WorldWideScience

Sample records for regulatory motif analyses

  1. Computational analyses of synergism in small molecular network motifs.

    Directory of Open Access Journals (Sweden)

    Yili Zhang

    2014-03-01

    Full Text Available Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically to alter the responses of the motifs to stimuli. Synergism (or antagonism was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions.

  2. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  3. DMINDA: an integrated web server for DNA motif identification and analyses.

    Science.gov (United States)

    Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying

    2014-07-01

    DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. MotifMark: Finding regulatory motifs in DNA sequences.

    Science.gov (United States)

    Hassanzadeh, Hamid Reza; Kolhe, Pushkar; Isbell, Charles L; Wang, May D

    2017-07-01

    The interaction between proteins and DNA is a key driving force in a significant number of biological processes such as transcriptional regulation, repair, recombination, splicing, and DNA modification. The identification of DNA-binding sites and the specificity of target proteins in binding to these regions are two important steps in understanding the mechanisms of these biological activities. A number of high-throughput technologies have recently emerged that try to quantify the affinity between proteins and DNA motifs. Despite their success, these technologies have their own limitations and fall short in precise characterization of motifs, and as a result, require further downstream analysis to extract useful and interpretable information from a haystack of noisy and inaccurate data. Here we propose MotifMark, a new algorithm based on graph theory and machine learning, that can find binding sites on candidate probes and rank their specificity in regard to the underlying transcription factor. We developed a pipeline to analyze experimental data derived from compact universal protein binding microarrays and benchmarked it against two of the most accurate motif search methods. Our results indicate that MotifMark can be a viable alternative technique for prediction of motif from protein binding microarrays and possibly other related high-throughput techniques.

  5. Direct AUC optimization of regulatory motifs.

    Science.gov (United States)

    Zhu, Lin; Zhang, Hong-Bo; Huang, De-Shuang

    2017-07-15

    The discovery of transcription factor binding site (TFBS) motifs is essential for untangling the complex mechanism of genetic variation under different developmental and environmental conditions. Among the huge amount of computational approaches for de novo identification of TFBS motifs, discriminative motif learning (DML) methods have been proven to be promising for harnessing the discovery power of accumulated huge amount of high-throughput binding data. However, they have to sacrifice accuracy for speed and could fail to fully utilize the information of the input sequences. We propose a novel algorithm called CDAUC for optimizing DML-learned motifs based on the area under the receiver-operating characteristic curve (AUC) criterion, which has been widely used in the literature to evaluate the significance of extracted motifs. We show that when the considered AUC loss function is optimized in a coordinate-wise manner, the cost function of each resultant sub-problem is a piece-wise constant function, whose optimal value can be found exactly and efficiently. Further, a key step of each iteration of CDAUC can be efficiently solved as a computational geometry problem. Experimental results on real world high-throughput datasets illustrate that CDAUC outperforms competing methods for refining DML motifs, while being one order of magnitude faster. Meanwhile, preliminary results also show that CDAUC may also be useful for improving the interpretability of convolutional kernels generated by the emerging deep learning approaches for predicting TF sequences specificities. CDAUC is available at: https://drive.google.com/drive/folders/0BxOW5MtIZbJjNFpCeHlBVWJHeW8 . dshuang@tongji.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. RegRNA: an integrated web server for identifying regulatory RNA motifs and elements

    OpenAIRE

    Huang, Hsi-Yuan; Chien, Chia-Hung; Jen, Kuan-Hua; Huang, Hsien-Da

    2006-01-01

    Numerous regulatory structural motifs have been identified as playing essential roles in transcriptional and post-transcriptional regulation of gene expression. RegRNA is an integrated web server for identifying the homologs of regulatory RNA motifs and elements against an input mRNA sequence. Both sequence homologs and structural homologs of regulatory RNA motifs can be recognized. The regulatory RNA motifs supported in RegRNA are categorized into several classes: (i) motifs in mRNA 5′-untra...

  7. Gene regulatory and signaling networks exhibit distinct topological distributions of motifs

    Science.gov (United States)

    Ferreira, Gustavo Rodrigues; Nakaya, Helder Imoto; Costa, Luciano da Fontoura

    2018-04-01

    The biological processes of cellular decision making and differentiation involve a plethora of signaling pathways and gene regulatory circuits. These networks in turn exhibit a multitude of motifs playing crucial parts in regulating network activity. Here we compare the topological placement of motifs in gene regulatory and signaling networks and observe that it suggests different evolutionary strategies in motif distribution for distinct cellular subnetworks.

  8. iFORM: Incorporating Find Occurrence of Regulatory Motifs.

    Science.gov (United States)

    Ren, Chao; Chen, Hebing; Yang, Bite; Liu, Feng; Ouyang, Zhangyi; Bo, Xiaochen; Shu, Wenjie

    2016-01-01

    Accurately identifying the binding sites of transcription factors (TFs) is crucial to understanding the mechanisms of transcriptional regulation and human disease. We present incorporating Find Occurrence of Regulatory Motifs (iFORM), an easy-to-use and efficient tool for scanning DNA sequences with TF motifs described as position weight matrices (PWMs). Both performance assessment with a receiver operating characteristic (ROC) curve and a correlation-based approach demonstrated that iFORM achieves higher accuracy and sensitivity by integrating five classical motif discovery programs using Fisher's combined probability test. We have used iFORM to provide accurate results on a variety of data in the ENCODE Project and the NIH Roadmap Epigenomics Project, and the tool has demonstrated its utility in further elucidating individual roles of functional elements. Both the source and binary codes for iFORM can be freely accessed at https://github.com/wenjiegroup/iFORM. The identified TF binding sites across human cell and tissue types using iFORM have been deposited in the Gene Expression Omnibus under the accession ID GSE53962.

