. Although Jak2 and other Jak kinase family members are phosphorylated on numerous sites during cytokine signaling, the identity and function of most of these sites remains unknown. Using tandem mass spectroscopic analysis of activated Jak2 protein from intact cells, we identified Tyr221 and Tyr570 as novel sites of Jak2 phosphorylation. Phosphorylation of both sites was stimulated by c...

  12. Emerging roles for protein histidine phosphorylation in cellular signal transduction: lessons from the islet ?-cell

    OpenAIRE

    Kowluru, Anjaneyulu

    2008-01-01

    Protein phosphorylation represents one of the key regulatory events in physiological insulin secretion from the islet ?-cell. In this context, several classes of protein kinases (e.g. calcium-, cyclic nucleotide- and phospholipid-dependent protein kinases and tyrosine kinases) have been characterized in the ?-cell. The majority of phosphorylated amino acids identified include phosphoserine, phosphothreonine and phosphotyrosine. Protein histidine phosphorylation has been implicated in the prok...

  13. Phospho.ELM: a database of phosphorylation sites--update 2011

    DEFF Research Database (Denmark)

    Dinkel, Holger; Chica, Claudia; Via, Allegra

    2011-01-01

    The Phospho.ELM resource (http://phospho.elm.eu.org) is a relational database designed to store in vivo and in vitro phosphorylation data extracted from the scientific literature and phosphoproteomic analyses. The resource has been actively developed for more than 7 years and currently comprises ...... sequence alignment used for the score calculation. Finally, special emphasis has been put on linking to external resources such as interaction networks and other databases.......The Phospho.ELM resource (http://phospho.elm.eu.org) is a relational database designed to store in vivo and in vitro phosphorylation data extracted from the scientific literature and phosphoproteomic analyses. The resource has been actively developed for more than 7 years and currently comprises 42...

  14. Phosphorylation Variation during the Cell Cycle Scales with Structural Propensities of Proteins

    DEFF Research Database (Denmark)

    Tyanova, S.; Frishman, D.; Cox, J.

    2013-01-01

    of the cell division cycle we investigate how the variation of the amount of phosphorylation correlates with the protein structure in the vicinity of the modified site. We find two distinct phosphorylation site groups: intrinsically disordered regions tend to contain sites with dynamically varying levels...

  15. In silico determination of intracellular glycosylation and phosphorylation sites in human selectins: Implications for biological function

    DEFF Research Database (Denmark)

    Ahmad, I.; Hoessli, D.C.; Gupta, Ramneek

    2007-01-01

    Post-translational modifications provide the proteins with the possibility to perform functions in addition to those determined by their primary sequence. However, analysis of multifunctional protein structures in the environment of cells and body fluids is made especially difficult by the presence...... both modifications are likely to occur can also be predicted (YinYang sites), to suggest further functional versatility. Structural modifications of hydroxyl groups of P-, E-, and L-selectins have been predicted and possible functions resulting from such modifications are proposed. Functional changes...... of the three selectins are based on the assumption that transitory and reversible protein modifications by phosphate and O-GlcNAc cause specific conformational changes and generate binding sites for other proteins. The computer-assisted prediction of glycosylation and phosphorylation sites in selectins should...

  16. Site-specific parameter values for the Nuclear Regulatory Commission's food pathway dose model

    International Nuclear Information System (INIS)

    Hamby, D.M.

    1992-01-01

    Routine operations at the Savannah River Site (SRS) in Western South Carolina result in radionuclide releases to the atmosphere and to the Savannah River. The resulting radiation doses to the off-site maximum individual and the off-site population within 80 km of the SRS are estimated on a yearly basis. These estimates are currently generated using dose models prescribed for the commercial nuclear power industry by the Nuclear Regulatory Commission (NRC). The NRC provides default values for dose-model parameters for facilities without resources to develop site-specific values. A survey of land- and water-use characteristics for the Savannah River area has been conducted to determine site-specific values for water recreation, consumption, and agricultural parameters used in the NRC Regulatory Guide 1.109 (1977) dosimetric models. These site parameters include local characteristics of meat, milk, and vegetable production; recreational and commercial activities on the Savannah River; and meat, milk, vegetable, and seafood consumption rates. This paper describes how parameter data were obtained at the Savannah River Site and the impacts of such data on off-site dose. Dose estimates using site-specific parameter values are compared to estimates using the NRC default values

  17. Early Regulatory Engagement for Successful Site Remediation: the UK Experience - 13173

    International Nuclear Information System (INIS)

    Maitland, R.P.; Senior, D.

    2013-01-01

    The Office for Nuclear Regulation (ONR) is an independent safety, security and transport regulator of the UK nuclear industry. ONR regulates all civil nuclear reactor power stations, fuel manufacture, enrichment, spent fuel reprocessing, most defence sites and installations that store and process legacy spent fuel and radioactive waste. The responsibility for funding and strategic direction of decommissioning and radioactive waste management of state owned legacy sites has rested solely with the Nuclear Decommissioning Authority (NDA) since 2005. A key component of NDA's mandate was to encourage new strategic approaches and innovation to dealing with the UK's waste legacy and which deliver value-for-money to the UK taxpayer. ONR, as an agency of the Health and Safety Executive, is entirely independent of NDA and regulates all prescribed activities on NDA's sites. NDA's competition of site management and closure contracts has attracted significant international interest and the formation of consortia comprised of major British, US, French and Swedish organizations bidding for those contracts. The prominence of US organizations in each of those consortia reflects the scale and breadth of existing waste management and D and D projects in the US. This paper will articulate, in broad terms, the challenges faced by international organizations seeking to employ 'off-the-shelf' technology and D and D techniques, successfully employed elsewhere, into the UK regulatory context. The predominantly 'goal-setting' regulatory framework in the UK does not generally prescribe a minimum standard to which a licensee must adhere. The legal onus on licensees in the UK is to demonstrate, whatever technology is selected, that in its applications, risks are reduced 'So Far As Is Reasonably Practicable' or 'SFAIRP'. By the nature of its role, ONR adopts a conservative approach to regulation; however ONR also recognises that in the decommissioning (and ultimately the site closure) domain

  18. Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism▿ †

    Science.gov (United States)

    Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-01-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740

  19. Phosphorylation of KasB Regulates Virulence and Acid-Fastness in Mycobacterium tuberculosis

    Science.gov (United States)

    Vilchèze, Catherine; Molle, Virginie; Carrère-Kremer, Séverine; Leiba, Jade; Mourey, Lionel; Shenai, Shubhada; Baronian, Grégory; Tufariello, Joann; Hartman, Travis; Veyron-Churlet, Romain; Trivelli, Xavier; Tiwari, Sangeeta; Weinrick, Brian; Alland, David; Guérardel, Yann; Jacobs, William R.; Kremer, Laurent

    2014-01-01

    Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown. Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele, mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that were shortened by 4–6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M. tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology. Overall, these results highlight for the first time the role of Ser/Thr kinase

  20. Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Catherine Vilchèze

    2014-05-01

    Full Text Available Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown. Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele, mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that were shortened by 4-6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M. tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology. Overall, these results highlight for the first time the role of

  1. PKCδ-mediated phosphorylation of BAG3 at Ser187 site induces epithelial-mesenchymal transition and enhances invasiveness in thyroid cancer FRO cells.

    Science.gov (United States)

    Li, N; Du, Z-X; Zong, Z-H; Liu, B-Q; Li, C; Zhang, Q; Wang, H-Q

    2013-09-19

    Protein kinase C delta (PKCδ) is a serine (Ser)/threonine kinase, which regulates numerous cellular processes, including proliferation, differentiation, migration and apoptosis. In the current study, Chinese hamster ovary cells were transfected with either a constitutively activated PKCδ or a dominant negative PKCδ, phosphoprotein enrichment, two-dimensional difference gel electrophoresis and mass spectrometry was combined to globally identified candidates of PKCδ cascade. We found that Bcl-2 associated athanogene 3 (BAG3) was one of the targets of PKCδ cascade, and BAG3 interacted with PKCδ in vivo. In addition, we clarified that BAG3 was phosphorylate at Ser187 site in a PKCδ-dependent manner in vivo. BAG3 has been implicated in multiple cellular functions, including proliferation, differentiation, apoptosis, migration, invasion, macroautophagy and so on. We generated wild-type (WT)-, Ser187Ala (S187A)- or Ser187Asp (S187D)-BAG3 stably expressing FRO cells, and noticed that phosphorylation state of BAG3 influenced FRO morphology. Finally, for the first time, we showed that BAG3 was implicated in epithelial-mesenchymal transition (EMT) procedure, and phosphorylation state at Ser187 site had a critical role in EMT regulation by BAG3. Collectively, the current study indicates that BAG3 is a novel substrate of PKCδ, and PKCδ-mediated phosphorylation of BAG3 is implicated in EMT and invasiveness of thyroid cancer cells.

  2. Bad phosphorylation as a target of inhibition in oncology.

    Science.gov (United States)

    Bui, Ngoc-Linh-Chi; Pandey, Vijay; Zhu, Tao; Ma, Lan; Basappa; Lobie, Peter E

    2018-02-28

    Bcl-2 agonist of cell death (BAD) is a BH3-only member of the Bcl-2 family which possesses important regulatory function in apoptosis. BAD has also been shown to possess many non-apoptotic functions closely linked to cancer including regulation of glycolysis, autophagy, cell cycle progression and immune system development. Interestingly, BAD can be either pro-apoptotic or pro-survival depending on the phosphorylation state of three specific serine residues (human S75, S99 and S118). Expression of BAD and BAD phosphorylation patterns have been shown to influence tumor initiation and progression and play a predictive role in disease prognosis, drug response and chemosensitivity in various cancers. This review aims to summarize the current evidence on the functional role of BAD phosphorylation in human cancer and evaluate the potential utility of modulating BAD phosphorylation in cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Protein phosphorylation and its role in archaeal signal transduction

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  4. Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins

    DEFF Research Database (Denmark)

    Diella, F.; Cameron, S.; Gemund, C.

    2004-01-01

    Background: Post-translational phosphorylation is one of the most common protein modifications. Phosphoserine, threonine and tyrosine residues play critical roles in the regulation of many cellular processes. The fast growing number of research reports on protein phosphorylation points to a gener...

  5. Protein phosphorylation in bcterial signaling and regulation

    KAUST Repository

    Mijakovic, Ivan

    2016-01-26

    In 2003, it was demonstrated for the first time that bacteria possess protein-tyrosine kinases (BY-kinases), capable of phosphorylating other cellular proteins and regulating their activity. It soon became apparent that these kinases phosphorylate a number of protein substrates, involved in different cellular processes. More recently, we found out that BY-kinases can be activated by several distinct protein interactants, and are capable of engaging in cross-phosphorylation with other kinases. Evolutionary studies based on genome comparison indicate that BY-kinases exist only in bacteria. They are non-essential (present in about 40% bacterial genomes), and their knockouts lead to pleiotropic phenotypes, since they phosphorylate many substrates. Surprisingly, BY-kinase genes accumulate mutations at an increased rate (non-synonymous substitution rate significantly higher than other bacterial genes). One direct consequence of this phenomenon is no detectable co-evolution between kinases and their substrates. Their promiscuity towards substrates thus seems to be “hard-wired”, but why would bacteria maintain such promiscuous regulatory devices? One explanation is the maintenance of BY-kinases as rapidly evolving regulators, which can readily adopt new substrates when environmental changes impose selective pressure for quick evolution of new regulatory modules. Their role is clearly not to act as master regulators, dedicated to triggering a single response, but they might rather be employed to contribute to fine-tuning and improving robustness of various cellular responses. This unique feature makes BY-kinases a potentially useful tool in synthetic biology. While other bacterial kinases are very specific and their signaling pathways insulated, BY-kinase can relatively easily be engineered to adopt new substrates and control new biosynthetic processes. Since they are absent in humans, and regulate some key functions in pathogenic bacteria, they are also very promising

  6. Tyrosine phosphorylation of WW proteins

    Science.gov (United States)

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  7. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks

    Science.gov (United States)

    White, Forest M.; Wolf-Yadlin, Alejandro

    2016-06-01

    Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  8. Phosphorylation of Human Metapneumovirus M2-1 Protein Upregulates Viral Replication and Pathogenesis.

    Science.gov (United States)

    Cai, Hui; Zhang, Yu; Lu, Mijia; Liang, Xueya; Jennings, Ryan; Niewiesk, Stefan; Li, Jianrong

    2016-08-15

    Human metapneumovirus (hMPV) is a major causative agent of upper- and lower-respiratory-tract infections in infants, the elderly, and immunocompromised individuals worldwide. Like all pneumoviruses, hMPV encodes the zinc binding protein M2-1, which plays important regulatory roles in RNA synthesis. The M2-1 protein is phosphorylated, but the specific role(s) of the phosphorylation in viral replication and pathogenesis remains unknown. In this study, we found that hMPV M2-1 is phosphorylated at amino acid residues S57 and S60. Subsequent mutagenesis found that phosphorylation is not essential for zinc binding activity and oligomerization, whereas inhibition of zinc binding activity abolished the phosphorylation and oligomerization of the M2-1 protein. Using a reverse genetics system, recombinant hMPVs (rhMPVs) lacking either one or both phosphorylation sites in the M2-1 protein were recovered. These recombinant viruses had a significant decrease in both genomic RNA replication and mRNA transcription. In addition, these recombinant viruses were highly attenuated in cell culture and cotton rats. Importantly, rhMPVs lacking phosphorylation in the M2-1 protein triggered high levels of neutralizing antibody and provided complete protection against challenge with wild-type hMPV. Collectively, these data demonstrated that phosphorylation of the M2-1 protein upregulates hMPV RNA synthesis, replication, and pathogenesis in vivo The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Currently, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that phosphorylation of M2-1 is essential for virus

  9. Phosphorylation of sites 3 and 2 in rabbit skeletal muscle glycogen synthase by a multifunctional protein kinase (ATP-citrate lyase kinase)

    International Nuclear Information System (INIS)

    Sheorain, V.S.; Ramakrishna, S.; Benjamin, W.B.; Soderling, T.R.

    1985-01-01

    A multifunctional protein kinase, purified from rat liver as ATP-citrate lyase kinase, has been identified as a glycogen synthase kinase. This kinase catalyzed incorporation of up to 1.5 mol of and]2number 2 PO 4 /mol of synthase subunit associated with a decrease in the glycogen synthase activity ratio from 0.85 to a value of 0.15. Approximately 65-70% of the 34 PO 4 was incorporated into site 3 and 30-35% into site 2 as determined by reverse phase high performance liquid chromatography. This multifunctional kinase was distinguished from glycogen synthase kinase-3 on the basis of nucleotide and protein substrate specificities. Since the phosphate contents in glycogen synthase of sites 3 and 2 are altered in diabetes and by insulin administration, the possible involvement of the multifunctional kinase was explored. Glycogen synthase purified from diabetic rabbits was phosphorylated in vitro by this multifunctional kinase at only 10% of the rate compared to synthase purified from control rabbits. Treatment of the diabetics with insulin restored the synthase to a form that was readily phosphorylated in vitro

  10. Phosphorylation-mediated regulation of the Staphylococcus aureus secreted tyrosine phosphatase PtpA.

    Science.gov (United States)

    Brelle, Solène; Baronian, Grégory; Huc-Brandt, Sylvaine; Zaki, Laila Gannoun; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie

    2016-01-15

    Due to the emergence of methicillin-resistant strains, Staphylococcus aureus has become as major public-health threat. Studies aimed at deciphering the molecular mechanism of virulence are thus required to identify new targets and develop efficient therapeutic agents. Protein phosphorylations are known to play key regulatory functions and their roles in pathogenesis are under intense scrutiny. Here we analyzed the protein tyrosine phosphatase PtpA of S. aureus, a member of the family of low molecular weight protein tyrosine phosphatases that are often secreted by pathogenic bacteria. We report for the first time that PtpA is phosphorylated in vitro by the S. aureus tyrosine kinase CapA1B2. A mass spectrometry approach allowed determining that Tyr122 and Tyr123 were the only two residues phosphorylated by this kinase. This result was confirmed by analysis of a double PtpA_Y122A/Y123A mutant that showed no phosphorylation by CapA1B2. Interestingly, PtpA phosphatase activity was abrogated in this mutant, suggesting a key regulatory function for these two tyrosine residues. This was further reinforced by the observation that CapA1B2-mediated phosphorylation significantly increased PtpA phosphatase activity. Moreover, we provide evidence that PtpA is secreted during growth of S. aureus. Together our results suggest that PtpA is an exported S. aureus signaling molecule controlled by tyrosine phosphorylation which may interfere with host cell signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Tumor suppressor PTEN affects tau phosphorylation: deficiency in the phosphatase activity of PTEN increases aggregation of an FTDP-17 mutant Tau

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2006-07-01

    Full Text Available Abstract Background Aberrant hyperphosphorylation of tau protein has been implicated in a variety of neurodegenerative disorders. Although a number of protein kinases have been shown to phosphorylate tau in vitro and in vivo, the molecular mechanisms by which tau phosphorylation is regulated pathophysiologically are largely unknown. Recently, a growing body of evidence suggests a link between tau phosphorylation and PI3K signaling. In this study, phosphorylation, aggregation and binding to the microtubule of a mutant frontal temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17 tau in the presence of tumor suppressor PTEN, a major regulatory component in PI3K signaling, were investigated. Results Phosphorylation of the human mutant FTDP-17 tau, T40RW, was evaluated using different phospho-tau specific antibodies in the presence of human wild-type or phosphatase activity null mutant PTEN. Among the evaluated phosphorylation sites, the levels of Ser214 and Thr212 phospho-tau proteins were significantly decreased in the presence of wild-type PTEN, and significantly increased when the phosphatase activity null mutant PTEN was ectopically expressed. Fractionation of the mutant tau transfected cells revealed a significantly increased level of soluble tau in cytosol when wild-type PTEN was expressed, and an elevated level of SDS-soluble tau aggregates in the presence of the mutant PTEN. In addition, the filter/trap assays detected more SDS-insoluble mutant tau aggregates in the cells overexpressing the mutant PTEN compared to those in the cells overexpressing wild-type PTEN and control DNA. This notion was confirmed by the immunocytochemical experiment which demonstrated that the overexpression of the phosphatase activity null mutant PTEN caused the mutant tau to form aggregates in the COS-7 cells. Conclusion Tumor suppressor PTEN can alleviate the phosporylation of the mutant FTDP-17 tau at specific sites, and the phosphatase activity

  12. Phosphorylation of Tropomyosin Extends Cooperative Binding of Myosin Beyond a Single Regulatory Unit

    OpenAIRE

    Rao, Vijay S.; Marongelli, Ellisha N.; Guilford, William H.

    2009-01-01

    Tropomyosin (Tm) is one of the major phosphoproteins comprising the thin filament of muscle. However, the specific role of Tm phosphorylation in modulating the mechanics of actomyosin interaction has not been determined. Here we show that Tm phosphorylation is necessary for long-range cooperative activation of myosin binding. We used a novel optical trapping assay to measure the isometric stall force of an ensemble of myosin molecules moving actin filaments reconstituted with either natively ...

  13. Replication Protein A (RPA) Phosphorylation Prevents RPA Association with Replication Centers

    OpenAIRE

    Vassin, Vitaly M.; Wold, Marc S.; Borowiec, James A.

    2004-01-01

    Mammalian replication protein A (RPA) undergoes DNA damage-dependent phosphorylation at numerous sites on the N terminus of the RPA2 subunit. To understand the functional significance of RPA phosphorylation, we expressed RPA2 variants in which the phosphorylation sites were converted to aspartate (RPA2D) or alanine (RPA2A). Although RPA2D was incorporated into RPA heterotrimers and supported simian virus 40 DNA replication in vitro, the RPA2D mutant was selectively unable to associate with re...

  14. Early Regulatory Engagement for Successful Site Remediation: the UK Experience - 13173

    Energy Technology Data Exchange (ETDEWEB)

    Maitland, R.P.; Senior, D. [Office for Nuclear Regulation, Redgrave Court, Liverpool L20 7HS (United Kingdom)

    2013-07-01

    The Office for Nuclear Regulation (ONR) is an independent safety, security and transport regulator of the UK nuclear industry. ONR regulates all civil nuclear reactor power stations, fuel manufacture, enrichment, spent fuel reprocessing, most defence sites and installations that store and process legacy spent fuel and radioactive waste. The responsibility for funding and strategic direction of decommissioning and radioactive waste management of state owned legacy sites has rested solely with the Nuclear Decommissioning Authority (NDA) since 2005. A key component of NDA's mandate was to encourage new strategic approaches and innovation to dealing with the UK's waste legacy and which deliver value-for-money to the UK taxpayer. ONR, as an agency of the Health and Safety Executive, is entirely independent of NDA and regulates all prescribed activities on NDA's sites. NDA's competition of site management and closure contracts has attracted significant international interest and the formation of consortia comprised of major British, US, French and Swedish organizations bidding for those contracts. The prominence of US organizations in each of those consortia reflects the scale and breadth of existing waste management and D and D projects in the US. This paper will articulate, in broad terms, the challenges faced by international organizations seeking to employ 'off-the-shelf' technology and D and D techniques, successfully employed elsewhere, into the UK regulatory context. The predominantly 'goal-setting' regulatory framework in the UK does not generally prescribe a minimum standard to which a licensee must adhere. The legal onus on licensees in the UK is to demonstrate, whatever technology is selected, that in its applications, risks are reduced 'So Far As Is Reasonably Practicable' or 'SFAIRP'. By the nature of its role, ONR adopts a conservative approach to regulation; however ONR also recognises that in the

  15. Mediator phosphorylation prevents stress response transcription during non-stress conditions.

    Science.gov (United States)

    Miller, Christian; Matic, Ivan; Maier, Kerstin C; Schwalb, Björn; Roether, Susanne; Strässer, Katja; Tresch, Achim; Mann, Matthias; Cramer, Patrick

    2012-12-28

    The multiprotein complex Mediator is a coactivator of RNA polymerase (Pol) II transcription that is required for the regulated expression of protein-coding genes. Mediator serves as an end point of signaling pathways and regulates Pol II transcription, but the mechanisms it uses are not well understood. Here, we used mass spectrometry and dynamic transcriptome analysis to investigate a functional role of Mediator phosphorylation in gene expression. Affinity purification and mass spectrometry revealed that Mediator from the yeast Saccharomyces cerevisiae is phosphorylated at multiple sites of 17 of its 25 subunits. Mediator phosphorylation levels change upon an external stimulus set by exposure of cells to high salt concentrations. Phosphorylated sites in the Mediator tail subunit Med15 are required for suppression of stress-induced changes in gene expression under non-stress conditions. Thus dynamic and differential Mediator phosphorylation contributes to gene regulation in eukaryotic cells.

  16. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II

    Science.gov (United States)

    Zheng, Yupeng; John, Sam; Pesavento, James J.; Schultz-Norton, Jennifer R.; Schiltz, R. Louis; Baek, Sonjoon; Nardulli, Ann M.; Hager, Gordon L.; Kelleher, Neil L.

    2010-01-01

    Histone H1 phosphorylation affects chromatin condensation and function, but little is known about how specific phosphorylations impact the function of H1 variants in higher eukaryotes. In this study, we show that specific sites in H1.2 and H1.4 of human cells are phosphorylated only during mitosis or during both mitosis and interphase. Antisera generated to individual H1.2/H1.4 interphase phosphorylations reveal that they are distributed throughout nuclei and enriched in nucleoli. Moreover, interphase phosphorylated H1.4 is enriched at active 45S preribosomal RNA gene promoters and is rapidly induced at steroid hormone response elements by hormone treatment. Our results imply that site-specific interphase H1 phosphorylation facilitates transcription by RNA polymerases I and II and has an unanticipated function in ribosome biogenesis and control of cell growth. Differences in the numbers, structure, and locations of interphase phosphorylation sites may contribute to the functional diversity of H1 variants. PMID:20439994

  17. Improving regulatory effectiveness in Federal/State siting actions: Federal/State regulatory permitting actions in selected nuclear power station licensing cases

    International Nuclear Information System (INIS)

    Baroff, J.

    1977-06-01

    The Federal/State regulatory permitting actions in 12 case histories of nuclear power station licensing in nine different states are documented. General observations regarding Federal/State siting roles in the siting process are included. Eleven of the case histories are illustrated with a logic network that gives the actions of the utilities in addition to the Federal/State permits

  18. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A)

    International Nuclear Information System (INIS)

    Oi, Ami; Katayama, Syouichi; Hatano, Naoya; Sugiyama, Yasunori; Kameshita, Isamu; Sueyoshi, Noriyuki

    2017-01-01

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed a typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. - Highlights: • We investigated the mechanism regulating subcellular localization of CDKL5. • DYRK1A was identified as an enzyme that bound to and phosphorylated CDKL5. • The phosphorylation site of CDKL5 was Ser-308, in the vicinity of the NLS. • When DYRK1A was co-expressed, the cytosolic CDKL5 was significantly increased. • In conclusion, DYRK1A regulates CDKL5 localization via phosphorylation on Ser-308.

  19. Biological data warehousing system for identifying transcriptional regulatory sites from gene expressions of microarray data.

    Science.gov (United States)

    Tsou, Ann-Ping; Sun, Yi-Ming; Liu, Chia-Lin; Huang, Hsien-Da; Horng, Jorng-Tzong; Tsai, Meng-Feng; Liu, Baw-Juine

    2006-07-01

    Identification of transcriptional regulatory sites plays an important role in the investigation of gene regulation. For this propose, we designed and implemented a data warehouse to integrate multiple heterogeneous biological data sources with data types such as text-file, XML, image, MySQL database model, and Oracle database model. The utility of the biological data warehouse in predicting transcriptional regulatory sites of coregulated genes was explored using a synexpression group derived from a microarray study. Both of the binding sites of known transcription factors and predicted over-represented (OR) oligonucleotides were demonstrated for the gene group. The potential biological roles of both known nucleotides and one OR nucleotide were demonstrated using bioassays. Therefore, the results from the wet-lab experiments reinforce the power and utility of the data warehouse as an approach to the genome-wide search for important transcription regulatory elements that are the key to many complex biological systems.

  20. Regulatory Review of Early Site Permit Applications

    International Nuclear Information System (INIS)

    Scott, Michael L.

    2004-01-01

    The U.S. Nuclear Regulatory Commission (NRC) has received and is reviewing three applications for early site permits (ESPs). The ESP process allows early resolution of site-related issues affecting possible construction and operation of a new nuclear power plant. The nuclear industry views a successful and predictable ESP process as an important step in assessing whether to seek authorization to construct and operate a new generation of nuclear power reactors in the United States. Because consideration of ESP applications is a first-of-a-kind activity, a number of issues have emerged prior to and during the reviews of the first three applications. Issues have included the need for design information at the ESP stage, accident analyses, quality assurance, and seismic analyses. The NRC has been working to resolve identified issues to support a Commission decision on whether to issue an ESP approximately 33-37 months after receipt of each ESP application. (authors)

  1. A Mass Spectrometry-Based Predictive Strategy Reveals ADAP1 is Phosphorylated at Tyrosine 364

    Energy Technology Data Exchange (ETDEWEB)

    Littrell, BobbiJo R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-16

    The goal of this work was to identify phosphorylation sites within the amino acid sequence of human ADAP1. Using traditional mass spectrometry-based techniques we were unable to produce interpretable spectra demonstrating modification by phosphorylation. This prompted us to employ a strategy in which phosphorylated peptides were first predicted using peptide mapping followed by targeted MS/MS acquisition. ADAP1 was immunoprecipitated from extracts of HEK293 cells stably-transfected with ADAP1 cDNA. Immunoprecipitated ADAP1 was digested with proteolytic enzymes and analyzed by LC-MS in MS1 mode by high-resolution quadrupole time-of-flight mass spectrometry (QTOF-MS). Peptide molecular features were extracted using an untargeted data mining algorithm. Extracted peptide neutral masses were matched against the ADAP1 amino acid sequence with phosphorylation included as a predicted modification. Peptides with predicted phosphorylation sites were analyzed by targeted LC-MS2. Acquired MS2 spectra were then analyzed using database search engines to confirm phosphorylation. Spectra of phosphorylated peptides were validated by manual interpretation. Further confirmation was performed by manipulating phospho-peptide abundance using calf intestinal phosphatase (CIP) and the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Of five predicted phosphopeptides, one, comprised of the sequence AVDRPMLPQEYAVEAHFK, was confirmed to be phosphorylated on a Tyrosine at position 364. Pre-treatment of cells with PMA prior to immunoprecipitation increased the ratio of phosphorylated to unphosphorylated peptide as determined by area counts of extracted ion chromatograms (EIC). Addition of CIP to immunoprecipitation reactions eliminated the phosphorylated form. A novel phosphorylation site was identified at Tyrosine 364. Phosphorylation at this site is increased by treatment with PMA. PMA promotes membrane translocation and activation of protein kinase C (PKC), indicating that Tyrosine 364

  2. PAK6 Phosphorylates 14-3-3γ to Regulate Steady State Phosphorylation of LRRK2

    Directory of Open Access Journals (Sweden)

    Laura Civiero

    2017-12-01

    Full Text Available Mutations in Leucine-rich repeat kinase 2 (LRRK2 are associated with Parkinson's disease (PD and, as such, LRRK2 is considered a promising therapeutic target for age-related neurodegeneration. Although the cellular functions of LRRK2 in health and disease are incompletely understood, robust evidence indicates that PD-associated mutations alter LRRK2 kinase and GTPase activities with consequent deregulation of the downstream signaling pathways. We have previously demonstrated that one LRRK2 binding partner is P21 (RAC1 Activated Kinase 6 (PAK6. Here, we interrogate the PAK6 interactome and find that PAK6 binds a subset of 14-3-3 proteins in a kinase dependent manner. Furthermore, PAK6 efficiently phosphorylates 14-3-3γ at Ser59 and this phosphorylation serves as a switch to dissociate the chaperone from client proteins including LRRK2, a well-established 14-3-3 binding partner. We found that 14-3-3γ phosphorylated by PAK6 is no longer competent to bind LRRK2 at phospho-Ser935, causing LRRK2 dephosphorylation. To address whether these interactions are relevant in a neuronal context, we demonstrate that a constitutively active form of PAK6 rescues the G2019S LRRK2-associated neurite shortening through phosphorylation of 14-3-3γ. Our results identify PAK6 as the kinase for 14-3-3γ and reveal a novel regulatory mechanism of 14-3-3/LRRK2 complex in the brain.

  3. Mechanism of APC/CCDC20 activation by mitotic phosphorylation.

    Science.gov (United States)

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A; Brunner, Michael R; Davidson, Iain F; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A; Peters, Jan-Michael

    2016-05-10

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.

  4. Tyrosine phosphorylation of 3BP2 is indispensable for the interaction with VAV3 in chicken DT40 cells.

    Science.gov (United States)

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjoh, Chisato; Yamauchi, Shota; Takeuchi, Kenji; Sada, Kiyonao

    2014-03-10

    Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr(174), Tyr(183) and Tyr(446) in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr(183) and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr(174), Tyr(183) and Tyr(426) of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr(426) is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr(426) was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr(426) following BCR stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Environmental regulatory compliance plan, Deaf County site, Texas: Draft revision 1

    International Nuclear Information System (INIS)

    1987-01-01

    The DOE is committed to conduct its operation in an environmentally safe and sound manner and comply with the letter and spirit of applicable environmental statues and regulations. These objectives are codified in DOE order N 5400.2, ''Environmental Policy Statement.'' This document, the Deaf Smith County site (Texas) Environmental Regulatory Compliance Plam (ERCP), is one means of implementing that policy. The ERCP describes the environmental regulatory requirements applicable to the Deaf Smith County site (Texas), and presented the framework within which the Salt Repository Project Office (SRPO) will comply with the requirements. The plan also discusses how DOE will address State and local environmental requirements. To achieve this purpose the ERCP will be developed in phases. This version of the ERCP is the first phase in the delopment of the ERCP. It represents the Salt Repository Project Office's understanding of environmental requirements for the site characterization phase of repository development. After consultation with the appropriate federal and state agencies and affected Indian tribes, the ERCP will be updated to reflect the results of consultation with these agencies and affected Indian tribes. 6 refs., 38 figs

  6. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity.

    Directory of Open Access Journals (Sweden)

    Kanae Ando

    2016-03-01

    Full Text Available Abnormal accumulation of the microtubule-interacting protein tau is associated with neurodegenerative diseases including Alzheimer's disease (AD. β-amyloid (Aβ lies upstream of abnormal tau behavior, including detachment from microtubules, phosphorylation at several disease-specific sites, and self-aggregation into toxic tau species in AD brains. To prevent the cascade of events leading to neurodegeneration in AD, it is essential to elucidate the mechanisms underlying the initial events of tau mismetabolism. Currently, however, these mechanisms remain unclear. In this study, using transgenic Drosophila co-expressing human tau and Aβ, we found that tau phosphorylation at AD-related Ser262/356 stabilized microtubule-unbound tau in the early phase of tau mismetabolism, leading to neurodegeneration. Aβ increased the level of tau detached from microtubules, independent of the phosphorylation status at GSK3-targeted SP/TP sites. Such mislocalized tau proteins, especially the less phosphorylated species, were stabilized by phosphorylation at Ser262/356 via PAR-1/MARK. Levels of Ser262 phosphorylation were increased by Aβ42, and blocking this stabilization of tau suppressed Aβ42-mediated augmentation of tau toxicity and an increase in the levels of tau phosphorylation at the SP/TP site Thr231, suggesting that this process may be involved in AD pathogenesis. In contrast to PAR-1/MARK, blocking tau phosphorylation at SP/TP sites by knockdown of Sgg/GSK3 did not reduce tau levels, suppress tau mislocalization to the cytosol, or diminish Aβ-mediated augmentation of tau toxicity. These results suggest that stabilization of microtubule-unbound tau by phosphorylation at Ser262/356 via the PAR-1/MARK may act in the initial steps of tau mismetabolism in AD pathogenesis, and that such tau species may represent a potential therapeutic target for AD.

  7. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B

    DEFF Research Database (Denmark)

    Stofega, M R; Herrington, J; Billestrup, Nils

    2000-01-01

    phosphorylation. Consistent with the effects on STAT5B phosphorylation, tyrosine-to-phenylalanine mutation of tyrosine 595 prolongs the duration of tyrosyl phosphorylation of GHR and JAK2. These data suggest that tyrosine 595 is a major site of interaction of GHR with SHP-2, and that GHR-bound SHP-2 negatively......Binding of GH to GH receptor (GHR) rapidly and transiently activates multiple signal transduction pathways that contribute to the growth-promoting and metabolic effects of GH. While the events that initiate GH signal transduction, such as activation of the Janus tyrosine kinase JAK2, are beginning...

  8. Phosphorylation of translation factors in response to anoxia in turtles, Trachemys scripta elegans: role of the AMP-activated protein kinase and target of rapamycin signalling pathways.

    Science.gov (United States)

    Rider, Mark H; Hussain, Nusrat; Dilworth, Stephen M; Storey, Kenneth B

    2009-12-01

    Long-term survival of oxygen deprivation by animals with well-developed anoxia tolerance depends on multiple biochemical adaptations including strong metabolic rate depression. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in the suppression of protein synthesis that occurs when turtles experience anoxic conditions. AMPK activity and the phosphorylation state of ribosomal translation factors were measured in liver, heart, red muscle and white muscle of red-eared slider turtles (Trachemys scripta elegans) subjected to 20 h of anoxic submergence. AMPK activity increased twofold in white muscle of anoxic turtles compared with aerobic controls but remained unchanged in liver and red muscle, whereas in heart AMPK activity decreased by 40%. Immunoblotting with phospho-specific antibodies revealed that eukaryotic elongation factor-2 phosphorylation at the inactivating Thr56 site increased six- and eightfold in red and white muscles from anoxic animals, respectively, but was unchanged in liver and heart. The phosphorylation state of the activating Thr389 site of p70 ribosomal protein S6 kinase was reduced under anoxia in red muscle and heart but was unaffected in liver and white muscle. Exposure to anoxia decreased 40S ribosomal protein S6 phosphorylation in heart and promoted eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) dephosphorylation in red muscle, but surprisingly increased 4E-BP1 phosphorylation in white muscle. The changes in phosphorylation state of translation factors suggest that organ-specific patterns of signalling and response are involved in achieving the anoxia-induced suppression of protein synthesis in turtles.

  9. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup

    2014-01-01

    , we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...... obtained from healthy individuals before and after 4 h of insulin infusion. In total, we identified 207 phosphorylation sites in 95 mitochondrial proteins. Of these phosphorylation sites, 45% were identified in both basal and insulin-stimulated samples. Insulin caused a 2-fold increase in the number...... of different mitochondrial phosphopeptides (87 ± 7 vs 40 ± 7, p = 0.015) and phosphoproteins (46 ± 2 vs 26 ± 3, p = 0.005) identified in each mitochondrial preparation. Almost half of the mitochondrial phosphorylation sites (n = 94) were exclusively identified in the insulin-stimulated state and included...

  10. Myosin Light Chain Kinase and the Role of Myosin Light Chain Phosphorylation in Skeletal Muscle

    Science.gov (United States)

    Stull, James T.; Kamm, Kristine E.; Vandenboom, Rene

    2011-01-01

    Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometic binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue. PMID:21284933

  11. Rab11 is phosphorylated by classical and novel protein kinase C isoenzymes upon sustained phorbol ester activation.

    Science.gov (United States)

    Pavarotti, Martín; Capmany, Anahí; Vitale, Nicolas; Colombo, María Isabel; Damiani, María Teresa

    2012-02-01

    Rab11 is a small GTPase that controls diverse intracellular trafficking pathways. However, the molecular machinery that regulates the participation of Rab11 in those different transport events is poorly understood. In resting cells, Rab11 localizes at the endocytic recycling compartment (ERC), whereas the different protein kinase C (PKC) isoforms display a cytosolic distribution. Sustained phorbol ester stimulation induces the translocation of the classical PKCα and PKCβII isoenzymes to the ERC enriched in Rab11, and results in transferrin recycling inhibition. In contrast, novel PKCε and atypical PKCζ isoenzymes neither redistribute to the perinucleus nor modify transferrin recycling transport after phorbol ester stimulation. Although several Rabs have been shown to be phosphorylated, there is to date no evidence indicating Rab11 as a kinase substrate. In this report, we show that Rab11 appears phosphorylated in vivo in phorbol ester-stimulated cells. A bioinformatic analysis of Rab11 allowed us to identify several high-probability Ser/Thr kinase phosphorylation sites. Our results demonstrate that classical PKC (PKCα and PKCβII but not PKCβI) directly phosphorylate Rab11 in vitro. In addition, novel PKCε and PKCη but not PKCδ isoenzymes also phosphorylate Rab11. Mass spectrometry analysis revealed that Ser 177 is the Rab11 residue to be phosphorylated in vitro by either PKCβII or PKCε. In agreement, the phosphomimetic mutant, Rab11 S177D, retains transferrin at the ERC in the absence of phorbol-12-myristate-13-acetate stimulus. This report shows for the first time that Rab11 is differentially phosphorylated by distinct PKC isoenzymes and that this post-translational modification might be a regulatory mechanism of intracellular trafficking. Copyright © 2012 Soçiété Francaise des Microscopies and Société de Biologie Cellulaire de France.

  12. Altered phosphorylation of rhodopsin in retinal dystrophic Irish Setters

    International Nuclear Information System (INIS)

    Cunnick, J.; Takemoto, D.J.; Takemoto, L.J.

    1986-01-01

    The carboxyl-terminus of rhodopsin in retinal dystrophic (rd) Irish Setters is altered near a possible phosphorylation site. To determine if this alteration affects ATP-mediated phosphorylation they compared the phosphorylation of rhodopsin from rd affected Irish Setters and normal unaffected dogs. Retinas from 8-week-old Irish Setters were phosphorylated with γ- 32 P-ATP and separated on SDS-PAGE. Compared to unaffected normal retinas, equalized for rhodopsin content, phosphorylation of rd rhodopsin was drastically reduced. When rd retinas were mixed with normal dog retinas, phosphorylation of the latter was inhibited. Inhibition also occurred when bovine retinas were mixed with rd retinas. The rd-mediated inhibition of phosphorylation was prevented by including 1mM NaF in the reaction mixture. Likewise, 1mM NaF restored phosphorylation of rd rhodopsin to normal levels. Phosphopeptide maps of rd and normal rhodopsin were identical and indicated 5 phosphopeptides present in each. Results suggest that one cause of the depressed rd rhodopsin phosphorylation is an increased phosphatase activity

  13. Interaction of hookworm 14-3-3 with the forkhead transcription factor DAF-16 requires intact Akt phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Hawdon John M

    2009-04-01

    Full Text Available Abstract Background Third-stage infective larvae (L3 of hookworms are in an obligatory state of developmental arrest that ends upon entering the definitive host, where they receive a signal that re-activates development. Recovery from the developmentally arrested dauer stage of Caenorhabditis elegans is analogous to the resumption of development during hookworm infection. Insulin-like signaling (ILS mediates recovery from arrest in C. elegans and activation of hookworm dauer L3. In C. elegans, phosphorylation of the forkhead transcription factor DAF-16 in response to ILS creates binding cites for the 14-3-3 protein Ce-FTT-2, which translocates DAF-16 out of the nucleus, resulting in resumption of reproductive development. Results To determine if hookworm 14-3-3 proteins play a similar role in L3 activation, hookworm FTT-2 was identified and tested for its ability to interact with A. caninum DAF-16 in vitro. The Ac-FTT-2 amino acid sequence was 91% identical to the Ce-FTT-2, and was most closely related to FTT-2 from other nematodes. Ac-FTT-2 was expressed in HEK 293T cells, and was recognized by an antibody against human 14-3-3β isoform. Reciprocal co-immunoprecipitations using anti-epitope tag antibodies indicated that Ac-FTT-2 interacts with Ac-DAF-16 when co-expressed in serum-stimulated HEK 293T cells. This interaction requires intact Akt consensus phosphorylation sites at serine107 and threonine312, but not serine381. Ac-FTT-2 was undetectable by Western blot in excretory/secretory products from serum-stimulated (activated L3 or adult A. caninum. Conclusion The results indicate that Ac-FTT-2 interacts with DAF-16 in a phosphorylation-site dependent manner, and suggests that Ac-FTT-2 mediates activation of L3 by binding Ac-DAF-16 during hookworm infection.

  14. Functional analysis of a potential regulatory K+-binding site in the Na+, K+-ATPase

    DEFF Research Database (Denmark)

    Schack, Vivien Rodacker; Vilsen, Bente

    The Na+, K+-ATPase functions by actively transporting 3 Na+ ions out of and 2 K+ ions into the cell, thereby creating ion gradients crucial for many physiological processes. Recently, a combined structural and functional study of the closely related Ca2+-ATPase indicated the presence...... of a regulatory K+-binding site in the P-domain of the enzyme, identifying E732 as being of particular importance (Sorensen, Clausen et al. 2004). In addition, P709 is thought to play a significant role in the structural organization of this site. Both E732 and P709 are highly conserved among P-type ATPases (E732...... is present as either glutamic acid or aspartic acid), which supports their importance and additionally raises the question whether this site may play a general role among P-type ATPases. In Na+, K+-ATPase, K+ functions directly as a substrate for membrane binding sites, however, an additional regulatory...

  15. Development of a phosphorylated Momordica charantia protein system for inhibiting susceptible dose-dependent C. albicans to available antimycotics: An allosteric regulation of protein.

    Science.gov (United States)

    Qiao, Yuanbiao; Song, Li; Zhu, Chenchen; Wang, Qian; Guo, Tianyan; Yan, Yanhua; Li, Qingshan

    2017-11-15

    A regulatory Momordica charantia protein system was constructed allosterically by in vitro protein phosphorylation, in an attempt to evaluate antimycological pluripotency against dose-dependent susceptibilities in C. albicans. Fungal strain lineages susceptible to ketoconazole, econazole, miconazole, 5-flucytosine, nystatin and amphotericin B were prepared in laboratory, followed by identification via antifungal susceptibility testing. Protein phosphorylation was carried out in reactions with 5'-adenylic, guanidylic, cytidylic and uridylic acids and cyclic adenosine triphosphate, through catalysis of cyclin-dependent kinase 1, protein kinase A and protein kinase C respectively. Biochemical analysis of enzymatic reactions indicated the apparent Michaelis-Menten constants and maximal velocity values of 16.57-91.97mM and 55.56-208.33μM·min -1 , together with an approximate 1:1 reactant stoichiometric ratio. Three major protein phosphorylation sites were theoretically predicted at Thr255, Thr102 and Thr24 by a KinasePhos tool. Additionally, circular dichroism spectroscopy demonstrated that upon phosphorylation, protein folding structures were decreased in random coil, β6-sheet and α1-helix partial regions. McFarland equivalence standard testing yielded the concentration-dependent inhibition patterns, while fungus was grown in Sabouraud's dextrose agar. The minimal inhibitory concentrations of 0.16-0.51μM (at 50% response) were obtained for free protein and phosphorylated counterparts. With respect to the 3-cycling susceptibility testing regimen, individuals of total protein forms were administrated in-turn at 0.14μM/cycle. Relative inhibition ratios were retained to 66.13-81.04% of initial ones regarding the ketoconazole-susceptible C. albicans growth. An inhibitory protein system, with an advantage of decreasing antifungal susceptibilities to diverse antimycotics, was proposed because of regulatory pluripotency whereas little contribution to susceptibility in

  16. Computational Studies of the Active and Inactive Regulatory Domains of Response Regulator PhoP Using Molecular Dynamics Simulations.

    Science.gov (United States)

    Qing, Xiao-Yu; Steenackers, Hans; Venken, Tom; De Maeyer, Marc; Voet, Arnout

    2017-11-01

    The response regulator PhoP is part of the PhoP/PhoQ two-component system, which is responsible for regulating the expression of multiple genes involved in controlling virulence, biofilm formation, and resistance to antimicrobial peptides. Therefore, modulating the transcriptional function of the PhoP protein is a promising strategy for developing new antimicrobial agents. There is evidence suggesting that phosphorylation-mediated dimerization in the regulatory domain of PhoP is essential for its transcriptional function. Disruption or stabilization of protein-protein interactions at the dimerization interface may inhibit or enhance the expression of PhoP-dependent genes. In this study, we performed molecular dynamics simulations on the active and inactive dimers and monomers of the PhoP regulatory domains, followed by pocket-detecting screenings and a quantitative hot-spot analysis in order to assess the druggability of the protein. Consistent with prior hypothesis, the calculation of the binding free energy shows that phosphorylation enhances dimerization of PhoP. Furthermore, we have identified two different putative binding sites at the dimerization active site (the α4-β5-α5 face) with energetic "hot-spot" areas, which could be used to search for modulators of protein-protein interactions. This study delivers insight into the dynamics and druggability of the dimerization interface of the PhoP regulatory domain, and may serve as a basis for the rational identification of new antimicrobial drugs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A novel post-translational modification in nerve terminals: O-linked N-acetylglucosamine phosphorylation

    DEFF Research Database (Denmark)

    Graham, Mark E; Thaysen-Andersen, Morten; Bache, Nicolai

    2011-01-01

    Protein phosphorylation and glycosylation are the most common post-translational modifications observed in biology, frequently on the same protein. Assembly protein AP180 is a synapse-specific phosphoprotein and O-linked beta-N-acetylglucosamine (O-GlcNAc) modified glycoprotein. AP180 is involved......NAc-P to a Thr residue was confirmed by electron transfer dissociation MS. A second AP180 tryptic peptide was also glycosyl phosphorylated, but the site of modification was not assigned. Sequence similarities suggest there may be a common motif within AP180 involving glycosyl phosphorylation and dual flanking...... phosphorylation sites within 4 amino acid residues. This novel type of protein glycosyl phosphorylation adds a new signaling mechanism to the regulation of neurotransmission and more complexity to the study of O-GlcNAc modification....

  18. Pro-Tumorigenic Phosphorylation of p120 Catenin in Renal and Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Antonis Kourtidis

    Full Text Available Altered protein expression and phosphorylation are common events during malignant transformation. These perturbations have been widely explored in the context of E-cadherin cell-cell adhesion complexes, which are central in the maintenance of the normal epithelial phenotype. A major component of these complexes is p120 catenin (p120, which binds and stabilizes E-cadherin to promote its adhesive and tumor suppressing function. However, p120 is also an essential mediator of pro-tumorigenic signals driven by oncogenes, such as Src, and can be phosphorylated at multiple sites. Although alterations in p120 expression have been extensively studied by immunohistochemistry (IHC in the context of tumor progression, little is known about the status and role of p120 phosphorylation in cancer. Here we show that tyrosine and threonine phosphorylation of p120 in two sites, Y228 and T916, is elevated in renal and breast tumor tissue samples. We also show that tyrosine phosphorylation of p120 at its N-terminus, including at the Y228 site is required for its pro-tumorigenic potential. In contrast, phosphorylation of p120 at T916 does not affect this p120 function. However, phosphorylation of p120 at T916 interferes with epitope recognition of the most commonly used p120 antibody, namely pp120. As a result, this antibody selectively underrepresents p120 levels in tumor tissues, where p120 is phosphorylated. Overall, our data support a role of p120 phosphorylation as a marker and mediator of tumor transformation. Importantly, they also argue that the level and localization of p120 in human cancer tissues immunostained with pp120 needs to be re-evaluated.

  19. Regulatory supervision of sites for spent fuel and radioactive waste storage in the Russian northwest.

    Science.gov (United States)

    Shandala, N K; Sneve, M K; Smith, G M; Kiselev, M F; Kochetkov, O A; Savkin, M N; Simakov, A V; Novikova, N Ya; Titov, A V; Romanov, V V; Seregin, V A; Filonova, A V; Semenova, M P

    2008-12-01

    In the 1960s two technical bases for the Northern Fleet were created in the Russian northwest at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, receiving and storing radioactive waste and spent nuclear fuel. No further waste was received after 1985, and the technical bases have since been re-categorised as temporary storage sites. The handling of these materials to put them into a safe condition is especially hazardous because of their degraded state. This paper describes regulatory activities which have been carried out to support the supervision of radiological protection during recovery of waste and spent fuel, and to support regulatory decisions on overall site remediation. The work described includes: an assessment of the radiation situation on-site; the development of necessary additional regulatory rules and standards for radiation protection assurance for workers and the public during remediation; and the completion of an initial threat assessment to identify regulatory priorities. Detailed consideration of measures for the control of radiation exposure of workers and radiation exposure of the public during and after operations and emergency preparedness and response are complete and provided in sister papers. The continuing requirements for regulatory activities relevant to the development and implementation of on-going and future remediation activities are also outlined. The Norwegian Radiation Protection Authority supports the work, as part of the Norwegian Government's plan of action to promote improvements in radiation protection and nuclear safety in northwest Russia.

  20. Regulatory supervision of sites for spent fuel and radioactive waste storage in the Russian Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Shandala, N K; Kochetkov, O A; Savkin, M N; Simakov, A V; Novikova, N Ya; Titov, A V; Seregin, V A; Filonova, A V; Semenova, M P [Burnasyan Federal Medical Biophysical Centre, Moscow (Russian Federation); Sneve, M K [Norwegian Radiation Protection Authority, Oslo (Norway); Smith, G M [GMS Abingdon Ltd (United Kingdom); Kiselev, M F; Romanov, V V [Federal Medical-Biological Agency, Moscow (Russian Federation)], E-mail: shandala@srcibph.ru

    2008-12-15

    In the 1960s two technical bases for the Northern Fleet were created in the Russian northwest at Andreeva Bay in the Kola Peninsula and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, receiving and storing radioactive waste and spent nuclear fuel. No further waste was received after 1985, and the technical bases have since been re-categorised as temporary storage sites. The handling of these materials to put them into a safe condition is especially hazardous because of their degraded state. This paper describes regulatory activities which have been carried out to support the supervision of radiological protection during recovery of waste and spent fuel, and to support regulatory decisions on overall site remediation. The work described includes: an assessment of the radiation situation on-site; the development of necessary additional regulatory rules and standards for radiation protection assurance for workers and the public during remediation; and the completion of an initial threat assessment to identify regulatory priorities. Detailed consideration of measures for the control of radiation exposure of workers and radiation exposure of the public during and after operations and emergency preparedness and response are complete and provided in sister papers. The continuing requirements for regulatory activities relevant to the development and implementation of on-going and future remediation activities are also outlined. The Norwegian Radiation Protection Authority supports the work, as part of the Norwegian Government's plan of action to promote improvements in radiation protection and nuclear safety in northwest Russia.

  1. Role of XRCC4 phosphorylation by DNA-PK in the regulation of NHEJ repair pathway of DNA double strand break

    International Nuclear Information System (INIS)

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Kamdar, Radhika P.; Sicheng, Liu; Wanotayan, Rujira; Matsumoto, Yoshihisa

    2014-01-01

    Non-homologous end-joining (NHEJ) is the predominant pathway of DNA double strand breaks in higher eukaryotes and is active throughout the cell cycle. NHEJ repair includes many factors as Ku70/86, DNA-PKcs, XRCC4-Ligase IV complex and XLF (also known as Cernunnos). In these factors, DNA-PKcs acts as central regulator in NHEJ repair. It recruited at the DNA damages site after DNA damage and after association with Ku its kinase activity is activated. It phosphorylates many of important NHEJ proteins in vitro including XRCC4, Ku 70/86, Artemis, and even DNA-PKcs but till now, very less studies have been done to know the role and significance of phosphorylation in the NHEJ repair. Studies by other researchers identified various phosphorylation sites in XRCC4 by DNA-PK using mass spectrometry but these phosphorylation sites were shown to be dispensable for DSB repair. In the present investigation, we identified 3 serine and one new threonine phosphorylation sites in XRCC4 protein by DNA-PK. In vivo phosphorylation at these sites was verified by generating phosphorylation specific antibodies and the requirement for DNA-PK therein was verified by using DNA-PK inhibitor and DNA-PK proficient and deficient cell lines in response to radiation and zeocin treatment. We have also found that phosphorylation at these sites showed dose dependency in response to radiation treatment. The two serine and one threonine phosphorylation site is also biological important as their mutation into alanine significantly elevated radiosensitivity as measured by colony formation assay. Neutral comet assay showed delayed kinetics in DSB repair of these mutants. Furthermore, we have found a protein, with putative DSB repair function, which interacts with domain including the phosphorylation sites.These results indicate that these phosphorylation sites would mediate functional link between XRCC4 and DNA-PK. (author)

  2. JNK1ß1 is phosphorylated during expression in E. coli and in vitro by MKK4 at three identical novel sites

    CSIR Research Space (South Africa)

    Owen, GR

    2013-03-01

    Full Text Available JNK1 is activated by phosphorylation of the canonical T183 and Y185 residues, modifications that are catalysed typically by the upstream eukaryotic kinases MKK4 and MKK7. Nonetheless, the exact sites at which the most abundant JNK variant, JNK1ß1...

  3. Interaction of butylated hydroxyanisole with mitochondrial oxidative phosphorylation.

    Science.gov (United States)

    Fusi, F; Sgaragli, G; Murphy, M P

    1992-03-17

    The antioxidant, butylated hydroxyanisole (BHA), has a number of effects on mitochondrial oxidative phosphorylation. In this study we apply the novel approach developed by Brand (Brand MD, Biochim Biophys Acta 1018: 128-133, 1990) to investigate the site of action of BHA on oxidative phosphorylation in rat liver mitochondria. Using this approach we show that BHA increases the proton leak through the mitochondrial inner membrane and that it also inhibits the delta p (proton motive force across the mitochondrial inner membrane) generating system, but has no effect on the phosphorylation system. This demonstrates that compounds having pleiotypic effects on mitochondrial oxidative phosphorylation in vitro can be analysed and their many effects distinguished. This approach is of general use in analysing many other compounds of pharmacological interest which interact with mitochondria. The implications of these results for the mechanism of interaction of BHA with mitochondrial oxidative phosphorylation are discussed.

  4. Cortactin Tyrosine Phosphorylation Promotes Its Deacetylation and Inhibits Cell Spreading

    Science.gov (United States)

    Meiler, Eugenia; Nieto-Pelegrín, Elvira; Martinez-Quiles, Narcisa

    2012-01-01

    Background Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes. Methodology/Principal Findings In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation. Conclusions/Significance Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results from the FIT system by examining endogenous cortactin in different cell types. Furthermore, we demonstrate that cell spreading promotes the association of cortactin and FAK and that tyrosine phosphorylation of cortactin disrupts this interaction, which may explain how it inhibits cell spreading. PMID:22479425

  5. Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function

    DEFF Research Database (Denmark)

    Lin, Tien-chen; Gombos, Linda; Neuner, Annett

    2011-01-01

    The yeast ¿-tubulin Tub4 is assembled with Spc97 and Spc98 into the small Tub4 complex. The Tub4 complex binds via the receptor proteins Spc72 and Spc110 to the spindle pole body (SPB), the functional equivalent of the mammalian centrosome, where the Tub4 complex organizes cytoplasmic and nuclear...... microtubules. Little is known about the regulation of the Tub4 complex. Here, we isolated the Tub4 complex with the bound receptors from yeast cells. Analysis of the purified Tub4 complex by mass spectrometry identified more than 50 phosphorylation sites in Spc72, Spc97, Spc98, Spc110 and Tub4. To examine...... the functional relevance of the phosphorylation sites, phospho-mimicking and non-phosphorylatable mutations in Tub4, Spc97 and Spc98 were analyzed. Three phosphorylation sites in Tub4 were found to be critical for Tub4 stability and microtubule organization. One of the sites is highly conserved in ¿-tubulins...

  6. Stress induces pain transition by potentiation of AMPA receptor phosphorylation.

    Science.gov (United States)

    Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A; Huganir, Richard L; Tao, Feng

    2014-10-08

    Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. Copyright © 2014 the authors 0270-6474/14/3413737-10$15.00/0.

  7. Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes.

    Science.gov (United States)

    Hamdani, Nazha; Herwig, Melissa; Linke, Wolfgang A

    2017-06-01

    Reversible post-translational modifications of various cardiac proteins regulate the mechanical properties of the cardiomyocytes and thus modulate the contractile performance of the heart. The giant protein titin forms a continuous filament network in the sarcomeres of striated muscle cells, where it determines passive tension development and modulates active contraction. These mechanical properties of titin are altered through post-translational modifications, particularly phosphorylation. Titin contains hundreds of potential phosphorylation sites, the functional relevance of which is only beginning to emerge. Here, we provide a state-of-the-art summary of the phosphorylation sites in titin, with a particular focus on the elastic titin spring segment. We discuss how phosphorylation at specific amino acids can reduce or increase the stretch-induced spring force of titin, depending on where the spring region is phosphorylated. We also review which protein kinases phosphorylate titin and how this phosphorylation affects titin-based passive tension in cardiomyocytes. A comprehensive overview is provided of studies that have measured altered titin phosphorylation and titin-based passive tension in myocardial samples from human heart failure patients and animal models of heart disease. As our understanding of the broader implications of phosphorylation in titin progresses, this knowledge could be used to design targeted interventions aimed at reducing pathologically increased titin stiffness in patients with stiff hearts.

  8. Exercise increases TBC1D1 phosphorylation in human skeletal muscle

    Science.gov (United States)

    Jessen, Niels; An, Ding; Lihn, Aina S.; Nygren, Jonas; Hirshman, Michael F.; Thorell, Anders

    2011-01-01

    Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% V̇o2 max). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser711 (AMPK), TBC1D1 Ser231 (AMPK), TBC1D1 Ser660 (AMPK), TBC1D1 Ser700 (AMPK), and TBC1D1 Thr590 (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser711, TBC1D1 Ser231, and TBC1D1 Ser660 but had no effect on TBC1D1 Ser700. Exercise did not increase TBC1D1 Thr590 phosphorylation or TBC1D1/AS160 PAS

  9. Protein kinase CK2 phosphorylates the Fas-associated factor FAF1 in vivo and influences its transport into the nucleus

    DEFF Research Database (Denmark)

    Olsen, Birgitte B; Jessen, Vibeke; Højrup, Peter

    2003-01-01

    We previously identified the Fas-associated factor FAF1 as an in vitro substrate of protein kinase CK2 and determined Ser289 and Ser291 as phosphorylation sites. Here we demonstrate that these two serine residues are the only sites phosphorylated by CK2 in vitro, and that at least one site...... is phosphorylated in vivo. Furthermore, we analyzed putative physiological functions of FAF1 phosphorylation. The ability of FAF1 to potentiate Fas-induced apoptosis is not influenced by the FAF1 phosphorylation status; however, the nuclear import of a phosphorylation-deficient FAF1 mutant was delayed in comparison...

  10. Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation

    Science.gov (United States)

    Chen, Long; Li, Zhiguo; Ahmad, Nihal; Liu, Xiaoqi

    2016-01-01

    Insulin receptor substrate (IRS) proteins play important roles by acting as a platform in transducing signals from transmembrane receptors upon growth factor stimulation. Although tyrosine phosphorylation on IRS proteins plays critical roles in signal transduction, phosphorylation of IRS proteins on serine/threonine residues are believed to play various regulatory roles on IRS protein function. However, studies on serine/threonine phosphorylation of IRS proteins are very limited, especially for insulin receptor substrate 2 (IRS2), one member of the IRS protein family. In this study, we identify Polo-like kinase 1 (Plk1) as the responsible kinase for phosphorylation of IRS2 on two serine residues, Ser 556 and Ser 1098. Phosphorylation of IRS2 on these two serine residues by Plk1 prevents the activation of the PI3K pathway upon growth factor stimulation by inhibiting the binding between IRS2 and the PI3K pathway components and increasing IRS2 protein degradation. Of significance, we show that IRS2 phosphorylation is cell cycle regulated and that Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation. PMID:25830382

  11. Coordination of manganous ion at the active site of pyruvate, phosphate dikinase: the complex of oxalate with the phosphorylated enzyme

    International Nuclear Information System (INIS)

    Kofron, J.L.; Ash, D.E.; Reed, G.H.

    1988-01-01

    Electron paramagnetic resonance spectroscopy has been used to investigate the structure of the complex of manganous ion with the phosphorylated form of pyruvate, phosphate dikinase (E/sub p/) and the inhibitor oxalate. Oxalate, an analogue of the enolate of pyruvate, is competitive with respect to pyruvate in binding to the phosphorylated form of the enzyme. Superhyperfine coupling between the unpaired electrons of Mn(I) and ligands specifically labeled with 17 O has been used to identify oxygen ligands to Mn(II) in the complex with oxalate and the phosphorylated form of the enzyme. Oxalate binds at the active site as a bidentate chelate with Mn(II). An oxygen from the 3'-N-phosphohistidyl residue of the protein is in the coordination sphere of Mn(II), and at least two water molecules are also bound to Mn(II) in the complex. Oxalate also binds directly to Mn(II) in a complex with nonphosphorylated enzyme. The structure for the E/sub p/-Mn(II)-oxalate complex implies that simultaneous coordination of a phospho group and of the attacking nucleophile to the divalent cation is likely an important factor in catalysis of this phospho-transfer reaction

  12. A CK2 site is reversibly phosphorylated in the photosystem II subunit CP29

    NARCIS (Netherlands)

    Testi, Maria Grazia; Croce, Roberta; Polverino-De Laureto, Patrizia; Bassi, Roberto

    1996-01-01

    Protein phosphorylation is a major mechanism in the regulation of protein function. In chloroplast thylakoids several photosystem II subunits, including the major antenna light-harvesting complex II and several core complex components, are reversibly phosphorylated depending on the redox state of

  13. Phosphoproteome analysis of streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation

    DEFF Research Database (Denmark)

    Manteca, Angel; Ye, Juanying; Sánchez, Jesús

    2011-01-01

    Streptomycetes are bacterial species that undergo a complex developmental cycle that includes programmed cell death (PCD) events and sporulation. They are widely used in biotechnology because they produce most clinically relevant secondary metabolites. Although Streptomyces coelicolor is one...... events were detected during the presporulation and sporulation stages (80%). Most of these phosphorylations were not reported before in Streptomyces, and included sporulation factors, transcriptional regulators, protein kinases and other regulatory proteins. Several of the identified phosphorylated...... proteins, FtsZ, DivIVA, and FtsH2, were previously demonstrated to be involved in the sporulation process. We thus established for the first time the widespread occurrence and dynamic features of Ser/Thr/Tyr protein phosphorylation in a bacteria species and also revealed a previously unrecognized...

  14. Brain Metabolites in Autonomic Regulatory Insular Sites in Heart Failure

    OpenAIRE

    Woo, Mary A.; Yadav, Santosh K.; Macey, Paul M.; Fonarow, Gregg C.; Harper, Ronald M.; Kumar, Rajesh

    2014-01-01

    © 2014 Elsevier B.V. All rights reserved. Autonomic, pain, and neuropsychologic comorbidities appear in heart failure (HF), likely resulting from brain changes, indicated as loss of structural integrity and functional deficits. Among affected brain sites, the anterior insulae are prominent in serving major regulatory roles in many of the disrupted functions commonly seen in HF. Metabolite levels, including N-acetylaspartate (NAA), creatine (Cr), choline (Cho), and myo-inositol (MI), could ind...

  15. Testing whether Metazoan Tyrosine Loss Was Driven by Selection against Promiscuous Phosphorylation

    Science.gov (United States)

    Pandya, Siddharth; Struck, Travis J.; Mannakee, Brian K.; Paniscus, Mary; Gutenkunst, Ryan N.

    2015-01-01

    Protein tyrosine phosphorylation is a key regulatory modification in metazoans, and the corresponding kinase enzymes have diversified dramatically. This diversification is correlated with a genome-wide reduction in protein tyrosine content, and it was recently suggested that this reduction was driven by selection to avoid promiscuous phosphorylation that might be deleterious. We tested three predictions of this intriguing hypothesis. 1) Selection should be stronger on residues that are more likely to be phosphorylated due to local solvent accessibility or structural disorder. 2) Selection should be stronger on proteins that are more likely to be promiscuously phosphorylated because they are abundant. We tested these predictions by comparing distributions of tyrosine within and among human and yeast orthologous proteins. 3) Selection should be stronger against mutations that create tyrosine versus remove tyrosine. We tested this prediction using human population genomic variation data. We found that all three predicted effects are modest for tyrosine when compared with the other amino acids, suggesting that selection against deleterious phosphorylation was not dominant in driving metazoan tyrosine loss. PMID:25312910

  16. Identification of high-confidence RNA regulatory elements by combinatorial classification of RNA-protein binding sites.

    Science.gov (United States)

    Li, Yang Eric; Xiao, Mu; Shi, Binbin; Yang, Yu-Cheng T; Wang, Dong; Wang, Fei; Marcia, Marco; Lu, Zhi John

    2017-09-08

    Crosslinking immunoprecipitation sequencing (CLIP-seq) technologies have enabled researchers to characterize transcriptome-wide binding sites of RNA-binding protein (RBP) with high resolution. We apply a soft-clustering method, RBPgroup, to various CLIP-seq datasets to group together RBPs that specifically bind the same RNA sites. Such combinatorial clustering of RBPs helps interpret CLIP-seq data and suggests functional RNA regulatory elements. Furthermore, we validate two RBP-RBP interactions in cell lines. Our approach links proteins and RNA motifs known to possess similar biochemical and cellular properties and can, when used in conjunction with additional experimental data, identify high-confidence RBP groups and their associated RNA regulatory elements.

  17. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    Science.gov (United States)

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  18. Early Site Permit Demonstration Program: Regulatory criteria evaluation report

    International Nuclear Information System (INIS)

    1993-03-01

    The primary objective of the Early Site Plan Demonstration Program (ESPDP) is to demonstrate successfully the use of 10CFR52 to obtain ESPs for one or more US sites for one (or more) ALWR nuclear power plants. It is anticipated that preparation of the ESP application and interaction with NRC during the application review process will result not only in an ESP for the applicant(s) but also in the development of criteria and definition of processes, setting the precedent that facilitates ESPs for subsequent ESP applications. Because siting regulatory processes and acceptance criteria are contained in over 100 separate documents, comprehensive licensing and technical reviews were performed to establish whether the requirements and documentation are self-consistent, whether the acceptance criteria are sufficiently well-defined and clear, and whether the licensing process leading to the issuance of an ESP is unambiguously specified. This document provides appendices C and D of this report. Appendix C contains data from the licensing and technical reviews; Appendix D contains technology toolkit data sheets

  19. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance.

    Science.gov (United States)

    Takeda, K; Takemoto, C; Kobayashi, I; Watanabe, A; Nobukuni, Y; Fisher, D E; Tachibana, M

    2000-01-01

    MITF (microphthalmia-associated transcription factor) is a basic-helix-loop-helix-leucine zipper (bHLHZip) factor which regulates expression of tyrosinase and other melanocytic genes via a CATGTG promoter sequence, and is involved in melanocyte differentiation. Mutations of MITF in mice or humans with Waardenburg syndrome type 2 (WS2) often severely disrupt the bHLHZip domain, suggesting the importance of this structure. Here, we show that Ser298, which locates downstream of the bHLHZip and was previously found to be mutated in individuals with WS2, plays an important role in MITF function. Glycogen synthase kinase 3 (GSK3) was found to phosphorylate Ser298 in vitro, thereby enhancing the binding of MITF to the tyrosinase promoter. The same serine was found to be phosphorylated in vivo, and expression of dominant-negative GSK3beta selectively suppressed the ability of MITF to transactivate the tyrosinase promoter. Moreover, mutation of Ser298, as found in a WS2 family, disabled phos-phorylation of MITF by GSK3beta and impaired MITF function. These findings suggest that the Ser298 is important for MITF function and is phosphorylated probably by GSK3beta.

  20. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis

    DEFF Research Database (Denmark)

    Confalonieri, S; Salcini, A E; Puri, C

    2000-01-01

    for endocytosis of the epidermal growth factor receptor (EGFR), the prototypical ligand-inducible receptor, but not of the transferrin receptor (TfR), the prototypical constitutively internalized receptor. Eps15, an endocytic protein that is tyrosine phosphorylated by EGFR, is a candidate for such a function....... Here, we show that tyrosine phosphorylation of Eps15 is necessary for internalization of the EGFR, but not of the TfR. We mapped Tyr 850 as the major in vivo tyrosine phosphorylation site of Eps15. A phosphorylation-negative mutant of Eps15 acted as a dominant negative on the internalization...... of the EGFR, but not of the TfR. A phosphopeptide, corresponding to the phosphorylated sequence of Eps15, inhibited EGFR endocytosis, suggesting that phosphotyrosine in Eps15 serves as a docking site for a phosphotyrosine binding protein. Thus, tyrosine phosphorylation of Eps15 represents the first molecular...

  1. Evaluation of regulatory processes affecting nuclear power plant early site approval and standardization

    International Nuclear Information System (INIS)

    1983-12-01

    This report presents the results of a survey and evaluation of existing federal, state and local regulatory considerations affecting siting approval of power plants in the United States. Those factors that may impede early site approval of nuclear power plants are identified, and findings related to the removal of these impediments and the general improvement of the approval process are presented. A brief evaluation of standardization of nuclear plant design is also presented

  2. Kinome analysis of receptor-induced phosphorylation in human natural killer cells.

    Directory of Open Access Journals (Sweden)

    Sebastian König

    Full Text Available BACKGROUND: Natural killer (NK cells contribute to the defense against infected and transformed cells through the engagement of multiple germline-encoded activation receptors. Stimulation of the Fc receptor CD16 alone is sufficient for NK cell activation, whereas other receptors, such as 2B4 (CD244 and DNAM-1 (CD226, act synergistically. After receptor engagement, protein kinases play a major role in signaling networks controlling NK cell effector functions. However, it has not been characterized systematically which of all kinases encoded by the human genome (kinome are involved in NK cell activation. RESULTS: A kinase-selective phosphoproteome approach enabled the determination of 188 kinases expressed in human NK cells. Crosslinking of CD16 as well as 2B4 and DNAM-1 revealed a total of 313 distinct kinase phosphorylation sites on 109 different kinases. Phosphorylation sites on 21 kinases were similarly regulated after engagement of either CD16 or co-engagement of 2B4 and DNAM-1. Among those, increased phosphorylation of FYN, KCC2G (CAMK2, FES, and AAK1, as well as the reduced phosphorylation of MARK2, were reproducibly observed both after engagement of CD16 and co-engagement of 2B4 and DNAM-1. Notably, only one phosphorylation on PAK4 was differentally regulated. CONCLUSIONS: The present study has identified a significant portion of the NK cell kinome and defined novel phosphorylation sites in primary lymphocytes. Regulated phosphorylations observed in the early phase of NK cell activation imply these kinases are involved in NK cell signaling. Taken together, this study suggests a largely shared signaling pathway downstream of distinct activation receptors and constitutes a valuable resource for further elucidating the regulation of NK cell effector responses.

  3. Regulatory control in the rehabilitation of contaminated sites in Syria

    International Nuclear Information System (INIS)

    Shweikani, R.; Suman, H.

    2002-01-01

    The work described in this paper is concerning the regulatory control set by the Atomic Energy Commission of Syria (AECS) for the contaminated sites with Naturally Occurring Radioactive Materials (NORM) in the oil industries in the northeast of Syria. These sites lie in a desert region with poor population density and low occupancy. The decision was made to use the activity concentration of 226 Ra per unit mass as a measure to identify the need for cleanup. Two limits were set for this purpose so that contamination concentration above the higher limit is defined as waste that has to be excavated from the site, while contamination concentration between the two limits can be dealt with on site. Contamination concentration below the lower limit was looked at as acceptable. Remediation plan to transfer the contaminated soil, with radium concentration over the higher limit, to an engineered disposal pit was adopted. Proper stabilisation measures and environmental monitoring programme were requested by the AECS and considered as essential parts of the remediation plan. (author)

  4. Cyclic adenosine 3',5'-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter.

    Science.gov (United States)

    Clem, Brian F; Hudson, Elizabeth A; Clark, Barbara J

    2005-03-01

    Steroidogenic acute regulatory protein (StAR) transcription is regulated through cAMP-protein kinase A-dependent mechanisms that involve multiple transcription factors including the cAMP-responsive element binding protein (CREB) family members. Classically, binding of phosphorylated CREB to cis-acting cAMP-responsive elements (5'-TGACGTCA-3') within target gene promoters leads to recruitment of the coactivator CREB binding protein (CBP). Herein we examined the extent of CREB family member phosphorylation on protein-DNA interactions and CBP recruitment with the StAR promoter. Immunoblot analysis revealed that CREB, cAMP-responsive element modulator (CREM), and activating transcription factor (ATF)-1 are expressed in MA-10 mouse Leydig tumor cells, yet only CREB and ATF-1 are phosphorylated. (Bu)2cAMP treatment of MA-10 cells increased CREB phosphorylation approximately 2.3-fold within 30 min but did not change total nuclear CREB expression levels. Using DNA-affinity chromatography, we now show that CREB and ATF-1, but not CREM, interact with the StAR promoter, and this interaction is dependent on the activator protein-1 (AP-1) cis-acting element within the cAMP-responsive region. In addition, (Bu)2cAMP-treatment increased phosphorylated CREB (P-CREB) association with the StAR promoter but did not influence total CREB interaction. In vivo chromatin immunoprecipitation assays demonstrated CREB binding to the StAR proximal promoter is independent of (Bu)2cAMP-treatment, confirming our in vitro analysis. However, (Bu)2cAMP-treatment increased P-CREB and CBP interaction with the StAR promoter, demonstrating for the first time the physical role of P-CREB:DNA interactions in CBP recruitment to the StAR proximal promoter.

  5. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A).

    Science.gov (United States)

    Oi, Ami; Katayama, Syouichi; Hatano, Naoya; Sugiyama, Yasunori; Kameshita, Isamu; Sueyoshi, Noriyuki

    2017-01-08

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed a typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The active site of oxidative phosphorylation and the origin of hyperhomocysteinemia in aging and dementia.

    Science.gov (United States)

    McCully, Kilmer S

    2015-01-01

    The active site of oxidative phosphorylation and adenosine triphosphate (ATP) synthesis in mitochondria is proposed to consist of two molecules of thioretinamide bound to cobalamin, forming thioretinaco, complexed with ozone, oxygen, nicotinamide adenine dinucleotide. and inorganic phosphate, TR2CoO3O2NAD(+)H2PO4(-). Reduction of the pyridinium nitrogen of the nicotinamide group by an electron from electron transport complexes initiates polymerization of phosphate with adenosine diphosphate, yielding nicotinamide riboside and ATP bound to thioretinaco ozonide oxygen. A second electron reduces oxygen to hydroperoxyl radical, releasing ATP from the active site. A proton gradient is created within F1F0 ATPase complexes of mitochondria by reaction of protons with reduced nicotinamide riboside and with hydroperoxyl radical, yielding reduced nicotinamide riboside and hydroperoxide. The hyperhomocysteinemia of aging and dementia is attributed to decreased synthesis of adenosyl methionine by thioretinaco ozonide and ATP, causing decreased allosteric activation of cystathionine synthase and decreased allosteric inhibition of methylenetetrahydrofolate reductase and resulting in dysregulation of methionine metabolism. © 2015 by the Association of Clinical Scientists, Inc.

  7. Regulatory guidance document

    International Nuclear Information System (INIS)

    1994-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) Program Management System Manual requires preparation of the OCRWM Regulatory Guidance Document (RGD) that addresses licensing, environmental compliance, and safety and health compliance. The document provides: regulatory compliance policy; guidance to OCRWM organizational elements to ensure a consistent approach when complying with regulatory requirements; strategies to achieve policy objectives; organizational responsibilities for regulatory compliance; guidance with regard to Program compliance oversight; and guidance on the contents of a project-level Regulatory Compliance Plan. The scope of the RGD includes site suitability evaluation, licensing, environmental compliance, and safety and health compliance, in accordance with the direction provided by Section 4.6.3 of the PMS Manual. Site suitability evaluation and regulatory compliance during site characterization are significant activities, particularly with regard to the YW MSA. OCRWM's evaluation of whether the Yucca Mountain site is suitable for repository development must precede its submittal of a license application to the Nuclear Regulatory Commission (NRC). Accordingly, site suitability evaluation is discussed in Chapter 4, and the general statements of policy regarding site suitability evaluation are discussed in Section 2.1. Although much of the data and analyses may initially be similar, the licensing process is discussed separately in Chapter 5. Environmental compliance is discussed in Chapter 6. Safety and Health compliance is discussed in Chapter 7

  8. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling.

    Science.gov (United States)

    Feener, Edward P; Rosario, Felicia; Dunn, Sarah L; Stancheva, Zlatina; Myers, Martin G

    2004-06-01

    Jak family tyrosine kinases mediate signaling by cytokine receptors to regulate diverse biological processes. Although Jak2 and other Jak kinase family members are phosphorylated on numerous sites during cytokine signaling, the identity and function of most of these sites remains unknown. Using tandem mass spectroscopic analysis of activated Jak2 protein from intact cells, we identified Tyr(221) and Tyr(570) as novel sites of Jak2 phosphorylation. Phosphorylation of both sites was stimulated by cytokine treatment of cultured cells, and this stimulation required Jak2 kinase activity. While we observed no gross alteration of signaling upon mutation of Tyr(221), Tyr(570) lies within the inhibitory JH2 domain of Jak2, and mutation of this site (Jak2(Y570F)) results in constitutive Jak2-dependent signaling in the absence of cytokine stimulation and enhances and prolongs Jak2 activation during cytokine stimulation. Mutation of Tyr(570) does not alter the ability of SOCS3 to bind or inhibit Jak2, however. Thus, the phosphorylation of Tyr(570) in vivo inhibits Jak2-dependent signaling independently of SOCS3-mediated inhibition. This Tyr(570)-dependent mechanism of Jak2 inhibition likely represents an important mechanism by which cytokine function is regulated.

  9. A Novel, In-solution Separation of Endogenous Cardiac Sarcomeric Proteins and Identification of Distinct Charged Variants of Regulatory Light Chain*

    Science.gov (United States)

    Scruggs, Sarah B.; Reisdorph, Rick; Armstrong, Mike L.; Warren, Chad M.; Reisdorph, Nichole; Solaro, R. John; Buttrick, Peter M.

    2010-01-01

    The molecular conformation of the cardiac myosin motor is modulated by intermolecular interactions among the heavy chain, the light chains, myosin binding protein-C, and titin and is governed by post-translational modifications (PTMs). In-gel digestion followed by LC/MS/MS has classically been applied to identify cardiac sarcomeric PTMs; however, this approach is limited by protein size, pI, and difficulties in peptide extraction. We report a solution-based work flow for global separation of endogenous cardiac sarcomeric proteins with a focus on the regulatory light chain (RLC) in which specific sites of phosphorylation have been unclear. Subcellular fractionation followed by OFFGEL electrophoresis resulted in isolation of endogenous charge variants of sarcomeric proteins, including regulatory and essential light chains, myosin heavy chain, and myosin-binding protein-C of the thick filament. Further purification of RLC using reverse-phase HPLC separation and UV detection enriched for RLC PTMs at the intact protein level and provided a stoichiometric and quantitative assessment of endogenous RLC charge variants. Digestion and subsequent LC/MS/MS unequivocally identified that the endogenous charge variants of cardiac RLC focused in unique OFFGEL electrophoresis fractions were unphosphorylated (78.8%), singly phosphorylated (18.1%), and doubly phosphorylated (3.1%) RLC. The novel aspects of this study are that 1) milligram amounts of endogenous cardiac sarcomeric subproteome were focused with resolution comparable with two-dimensional electrophoresis, 2) separation and quantification of post-translationally modified variants were achieved at the intact protein level, 3) separation of intact high molecular weight thick filament proteins was achieved in solution, and 4) endogenous charge variants of RLC were separated; a novel doubly phosphorylated form was identified in mouse, and singly phosphorylated, singly deamidated, and deamidated/phosphorylated forms were

  10. Characterization of HSP27 phosphorylation sites in human atherosclerotic plaque secretome

    DEFF Research Database (Denmark)

    Durán, Mari-Carmen; Boeri-Erba, Elisabetta; Mohammed, Shabaz

    2007-01-01

    spectrometry (MS). Among the identified proteins, two isoforms of heat shock protein 27 (HSP27), a protein recently described as a potential biomarker of atherosclerosis, were detected. However, the putative mechanisms in which HSP27 isoforms could be involved in the atherosclerotic process are unknown. Thus......, the role that phosphorylated HSP27 could play in the atherosclerotic process is actually under study. The present work shows the strategies employed to characterize the phosphorylation in the HSP27 secreted by atheroma plaque samples. The application of liquid chromatography tandem mass spectrometry (MS......-lymphocytes). These interactions can be mediated by proteins secreted from these cells, which therefore exert an important role in the atherosclerotic process. We recently described a novel strategy for the characterization of the human atherosclerotic plaque secretome, combining two-dimensional gel electrophoresis and mass...

  11. Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation

    DEFF Research Database (Denmark)

    Csikász-Nagy, Attila; Kapuy, Orsolya; Tóth, Attila

    2009-01-01

    of these EPs. From genome-scale data sets of budding yeast, we identify 126 EPs that are regulated by Cdk1 both through direct phosphorylation of the EP and through phosphorylation of the transcription factors that control expression of the EP, so that each of these EPs is regulated by a feed-forward loop (FFL......) from Cdk1. By mathematical modelling, we show that such FFLs can activate EPs at different phases of the cell cycle depending of the effective signs (+ or -) of the regulatory steps of the FFL. We provide several case studies of EPs that are controlled by FFLs exactly as our models predict. The signal...