  9. Do motifs reflect evolved function?--No convergent evolution of genetic regulatory network subgraph topologies.

    Science.gov (United States)

    Knabe, Johannes F; Nehaniv, Chrystopher L; Schilstra, Maria J

    2008-01-01

    Methods that analyse the topological structure of networks have recently become quite popular. Whether motifs (subgraph patterns that occur more often than in randomized networks) have specific functions as elementary computational circuits has been cause for debate. As the question is difficult to resolve with currently available biological data, we approach the issue using networks that abstractly model natural genetic regulatory networks (GRNs) which are evolved to show dynamical behaviors. Specifically one group of networks was evolved to be capable of exhibiting two different behaviors ("differentiation") in contrast to a group with a single target behavior. In both groups we find motif distribution differences within the groups to be larger than differences between them, indicating that evolutionary niches (target functions) do not necessarily mold network structure uniquely. These results show that variability operators can have a stronger influence on network topologies than selection pressures, especially when many topologies can create similar dynamics. Moreover, analysis of motif functional relevance by lesioning did not suggest that motifs were of greater importance to the functioning of the network than arbitrary subgraph patterns. Only when drastically restricting network size, so that one motif corresponds to a whole functionally evolved network, was preference for particular connection patterns found. This suggests that in non-restricted, bigger networks, entanglement with the rest of the network hinders topological subgraph analysis.

  10. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  11. CFD analyses in regulatory practice

    International Nuclear Information System (INIS)

    Bloemeling, F.; Pandazis, P.; Schaffrath, A.

    2012-01-01

    Numerical software is used in nuclear regulatory procedures for many problems in the fields of neutron physics, structural mechanics, thermal hydraulics etc. Among other things, the software is employed in dimensioning and designing systems and components and in simulating transients and accidents. In nuclear technology, analyses of this kind must meet strict requirements. Computational Fluid Dynamics (CFD) codes were developed for computing multidimensional flow processes of the type occurring in reactor cooling systems or in containments. Extensive experience has been accumulated by now in selected single-phase flow phenomena. At the present time, there is a need for development and validation with respect to the simulation of multi-phase and multi-component flows. As insufficient input by the user can lead to faulty results, the validity of the results and an assessment of uncertainties are guaranteed only through consistent application of so-called Best Practice Guidelines. The authors present the possibilities now available to CFD analyses in nuclear regulatory practice. This includes a discussion of the fundamental requirements to be met by numerical software, especially the demands upon computational analysis made by nuclear rules and regulations. In conclusion, 2 examples are presented of applications of CFD analysis to nuclear problems: Determining deboration in the condenser reflux mode of operation, and protection of the reactor pressure vessel (RPV) against brittle failure. (orig.)

  12. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.

    Science.gov (United States)

    Liu, Bingqiang; Zhang, Hanyuan; Zhou, Chuan; Li, Guojun; Fennell, Anne; Wang, Guanghui; Kang, Yu; Liu, Qi; Ma, Qin

    2016-08-09

    Phylogenetic footprinting is an important computational technique for identifying cis-regulatory motifs in orthologous regulatory regions from multiple genomes, as motifs tend to evolve slower than their surrounding non-functional sequences. Its application, however, has several difficulties for optimizing the selection of orthologous data and reducing the false positives in motif prediction. Here we present an integrative phylogenetic footprinting framework for accurate motif predictions in prokaryotic genomes (MP(3)). The framework includes a new orthologous data preparation procedure, an additional promoter scoring and pruning method and an integration of six existing motif finding algorithms as basic motif search engines. Specifically, we collected orthologous genes from available prokaryotic genomes and built the orthologous regulatory regions based on sequence similarity of promoter regions. This procedure made full use of the large-scale genomic data and taxonomy information and filtered out the promoters with limited contribution to produce a high quality orthologous promoter set. The promoter scoring and pruning is implemented through motif voting by a set of complementary predicting tools that mine as many motif candidates as possible and simultaneously eliminate the effect of random noise. We have applied the framework to Escherichia coli k12 genome and evaluated the prediction performance through comparison with seven existing programs. This evaluation was systematically carried out at the nucleotide and binding site level, and the results showed that MP(3) consistently outperformed other popular motif finding tools. We have integrated MP(3) into our motif identification and analysis server DMINDA, allowing users to efficiently identify and analyze motifs in 2,072 completely sequenced prokaryotic genomes. The performance evaluation indicated that MP(3) is effective for predicting regulatory motifs in prokaryotic genomes. Its application may enhance

  13. DNA regulatory motif selection based on support vector machine ...

    African Journals Online (AJOL)

    ... machine (SVM) and its application in microarray experiment of Kashin-Beck disease. ... speed and amount of the corresponding mRNA in gene replication process. ... and revealed that some motifs may be related to the immune reactions.

  14. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Barabási Albert-László

    2004-01-01

    Full Text Available Abstract Background Transcriptional regulation of cellular functions is carried out through a complex network of interactions among transcription factors and the promoter regions of genes and operons regulated by them.To better understand the system-level function of such networks simplification of their architecture was previously achieved by identifying the motifs present in the network, which are small, overrepresented, topologically distinct regulatory interaction patterns (subgraphs. However, the interaction of such motifs with each other, and their form of integration into the full network has not been previously examined. Results By studying the transcriptional regulatory network of the bacterium, Escherichia coli, we demonstrate that the two previously identified motif types in the network (i.e., feed-forward loops and bi-fan motifs do not exist in isolation, but rather aggregate into homologous motif clusters that largely overlap with known biological functions. Moreover, these clusters further coalesce into a supercluster, thus establishing distinct topological hierarchies that show global statistical properties similar to the whole network. Targeted removal of motif links disintegrates the network into small, isolated clusters, while random disruptions of equal number of links do not cause such an effect. Conclusion Individual motifs aggregate into homologous motif clusters and a supercluster forming the backbone of the E. coli transcriptional regulatory network and play a central role in defining its global topological organization.