  12. PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Marko Kostic

    2015-10-01

    Full Text Available Mitochondrial Ca2+ overload is a critical, preceding event in neuronal damage encountered during neurodegenerative and ischemic insults. We found that loss of PTEN-induced putative kinase 1 (PINK1 function, implicated in Parkinson disease, inhibits the mitochondrial Na+/Ca2+ exchanger (NCLX, leading to impaired mitochondrial Ca2+ extrusion. NCLX activity was, however, fully rescued by activation of the protein kinase A (PKA pathway. We further show that PKA rescues NCLX activity by phosphorylating serine 258, a putative regulatory NCLX site. Remarkably, a constitutively active phosphomimetic mutant of NCLX (NCLXS258D prevents mitochondrial Ca2+ overload and mitochondrial depolarization in PINK1 knockout neurons, thereby enhancing neuronal survival. Our results identify an mitochondrial Ca2+ transport regulatory pathway that protects against mitochondrial Ca2+ overload. Because mitochondrial Ca2+ dyshomeostasis is a prominent feature of multiple disorders, the link between NCLX and PKA may offer a therapeutic target.

  13. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied....... In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia....... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  14. Novel tyrosine phosphorylation sites in rat skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS

    DEFF Research Database (Denmark)

    Zhang, Xiangmin; Højlund, Kurt; Luo, Moulun

    2012-01-01

    Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (...

  15. Protein phosphorylation during coconut zygotic embryo development

    International Nuclear Information System (INIS)

    Islas-Flores, I.; Oropeza, C.; Hernandez-Sotomayor, S.M.T.

    1998-01-01

    Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [gamma-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species

  16. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides

    Science.gov (United States)

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.

    2016-09-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes.

  17. Early Site Permit Demonstration Program: Regulatory criteria evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The primary objective of the ESPDP is to demonstrate successfully the use of 10CFR52 to obtain ESPs for one or more US sites for one (or more) ALWR nuclear power plants. It is anticipated that preparation of the ESP application and interaction with NRC during the application review process will result not only in an ESP for the applicant(s) but also in the development of criteria and definition of processes, setting the precedent that facilitates ESPs for subsequent ESP applications. Because siting regulatory processes and acceptance criteria are contained in over 100 separate documents, comprehensive licensing and technical reviews were performed to establish whether the requirements and documentation are self-consistent, whether the acceptance criteria are sufficiently well-defined and clear, and whether the licensing process leading to the issuance of an ESP is unambiguously specified. The results of the technical and licensing evaluations are presented in this report. The purpose, background, and organization of the ESPDP is delineated in Section 1. Section 11 contains flowcharts defining siting application requirements, environmental report requirements, and emergency planning/preparedness requirements for ALWRS. The licensing and technical review results are presented in Section III.

  18. Early Site Permit Demonstration Program: Regulatory criteria evaluation report

    International Nuclear Information System (INIS)

    1993-03-01

    The primary objective of the ESPDP is to demonstrate successfully the use of 10CFR52 to obtain ESPs for one or more US sites for one (or more) ALWR nuclear power plants. It is anticipated that preparation of the ESP application and interaction with NRC during the application review process will result not only in an ESP for the applicant(s) but also in the development of criteria and definition of processes, setting the precedent that facilitates ESPs for subsequent ESP applications. Because siting regulatory processes and acceptance criteria are contained in over 100 separate documents, comprehensive licensing and technical reviews were performed to establish whether the requirements and documentation are self-consistent, whether the acceptance criteria are sufficiently well-defined and clear, and whether the licensing process leading to the issuance of an ESP is unambiguously specified. The results of the technical and licensing evaluations are presented in this report. The purpose, background, and organization of the ESPDP is delineated in Section 1. Section 11 contains flowcharts defining siting application requirements, environmental report requirements, and emergency planning/preparedness requirements for ALWRS. The licensing and technical review results are presented in Section III

  19. Phosphoproteome analysis of E-coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation

    DEFF Research Database (Denmark)

    Macek, B.; Gnad, F.; Soufi, Boumediene

    2008-01-01

    Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is generally considered the major regulatory posttranslational modification in eukaryotic cells. Increasing evidence at the genome and proteome level shows that this modification is also present and functional in prokaryotes...

  20. Separation Options for Phosphorylated Osteopontin from Transgenic Microalgae Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Ayswarya Ravi

    2018-02-01

    Full Text Available Correct folding and post-translational modifications are vital for therapeutic proteins to elicit their biological functions. Osteopontin (OPN, a bone regenerative protein present in a range of mammalian cells, is an acidic phosphoprotein with multiple potential phosphorylation sites. In this study, the ability of unicellular microalgae, Chlamydomonas reinhardtii, to produce phosphorylated recombinant OPN in its chloroplast is investigated. This study further explores the impact of phosphorylation and expression from a “plant-like” algae on separation of OPN. Chromatography resins ceramic hydroxyapatite (CHT and Gallium-immobilized metal affinity chromatography (Ga-IMAC were assessed for their binding specificity to phosphoproteins. Non-phosphorylated recombinant OPN expressed in E. coli was used to compare the specificity of interaction of the resins to phosphorylated OPN. We observed that CHT binds OPN by multimodal interactions and was better able to distinguish phosphorylated proteins in the presence of 250 mM NaCl. Ga-IMAC interaction with OPN was not selective to phosphorylation, irrespective of salt, as the resin bound OPN from both algal and bacterial sources. Anion exchange chromatography proved an efficient capture method to partially separate major phosphorylated host cell protein impurities such as Rubisco from OPN.

  1. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45

    DEFF Research Database (Denmark)

    Amit, Sharon; Hatzubai, Ada; Birman, Yaara

    2002-01-01

    The Wnt pathway controls numerous developmental processes via the beta-catenin-TCF/LEF transcription complex. Deregulation of the pathway results in the aberrant accumulation of beta-catenin in the nucleus, often leading to cancer. Normally, cytoplasmic beta-catenin associates with APC and axin...... and is continuously phosphorylated by GSK-3beta, marking it for proteasomal degradation. Wnt signaling is considered to prevent GSK-3beta from phosphorylating beta-catenin, thus causing its stabilization. However, the Wnt mechanism of action has not been resolved. Here we study the regulation of beta......-catenin phosphorylation and degradation by the Wnt pathway. Using mass spectrometry and phosphopeptide-specific antibodies, we show that a complex of axin and casein kinase I (CKI) induces beta-catenin phosphorylation at a single site: serine 45 (S45). Immunopurified axin and recombinant CKI phosphorylate beta...

  2. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome.

    Science.gov (United States)

    Zhang, Zijun; Xing, Yi

    2017-09-19

    Crosslinking or RNA immunoprecipitation followed by sequencing (CLIP-seq or RIP-seq) allows transcriptome-wide discovery of RNA regulatory sites. As CLIP-seq/RIP-seq reads are short, existing computational tools focus on uniquely mapped reads, while reads mapped to multiple loci are discarded. We present CLAM (CLIP-seq Analysis of Multi-mapped reads). CLAM uses an expectation-maximization algorithm to assign multi-mapped reads and calls peaks combining uniquely and multi-mapped reads. To demonstrate the utility of CLAM, we applied it to a wide range of public CLIP-seq/RIP-seq datasets involving numerous splicing factors, microRNAs and m6A RNA methylation. CLAM recovered a large number of novel RNA regulatory sites inaccessible by uniquely mapped reads. The functional significance of these sites was demonstrated by consensus motif patterns and association with alternative splicing (splicing factors), transcript abundance (AGO2) and mRNA half-life (m6A). CLAM provides a useful tool to discover novel protein-RNA interactions and RNA modification sites from CLIP-seq and RIP-seq data, and reveals the significant contribution of repetitive elements to the RNA regulatory landscape of the human transcriptome. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Phosphorylation and nuclear accumulation are distinct events contributing to the activation of p53

    International Nuclear Information System (INIS)

    O'Hagan, Heather M.; Ljungman, Mats

    2004-01-01

    It has been recently shown that ionizing radiation (IR) and the mRNA synthesis inhibitor 5,6-dichloro-1-b-D-ribofuranosylbenzimidazole (DRB) act in synergy to induce p53-mediated transactivation of reporter plasmids in human cells [Oncogene 19 (2000) 3829]. We have extended these studies and show that ionizing radiation and DRB also act in synergy to induce ATM-mediated phosphorylation of the ser15 site of p53 and enhance the expression of endogenous p21 protein. Examination of the localization of p53 revealed that while DRB did not induce phosphorylation of the ser15 site of p53 but efficiently accumulated p53 in the nucleus, ionizing radiation induced phosphorylation of the ser15 site of p53 without prolonged nuclear accumulation. Importantly, the combination of DRB and IR resulted in a strong accumulation of phosphorylated p53 in the nucleus that was more persistent then p53 accumulation after IR alone. Furthermore, the nuclear export inhibitor leptomycin B showed a similar synergy with IR as did DRB regarding ser15 phosphorylation of p53 and p21 induction. These results suggest that the synergistic activation of the p53 response by the combination treatment is due to the activation of two distinct pathways where DRB causes the prolonged nuclear accumulation of p53 while ionizing radiation activates p53 by ATM-mediated phosphorylation

  4. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1.

    Science.gov (United States)

    Furihata, Takashi; Maruyama, Kyonoshin; Fujita, Yasunari; Umezawa, Taishi; Yoshida, Riichiro; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-02-07

    bZIP-type transcription factors AREBs/ABFs bind an abscisic acid (ABA)-responsive cis-acting element named ABRE and transactivate downstream gene expression in Arabidopsis. Because AREB1 overexpression could not induce downstream gene expression, activation of AREB1 requires ABA-dependent posttranscriptional modification. We confirmed that ABA activated 42-kDa kinase activity, which, in turn, phosphorylated Ser/Thr residues of R-X-X-S/T sites in the conserved regions of AREB1. Amino acid substitutions of R-X-X-S/T sites to Ala suppressed transactivation activity, and multiple substitution of these sites resulted in almost complete suppression of transactivation activity in transient assays. In contrast, substitution of the Ser/Thr residues to Asp resulted in high transactivation activity without exogenous ABA application. A phosphorylated, transcriptionally active form was achieved by substitution of Ser/Thr in all conserved R-X-X-S/T sites to Asp. Transgenic plants overexpressing the phosphorylated active form of AREB1 expressed many ABA-inducible genes, such as RD29B, without ABA treatment. These results indicate that the ABA-dependent multisite phosphorylation of AREB1 regulates its own activation in plants.

  5. Evolutionary conservation of the polyproline II conformation surrounding intrinsically disordered phosphorylation sites.

    Science.gov (United States)

    Elam, W Austin; Schrank, Travis P; Campagnolo, Andrew J; Hilser, Vincent J

    2013-04-01

    Intrinsically disordered (ID) proteins function in the absence of a unique stable structure and appear to challenge the classic structure-function paradigm. The extent to which ID proteins take advantage of subtle conformational biases to perform functions, and whether signals for such mechanism can be identified in proteome-wide studies is not well understood. Of particular interest is the polyproline II (PII) conformation, suggested to be highly populated in unfolded proteins. We experimentally determine a complete calorimetric propensity scale for the PII conformation. Projection of the scale into representative eukaryotic proteomes reveals significant PII bias in regions coding for ID proteins. Importantly, enrichment of PII in ID proteins, or protein segments, is also captured by other PII scales, indicating that this enrichment is robustly encoded and universally detectable regardless of the method of PII propensity determination. Gene ontology (GO) terms obtained using our PII scale and other scales demonstrate a consensus for molecular functions performed by high PII proteins across the proteome. Perhaps the most striking result of the GO analysis is conserved enrichment (P ontology reveals an enrichment of PII bias near disordered phosphorylation sites that is conserved throughout eukaryotes. Copyright © 2013 The Protein Society.

  6. Impact of SNPs on Protein Phosphorylation Status in Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Shoukai Lin

    2016-11-01

    Full Text Available Single nucleotide polymorphisms (SNPs are widely used in functional genomics and genetics research work. The high-quality sequence of rice genome has provided a genome-wide SNP and proteome resource. However, the impact of SNPs on protein phosphorylation status in rice is not fully understood. In this paper, we firstly updated rice SNP resource based on the new rice genome Ver. 7.0, then systematically analyzed the potential impact of Non-synonymous SNPs (nsSNPs on the protein phosphorylation status. There were 3,897,312 SNPs in Ver. 7.0 rice genome, among which 9.9% was nsSNPs. Whilst, a total 2,508,261 phosphorylated sites were predicted in rice proteome. Interestingly, we observed that 150,197 (39.1% nsSNPs could influence protein phosphorylation status, among which 52.2% might induce changes of protein kinase (PK types for adjacent phosphorylation sites. We constructed a database, SNP_rice, to deposit the updated rice SNP resource and phosSNPs information. It was freely available to academic researchers at http://bioinformatics.fafu.edu.cn. As a case study, we detected five nsSNPs that potentially influenced heterotrimeric G proteins phosphorylation status in rice, indicating that genetic polymorphisms showed impact on the signal transduction by influencing the phosphorylation status of heterotrimeric G proteins. The results in this work could be a useful resource for future experimental identification and provide interesting information for better rice breeding.

  7. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage

    International Nuclear Information System (INIS)

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-01-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells

  8. Interaction between O-GlcNAc modification and tyrosine phosphorylation of prohibitin: implication for a novel binary switch.

    Directory of Open Access Journals (Sweden)

    Sudharsana R Ande

    Full Text Available Prohibitin (PHB or PHB1 is an evolutionarily conserved, multifunctional protein which is present in various cellular compartments including the plasma membrane. However, mechanisms involved in various functions of PHB are not fully explored yet. Here we report for the first time that PHB interacts with O-linked beta-N-acetylglucosamine transferase (O-GlcNAc transferase, OGT and is O-GlcNAc modified; and also undergoes tyrosine phosphorylation in response to insulin. Tyrosine 114 (Tyr114 and tyrosine 259 (Tyr259 in PHB are in the close proximity of potential O-GlcNAc sites serine 121 (Ser121 and threonine 258 (Thr258 respectively. Substitution of Tyr114 and Tyr259 residues in PHB with phenylalanine by site-directed mutagenesis results in reduced tyrosine phosphorylation as well as reduced O-GlcNAc modification of PHB. Surprisingly, this also resulted in enhanced tyrosine phosphorylation and activity of OGT. This is attributed to the presence of similar tyrosine motifs in PHB and OGT. Substitution of Ser121 and Thr258 with alanine and isoleucine respectively resulted in attenuation of O-GlcNAc modification and increased tyrosine phosphorylation of PHB suggesting an association between these two dynamic modifications. Sequence analysis of O-GlcNAc modified proteins having known O-GlcNAc modification site(s or known tyrosine phosphorylation site(s revealed a strong potential association between these two posttranslational modifications in various proteins. We speculate that O-GlcNAc modification and tyrosine phosphorylation of PHB play an important role in tyrosine kinase signaling pathways including insulin, growth factors and immune receptors signaling. In addition, we propose that O-GlcNAc modification and tyrosine phosphorylation is a novel previously unidentified binary switch which may provide new mechanistic insights into cell signaling pathways and is open for direct experimental examination.

  9. Oxysterol-binding protein-related protein (ORP) 9 is a PDK-2 substrate and regulates Akt phosphorylation.

    Science.gov (United States)

    Lessmann, Eva; Ngo, Mike; Leitges, Michael; Minguet, Susana; Ridgway, Neale D; Huber, Michael

    2007-02-01

    The oxysterol-binding protein and oxysterol-binding protein-related protein family has been implicated in lipid transport and metabolism, vesicle trafficking and cell signaling. While investigating the phosphorylation of Akt/protein kinase B in stimulated bone marrow-derived mast cells, we observed that a monoclonal antibody directed against phospho-S473 Akt cross-reacted with oxysterol-binding protein-related protein 9 (ORP9). Further analysis revealed that mast cells exclusively express ORP9S, an N-terminal truncated version of full-length ORP9L. A PDK-2 consensus phosphorylation site in ORP9L and OPR9S at S287 (VPEFS(287)Y) was confirmed by site-directed mutagenesis. In contrast to Akt, increased phosphorylation of ORP9S S287 in stimulated mast cells was independent of phosphatidylinositol 3-kinase but sensitive to inhibition of conventional PKC isotypes. PKC-beta dependence was confirmed by lack of ORP9S phosphorylation at S287 in PKC-beta-deficient, but not PKC-alpha-deficient, mast cells. Moreover, co-immunoprecipitation of PKC-beta and ORP9S, and in vitro phosphorylation of ORP9S in this complex, argued for direct phosphorylation of ORP9S by PKC-beta, introducing ORP9S as a novel PKC-beta substrate. Akt was also detected in a PKC-beta/ORP9S immune complex and phosphorylation of Akt on S473 was delayed in PKC-deficient mast cells. In HEK293 cells, RNAi experiments showed that depletion of ORP9L increased Akt S473 phosphorylation 3-fold without affecting T308 phosphorylation in the activation loop. Furthermore, mammalian target of rapamycin was implicated in ORP9L phosphorylation in HEK293 cells. These studies identify ORP9 as a PDK-2 substrate and negative regulator of Akt phosphorylation at the PDK-2 site.

  10. 3-phosphorylated and -thiophosphorylated 2-thiazolidine- and 2-oxazolidine-thiones

    International Nuclear Information System (INIS)

    Vorob'eva, N.N.; Razvodovskaya, L.V.; Negrebetskii, V.V.; Grapov, A.F.; Mel'nikov, N.N.

    1987-01-01

    We investigated the phosphorylation and thiophosphorylation of 2-thiazolidine- and 2-oxazolidine-thiones. The presence in the heterocycle of the ambident triad HN-C=S can also lead to two series of phosphorylation products formed at the nitrogen and at the sulfur atom. It was therefore of interest to determine the dependence of the site of the phosphorylation on the structures of the heterocycle and off the phosphorylating agent. The formation of the N-phosphorylation products is confirmed by the 1 H NMR spectra, in which the signals of protons of the methylene group of the heteroring (C 4 H 2 ) are split on account of interaction with the phosphorus atom ( 3 JPH 0.5-2.3 Hz). We observed analogous values of 3 JPH constants for 2-aminothiazolines phosphorylated on the endocyclic nitrogen atom. In the 13 C NMR spectra of these compounds there are also coupling constants for the interaction of the carbon atoms C 4 and C 5 of the heterocycle with the phosphorus atom. The existence of the compounds as N-phosphorylated heterocycles is evidenced also by the 31 P chemical shifts

  11. The physiological link between metabolic rate depression and tau phosphorylation in mammalian hibernation.

    Directory of Open Access Journals (Sweden)

    Jens T Stieler

    Full Text Available Abnormal phosphorylation and aggregation of tau protein are hallmarks of a variety of neurological disorders, including Alzheimer's disease (AD. Increased tau phosphorylation is assumed to represent an early event in pathogenesis and a pivotal aspect for aggregation and formation of neurofibrillary tangles. However, the regulation of tau phosphorylation in vivo and the causes for its increased stage of phosphorylation in AD are still not well understood, a fact that is primarily based on the lack of adequate animal models. Recently we described the reversible formation of highly phosphorylated tau protein in hibernating European ground squirrels. Hence, mammalian hibernation represents a model system very well suited to study molecular mechanisms of both tau phosphorylation and dephosphorylation under in vivo physiological conditions. Here, we analysed the extent and kinetics of hibernation-state dependent tau phosphorylation in various brain regions of three species of hibernating mammals: arctic ground squirrels, Syrian hamsters and black bears. Overall, tau protein was highly phosphorylated in torpor states and phosphorylation levels decreased after arousal in all species. Differences between brain regions, hibernation-states and phosphosites were observed with respect to degree and kinetics of tau phosphorylation. Furthermore, we tested the phosphate net turnover of tau protein to analyse potential alterations in kinase and/or phosphatase activities during hibernation. Our results demonstrate that the hibernation-state dependent phosphorylation of tau protein is specifically regulated but involves, in addition, passive, temperature driven regulatory mechanisms. By determining the activity-state profile for key enzymes of tau phosphorylation we could identify kinases potentially involved in the differentially regulated, reversible tau phosphorylation that occurs during hibernation. We show that in black bears hibernation is associated with

  12. Redox Switch for the Inhibited State of Yeast Glycogen Synthase Mimics Regulation by Phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Mahalingan, Krishna K.; Baskaran†, Sulochanadevi; DePaoli-Roach, Anna A.; Roach, Peter J.; Hurley, Thomas D. (Indiana-Med)

    2017-01-10

    Glycogen synthase (GS) is the rate limiting enzyme in the synthesis of glycogen. Eukaryotic GS is negatively regulated by covalent phosphorylation and allosterically activated by glucose-6-phosphate (G-6-P). To gain structural insights into the inhibited state of the enzyme, we solved the crystal structure of yGsy2-R589A/R592A to a resolution of 3.3 Å. The double mutant has an activity ratio similar to the phosphorylated enzyme and also retains the ability to be activated by G-6-P. When compared to the 2.88 Å structure of the wild-type G-6-P activated enzyme, the crystal structure of the low-activity mutant showed that the N-terminal domain of the inhibited state is tightly held against the dimer-related interface thereby hindering acceptor access to the catalytic cleft. On the basis of these two structural observations, we developed a reversible redox regulatory feature in yeast GS by substituting cysteine residues for two highly conserved arginine residues. When oxidized, the cysteine mutant enzyme exhibits activity levels similar to the phosphorylated enzyme but cannot be activated by G-6-P. Upon reduction, the cysteine mutant enzyme regains normal activity levels and regulatory response to G-6-P activation.

  13. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    Science.gov (United States)

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  14. Characterization of mitosis-specific phosphorylation of tumor-associated microtubule-associated protein.

    Science.gov (United States)

    Hong, Kyung Uk; Kim, Hyun-Jun; Bae, Chang-Dae; Park, Joobae

    2009-11-30

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), has been recently shown to be involved in the assembly and maintenance of mitotic spindle and also plays an essential role in maintaining the fidelity of chromosome segregation during mitosis. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis, and characterized the mechanism and functional importance of phosphorylation at one of the mitosis-specific phosphorylation residues (i.e., Thr-622). However, the phosphorylation events at the remaining mitotic phosphorylation sites of TMAP have not been fully characterized in detail. Here, we report on generation and characterization of phosphorylated Thr-578- and phosphorylated Thr-596-specific antibodies. Using the antibodies, we show that phosphorylation of TMAP at Thr-578 and Thr-596 indeed occurs specifically during mitosis. Immunofluorescent staining using the antibodies shows that these residues become phosphorylated starting at prophase and then become rapidly dephosphorylated soon after initiation of anaphase. Subtle differences in the kinetics of phosphorylation between Thr-578 and Thr-596 imply that they may be under different mechanisms of phosphorylation during mitosis. Unlike the phosphorylation-deficient mutant form for Thr-622, the mutant in which both Thr-578 and Thr-596 had been mutated to alanines did not induce significant delay in progression of mitosis. These results show that the majority of mitosis-specific phosphorylation of TMAP is limited to pre-anaphase stages and suggest that the multiple phosphorylation may not act in concert but serve diverse functions.

  15. Tousled-like kinases phosphorylate Asf1 to promote histone supply during DNA replication

    DEFF Research Database (Denmark)

    Klimovskaia, Ilnaz M; Young, Clifford; Strømme, Caroline B

    2014-01-01

    During DNA replication, nucleosomes are rapidly assembled on newly synthesized DNA to restore chromatin organization. Asf1, a key histone H3-H4 chaperone required for this process, is phosphorylated by Tousled-like kinases (TLKs). Here, we identify TLK phosphorylation sites by mass spectrometry...

  16. Phosphorylation of the Bacillus subtilis Replication Controller YabA Plays a Role in Regulation of Sporulation and Biofilm Formation.

    Science.gov (United States)

    García García, Tránsito; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Correia Santos, Sara; Henry, Céline; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise; Poncet, Sandrine

    2018-01-01

    Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.

  17. Propofol directly increases tau phosphorylation.

    Directory of Open Access Journals (Sweden)

    Robert A Whittington

    2011-01-01

    Full Text Available In Alzheimer's disease (AD and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of

  18. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening.

    Science.gov (United States)

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) catalyzes the rate-limiting step in ethylene biosynthesis during ripening. ACS isozymes are regulated both transcriptionally and post-translationally. However, in banana, an important climacteric fruit, little is known about post-translational regulation of ACS. Here, we report the post-translational modification of MA-ACS1 (Musa acuminata ACS1), a ripening inducible isozyme in the ACS family, which plays a key role in ethylene biosynthesis during banana fruit ripening. Immunoprecipitation analyses of phospholabeled protein extracts from banana fruit using affinity-purified anti-MA-ACS1 antibody have revealed phosphorylation of MA-ACS1, particularly in ripe fruit tissue. We have identified the induction of a 41-kDa protein kinase activity in pulp at the onset of ripening. The 41-kDa protein kinase has been identified as a putative protein kinase by MALDI-TOF/MS analysis. Biochemical analyses using partially purified protein kinase fraction from banana fruit have identified the protein kinase as a Ser/Thr family of protein kinase and its possible involvement in MA-ACS1 phosphorylation during ripening. In vitro phosphorylation analyses using synthetic peptides and site-directed mutagenized recombinant MA-ACS1 have revealed that serine 476 and 479 residues at the C-terminal region of MA-ACS1 are phosphorylated. Overall, this study provides important novel evidence for in vivo phosphorylation of MA-ACS1 at the molecular level as a possible mechanism of post-translational regulation of this key regulatory protein in ethylene signaling pathway in banana fruit during ripening.

  19. Phosphorylation of Nanog is Essential to Regulate Bmi1 and Promote Tumorigenesis

    Science.gov (United States)

    Xie, Xiujie; Piao, Longzhu; Cavey, Greg S.; Old, Matthew; Teknos, Theodoros N.; Mapp, Anna K; Pan, Quintin

    2014-01-01

    Emerging evidence indicates that Nanog is intimately involved in tumorigenesis in part through regulation of the cancer initiating cell population. However, the regulation and role of Nanog in tumorigenesis are still poorly understood. In this study, human Nanog was identified to be phosphorylated by human PKCε at multiple residues including T200 and T280. Our work indicated that phosphorylation at T200 and T280 modulates Nanog function through several regulatory mechanisms. Results with phosphorylation-insensitive and phosphorylation-mimetic mutant Nanog revealed that phosphorylation at T200 and T280 enhance Nanog protein stability. Moreover, phosphorylation-insensitive T200A and T280A mutant Nanog had a dominant-negative function to inhibit endogenous Nanog transcriptional activity. Inactivation of Nanog was due to impaired homodimerization, DNA binding, promoter occupancy, and p300, a transcriptional co-activator, recruitment resulting in a defect in target gene promoter activation. Ectopic expression of phosphorylation-insensitive T200A or T280A mutant Nanog reduced cell proliferation, colony formation, invasion, migration, and the cancer initiating cell population in head and neck squamous cell carcinoma (HNSCC) cells. The in vivo cancer initiating ability was severely compromised in HNSCC cells expressing phosphorylation-insensitive T200A or T280A mutant Nanog; 87.5% (14/16), 12.5% (1/8), and 0% (0/8) for control, T200A, and T280A, respectively. Nanog occupied the Bmi1 promoter to directly transactivate and regulate Bmi1. Genetic ablation and rescue experiments demonstrated that Bmi1 is a critical downstream signaling node for the pleiotropic, pro-oncogenic effects of Nanog. Taken together, our study revealed, for the first time, that post-translational phosphorylation of Nanog is essential to regulate Bmi1 and promote tumorigenesis. PMID:23708658

  20. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites

    Science.gov (United States)

    Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas

    2017-01-01

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly. PMID:28949297

  1. Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals.

    Science.gov (United States)

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2004-05-01

    A protein phosphatase holo-type enzyme (38, 65, and 75 kDa) preparation and a free catalytic subunit (38 kDa) purified from tulip petals were characterized as protein phosphatase 2A (PP2A) by immunological and biochemical approaches. The plasma membrane containing the putative plasma membrane aquaporin (PM-AQP) was prepared from tulip petals, phosphorylated in vitro, and used as the substrate for both of the purified PP2A preparations. Although both preparations dephosphorylated the phosphorylated PM-AQP at 20 degrees C, only the holo-type enzyme preparation acted at 5 degrees C on the phosphorylated PM-AQP with higher substrate specificity, suggesting that regulatory subunits are required for low temperature-dependent dephosphorylation of PM-AQP in tulip petals.

  2. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  3. Modulating uranium binding affinity in engineered Calmodulin EF-hand peptides: effect of phosphorylation

    International Nuclear Information System (INIS)

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Guilloreau, Luc; Berthomieu, Catherine; Delangle, Pascale; Adriano, Jean-Marc

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T 9 TKE 12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K d =25±6 nM to K d =5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the sub-nanomolar range (K d = 0.25±0.06 nM). FTIR analyses showed that the phospho-threonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν as (P-O) and ν s (P-O) IR modes of phospho-threonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν as (UO 2 ) 2+ vibration (from 923 cm -1 to 908 cm -1 ) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. (authors)

  4. The Abridgment and Relaxation Time for a Linear Multi-Scale Model Based on Multiple Site Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    Full Text Available Random effect in cellular systems is an important topic in systems biology and often simulated with Gillespie's stochastic simulation algorithm (SSA. Abridgment refers to model reduction that approximates a group of reactions by a smaller group with fewer species and reactions. This paper presents a theoretical analysis, based on comparison of the first exit time, for the abridgment on a linear chain reaction model motivated by systems with multiple phosphorylation sites. The analysis shows that if the relaxation time of the fast subsystem is much smaller than the mean firing time of the slow reactions, the abridgment can be applied with little error. This analysis is further verified with numerical experiments for models of bistable switch and oscillations in which linear chain system plays a critical role.

  5. Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response.

    Science.gov (United States)

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-02-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response.

  6. Protein Ser/Thr/Tyr phosphorylation in the Archaea.

    Science.gov (United States)

    Kennelly, Peter J

    2014-04-04

    The third domain of life, the Archaea (formerly Archaebacteria), is populated by a physiologically diverse set of microorganisms, many of which reside at the ecological extremes of our global environment. Although ostensibly prokaryotic in morphology, the Archaea share much closer evolutionary ties with the Eukarya than with the superficially more similar Bacteria. Initial genomic, proteomic, and biochemical analyses have revealed the presence of "eukaryotic" protein kinases and phosphatases and an intriguing set of serine-, threonine-, and tyrosine-phosphorylated proteins in the Archaea that may offer new insights into this important regulatory mechanism.

  7. Reactive Oxygen Species (ROS)-Activated ATM-Dependent Phosphorylation of Cytoplasmic Substrates Identified by Large-Scale Phosphoproteomics Screen*

    Science.gov (United States)

    Kozlov, Sergei V.; Waardenberg, Ashley J.; Engholm-Keller, Kasper; Arthur, Jonathan W.; Graham, Mark E.; Lavin, Martin

    2016-01-01

    Ataxia-telangiectasia, mutated (ATM) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signaling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoints, initiating DNA repair, and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here, we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach to identify cytoplasmic proteins altered in their phosphorylation state in control and ataxia-telangiectasia (A-T) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites, including 6,686 high-confidence sites mapping to 2,536 unique proteins. A total of 62 differentially phosphorylated peptides were identified; of these, 43 were phosphorylated in control but not in A-T cells, and 19 varied in their level of phosphorylation. Motif enrichment analysis of phosphopeptides revealed that consensus ATM serine glutamine sites were overrepresented. When considering phosphorylation events, only observed in control cells (not observed in A-T cells), with predicted ATM sites phosphoSerine/phosphoThreonine glutamine, we narrowed this list to 11 candidate ATM-dependent cytoplasmic proteins. Two of these 11 were previously described as ATM substrates (HMGA1 and UIMCI/RAP80), another five were identified in a whole cell extract phosphoproteomic screens, and the remaining four proteins had not been identified previously in DNA damage response screens. We validated the phosphorylation of three of these proteins (oxidative stress responsive 1 (OSR1), HDGF, and ccdc82) as ATM dependent after H2O2 exposure, and another protein (S100A11) demonstrated ATM

  8. Regulatory inspection activities on nuclear power plant sites during construction in the United Kingdom

    International Nuclear Information System (INIS)

    Jeffery, J.V.

    1977-01-01

    The work of regulatory inspection of the construction of the plant on the site is performed not only by the inspector who has been allocated to inspection duties for that site but also by the specialist staff who are involved with the safety assessment of the plant. The co-ordination of this work is described in the paper and examples are given of inspection activities associated with the enforcement requirements of licence conditions as well as those related to the inspection of the plant itself. (author)

  9. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

    Science.gov (United States)

    Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668

  10. Modulation of P1798 lymphosarcoma proliferation by protein phosphorylation

    International Nuclear Information System (INIS)

    Michnoff, C.A.H.

    1983-01-01

    The role of protein kinases in modulating cell proliferation was examined. Studies characterized the regulation of cell proliferation by adenosine 3':5'-monophosphate-dependent protein kinase (cA-Pk). Calcium/calmodulin-dependent myosin light chain kinase (MLCK) was isolated and examined as a potential substrate regulated by cA-PK in the rapidly proliferating P1798 lymphosarcoma. Modulation of cell proliferation by cA-PK was characterized by quantitating cell division by [methyl- 3 H] thymidine ([ 3 H]-dT) incorporation into DNA, cAMP accumulations, and activation of cA-PK using P1798 lymphosarcoma cells. Epinephrine and prostaglandin E 1 (PGE 1 ) were demonstrated to suppress [ 3 H]-dT incorporation into DNA, to stimulate cAMP accumulation, and to activate cA-PK with dose-dependency. Calcium/calmodulin-dependent MLCK was partially purified from P1798 lymphosarcoma. P1798 MLCK phosphorylated myosin regulatory light chains (P-LC) from thymus, cardiac and skeletal muscles. One mol [ 32 Pi] was transferred into one mol cardiac or skeletal P-LC by P1798 MLCK. Apparent Km values of 65 μM and 51 μM were determined for ATP and cardiac P-LC, respectively. The apparent molecular weight of P1798 MLCK was 135,000. P1798 MLCK was phosphorylated by cA-PK. Phosphorylated MLCK showed a 41% decrease in calcium-dependent activity. Two additional protein kinases from P1798 lymphosarcoma phosphorylated cardiac and skeletal light chains

  11. Two widely expressed plasma membrane H(+)-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine.

    Science.gov (United States)

    Bobik, Krzysztof; Duby, Geoffrey; Nizet, Yannick; Vandermeeren, Caroline; Stiernet, Patrick; Kanczewska, Justyna; Boutry, Marc

    2010-04-01

    The plasma membrane H(+)-ATPases PMA2 and PMA4 are the most widely expressed in Nicotiana plumbaginifolia, and belong to two different subfamilies. Both are activated by phosphorylation of a Thr at the penultimate position and the subsequent binding of 14-3-3 proteins. Their expression in Saccharomyces cerevisiae revealed functional and regulatory differences. To determine whether different regulatory properties between PMA2 and PMA4 exist in plants, we generated two monoclonal antibodies able to detect phosphorylation of the penultimate Thr of either PMA2 or PMA4 in a total protein extract. We also raised Nicotiana tabacum transgenic plants expressing 6-His-tagged PMA2 or PMA4, enabling their individual purification. Using these tools we showed that phosphorylation of the penultimate Thr of both PMAs was high during the early exponential growth phase of an N. tabacum cell culture, and then progressively declined. This decline correlated with decreased 14-3-3 binding and decreased plasma membrane ATPase activity. However, the rate and extent of the decrease differed between the two isoforms. Cold stress of culture cells or leaf tissues reduced the Thr phosphorylation of PMA2, whereas no significant changes in Thr phosphorylation of PMA4 were seen. These results strongly suggest that PMA2 and PMA4 are differentially regulated by phosphorylation. Analysis of the H(+)-ATPase phosphorylation status in leaf tissues indicated that no more than 44% (PMA2) or 32% (PMA4) was in the activated state under normal growth conditions. Purification of either isoform showed that, when activated, the two isoforms did not form hetero-oligomers, which is further support for these two H(+)-ATPase subfamilies having different properties.

  12. Negative Role of RIG-I Serine 8 Phosphorylation in the Regulatin of Interferon-beta Production

    Energy Technology Data Exchange (ETDEWEB)

    E Nistal-Villan; M Gack; G Martinez-Delgado; N Maharaj; K Inn; H Yang; R Wang; A Aggarwal; J Jung; A Garcia-Sastre

    2011-12-31

    RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity has not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.

  13. Good clinical practice regulatory inspections: Lessons for Indian investigator sites

    Directory of Open Access Journals (Sweden)

    R Marwah

    2010-01-01

    Full Text Available Regulatory inspections are important to evaluate the integrity of the data submitted to health authorities (HAs, protect patient safety, and assess adequacy of site/sponsor quality systems to achieve the same. Inspections generally occur after submission of data for marketing approval of an investigational drug. In recent years, there has been a significant increase in number of inspections by different HAs, including in India. The assessors/inspectors generally do a thorough review of site data before inspections. All aspects of ICH-GCP, site infrastructure, and quality control systems are assessed during the inspection. Findings are discussed during the close out meeting and a detailed inspection report issued afterward, which has to be responded to within 15-30 days with effective Corrective and Preventive Action Plan (CAPA. Protocol noncompliance, inadequate/inaccurate records, inadequate drug accountability, informed consent issues, and adverse event reporting were some of the most common findings observed during recent Food and Drug Administration (FDA inspections. Drug development is being increasingly globalized and an increased number of patients enrolled in studies submitted as part of applications come from all over the world including India. Because of the steep increase in research activity in the country, inexperienced sites, and more stakeholders, increased efforts will be required to ensure continuous quality and compliance. HAs have also made clear that enforcement will be increased and be swift, aggressive, and effective.

  14. Juvenile Hormone Prevents 20-Hydroxyecdysone-induced Metamorphosis by Regulating the Phosphorylation of a Newly Identified Broad Protein*

    Science.gov (United States)

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-01-01

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5′-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576

  15. CAPS Activity in Priming Vesicle Exocytosis Requires CK2 Phosphorylation*

    OpenAIRE

    Nojiri, Mari; Loyet, Kelly M.; Klenchin, Vadim A.; Kabachinski, Gregory; Martin, Thomas F. J.

    2009-01-01

    CAPS (Ca2+-dependent activator protein for secretion) functions in priming Ca2+-dependent vesicle exocytosis, but the regulation of CAPS activity has not been characterized. Here we show that phosphorylation by protein kinase CK2 is required for CAPS activity. Dephosphorylation eliminated CAPS activity in reconstituting Ca2+-dependent vesicle exocytosis in permeable and intact PC12 cells. Ser-5, -6, and -7 and Ser-1281 were identified by mass spectrometry as the major phosphorylation sites in...

  16. Pervasive hitchhiking at coding and regulatory sites in humans.

    Directory of Open Access Journals (Sweden)

    James J Cai

    2009-01-01

    Full Text Available Much effort and interest have focused on assessing the importance of natural selection, particularly positive natural selection, in shaping the human genome. Although scans for positive selection have identified candidate loci that may be associated with positive selection in humans, such scans do not indicate whether adaptation is frequent in general in humans. Studies based on the reasoning of the MacDonald-Kreitman test, which, in principle, can be used to evaluate the extent of positive selection, suggested that adaptation is detectable in the human genome but that it is less common than in Drosophila or Escherichia coli. Both positive and purifying natural selection at functional sites should affect levels and patterns of polymorphism at linked nonfunctional sites. Here, we search for these effects by analyzing patterns of neutral polymorphism in humans in relation to the rates of recombination, functional density, and functional divergence with chimpanzees. We find that the levels of neutral polymorphism are lower in the regions of lower recombination and in the regions of higher functional density or divergence. These correlations persist after controlling for the variation in GC content, density of simple repeats, selective constraint, mutation rate, and depth of sequencing coverage. We argue that these results are most plausibly explained by the effects of natural selection at functional sites -- either recurrent selective sweeps or background selection -- on the levels of linked neutral polymorphism. Natural selection at both coding and regulatory sites appears to affect linked neutral polymorphism, reducing neutral polymorphism by 6% genome-wide and by 11% in the gene-rich half of the human genome. These findings suggest that the effects of natural selection at linked sites cannot be ignored in the study of neutral human polymorphism.

  17. Phosphorylation of the Bacillus subtilis Replication Controller YabA Plays a Role in Regulation of Sporulation and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Tránsito García García

    2018-03-01

    Full Text Available Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.

  18. Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Hofmeister, Marlene Vind; Rosenbaek, Lena L

    2010-01-01

    The thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is important for renal electrolyte balance and its phosphorylation causes an increase in its transport activity and cellular localization. Here, we generated phospho-specific antibodies against two conserved N-terminal phosphorylation sites...

  19. Quantifying Kinase-Specific Phosphorylation Stoichiometry Using Stable Isotope Labeling In a Reverse In-Gel Kinase Assay

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Cox, Jonathan T.; Huang, Weiliang; Kane, Maureen; Tang, Keqi; Bieberich, Charles J.

    2016-12-06

    Reversible protein phosphorylation regulates essentially all cellular activities. Aberrant protein phosphorylation is an etiological factor in a wide array of diseases, including cancer1, diabetes2, and Alzheimer’s3. Given the broad impact of protein phosphorylation on cellular biology and organismal health, understanding how protein phosphorylation is regulated and the consequences of gain and loss of phosphoryl moieties from proteins is of primary importance. Advances in instrumentation, particularly in mass spectrometry, coupled with high throughput approaches have recently yielded large datasets cataloging tens of thousands of protein phosphorylation sites in multiple organisms4-6. While these studies are seminal in term of data collection, our understanding of protein phosphorylation regulation remains largely one-dimensional.

  20. Ionizing radiation-dependent and independent phosphorylation of the 32-kDa subunit of replication protein A during mitosis.