  15. Systematic comparison of the response properties of protein and RNA mediated gene regulatory motifs.

    Science.gov (United States)

    Iyengar, Bharat Ravi; Pillai, Beena; Venkatesh, K V; Gadgil, Chetan J

    2017-05-30

    We present a framework enabling the dissection of the effects of motif structure (feedback or feedforward), the nature of the controller (RNA or protein), and the regulation mode (transcriptional, post-transcriptional or translational) on the response to a step change in the input. We have used a common model framework for gene expression where both motif structures have an activating input and repressing regulator, with the same set of parameters, to enable a comparison of the responses. We studied the global sensitivity of the system properties, such as steady-state gain, overshoot, peak time, and peak duration, to parameters. We find that, in all motifs, overshoot correlated negatively whereas peak duration varied concavely with peak time. Differences in the other system properties were found to be mainly dependent on the nature of the controller rather than the motif structure. Protein mediated motifs showed a higher degree of adaptation i.e. a tendency to return to baseline levels; in particular, feedforward motifs exhibited perfect adaptation. RNA mediated motifs had a mild regulatory effect; they also exhibited a lower peaking tendency and mean overshoot. Protein mediated feedforward motifs showed higher overshoot and lower peak time compared to the corresponding feedback motifs.

  16. Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria.

    Science.gov (United States)

    Sun, Eric I; Leyn, Semen A; Kazanov, Marat D; Saier, Milton H; Novichkov, Pavel S; Rodionov, Dmitry A

    2013-09-02

    In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels.An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include ~5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories. Analysis of taxonomic distribution of these categories allowed us to establish major functional preferences for each analyzed cis-regulatory RNA motif family. Overall, most RNA motif regulons showed predictable functional content in accordance with their experimentally established effector ligands. Our results suggest that some RNA motifs (including thiamin pyrophosphate and cobalamin riboswitches that control the cofactor metabolism) are widespread and likely originated from the last common ancestor of all bacteria. However, many more analyzed RNA motifs are restricted to a narrow taxonomic group of bacteria and likely represent more recent evolutionary innovations. The reconstructed regulatory networks for major known RNA motifs substantially expand the existing knowledge of transcriptional regulation in bacteria. The inferred regulons can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and evolutionary analysis. The obtained genome

  17. Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes

    Directory of Open Access Journals (Sweden)

    Kistler Corby

    2010-03-01

    Full Text Available Abstract Background Fusarium graminearum (Fg, a major fungal pathogen of cultivated cereals, is responsible for billions of dollars in agriculture losses. There is a growing interest in understanding the transcriptional regulation of this organism, especially the regulation of genes underlying its pathogenicity. The generation of whole genome sequence assemblies for Fg and three closely related Fusarium species provides a unique opportunity for such a study. Results Applying comparative genomics approaches, we developed a computational pipeline to systematically discover evolutionarily conserved regulatory motifs in the promoter, downstream and the intronic regions of Fg genes, based on the multiple alignments of sequenced Fusarium genomes. Using this method, we discovered 73 candidate regulatory motifs in the promoter regions. Nearly 30% of these motifs are highly enriched in promoter regions of Fg genes that are associated with a specific functional category. Through comparison to Saccharomyces cerevisiae (Sc and Schizosaccharomyces pombe (Sp, we observed conservation of transcription factors (TFs, their binding sites and the target genes regulated by these TFs related to pathways known to respond to stress conditions or phosphate metabolism. In addition, this study revealed 69 and 39 conserved motifs in the downstream regions and the intronic regions, respectively, of Fg genes. The top intronic motif is the splice donor site. For the downstream regions, we noticed an intriguing absence of the mammalian and Sc poly-adenylation signals among the list of conserved motifs. Conclusion This study provides the first comprehensive list of candidate regulatory motifs in Fg, and underscores the power of comparative genomics in revealing functional elements among related genomes. The conservation of regulatory pathways among the Fusarium genomes and the two yeast species reveals their functional significance, and provides new insights in their

  18. A novel k-mer set memory (KSM) motif representation improves regulatory variant prediction.

    Science.gov (United States)

    Guo, Yuchun; Tian, Kevin; Zeng, Haoyang; Guo, Xiaoyun; Gifford, David Kenneth

    2018-04-13

    The representation and discovery of transcription factor (TF) sequence binding specificities is critical for understanding gene regulatory networks and interpreting the impact of disease-associated noncoding genetic variants. We present a novel TF binding motif representation, the k -mer set memory (KSM), which consists of a set of aligned k -mers that are overrepresented at TF binding sites, and a new method called KMAC for de novo discovery of KSMs. We find that KSMs more accurately predict in vivo binding sites than position weight matrix (PWM) models and other more complex motif models across a large set of ChIP-seq experiments. Furthermore, KSMs outperform PWMs and more complex motif models in predicting in vitro binding sites. KMAC also identifies correct motifs in more experiments than five state-of-the-art motif discovery methods. In addition, KSM-derived features outperform both PWM and deep learning model derived sequence features in predicting differential regulatory activities of expression quantitative trait loci (eQTL) alleles. Finally, we have applied KMAC to 1600 ENCODE TF ChIP-seq data sets and created a public resource of KSM and PWM motifs. We expect that the KSM representation and KMAC method will be valuable in characterizing TF binding specificities and in interpreting the effects of noncoding genetic variations. © 2018 Guo et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Using hexamers to predict cis-regulatory motifs in Drosophila

    Directory of Open Access Journals (Sweden)

    Kibler Dennis

    2005-10-01

    Full Text Available Abstract Background Cis-regulatory modules (CRMs are short stretches of DNA that help regulate gene expression in higher eukaryotes. They have been found up to 1 megabase away from the genes they regulate and can be located upstream, downstream, and even within their target genes. Due to the difficulty of finding CRMs using biological and computational techniques, even well-studied regulatory systems may contain CRMs that have not yet been discovered. Results We present a simple, efficient method (HexDiff based only on hexamer frequencies of known CRMs and non-CRM sequence to predict novel CRMs in regulatory systems. On a data set of 16 gap and pair-rule genes containing 52 known CRMs, predictions made by HexDiff had a higher correlation with the known CRMs than several existing CRM prediction algorithms: Ahab, Cluster Buster, MSCAN, MCAST, and LWF. After combining the results of the different algorithms, 10 putative CRMs were identified and are strong candidates for future study. The hexamers used by HexDiff to distinguish between CRMs and non-CRM sequence were also analyzed and were shown to be enriched in regulatory elements. Conclusion HexDiff provides an efficient and effective means for finding new CRMs based on known CRMs, rather than known binding sites.