    LENUS (Irish Health Repository)

    Stephan, Holger

    2009-10-01

    The human single-stranded DNA-binding protein, replication protein A (RPA), is regulated by the N-terminal phosphorylation of its 32-kDa subunit, RPA2. RPA2 is hyperphosphorylated in response to various DNA-damaging agents and also phosphorylated in a cell-cycle-dependent manner during S- and M-phase, primarily at two CDK consensus sites, S23 and S29. Here we generated two monoclonal phospho-specific antibodies directed against these CDK sites. These phospho-specific RPA2-(P)-S23 and RPA2-(P)-S29 antibodies recognized mitotically phosphorylated RPA2 with high specificity. In addition, the RPA2-(P)-S23 antibody recognized the S-phase-specific phosphorylation of RPA2, suggesting that during S-phase only S23 is phosphorylated, whereas during M-phase both CDK sites, S23 and S29, are phosphorylated. Immunofluorescence microscopy revealed that the mitotic phosphorylation of RPA2 starts at the onset of mitosis, and dephosphorylation occurs during late cytokinesis. In mitotic cells treated with ionizing radiation (IR), we observed a rapid hyperphosphorylation of RPA2 in addition to its mitotic phosphorylation at S23 and S29, associated with a significant change in the subcellular localization of RPA. Our data also indicate that the RPA2 hyperphosphorylation in response to IR is facilitated by the activity of both ATM and DNA-PK, and is associated with activation of the Chk2 pathway.

  1. Identification of novel PAMP-triggered phosphorylation and dephosphorylation events in arabidopsis thaliana by quantitative phosphoproteomic analysis

    KAUST Repository

    Rayapuram, Naganand; Bonhomme, Ludovic; Bigeard, Jean; Haddadou, Kahina; Przybylski, Cé dric; Hirt, Heribert; Pflieger, Delphine

    2014-01-01

    Signaling cascades rely strongly on protein kinase-mediated substrate phosphorylation. Currently a major challenge in signal transduction research is to obtain high confidence substrate phosphorylation sites and assign them to specific kinases. In response to bacterial flagellin, a pathogen-associated molecular pattern (PAMP), we searched for rapidly phosphorylated proteins in Arabidopsis thaliana by combining multistage activation (MSA) and electron transfer dissociation (ETD) fragmentation modes, which generate complementary spectra and identify phosphopeptide sites with increased reliability. Of a total of 825 phosphopeptides, we identified 58 to be differentially phosphorylated. These peptides harbor kinase motifs of mitogen-activated protein kinases (MAPKs) and calcium-dependent protein kinases (CDPKs), as well as yet unknown protein kinases. Importantly, 12 of the phosphopeptides show reduced phosphorylation upon flagellin treatment. Since protein abundance levels did not change, these results indicate that flagellin induces not only various protein kinases but also protein phosphatases, even though a scenario of inhibited kinase activity may also be possible. © 2014 American Chemical Society.

  2. Identification of novel PAMP-triggered phosphorylation and dephosphorylation events in arabidopsis thaliana by quantitative phosphoproteomic analysis

    KAUST Repository

    Rayapuram, Naganand

    2014-04-04

    Signaling cascades rely strongly on protein kinase-mediated substrate phosphorylation. Currently a major challenge in signal transduction research is to obtain high confidence substrate phosphorylation sites and assign them to specific kinases. In response to bacterial flagellin, a pathogen-associated molecular pattern (PAMP), we searched for rapidly phosphorylated proteins in Arabidopsis thaliana by combining multistage activation (MSA) and electron transfer dissociation (ETD) fragmentation modes, which generate complementary spectra and identify phosphopeptide sites with increased reliability. Of a total of 825 phosphopeptides, we identified 58 to be differentially phosphorylated. These peptides harbor kinase motifs of mitogen-activated protein kinases (MAPKs) and calcium-dependent protein kinases (CDPKs), as well as yet unknown protein kinases. Importantly, 12 of the phosphopeptides show reduced phosphorylation upon flagellin treatment. Since protein abundance levels did not change, these results indicate that flagellin induces not only various protein kinases but also protein phosphatases, even though a scenario of inhibited kinase activity may also be possible. © 2014 American Chemical Society.

  3. Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Based on our recent finding that cardiac myosin binding protein C (cMyBP-C phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302, DAD (Asp273-Ala282-Asp302, SAS (Ser273-Ala282-Ser302, and t/t (cMyBP-C null genotypes, and the results were compared to transgenic mice expressing wide-type (WT cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi, and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc, and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.

  4. Regulatory site of inorganic pyrophosphatase. Interaction with substrate analogs

    International Nuclear Information System (INIS)

    Baikov, A.A.; Pavlov, A.R.; Avaeva, S.M.

    1986-01-01

    The effect of four PP 1 analogs with the structure PXP (X = N, C), phosphate, and the complex Cr(H 2 O) 4 PP 1 on the activity of inorganic pyrophosphatase from baker's yeast was studied over a wide range of substrate (Mg-PP 1 ) concentrations (lower limit 0.5 μM). The enzyme activity decreased in the presence of imidodiphosphate, hydroxymethane diphosphonate [PC(OH)P], and P 1 , and a double reciprocal plot of the rate of hydrolysis of Mg-PP 1 versus its concentration became linear. Small amounts of methane diphosphonate (PCP), ethane-1-hydroxy-1,1-diphosphonate (0.1-1μM), and Cr(H 2 O) 4 PP 1 (10 μM) activated the enzyme almost 2-fold by a competitive mechanism. The activation was due to an increase in the affinity of the protein for the activating Mg 2+ ion. Ultrafiltration showed that the pyrophosphatase molecule has 2.1 and 3.1 binding sites for PCP and PC(OHP)P, respectively. These results confirm the hypothesis that the enzyme contains a regulatory site whose occupation by PP 1 , P 1 , and substrate analogs increases the affinity of the protein for the activating metal

  5. Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Morth, Jens Preben; Jensen, Jan Egebjerg

    2010-01-01

    pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties...

  6. Architecture of the 99 bp DNA-six-protein regulatory complex of the lambda att site.

    Science.gov (United States)

    Sun, Xingmin; Mierke, Dale F; Biswas, Tapan; Lee, Sang Yeol; Landy, Arthur; Radman-Livaja, Marta

    2006-11-17

    The highly directional and tightly regulated recombination reaction used to site-specifically excise the bacteriophage lambda chromosome out of its E. coli host chromosome requires the binding of six sequence-specific proteins to a 99 bp segment of the phage att site. To gain structural insights into this recombination pathway, we measured 27 FRET distances between eight points on the 99 bp regulatory DNA bound with all six proteins. Triangulation of these distances using a metric matrix distance-geometry algorithm provided coordinates for these eight points. The resulting path for the protein-bound regulatory DNA, which fits well with the genetics, biochemistry, and X-ray crystal structures describing the individual proteins and their interactions with DNA, provides a new structural perspective into the molecular mechanism and regulation of the recombination reaction and illustrates a design by which different families of higher-order complexes can be assembled from different numbers and combinations of the same few proteins.

  7. NANOG Is Multiply Phosphorylated and Directly Modified by ERK2 and CDK1 In Vitro

    Directory of Open Access Journals (Sweden)

    Justin Brumbaugh

    2014-01-01

    Full Text Available NANOG is a divergent homeobox protein and a core component of the transcriptional circuitry that sustains pluripotency and self-renewal. Although NANOG has been extensively studied on the transcriptional level, little is known regarding its posttranslational regulation, likely due to its low abundance and challenging physical properties. Here, we identify eleven phosphorylation sites on endogenous human NANOG, nine of which mapped to single amino acids. To screen for the signaling molecules that impart these modifications, we developed the multiplexed assay for kinase specificity (MAKS. MAKS simultaneously tests activity for up to ten kinases while directly identifying the substrate and exact site of phosphorylation. Using MAKS, we discovered site-specific phosphorylation by ERK2 and CDK1/CyclinA2, providing a putative link between key signaling pathways and NANOG.

  8. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage.

    Science.gov (United States)

    Lee, Jong-Hyuk; Kang, Byung-Hee; Jang, Hyonchol; Kim, Tae Wan; Choi, Jinmi; Kwak, Sojung; Han, Jungwon; Cho, Eun-Jung; Youn, Hong-Duk

    2015-05-19

    Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly immediately after the transcription termination site. H3-T45 phosphorylation pattern showed close-resemblance to that of RNA polymerase II C-terminal domain (CTD) serine 2 phosphorylation, which establishes the transcription termination signal. AKT1 was more effective than AKT2 in phosphorylating H3-T45. Blocking H3-T45 phosphorylation by inhibiting AKT or through amino acid substitution limited RNA decay downstream of mRNA cleavage sites and decreased RNA polymerase II release from chromatin. Our findings suggest that AKT-mediated phosphorylation of H3-T45 regulates the processing of the 3' end of DNA damage-activated genes to facilitate transcriptional termination. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  10. The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect

    Directory of Open Access Journals (Sweden)

    Susannah L. Hewitt

    2017-10-01

    Full Text Available Many DNA lesions associated with lymphoid malignancies are linked to off-target cleavage by the RAG1/2 recombinase. However, off-target cleavage has mostly been analyzed in the context of DNA repair defects, confounding any mechanistic understanding of cleavage deregulation. We identified a conserved SQ phosphorylation site on RAG2 365 to 366 that is involved in feedback control of RAG cleavage. Mutation of serine 365 to a non-phosphorylatable alanine permits bi-allelic and bi-locus RAG-mediated breaks in the same cell, leading to reciprocal translocations. This phenomenon is analogous to the phenotype we described for ATM kinase inactivation. Here, we establish deregulated cleavage itself as a driver of chromosomal instability without the associated repair defect. Intriguingly, a RAG2-S365E phosphomimetic rescues the deregulated cleavage of ATM inactivation, reducing the incidence of reciprocal translocations. These data support a model in which feedback control of cleavage and maintenance of genome stability involves ATM-mediated phosphorylation of RAG2.

  11. PprA phosphorylation by STPK of Deinococcus radiodurans changes its in vitro functions

    International Nuclear Information System (INIS)

    Rajpurohit, Yogendra S.; Misra, H.S.

    2011-01-01

    Deinococcus radiodurans shows amazing resistance to both ionizing and non-ionizing radiations. This phenotype is attributed also to its efficient DNA double strand breaks (DSB) repair capability of this bacterium. PprA (pleiotropic protein promoting DNA repair) is unique to D. radiodurans and its role in gamma radiation resistance and DSB repair has been shown in this bacterium. Recombinant PrA protects dsDNA from exonuclease degradation and stimulates the DNA ends joining activity of both T4 DNA ligase and E.coli NAD ligase in vitro. Phosphomotif search showed that PprA has putative phosphorylation site similar to that is characterized for Ser/Thr protein kinases in eukaryotic system. A eukaryotic type Ser/Thr protein kinase (DR2518) of D. radiodurans, could phosphorylate recombinant PprA at Thr amino acid in vitro and the phosphorylation of PprA was also observed in vivo. DR2518 kinase mediated protein phosphorylation of PprA, improves its DNA binding affinity by nearly four fold and stimulated T4 DNA ligase activity more towards intermolecular ligation, as compared to unphosphorylated PprA. Interestingly, the phospho-PprA showed lesser protection of dsDNA than unphospho-PprA when incubated with exonuclease III in solution. The putative Thr of PprA was replaced with Ala (T48A) by site directed mutagenesis, which resulted in significant reduction of PprA phosphorylation by DR2518 kinase. Detailed studies on PprA phosphorylation and its functional significance would be presented. (author)

  12. Phosphorylated c-Mpl tyrosine 591 regulates thrombopoietin-induced signaling.

    Science.gov (United States)

    Sangkhae, Veena; Saur, Sebastian Jonas; Kaushansky, Alexis; Kaushansky, Kenneth; Hitchcock, Ian Stuart

    2014-06-01

    Thrombopoietin (TPO) is the primary regulator of platelet production, affecting cell survival, proliferation, and differentiation through binding to and stimulation of the cell surface receptor the cellular myeloproliferative leukemia virus oncogene (c-Mpl). Activating mutations in c-Mpl constitutively stimulate downstream signaling pathways, leading to aberrant hematopoiesis, and contribute to development of myeloproliferative neoplasms. Several studies have mapped the tyrosine residues within the cytoplasmic domain of c-Mpl that mediate these cellular signals; however, secondary signaling pathways are incompletely understood. In this study, we focused on c-Mpl tyrosine 591 (Y591). We found Y591 of wild-type c-Mpl to be phosphorylated in the presence of TPO. Additionally, eliminating Y591 phosphorylation by mutation to Phe resulted in decreased total receptor phosphorylation. Using a Src homology 2/phosphotyrosine-binding (SH2/PTB) domain binding microarray, we identified novel c-Mpl binding partners for phosphorylated Y591, including Src homology region 2 domain-containing phosphatase-1 (SHP-1), spleen tyrosine kinase (SYK) and Bruton's tyrosine kinase (BTK). The functional significance of binding partners was determined through small interfering RNA treatment of Ba/F3-Mpl cells, confirming that the increase in pERK1/2 resulting from removal of Y591 may be mediated by spleen tyrosine kinase. These findings identify a novel negative regulatory pathway that controls TPO-mediated signaling, advancing our understanding of the mechanisms required for successful maintenance of hematopoietic stem cells and megakaryocyte development. Copyright © 2014 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  13. Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.F.; Romanov, V.V. [Federal Medical Biological Agency, Moscow (Russian Federation); Shandala, N.K.; Titov, A.V.; Kiselev, S.M.; Seregin, V.A.; Metlyaev, E.G.; Novikova, N. [Burnasyan Federal Medical Biophysical Centre, Moscow (Russian Federation); Khokhlova, E.A. [Regional Management-107 under FMBA of Russia, Krasnokamensk (Russian Federation)

    2012-07-01

    Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The current Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated

  14. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment.

    Directory of Open Access Journals (Sweden)

    Thomas H Sanderson

    Full Text Available Recent advancements in isolation techniques for cytochrome c (Cytc have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.

  15. The redox state and the phosphorylation state of the mannitol-specific carrier of the E. coli phosphoenolpyruvate-dependent phosphotransferase system

    NARCIS (Netherlands)

    Robillard, G.T.; Pas, H.H.; Gage, D.; Elferink, M.G.L.

    1988-01-01

    This review summarizes the recent developments in identifying the activity-linked cysteine as one of the phosphorylation sites on the mannitol-specific EII of the E. coli phosphoenolpyruvate-dependent mannitol transport system. Two phosphorylation sites have been identified, one being the HPr/P-HPr

  16. Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method

    DEFF Research Database (Denmark)

    Steen, Hanno; Pandey, Akhilesh; Andersen, Jens S

    2002-01-01

    mechanism for activating or inhibiting enzymes and for the assembly of multiprotein complexes. Here, we describe a mass spectrometry-based phosphotyrosine-specific immonium ion scanning (PSI scanning) method for selective detection of tyrosine-phosphorylated peptides. Once the tyrosine....... Because of its simplicity and specificity, PSI scanning is likely to become an important tool in proteomic studies of pathways involving tyrosine phosphorylation....

  17. Regulatory Issues and Challenges in Preparing for the Regulation of New Reactor Siting: Malaysia's Experience

    International Nuclear Information System (INIS)

    Jais, Azlina Mohammad; Hassan, Halimah; Yasir, Muhamad Samudi; Roslan, Ridha

    2011-01-01

    This paper aims at giving an overview about the issues and challenges facing regulatory authority, the Atomic Energy Licensing Board (AELB) in ensuring nuclear safety, security and safeguards (3S's) and other relevant authorities to meet an impending nuclear power programme post-2020, in particular at the beginning stage of preparation for the regulation of nuclear power reactor siting. A comparison with an international framework and guidelines of the International Atomic Energy Agency (IAEA) and other countries' practice was made to get an overview of the present adequacy of Malaysia's nuclear regulatory framework in preparation for Malaysia to consider and perhaps decide for a safe, secure and peaceful nuclear power project in Malaysia, in utilising nuclear power in a quest for energy diversity and security. The important stage in the development of a nuclear power project is the evaluation of a suitable site to establish the site-related design inputs for the NPP. The evaluation of suitable site is the result of a process to ensure adequate protection of workers, public and the environment from the undue risk of ionizing radiation arising from NPP taking into account impact to the social communities and public acceptance, thus it will depend on the regulators to ensure a high level safety standards and security are met, in addition to its peaceful uses. Development of regulatory criteria for the site evaluation is a pre-initiatives licensing work for a possible nuclear power plant to performing effective nuclear safety and security reviews in an efficient and timely manner regardless whether Malaysia embarks on a nuclear power programme with anticipating challenges, learning from others' experiences in preparing for the demands for new licensing processes by collaborating internationally, in an expanding global environment

  18. Exposure to Tumescent Solution Significantly Increases Phosphorylation of Perilipin in Adipocytes.

    Science.gov (United States)

    Keskin, Ilknur; Sutcu, Mustafa; Eren, Hilal; Keskin, Mustafa

    2017-02-01

    Lidocaine and epinephrine could potentially decrease adipocyte viability, but these effects have not been substantiated. The phosphorylation status of perilipin in adipocytes may be predictive of cell viability. Perilipin coats lipid droplets and restricts access of lipases; phospho-perilipin lacks this protective function. The authors investigated the effects of tumescent solution containing lidocaine and epinephrine on the phosphorylation status of perilipin in adipocytes. In this in vitro study, lipoaspirates were collected before and after tumescence from 15 women who underwent abdominoplasty. Fat samples were fixed, sectioned, and stained for histologic and immunohistochemical analyses. Relative phosphorylation of perilipin was inferred from pixel intensities of immunostained adipocytes observed with confocal microscopy. For adipocytes collected before tumescent infiltration, 10.08% of total perilipin was phosphorylated. In contrast, 30.62% of total perilipin was phosphorylated for adipocytes collected from tumescent tissue (P < .01). The tumescent technique increases the relative phosphorylation of perilipin in adipocytes, making these cells more vulnerable to lipolysis. Tumescent solution applied for analgesia or hemostasis of the donor site should contain the lowest possible concentrations of lidocaine and epinephrine. LEVEL OF EVIDENCE 5. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  19. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    Science.gov (United States)

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data

    Directory of Open Access Journals (Sweden)

    Yachie Nozomu

    2010-05-01

    Full Text Available Abstract Background Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches. Results We analyzed time-course phosphoproteome data obtained previously by liquid chromatography mass spectrometry with the stable isotope labeling using amino acids in cell culture (SILAC method. This provides the relative phosphorylation activities of digested peptides at each of five time points after stimulating HeLa cells with epidermal growth factor (EGF. We initially calculated the correlations between the phosphorylation dynamics patterns of every pair of peptides and connected the strongly correlated pairs to construct a network. We found that peptides extracted from the same intracellular fraction (nucleus vs. cytoplasm tended to be close together within this phosphorylation dynamics-based network. The network was then analyzed using graph theory and compared with five known signal-transduction pathways. The dynamics-based network was correlated with known signaling pathways in the NetPath and Phospho.ELM databases, and especially with the EGF receptor (EGFR signaling pathway. Although the phosphorylation patterns of many proteins were drastically changed by the EGF stimulation, our results suggest that only EGFR signaling transduction was both strongly activated and precisely controlled. Conclusions The construction of a phosphorylation dynamics-based network provides a useful overview of condition-specific intracellular signal transduction using quantitative time-course phosphoproteome data under specific experimental conditions. Detailed prediction of signal transduction based on phosphoproteome dynamics remains challenging. However, since the phosphorylation profiles of kinase-substrate pairs on the specific pathway were localized in the dynamics

  1. Essential roles of Gab1 tyrosine phosphorylation in growth factor-mediated signaling and angiogenesis.

    Science.gov (United States)

    Wang, Weiye; Xu, Suowen; Yin, Meimei; Jin, Zheng Gen

    2015-02-15

    Growth factors and their downstream receptor tyrosine kinases (RTKs) mediate a number of biological processes controlling cell function. Adaptor (docking) proteins, which consist exclusively of domains and motifs that mediate molecular interactions, link receptor activation to downstream effectors. Recent studies have revealed that Grb2-associated-binders (Gab) family members (including Gab1, Gab2, and Gab3), when phosphorylated on tyrosine residues, provide binding sites for multiple effector proteins, such as Src homology-2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) and phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, thereby playing important roles in transducing RTKs-mediated signals into pathways with diversified biological functions. Here, we provide an up-to-date overview on the domain structure and biological functions of Gab1, the most intensively studied Gab family protein, in growth factor signaling and biological functions, with a special focus on angiogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Suggested state requirements and criteria for a low-level radioactive waste disposal site regulatory program

    International Nuclear Information System (INIS)

    Ratliff, R.A.; Dornsife, B.; Autry, V.; Gronemyer, L.; Vaden, J.; Cashman, T.

    1985-08-01

    Description of criteria and procedure is presented for a state to follow in the development of a program to regulate a LLW disposal site. This would include identifying those portions of the NRC regulations that should be matters of compatibility, identifying the various expertise and disciplines that will be necessary to effectively regulate a disposal site, identifying the resources necessary for conducting a confirmatory monitoring program, and providing suggestions in other areas which, based on experiences, would result in a more effective regulatory program

  3. Model and simulation of Na+/K+ pump phosphorylation in the presence of palytoxin.

    Science.gov (United States)

    Rodrigues, Antônio M; Almeida, Antônio-Carlos G; Infantosi, Antonio F C; Teixeira, Hewerson Z; Duarte, Mario A

    2008-02-01

    The ATP hydrolysis reactions responsible for the Na(+)/K(+)-ATPase phosphorylation, according to recent experimental evidences, also occur for the PTX-Na(+)/K(+) pump complex. Moreover, it has been demonstrated that PTX interferes with the enzymes phosphorylation status. However, the reactions involved in the PTX-Na(+)/K(+) pump complex phosphorylation are not very well established yet. This work aims at proposing a reaction model for PTX-Na(+)/K(+) pump complex, with similar structure to the Albers-Post model, to contribute to elucidate the PTX effect over Na(+)/K(+)-ATPase phosphorylation and dephosphorylation. Computational simulations with the proposed model support several hypotheses and also suggest: (i) phosphorylation promotes an increase of the open probability of induced channels; (ii) PTX reduces the Na(+)/K(+) pump phosphorylation rate; (iii) PTX may cause conformational changes to substates where the Na(+)/K(+)-ATPase may not be phosphorylated; (iv) PTX can bind to substates of the two principal states E1 and E2, with highest affinity to phosphorylated enzymes and with ATP bound to its low-affinity sites. The proposed model also allows previewing the behavior of the PTX-pump complex substates for different levels of intracellular ATP concentrations.

  4. Increased phosphorylation of histone H3 at serine 10 is involved in Epstein-Barr virus latent membrane protein-1-induced carcinogenesis of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Li, Binbin; Huang, Guoliang; Zhang, Xiangning; Li, Rong; Wang, Jian; Dong, Ziming; He, Zhiwei

    2013-01-01

    Increased histone H3 phosphorylation is an essential regulatory mechanism for neoplastic cell transformation. We aimed to explore the role of histone H3 phosphorylation at serine10 (p-H3Ser10) in Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1)-induced carcinogenesis of nasopharyngeal carcinoma (NPC). The expression of p-H3Ser10 was detected by the immunohistochemical analysis in NPC, chronic nasopharyngitis and normal nasopharynx tissues, and its correlation with LMP1 was analyzed in NPC tissues and cell lines. Using the small interfering RNA (siRNA)-H3 and histone H3 mutant (S10A), the effect of histone H3 Ser10 motif on LMP1-induced CNE1 cell proliferation, transformation and activator protein-1 (AP-1) activation were evaluated by CCK-8, focus-forming and reporter gene assay respectively. Mitogen- and stress-activated kinase 1 (MSK1) kinase activity and phosphorylation were detected by in vitro kinase assay and western blot. Using MSK1 inhibitor H89 or siRNA-MSK1, the regulatory role of MSK1 on histone H3 phosphorylation and AP-1 activation were analyzed. Immunohistochemical analysis revealed that the expression of p-H3Ser10 was significantly higher in the poorly differentiated NPC tissues than that in chronic nasopharyngitis (p <0.05) and normal nasopharynx tissues (p <0.001). Moreover, high level of p-H3Ser10 was positively correlated with the expression of LMP1 in NPC tissues (χ 2 =6.700, p =0.01; C=0.350) and cell lines. The knockdown and mutant (S10A) of histone H3 suppressed LMP1-induced CNE1 cell proliferation, foci formation and AP-1 activation. In addition, LMP1 could increase MSK1 kinase activity and phosphorylation. MSK1 inhibitor H89 or knockdown of MSK1 by siRNA blocked LMP1-induced phosphorylation of histone H3 at Ser10 and AP-1 activation. EBV-LMP1 can induce phosphorylation of histone H3 at Ser10 via MSK1. Increased phosphorylation of histone H3 at Ser10 is likely a crucial regulatory mechanism involved in LMP1-induced carcinogenesis of

  5. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling

    Science.gov (United States)

    Chen, Qing; Su, Yi; Wesslowski, Janine; Hagemann, Anja I; Ramialison, Mirana; Wittbrodt, Joachim; Scholpp, Steffen; Davidson, Gary

    2014-01-01

    Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6. Subject Categories Membrane & Intracellular Transport; Post-translational Modifications, Proteolysis & Proteomics PMID:25391905

  6. Developing a strategy and closure criteria for radioactive and mixed waste sites in the ORNL remedial action program: Regulatory interface

    International Nuclear Information System (INIS)

    Trabalka, J.R.

    1987-09-01

    Some options for stabilization and treatment of contaminated sites can theoretically provide a once-and-for-all solution (e.g., removal or destruction of contaminants). Most realizable options, however, leave contaminants in place (in situ), potentially isolated by physical or chemical, but more typically, by hydrologic measures. As a result of the dynamic nature of the interactions between contaminants, remedial measures, and the environment, in situ stablization measures are likely to have limited life spans, and maintenance and monitoring of performance become an essential part of the scheme. The length of formal institutional control over the site and related questions about future uses of the land and waters are of paramount importance. Unique features of the ORNL site and environs appear to be key ingredients in achieving the very long term institutional control necessary for successful financing and implementation of in situ stabilization. Some formal regulatory interface is necessary to ensure that regulatory limitations and new guidance which can affect planning and implementation of the ORNL Remedial Action Program are communicated to ORNL staff and potential technical and financial limitations which can affect schedules or alternatives for achievement of long-term site stabilization and the capability to meet environmental regulations are provided to regulatory bodies as early as possible. Such an interface should allow decisions on closure criteria to be based primarily on technical merit and protection of human health and the environment. A plan for interfacing with federal and state regulatory authorities is described. 93 refs., 1 fig., 4 tabs

  7. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    International Nuclear Information System (INIS)

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-01-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [γ- 32 P]ATP. The same glycoprotein was phosphorylated when [ 32 P]GTP was substituted for [ 32 P]ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein

  8. ROS-activated ATM-dependent phosphorylation of cytoplasmic substrates identified by large scale phosphoproteomics screen

    DEFF Research Database (Denmark)

    Kozlov, Sergei V; Waardenberg, Ashley J; Engholm-Keller, Kasper

    2016-01-01

    ATM (ataxia-telangiectasia, mutated) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signalling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoi......ATM (ataxia-telangiectasia, mutated) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signalling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle...... checkpoints, initiating DNA repair and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach...... to identify cytoplasmic proteins altered in their phosphorylation state in control and A-T (ataxia-telangiectasia) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites...

  9. Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation.

    Science.gov (United States)

    Asghar, Adeel; Lajeunesse, Audrey; Dulla, Kalyan; Combes, Guillaume; Thebault, Philippe; Nigg, Erich A; Elowe, Sabine

    2015-09-24

    During mitosis, Bub1 kinase phosphorylates histone H2A-T120 to promote centromere sister chromatid cohesion through recruitment of shugoshin (Sgo) proteins. The regulation and dynamics of H2A-T120 phosphorylation are poorly understood. Using quantitative phosphoproteomics we show that Bub1 is autophosphorylated at numerous sites. We confirm mitosis-specific autophosphorylation of a several residues and show that Bub1 activation is primed in interphase but fully achieved only in mitosis. Mutation of a single autophosphorylation site T589 alters kinetochore turnover of Bub1 and results in uniform H2A-T120 phosphorylation and Sgo recruitment along chromosome arms. Consequently, improper sister chromatid resolution and chromosome segregation errors are observed. Kinetochore tethering of Bub1-T589A refocuses H2A-T120 phosphorylation and Sgo1 to centromeres. Recruitment of the Bub1-Bub3-BubR1 axis to kinetochores has recently been extensively studied. Our data provide novel insight into the regulation and kinetochore residency of Bub1 and indicate that its localization is dynamic and tightly controlled through feedback autophosphorylation.

  10. Calcium ion binding properties and the effect of phosphorylation on the intrinsically disordered Starmaker protein.

    Science.gov (United States)

    Wojtas, Magdalena; Hołubowicz, Rafał; Poznar, Monika; Maciejewska, Marta; Ożyhar, Andrzej; Dobryszycki, Piotr

    2015-10-27

    Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins.

  11. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied...... by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal...... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  12. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Karlsson, Håkan K R; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied...... by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal...... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  13. Loop-Loop Interactions Regulate KaiA-Stimulated KaiC Phosphorylation in the Cyanobacterial KaiABC Circadian Clock

    Energy Technology Data Exchange (ETDEWEB)

    Egli, Martin [Vanderbilt Univ., Nashville, TN (United States); Pattanayek, Rekha [Vanderbilt Univ., Nashville, TN (United States); Sheehan, Jonathan H. [Vanderbilt Univ., Nashville, TN (United States); Xu, Yao [Vanderbilt Univ., Nashville, TN (United States); Mori, Tetsuya [Vanderbilt Univ., Nashville, TN (United States); Smith, Jarrod A. [Vanderbilt Univ., Nashville, TN (United States); Johnson, Carl H. [Vanderbilt Univ., Nashville, TN (United States)

    2013-01-25

    We found that the Synechococcus elongatus KaiA, KaiB, and KaiC proteins in the presence of ATP generate a post-translational oscillator that runs in a temperature-compensated manner with a period of 24 h. KaiA dimer stimulates phosphorylation of KaiC hexamer at two sites per subunit, T432 and S431, and KaiB dimers antagonize KaiA action and induce KaiC subunit exchange. Neither the mechanism of KaiA-stimulated KaiC phosphorylation nor that of KaiB-mediated KaiC dephosphorylation is understood in detail at present. We demonstrate here that the A422V KaiC mutant sheds light on the former mechanism. It was previously reported that A422V is less sensitive to dark pulse-induced phase resetting and has a reduced amplitude of the KaiC phosphorylation rhythm in vivo. A422 maps to a loop (422-loop) that continues toward the phosphorylation sites. By pulling on the C-terminal peptide of KaiC (A-loop), KaiA removes restraints from the adjacent 422-loop whose increased flexibility indirectly promotes kinase activity. We found in the crystal structure that A422V KaiC lacks phosphorylation at S431 and exhibits a subtle, local conformational change relative to wild-type KaiC. Molecular dynamics simulations indicate higher mobility of the 422-loop in the absence of the A-loop and mobility differences in other areas associated with phosphorylation activity between wild-type and mutant KaiCs. Finally, the A-loop–422-loop relay that informs KaiC phosphorylation sites of KaiA dimer binding propagates to loops from neighboring KaiC subunits, thus providing support for a concerted allosteric mechanism of phosphorylation.

  14. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M

    2016-12-16

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1-77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1-77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae*

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M.

    2016-01-01

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1–77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1–77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. PMID:27834677

  16. Statistical significance of cis-regulatory modules

    Directory of Open Access Journals (Sweden)

    Smith Andrew D

    2007-01-01

    Full Text Available Abstract Background It is becoming increasingly important for researchers to be able to scan through large genomic regions for transcription factor binding sites or clusters of binding sites forming cis-regulatory modules. Correspondingly, there has been a push to develop algorithms for the rapid detection and assessment of cis-regulatory modules. While various algorithms for this purpose have been introduced, most are not well suited for rapid, genome scale scanning. Results We introduce methods designed for the detection and statistical evaluation of cis-regulatory modules, modeled as either clusters of individual binding sites or as combinations of sites with constrained organization. In order to determine the statistical significance of module sites, we first need a method to determine the statistical significance of single transcription factor binding site matches. We introduce a straightforward method of estimating the statistical significance of single site matches using a database of known promoters to produce data structures that can be used to estimate p-values for binding site matches. We next introduce a technique to calculate the statistical significance of the arrangement of binding sites within a module using a max-gap model. If the module scanned for has defined organizational parameters, the probability of the module is corrected to account for organizational constraints. The statistical significance of single site matches and the architecture of sites within the module can be combined to provide an overall estimation of statistical significance of cis-regulatory module sites. Conclusion The methods introduced in this paper allow for the detection and statistical evaluation of single transcription factor binding sites and cis-regulatory modules. The features described are implemented in the Search Tool for Occurrences of Regulatory Motifs (STORM and MODSTORM software.

  17. Regulatory Phosphorylation of Bacterial-Type PEP Carboxylase by the Ca2+-Dependent Protein Kinase RcCDPK1 in Developing Castor Oil Seeds.

    Science.gov (United States)

    Ying, Sheng; Hill, Allyson T; Pyc, Michal; Anderson, Erin M; Snedden, Wayne A; Mullen, Robert T; She, Yi-Min; Plaxton, William C

    2017-06-01

    Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled cytosolic enzyme situated at a crucial branch point of central plant metabolism. In developing castor oil seeds ( Ricinus communis ) a novel, allosterically desensitized 910-kD Class-2 PEPC hetero-octameric complex, arises from a tight interaction between 107-kD plant-type PEPC and 118-kD bacterial-type (BTPC) subunits. The native Ca 2+ -dependent protein kinase (CDPK) responsible for in vivo inhibitory phosphorylation of Class-2 PEPC's BTPC subunit's at Ser-451 was highly purified from COS and identified as RcCDPK1 (XP_002526815) by mass spectrometry. Heterologously expressed RcCDPK1 catalyzed Ca 2+ -dependent, inhibitory phosphorylation of BTPC at Ser-451 while exhibiting: ( i ) a pair of Ca 2+ binding sites with identical dissociation constants of 5.03 μM, ( ii ) a Ca 2+ -dependent electrophoretic mobility shift, and ( iii ) a marked Ca 2+ -independent hydrophobicity. Pull-down experiments established the Ca 2+ -dependent interaction of N-terminal GST-tagged RcCDPK1 with BTPC. RcCDPK1-Cherry localized to the cytosol and nucleus of tobacco bright yellow-2 cells, but colocalized with mitochondrial-surface associated BTPC-enhanced yellow fluorescent protein when both fusion proteins were coexpressed. Deletion analyses demonstrated that although its N-terminal variable domain plays an essential role in optimizing Ca 2+ -dependent RcCDPK1 autophosphorylation and BTPC transphosphorylation activity, it is not critical for in vitro or in vivo target recognition. Arabidopsis ( Arabidopsis thaliana ) CPK4 and soybean ( Glycine max ) CDPKβ are RcCDPK1 orthologs that effectively phosphorylated castor BTPC at Ser-451. Overall, the results highlight a potential link between cytosolic Ca 2+ signaling and the posttranslational control of respiratory CO 2 refixation and anaplerotic photosynthate partitioning in support of storage oil and protein biosynthesis in developing COS. © 2017 American Society of Plant

  18. Distinct phosphorylation events regulate p130- and p107-mediated repression of E2F-4

    DEFF Research Database (Denmark)

    Farkas, Thomas; Hansen, Klaus; Holm, Karin

    2002-01-01

    The "pocket proteins" pRb (retinoblastoma tumor suppressor protein), p107, and p130 regulate cell proliferation via phosphorylation-sensitive interactions with E2F transcription factors and other proteins. We previously identified 22 in vivo phosphorylation sites in human p130, including three...

  19. Haloperidol Regulates the State of Phosphorylation of Ribosomal Protein S6 via Activation of PKA and Phosphorylation of DARPP-32

    Science.gov (United States)

    Valjent, Emmanuel; Bertran-Gonzalez, Jesus; Bowling, Heather; Lopez, Sébastien; Santini, Emanuela; Matamales, Miriam; Bonito-Oliva, Alessandra; Hervé, Denis; Hoeffer, Charles; Klann, Eric; Girault, Jean-Antoine; Fisone, Gilberto

    2011-01-01

    Administration of typical antipsychotic drugs, such as haloperidol, promotes cAMP-dependent signaling in the medium spiny neurons (MSNs) of the striatum. In this study, we have examined the effect of haloperidol on the state of phosphorylation of the ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. We found that haloperidol increases the phosphorylation of rpS6 at the dual site Ser235/236, which is involved in the regulation of mRNA translation. This effect was exerted in the MSNs of the indirect pathway, which express specifically dopamine D2 receptors (D2Rs) and adenosine A2 receptors (A2ARs). The effect of haloperidol was decreased by blockade of A2ARs or by genetic attenuation of the Gαolf protein, which couples A2ARs to activation of adenylyl cyclase. Moreover, stimulation of cAMP-dependent protein kinase A (PKA) increased Ser235/236 phosphorylation in cultured striatal neurons. The ability of haloperidol to promote rpS6 phosphorylation was abolished in knock-in mice deficient for PKA activation of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa. In contrast, pharmacological or genetic inactivation of p70 rpS6 kinase 1, or extracellular signal-regulated kinases did not affect haloperidol-induced rpS6 phosphorylation. These results identify PKA as a major rpS6 kinase in neuronal cells and suggest that regulation of protein synthesis through rpS6 may be a potential target of antipsychotic drugs. PMID:21814187

  20. Ubiquitination-Linked Phosphorylation of the FANCI S/TQ Cluster Contributes to Activation of the Fanconi Anemia I/D2 Complex

    Directory of Open Access Journals (Sweden)

    Ronald S. Cheung

    2017-06-01

    Full Text Available Repair of interstrand crosslinks by the Fanconi anemia (FA pathway requires both monoubiquitination and de-ubiquitination of the FANCI/FANCD2 (FANCI/D2 complex. In the standing model, the phosphorylation of six sites in the FANCI S/TQ cluster domain occurs upstream of, and promotes, FANCI/D2 monoubiquitination. We generated phospho-specific antibodies against three different S/TQ cluster sites (serines 556, 559, and 565 on human FANCI and found that, in contrast to the standing model, distinct FANCI sites were phosphorylated either predominantly upstream (ubiquitination independent; serine 556 or downstream (ubiquitination-linked; serines 559 and 565 of FANCI/D2 monoubiquitination. Ubiquitination-linked FANCI phosphorylation inhibited FANCD2 de-ubiquitination and bypassed the need to de-ubiquitinate FANCD2 to achieve effective interstrand crosslink repair. USP1 depletion suppressed ubiquitination-linked FANCI phosphorylation despite increasing FANCI/D2 monoubiquitination, providing an explanation of why FANCD2 de-ubiquitination is important for function of the FA pathway. Our work results in a refined model of how FANCI phosphorylation activates the FANCI/D2 complex.

  1. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    Science.gov (United States)

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Phosphorylated nano-diamond/ Polyimide Nanocomposites

    International Nuclear Information System (INIS)

    Beyler-Çiǧil, Asli; Çakmakçi, Emrah; Kahraman, Memet Vezir

    2014-01-01

    In this study, a novel route to synthesize polyimide (PI)/phosphorylated nanodiamond films with improved thermal and mechanical properties was developed. Surface phosphorylation of nano-diamond was performed in dichloromethane. Phosphorylation dramatically enhanced the thermal stability of nano-diamond. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized with 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydianiline (4,4'-ODA) in the solution of N,N- dimethylformamide (DMF). Pure BTDA-ODA polyimide films and phosphorylated nanodiamond containing BTDA-ODA PI films were prepared. The PAA displayed good compatibility with phosphorylated nano-diamond. The morphology of the polyimide (PI)/phosphorylated nano-diamond was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and polyimide (PI)/phosphorylated nano-diamond was characterized by FTIR. SEM and FTIR results showed that the phosphorylated nano-diamond was successfully prepared. Thermal properties of the polyimide (PI)/phosphorylated nanodiamond was characterized by thermogravimetric analysis (TGA). TGA results showed that the thermal stability of (PI)/phosphorylated nano-diamond film was increased

  3. Phosphorylation and disassembly of intermediate filaments in mitotic cells

    International Nuclear Information System (INIS)

    Chou, Yinghao; Rosevear, E.; Goldman, R.D.

    1989-01-01

    As baby hamster kidney (BHK-21) cells enter mitosis, networks of intermediate filaments (IFs) are transformed into cytoplasmic aggregates of protofilaments. Coincident with this morphological change, the phosphate content of vimentin increases from 0.3 mol of P i per mol of protein in interphase to 1.9 mol of P i per mol of protein in mitosis. A similar increase in phosphate content is observed with desmin, from 0.5 mol of P i per mol of protein to 1.5 mol of P i per mol of protein. Fractionation of mitotic cell lysates by hydroxylapatite column chromatography reveals the presence of two IF protein kinase activities, designated as IF protein kinase I and IF protein kinase II. Comparison of two-dimensional 32 P-labeled phosphopeptide maps of vimentin and desmin phosphorylated in vivo in mitosis, and in vitro using partially purified kinase fractions, reveals extensive similarity in the two sets of phosphorylation sites. Phosphorylation of in vitro polymerized IFs by IF protein kinase II induces complete disassembly as determined by negative-stain electron microscopy. The results support the idea that the disassembly of IFs in mitosis is regulated by the phosphorylation of its subunit proteins

  4. [Protein kinase A inhibitor H-89 blocks polyploidization of SP600125-induced CMK cells by regulating phosphorylation of ribosomal protein S6 kinase 1].

    Science.gov (United States)

    Zhao, Song; Yang, Jingang; Li, Changling; Xing, Sining; Yu, Ying; Liu, Shuo; Pu, Feifei; Ma, Dongchu

    2016-10-01

    Objective To investigate the regulatory effect of post-translation modification of ribosomal protein S6 kinase 1 (S6K1) on the polyploidization of megakaryocytes. Methods SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and H-89, a cAMP-dependent protein kinase (PKA) inhibitor, were used to treat CMK cells separately or in combination. With propidium iodide (PI) to dye DNA in the treated cells, the relative DNA content was detected by flow cytometry, and then the DNA polyploidy was analyzed. The change of expression and phosphorylation of ribosomal protein S6 kinase 1 (S6K1), an important mammalian target of rapamycin (mTOR) downstream target molecule, was analyzed by Western blotting. Molecular docking study and kinase activity assay were performed to analyze the combination of H-89 with S6K1 and the effect of H-89 on the activity of S6K1 kinase. Results SP600125 induced CMK cell polyploidization in a time-dependent and dose-dependent manner. At the same time, it increased the phosphorylation of S6K1 at Thr421/Ser424 and decreased the phosphorylation of S6K1 at Thr389. H-89 not only blocked polyploidization, but also decreased the phosphorylation of S6K1 at Thr421/Ser424 and increased the phosphorylation of S6K1 at Thr389. Molecular docking and kinase activity assay showed that H-89 occupied the ATP binding sites of S6K1 and inhibited its activity. Noticeably, both H-89 and SP600125 inhibited the activity of PKA. Moreover, the two drugs further inhibited the activity of PKA when used together. Therefore, these data indicated that H-89 blocked the SP600125-induced polyploidization of CMK cells mainly by changing S6K1 phosphorylation state, rather than its inhibitory effect on PKA. Conclusion H-89 can block the polyploidization of SP600125-induced CMK cells by regulating S6K1 phosphorylation state.

  5. Protein kinase C epsilon mediates the inhibition of angiotensin II on the slowly activating delayed-rectifier potassium current through channel phosphorylation.

    Science.gov (United States)

    Gou, Xiangbo; Wang, Wenying; Zou, Sihao; Qi, Yajuan; Xu, Yanfang

    2018-03-01

    The slowly activating delayed rectifier K + current (I Ks ) is one of the main repolarizing currents in the human heart. Evidence has shown that angiotensin II (Ang II) regulates I Ks through the protein kinase C (PKC) pathway, but the related results are controversial. This study was designed to identify PKC isoenzymes involved in the regulation of I Ks by Ang II and the underlying molecular mechanism. The whole-cell patch-clamp technique was used to record I Ks in isolated guinea pig ventricular cardiomyocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human KCNQ1/KCNE1 genes and Ang II type 1 receptor genes. Ang II inhibited I Ks in a concentration-dependent manner in native cardiomyocytes. A broad PKC inhibitor Gö6983 (not inhibiting PKCε) and a selective cPKC inhibitor Gö6976 did not affect the inhibitory action of Ang II. In contrast, the inhibition was significantly attenuated by PKCε-selective peptide inhibitor εV1-2. However, direct activation of PKC by phorbol 12-myristate 13-acetate (PMA) increased the cloned human I Ks in HEK293 cells. Similarly, the cPKC peptide activator significantly enhanced the current. In contrast, the PKCε peptide activator inhibited the current. Further evidence showed that PKCε knockdown by siRNA antagonized the Ang II-induced inhibition on KCNQ1/KCNE1 current, whereas knockdown of cPKCs (PKCα and PKCβ) attenuated the potentiation of the current by PMA. Moreover, deletion of four putative phosphorylation sites in the C-terminus of KCNQ1 abolished the action of PMA. Mutation of two putative phosphorylation sites in the N-terminus of KCNQ1 and one site in KCNE1 (S102) blocked the inhibition of Ang II. Our results demonstrate that PKCε isoenzyme mediates the inhibitory action of Ang II on I Ks and by phosphorylating distinct sites in KCNQ1/KCNE1, cPKC and PKCε isoenzymes produce the contrary regulatory effects on the channel. These findings have provided new insight into the molecular mechanism

  6. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    Science.gov (United States)

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  7. Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Guangyou eDuan

    2013-12-01

    Full Text Available Elucidating the dynamics of molecular processes in living organisms in response to external perturbations is a central goal in modern systems biology. We investigated the dynamics of protein phosphorylation events in Arabidopsis thaliana exposed to changing nutrient conditions. Phosphopeptide expression levels were detected at five consecutive time points over a time interval of 30 minutes after nutrient resupply following prior starvation. The three tested inorganic, ionic nutrients NH4+, NO3-, PO43- elicited similar phosphosignaling responses that were distinguishable from those invoked by the sugars mannitol, sucrose. When embedded in the protein-protein interaction network of Arabidopsis thaliana, phosphoproteins were found to exhibit a higher degree compared to average proteins. Based on the time-series data, we reconstructed a network of regulatory interactions mediated by phosphorylation. The performance of different network inference methods was evaluated by the observed likelihood of physical interactions within and across different subcellular compartments and based on gene ontology semantic similarity. The dynamic phosphorylation network was then reconstructed using a Pearson correlation method with added directionality based on partial variance differences. The topology of the inferred integrated network corresponds to an information dissemination architecture, in which the phosphorylation signal is passed on to an increasing number of phosphoproteins stratified into an initiation, processing, and effector layer. Specific phosphorylation peptide motifs associated with the distinct layers were identified indicating the action of layer-specific kinases. Despite the limited temporal resolution, combined with information on subcellular location, the available time-series data proved useful for reconstructing the dynamics of the molecular signaling cascade in response to nutrient stress conditions in the plant Arabidopsis thaliana.

  8. Conformational Clusters of Phosphorylated Tyrosine.

    Science.gov (United States)

    Abdelrasoul, Maha; Ponniah, Komala; Mao, Alice; Warden, Meghan S; Elhefnawy, Wessam; Li, Yaohang; Pascal, Steven M

    2017-12-06

    Tyrosine phosphorylation plays an important role in many cellular and intercellular processes including signal transduction, subcellular localization, and regulation of enzymatic activity. In 1999, Blom et al., using the limited number of protein data bank (PDB) structures available at that time, reported that the side chain structures of phosphorylated tyrosine (pY) are partitioned into two conserved conformational clusters ( Blom, N.; Gammeltoft, S.; Brunak, S. J. Mol. Biol. 1999 , 294 , 1351 - 1362 ). We have used the spectral clustering algorithm to cluster the increasingly growing number of protein structures with pY sites, and have found that the pY residues cluster into three distinct side chain conformations. Two of these pY conformational clusters associate strongly with a narrow range of tyrosine backbone conformation. The novel cluster also highly correlates with the identity of the n + 1 residue, and is strongly associated with a sequential pYpY conformation which places two adjacent pY side chains in a specific relative orientation. Further analysis shows that the three pY clusters are associated with distinct distributions of cognate protein kinases.

  9. “Scanning mutagenesis” of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Science.gov (United States)

    The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1alpha subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated...

  10. Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation.

    Science.gov (United States)

    Vasu, Dudipeta; Kumar, Pasupuleti Santhosh; Prasad, Uppu Venkateswara; Swarupa, Vimjam; Yeswanth, Sthanikam; Srikanth, Lokanathan; Sunitha, Manne Mudhu; Choudhary, Abhijith; Sarma, Potukuchi Venkata Gurunadha Krishna

    2017-03-01

    When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureus glkA and biofilm formation. Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and spread the infection.

  11. Pim-1 Kinase Phosphorylates Cardiac Troponin I and Regulates Cardiac Myofilament Function

    Directory of Open Access Journals (Sweden)

    Ni Zhu

    2018-03-01

    Full Text Available Background/Aims: Pim-1 is a serine/threonine kinase that is highly expressed in the heart, and exerts potent cardiac protective effects through enhancing survival, proliferation, and regeneration of cardiomyocytes. Its myocardial specific substrates, however, remain unknown. In the present study, we aim to investigate whether Pim-1 modulates myofilament activity through phosphorylation of cardiac troponin I (cTnI, a key component in regulating myofilament function in the heart. Methods: Coimmunoprecipitation and immunofluorescent assays were employed to investigate the interaction of Pim-1 with cTnI in cardiomyocytes. Biochemical, site directed mutagenesis, and mass spectrometric analyses were utilized to identify the phosphorylation sites of Pim1 in cTnI. Myofilament functional assay using skinned cardiac fiber was used to assess the effect of Pim1-mediated phosphorylation on cardiac myofilament activity. Lastly, the functional significance of Pim1-mediated cTnI in heart disease was determined in diabetic mice. Results: We found that Pim-1 specifically interacts with cTnI in cardiomyocytes and this interaction leads to Pim1-mediated cTnI phosphorylation, predominantly at Ser23/24 and Ser150. Furthermore, our functional assay demonstrated that Pim-1 induces a robust phosphorylation of cTnI within the troponin complex, thus leading to a decreased Ca2+ sensitivity. Insulin-like growth factor 1 (IGF-1, a peptide growth factor that has been shown to stimulate myocardial contractility, markedly induces cTnI phosphorylation at Ser23/24 and Ser150 through increasing Pim-1 expression in cardiomyocytes. In a high-fat diabetic mice model, the expression of Pim1 in the heart is significantly decreased, which is accompanied by a decreased phosphorylation of cTnI at Ser23/24 and Ser150, further implicating the pathological significance of the Pim1/cTnI axis in the development of diabetic cardiomyopathy. Conclusion: Our results demonstrate that Pim-1 is a

  12. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3-SH2-Tyrosine Kinase Protein Family.

    Science.gov (United States)

    Dos Santos, Helena G; Siltberg-Liberles, Jessica

    2016-09-19

    One of the largest multigene families in Metazoa are the tyrosine kinases (TKs). These are important multifunctional proteins that have evolved as dynamic switches that perform tyrosine phosphorylation and other noncatalytic activities regulated by various allosteric mechanisms. TKs interact with each other and with other molecules, ultimately activating and inhibiting different signaling pathways. TKs are implicated in cancer and almost 30 FDA-approved TK inhibitors are available. However, specific binding is a challenge when targeting an active site that has been conserved in multiple protein paralogs for millions of years. A cassette domain (CD) containing SH3-SH2-Tyrosine Kinase domains reoccurs in vertebrate nonreceptor TKs. Although part of the CD function is shared between TKs, it also presents TK specific features. Here, the evolutionary dynamics of sequence, structure, and phosphorylation across the CD in 17 TK paralogs have been investigated in a large-scale study. We establish that TKs often have ortholog-specific structural disorder and phosphorylation patterns, while secondary structure elements, as expected, are highly conserved. Further, domain-specific differences are at play. Notably, we found the catalytic domain to fluctuate more in certain secondary structure elements than the regulatory domains. By elucidating how different properties evolve after gene duplications and which properties are specifically conserved within orthologs, the mechanistic understanding of protein evolution is enriched and regions supposedly critical for functional divergence across paralogs are highlighted. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard

    2013-01-01

    -specific phosphorylation sites were identified in tissue-specific enzymes such as those encoded by HMGCS2, BDH1, PCK2, CPS1, and OTC in liver mitochondria, and CKMT2 and CPT1B in heart and skeletal muscle. Kinase prediction showed an important role for PKA and PKC in all tissues but also for proline-directed kinases......Phosphorylation of mitochondrial proteins in a variety of biological processes is increasingly being recognized and may contribute to the differences in function and energy demands observed in mitochondria from different tissues such as liver, heart, and skeletal muscle. Here, we used a combination...... of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC-MS/MS on isolated mitochondria to investigate the tissue-specific mitochondrial phosphoproteomes of rat liver, heart, and skeletal muscle. In total, we identified 899 phosphorylation sites in 354 different mitochondrial proteins including...

  14. Positional effect of phosphorylation sites 266 and 267 in the cytoplasmic domain of the E2 protein of hepatitis C virus 3a genotype: Interferon Resistance analysis via Sequence Alignment

    Directory of Open Access Journals (Sweden)

    Ur Rehman Irshad

    2011-05-01

    Full Text Available Abstract Background Interferon is well thought-out as the key defence against all infections including HCV. The only treatment for HCV infection is pegylated interferon alpha (IFN-α but unluckily more than half of the infected individuals do not act in response to the cure and become chronic HCV carriers. The mechanism how HCV induce interferon resistance is still elusive. It is recently reported that HCV envelope protein 2 interacts with PKR which is the interferon-inducible protein kinase and which in turn blocks the activity of its target molecule called eukaryotic initiation factor elF2. Sequence analysis of Envelope protein reveals it contains a domain homologous to phosphorylation sites of PKR andthe translation initiation factor eIF2alpha. Envelope protein competes for phosphorylation with PKR. Inhibition of kinase activity of PKR is postulated as a mechanism of to interferon (IFN resistance. Results Present study involves the insilico investigation of possible role of potential phosphorylation in envelope 2 protein of 3a genotype in interferon resistance. Envelope protein coding genes were isolated from local HCV isolates, cloned and sequenced. Phylogenetic analysis was done and tertiary structure of envelope gene was predicted. Visualization of phosphorylation in tertiary structure reveals that residue 266 and 267 of envelope gene 2 are surface exposed and their phosphorylation may compete with the phosphorylation of PKR protein and possibly involved in mediating Interferon Resistance. Conclusion A hybrid in-silico and wet laboratory approach of motif prediction, evolutionary and structural analysis has pointed out serine 266 and 267 of the HCV E2 gene as a hopeful claimant for the serine phosphorylation. Recognition of these nucleotide variations may assist to propose genotype precise therapy to avoid and resolve HCV infections.

  15. Phosphorylation of Rac1 T108 by Extracellular Signal-Regulated Kinase in Response to Epidermal Growth Factor: a Novel Mechanism To Regulate Rac1 Function

    Science.gov (United States)

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara

    2013-01-01

    Accumulating evidence has implicated Rho GTPases, including Rac1, in many aspects of cancer development. Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that Rac1 T108 within the 106PNTP109 motif is likely an extracellular signal-regulated kinase (ERK) phosphorylation site and that Rac1 also has an ERK docking site, 183KKRKRKCLLL192 (D site), at the C terminus. Indeed, we show here that both transfected and endogenous Rac1 interacts with ERK and that this interaction is mediated by its D site. Green fluorescent protein (GFP)-Rac1 is threonine (T) phosphorylated in response to epidermal growth factor (EGF), and EGF-induced Rac1 threonine phosphorylation is dependent on the activation of ERK. Moreover, mutant Rac1 with the mutation of T108 to alanine (A) is not threonine phosphorylated in response to EGF. In vitro ERK kinase assay further shows that pure active ERK phosphorylates purified Rac1 but not mutant Rac1 T108A. We also show that Rac1 T108 phosphorylation decreases Rac1 activity, partially due to inhibiting its interaction with phospholipase C-γ1 (PLC-γ1). T108 phosphorylation targets Rac1 to the nucleus, which isolates Rac1 from other guanine nucleotide exchange factors (GEFs) and hinders Rac1's role in cell migration. We conclude that Rac1 T108 is phosphorylated by ERK in response to EGF, which plays an important role in regulating Rac1. PMID:24043306

  16. Engineering of specific uranyl-coordination sites in the calcium-binding motif of Calmodulin

    International Nuclear Information System (INIS)

    Beccia, M.; Pardoux, R.; Sauge-Merle, S.; Bremond, N.; Lemaire, D.; Berthomieu, C.; Delangle, P.; Guilbaud, P.

    2014-01-01

    Complete text of publication follows: Characterization of heavy metals interactions with proteins is fundamental for understanding the molecular factors and mechanisms governing ions toxicity and speciation in cells. This line of research will also help in developing new molecules able to selectively and efficiently bind toxic metal ions, which could find application for bio-detection or bioremediation purposes. We have used the regulatory calcium-binding protein Calmodulin (CaM) from A. thaliana as a structural model and, starting from it, we have designed various mutants by site-directed mutagenesis. We have analysed thermodynamics of uranyl ion binding to both sites I and II of CaM N-terminal domain and we have identified structural factors governing this interaction. Selectivity for uranyl ion has been tested by studying reactions of the investigated peptides with Ca 2+ , in the same conditions used for UO 2 2+ . Spectro-fluorimetric titrations and FTIR analysis have shown that the affinity for uranyl increases by phosphorylation of a threonine in site I, especially approaching the physiological pH, where the phospho-threonine side chain is deprotonated. Based on structural models obtained by Molecular Dynamics, we tested the effect of a two residues deletion on site I properties. We obtained an almost two orders of magnitude increase in affinity for uranyl, with a sub-nanomolar dissociation constant for the uranyl complex with the non phosphorylated peptide, and an improved uranyl/calcium selectivity. Allosteric effects depending on Ca 2+ and UO 2 2+ binding have been investigated by comparing thermodynamic parameters obtained for mutants having both sites I and II able to chelate metal ions with those of mutants consisting of just one active site

  17. Oxidative phosphorylation revisited

    DEFF Research Database (Denmark)

    Nath, Sunil; Villadsen, John

    2015-01-01

    The fundamentals of oxidative phosphorylation and photophosphorylation are revisited. New experimental data on the involvement of succinate and malate anions respectively in oxidative phosphorylation and photophosphorylation are presented. These new data offer a novel molecular mechanistic...

  18. Through the regulatory hoop

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1985-01-01

    There are many regulatory hoops through which waste generators, brokers, and disposal site operators must jump to dispose of waste safely. As the proposed exclusionary date of January 1, 1986, approaches, these regulatory hoops have the distinct possibility of multiplying or at least changing shape. The state of Washington, in its role as an Agreement State with the US Nuclear Regulatory Commission, licenses and inspects the commercial operator of the Northwest Compact's low-level radioactive waste disposal site on the Hanford Reservation. Washington has received as much as 53%, or 1.4 million cubic feet per year, of the nation's total volume of waste disposed. To control such a large volume of waste, a regulatory program involving six agencies has developed over the years in Washington

  19. Rat vas deferens SERCA2 is modulated by Ca2+/calmodulin protein kinase II-mediated phosphorylation

    International Nuclear Information System (INIS)

    Rodriguez, J.B.R.; Muzi-Filho, H.; Valverde, R.H.F.; Quintas, L.E.M.; Noel, F.; Einicker-Lamas, M.; Cunha, V.M.N.

    2013-01-01

    Ca 2+ pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca 2+ -ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca 2+ -ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca 2+ (Ca 0.5 = 780 nM) and a low sensitivity to vanadate (IC 50 = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca 2+ and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca 2+ accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca 2+ and CaM, possibly via CaMKII, in a process that results in stimulation of Ca 2+ pumping activity

  20. Pseudomonas aeruginosa AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production

    Directory of Open Access Journals (Sweden)

    Alexander S. Little

    2018-01-01

    Full Text Available Pseudomonas aeruginosa employs numerous, complex regulatory elements to control expression of its many virulence systems. The P. aeruginosa AlgZR two-component regulatory system controls the expression of several crucial virulence phenotypes. We recently determined, through transcriptomic profiling of a PAO1 ΔalgR mutant strain compared to wild-type PAO1, that algZR and hemCD are cotranscribed and show differential iron-dependent gene expression. Previous expression profiling was performed in strains without algR and revealed that AlgR acts as either an activator or repressor, depending on the gene. Thus, examination of P. aeruginosa gene expression from cells locked into different AlgR phosphorylation states reveals greater physiological relevance. Therefore, gene expression from strains carrying algR alleles encoding a phosphomimetic (AlgR D54E or a phosphoablative (AlgR D54N form were compared by microarray to PAO1. Transcriptome analyses of these strains revealed 25 differentially expressed genes associated with iron siderophore biosynthesis or heme acquisition or production. The PAO1 algR D54N mutant produced lower levels of pyoverdine but increased expression of the small RNAs prrf1 and prrf2 compared to PAO1. In contrast, the algR D54N mutant produced more pyocyanin than wild-type PAO1. On the other hand, the PAO1 algR D54E mutant produced higher levels of pyoverdine, likely due to increased expression of an iron-regulated gene encoding the sigma factor pvdS, but it had decreased pyocyanin production. AlgR specifically bound to the prrf2 and pvdS promoters in vitro. AlgR-dependent pyoverdine production was additionally influenced by carbon source rather than the extracellular iron concentration per se. AlgR phosphorylation effects were also examined in a Drosophila melanogaster feeding, murine acute pneumonia, and punch wound infection models. Abrogation of AlgR phosphorylation attenuated P. aeruginosa virulence in these infection

  1. Phosphorylation of inhibitor-2 and activation of MgATP-dependent protein phosphatase by rat skeletal muscle glycogen synthase kinase

    International Nuclear Information System (INIS)

    Hegazy, M.G.; Reimann, E.M.; Thysseril, T.J.; Schlender, K.K.

    1986-01-01

    Rat skeletal muscle contains a glycogen synthase kinase (GSK-M) which is not stimulated by Ca 2+ or cAMP. This kinase has an apparent Mr of 62,000 and uses ATP but not GTP as a phosphoryl donor. GSK-M phosphorylated glycogen synthase at sites 2 and 3. It phosphorylated ATP-citrate lyase and activated MgATP-dependent phosphatase in the presence of ATP but not GTP. As expected, the kinase also phosphorylated phosphatase inhibitor 2 (I-2). Phosphatase incorporation reached approximately 0.3 mol/mol of I-2. Phosphopeptide maps were obtained by digesting 32 P-labeled I-2 with trypsin and separating the peptides by reversed phase HPLC. Two partially separated 32 P-labeled peaks were obtained when I-2 was phosphorylated with either GSK-M or glycogen synthase kinase 3 (GSK-3) and these peptides were different from those obtained when I-2 was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase (CSU) or casein kinase II (CK-II). When I-2 was phosphorylated with GSK-M or GSK-3 and cleaved by CNBr, a single radioactive peak was obtained. Phosphoamino acid analysis showed that I-2 was phosphorylated by GSK-M or GSK-3 predominately in Thr whereas CSU and CK-II phosphorylated I-2 exclusively in Ser. These results indicate that GSK-M is similar to GSK-3 and to ATP-citrate lyase kinase. However, it appears to differ in Mr from ATP-citrate lyase kinase and it differs from GSK-3 in that it phosphorylates glycogen synthase at site 2 and it does not use GTP as a phosphoryl donor

  2. Insulin treatment promotes tyrosine phosphorylation of PKR and inhibits polyIC induced PKR threonine phosphorylation.

    Science.gov (United States)

    Swetha, Medchalmi; Ramaiah, Kolluru V A

    2015-11-01

    Tyrosine phosphorylation of insulin receptor beta (IRβ) in insulin treated HepG2 cells is inversely correlated to ser(51) phosphorylation in the alpha-subunit of eukaryotic initiation factor 2 (eIF2α) that regulates protein synthesis. Insulin stimulates interaction between IRβ and PKR, double stranded RNA-dependent protein kinase, also known as EIF2AK2, and phosphorylation of tyrosine residues in PKR, as analyzed by immunoprecipitation and pull down assays using anti-IRβ and anti-phosphotyrosine antibodies, recombinant IRβ and immunopurified PKR. Further polyIC or synthetic double stranded RNA-induced threonine phosphorylation or activation of immunopurified and cellular PKR is suppressed in the presence of insulin treated purified IRβ and cell extracts. Acute, but not chronic, insulin treatment enhances tyrosine phosphorylation of IRβ, its interaction with PKR and tyrosine phosphorylation of PKR. In contrast, lipopolysaccharide that stimulates threonine phosphorylation of PKR and eIF2α phosphorylation and AG 1024, an inhibitor of the tyrosine kinase activity of IRβ, reduces PKR association with the receptor, IRβ in HepG2 cells. These findings therefore may suggest that tyrosine phosphorylated PKR plays a role in the regulation of insulin induced protein synthesis and in maintaining insulin sensitivity, whereas, suppression of polyIC-mediated threonine phosphorylation of PKR by insulin compromises its ability to fight against virus infection in host cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Affinity labeling and resonance energy transfer studies of the reduced coenzyme regulatory site of bovine liver glutamate dehydrogenase

    International Nuclear Information System (INIS)

    Lark, R.H.

    1988-01-01

    Bovine liver glutamate dehydrogenase was studied by affinity labeling and resonance energy transfer. The enzyme uses the 2', 3'-dialdehyde derivative of NADPH (oNADPH) in the reductive amination of α-ketoglutarate. A 300 min enzyme incubation with 250 μM oNADPH at pH 8.0 leads to a covalent incorporation of 1 mol oNADPH/mol enzyme subunit. Similar rate constants are measured when assaying the change in inhibition by 600 μM NADH or by 1 μM GTP, suggesting that inhibition loss at the two regulatory sites results from oNADPH reaction at one location. oNADPH-modified enzyme is still 93% inhibited by saturating GTP concentrations. The presence of 5 mM NADS(P)H plus 200 μM GTP prevents the kinetic changes and reduces the incorporation of oNADPH. oNADPH is concluded to modify the reduced coenzyme regulatory site, and GTP affects the binding of ligands to this site. The linkage between glutamate dehydrogenase and [ 14 C]oNADPH proved too labile to allow isolation of a radioactive modified peptide. Three corrections in the amino acid sequence were made after sequencing peptides. Resonance energy transfer was used to measure the distance between sites on the enzyme

  4. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120

    DEFF Research Database (Denmark)

    Prihandoko, Rudi; Alvarez-Curto, Elisa; Hudson, Brian D

    2016-01-01

    of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment...... activation. These unique observations define differential effects on signaling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signaling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode...

  5. Identification of okadaic acid-induced phosphorylation events by a mass spectrometry approach

    International Nuclear Information System (INIS)

    Hill, Jennifer J.; Callaghan, Deborah A.; Ding Wen; Kelly, John F.; Chakravarthy, Balu R.

    2006-01-01

    Okadaic acid (OA) is a widely used small-molecule phosphatase inhibitor that is thought to selectively inhibit protein phosphatase 2A (PP2A). Multiple studies have demonstrated that PP2A activity is compromised in Brains of Alzheimer's disease patients. Thus, we set out to determine changes in phosphorylation that occur upon OA treatment of neuronal cells. Utilizing isotope-coded affinity tags and mass spectrometry analysis, we determined the relative abundance of proteins in a phosphoprotein enriched fraction from control and OA-treated primary cortical neurons. We identified many proteins whose phosphorylation state is regulated by OA, including glycogen synthase kinase 3β, collapsin-response mediator proteins (DRP-2, DPYSL-5, and CRMP-4), and the B subunit of PP2A itself. Most interestingly, we have found that complexin 2, an important regulator of neurotransmitter release and synaptic plasticity, is phosphorylated at serine 93 upon OA treatment of neurons. This is First report of a phosphorylation site on complexin 2

  6. Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation.

    Science.gov (United States)

    Bunda, Jordan; Gittings, William; Vandenboom, Rene

    2018-01-30

    Phosphorylation of the myosin regulatory light chain (RLC) by skeletal myosin light chain kinase (skMLCK) potentiates rodent fast twitch muscle but is an ATP-requiring process. Our objective was to investigate the effect of skMLCK-catalyzed RLC phosphorylation on the energetic cost of contraction and the contractile economy (ratio of mechanical output to metabolic input) of mouse fast twitch muscle in vitro (25°C). To this end, extensor digitorum longus (EDL) muscles from wild-type (WT) and from skMLCK-devoid (skMLCK -/- ) mice were subjected to repetitive low-frequency stimulation (10 Hz for 15 s) to produce staircase potentiation of isometric twitch force, after which muscles were quick frozen for determination of high-energy phosphate consumption (HEPC). During stimulation, WT muscles displayed significant potentiation of isometric twitch force while skMLCK -/- muscles did not (i.e. 23% versus 5% change, respectively). Consistent with this, RLC phosphorylation was increased ∼3.5-fold from the unstimulated control value in WT but not in skMLCK -/- muscles. Despite these differences, the HEPC of WT muscles was not greater than that of skMLCK -/- muscles. As a result of the increased contractile output relative to HEPC, the calculated contractile economy of WT muscles was greater than that of skMLCK -/- muscles. Thus, our results suggest that skMLCK-catalyzed phosphorylation of the myosin RLC increases the contractile economy of WT mouse EDL muscle compared with skMLCK -/- muscles without RLC phosphorylation. © 2018. Published by The Company of Biologists Ltd.

  7. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site

    International Nuclear Information System (INIS)

    Porter, M.A.; Hartman, F.C.

    1986-01-01

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  8. Study on the establishment of efficient plan for regulatory activities at NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hun; Son, Mun Gyu [Korea Association for Nuclear Technology, Taejon (Korea, Republic of); Kang, Chang Sun; Yun, Jeong Ik; Ko, Hyun Seok; Lee, Young Wook [Seoul National Univ., Seoul (Korea, Republic of)

    2001-03-15

    In-operation regulatory activities at sites are very important and it should be improved to cope with accidents efficiently and quickly. In case of site survey and safety regulatory inspection regulatory system based on not regulatory headquarter but site regional office should be constructed. In other words, safety assurance and pending problem management considering site situation are needed. In this study, regulatory system at Nuclear Power Plant sites all over the world were reviewed and effective regulatory system of Korea are suggested to maximize the efficiency of license and regulatory manpower and consider the interest of local government and residents.

  9. Novel Serine 176 Phosphorylation of YBX1 Activates NF-κB in Colon Cancer.

    Science.gov (United States)

    Martin, Matthew; Hua, Laiqing; Wang, Benlian; Wei, Han; Prabhu, Lakshmi; Hartley, Antja-Voy; Jiang, Guanglong; Liu, Yunlong; Lu, Tao

    2017-02-24

    Y box protein 1 (YBX1) is a well known oncoprotein that has tumor-promoting functions. YBX1 is widely considered to be an attractive therapeutic target in cancer. To develop novel therapeutics to target YBX1, it is of great importance to understand how YBX1 is finely regulated in cancer. Previously, we have shown that YBX1 could function as a tumor promoter through phosphorylation of its Ser-165 residue, leading to the activation of the NF-κB signaling pathway (1). In this study, using mass spectrometry analysis, we discovered a distinct phosphorylation site, Ser-176, on YBX1. Overexpression of the YBX1-S176A (serine-to-alanine) mutant in either HEK293 cells or colon cancer HT29 cells showed dramatically reduced NF-κB-activating ability compared with that of WT-YBX1, confirming that Ser-176 phosphorylation is critical for the activation of NF-κB by YBX1. Importantly, the mutant of Ser-176 and the previously reported Ser-165 sites regulate distinct groups of NF-κB target genes, suggesting the unique and irreplaceable function of each of these two phosphorylated serine residues. Our important findings could provide a novel cancer therapy strategy by blocking either Ser-176 or Ser-165 phosphorylation or both of YBX1 in colon cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function

    DEFF Research Database (Denmark)

    Ahlskog, Johanna K; Larsen, Brian D; Achanta, Kavya

    2016-01-01

    DNA damage activates the ATM and ATR kinases that coordinate checkpoint and DNA repair pathways. An essential step in homology-directed repair (HDR) of DNA breaks is the formation of RAD51 nucleofilaments mediated by PALB2-BRCA2; however, roles of ATM and ATR in this critical step of HDR are poor...... function, as the PALB2-dependent checkpoint response is normal in cells expressing the phospho-deficient PALB2 mutant. Collectively, our findings highlight a critical importance of PALB2 phosphorylation as a novel regulatory step in genome maintenance after genotoxic stress....

  11. Phosphopeptidomics Reveals Differential Phosphorylation States and Novel SxE Phosphosite Motifs of Neuropeptides in Dense Core Secretory Vesicles

    Science.gov (United States)

    Lietz, Christopher B.; Toneff, Thomas; Mosier, Charles; Podvin, Sonia; O'Donoghue, Anthony J.; Hook, Vivian

    2018-03-01

    Neuropeptides are vital for cell-cell communication and function in the regulation of the nervous and endocrine systems. They are generated by post-translational modification (PTM) steps resulting in small active peptides generated from prohormone precursors. Phosphorylation is a significant PTM for the bioactivity of neuropeptides. From the known diversity of distinct neuropeptide functions, it is hypothesized that the extent of phosphorylation varies among different neuropeptides. To assess this hypothesis, neuropeptide-containing dense core secretory vesicles from bovine adrenal medullary chromaffin cells were subjected to global phosphopeptidomics analyses by liquid chromatography (LC)-mass spectrometry (MS/MS). Phosphopeptides were identified directly by LC-MS/MS and indirectly by phosphatase treatment followed by LC-MS/MS. The data identified numerous phosphorylated peptides derived from neuropeptide precursors such as chromogranins, secretogranins, proenkephalin and pro-NPY. Phosphosite occupancies were observed at high and low levels among identified peptides and many of the high occupancy phosphopeptides represent prohormone-derived peptides with currently unknown bioactivities. Peptide sequence analyses demonstrated SxE as the most prevalent phosphorylation site motif, corresponding to phosphorylation sites of the Fam20C protein kinase known to be present in the secretory pathway. The range of high to low phosphosite occupancies for neuropeptides demonstrates cellular regulation of neuropeptide phosphorylation. [Figure not available: see fulltext.

  12. Phosphopeptidomics Reveals Differential Phosphorylation States and Novel SxE Phosphosite Motifs of Neuropeptides in Dense Core Secretory Vesicles

    Science.gov (United States)

    Lietz, Christopher B.; Toneff, Thomas; Mosier, Charles; Podvin, Sonia; O'Donoghue, Anthony J.; Hook, Vivian

    2018-05-01

    Neuropeptides are vital for cell-cell communication and function in the regulation of the nervous and endocrine systems. They are generated by post-translational modification (PTM) steps resulting in small active peptides generated from prohormone precursors. Phosphorylation is a significant PTM for the bioactivity of neuropeptides. From the known diversity of distinct neuropeptide functions, it is hypothesized that the extent of phosphorylation varies among different neuropeptides. To assess this hypothesis, neuropeptide-containing dense core secretory vesicles from bovine adrenal medullary chromaffin cells were subjected to global phosphopeptidomics analyses by liquid chromatography (LC)-mass spectrometry (MS/MS). Phosphopeptides were identified directly by LC-MS/MS and indirectly by phosphatase treatment followed by LC-MS/MS. The data identified numerous phosphorylated peptides derived from neuropeptide precursors such as chromogranins, secretogranins, proenkephalin and pro-NPY. Phosphosite occupancies were observed at high and low levels among identified peptides and many of the high occupancy phosphopeptides represent prohormone-derived peptides with currently unknown bioactivities. Peptide sequence analyses demonstrated SxE as the most prevalent phosphorylation site motif, corresponding to phosphorylation sites of the Fam20C protein kinase known to be present in the secretory pathway. The range of high to low phosphosite occupancies for neuropeptides demonstrates cellular regulation of neuropeptide phosphorylation. [Figure not available: see fulltext.

  13. Mcm2 phosphorylation and the response to replicative stress

    Directory of Open Access Journals (Sweden)

    Stead Brent E

    2012-05-01

    Full Text Available Abstract Background The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm proteins 2 through 7 (Mcm2-7 and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK. In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. Results We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU and to the base analogue 5-fluorouracil (5-FU but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. Conclusions Together these observations point to a role for DDK-mediated phosphorylation

  14. Endogenous phosphorylation of basic protein in myelin of varying degrees of compaction

    International Nuclear Information System (INIS)

    Schulz, P.; Moscarello, M.A.; Cruz, T.F.

    1988-01-01

    Fractions containing myelin of varying degrees of compaction were prepared from human white matter. Protein kinase activity in these fractions was measured by using both endogenous and exogenous myelin basic protein (MBP) as substrates. In both cases, less compact myelin fractions possessed higher levels of protein kinase activity than the compact myelin fraction. In addition, the specific activity of phosphorylated basic protein was greater in the loosely compacted fractions than in compact multilamellar myelin. When basic protein in compact myelin or the myelin fractions was phosphorylated by the endogenous kinase, approximately 70% of the [ 32 P]phosphate was incorporated at a single site, identified as Ser-102. The remaining 30% was found in three other minor sites. Electron microscopy of less compact myelin showed it was composed of fewer lamellae which correlated with a relative decrease in the proportion of cationic charge isomers (microheteromers) when MBP was subjected to gel electrophoresis at alkaline pH. The shift in charge microheterogeneity of basic protein to the less cationic isomers in the less compact myelin fractions correlated with an increase in protein kinase activity and a greater specific activity of phosphorylated basic protein

  15. Regulation of the autophagy protein LC3 by phosphorylation

    Science.gov (United States)

    Cherra, Salvatore J.; Kulich, Scott M.; Uechi, Guy; Balasubramani, Manimalha; Mountzouris, John; Day, Billy W.

    2010-01-01

    Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP+) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease–associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl–cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity. PMID:20713600

  16. Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation.

    Science.gov (United States)

    Leiba, Jade; Syson, Karl; Baronian, Grégory; Zanella-Cléon, Isabelle; Kalscheuer, Rainer; Kremer, Laurent; Bornemann, Stephen; Molle, Virginie

    2013-06-07

    GlgE is a maltosyltransferase involved in the biosynthesis of α-glucans that has been genetically validated as a potential therapeutic target against Mycobacterium tuberculosis. Despite also making α-glucan, the GlgC/GlgA glycogen pathway is distinct and allosterically regulated. We have used a combination of genetics and biochemistry to establish how the GlgE pathway is regulated. M. tuberculosis GlgE was phosphorylated specifically by the Ser/Thr protein kinase PknB in vitro on one serine and six threonine residues. Furthermore, GlgE was phosphorylated in vivo when expressed in Mycobacterium bovis bacillus Calmette-Guérin (BCG) but not when all seven phosphorylation sites were replaced by Ala residues. The GlgE orthologues from Mycobacterium smegmatis and Streptomyces coelicolor were phosphorylated by the corresponding PknB orthologues in vitro, implying that the phosphorylation of GlgE is widespread among actinomycetes. PknB-dependent phosphorylation of GlgE led to a 2 orders of magnitude reduction in catalytic efficiency in vitro. The activities of phosphoablative and phosphomimetic GlgE derivatives, where each phosphorylation site was substituted with either Ala or Asp residues, respectively, correlated with negative phosphoregulation. Complementation studies of a M. smegmatis glgE mutant strain with these GlgE derivatives, together with both classical and chemical forward genetics, were consistent with flux through the GlgE pathway being correlated with GlgE activity. We conclude that the GlgE pathway appears to be negatively regulated in actinomycetes through the phosphorylation of GlgE by PknB, a mechanism distinct from that known in the classical glycogen pathway. Thus, these findings open new opportunities to target the GlgE pathway therapeutically.

  17. LRRK2 mediated Rab8a phosphorylation promotes lipid storage.

    Science.gov (United States)

    Yu, Miao; Arshad, Muhammad; Wang, Wenmin; Zhao, Dongyu; Xu, Li; Zhou, Linkang

    2018-02-27

    Several mutations in leucine rich repeat kinase 2 (LRRK2) gene have been associated with pathogenesis of Parkinson's disease (PD), a neurodegenerative disorder marked by resting tremors, and rigidity, leading to Postural instability. It has been revealed that mutations that lead to an increase of kinase activity of LRRK2 protein are significantly associated with PD pathogenesis. Recent studies have shown that some Rab GTPases, especially Rab8, serve as substrates of LRRK2 and undergo phosphorylation in its switch II domain upon interaction. Current study was performed in order to find out the effects of the phosphorylation of Rab8 and its mutants on lipid metabolism and lipid droplets growth. The phosphorylation status of Rab8a was checked by phos-tag gel. Point mutant construct were generated to investigate the function of Rab8a. 3T3L1 cells were transfected with indicated plasmids and the lipid droplets were stained with Bodipy. Fluorescent microscopy experiments were performed to examine the sizes of lipid droplets. The interactions between Rab8a and Optineurin were determined by immunoprecipitation and western blot. Our assays demonstrated that Rab8a was phosphorylated by mutated LRRK2 that exhibits high kinase activity. Phosphorylation of Rab8a on amino acid residue T72 promoted the formation of large lipid droplets. T72D mutant of Rab8a had higher activity to promote the formation of large lipid droplets compared with wild type Rab8a, with increase in average diameter of lipid droplets from 2.10 μm to 2.46 μm. Moreover, phosphorylation of Rab8a weakened the interaction with its effector Optineurin. Y1699C mutated LRRK2 was able to phosphorylate Rab8a and phosphorylation of Rab8a on site 72 plays important role in the fusion and enlargement of lipid droplets. Taken together, our study suggests an indirect relationship between enhanced lipid storage capacity and PD pathogenesis.

  18. Alternate Phosphorylation/O-GlcNAc Modification on Human Insulin IRSs: A Road towards Impaired Insulin Signaling in Alzheimer and Diabetes

    Directory of Open Access Journals (Sweden)

    Zainab Jahangir

    2014-01-01

    Full Text Available Impaired insulin signaling has been thought of as important step in both Alzheimer’s disease (AD and type 2 diabetes mellitus (T2DM. Posttranslational modifications (PTMs regulate functions and interaction of insulin with insulin receptors substrates (IRSs and activate insulin signaling downstream pathways via autophosphorylation on several tyrosine (TYR residues on IRSs. Two important insulin receptor substrates 1 and 2 are widely expressed in human, and alternative phosphorylation on their serine (Ser and threonine (Thr residues has been known to block the Tyr phosphorylation of IRSs, thus inhibiting insulin signaling and promoting insulin resistance. Like phosphorylation, O-glycosylation modification is important PTM and inhibits phosphorylation on same or neighboring Ser/Thr residues, often called Yin Yang sites. Both IRS-1 and IRS-2 have been shown to be O-glycosylated; however exact sites are not determined yet. In this study, by using neuronal network based prediction methods, we found more than 50 Ser/Thr residues that have potential to be O-glycosylated and may act as possible sites as well. Moreover, alternative phosphorylation and O-glycosylation on IRS-1 Ser-312, 984, 1037, and 1101 may act as possible therapeutic targets to minimize the risk of AD and T2DM.

  19. Tyrosine Phosphorylation of the Guanine Nucleotide Exchange Factor GIV Promotes Activation of PI3K During Cell Migration

    Science.gov (United States)

    Lin, Changsheng; Ear, Jason; Pavlova, Yelena; Mittal, Yash; Kufareva, Irina; Ghassemian, Majid; Abagyan, Ruben; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2014-01-01

    GIV (Gα-interacting vesicle-associated protein; also known as Girdin), enhances Akt activation downstream of multiple growth factor– and G-protein–coupled receptors to trigger cell migration and cancer invasion. Here we demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at Tyr1764 and Tyr1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the N- and C-terminal SH2 domains of p85α, a regulatory subunit of PI3K, stabilized receptor association with PI3K, and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIVPI3K interaction a potential therapeutic target within the PI3K-Akt pathway. PMID:21954290

  20. Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle.