  20. Discovering regulatory motifs in the Plasmodium genome using comparative genomics

    OpenAIRE

    Wu, Jie; Sieglaff, Douglas H.; Gervin, Joshua; Xie, Xiaohui S.

    2008-01-01

    Motivation: Understanding gene regulation in Plasmodium, the causative agent of malaria, is an important step in deciphering its complex life cycle as well as leading to possible new targets for therapeutic applications. Very little is known about gene regulation in Plasmodium, and in particular, few regulatory elements have been identified. Such discovery has been significantly hampered by the high A-T content of some of the genomes of Plasmodium species, as well as the challenge in associat...

  1. Identification of putative regulatory motifs in the upstream regions of co-expressed functional groups of genes in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Joshi NV

    2009-01-01

    Full Text Available Abstract Background Regulation of gene expression in Plasmodium falciparum (Pf remains poorly understood. While over half the genes are estimated to be regulated at the transcriptional level, few regulatory motifs and transcription regulators have been found. Results The study seeks to identify putative regulatory motifs in the upstream regions of 13 functional groups of genes expressed in the intraerythrocytic developmental cycle of Pf. Three motif-discovery programs were used for the purpose, and motifs were searched for only on the gene coding strand. Four motifs – the 'G-rich', the 'C-rich', the 'TGTG' and the 'CACA' motifs – were identified, and zero to all four of these occur in the 13 sets of upstream regions. The 'CACA motif' was absent in functional groups expressed during the ring to early trophozoite transition. For functional groups expressed in each transition, the motifs tended to be similar. Upstream motifs in some functional groups showed 'positional conservation' by occurring at similar positions relative to the translational start site (TLS; this increases their significance as regulatory motifs. In the ribonucleotide synthesis, mitochondrial, proteasome and organellar translation machinery genes, G-rich, C-rich, CACA and TGTG motifs, respectively, occur with striking positional conservation. In the organellar translation machinery group, G-rich motifs occur close to the TLS. The same motifs were sometimes identified for multiple functional groups; differences in location and abundance of the motifs appear to ensure different modes of action. Conclusion The identification of positionally conserved over-represented upstream motifs throws light on putative regulatory elements for transcription in Pf.

  2. Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kim Man-Sun

    2012-05-01

    Full Text Available Abstract Background Network motifs provided a “conceptual tool” for understanding the functional principles of biological networks, but such motifs have primarily been used to consider static network structures. Static networks, however, cannot be used to reveal time- and region-specific traits of biological systems. To overcome this limitation, we proposed the concept of a “spatiotemporal network motif,” a spatiotemporal sequence of network motifs of sub-networks which are active only at specific time points and body parts. Results On the basis of this concept, we analyzed the developmental gene regulatory network of the Drosophila melanogaster embryo. We identified spatiotemporal network motifs and investigated their distribution pattern in time and space. As a result, we found how key developmental processes are temporally and spatially regulated by the gene network. In particular, we found that nested feedback loops appeared frequently throughout the entire developmental process. From mathematical simulations, we found that mutual inhibition in the nested feedback loops contributes to the formation of spatial expression patterns. Conclusions Taken together, the proposed concept and the simulations can be used to unravel the design principle of developmental gene regulatory networks.

  3. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs

    OpenAIRE

    Chang, Tzu-Hao; Huang, Hsi-Yuan; Hsu, Justin Bo-Kai; Weng, Shun-Long; Horng, Jorng-Tzong; Huang, Hsien-Da

    2013-01-01

    Background Functional RNA molecules participate in numerous biological processes, ranging from gene regulation to protein synthesis. Analysis of functional RNA motifs and elements in RNA sequences can obtain useful information for deciphering RNA regulatory mechanisms. Our previous work, RegRNA, is widely used in the identification of regulatory motifs, and this work extends it by incorporating more comprehensive and updated data sources and analytical approaches into a new platform. Methods ...

  4. Discovery of a Regulatory Motif for Human Satellite DNA Transcription in Response to BATF2 Overexpression.

    Science.gov (United States)

    Bai, Xuejia; Huang, Wenqiu; Zhang, Chenguang; Niu, Jing; Ding, Wei

    2016-03-01

    One of the basic leucine zipper transcription factors, BATF2, has been found to suppress cancer growth and migration. However, little is known about the genes downstream of BATF2. HeLa cells were stably transfected with BATF2, then chromatin immunoprecipitation-sequencing was employed to identify the DNA motifs responsive to BATF2. Comprehensive bioinformatics analyses indicated that the most significant motif discovered as TTCCATT[CT]GATTCCATTC[AG]AT was primarily distributed among the chromosome centromere regions and mostly within human type II satellite DNA. Such motifs were able to prime the transcription of type II satellite DNA in a directional and asymmetrical manner. Consistently, satellite II transcription was up-regulated in BATF2-overexpressing cells. The present study provides insight into understanding the role of BATF2 in tumours and the importance of satellite DNA in the maintenance of genomic stability. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    International Nuclear Information System (INIS)

    Westberg, Johan A.; Jiang, Ji; Andersson, Leif C.

    2011-01-01

    Highlights: → Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. → Central iron atom of heme and cysteine-114 of STC1 are essential for binding. → STC1 binds Fe 2+ and Fe 3+ heme. → STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys 114 as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H 2 O 2 induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  6. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Johan A., E-mail: johan.westberg@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Jiang, Ji, E-mail: ji.jiang@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Andersson, Leif C., E-mail: leif.andersson@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland)

    2011-06-03

    Highlights: {yields} Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. {yields} Central iron atom of heme and cysteine-114 of STC1 are essential for binding. {yields} STC1 binds Fe{sup 2+} and Fe{sup 3+} heme. {yields} STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys{sup 114} as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H{sub 2}O{sub 2} induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  7. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs.