    Science.gov (United States)

    Biedenkopf, Nadine; Lier, Clemens; Becker, Stephan

    2016-05-15

    Ebola virus is the causative agent of a severe fever with high fatality rates in humans and nonhuman primates. The regulation of Ebola virus transcription and replication currently is not well understood. An important factor regulating viral transcription is VP30, an Ebola virus-specific transcription factor associated with the viral nucleocapsid. Previous studies revealed that the phosphorylation status of VP30 impacts viral transcription. Together with NP, L, and the polymerase cofactor VP35, nonphosphorylated VP30 supports viral transcription. Upon VP30 phosphorylation, viral transcription ceases. Phosphorylation weakens the interaction between VP30 and the polymerase cofactor VP35 and/or the viral RNA. VP30 thereby is excluded from the viral transcription complex, simultaneously leading to increased viral replication which is supported by NP, L, and VP35 alone. Here, we use an infectious virus-like particle assay and recombinant viruses to show that the dynamic phosphorylation of VP30 is critical for the cotransport of VP30 with nucleocapsids to the sites of viral RNA synthesis, where VP30 is required to initiate primary viral transcription. We further demonstrate that a single serine residue at amino acid position 29 was sufficient to render VP30 active in primary transcription and to generate a recombinant virus with characteristics comparable to those of wild-type virus. In contrast, the rescue of a recombinant virus with a single serine at position 30 in VP30 was unsuccessful. Our results indicate critical roles for phosphorylated and dephosphorylated VP30 during the viral life cycle. The current Ebola virus outbreak in West Africa has caused more than 28,000 cases and 11,000 fatalities. Very little is known regarding the molecular mechanisms of how the Ebola virus transcribes and replicates its genome. Previous investigations showed that the transcriptional support activity of VP30 is activated upon VP30 dephosphorylation. The current study reveals that

  1. Roles of phosphorylation and nucleotide binding domains in calcium transport by sarcoplasmic reticulum adenosinetriphosphatase

    International Nuclear Information System (INIS)

    Teruel, J.A.; Inesi, G.

    1988-01-01

    The roles of the phosphorylation (phosphorylated enzyme intermediate) and nucleotide binding domains in calcium transport were studied by comparing acetyl phosphate and ATP as substrates for the Ca 2+ -ATPase of sarcoplasmic reticulum vesicles. The authors found that the maximal level of phosphoenzyme obtained with either substrate is approximately 4 nmol/mg of protein, corresponding to the stoichiometry of catalytic sites in their preparation. The initial burst of phosphoenzyme formation observed in the transient state, following addition of either substrate, is accompanied by internalization of 2 mol of calcium per mole of phosphoenzyme. The internalized calcium is then translocated with a sequential pattern, independent of the substrate used. Following a rate-limiting step, the phosphoenzyme undergoes hydrolytic cleavage and proceeds to the steady-state activity which is soon back inhibited by the rise of Ca 2+ concentration in the lumen of the vesicles. When the back inhibition is released by the addition of oxalate, substrate utilization and calcium transport occur with a ratio of 1:2, independent of the substrate and its concentration. When the nucleotide binding site is derivatized with FITP, the enzyme can still utilize acetyl phosphate (but not ATP) for calcium transport. These observations demonstrate that the basic coupling mechanism of catalysis and calcium transport involves the phosphorylation and calcium binding domains, and not the nucleotide binding domain. On the other hand, occupancy of the FITC-sensitive nucleotide site is involved in kinetic regulation not only with respect to utilization of substrate for the phosphoryl transfer reaction but also for subsequent steps related to calcium translocation and phosphoenzyme turnover

  2. Specific phosphorylation of histone demethylase KDM3A determines target gene expression in response to heat shock.

    Directory of Open Access Journals (Sweden)

    Mo-bin Cheng

    2014-12-01

    Full Text Available Histone lysine (K residues, which are modified by methyl- and acetyl-transferases, diversely regulate RNA synthesis. Unlike the ubiquitously activating effect of histone K acetylation, the effects of histone K methylation vary with the number of methyl groups added and with the position of these groups in the histone tails. Histone K demethylases (KDMs counteract the activity of methyl-transferases and remove methyl group(s from specific K residues in histones. KDM3A (also known as JHDM2A or JMJD1A is an H3K9me2/1 demethylase. KDM3A performs diverse functions via the regulation of its associated genes, which are involved in spermatogenesis, metabolism, and cell differentiation. However, the mechanism by which the activity of KDM3A is regulated is largely unknown. Here, we demonstrated that mitogen- and stress-activated protein kinase 1 (MSK1 specifically phosphorylates KDM3A at Ser264 (p-KDM3A, which is enriched in the regulatory regions of gene loci in the human genome. p-KDM3A directly interacts with and is recruited by the transcription factor Stat1 to activate p-KDM3A target genes under heat shock conditions. The demethylation of H3K9me2 at the Stat1 binding site specifically depends on the co-expression of p-KDM3A in the heat-shocked cells. In contrast to heat shock, IFN-γ treatment does not phosphorylate KDM3A via MSK1, thereby abrogating its downstream effects. To our knowledge, this is the first evidence that a KDM can be modified via phosphorylation to determine its specific binding to target genes in response to thermal stress.

  3. Regulatory Phosphorylation of Bacterial-Type PEP Carboxylase by the Ca2+-Dependent Protein Kinase RcCDPK1 in Developing Castor Oil Seeds1[OPEN

    Science.gov (United States)

    Hill, Allyson T.; Anderson, Erin M.; She, Yi-Min

    2017-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled cytosolic enzyme situated at a crucial branch point of central plant metabolism. In developing castor oil seeds (Ricinus communis) a novel, allosterically desensitized 910-kD Class-2 PEPC hetero-octameric complex, arises from a tight interaction between 107-kD plant-type PEPC and 118-kD bacterial-type (BTPC) subunits. The native Ca2+-dependent protein kinase (CDPK) responsible for in vivo inhibitory phosphorylation of Class-2 PEPC’s BTPC subunit’s at Ser-451 was highly purified from COS and identified as RcCDPK1 (XP_002526815) by mass spectrometry. Heterologously expressed RcCDPK1 catalyzed Ca2+-dependent, inhibitory phosphorylation of BTPC at Ser-451 while exhibiting: (i) a pair of Ca2+ binding sites with identical dissociation constants of 5.03 μM, (ii) a Ca2+-dependent electrophoretic mobility shift, and (iii) a marked Ca2+-independent hydrophobicity. Pull-down experiments established the Ca2+-dependent interaction of N-terminal GST-tagged RcCDPK1 with BTPC. RcCDPK1-Cherry localized to the cytosol and nucleus of tobacco bright yellow-2 cells, but colocalized with mitochondrial-surface associated BTPC-enhanced yellow fluorescent protein when both fusion proteins were coexpressed. Deletion analyses demonstrated that although its N-terminal variable domain plays an essential role in optimizing Ca2+-dependent RcCDPK1 autophosphorylation and BTPC transphosphorylation activity, it is not critical for in vitro or in vivo target recognition. Arabidopsis (Arabidopsis thaliana) CPK4 and soybean (Glycine max) CDPKβ are RcCDPK1 orthologs that effectively phosphorylated castor BTPC at Ser-451. Overall, the results highlight a potential link between cytosolic Ca2+ signaling and the posttranslational control of respiratory CO2 refixation and anaplerotic photosynthate partitioning in support of storage oil and protein biosynthesis in developing COS. PMID:28363991

  4. Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis.

    Science.gov (United States)

    Adragna, Norma C; Ravilla, Nagendra B; Lauf, Peter K; Begum, Gulnaz; Khanna, Arjun R; Sun, Dandan; Kahle, Kristopher T

    2015-01-01

    The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K(+) and Cl(-) efflux via activation of K(+) channels, volume-regulated anion channels (VRACs), and the K(+)-Cl(-) cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1). This results in a rapid (90%) reduction in intracellular K(+) content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD.

  5. Rat vas deferens SERCA2 is modulated by Ca{sup 2+}/calmodulin protein kinase II-mediated phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.B.R.; Muzi-Filho, H. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Valverde, R.H.F. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Quintas, L.E.M. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Noel, F. [Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Einicker-Lamas, M. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ (Brazil); Cunha, V.M.N. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2013-03-19

    Ca{sup 2+} pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca{sup 2+}-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca{sup 2+} (Ca{sub 0.5} = 780 nM) and a low sensitivity to vanadate (IC{sub 50} = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca{sup 2+} and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca{sup 2+} accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca{sup 2+} and CaM, possibly via CaMKII, in a process that results in stimulation of Ca{sup 2+} pumping activity.

  6. Characterization of the regulatory subunit from brain cyclic AMP-dependent protein kinase II

    International Nuclear Information System (INIS)

    Stein, J.C.

    1985-01-01

    Tryptic peptides derived from the regulatory subunits of brain and heart cAMP-dependent protein kinase II were mapped by reverse phase HPLC. At 280 nm, 15 unique peptides were found only in the heart RII digest, while 5 other peptides were obtained only from brain RII. At 210 nm, 13 brain-RII specific and 15 heart-RII specific tryptic peptides were identified and resolved. Two-dimensional mapping analyses revealed that several 37 P-labeled tryptic fragments derived from the autophosphorylation and the photoaffinity labeled cAMP-binding sites of brain RII were separate and distinct from the 32 P-peptides isolated from similarly treated heart RII. The tryptic phosphopeptide containing the autophosphorylation site in brain RII was purified. The sequence and phosphorylation site is: Arg-Ala-Ser(P)-Val-Cys-Ala-Glu-Ala-Tyr-Asn-Pro-Asp-Glu-Glu-Glu-Asp-Asp-Ala-Glu. Astrocytes and neurons exhibit high levels of the brain RII enzyme, while oligodendrocytes contain the heart RII enzyme. Monoclonal antibodies to bovine cerebral cortex RII were made and characterized. The antibodies elucidated a subtle difference between membrane-associated and cytosolic RII from cerebral cortex

  7. An overview of regulatory, environmental and social siting considerations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Jason [Tetra Tech (United States)

    2011-07-01

    There is the potential for involvement of different levels of government and many other actors in the location and, finally, the feasibility of a modern wind energy project. This paper gives an overview of the social, regulatory, and environmental considerations that can influence the location of a wind energy project. At the beginning the site has to be identified and wind resources and transmission feasibility have to be assessed. Environmental and engineering issues and public and government acceptability have to be considered. Federal, provincial, local and municipal considerations are discussed. A fatal flaw analysis also known as Critical Issues Analysis (CIA) is performed and the results are given. Constructability issues, telecommunications and aviation screening are omitted from the CIA. Different reasons for setbacks and causes of concern are mentioned and explained. Bird and bat fatalities from collision with turbines are mentioned as a concern. Studies relating to matters of heritage and cultural resources have also been conducted. Finally, issues relating to socioeconomic impact, communications infrastructure and transportation issues are discussed.

  8. Plk4-dependent phosphorylation of STIL is required for centriole duplication

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Kratz

    2015-02-01

    Full Text Available Duplication of centrioles, namely the formation of a procentriole next to the parental centriole, is regulated by the polo-like kinase Plk4. Only a few other proteins, including STIL (SCL/TAL1 interrupting locus, SIL and Sas-6, are required for the early step of centriole biogenesis. Following Plk4 activation, STIL and Sas-6 accumulate at the cartwheel structure at the initial stage of the centriole assembly process. Here, we show that STIL interacts with Plk4 in vivo. A STIL fragment harboring both the coiled-coil domain and the STAN motif shows the strongest binding affinity to Plk4. Furthermore, we find that STIL is phosphorylated by Plk4. We identified Plk4-specific phosphorylation sites within the C-terminal domain of STIL and show that phosphorylation of STIL by Plk4 is required to trigger centriole duplication.

  9. Total and phosphorylated tau protein as biological markers of Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2012-02-01

    Advances in our understanding of tau-mediated neurodegeneration in Alzheimer\\'s disease (AD) are moving this disease pathway to center stage for the development of biomarkers and disease modifying drug discovery efforts. Immunoassays were developed detecting total (t-tau) and tau phosphorylated at specific epitopes (p-tauX) in cerebrospinal fluid (CSF), methods to analyse tau in blood are at the experimental beginning. Clinical research consistently demonstrated CSF t- and p-tau increased in AD compared to controls. Measuring these tau species proved informative for classifying AD from relevant differential diagnoses. Tau phosphorylated at threonine 231 (p-tau231) differentiated between AD and frontotemporal dementia, tau phosphorylated at serine 181 (p-tau181) enhanced classification between AD and dementia with Lewy bodies. T- and p-tau are considered "core" AD biomarkers that have been successfully validated by controlled large-scale multi-center studies. Tau biomarkers are implemented in clinical trials to reflect biological activity, mechanisms of action of compounds, support enrichment of target populations, provide endpoints for proof-of-concept and confirmatory trials on disease modification. World-wide quality control initiatives are underway to set required methodological and protocol standards. Discussions with regulatory authorities gain momentum defining the role of tau biomarkers for trial designs and how they may be further qualified for surrogate marker status.

  10. A p130Cas tyrosine phosphorylated substrate domain decoy disrupts v-Crk signaling

    Directory of Open Access Journals (Sweden)

    Hanafusa Hidesaburo

    2002-07-01

    Full Text Available Abstract Background The adaptor protein p130Cas (Cas has been shown to be involved in different cellular processes including cell adhesion, migration and transformation. This protein has a substrate domain with up to 15 tyrosines that are potential kinase substrates, able to serve as docking sites for proteins with SH2 or PTB domains. Cas interacts with focal adhesion plaques and is phosphorylated by the tyrosine kinases FAK and Src. A number of effector molecules have been shown to interact with Cas and play a role in its function, including c-crk and v-crk, two adaptor proteins involved in intracellular signaling. Cas function is dependent on tyrosine phosphorylation of its substrate domain, suggesting that tyrosine phosphorylation of Cas in part regulates its control of adhesion and migration. To determine whether the substrate domain alone when tyrosine phosphorylated could signal, we have constructed a chimeric Cas molecule that is phosphorylated independently of upstream signals. Results We found that a tyrosine phosphorylated Cas substrate domain acts as a dominant negative mutant by blocking Cas-mediated signaling events, including JNK activation by the oncogene v-crk in transient and stable lines and v-crk transformation. This block was the result of competition for binding partners as the chimera competed for binding to endogenous c-crk and exogenously expressed v-crk. Conclusion Our approach suggests a novel method to study adaptor proteins that require phosphorylation, and indicates that mere tyrosine phosphorylation of the substrate domain of Cas is not sufficient for its function.

  11. Pdx1 is post-translationally modified in vivo and serine 61 is the principal site of phosphorylation

    DEFF Research Database (Denmark)

    Frogne, Thomas; Sylvestersen, Kathrine Beck; Kubicek, Stefan

    2012-01-01

    signaling. Several studies have shown that post-translational modifications are regulating Pdx1 activity through intracellular localization and binding to co-factors. Understanding the signaling cues converging on Pdx1 and modulating its activity is therefore an attractive approach in diabetes treatment. We...... alanine scanning and mass spectrometry we map this phosphorylation to serine 61 in both Min6 cells and in exogenous Pdx1 over-expressed in HEK293 cells. A single phosphorylation is also present in cultured islets but it remains unaffected by changes in glucose levels. It is present during embryogenesis...

  12. Sequence-based model of gap gene regulatory network.

    Science.gov (United States)

    Kozlov, Konstantin; Gursky, Vitaly; Kulakovskiy, Ivan; Samsonova, Maria

    2014-01-01

    The detailed analysis of transcriptional regulation is crucially important for understanding biological processes. The gap gene network in Drosophila attracts large interest among researches studying mechanisms of transcriptional regulation. It implements the most upstream regulatory layer of the segmentation gene network. The knowledge of molecular mechanisms involved in gap gene regulation is far less complete than that of genetics of the system. Mathematical modeling goes beyond insights gained by genetics and molecular approaches. It allows us to reconstruct wild-type gene expression patterns in silico, infer underlying regulatory mechanism and prove its sufficiency. We developed a new model that provides a dynamical description of gap gene regulatory systems, using detailed DNA-based information, as well as spatial transcription factor concentration data at varying time points. We showed that this model correctly reproduces gap gene expression patterns in wild type embryos and is able to predict gap expression patterns in Kr mutants and four reporter constructs. We used four-fold cross validation test and fitting to random dataset to validate the model and proof its sufficiency in data description. The identifiability analysis showed that most model parameters are well identifiable. We reconstructed the gap gene network topology and studied the impact of individual transcription factor binding sites on the model output. We measured this impact by calculating the site regulatory weight as a normalized difference between the residual sum of squares error for the set of all annotated sites and for the set with the site of interest excluded. The reconstructed topology of the gap gene network is in agreement with previous modeling results and data from literature. We showed that 1) the regulatory weights of transcription factor binding sites show very weak correlation with their PWM score; 2) sites with low regulatory weight are important for the model output; 3

  13. Characterization of intracellular regions in the human serotonin transporter for phosphorylation sites

    DEFF Research Database (Denmark)

    Sørensen, Lena; Strømgaard, Kristian; Kristensen, Anders S

    2014-01-01

    In the central nervous system, synaptic levels of the monoamine neurotransmitter serotonin are mainly controlled by the serotonin transporter (SERT), and drugs used in the treatment of various psychiatric diseases have SERT as primary target. SERT is a phosphoprotein that undergoes phosphorylation....../dephosphorylation during transporter regulation by multiple pathways. In particular, activation and/or inhibition of kinases including PKC, PKG, p38MAPK, and CaMKII modulate SERT function and trafficking. The molecular mechanisms by which kinase activity is linked to SERT regulation are poorly understood, including...

  14. Regulatory Oversight of the Legacy Gunner Uranium Mine and Mill Site in Northern Saskatchewan, Canada - 13434

    Energy Technology Data Exchange (ETDEWEB)

    Stenson, Ron; Howard, Don [Canadian Nuclear Safety Commission, P.O. Box 1046, Station B, 280 Slater Street, Ottawa ON K1P 5S9 (Canada)

    2013-07-01

    As Canada's nuclear regulator, the Canadian Nuclear Safety Commission (CNSC) is responsible for licensing all aspects of uranium mining, including remediation activities at legacy sites. Since these sites already existed when the current legislation came into force in 2000, and the previous legislation did not apply, they present a special case. The Nuclear Safety and Control Act (NSCA), was written with cradle-to- grave oversight in mind. Applying the NSCA at the end of a 'facilities' life-cycle poses some challenges to both the regulator and the proponent. When the proponent is the public sector, even more challenges can present themselves. Although the licensing process for legacy sites is no different than for any other CNSC license, assuring regulatory compliance can be more complicated. To demonstrate how the CNSC has approached the oversight of legacy sites the history of the Commission's involvement with the Gunnar uranium mine and mill site provides a good case study. The lessons learned from the CNSC's experience regulating the Gunnar site will benefit those in the future who will need to regulate legacy sites under existing or new legislation. (authors)

  15. Regulation of Glioma Cell Migration by Seri ne-Phosphorylated P3111

    Directory of Open Access Journals (Sweden)

    Wendy S. McDonough

    2005-09-01

    Full Text Available P311, an 8-kDa polypeptide, was previously shown to be highly expressed in invasive glioma cells. Here, we report the functional characteristics of P311 with regard to influencing glioma cell migration. P311 is constitutively serine-phosphorylated; decreased phosphorylation is observed in migration-activated glioma cells. The primary amino acid sequence of P311 indicates a putative serine phosphorylation site (S59 near the PEST domain. Site-directed mutagenesis of S59A retarded P311 degradation, induced glioma cell motility. In contrast, S59D mutation resulted in the rapid degradation of P311, reduced glioma cell migration. Coimmunoprecipitation coupled with matrixassisted laser desorption/ionization time-of-flight mass spectrometry analysis identified Filamin A as a binding partner of P311, immunofluorescence studies showed that both proteins colocalized at the cell periphery. Moreover, P311-induced cell migration was abrogated by inhibition of β1 integrin function using TACβ1A, a dominant-negative inhibitor of β1 integrin signaling, suggesting that P311 acts downstream of β1 signaling. Finally, overexpression of P311 or P311 S59A mutant protein activates Raci GTPase; small interfering RNA-mediated depletion of Raci suppresses P311-induced motility. Collectively, these results suggest a role for levels of P311 in regulating glioma motility, invasion through the reorganization of actin cytoskeleton at the cell periphery.

  16. Virus-induced apoptosis and phosphorylation form of metacaspase in the marine coccolithophorid Emiliania huxleyi.

    Science.gov (United States)

    Liu, Jingwen; Cai, Weicong; Fang, Xian; Wang, Xueting; Li, Guiling

    2018-04-01

    Lytic viral infection and programmed cell death (PCD) are thought to represent two distinct death mechanisms in phytoplankton, unicellular photoautotrophs that drift with ocean currents. PCD (apoptosis) is mainly brought about by the activation of caspases, a protease family with unique substrate selectivity. Here, we demonstrated that virus infection induced apoptosis of marine coccolithophorid Emiliania huxleyi BOF92 involving activation of metacaspase. E. huxleyi cells exhibited cell death process akin to that of apoptosis when exposed to virus infection. We observed typical hallmarks of apoptosis including cell shrinkage, associated nuclear morphological changes and DNA fragmentation. Immunoblotting revealed that antibody against human active-caspase-3 shared epitopes with a protein of ≈ 23 kDa; whose pattern of expression correlated with the onset of cell death. Moreover, analysis on two-dimensional gel electrophoresis revealed that two spots of active caspase-3 co-migrated with the different isoelectric points. Phosphatase treatment of cytosolic extracts containing active caspases-3 showed a mobility shift, suggesting that phosphorylated form of this enzyme might be present in the extracts. Computational prediction of phosphorylation sites based on the amino acid sequence of E. huxleyi metacaspase showed multiple phosphorylated sites for serine, threonine and tyrosine residues. This is the first report showing that phosphorylation modification of metacaspase in E. huxleyi might be required for certain biochemical and morphological changes during virus induced apoptosis.

  17. The modulation of the phosphorylation status of NKCC1 in organ cultured bovine lenses: Implications for the regulation of fiber cell and overall lens volume.

    Science.gov (United States)

    Vorontsova, Irene; Donaldson, Paul J; Kong, Zhiying; Wickremesinghe, Chiharu; Lam, Leo; Lim, Julie C

    2017-12-01

    In previous work, we have shown the Sodium/Potassium/2 Chloride Cotransporter (NKCC1) to be a key effector of lens fiber cell volume regulation. Since others have shown that the activity of NKCC1 is regulated via its phosphorylation status, the purpose of this study was to investigate whether NKCC1 phosphorylation can be modulated in organ cultured bovine lenses, and to see how this relates to changes in lens wet weight. Western blotting was first used to confirm the expression of NKCC1, phosphorylated NKCC1 (NKCC1-P) and the regulatory kinases WNK/SPAK and phosphatases PP1/PP2A in bovine lenses at the protein level. Changes to NKCC1-P status were then assessed by organ culturing bovine lenses in either isotonic, hypertonic or hypotonic solutions in the presence or absence of the NKCC inhibitor, bumetanide, or phosphatase inhibitors okadaic acid and calyculin A. After 1-22 h of culturing, lenses were weighed, assessed for transparency and the cortical protein fractions analyzed by western blot using antibodies to detect total NKCC1 and NKCC1-P. NKCC1, NKCC1-P, SPAK, PP1 and PP2A were all detected in the membrane fraction of bovine lenses. Under hypertonic conditions, NKCC1 is phosphorylated and activated to mediate a regulatory volume increase. Finally, NKCC1-P signal increased in the presence of phosphatase inhibitors indicating that PP1/PP2A can dephosphorylate NKCC1. These results show that the phosphorylation status and hence activity of NKCC1 is dynamically regulated and that in response to hypertonic stress, NKCC1 activity is increased to effect a regulatory volume increase that limits cell shrinkage. These findings support the view that the lens dynamically regulates ion fluxes to maintain steady state lens volume, and suggest that dysfunction of this regulation maybe an initiating factor in the localized fiber cell swelling that is a characteristic of diabetic lens cataract. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings.

    Science.gov (United States)

    Engelsberger, Wolfgang R; Schulze, Waltraud X

    2012-03-01

    Nitrogen is an essential macronutrient for plant growth and development. Inorganic nitrogen and its assimilation products control various metabolic, physiological and developmental processes. Although the transcriptional responses induced by nitrogen have been extensively studied in the past, our work here focused on the discovery of candidate proteins for regulatory events that are complementary to transcriptional changes. Most signaling pathways involve modulation of protein abundance and/or activity by protein phosphorylation. Therefore, we analyzed the dynamic changes in protein phosphorylation in membrane and soluble proteins from plants exposed to rapid changes in nutrient availability over a time course of 30 min. Plants were starved of nitrogen and subsequently resupplied with nitrogen in the form of nitrate or ammonium. Proteins with maximum change in their phosphorylation level at up to 5 min after nitrogen resupply (fast responses) included GPI-anchored proteins, receptor kinases and transcription factors, while proteins with maximum change in their phosphorylation level after 10 min of nitrogen resupply (late responses) included proteins involved in protein synthesis and degradation, as well as proteins with functions in central metabolism and hormone metabolism. Resupply of nitrogen in the form of nitrate or ammonium resulted in distinct phosphorylation patterns, mainly of proteins with signaling functions, transcription factors and transporters. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  19. Evolution of Cis-Regulatory Elements and Regulatory Networks in Duplicated Genes of Arabidopsis.

    Science.gov (United States)

    Arsovski, Andrej A; Pradinuk, Julian; Guo, Xu Qiu; Wang, Sishuo; Adams, Keith L

    2015-12-01

    Plant genomes contain large numbers of duplicated genes that contribute to the evolution of new functions. Following duplication, genes can exhibit divergence in their coding sequence and their expression patterns. Changes in the cis-regulatory element landscape can result in changes in gene expression patterns. High-throughput methods developed recently can identify potential cis-regulatory elements on a genome-wide scale. Here, we use a recent comprehensive data set of DNase I sequencing-identified cis-regulatory binding sites (footprints) at single-base-pair resolution to compare binding sites and network connectivity in duplicated gene pairs in Arabidopsis (Arabidopsis thaliana). We found that duplicated gene pairs vary greatly in their cis-regulatory element architecture, resulting in changes in regulatory network connectivity. Whole-genome duplicates (WGDs) have approximately twice as many footprints in their promoters left by potential regulatory proteins than do tandem duplicates (TDs). The WGDs have a greater average number of footprint differences between paralogs than TDs. The footprints, in turn, result in more regulatory network connections between WGDs and other genes, forming denser, more complex regulatory networks than shown by TDs. When comparing regulatory connections between duplicates, WGDs had more pairs in which the two genes are either partially or fully diverged in their network connections, but fewer genes with no network connections than the TDs. There is evidence of younger TDs and WGDs having fewer unique connections compared with older duplicates. This study provides insights into cis-regulatory element evolution and network divergence in duplicated genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. 76 FR 24539 - Final Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2011-05-02

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . Electronic copies... NUCLEAR REGULATORY COMMISSION [NRC-2010-0181] Final Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide...

  1. Phosphorylation of the protein kinase A catalytic subunit is induced by cyclic AMP deficiency and physiological stresses in the fission yeast, Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    McInnis, Brittney; Mitchell, Jessica; Marcus, Stevan

    2010-01-01

    Research highlights: → cAMP deficiency induces phosphorylation of PKA catalytic subunit (Pka1) in S. pombe. → Pka1 phosphorylation is further induced by physiological stresses. → Pka1 phosphorylation is not induced in cells lacking the PKA regulatory subunit. → Results suggest that cAMP-independent Pka1 phosphorylation is stimulatory in nature. -- Abstract: In the fission yeast, Schizosaccharomyces pombe, cyclic AMP (cAMP)-dependent protein kinase (PKA) is not essential for viability under normal culturing conditions, making this organism attractive for investigating mechanisms of PKA regulation. Here we show that S. pombe cells carrying a deletion in the adenylate cyclase gene, cyr1, express markedly higher levels of the PKA catalytic subunit, Pka1, than wild type cells. Significantly, in cyr1Δ cells, but not wild type cells, a substantial proportion of Pka1 protein is hyperphosphorylated. Pka1 hyperphosphorylation is strongly induced in cyr1Δ cells, and to varying degrees in wild type cells, by both glucose starvation and stationary phase stresses, which are associated with reduced cAMP-dependent PKA activity, and by KCl stress, the cellular adaptation to which is dependent on PKA activity. Interestingly, hyperphosphorylation of Pka1 was not detected in either cyr1 + or cyr1Δ S. pombe strains carrying a deletion in the PKA regulatory subunit gene, cgs1, under any of the tested conditions. Our results demonstrate the existence of a cAMP-independent mechanism of PKA catalytic subunit phosphorylation, which we propose could serve as a mechanism for inducing or maintaining specific PKA functions under conditions in which its cAMP-dependent activity is downregulated.

  2. Evolutionary dynamics of DNA-binding sites and direct target genes of a floral master regulatory transcription factor [RNA-Seq

    NARCIS (Netherlands)

    Muiño, J.M.; Bruijn, de S.A.; Vingron, Martin; Angenent, G.C.; Kaufmann, Kerstin

    2015-01-01

    Plant development is controlled by transcription factors (TFs) which form complex gene-regulatory networks. Genome-wide TF DNA-binding studies revealed that these TFs have several thousands of binding sites in the Arabidopsis genome, and may regulate the expression of many genes directly. Given the

  3. 75 FR 42170 - Final Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-07-20

    ... NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2009-0425] Final Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide...

  4. 75 FR 48381 - Final Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-08-10

    ... NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2010-0274] Final Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of issuance and availability of Regulatory Guide...

  5. Myosin Light Chain Kinase and the Role of Myosin Light Chain Phosphorylation in Skeletal Muscle

    OpenAIRE

    Stull, James T.; Kamm, Kristine E.; Vandenboom, Rene

    2011-01-01

    Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometic bindin...

  6. Cdc15 Phosphorylates the C-terminal Domain of RNA Polymerase II for Transcription during Mitosis.

    Science.gov (United States)

    Singh, Amit Kumar; Rastogi, Shivangi; Shukla, Harish; Asalam, Mohd; Rath, Srikanta Kumar; Akhtar, Md Sohail

    2017-03-31

    In eukaryotes, the basal transcription in interphase is orchestrated through the regulation by kinases (Kin28, Bur1, and Ctk1) and phosphatases (Ssu72, Rtr1, and Fcp1), which act through the post-translational modification of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. The CTD comprises the repeated Tyr-Ser-Pro-Thr-Ser-Pro-Ser motif with potential epigenetic modification sites. Despite the observation of transcription and periodic expression of genes during mitosis with entailing CTD phosphorylation and dephosphorylation, the associated CTD specific kinase(s) and its role in transcription remains unknown. Here we have identified Cdc15 as a potential kinase phosphorylating Ser-2 and Ser-5 of CTD for transcription during mitosis in the budding yeast. The phosphorylation of CTD by Cdc15 is independent of any prior Ser phosphorylation(s). The inactivation of Cdc15 causes reduction of global CTD phosphorylation during mitosis and affects the expression of genes whose transcript levels peak during mitosis. Cdc15 also influences the complete transcription of clb2 gene and phosphorylates Ser-5 at the promoter and Ser-2 toward the 3' end of the gene. The observation that Cdc15 could phosphorylate Ser-5, as well as Ser-2, during transcription in mitosis is in contrast to the phosphorylation marks put by the kinases in interphase (G 1 , S, and G 2 ), where Cdck7/Kin28 phosphorylates Ser-5 at promoter and Bur1/Ctk1 phosphorylates Ser-2 at the 3' end of the genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Phosphopeptide derivatization signatures to identify serine and threonine phosphorylated peptides by mass spectrometry.

    Science.gov (United States)

    Molloy, M P; Andrews, P C

    2001-11-15

    The development of rapid, global methods for monitoring states of protein phosphorylation would provide greater insight for understanding many fundamental biological processes. Current best practices use mass spectrometry (MS) to profile digests of purified proteins for evidence of phosphorylation. However, this approach is beset by inherent difficulties in both identifying phosphopeptides from within a complex mixture containing many other unmodified peptides and ionizing phosphopeptides in positive-ion MS. We have modified an approach that uses barium hydroxide to rapidly eliminate the phosphoryl group of serine and threonine modified amino acids, creating dehydroamino acids that are susceptible to nucleophilic derivatization. By derivatizing a protein digest with a mixture of two different alkanethiols, phosphopeptide-specific derivatives were readily distinguished by MS due to their characteristic ion-pair signature. The resulting tagged ion pairs accommodate simple and rapid screening for phosphopeptides in a protein digest, obviating the use of isotopically labeled samples for qualitative phosphopeptide detection. MALDI-MS is used in a first pass manner to detect derivatized phosphopeptides, while the remaining sample is available for tandem MS to reveal the site of derivatization and, thus, phosphorylation. We demonstrated the technique by identifying phosphopeptides from beta-casein and ovalbumin. The approach was further used to examine in vitro phosphorylation of recombinant human HSP22 by protein kinase C, revealing phosphorylation of Thr-63.

  8. Akt regulates the subcellular localization of the Rab27a-binding protein JFC1 by phosphorylation.

    Science.gov (United States)

    Johnson, Jennifer L; Pacquelet, Sandrine; Lane, William S; Eam, Boreth; Catz, Sergio D

    2005-08-01

    Here, we show that the Rab27a-binding protein JFC1/Slp1 (synaptotagmin-like protein) is regulated by Akt-mediated phosphorylation. Using the phosphatase and tensin homolog-null LNCaP cells and the phosphatidylinositol 3-kinase inhibitor LY294002, we show that the phosphorylation of endogenous JFC1 is dependent on the phosphatidylinositol 3-kinase/Akt pathway. JFC1 was phosphorylated in cells expressing a constitutively active Akt, confirming that it is an Akt substrate in vivo. Direct phosphorylation of JFC1 by Akt was confirmed in vitro. Using microcapillary high-performance liquid chromatography tandem mass spectrometry, we identified five Akt-phosphorylation sites in JFC1. By mutagenesis analysis and subsequent immunoprecipitation (IP), we established that Akt phosphorylates JFC1 at serine 241. JFC1 and Rab27a colocalize in the proximity of the plasma membrane in LNCaP cells. The interaction was confirmed by IP analysis and was abolished by the point mutation W83S in JFC1. Phosphorylation did not alter the ability of JFC1 to bind to Rab27a. Instead, phosphorylation by Akt dramatically decreased when JFC1 was bound to Rab27a. Finally, we show that as a consequence of in vivo phosphorylation, JFC1 dissociates from the membrane, promoting JFC1 redistribution to the cytosol. Our results suggest that Akt regulates JFC1/Slp1 function by phosphorylation and may have implications on Rab27a-containing vesicle secretion.

  9. 75 FR 22868 - Withdrawal of Regulatory Guide

    Science.gov (United States)

    2010-04-30

    ...'s public Web site under ``Regulatory Guides'' in the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doc-collections . Regulatory guides are also available for inspection at the NRC's... NUCLEAR REGULATORY COMMISSION [NRC-2010-0167] Withdrawal of Regulatory Guide AGENCY: Nuclear...

  10. Hydrogen bond based smart polymer for highly selective and tunable capture of multiply phosphorylated peptides.

    Science.gov (United States)

    Qing, Guangyan; Lu, Qi; Li, Xiuling; Liu, Jing; Ye, Mingliang; Liang, Xinmiao; Sun, Taolei

    2017-09-06

    Multisite phosphorylation is an important and common mechanism for finely regulating protein functions and subsequent cellular responses. However, this study is largely restricted by the difficulty to capture low-abundance multiply phosphorylated peptides (MPPs) from complex biosamples owing to the limitation of enrichment materials and their interactions with phosphates. Here we show that smart polymer can serve as an ideal platform to resolve this challenge. Driven by specific but tunable hydrogen bonding interactions, the smart polymer displays differential complexation with MPPs, singly phosphorylated and non-modified peptides. Importantly, MPP binding can be modulated conveniently and precisely by solution conditions, resulting in highly controllable MPP adsorption on material surface. This facilitates excellent performance in MPP enrichment and separation from model proteins and real biosamples. High enrichment selectivity and coverage, extraordinary adsorption capacities and recovery towards MPPs, as well as high discovery rates of unique phosphorylation sites, suggest its great potential in phosphoproteomics studies.Capture of low-abundance multiply phosphorylated peptides (MPPs) is difficult due to limitation of enrichment materials and their interactions with phosphates. Here the authors show, a smart polymer driven by specific but tunable hydrogen bonding interactions can differentially complex with MPPs, singly phosphorylated and non-modified peptides.

  11. Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation.

    Science.gov (United States)

    Wong, Lilly; Lieser, Scot A; Miyashita, Osamu; Miller, Meghan; Tasken, Kjetil; Onuchic, Josè N; Adams, Joseph A; Woods, Virgil L; Jennings, Patricia A

    2005-08-05

    The C-terminal Src kinase (Csk) phosphorylates and down-regulates Src family tyrosine kinases. The Csk-binding protein (Cbp) localizes Csk close to its substrates at the plasma membrane, and increases the specific activity of the kinase. To investigate this long-range catalytic effect, the phosphorylation of Src and the conformation of Csk were investigated in the presence of a high-affinity phosphopeptide derived from Cbp. This peptide binds tightly to the SH2 domain and enhances Src recognition (lowers K(m)) by increasing the apparent phosphoryl transfer rate in the Csk active site, a phenomenon detected in rapid quench flow experiments. Previous studies demonstrated that the regulation of Csk activity is linked to conformational changes in the enzyme that can be probed with hydrogen-deuterium exchange methods. We show that the Cbp peptide impacts deuterium incorporation into its binding partner (the SH2 domain), and into the SH2-kinase linker and several sequences in the kinase domain, including the glycine-rich loop in the active site. These findings, along with computational data from normal mode analyses, suggest that the SH2 domain moves in a cantilever fashion with respect to the small lobe of the kinase domain, ordering the active site for catalysis. The binding of a small Cbp-derived peptide to the SH2 domain of Csk modifies these motions, enhancing Src recognition.

  12. The Golgi localization of phosphatidylinositol transfer protein beta requires the protein kinase C-dependent phosphorylation of serine 262 and is essential for maintaining plasma membrane sphingomyelin levels

    NARCIS (Netherlands)

    van Tiel, Claudia M.; Westerman, Jan; Paasman, Marten A.; Hoebens, Martha M.; Wirtz, Karel W. A.; Snoek, Gerry T.

    2002-01-01

    Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165)

  13. Bacillus subtilis single-stranded DNA-binding protein SsbA is phosphorylated at threonine 38 by the serine/threonine kinase YabT

    DEFF Research Database (Denmark)

    Derouiche, Abderahmane; Petranovic, Dina; Macek, Boris

    2016-01-01

    Background and purpose: Single-stranded DNA-binding proteins participate in all stages of DNA metabolism that involve single-stranded DNA, from replication, recombination, repair of DNA damage, to natural competence in species such as Bacillus subtilis. B. subtilis single-stranded DNA......-binding proteins have previously been found to be phosphorylated on tyrosine and arginine residues. While tyrosine phosphorylation was shown to enhance the DNA-binding properties of SsbA, arginine phosphorylation was not functionally characterized.Materials and methods: We used mass spectrometry analysis to detect...... phosphorylation of SsbA purified from B. subtilis cells. The detected phosphorylation site was assessed for its influence on DNA-binding in vitro, using electrophoretic mobility shift assays. The ability of B. subtilis serine/threonine kinases to phosphorylate SsbA was assessed using in vitro phosphorylation...

  14. Novel autophosphorylation sites of Src family kinases regulate kinase activity and SH2 domain-binding capacity.

    Science.gov (United States)

    Weir, Marion E; Mann, Jacqueline E; Corwin, Thomas; Fulton, Zachary W; Hao, Jennifer M; Maniscalco, Jeanine F; Kenney, Marie C; Roman Roque, Kristal M; Chapdelaine, Elizabeth F; Stelzl, Ulrich; Deming, Paula B; Ballif, Bryan A; Hinkle, Karen L

    2016-04-01

    Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the C-terminal site to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. © 2016 Federation of European Biochemical Societies.

  15. Phosphorylation by CK2 regulates MUS81/EME1 in mitosis and after replication stress.

    Science.gov (United States)

    Palma, Anita; Pugliese, Giusj Monia; Murfuni, Ivana; Marabitti, Veronica; Malacaria, Eva; Rinalducci, Sara; Minoprio, Anna; Sanchez, Massimo; Mazzei, Filomena; Zolla, Lello; Franchitto, Annapaola; Pichierri, Pietro

    2018-06-01

    The MUS81 complex is crucial for preserving genome stability through the resolution of branched DNA intermediates in mitosis. However, untimely activation of the MUS81 complex in S-phase is dangerous. Little is known about the regulation of the human MUS81 complex and how deregulated activation affects chromosome integrity. Here, we show that the CK2 kinase phosphorylates MUS81 at Serine 87 in late-G2/mitosis, and upon mild replication stress. Phosphorylated MUS81 interacts with SLX4, and this association promotes the function of the MUS81 complex. In line with a role in mitosis, phosphorylation at Serine 87 is suppressed in S-phase and is mainly detected in the MUS81 molecules associated with EME1. Loss of CK2-dependent MUS81 phosphorylation contributes modestly to chromosome integrity, however, expression of the phosphomimic form induces DSBs accumulation in S-phase, because of unscheduled targeting of HJ-like DNA intermediates, and generates a wide chromosome instability phenotype. Collectively, our findings describe a novel regulatory mechanism controlling the MUS81 complex function in human cells. Furthermore, they indicate that, genome stability depends mainly on the ability of cells to counteract targeting of branched intermediates by the MUS81/EME1 complex in S-phase, rather than on a correct MUS81 function in mitosis.

  16. Development of SKI's Regulatory Approach to the Siting of a Spent Nuclear Fuel Repository

    International Nuclear Information System (INIS)

    Westerlind, Magnus

    2003-01-01

    Since the beginning of the 1990s the Swedish Nuclear Fuel and Waste Management Co., SKB, is actively working with the siting of a spent nuclear fuel repository. Feasibility studies have been completed in a total of eight municipalities, and in December 2000 three municipalities (Oskarshamn, Tierp and Oesthammar) were proposed for further investigations. These site investigations include surface based site characterisation from deep bore holes but also further studies of infrastructure, land use, transportation etc. SKB's proposal was reviewed by SKI and about 60 other organisations, including municipalities, NGOs, government agencies etc. during the winter/spring 2000/2001. In June 2001 SKI reported the review findings to the Government. In parallel with SKI also the Swedish Council for Nuclear Waste (KASAM) reviewed SKB's proposal and reported to the Government. In its decision in November 2001 the Government supported SKB's proposal to continue with site investigations. Based on SKB's material, the reviews and the Government's decision the municipalities of Oesthammar and Oskarshamn have agreed to site investigations while Tierp have decided no to continue. The site investigations in Oesthammar and Oskarshamn started during 2002. The siting process has meant that several new actors have been engaged in nuclear waste management in general and disposal of spent nuclear fuel in particular. This has meant that 'old' actors, particularly SKB, the regulators (the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI) have had to evaluate, develop and clarify their roles and strategies for dialogue. This paper presents reflections on the impacts on some of SKI's regulatory activities

  17. Single or combined treatment with L-DOPA and quinpirole differentially modulate expression and phosphorylation of key regulatory kinases in neuroblastoma cells.

    Science.gov (United States)

    Fuzzati-Armentero, Marie Therese; Ghezzi, Cristina; Nisticò, Robert; Oda, Adriano; Blandini, Fabio

    2013-09-27

    In the past decades, the clinical use of dopamine agonists has expanded from adjunct therapy in patients with a deteriorating response to L-3,4-dihydroxyphenylalanine (L-DOPA) to monotherapy for the treatment of early PD. Dopamine agonists provide their antiparkinsonian benefit through stimulation of brain postsynaptic type 2 dopamine receptors that exert their effect through classical cAMP-dependent mechanisms, as well as cAMP-independent cellular signaling cascades, including the Akt/glycogen synthase kinase 3 (GSK3) pathway. Alterations of Akt/GSK3 have been observed and may contribute to the neurodegenerative processes and the development of L-DOPA-induced dyskinesia. The effects L-DOPA and quinpirole, a dopamine agonist, on the two key regulatory kinases, Akt and GSK3, were evaluated in neuroblastoma cell line. L-DOPA and dopamine agonist dose-dependently and differentially modulated Akt and GSK3 expression and phosphorylation when added alone or combined. The combined treatment inverted or potentiated the modulatory properties of the single compound. The drug- and concentration-dependent balance of dopamine receptor stimulation over auto-oxidation may distinctively modulate GSK3 isoforms and Akt. Our results indicate that particular attention must be given to drug concentration and combination when multiple therapies are applied for the clinical treatment of PD patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Protein phosphorylation in isolated human adipocytes - Adrenergic control of the phosphorylation of hormone-sensitive lipase

    International Nuclear Information System (INIS)

    Smiley, R.M.; Paul, S.; Browning, M.D.; Leibel, R.L.; Hirsch, J.

    1990-01-01

    The effect of adrenergic agents on protein phosphorylation in human adipocytes was examined. Freshly isolated human fat cells were incubated with 32 PO 4 in order to label intracellular ATP, then treated with a variety of adrenergic and other pharmacologic agents. Treatment with the β-adrenergic agonist isoproterenol led to a significant increase in phosphate content of at least five protein bands (M r 52, 53, 63, 67, 84 kDa). The increase in phosphorylation was partially inhibited by the α-2 agonist clonidine. Epinephrine, a combined α and β agonist, was less effective at increasing phosphate content of the proteins than was isoproterenol. Neither insulin nor the α-1 agonist phenylephrine had any discernible effect on the pattern of protein phosphorylation. The 84 kDa phosphorylated peptide band appears to contain hormone-sensitive lipase, a key enzyme in the lipolytic pathway which is activated by phosphorylation. These results are somewhat different than previously reported results for rat adipocytes, and represent the first report of overall pattern and adrenergic modulation of protein phosphorylation in human adipocytes

  19. A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9

    International Nuclear Information System (INIS)

    Weyer, Philipp S. van de; Muehlfeit, Michael; Klose, Christoph; Bonventre, Joseph V.; Walz, Gerd; Kuehn, E. Wolfgang

    2006-01-01

    Tim-3 is a member of the TIM family of proteins (T-cell immunoglobulin mucin) involved in the regulation of CD4+ T-cells. Tim-3 is a T H 1-specific type 1 membrane protein and regulates T H 1 proliferation and the development of tolerance. Binding of galectin-9 to the extracellular domain of Tim-3 results in apoptosis of T H 1 cells, but the intracellular pathways involved in the regulatory function of Tim-3 are unknown. Unlike Tim-1, which is expressed in renal epithelia and cancer, Tim-3 has not been described in cells other than neuronal or T-cells. Using RT-PCR we demonstrate that Tim-3 is expressed in malignant and non-malignant epithelial tissues. We have cloned Tim-3 from an immortalized liver cell carcinoma line and identified a highly conserved tyrosine in the intracellular tail of Tim-3 (Y265). We demonstrate that Y265 is specifically phosphorylated in vivo by the interleukin inducible T cell kinase (ITK), a kinase which is located in close proximity of the TIM genes on the allergy susceptibility locus 5q33.3. Stimulation of Tim-3 by its ligand galectin-9 results in increased phosphorylation of Y265, suggesting that this tyrosine residue plays an important role in downstream signalling events regulating T-cell fate. Given the role of TIM proteins in autoimmunity and cancer, the conserved SH2 binding domain surrounding Y265 could represent a possible target site for pharmacological intervention

  20. Extended Impact of Pin1 Catalytic Loop Phosphorylation Revealed by S71E Phosphomimetic.

    Science.gov (United States)

    Mahoney, Brendan J; Zhang, Meiling; Zintsmaster, John S; Peng, Jeffrey W

    2018-03-02

    Pin1 is a two-domain human protein that catalyzes the cis-trans isomerization of phospho-Ser/Thr-Pro (pS/T-P) motifs in numerous cell-cycle regulatory proteins. These pS/T-P motifs bind to Pin1's peptidyl-prolyl isomerase (PPIase) domain in a catalytic pocket, between an extended catalytic loop and the PPIase domain core. Previous studies showed that post-translational phosphorylation of S71 in the catalytic loop decreases substrate binding affinity and isomerase activity. To define the origins for these effects, we investigated a phosphomimetic Pin1 mutant, S71E-Pin1, using solution NMR. We find that S71E perturbs not only its host loop but also the nearby PPIase core. The perturbations identify a local network of hydrogen bonds and salt bridges that is more extended than previously thought, and includes interactions between the catalytic loop and the α2/α3 turn in the PPIase core. Explicit-solvent molecular dynamics simulations and phylogenetic analysis suggest that these interactions act as conserved "latches" between the loop and PPIase core that enhance binding of phosphorylated substrates, as they are absent in PPIases lacking pS/T-P specificity. Our results suggest that S71 is a hub residue within an electrostatic network primed for phosphorylation, and may illustrate a common mechanism of phosphorylation-mediated allostery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Does phosphorylation of cofilin affect the progression of human bladder cancer?

    International Nuclear Information System (INIS)

    Chung, Hong; Kim, Hong Sup; Kim, Bokyung; Jung, Seung-Hyo; Won, Kyung-Jong; Jiang, Xiaowen; Lee, Chang-Kwon; Lim, So Dug; Yang, Sang-Kuk; Song, Ki Hak

    2013-01-01

    We determined the differently expressed protein profiles and their functions in bladder cancer tissues with the aim of identifying possible target proteins and underlying molecular mechanisms for taking part in their progression. We examined the expression of proteins by proteomic analysis and western blot in normal urothelium, non-muscle-invasive bladder cancers (NMIBCs), and muscle-invasive bladder cancers (MIBCs). The function of cofilin was analyzed using T24 human bladder cancer cells. The expression levels of 12 proteins were altered between bladder cancers and normal bladder tissues. Of these proteins, 14-3-3σ was upregulated in both NMIBCs and MIBCs compared with controls. On the other hand, myosin regulatory light chain 2, galectin-1, lipid-binding AI, annexin V, transthyretin, CARD-inhibitor of NF-κB-activating ligand, and actin prepeptide were downregulated in cancer samples. Cofilin, an actin-depolymerizing factor, was prominent in both NMIBCs and MIBCs compared with normal bladder tissues. Furthermore, we confirmed that cofilin phosphorylation was more prominent in MIBCs than in NMIBCs using immunoblotting and immunohistochemcal analyses. Epidermal growth factor (EGF) increased the phosphorylation of cofilin and elevated the migration in T24 cells. Knockdown of cofilin expression with small interfering RNA attenuated the T24 cell migration in response to EGF. These results demonstrate that the increased expression and phosphorylation of cofilin might play a role in the occurrence and invasiveness of bladder cancer. We suspected that changes in cofilin expression may participate in the progression of the bladder cancer

  2. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence

    DEFF Research Database (Denmark)

    Blom, Nikolaj; Sicheritz-Pontén, Thomas; Gupta, Ramneek

    2004-01-01

    Post-translational modifications (PTMs) occur on almost all proteins analyzed to date. The function of a modified protein is often strongly affected by these modifications and therefore increased knowledge about the potential PTMs of a target protein may increase our understanding of the molecular...... steps by integrating computational approaches into the validation procedures. Many advanced methods for the prediction of PTMs exist and many are made publicly available. We describe our experiences with the development of prediction methods for phosphorylation and glycosylation sites...... and the development of PTM-specific databases. In addition, we discuss novel ideas for PTM visualization (exemplified by kinase landscapes) and improvements for prediction specificity (by using ESS-evolutionary stable sites). As an example, we present a new method for kinase-specific prediction of phosphorylation...

  3. Hexokinase 2 from Saccharomyces cerevisiae: regulation of oligomeric structure by in vivo phosphorylation at serine-14.

    Science.gov (United States)

    Behlke, J; Heidrich, K; Naumann, M; Müller, E C; Otto, A; Reuter, R; Kriegel, T

    1998-08-25

    Homodimeric hexokinase 2 from Saccharomyces cerevisiae is known to have two sites of phosphorylation: for serine-14 the modification in vivo increases with glucose exhaustion [Kriegel et al. (1994) Biochemistry 33, 148-152], while for serine-157 it occurs in vitro with ATP in the presence of nonphosphorylateable five-carbon analogues of glucose [Heidrich et al. (1997) Biochemistry 36, 1960-1964]. We show now by site-directed mutagenesis and sedimentation analysis that serine-14 phosphorylation affects the oligomeric state of hexokinase, its substitution by glutamate causing complete dissociation; glutamate exchange for serine-157 does not. Phosphorylation of wild-type hexokinase at serine-14 likewise causes dissociation in vitro. In view of the higher glucose affinity of monomeric hexokinase and the high hexokinase concentration in yeast [Womack, F., and Colowick, S. P. (1978) Arch. Biochem. Biophys. 191, 742-747; Mayes, E. L., Hoggett, J. G., and Kellett, G. L. (1983) Eur. J. Biochem. 133, 127-134], we speculate that the in vivo phosphorylation at serine-14 as transiently occurring in glucose derepression might provide a mechanism to improve glucose utilization from low level and/or that nuclear localization of the monomer might be involved in the signal transduction whereby glucose causes catabolite repression.

  4. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Lin; Song, Li; Zhang, Yan-Wan; Ye, Jue; Xu, Rui-Xia; Shi, Na; Meng, Xian-Min

    2013-01-01

    The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function

  5. Osteopontin: A uranium phosphorylated binding-site characterization

    International Nuclear Information System (INIS)

    Safi, Samir; Jeanson, Aurelie; Roques, Jerome; Simoni, Eric; Creff, Gaelle; Qi, Lei; Basset, Christian; Vidaud, Claude; Solari, Pier Lorenzo; Den Auwer, Christophe

    2013-01-01

    Herein, we describe the structural investigation of one possible uranyl binding site inside a non structured protein. This approach couples spectroscopy, thermodynamics, and theoretical calculations (DFT) and studies the interaction of uranyl ions with a phospho-peptide, thus mimicking a possible osteopontin (OPN) hydroxyapatite growth-inhibition site. Although thermodynamical aspects were investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC), structural characterization was performed by extended X-ray absorption fine structure (EXAFS) at the U L(III)-edge combined with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. From the vibrational and fluorescence spectra, several structural models of a UO 2 2+ /peptide complex were developed and subsequently refined by using theoretical calculations to fit the experimental EXAFS obtained. The structural effect of the pH value was also considered under acidic to moderately acidic conditions (pH 1.5-5.5). Most importantly, the uranyl/peptide coordination environment was similar to that of the native protein. (authors)

  6. Phosphorylation of chicken growth hormone

    International Nuclear Information System (INIS)

    Aramburo, C.; Montiel, J.L.; Donoghue, D.; Scanes, C.G.; Berghman, L.R.

    1990-01-01

    The possibility that chicken growth hormone (cGH) can be phosphorylated has been examined. Both native and biosynthetic cGH were phosphorylated by cAMP-dependent protein kinase (and γ- 32 P-ATP). The extent of phosphorylation was however less than that observed with ovine prolactin. Under the conditions employed, glycosylated cGH was not phosphorylated. Chicken anterior pituitary cells in primary culture were incubated in the presence of 32 P-phosphate. Radioactive phosphate was incorporated in vitro into the fraction immunoprecipitable with antisera against cGH. Incorporation was increased with cell number and time of incubation. The presence of GH releasing factor (GRF) increased the release of 32 P-phosphate labeled immunoprecipitable GH into the incubation media but not content of immunoprecipitable GH in the cells. The molecular weight of the phosphorylated immunoreactive cGH in the cells corresponded to cGH dimer

  7. 75 FR 79049 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-12-17

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . The regulatory... NUCLEAR REGULATORY COMMISSION [NRC-2008-0427] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 3.12...

  8. 76 FR 18262 - Notice of issuance of Regulatory Guide

    Science.gov (United States)

    2011-04-01

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . The regulatory... NUCLEAR REGULATORY COMMISSION [NRC-2009-0277] Notice of issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.44...

  9. 76 FR 14107 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-03-15

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . The regulatory... NUCLEAR REGULATORY COMMISSION [NRC-2009-0276] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.43...

  10. 76 FR 14108 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-03-15

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . The regulatory... NUCLEAR REGULATORY COMMISSION [NRC-2009-0275] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.50...

  11. A unified molecular mechanism for the regulation of acetyl-CoA carboxylase by phosphorylation.

    Science.gov (United States)

    Wei, Jia; Zhang, Yixiao; Yu, Tai-Yuan; Sadre-Bazzaz, Kianoush; Rudolph, Michael J; Amodeo, Gabriele A; Symington, Lorraine S; Walz, Thomas; Tong, Liang

    2016-01-01

    Acetyl-CoA carboxylases (ACCs) are crucial metabolic enzymes and attractive targets for drug discovery. Eukaryotic acetyl-CoA carboxylases are 250 kDa single-chain, multi-domain enzymes and function as dimers and higher oligomers. Their catalytic activity is tightly regulated by phosphorylation and other means. Here we show that yeast ACC is directly phosphorylated by the protein kinase SNF1 at residue Ser1157, which potently inhibits the enzyme. Crystal structure of three ACC central domains (AC3-AC5) shows that the phosphorylated Ser1157 is recognized by Arg1173, Arg1260, Tyr1113 and Ser1159. The R1173A/R1260A double mutant is insensitive to SNF1, confirming that this binding site is crucial for regulation. Electron microscopic studies reveal dramatic conformational changes in the holoenzyme upon phosphorylation, likely owing to the dissociation of the biotin carboxylase domain dimer. The observations support a unified molecular mechanism for the regulation of ACC by phosphorylation as well as by the natural product soraphen A, a potent inhibitor of eukaryotic ACC. These molecular insights enhance our understanding of acetyl-CoA carboxylase regulation and provide a basis for drug discovery.

  12. Independent regulatory control and monitoring of the environment at the uranium legacy sites under reclamation

    International Nuclear Information System (INIS)

    Shandala, N.K.; Titov, A.V.; Kiselev, S.M.; Isaev, D.V.; Aladova, R.A.

    2012-01-01

    Full text: Radiation safety at areas affected by the natural uranium mining and milling facilities is very important for the environment protection and human health. For this purpose the close operator-regulator contact is required during remedial operations. One of the key mechanisms of the operating regulatory supervision of radiation safety at uranium legacy sites is organization of independent radiation control and monitoring in the course of reclamation and after its completion. The main stages of this strategy include: detailed radiation survey at the area and in the vicinity of the former uranium mining sites; threat assessment in order to identify the regulatory priorities; environmental radiation control and monitoring. Tailings and shallow disposal sites of the uranium mining wastes are the most critical areas in terms of potential hazard for the environment. Tailings are the source of contamination of the near-land air due to the radionuclide dust resuspension from the tailing surface; surface and ground water due to washing out from by precipitation and surface streams of toxic and radioactive elements. Frequently, contamination of surface and ground waters results in some problems, especially when using the leaching fluids for the solution mining and draining hydraulic fluids. Radiation risk for the residents of areas near not operating uranium mining and milling facilities depends on the following factors: radon exhalation from the surface of dumps and tailing; radioactive dust transfer; using radioactive material in building; contamination of surface water streams and aquifers used for drinking water supply; contamination of open ponds used for fish breeding and catching; contamination of foodstuffs grown in the nuclear legacy areas. Radiation monitoring is necessary for the up-to-date response to changing radiation situation during reclamation and arrangement of adequate countermeasures. We mean here comprehensive dynamic surveillance including long

  13. BRD4 Phosphorylation Regulates HPV E2-Mediated Viral Transcription, Origin Replication, and Cellular MMP-9 Expression

    Directory of Open Access Journals (Sweden)

    Shwu-Yuan Wu

    2016-08-01

    Full Text Available Post-translational modification can modulate protein conformation and alter binding partner recruitment within gene regulatory regions. Here, we report that bromodomain-containing protein 4 (BRD4, a transcription co-factor and chromatin regulator, uses a phosphorylation-induced switch mechanism to recruit E2 protein encoded by cancer-associated human papillomavirus (HPV to viral early gene and cellular matrix metalloproteinase-9 (MMP-9 promoters. Enhanced MMP-9 expression, induced upon keratinocyte differentiation, occurs via BRD4-dependent recruitment of active AP-1 and NF-κB to their target sequences. This is triggered by replacement of AP-1 family members JunB and JunD by c-Jun and by re-localization of NF-κB from the cytoplasm to the nucleus. In addition, BRD4 phosphorylation is critical for E2- and origin-dependent HPV DNA replication. A class of phospho-BRD4-targeting compounds, distinct from the BET bromodomain inhibitors, effectively blocks BRD4 phosphorylation-specific functions in transcription and factor recruitment.

  14. Association of Regulatory Boards of Optometry

    Science.gov (United States)

    ... website of the Association of Regulatory Boards of Optometry (ARBO). ARBO's web site is designed to provide resources to regulatory boards of optometry throughout the world. State/Provincial/Territorial Boards of ...

  15. Human 14-3-3 paralogs differences uncovered by cross-talk of phosphorylation and lysine acetylation.

    Directory of Open Access Journals (Sweden)

    Marina Uhart

    Full Text Available The 14-3-3 protein family interacts with more than 700 different proteins in mammals, in part as a result of its specific phospho-serine/phospho-threonine binding activity. Upon binding to 14-3-3, the stability, subcellular localization and/or catalytic activity of the ligands are modified. Seven paralogs are strictly conserved in mammalian species. Although initially thought as redundant, the number of studies showing specialization is growing. We created a protein-protein interaction network for 14-3-3, kinases and their substrates signaling in human cells. We included information of phosphorylation, acetylation and other PTM sites, obtaining a complete representation of the 14-3-3 binding partners and their modifications. Using a computational system approach we found that networks of each 14-3-3 isoform are statistically different. It was remarkable to find that Tyr was the most phosphorylatable amino acid in domains of 14-3-3 epsilon partners. This, together with the over-representation of SH3 and Tyr_Kinase domains, suggest that epsilon could be involved in growth factors receptors signaling pathways particularly. We also found that within zeta's network, the number of acetylated partners (and the number of modify lysines is significantly higher compared with each of the other isoforms. Our results imply previously unreported hidden differences of the 14-3-3 isoforms interaction networks. The phosphoproteome and lysine acetylome within each network revealed post-transcriptional regulation intertwining phosphorylation and lysine acetylation. A global understanding of these networks will contribute to predict what could occur when regulatory circuits become dysfunctional or are modified in response to external stimuli.

  16. A phosphorylation-motif for tuneable helix stabilisation in intrinsically disordered proteins - Lessons from the sodium proton exchanger 1 (NHE1)

    DEFF Research Database (Denmark)

    Hendus-Altenburger, Ruth; Lambrughi, Matteo; Terkelsen, Thilde Bagger

    2017-01-01

    ). Using NMR spectroscopy, we found that two out of those six phosphorylation sites had a stabilizing effect on transient helices. One of these was further investigated by circular dichroism and NMR spectroscopy as well as by molecular dynamic simulations, which confirmed the stabilizing effect......-spread role in phosphorylation-mediated regulation of intrinsically disordered proteins. The identification of such motifs is important for understanding the molecular mechanism of cellular signalling, and is crucial for the development of predictors for the structural effect of phosphorylation; a tool......Intrinsically disordered proteins (IDPs) are involved in many pivotal cellular processes including phosphorylation and signalling. The structural and functional effects of phosphorylation of IDPs remain poorly understood and difficult to predict. Thus, a need exists to identify motifs that confer...

  17. Evolutionary dynamics of DNA-binding sites and direct target genes of a floral master regulatory transcription factor [ChIP-Seq

    NARCIS (Netherlands)

    Muiño, J.M.; Bruijn, de S.A.; Vingron, Martin; Angenent, G.C.; Kaufmann, K.

    2015-01-01

    Plant development is controlled by transcription factors (TFs) which form complex gene-regulatory networks. Genome-wide TF DNA-binding studies revealed that these TFs have several thousands of binding sites in the Arabidopsis genome, and may regulate the expression of many genes directly. Given the

  18. 75 FR 6404 - Regulatory Site Visit Training Program

    Science.gov (United States)

    2010-02-09

    ... review efficiency and quality, and the quality of its regulatory efforts and interactions, by providing... tissue establishments. The visits may include packaging facilities, quality control and pathology...

  19. Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker.

    Science.gov (United States)

    Yan, Qingrong; Barros, Tiago; Visperas, Patrick R; Deindl, Sebastian; Kadlecek, Theresa A; Weiss, Arthur; Kuriyan, John

    2013-06-01

    Serial activation of the tyrosine kinases Lck and ZAP-70 initiates signaling downstream of the T cell receptor. We previously reported the structure of an autoinhibited ZAP-70 variant in which two regulatory tyrosine residues (315 and 319) in the SH2-kinase linker were replaced by phenylalanine. We now present a crystal structure of ZAP-70 in which Tyr 315 and Tyr 319 are not mutated, leading to the recognition of a five-residue sequence register error in the SH2-kinase linker of the original crystallographic model. The revised model identifies distinct roles for these two tyrosines. As seen in a recently reported structure of the related tyrosine kinase Syk, Tyr 315 of ZAP-70 is part of a hydrophobic interface between the regulatory apparatus and the kinase domain, and the integrity of this interface would be lost upon engagement of doubly phosphorylated peptides by the SH2 domains. Tyr 319 is not necessarily dislodged by SH2 engagement, which activates ZAP-70 only ∼5-fold in vitro. In contrast, phosphorylation by Lck activates ZAP-70 ∼100-fold. This difference is due to the ability of Tyr 319 to suppress ZAP-70 activity even when the SH2 domains are dislodged from the kinase domain, providing stringent control of ZAP-70 activity downstream of Lck.

  20. Crystal Structure of Human Dual-Specificity Tyrosine-Regulated Kinase 3 Reveals New Structural Features and Insights into its Auto-phosphorylation.

    Science.gov (United States)

    Kim, Kuglae; Cha, Jeong Seok; Cho, Yong-Soon; Kim, Hoyoung; Chang, Nienping; Kim, Hye-Jung; Cho, Hyun-Soo

    2018-04-07

    Dual-specificity tyrosine-regulated kinases (DYRKs) auto-phosphorylate a critical tyrosine residue in their activation loop and phosphorylate their substrate on serine and threonine residues. The auto-phosphorylation occurs intramolecularly and is a one-off event. DYRK3 is selectively expressed at a high level in hematopoietic cells and attenuates erythroblast development, leading to anemia. In the present study, we determined the crystal structure of the mature form of human DYRK3 in complex with harmine, an ATP competitive inhibitor. The crystal structure revealed a phosphorylation site, residue S350, whose phosphorylation increases the stability of DYRK3 and enhances its kinase activity. In addition, our structural and biochemical assays suggest that the N-terminal auto-phosphorylation accessory domain stabilizes the DYRK3 protein, followed by auto-phosphorylation of the tyrosine of the activation loop, which is important for kinase activity. Finally, our docking analysis provides information for the design of novel and potent therapeutics to treat anemia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Photoassist-phosphorylated TiO2 as a catalyst for direct formation of 5-(hydroxymethyl)furfural from glucose.

    Science.gov (United States)

    Hattori, Masashi; Kamata, Keigo; Hara, Michikazu

    2017-02-01

    Photo-assisted phosphorylation of an anatase TiO 2 catalyst was examined to improve its catalytic performance for the direct production of 5-(hydroxymethyl)furfural (HMF), a versatile chemical platform, from glucose. In phosphorylation based on simple esterification between phosphoric acid and surface OH groups on anatase TiO 2 with water-tolerant Lewis acid sites, the density of phosphates immobilized on TiO 2 is limited to 2 phosphates nm -2 , which limits selective HMF production. Phosphorylation of the TiO 2 surface under fluorescent light irradiation increases the surface phosphate density to 50%, which is higher than the conventional limit, thus preventing the adsorption of hydrophilic glucose molecules on TiO 2 and resulting in a more selective HMF production over photoassist-phosphorylated TiO 2 .

  2. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    Science.gov (United States)

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. eIF4E Phosphorylation Influences Bdnf mRNA Translation in Mouse Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jamie K. Moy

    2018-02-01

    Full Text Available Plasticity in dorsal root ganglion (DRG neurons that promotes pain requires activity-dependent mRNA translation. Protein synthesis inhibitors block the ability of many pain-promoting molecules to enhance excitability in DRG neurons and attenuate behavioral signs of pain plasticity. In line with this, we have recently shown that phosphorylation of the 5′ cap-binding protein, eIF4E, plays a pivotal role in plasticity of DRG nociceptors in models of hyperalgesic priming. However, mRNA targets of eIF4E phosphorylation have not been elucidated in the DRG. Brain-derived neurotrophic factor (BDNF signaling from nociceptors in the DRG to spinal dorsal horn neurons is an important mediator of hyperalgesic priming. Regulatory mechanisms that promote pain plasticity via controlling BDNF expression that is involved in promoting pain plasticity have not been identified. We show that phosphorylation of eIF4E is paramount for Bdnf mRNA translation in the DRG. Bdnf mRNA translation is reduced in mice lacking eIF4E phosphorylation (eIF4ES209A and pro-nociceptive factors fail to increase BDNF protein levels in the DRGs of these mice despite robust upregulation of Bdnf-201 mRNA levels. Importantly, bypassing the DRG by giving intrathecal injection of BDNF in eIF4ES209A mice creates a strong hyperalgesic priming response that is normally absent or reduced in these mice. We conclude that eIF4E phosphorylation-mediated translational control of BDNF expression is a key mechanism for nociceptor plasticity leading to hyperalgesic priming.

  4. Quantitation of multisite EGF receptor phosphorylation using mass spectrometry and a novel normalization approach

    DEFF Research Database (Denmark)

    Erba, Elisabetta Boeri; Matthiesen, Rune; Bunkenborg, Jakob

    2007-01-01

    Using stable isotope labeling and mass spectrometry, we performed a sensitive, quantitative analysis of multiple phosphorylation sites of the epidermal growth factor (EGF) receptor. Phosphopeptide detection efficiency was significantly improved by using the tyrosine phosphatase inhibitor sodium p...

  5. Phosphorylation coexists with O-GlcNAcylation in a plant virus protein and influences viral infection.

    Science.gov (United States)

    Martínez-Turiño, Sandra; Pérez, José De Jesús; Hervás, Marta; Navajas, Rosana; Ciordia, Sergio; Udeshi, Namrata D; Shabanowitz, Jeffrey; Hunt, Donald F; García, Juan Antonio

    2018-06-01

    Phosphorylation and O-GlcNAcylation are two widespread post-translational modifications (PTMs), often affecting the same eukaryotic target protein. Plum pox virus (PPV) is a member of the genus Potyvirus which infects a wide range of plant species. O-GlcNAcylation of the capsid protein (CP) of PPV has been studied extensively, and some evidence of CP phosphorylation has also been reported. Here, we use proteomics analyses to demonstrate that PPV CP is phosphorylated in vivo at the N-terminus and the beginning of the core region. In contrast with the 'yin-yang' mechanism that applies to some mammalian proteins, PPV CP phosphorylation affects residues different from those that are O-GlcNAcylated (serines Ser-25, Ser-81, Ser-101 and Ser-118). Our findings show that PPV CP can be concurrently phosphorylated and O-GlcNAcylated at nearby residues. However, an analysis using a differential proteomics strategy based on iTRAQ (isobaric tags for relative and absolute quantitation) showed a significant enhancement of phosphorylation at Ser-25 in virions recovered from O-GlcNAcylation-deficient plants, suggesting that crosstalk between O-GlcNAcylation and phosphorylation in PPV CP takes place. Although the preclusion of phosphorylation at the four identified phosphotarget sites only had a limited impact on viral infection, the mimicking of phosphorylation prevents PPV infection in Prunus persica and weakens infection in Nicotiana benthamiana and other herbaceous hosts, prompting the emergence of potentially compensatory second mutations. We postulate that the joint action of phosphorylation and O-GlcNAcylation in the N-proximal segment of CP allows a fine-tuning of protein stability, providing the amount of CP required in each step of viral infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  6. 75 FR 52999 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-08-30

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . In addition... NUCLEAR REGULATORY COMMISSION [NRC-2009-0556] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 8.35...

  7. 75 FR 37842 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-06-30

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . In addition... NUCLEAR REGULATORY COMMISSION [NRC-2009-0396] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 2.5...

  8. 75 FR 43207 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-07-23

    ... NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2009-0282] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.141...

  9. 76 FR 76168 - Regulatory Site Visit Training Program

    Science.gov (United States)

    2011-12-06

    ... quality of its regulatory efforts and interactions, by providing CBER staff with a better understanding of... may include the following: (1) Packaging facilities, (2) quality control and pathology/toxicology...

  10. 76 FR 4919 - Regulatory Site Visit Training Program

    Science.gov (United States)

    2011-01-27

    ... quality of its regulatory efforts and interactions, by providing CBER staff with a better understanding of... may include the following: (1) Packaging facilities, (2) quality control and pathology/toxicology...

  11. Phosphorylation-dephosphorylation process as a probable mechanism for the diurnal regulatory changes of phosphoenolpyruvate carboxylase in CAM plants.

    Science.gov (United States)

    Brulfert, J; Vidal, J; Le Marechal, P; Gadal, P; Queiroz, O; Kluge, M; Kruger, I

    1986-04-14

    Day and night forms of phosphoenolpyruvate carboxylase (EC 4.1.1.31) (PEPC) were extracted from leaves of the CAM plants Kalanchoe daigremontiana, K. tubiflora and K. blossfeldiana previously fed with [32P] labelled phosphate solution. A one-step immunochemical purification followed by SDS polyacrylamide gel electrophoresis and autoradiography showed that, in all species, the night form of the enzyme was phosphorylated and not the day form. Limited acid hydrolysis of the night form and two-dimensional separation identified predominantly labelled phosphoserine and phosphothreonine. In vitro addition of exogenous acid phosphatase (EC 3.1.3.2) to desalted night form-containing extracts resulted within 30 min in a shift in PEPC enzymic properties similar to the in vivo changes from night to day form. It is suggested that phosphorylation-dephosphorylation of the enzyme could be the primary in vivo process which might explain the observed rhythmicity of enzymic properties.

  12. N-acetylation and phosphorylation of Sec complex subunits in the ER membrane

    Directory of Open Access Journals (Sweden)

    Soromani Christina

    2012-12-01

    Full Text Available Abstract Background Covalent modifications of proteins provide a mechanism to control protein function. Here, we have investigated modifications of the heptameric Sec complex which is responsible for post-translational protein import into the endoplasmic reticulum (ER. It consists of the Sec61 complex (Sec61p, Sbh1p, Sss1p which on its own mediates cotranslational protein import into the ER and the Sec63 complex (Sec63p, Sec62p, Sec71p, Sec72p. Little is known about the biogenesis and regulation of individual Sec complex subunits. Results We show that Sbh1p when it is part of the Sec61 complex is phosphorylated on T5 which is flanked by proline residues. The phosphorylation site is conserved in mammalian Sec61ß, but only partially in birds, and not in other vertebrates or unicellular eukaryotes, suggesting convergent evolution. Mutation of T5 to A did not affect the ability of mutant Sbh1p to complement the growth defect in a Δsbh1Δsbh2 strain, and did not result in a hypophosphorylated protein which shows that alternate sites can be used by the T5 kinase. A survey of yeast phosphoproteome data shows that Sbh1p can be phosphorylated on multiple sites which are organized in two patches, one at the N-terminus of its cytosolic domain, the other proximal to the transmembrane domain. Surprisingly, although N-acetylation has been shown to interfere with ER targeting, we found that both Sbh1p and Sec62p are cotranslationally N-acetylated by NatA, and N-acetyl-proteome data indicate that Sec61p is modified by the same enzyme. Mutation of the N-acetylation site, however, did not affect Sec62p function in posttranslational protein import into the ER. Disabling NatA resulted in growth retardation, but not in co- or posttranslational translocation defects or instability of Sec62p or Sbh1p. Conclusions We conclude that N-acetylation of transmembrane and tail-anchored proteins does not interfere with their ER-targeting, and that Sbh1p phosphorylation on T5

  13. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice.

    Science.gov (United States)

    Grizzell, J Alex; Patel, Sagar; Barreto, George E; Echeverria, Valentina

    2017-08-01

    Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed. Copyright © 2017. Published by Elsevier Inc.

  14. Phosphorylation of the Transient Receptor Potential Ankyrin 1 by Cyclin-dependent Kinase 5 affects Chemo-nociception

    OpenAIRE

    Hall, Bradford E.; Prochazkova, Michaela; Sapio, Matthew R.; Minetos, Paul; Kurochkina, Natalya; Binukumar, B. K.; Amin, Niranjana D.; Terse, Anita; Joseph, John; Raithel, Stephen J.; Mannes, Andrew J.; Pant, Harish C.; Chung, Man-Kyo; Iadarola, Michael J.; Kulkarni, Ashok B.

    2018-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a key neuronal kinase that is upregulated during inflammation, and can subsequently modulate sensitivity to nociceptive stimuli. We conducted an in silico screen for Cdk5 phosphorylation sites within proteins whose expression was enriched in nociceptors and identified the chemo-responsive ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) as a possible Cdk5 substrate. Immunoprecipitated full length TRPA1 was shown to be phosphorylated by Cdk5 and th...

  15. Crosstalk between phosphorylation and O-GlcNAcylation: friend or foe.

    Science.gov (United States)

    van der Laarse, Saar A M; Leney, Aneika C; Heck, Albert J R

    2018-05-02

    A wide variety of protein post-translational modifications (PTMs) decorate cellular proteins, regulating their structure, interactions and ultimately their function. The density of co-occurring PTMs on proteins can be very high, where multiple PTMs can positively or negatively influence each other's actions, termed PTM crosstalk. In this review, we highlight recent progress in the area of PTM crosstalk, whereby we focus on crosstalk between protein phosphorylation and O-GlcNAcylation. These two PTMs largely target identical (i.e., Ser and Thr) amino acids in proteins. Phosphorylation/O-GlcNAcylation crosstalk comes in many flavors, for instance by competition for the same site/residue (reciprocal crosstalk), as well as by modifications influencing each other in proximity or even distal on the protein sequence. PTM crosstalk is observed on the writers of these modifications (i.e., kinases and O-GlcNAc transferase), on the erasers (i.e., phosphatases and O-GlcNAcase), and on the readers and the substrates. We describe examples of all these different flavors of crosstalk, and additionally the methods that are emerging to better investigate in particular phosphorylation/O-GlcNAcylation crosstalk. © 2018 Federation of European Biochemical Societies.

  16. Phosphorylation of human aquaporin 2 (AQP2) allosterically controls its interaction with the lysosomal trafficking protein LIP5.

    Science.gov (United States)

    Roche, Jennifer Virginia; Survery, Sabeen; Kreida, Stefan; Nesverova, Veronika; Ampah-Korsah, Henry; Gourdon, Maria; Deen, Peter M T; Törnroth-Horsefield, Susanna

    2017-09-01

    The interaction between the renal water channel aquaporin-2 (AQP2) and the lysosomal trafficking regulator-interacting protein LIP5 targets AQP2 to multivesicular bodies and facilitates lysosomal degradation. This interaction is part of a process that controls AQP2 apical membrane abundance in a vasopressin-dependent manner, allowing for urine volume adjustment. Vasopressin regulates phosphorylation at four sites within the AQP2 C terminus (Ser 256 , Ser 261 , Ser 264 , and Thr 269 ), of which Ser 256 is crucial and sufficient for AQP2 translocation from storage vesicles to the apical membrane. However, whether AQP2 phosphorylation modulates AQP2-LIP5 complex affinity is unknown. Here we used far-Western blot analysis and microscale thermophoresis to show that the AQP2 binds LIP5 in a phosphorylation-dependent manner. We constructed five phospho-mimicking mutants (S256E, S261E, S264E, T269E, and S256E/T269E) and a C-terminal truncation mutant (ΔP242) that lacked all phosphorylation sites but retained a previously suggested LIP5-binding site. CD spectroscopy indicated that wild-type AQP2 and the phospho-mimicking mutants had similar overall structure but displayed differences in melting temperatures possibly arising from C-terminal conformational changes. Non-phosphorylated AQP2 bound LIP5 with the highest affinity, whereas AQP2-ΔP242 had 20-fold lower affinity as determined by microscale thermophoresis. AQP2-S256E, S261E, T269E, and S256E/T269E all had reduced affinity. This effect was most prominent for AQP2-S256E, which fits well with its role in apical membrane targeting. AQP2-S264E had affinity similar to non-phosphorylated AQP2, possibly indicating a role in exosome excretion. Our data suggest that AQP2 phosphorylation allosterically controls its interaction with LIP5, illustrating how altered affinities to interacting proteins form the basis for regulation of AQP2 trafficking by post-translational modifications. © 2017 by The American Society for

  17. 75 FR 81675 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-12-28

    ... through the NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc... NUCLEAR REGULATORY COMMISSION [NRC-2010-0031] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 4.16...

  18. 75 FR 20399 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-04-19

    ... the NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2009-0418] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 6.9...

  19. 76 FR 31382 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-05-31

    ... the NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2010-0287] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 8.2...

  20. Phylogeny based discovery of regulatory elements

    Directory of Open Access Journals (Sweden)

    Cohen Barak A

    2006-05-01

    Full Text Available Abstract Background Algorithms that locate evolutionarily conserved sequences have become powerful tools for finding functional DNA elements, including transcription factor binding sites; however, most methods do not take advantage of an explicit model for the constrained evolution of functional DNA sequences. Results We developed a probabilistic framework that combines an HKY85 model, which assigns probabilities to different base substitutions between species, and weight matrix models of transcription factor binding sites, which describe the probabilities of observing particular nucleotides at specific positions in the binding site. The method incorporates the phylogenies of the species under consideration and takes into account the position specific variation of transcription factor binding sites. Using our framework we assessed the suitability of alignments of genomic sequences from commonly used species as substrates for comparative genomic approaches to regulatory motif finding. We then applied this technique to Saccharomyces cerevisiae and related species by examining all possible six base pair DNA sequences (hexamers and identifying sequences that are conserved in a significant number of promoters. By combining similar conserved hexamers we reconstructed known cis-regulatory motifs and made predictions of previously unidentified motifs. We tested one prediction experimentally, finding it to be a regulatory element involved in the transcriptional response to glucose. Conclusion The experimental validation of a regulatory element prediction missed by other large-scale motif finding studies demonstrates that our approach is a useful addition to the current suite of tools for finding regulatory motifs.

  1. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in the United States. Preliminary background report

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    This report is one of a series of preliminary reports describing the laws and regulatory programs of the United States and each of the 50 states affecting the siting and operation of energy generating facilities likely to be used in Integrated Community Energy Systems (ICES). Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES. This report describes laws and regulatory programs in the United States. Subsequent reports will (1) describe public utility rate regulatory procedures and practices as they might affect an ICES, (2) analyze each of the aforementioned regulatory programs to identify impediments to the development of ICES, and (3) recommend potential changes in legislation and regulatory practices and procedures to overcome such impediments.

  2. A distance measurement between specific sites on the cytoplasmic surface of bovine rhodopsin in rod outer segment disk membranes.

    Science.gov (United States)

    Albert, A D; Watts, A; Spooner, P; Groebner, G; Young, J; Yeagle, P L

    1997-08-14

    Structural information on mammalian integral membrane proteins is scarce. As part of work on an alternative approach to the structure of bovine rhodopsin, a method was devised to obtain an intramolecular distance between two specific sites on rhodopsin while in the rod outer segment disk membrane. In this report, the distance between the rhodopsin kinase phosphorylation site(s) on the carboxyl terminal and the top of the third transmembrane helix was measured on native rhodopsin. Rhodopsin was labeled with a nuclear spin label (31P) by limited phosphorylation with rhodopsin kinase. Major phosphorylation occurs at serines 343 and 338 on the carboxyl terminal. The phosphorylated rhodopsin was then specifically labeled on cysteine 140 with an electron spin label. Magic angle spinning 31P-nuclear magnetic resonance revealed the resonance arising from the phosphorylated protein. The enhancement of the transverse relaxation of this resonance by the paramagnetic spin label was observed. The strength of this perturbation was used to determine the through-space distance between the phosphorylation site(s) and the spin label position. A distance of 18 +/- 3 A was obtained.