    Science.gov (United States)

    Gálvez, José Héctor; Tai, Helen H; Lagüe, Martin; Zebarth, Bernie J; Strömvik, Martina V

    2016-05-19

    Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha(-1) was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency.

  8. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms.

    Science.gov (United States)

    Yang, Peng; Wu, Min; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2014-02-17

    As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Recently, an algorithm called "LDsplit" has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of

  9. Results of de-novo and Motif activity analyses - FANTOM5 | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us FANTOM... JASPAR) Data file File name: Motifs File URL: ftp://ftp.biosciencedbc.jp/archive/fantom5/datafiles/phase1.3...tabase Database Description Download License Update History of This Database Site Policy | Contact Us Results of de-novo and Motif activity analyses - FANTOM5 | LSDB Archive ...

  10. An approach to evaluate the topological significance of motifs and other patterns in regulatory networks

    Directory of Open Access Journals (Sweden)

    Wingender Edgar

    2009-05-01

    that enables to evaluate the topological significance of various connected patterns in a regulatory network. Applying this method onto transcriptional networks of three largely distinct organisms we could prove that it is highly suitable to identify most important pattern instances, but that neither motifs nor any pattern in general appear to play a particularly important role per se. From the results obtained so far, we conclude that the pairwise disconnectivity index will most likely prove useful as well in identifying other (higher-order pattern instances in transcriptional and other networks.

  11. Regulatory decision making by decision analyses

    International Nuclear Information System (INIS)

    Holmberg, J.; Pulkkinen, U.

    1993-11-01

    The Technical Research Centre of Finland (VTT) has studied with the Finnish Centre for Radiation and Nuclear Safety (STUK) the applicability of decision analytic approach to the treatment of nuclear safety related problems at the regulatory body. The role of probabilistic safety assessment (PSA) in decision making has also been discussed. In the study, inspectors from STUK exercised with a decision analytic approach by reoperationalizing two occurred and solved problems. The research scientist from VTT acted as systems analysts guiding the analysis process. The first case was related to a common cause failure phenomenon in solenoid valves controlling pneumatic valves important to safety of the plant. The problem of the regulatory body was to judge whether to allow continued operation or to require more detailed inspections and in which time chedule the inspections should be done. The latter problem was to evaluate design changes of external electrical grid connections after a fire incident had revealed weakness in the separation of electrical system. In both cases, the decision analysis was carried out several sessions in which decision makers, technical experts as well as experts of decision analysis participated. A multi-attribute value function was applied as a decision model so that attributes had to be defined to quantify the levels of achievements of the objectives. The attributes included both indicators related to the level of operational safety of the plant such as core damage frequency given by PSA, and indicators related to the safety culture, i.e., how well the chosen option fits on the regulatory policy. (24 refs., 6 figs., 9 tabs.)

  12. Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster

    Science.gov (United States)

    Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.

    2015-03-01

    During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.

  13. Using Inequality Measures to Incorporate Environmental Justice into Regulatory Analyses

    Science.gov (United States)

    Abstract: Formally evaluating how specific policy measures influence environmental justice is challenging, especially in the context of regulatory analyses in which quantitative comparisons are the norm. However, there is a large literature on developing and applying quantitative...

  14. Using Inequality Measures to Incorporate Environmental Justice into Regulatory Analyses

    Science.gov (United States)

    Harper, Sam; Ruder, Eric; Roman, Henry A.; Geggel, Amelia; Nweke, Onyemaechi; Payne-Sturges, Devon; Levy, Jonathan I.

    2013-01-01

    Formally evaluating how specific policy measures influence environmental justice is challenging, especially in the context of regulatory analyses in which quantitative comparisons are the norm. However, there is a large literature on developing and applying quantitative measures of health inequality in other settings, and these measures may be applicable to environmental regulatory analyses. In this paper, we provide information to assist policy decision makers in determining the viability of using measures of health inequality in the context of environmental regulatory analyses. We conclude that quantification of the distribution of inequalities in health outcomes across social groups of concern, considering both within-group and between-group comparisons, would be consistent with both the structure of regulatory analysis and the core definition of environmental justice. Appropriate application of inequality indicators requires thorough characterization of the baseline distribution of exposures and risks, leveraging data generally available within regulatory analyses. Multiple inequality indicators may be applicable to regulatory analyses, and the choice among indicators should be based on explicit value judgments regarding the dimensions of environmental justice of greatest interest. PMID:23999551

  15. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation

    DEFF Research Database (Denmark)

    Cogoi, Susanna; Ferino, Annalisa; Miglietta, Giulia

    2018-01-01

    KRAS is one of the most mutated genes in human cancer. It is controlled by a G4 motif located upstream of the transcription start site. In this paper, we demonstrate that 8-oxoguanine (8-oxoG), being more abundant in G4 than in non-G4 regions, is a new player in the regulation of this oncogene. W...

  16. On the Concept of Cis-regulatory Information: From Sequence Motifs to Logic Functions

    Science.gov (United States)

    Tarpine, Ryan; Istrail, Sorin

    The regulatory genome is about the “system level organization of the core genomic regulatory apparatus, and how this is the locus of causality underlying the twin phenomena of animal development and animal evolution” (E.H. Davidson. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution, Academic Press, 2006). Information processing in the regulatory genome is done through regulatory states, defined as sets of transcription factors (sequence-specific DNA binding proteins which determine gene expression) that are expressed and active at the same time. The core information processing machinery consists of modular DNA sequence elements, called cis-modules, that interact with transcription factors. The cis-modules “read” the information contained in the regulatory state of the cell through transcription factor binding, “process” it, and directly or indirectly communicate with the basal transcription apparatus to determine gene expression. This endowment of each gene with the information-receiving capacity through their cis-regulatory modules is essential for the response to every possible regulatory state to which it might be exposed during all phases of the life cycle and in all cell types. We present here a set of challenges addressed by our CYRENE research project aimed at studying the cis-regulatory code of the regulatory genome. The CYRENE Project is devoted to (1) the construction of a database, the cis-Lexicon, containing comprehensive information across species about experimentally validated cis-regulatory modules; and (2) the software development of a next-generation genome browser, the cis-Browser, specialized for the regulatory genome. The presentation is anchored on three main computational challenges: the Gene Naming Problem, the Consensus Sequence Bottleneck Problem, and the Logic Function Inference Problem.