  3. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders*

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G.; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-01-01

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser858 of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. PMID:26499801

  4. Targeting NF-κB RelA/p65 phosphorylation overcomes RITA resistance.

    Science.gov (United States)

    Bu, Yiwen; Cai, Guoshuai; Shen, Yi; Huang, Chenfei; Zeng, Xi; Cao, Yu; Cai, Chuan; Wang, Yuhong; Huang, Dan; Liao, Duan-Fang; Cao, Deliang

    2016-12-28

    Inactivation of p53 occurs frequently in various cancers. RITA is a promising anticancer small molecule that dissociates p53-MDM2 interaction, reactivates p53 and induces exclusive apoptosis in cancer cells, but acquired RITA resistance remains a major drawback. This study found that the site-differential phosphorylation of nuclear factor-κB (NF-κB) RelA/p65 creates a barcode for RITA chemosensitivity in cancer cells. In naïve MCF7 and HCT116 cells where RITA triggered vast apoptosis, phosphorylation of RelA/p65 increased at Ser536, but decreased at Ser276 and Ser468; oppositely, in RITA-resistant cells, RelA/p65 phosphorylation decreased at Ser536, but increased at Ser276 and Ser468. A phosphomimetic mutation at Ser536 (p65/S536D) or silencing of endogenous RelA/p65 resensitized the RITA-resistant cells to RITA while the phosphomimetic mutant at Ser276 (p65/S276D) led to RITA resistance of naïve cells. In mouse xenografts, intratumoral delivery of the phosphomimetic p65/S536D mutant increased the antitumor activity of RITA. Furthermore, in the RITA-resistant cells ATP-binding cassette transporter ABCC6 was upregulated, and silencing of ABCC6 expression in these cells restored RITA sensitivity. In the naïve cells, ABCC6 delivery led to RITA resistance and blockage of p65/S536D mutant-induced RITA sensitivity. Taken together, these data suggest that the site-differential phosphorylation of RelA/p65 modulates RITA sensitivity in cancer cells, which may provide an avenue to manipulate RITA resistance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Specific primary sequence requirements for Aurora B kinase-mediated phosphorylation and subcellular localization of TMAP during mitosis.

    Science.gov (United States)

    Kim, Hyun-Jun; Kwon, Hye-Rim; Bae, Chang-Dae; Park, Joobae; Hong, Kyung U

    2010-05-15

    During mitosis, regulation of protein structures and functions by phosphorylation plays critical roles in orchestrating a series of complex events essential for the cell division process. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a novel player in spindle assembly and chromosome segregation. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis. However, the mechanisms and functional importance of phosphorylation at most of the sites identified are currently unknown. Here, we report that TMAP is a novel substrate of the Aurora B kinase. Ser627 of TMAP was specifically phosphorylated by Aurora B both in vitro and in vivo. Ser627 and neighboring conserved residues were strictly required for efficient phosphorylation of TMAP by Aurora B, as even minor amino acid substitutions of the phosphorylation motif significantly diminished the efficiency of the substrate phosphorylation. Nearly all mutations at the phosphorylation motif had dramatic effects on the subcellular localization of TMAP. Instead of being localized to the chromosome region during late mitosis, the mutants remained associated with microtubules and centrosomes throughout mitosis. However, the changes in the subcellular localization of these mutants could not be completely explained by the phosphorylation status on Ser627. Our findings suggest that the motif surrounding Ser627 ((625) RRSRRL (630)) is a critical part of a functionally important sequence motif which not only governs the kinase-substrate recognition, but also regulates the subcellular localization of TMAP during mitosis.

  6. Proteolytic cleavage and PKA phosphorylation of α1C subunit are not required for adrenergic regulation of CaV1.2 in the heart.

    Science.gov (United States)

    Katchman, Alexander; Yang, Lin; Zakharov, Sergey I; Kushner, Jared; Abrams, Jeffrey; Chen, Bi-Xing; Liu, Guoxia; Pitt, Geoffrey S; Colecraft, Henry M; Marx, Steven O

    2017-08-22

    Calcium influx through the voltage-dependent L-type calcium channel (Ca V 1.2) rapidly increases in the heart during "fight or flight" through activation of the β-adrenergic and protein kinase A (PKA) signaling pathway. The precise molecular mechanisms of β-adrenergic activation of cardiac Ca V 1.2, however, are incompletely known, but are presumed to require phosphorylation of residues in α 1C and C-terminal proteolytic cleavage of the α 1C subunit. We generated transgenic mice expressing an α 1C with alanine substitutions of all conserved serine or threonine, which is predicted to be a potential PKA phosphorylation site by at least one prediction tool, while sparing the residues previously shown to be phosphorylated but shown individually not to be required for β-adrenergic regulation of Ca V 1.2 current (17-mutant). A second line included these 17 putative sites plus the five previously identified phosphoregulatory sites (22-mutant), thus allowing us to query whether regulation requires their contribution in combination. We determined that acute β-adrenergic regulation does not require any combination of potential PKA phosphorylation sites conserved in human, guinea pig, rabbit, rat, and mouse α 1C subunits. We separately generated transgenic mice with inducible expression of proteolytic-resistant α 1C Prevention of C-terminal cleavage did not alter β-adrenergic stimulation of Ca V 1.2 in the heart. These studies definitively rule out a role for all conserved consensus PKA phosphorylation sites in α 1C in β-adrenergic stimulation of Ca V 1.2, and show that phosphoregulatory sites on α 1C are not redundant and do not each fractionally contribute to the net stimulatory effect of β-adrenergic stimulation. Further, proteolytic cleavage of α 1C is not required for β-adrenergic stimulation of Ca V 1.2.

  7. [Regulatory radiation risks' for the population and natural objects within the Semipalatinsk Test Site].

    Science.gov (United States)

    Spiridonov, S I; Teten'kin, V L; Mukusheva, M K; Solomatin, V M

    2008-01-01

    Advisability of using risks as indicators for estimating radiation impacts on environmental objects and humans has been jusified. Results are presented from identification of dose burdens distribution to various cohorts of the population living within the Semipalatinsk Test Site (STS) and consuming contaminated farm products. Parameters of dose burden distributions are estimated for areas of livestock grazing and the most contaminated sectors within these areas. Dose distributions to meadow plants for the above areas have been found. Regulatory radiation risks for the STS population and meadow ecosystem components have been calculated. Based on the parameters estimated, levels of radiation exposure of the population and herbaceous plants have been compared.

  8. 75 FR 20868 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-04-21

    ... available through the NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc... NUCLEAR REGULATORY COMMISSION [NRC-2009-0351] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.68.2...

  9. Identification of phosphorylated butyrylcholinesterase in human plasma using immunoaffinity purification and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryal, Uma K.; Lin, Chiann Tso; Kim, Jong Seo; Heibeck, Tyler H.; Wang, Jun; Qian, Weijun; Lin, Yuehe

    2012-04-20

    Paraoxon (diethyl 4-nitrophenyl phosphate) is an active metabolite of the common insecticide parathion and is acutely toxic due to the inhibition of cholinesterase (ChE) activity in the nervous systems. The Inhibition of butyrylcholinesterase (BChE) activity by paraoxon is due to the formation of phosphorylated BChE adduct, and the detection of the phosphorylated BChE adduct in human plasma can serve as an exposure biomarker of organophosphate pesticides and nerve agents. In this study, we performed immunoaffinity purification and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis for identifying phosphorylated BChE in human plasma treated by paraoxon. BChE was captured by biotinylated anti-BChE polyclonal antibodies conjugated to streptavidin magnetic beads. Western blot analysis showed that the antibody was effective to recognize both native and modified BChE with high specificity. The exact phosphorylation site of BChE was confirmed on Serine 198 by MS/MS with a 108 Da modification mass and accurately measured parent ion masses. The phosphorylated BChE peptide was also successfully detected in the immunoaffinity purified sample from paraoxon treated human plasma. Thus, immunoaffinity purification combined with mass spectrometry represents a viable approach for the detection of paraoxon-modified BChE and other forms of modified BChE as exposure biomarkers of organophosphates and nerve agents.

  10. Phosphorylation in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary cultured astrocytes

    International Nuclear Information System (INIS)

    Kadohira, Ikuko; Abe, Yoichiro; Nuriya, Mutsuo; Sano, Kazumi; Tsuji, Shoji; Arimitsu, Takeshi; Yoshimura, Yasunori; Yasui, Masato

    2008-01-01

    Aquaporin-4 (AQP4) is expressed in the perivascular and subpial astrocytes end-feet in mammalian brain, and plays a critical component of an integrated water and potassium homeostasis. Here we examine whether AQP4 is phosphorylated in primary cultured mouse astrocytes. Astrocytes were metabolically labeled with [ 32 P]phosphoric acid, then AQP4 was immunoprecipitated with anti-AQP4 antibody. We observed that AQP4 was constitutively phosphorylated, which is reduced by treatment with protein kinase CK2 inhibitors. To elucidate the phosphorylation of AQP4 by CK2, myc-tagged wild-type or mutant AQP4 was transiently transfected in primary cultured astrocytes. Substitution of Ala residues for four putative CK2 phosphorylation sites in the C terminus abolished the phosphorylation of AQP4. Immunofluorescent microscopy revealed that the quadruple mutant was localized in the Golgi apparatus. These observations indicate that the C-terminal domain of AQP4 is constitutively phosphorylated at least in part by protein kinase CK2 and it is required for Golgi transition.

  11. Tyrosine 402 Phosphorylation of Pyk2 Is Involved in Ionomycin-Induced Neurotransmitter Release

    Science.gov (United States)

    Zhang, Zhao; Zhang, Yun; Mou, Zheng; Chu, Shifeng; Chen, Xiaoyu; He, Wenbin; Guo, Xiaofeng; Yuan, Yuhe; Takahashi, Masami; Chen, Naihong

    2014-01-01

    Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca2+ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402) in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA) release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F). In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402. PMID:24718602

  12. Phosphorylation-mediated control of histone chaperone ASF1 levels by Tousled-like kinases.

    Directory of Open Access Journals (Sweden)

    Maxim Pilyugin

    Full Text Available Histone chaperones are at the hub of a diverse interaction networks integrating a plethora of chromatin modifying activities. Histone H3/H4 chaperone ASF1 is a target for cell-cycle regulated Tousled-like kinases (TLKs and both proteins cooperate during chromatin replication. However, the precise role of post-translational modification of ASF1 remained unclear. Here, we identify the TLK phosphorylation sites for both Drosophila and human ASF1 proteins. Loss of TLK-mediated phosphorylation triggers hASF1a and dASF1 degradation by proteasome-dependent and independent mechanisms respectively. Consistent with this notion, introduction of phosphorylation-mimicking mutants inhibits hASF1a and dASF1 degradation. Human hASF1b is also targeted for proteasome-dependent degradation, but its stability is not affected by phosphorylation indicating that other mechanisms are likely to be involved in control of hASF1b levels. Together, these results suggest that ASF1 cellular levels are tightly controlled by distinct pathways and provide a molecular mechanism for post-translational regulation of dASF1 and hASF1a by TLK kinases.

  13. Dysregulation of glycogen synthase COOH- and NH2-terminal phosphorylation by insulin in obesity and type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Højlund, Kurt; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2009-01-01

    Context: Insulin-stimulated glucose disposal is impaired in obesity and type 2 diabetes mellitus (T2DM) and is tightly linked to impaired skeletal muscle glucose uptake and storage. Impaired activation of glycogen synthase (GS) by insulin is a well-established defect in both obesity and T2DM....... The exaggerated insulin resistance in T2DM compared with obese subjects was not reflected by differences in site 3 phosphorylation but was accompanied by a significantly higher site 1b phosphorylation during insulin stimulation. Hyperphosphorylation of another Ca(2+)/calmodulin-dependent kinase-II target......, phospholamban-Thr17, was also evident in T2DM. Dephosphorylation of GS by phosphatase treatment fully restored GS activity in all groups. Conclusions: Dysregulation of GS phosphorylation plays a major role in impaired insulin regulation of GS in obesity and T2DM. In obesity, independent of T2DM...

  14. Phosphorylation of rat aquaporin-4 at Ser(111) is not required for channel gating

    DEFF Research Database (Denmark)

    Assentoft, Mette; Kaptan, Shreyas; Fenton, Robert A.

    2013-01-01

    Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. AQP4 has been described as an important entry and exit site for water during formation of brain edema and regulation of AQP4 is theref......Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. AQP4 has been described as an important entry and exit site for water during formation of brain edema and regulation of AQP4...... is therefore of therapeutic interest. Phosphorylation of some aquaporins has been proposed to regulate their water permeability via gating of the channel itself. Protein kinase (PK)-dependent phosphorylation of Ser(111) has been reported to increase the water permeability of AQP4 expressed in an astrocytic...... of activators and inhibitors of PKG and PKA. Mutation of Ser(111) to alanine or aspartate (to prevent or mimic phosphorylation) did not change the water permeability of AQP4. PKG activation had no effect on the water permeability of AQP4 in primary cultures of rat astrocytes. Molecular dynamics simulations...

  15. Regulated phosphorylation of the K-Cl cotransporter KCC3 at dual C-terminal threonines is a potent switch of intracellular potassium content and cell volume homeostasis

    Directory of Open Access Journals (Sweden)

    Norma C. Adragna

    2015-07-01

    Full Text Available The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD, resulting in K+ and Cl– efflux via the activation of K+ channels, volume-regulated anion channels (VRACs, and the K+-Cl– cotransporters, including KCC3. Here, we show genetic alanine (Ala substitution at threonines (Thr 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na+-K+-2Cl– cotransporter isoform 1 (NKCC1. This results in a rapid (90 % reduction in intracellular K+ content (Ki via both Cl-dependent (KCC3a + NKCC1 and Cl-independent (DCPIB [VRAC inhibitor]-sensitive pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in the KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD.

  16. The mitosis-regulating and protein-protein interaction activities of astrin are controlled by aurora-A-induced phosphorylation.

    Science.gov (United States)

    Chiu, Shao-Chih; Chen, Jo-Mei Maureen; Wei, Tong-You Wade; Cheng, Tai-Shan; Wang, Ya-Hui Candice; Ku, Chia-Feng; Lian, Chiao-Hsuan; Liu, Chun-Chih Jared; Kuo, Yi-Chun; Yu, Chang-Tze Ricky

    2014-09-01

    Cells display dramatic morphological changes in mitosis, where numerous factors form regulatory networks to orchestrate the complicated process, resulting in extreme fidelity of the segregation of duplicated chromosomes into two daughter cells. Astrin regulates several aspects of mitosis, such as maintaining the cohesion of sister chromatids by inactivating Separase and stabilizing spindle, aligning and segregating chromosomes, and silencing spindle assembly checkpoint by interacting with Src kinase-associated phosphoprotein (SKAP) and cytoplasmic linker-associated protein-1α (CLASP-1α). To understand how Astrin is regulated in mitosis, we report here that Astrin acts as a mitotic phosphoprotein, and Aurora-A phosphorylates Astrin at Ser(115). The phosphorylation-deficient mutant Astrin S115A abnormally activates spindle assembly checkpoint and delays mitosis progression, decreases spindle stability, and induces chromosome misalignment. Mechanistic analyses reveal that Astrin phosphorylation mimicking mutant S115D, instead of S115A, binds and induces ubiquitination and degradation of securin, which sequentially activates Separase, an enzyme required for the separation of sister chromatids. Moreover, S115A fails to bind mitosis regulators, including SKAP and CLASP-1α, which results in the mitotic defects observed in Astrin S115A-transfected cells. In conclusion, Aurora-A phosphorylates Astrin and guides the binding of Astrin to its cellular partners, which ensures proper progression of mitosis. Copyright © 2014 the American Physiological Society.

  17. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    Directory of Open Access Journals (Sweden)

    Jelena Ostojić

    2014-01-01

    Full Text Available Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS, which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria.

  18. Phosphorylation of the leukemic oncoprotein EVI1 on serine 196 modulates DNA binding, transcriptional repression and transforming ability.

    Directory of Open Access Journals (Sweden)

    Daniel J White

    Full Text Available The EVI1 (ecotropic viral integration site 1 gene at 3q26 codes for a transcriptional regulator with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid leukaemia (AML is frequently associated with 3q26 rearrangements and confers extremely poor prognosis. EVI1 mediates transcriptional regulation, signalling, and epigenetic modifications by interacting with DNA, proteins and protein complexes. To explore to what extent protein phosphorylation impacts on EVI1 functions, we analysed endogenous EVI1 protein from a high EVI1 expressing Fanconi anaemia (FA derived AML cell line. Mass spectrometric analysis of immunoprecipitated EVI1 revealed phosphorylation at serine 196 (S196 in the sixth zinc finger of the N-terminal zinc finger domain. Mutated EVI1 with an aspartate substitution at serine 196 (S196D, which mimics serine phosphorylation of this site, exhibited reduced DNA-binding and transcriptional repression from a gene promotor selectively targeted by the N-terminal zinc finger domain. Forced expression of the S196D mutant significantly reduced EVI1 mediated transformation of Rat1 fibroblasts. While EVI1-mediated serial replating of murine haematopoietic progenitors was maintained by EVI1-S196D, this was associated with significantly higher Evi1-trancript levels compared with WT-EVI1 or EVI1-S196A, mimicking S196 non-phosphorylated EVI1. These data suggest that EVI1 function is modulated by phosphorylation of the first zinc finger domain.

  19. Cyclin dependent kinase 5 regulates endocytosis in nerve terminals via dynamin I phosphorylation

    International Nuclear Information System (INIS)

    Tan, T.C.; Hansra, G.; Calova, V.; Cousin, M.; Robinson, P.J.

    2002-01-01

    Full text: Synaptic vesicle endocytosis (SVE) in nerve terminals is essential for normal synaptic transmission and for memory retrieval. Dynamin I is a 96kDa nerve terminal phosphoprotein necessary for synaptic vesicle endocytosis in the nerve terminal. Dynamin I is dephosphorylated and rephosphorylated in a cyclical fashion with nerve terminal depolarisation and repolarisation. A number of kinases phosphorylate dynamin I in vitro including PKC, MAP kinase and cdc2. PKC phosphorylates dynamin in the proline rich domain on Ser 795 and is also thought to be the in vivo kinase for dynamin I. Another candidate is the neuron specific kinase cdk5, crucial for CNS development. The aim of this study is to identify the kinase which phosphorylates dynamin I in intact nerve terminals. Here we show that cyclin-dependent kinase 5 (cdk5) phosphorylates dynamin I in the proline-rich tail on Ser-774 or Ser-778. The phosphorylation of these sites but not Ser-795 also occurred in intact nerve terminals suggesting that cdk5 is the physiologically relevant enzyme for dynamin I. Synaptosomes prepared from rat brains (after cervical dislocations) and labelled with 32 Pi, were incubated with 100 M roscovitine (a selective inhibitor of cdks), 10 M Ro 31-8220 (a selective PKC inhibitor) and 100 M PD 98059 (a MEK kinase inhibitor). Dynamin rephosphorylation during repolarisation was reduced in synaptosomes treated with roscovitine and Ro 38-8220 but not in synaptosomes treated with PD 98059. Fluorimetric experiments on intact synaptosomes utilising FM-210 (a fluorescent dye) indicate that endocytosis was reduced in synaptosomes treated with 100 M roscovitine. Our results suggest that dynamin phosphorylation in intact nerve terminals may not be regulated by PKC or MAP kinase and that dynamin phosphorylation by cdk5 may regulate endocytosis. Copyright (2002) Australian Neuroscience Society

  20. High mobility group box-1 is phosphorylated by protein kinase C zeta and secreted in colon cancer cells

    International Nuclear Information System (INIS)

    Lee, Hanna; Park, Minhee; Shin, Nara; Kim, Gamin; Kim, Yun Gi; Shin, Jeon-Soo; Kim, Hoguen

    2012-01-01

    Highlights: ► Specific enzyme for HMGB1 phosphorylation and its secretion is proposed. ► Inhibition of PKC-ζ leads to significant reduction of the secreted HMGB1. ► Phosphorylation of specific site of HMGB1 redirects its secretion in cancer cells. ► Activation of PKC-ζ in cancers explains the enhanced HMGB1 secretion. -- Abstract: High mobility group box-1 (HMGB1), a nuclear protein, is overexpressed and secreted in cancer cells. Phosphorylation on two different nuclear localization signal regions are known to be important for the nuclear-to-cytoplasmic transport and secretion of HMGB1. However, little is known about the biochemical mechanism of HMGB1 modifications and its subsequent secretion from cancer cells. To identify the specific enzyme and important sites for HMGB1 phosphorylation, we screened the protein kinase C (PKC) family in a colon cancer cell line (HCT116) for HMGB1 binding by pull-down experiments using a 3XFLAG-HMGB1 construct. Strong interactions between atypical PKCs (PKC-ζ, λ, and ι) and cytoplasmic HMGB1 were observed in HCT116 cells. We further identified the most critical PKC isotype that regulates HMGB1 secretion is PKC-ζ by using PKC inhibitors and siRNA experiments. The serine residues at S39, S53 and S181 of HMGB1 were related to enhancing HMGB1 secretion. We also demonstrated overexpression and activation of PKC-ζ in colon cancer tissues. Our findings suggest that PKC-ζ is involved in the phosphorylation of HMGB1, and the phosphorylation of specific serine residues in the nuclear localization signal regions is related to enhanced HMGB1 secretion in colon cancer cells.

  1. A Site-Specific Phosphorylation of the Focal Adhesion Kinase Controls the Formation of Spheroid Cell Clusters

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Gosau, Martin; Kristensen, Lars Peter

    2014-01-01

    approach revealed regulated phosphorylated proteins in SCCs, which were derived from DFCs after 24 and 48 h in SFM. These regulated proteins were categorized using the Kyoto encyclopedia of genes and genomes program. Here, cellular processes and signaling pathway were identified such as the focal adhesion...

  2. 75 FR 2894 - Withdrawal of Regulatory Guide 1.148

    Science.gov (United States)

    2010-01-19

    ... downloading through the NRC's public Web site under ``Regulatory Guides'' in the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doc-collections . Regulatory guides are also available for... NUCLEAR REGULATORY COMMISSION [NRC-2010-0013] Withdrawal of Regulatory Guide 1.148 AGENCY: Nuclear...

  3. 75 FR 70044 - Withdrawal of Regulatory Guide 1.39

    Science.gov (United States)

    2010-11-16

    ... downloading through the NRC's public Web site under ``Regulatory Guides'' in the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doollectionsc-c . Regulatory guides are also available for... NUCLEAR REGULATORY COMMISSION [NRC-2010-0354] Withdrawal of Regulatory Guide 1.39 AGENCY: Nuclear...

  4. Regulatory inspection of BARC facilities

    International Nuclear Information System (INIS)

    Rajdeep; Jayarajan, K.

    2017-01-01

    Nuclear and radiation facilities are sited, constructed, commissioned, operated and decommissioned, in conformity with the current safety standards and codes. Regulatory bodies follow different means to ensure compliance of the standards for the safety of the personnel, the public and the environment. Regulatory Inspection (RI) is one of the important measures employed by regulatory bodies to obtain the safety status of a facility or project and to verify the fulfilment of the conditions stipulated in the consent

  5. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders.

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-12-11

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser(858) of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Construction of phosphorylation interaction networks by text mining of full-length articles using the eFIP system.

    Science.gov (United States)

    Tudor, Catalina O; Ross, Karen E; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N

    2015-01-01

    Protein phosphorylation is a reversible post-translational modification where a protein kinase adds a phosphate group to a protein, potentially regulating its function, localization and/or activity. Phosphorylation can affect protein-protein interactions (PPIs), abolishing interaction with previous binding partners or enabling new interactions. Extracting phosphorylation information coupled with PPI information from the scientific literature will facilitate the creation of phosphorylation interaction networks of kinases, substrates and interacting partners, toward knowledge discovery of functional outcomes of protein phosphorylation. Increasingly, PPI databases are interested in capturing the phosphorylation state of interacting partners. We have previously developed the eFIP (Extracting Functional Impact of Phosphorylation) text mining system, which identifies phosphorylated proteins and phosphorylation-dependent PPIs. In this work, we present several enhancements for the eFIP system: (i) text mining for full-length articles from the PubMed Central open-access collection; (ii) the integration of the RLIMS-P 2.0 system for the extraction of phosphorylation events with kinase, substrate and site information; (iii) the extension of the PPI module with new trigger words/phrases describing interactions and (iv) the addition of the iSimp tool for sentence simplification to aid in the matching of syntactic patterns. We enhance the website functionality to: (i) support searches based on protein roles (kinases, substrates, interacting partners) or using keywords; (ii) link protein entities to their corresponding UniProt identifiers if mapped and (iii) support visual exploration of phosphorylation interaction networks using Cytoscape. The evaluation of eFIP on full-length articles achieved 92.4% precision, 76.5% recall and 83.7% F-measure on 100 article sections. To demonstrate eFIP for knowledge extraction and discovery, we constructed phosphorylation-dependent interaction

  7. Phosphorylation states of cell cycle and DNA repair proteins can be altered by the nsSNPs

    International Nuclear Information System (INIS)

    Savas, Sevtap; Ozcelik, Hilmi

    2005-01-01

    Phosphorylation is a reversible post-translational modification that affects the intrinsic properties of proteins, such as structure and function. Non-synonymous single nucleotide polymorphisms (nsSNPs) result in the substitution of the encoded amino acids and thus are likely to alter the phosphorylation motifs in the proteins. In this study, we used the web-based NetPhos tool to predict candidate nsSNPs that either introduce or remove putative phosphorylation sites in proteins that act in DNA repair and cell cycle pathways. Our results demonstrated that a total of 15 nsSNPs (16.9%) were likely to alter the putative phosphorylation patterns of 14 proteins. Three of these SNPs (CDKN1A-S31R, OGG1-S326C, and XRCC3-T241M) have already found to be associated with altered cancer risk. We believe that this set of nsSNPs constitutes an excellent resource for further molecular and genetic analyses. The novel systematic approach used in this study will accelerate the understanding of how naturally occurring human SNPs may alter protein function through the modification of phosphorylation mechanisms and contribute to disease susceptibility

  8. Artificial islands for cluster-siting of offshore energy facilities: an assessment of the legal and regulatory framework

    Energy Technology Data Exchange (ETDEWEB)

    Backstrom, T.D.; Baram, M.

    1976-06-01

    One of the ways in which offshore coastal regions can be used in energy development is examined, namely through the construction of offshore islands for the siting of energy-related facilities. The purpose of the study is to review and assess the significant sectors of this accumulation of legal and regulatory authority, in order that those proposing and supervising such offshore development can formulate suggestions for coordination and rational allocation of responsibility. The potential demands on offshore resources are considerably greater than many would expect. In addition to offshore drilling and other mineral exploitation, there is increasing interest in safety of navigation, harvest and aquaculture of living marine resources, recreation, and preservation of uniquely valuable marine landscapes and ecosystems. Within this dynamic context, the offshore implications of the energy needs of the United States must be fully evaluated. New energy installations might be appropriately sited offshore on artificial islands. This legal and regulatory assessment contains little case law, new Congressional enactments, or proposed regulations and is, in general, a first-order analysis of the legal context for a new concept--the multiple-facility artificial island--which has not yet been tested, but which merits serious study as an alternative for uses of the offshore regions to meet energy requirements. An extensive bibliography containing 254 citations is included.

  9. Endothelin-1 stimulates catalase activity through the PKCδ mediated phosphorylation of Serine 167

    Science.gov (United States)

    Rafikov, Ruslan; Kumar, Sanjiv; Aggarwal, Saurabh; Hou, Yali; Kangath, Archana; Pardo, Daniel; Fineman, Jeffrey R.; Black, Stephen M.

    2013-01-01

    Our previous studies have shown that endothelin-1 (ET-1) stimulates catalase activity in endothelial cells and lambs with acute increases in pulmonary blood flow (PBF), without altering gene expression. The purpose of this study was to investigate the molecular mechanism by which this occurs. Exposing pulmonary arterial endothelial cells (PAEC) to ET-1 increased catalase activity and decreased cellular hydrogen peroxide (H2O2) levels. These changes correlated with an increase in serine phosphorylated catalase. Using the inhibitory peptide δV1.1, this phosphorylation was shown to be PKCδ dependent. Mass spectrometry identified serine167 as the phosphorylation site. Site-directed mutagenesis was used to generate a phospho-mimic (S167D) catalase. Activity assays using recombinant protein purified from E.coli or transiently transfected COS-7 cells, demonstrated that S167D-catalase had an increased ability to degrade H2O2 compared to the wildtype enzyme. Using a phospho-specific antibody, we were able to verify that pS167 catalase levels are modulated in lambs with acute increases in PBF in the presence and absence of the ET receptor antagonist, tezosentan. S167 is being located on the dimeric interface suggesting it could be involved in regulating the formation of catalase tetramers. To evaluate this possibility we utilized analytical gel-filtration to examine the multimeric structure of recombinant wildtype- and S167D-catalase. We found that recombinant wildtype catalase was present as a mixture of monomers and dimers while S167D catalase was primarily tetrameric. Further, the incubation of wildtype catalase with PKCδ was sufficient to convert wildtype catalase into a tetrameric structure. In conclusion, this is the first report indicating that the phosphorylation of catalase regulates its multimeric structure and activity. PMID:24211614

  10. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    Science.gov (United States)

    Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie

    2015-01-01

    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159

  11. Glycogen phosphorylation and Lafora disease.

    Science.gov (United States)

    Roach, Peter J

    2015-12-01

    Covalent phosphorylation of glycogen, first described 35 years ago, was put on firm ground through the work of the Whelan laboratory in the 1990s. But glycogen phosphorylation lay fallow until interest was rekindled in the mid 2000s by the finding that it could be removed by a glycogen-binding phosphatase, laforin, and that mutations in laforin cause a fatal teenage-onset epilepsy, called Lafora disease. Glycogen phosphorylation is due to phosphomonoesters at C2, C3 and C6 of glucose residues. Phosphate is rare, ranging from 1:500 to 1:5000 phosphates/glucose depending on the glycogen source. The mechanisms of glycogen phosphorylation remain under investigation but one hypothesis to explain C2 and perhaps C3 phosphate is that it results from a rare side reaction of the normal synthetic enzyme glycogen synthase. Lafora disease is likely caused by over-accumulation of abnormal glycogen in insoluble deposits termed Lafora bodies in neurons. The abnormality in the glycogen correlates with elevated phosphorylation (at C2, C3 and C6), reduced branching, insolubility and an enhanced tendency to aggregate and become insoluble. Hyperphosphorylation of glycogen is emerging as an important feature of this deadly childhood disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions

    DEFF Research Database (Denmark)

    Pedersen, Søren W; Albertsen, Louise; Moran, Griffin E

    2017-01-01

    The postsynaptic density protein of 95 kDa (PSD-95) is a key scaffolding protein that controls signaling at synapses in the brain through interactions of its PDZ domains with the C-termini of receptors, ion channels, and enzymes. PSD-95 is highly regulated by phosphorylation. To explore the effec...

  13. Phosphorylation state of a Tob/BTG protein, FOG-3, regulates initiation and maintenance of the Caenorhabditis elegans sperm fate program.

    Science.gov (United States)

    Lee, Myon-Hee; Kim, Kyung Won; Morgan, Clinton T; Morgan, Dyan E; Kimble, Judith

    2011-05-31

    FOG-3, the single Caenorhabditis elegans Tob/BTG protein, directs germ cells to adopt the sperm fate at the expense of oogenesis. Importantly, FOG-3 activity must be maintained for the continued production of sperm that is typical of the male sex. Vertebrate Tob proteins have antiproliferative activity and ERK phosphorylation of Tob proteins has been proposed to abrogate "antiproliferative" activity. Here we investigate FOG-3 phosphorylation and its effect on sperm fate specification. We found both phosphorylated and unphosphorylated forms of FOG-3 in nematodes. We then interrogated the role of FOG-3 phosphorylation in sperm fate specification. Specifically, we assayed FOG-3 transgenes for rescue of a fog-3 null mutant. Wild-type FOG-3 rescued both initiation and maintenance of sperm fate specification. A FOG-3 mutant with its four consensus ERK phosphorylation sites substituted to alanines, called FOG-3(4A), rescued partially: sperm were made transiently but not continuously in both sexes. A different FOG-3 mutant with its sites substituted to glutamates, called FOG-3(4E), had no rescuing activity on its own, but together with FOG-3(4A) rescue was complete. Thus, when FOG-3(4A) and FOG-3(4E) were both introduced into the same animals, sperm fate specification was not only initiated but also maintained, resulting in continuous spermatogenesis in males. Our findings suggest that unphosphorylated FOG-3 initiates the sperm fate program and that phosphorylated FOG-3 maintains that program for continued sperm production typical of males. We discuss implications of our results for Tob/BTG proteins in vertebrates.

  14. Supplementary Report on the Regulation of Site Selection and Preparation

    International Nuclear Information System (INIS)

    Webster, Philip

    2014-01-01

    The Committee on Nuclear Regulatory Activities (CNRA), based on the regulatory actions underway or being considered in different members countries concerning the design and construction of advanced nuclear power plants, established a working group responsible of the regulatory issues of siting, licensing and regulatory oversight of generation III+ and generation IV nuclear reactors. The Working Group on the Regulation of New Reactors (WGRNR) main purposes are to improve regulatory reviews by comparing practices in member countries; improve the licensing process of new reactors by learning from best practices in member countries; ensure that construction inspection issues and construction experience is shared; promote cooperation among member countries to improve safety; and enhance the effectiveness and efficiency of the regulatory process. The WGRNR has established a programme of work which includes: the collection of construction experience and the assessing of the information collected in order to share lessons learned and good practices; the review of regulatory practices concerning the regulation of nuclear sites selection and preparation; and the review of recent regulatory experience concerning the licensing structure of regulatory staff and regulatory licensing process. The WGRNR began in May 2008 a task of examining and documenting the various practices used by regulatory authorities in the regulation of nuclear power plant siting. The purpose of the task was to provide the member countries with practical information that would be helpful in assessing and potentially improving their regulatory practices and requirements on the regulation of sites. The task considered also regulatory practices on sites where a mixture of activities are taking place (e.g. operating units, new construction, and decommissioning, etc.). This work led to the publication in 2010 of the Report on the Survey on Regulation of Site Selection and Preparation NEA/CNRA/R(2010)3. This

  15. Comprehensive Quantitative Profiling of Tau and Phosphorylated Tau Peptides in Cerebrospinal Fluid by Mass Spectrometry Provides New Biomarker Candidates.

    Science.gov (United States)

    Russell, Claire L; Mitra, Vikram; Hansson, Karl; Blennow, Kaj; Gobom, Johan; Zetterberg, Henrik; Hiltunen, Mikko; Ward, Malcolm; Pike, Ian

    2017-01-01

    Aberrant tau phosphorylation is a hallmark in Alzheimer's disease (AD), believed to promote formation of paired helical filaments, the main constituent of neurofibrillary tangles in the brain. While cerebrospinal fluid (CSF) levels of total tau and tau phosphorylated at threonine residue 181 (pThr181) are established core biomarkers for AD, the value of alternative phosphorylation sites, which may have more direct relevance to pathology, for early diagnosis is not yet known, largely due to their low levels in CSF and lack of standardized detection methods. To overcome sensitivity limitations for analysis of phosphorylated tau in CSF, we have applied an innovative mass spectrometry (MS) workflow, TMTcalibratortrademark, to enrich and enhance the detection of phosphoproteome components of AD brain tissue in CSF, and enable the quantitation of these analytes. We aimed to identify which tau species present in the AD brain are also detectable in CSF and which, if any, are differentially regulated with disease. Over 75% coverage of full-length (2N4R) tau was detected in the CSF with 47 phosphopeptides covering 31 different phosphorylation sites. Of these, 11 phosphopeptides were upregulated by at least 40%, along with an overall increase in tau levels in the CSF of AD patients relative to controls. Use of the TMTcalibratortrademark workflow dramatically improved our ability to detect tau-derived peptides that are directly related to human AD pathology. Further validation of regulated tau peptides as early biomarkers of AD is warranted and is currently being undertaken.

  16. High mobility group box-1 is phosphorylated by protein kinase C zeta and secreted in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hanna; Park, Minhee; Shin, Nara; Kim, Gamin [Department of Pathology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Kim, Yun Gi [Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Shin, Jeon-Soo [Department of Microbiology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Kim, Hoguen, E-mail: hkyonsei@yuhs.ac [Department of Pathology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Specific enzyme for HMGB1 phosphorylation and its secretion is proposed. Black-Right-Pointing-Pointer Inhibition of PKC-{zeta} leads to significant reduction of the secreted HMGB1. Black-Right-Pointing-Pointer Phosphorylation of specific site of HMGB1 redirects its secretion in cancer cells. Black-Right-Pointing-Pointer Activation of PKC-{zeta} in cancers explains the enhanced HMGB1 secretion. -- Abstract: High mobility group box-1 (HMGB1), a nuclear protein, is overexpressed and secreted in cancer cells. Phosphorylation on two different nuclear localization signal regions are known to be important for the nuclear-to-cytoplasmic transport and secretion of HMGB1. However, little is known about the biochemical mechanism of HMGB1 modifications and its subsequent secretion from cancer cells. To identify the specific enzyme and important sites for HMGB1 phosphorylation, we screened the protein kinase C (PKC) family in a colon cancer cell line (HCT116) for HMGB1 binding by pull-down experiments using a 3XFLAG-HMGB1 construct. Strong interactions between atypical PKCs (PKC-{zeta}, {lambda}, and {iota}) and cytoplasmic HMGB1 were observed in HCT116 cells. We further identified the most critical PKC isotype that regulates HMGB1 secretion is PKC-{zeta} by using PKC inhibitors and siRNA experiments. The serine residues at S39, S53 and S181 of HMGB1 were related to enhancing HMGB1 secretion. We also demonstrated overexpression and activation of PKC-{zeta} in colon cancer tissues. Our findings suggest that PKC-{zeta} is involved in the phosphorylation of HMGB1, and the phosphorylation of specific serine residues in the nuclear localization signal regions is related to enhanced HMGB1 secretion in colon cancer cells.

  17. Tyrosine Phosphorylation of the UDP-Glucose Dehydrogenase of Escherichia coli Is at the Crossroads of Colanic Acid Synthesis and Polymyxin Resistance

    DEFF Research Database (Denmark)

    Lacour, S.; Bechet, E.; Cozzone, A.J.

    2008-01-01

    -kinases have been characterized. BY-kinases have been shown to participate in various physiological processes. Nevertheless, we are at a very early stage of defining their importance in the bacterial cell. In Escherichia coli, two BY-kinases, Wzc and Etk, have been characterized biochemically. Wzc has been......Background: In recent years, an idiosyncratic new class of bacterial enzymes, named BY-kinases, has been shown to catalyze protein-tyrosine phosphorylation. These enzymes share no structural and functional similarities with their eukaryotic counterparts and, to date, only few substrates of BY....../Principal Findings: Here, we studied the role of Ugd phosphorylation. We first confirmed in vivo the phosphorylation of Ugd by Wzc and we demonstrated that Ugd is also phosphorylated by Etk, the other BY-kinase identified in E. coli. Tyrosine 71 (Tyr71) was characterized as the Ugd site phosphorylated by both Wzc...

  18. Phosphorylation of human INO80 is involved in DNA damage tolerance

    International Nuclear Information System (INIS)

    Kato, Dai; Waki, Mayumi; Umezawa, Masaki; Aoki, Yuka; Utsugi, Takahiko; Ohtsu, Masaya; Murakami, Yasufumi

    2012-01-01

    Highlights: ► Depletion of hINO80 significantly reduced PCNA ubiquitination. ► Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. ► Western blot analyses showed phosphorylated hINO80 C-terminus. ► Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in the DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.

  19. Mitosis-specific phosphorylation of PML at T409 regulates spindle checkpoint.

    Science.gov (United States)

    Jin, J; Liu, J

    2016-08-31

    During mitosis, Promyelocytic leukemia nuclear bodies (PML NBs) change dramatically in morphology and composition, but little is known about function of PML in mitosis. Here, we show that PML is phosphorylated at T409 (PML p409) in a mitosis-specific manner. More importantly, PML p409 contributes to maintain the duration of pro-metaphase and regulates spindle checkpoint. Deficient PML p409 caused a shortening of pro-metaphase and challenged the nocodazole-triggered mitotic arrest. T409A mutation led to a higher frequency of misaligned chromosomes on metaphase plate, and subsequently death in late mitosis. In addition, inhibition of PML p409 repressed growth of tumor cells, suggesting that PML p409 is a potential target for cancer therapy. Collectively, our study demonstrated an important phosphorylated site of PML, which contributed to explore the role of PML in mitosis.

  20. Siting guidelines and their role in repository site selection

    International Nuclear Information System (INIS)

    Hanlon, C.L.

    1985-01-01

    The first requirement of the Nuclear Waste Policy Act was for the Secretary of Energy to issue general guidelines for siting repositories. The guidelines were to specify detailed geologic considerations that would be the primary criteria for the selection of sites in various host rocks, as well as factors that would qualify or disqualify any site from development as a repository. These guidelines were clearly intended to provide not only the framework for the siting program but also the stimulus for establishing effective communication and consultation among the parties involved in the program. The Act further required that the guidelines be a factor in the development of all future decision documents of the Office of Civilian Radioactive Waste Management, including the environmental assessments that would accompany the nomination of sites for characterization, the site-characterization plans that are to be prepared before the sinking of exploratory shafts at any candidate site, and the environmental impact statement that is to support the recommendation of a site for development as a repository. More than two years after its passage, the intention of the Act for the guidelines has been realized. Concurred in by the Nuclear Regulatory Commission on June 22, 1984, and issued by the Department in November 1984, the guidelines include postclosure technical guidelines that apply to conditions governing the long-term performance of the repository system; preclosure technical guidelines that apply to conditions governing the siting, construction, operation, and closure of the repository; and system guidelines whose objective is to ensure that the regulatory requirements of the Environmental Protection Agency and the Nuclear Regulatory Commission are met