  17. cWords - systematic microRNA regulatory motif discovery from mRNA expression data

    DEFF Research Database (Denmark)

    Rasmussen, Simon Horskjær; Jacobsen, Anders; Krogh, Anders

    2013-01-01

    and statistical methods of cWords, resulting in at least a factor 100 speed gain over the previous implementation. On a benchmark dataset of 19 microRNA (miRNA) perturbation experiments cWords showed equal or better performance than two comparable methods, miReduce and Sylamer. We have developed rigorous motif...... that demonstrate comparable or better performance than other existing methods. Rich visualization of results promotes intuitive and efficient interpretation of data. cWords is available as a stand-alone Open Source program at Github https://github.com/simras/cWords webcite and as a web-service at: http...

  18. Regulatory analyses for severe accident issues: an example

    International Nuclear Information System (INIS)

    Burke, R.P.; Strip, D.R.; Aldrich, D.C.

    1984-09-01

    This report presents the results of an effort to develop a regulatory analysis methodology and presentation format to provide information for regulatory decision-making related to severe accident issues. Insights and conclusions gained from an example analysis are presented. The example analysis draws upon information generated in several previous and current NRC research programs (the Severe Accident Risk Reduction Program (SARRP), Accident Sequence Evaluation Program (ASEP), Value-Impact Handbook, Economic Risk Analyses, and studies of Vented Containment Systems and Alternative Decay Heat Removal Systems) to perform preliminary value-impact analyses on the installation of either a vented containment system or an alternative decay heat removal system at the Peach Bottom No. 2 plant. The results presented in this report are first-cut estimates, and are presented only for illustrative purposes in the context of this document. This study should serve to focus discussion on issues relating to the type of information, the appropriate level of detail, and the presentation format which would make a regulatory analysis most useful in the decisionmaking process

  19. A 6-Nucleotide Regulatory Motif within the AbcR Small RNAs of Brucella abortus Mediates Host-Pathogen Interactions.

    Science.gov (United States)

    Sheehan, Lauren M; Caswell, Clayton C

    2017-06-06

    In Brucella abortus , two small RNAs (sRNAs), AbcR1 and AbcR2, are responsible for regulating transcripts encoding ABC-type transport systems. AbcR1 and AbcR2 are required for Brucella virulence, as a double chromosomal deletion of both sRNAs results in attenuation in mice. Although these sRNAs are responsible for targeting transcripts for degradation, the mechanism utilized by the AbcR sRNAs to regulate mRNA in Brucella has not been described. Here, two motifs (M1 and M2) were identified in AbcR1 and AbcR2, and complementary motif sequences were defined in AbcR-regulated transcripts. Site-directed mutagenesis of M1 or M2 or of both M1 and M2 in the sRNAs revealed transcripts to be targeted by one or both motifs. Electrophoretic mobility shift assays revealed direct, concentration-dependent binding of both AbcR sRNAs to a target mRNA sequence. These experiments genetically and biochemically characterized two indispensable motifs within the AbcR sRNAs that bind to and regulate transcripts. Additionally, cellular and animal models of infection demonstrated that only M2 in the AbcR sRNAs is required for Brucella virulence. Furthermore, one of the M2-regulated targets, BAB2_0612, was found to be critical for the virulence of B. abortus in a mouse model of infection. Although these sRNAs are highly conserved among Alphaproteobacteria , the present report displays how gene regulation mediated by the AbcR sRNAs has diverged to meet the intricate regulatory requirements of each particular organism and its unique biological niche. IMPORTANCE Small RNAs (sRNAs) are important components of bacterial regulation, allowing organisms to quickly adapt to changes in their environments. The AbcR sRNAs are highly conserved throughout the Alphaproteobacteria and negatively regulate myriad transcripts, many encoding ABC-type transport systems. In Brucella abortus , AbcR1 and AbcR2 are functionally redundant, as only a double abcR1 abcR2 ( abcR1 / 2 ) deletion results in attenuation in

  20. oPOSSUM: integrated tools for analysis of regulatory motif over-representation

    Science.gov (United States)

    Ho Sui, Shannan J.; Fulton, Debra L.; Arenillas, David J.; Kwon, Andrew T.; Wasserman, Wyeth W.

    2007-01-01

    The identification of over-represented transcription factor binding sites from sets of co-expressed genes provides insights into the mechanisms of regulation for diverse biological contexts. oPOSSUM, an internet-based system for such studies of regulation, has been improved and expanded in this new release. New features include a worm-specific version for investigating binding sites conserved between Caenorhabditis elegans and C. briggsae, as well as a yeast-specific version for the analysis of co-expressed sets of Saccharomyces cerevisiae genes. The human and mouse applications feature improvements in ortholog mapping, sequence alignments and the delineation of multiple alternative promoters. oPOSSUM2, introduced for the analysis of over-represented combinations of motifs in human and mouse genes, has been integrated with the original oPOSSUM system. Analysis using user-defined background gene sets is now supported. The transcription factor binding site models have been updated to include new profiles from the JASPAR database. oPOSSUM is available at http://www.cisreg.ca/oPOSSUM/ PMID:17576675

  1. Evolution of New cis-Regulatory Motifs Required for Cell-Specific Gene Expression in Caenorhabditis.

    Directory of Open Access Journals (Sweden)

    Michalis Barkoulas

    2016-09-01

    Full Text Available Patterning of C. elegans vulval cell fates relies on inductive signaling. In this induction event, a single cell, the gonadal anchor cell, secretes LIN-3/EGF and induces three out of six competent precursor cells to acquire a vulval fate. We previously showed that this developmental system is robust to a four-fold variation in lin-3/EGF genetic dose. Here using single-molecule FISH, we find that the mean level of expression of lin-3 in the anchor cell is remarkably conserved. No change in lin-3 expression level could be detected among C. elegans wild isolates and only a low level of change-less than 30%-in the Caenorhabditis genus and in Oscheius tipulae. In C. elegans, lin-3 expression in the anchor cell is known to require three transcription factor binding sites, specifically two E-boxes and a nuclear-hormone-receptor (NHR binding site. Mutation of any of these three elements in C. elegans results in a dramatic decrease in lin-3 expression. Yet only a single E-box is found in the Drosophilae supergroup of Caenorhabditis species, including C. angaria, while the NHR-binding site likely only evolved at the base of the Elegans group. We find that a transgene from C. angaria bearing a single E-box is sufficient for normal expression in C. elegans. Even a short 58 bp cis-regulatory fragment from C. angaria with this single E-box is able to replace the three transcription factor binding sites at the endogenous C. elegans lin-3 locus, resulting in the wild-type expression level. Thus, regulatory evolution occurring in cis within a 58 bp lin-3 fragment, results in a strict requirement for the NHR binding site and a second E-box in C. elegans. This single-cell, single-molecule, quantitative and functional evo-devo study demonstrates that conserved expression levels can hide extensive change in cis-regulatory site requirements and highlights the evolution of new cis-regulatory elements required for cell-specific gene expression.

  2. Manipulation of EphB2 regulatory motifs and SH2 binding sites switches MAPK signaling and biological activity.

    Science.gov (United States)

    Tong, Jiefei; Elowe, Sabine; Nash, Piers; Pawson, Tony

    2003-02-21

    Signaling by the Eph family of receptor tyrosine kinases (RTKs) is complex, because they can interact with a variety of intracellular targets, and can potentially induce distinct responses in different cell types. In NG108 neuronal cells, activated EphB2 recruits p120RasGAP, in a fashion that is associated with down-regulation of the Ras-Erk mitogen-activated kinase (MAPK) pathway and neurite retraction. To pursue the role of the Ras-MAPK pathway in EphB2-mediated growth cone collapse, and to explore the biochemical and biological functions of Eph receptors, we sought to re-engineer the signaling properties of EphB2 by manipulating its regulatory motifs and SH2 binding sites. An EphB2 mutant that retained juxtamembrane (JM) RasGAP binding sites but incorporated a Grb2 binding motif at an alternate RasGAP binding site within the kinase domain had little effect on basal Erk MAPK activation. In contrast, elimination of all RasGAP binding sites, accompanied by the addition of a Grb2 binding site within the kinase domain, led to an increase in phospho-Erk levels in NG108 cells following ephrin-B1 stimulation. Functional assays indicated a correlation between neurite retraction and the ability of the EphB2 mutants to down-regulate Ras-Erk MAPK signaling. These data suggest that EphB2 can be designed to repress, stabilize, or activate the Ras-Erk MAPK pathway by the manipulation of RasGAP and Grb2 SH2 domain binding sites and support the notion that Erk MAPK regulation plays a significant role in axon guidance. The behavior of EphB2 variants with mutations in the JM region and kinase domains suggests an intricate pattern of regulation and target recognition by Eph receptors.

  3. Predicting tissue specific cis-regulatory modules in the human genome using pairs of co-occurring motifs

    Directory of Open Access Journals (Sweden)

    Girgis Hani Z

    2012-02-01

    Full Text Available Abstract Background Researchers seeking to unlock the genetic basis of human physiology and diseases have been studying gene transcription regulation. The temporal and spatial patterns of gene expression are controlled by mainly non-coding elements known as cis-regulatory modules (CRMs and epigenetic factors. CRMs modulating related genes share the regulatory signature which consists of transcription factor (TF binding sites (TFBSs. Identifying such CRMs is a challenging problem due to the prohibitive number of sequence sets that need to be analyzed. Results We formulated the challenge as a supervised classification problem even though experimentally validated CRMs were not required. Our efforts resulted in a software system named CrmMiner. The system mines for CRMs in the vicinity of related genes. CrmMiner requires two sets of sequences: a mixed set and a control set. Sequences in the vicinity of the related genes comprise the mixed set, whereas the control set includes random genomic sequences. CrmMiner assumes that a large percentage of the mixed set is made of background sequences that do not include CRMs. The system identifies pairs of closely located motifs representing vertebrate TFBSs that are enriched in the training mixed set consisting of 50% of the gene loci. In addition, CrmMiner selects a group of the enriched pairs to represent the tissue-specific regulatory signature. The mixed and the control sets are searched for candidate sequences that include any of the selected pairs. Next, an optimal Bayesian classifier is used to distinguish candidates found in the mixed set from their control counterparts. Our study proposes 62 tissue-specific regulatory signatures and putative CRMs for different human tissues and cell types. These signatures consist of assortments of ubiquitously expressed TFs and tissue-specific TFs. Under controlled settings, CrmMiner identified known CRMs in noisy sets up to 1:25 signal-to-noise ratio. CrmMiner was

  4. WeederH: an algorithm for finding conserved regulatory motifs and regions in homologous sequences

    Directory of Open Access Journals (Sweden)

    Pesole Graziano

    2007-02-01

    Full Text Available Abstract Background This work addresses the problem of detecting conserved transcription factor binding sites and in general regulatory regions through the analysis of sequences from homologous genes, an approach that is becoming more and more widely used given the ever increasing amount of genomic data available. Results We present an algorithm that identifies conserved transcription factor binding sites in a given sequence by comparing it to one or more homologs, adapting a framework we previously introduced for the discovery of sites in sequences from co-regulated genes. Differently from the most commonly used methods, the approach we present does not need or compute an alignment of the sequences investigated, nor resorts to descriptors of the binding specificity of known transcription factors. The main novel idea we introduce is a relative measure of conservation, assuming that true functional elements should present a higher level of conservation with respect to the rest of the sequence surrounding them. We present tests where we applied the algorithm to the identification of conserved annotated sites in homologous promoters, as well as in distal regions like enhancers. Conclusion Results of the tests show how the algorithm can provide fast and reliable predictions of conserved transcription factor binding sites regulating the transcription of a gene, with better performances than other available methods for the same task. We also show examples on how the algorithm can be successfully employed when promoter annotations of the genes investigated are missing, or when regulatory sites and regions are located far away from the genes.

  5. Identification, occurrence, and validation of DRE and ABRE Cis-regulatory motifs in the promoter regions of genes of Arabidopsis thaliana.

    Science.gov (United States)

    Mishra, Sonal; Shukla, Aparna; Upadhyay, Swati; Sanchita; Sharma, Pooja; Singh, Seema; Phukan, Ujjal J; Meena, Abha; Khan, Feroz; Tripathi, Vineeta; Shukla, Rakesh Kumar; Shrama, Ashok

    2014-04-01

    Plants posses a complex co-regulatory network which helps them to elicit a response under diverse adverse conditions. We used an in silico approach to identify the genes with both DRE and ABRE motifs in their promoter regions in Arabidopsis thaliana. Our results showed that Arabidopsis contains a set of 2,052 genes with ABRE and DRE motifs in their promoter regions. Approximately 72% or more of the total predicted 2,052 genes had a gap distance of less than 400 bp between DRE and ABRE motifs. For positional orientation of the DRE and ABRE motifs, we found that the DR form (one in direct and the other one in reverse orientation) was more prevalent than other forms. These predicted 2,052 genes include 155 transcription factors. Using microarray data from The Arabidopsis Information Resource (TAIR) database, we present 44 transcription factors out of 155 which are upregulated by more than twofold in response to osmotic stress and ABA treatment. Fifty-one transcripts from the one predicted above were validated using semiquantitative expression analysis to support the microarray data in TAIR. Taken together, we report a set of genes containing both DRE and ABRE motifs in their promoter regions in A. thaliana, which can be useful to understand the role of ABA under osmotic stress condition. © 2013 Institute of Botany, Chinese Academy of Sciences.

  6. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest.

    Science.gov (United States)

    Wang, Xin; Lin, Peijie; Ho, Joshua W K

    2018-01-19

    It has been observed that many transcription factors (TFs) can bind to different genomic loci depending on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in different cell types. How a TF can bind to the genome in such a highly cell-type specific manner, is a critical research question. One hypothesis is that a TF requires co-binding of different TFs in different cell types. If this is the case, it may be possible to observe different combinations of TF motifs - a motif grammar - located at the TF binding sites in different cell types. In this study, we develop a bioinformatics method to systematically identify DNA motifs in TF binding sites across multiple cell types based on published ChIP-seq data, and address two questions: (1) can we build a machine learning classifier to predict cell-type specificity based on motif combinations alone, and (2) can we extract meaningful cell-type specific motif grammars from this classifier model. We present a Random Forest (RF) based approach to build a multi-class classifier to predict the cell-type specificity of a TF binding site given its motif content. We applied this RF classifier to two published ChIP-seq datasets of TF (TCF7L2 and MAX) across multiple cell types. Using cross-validation, we show that motif combinations alone are indeed predictive of cell types. Furthermore, we present a rule mining approach to extract the most discriminatory rules in the RF classifier, thus allowing us to discover the underlying cell-type specific motif grammar. Our bioinformatics analysis supports the hypothesis that combinatorial TF motif patterns are cell-type specific.

  7. Genomewide analyses of pathogenic and regulatory T cells of NOD ...

    Indian Academy of Sciences (India)

    DANG SUN

    Two regulatory T cell clones (Tregs) were used in this study. Treg1 cells were clone-derived from the previously described. Keywords. methylation; cDNA microarray; type 1 diabetes; pathogenic T cells; .... Gender-specific differences in.

  8. Identification of a phosphorylation-dependent nuclear localization motif in interferon regulatory factor 2 binding protein 2.

    Directory of Open Access Journals (Sweden)

    Allen C T Teng

    Full Text Available Interferon regulatory factor 2 binding protein 2 (IRF2BP2 is a muscle-enriched transcription factor required to activate vascular endothelial growth factor-A (VEGFA expression in muscle. IRF2BP2 is found in the nucleus of cardiac and skeletal muscle cells. During the process of skeletal muscle differentiation, some IRF2BP2 becomes relocated to the cytoplasm, although the functional significance of this relocation and the mechanisms that control nucleocytoplasmic localization of IRF2BP2 are not yet known.Here, by fusing IRF2BP2 to green fluorescent protein and testing a series of deletion and site-directed mutagenesis constructs, we mapped the nuclear localization signal (NLS to an evolutionarily conserved sequence (354ARKRKPSP(361 in IRF2BP2. This sequence corresponds to a classical nuclear localization motif bearing positively charged arginine and lysine residues. Substitution of arginine and lysine with negatively charged aspartic acid residues blocked nuclear localization. However, these residues were not sufficient because nuclear targeting of IRF2BP2 also required phosphorylation of serine 360 (S360. Many large-scale phosphopeptide proteomic studies had reported previously that serine 360 of IRF2BP2 is phosphorylated in numerous human cell types. Alanine substitution at this site abolished IRF2BP2 nuclear localization in C(2C(12 myoblasts and CV1 cells. In contrast, substituting serine 360 with aspartic acid forced nuclear retention and prevented cytoplasmic redistribution in differentiated C(2C(12 muscle cells. As for the effects of these mutations on VEGFA promoter activity, the S360A mutation interfered with VEGFA activation, as expected. Surprisingly, the S360D mutation also interfered with VEGFA activation, suggesting that this mutation, while enforcing nuclear entry, may disrupt an essential activation function of IRF2BP2.Nuclear localization of IRF2BP2 depends on phosphorylation near a conserved NLS. Changes in phosphorylation status

  9. Genomewide analyses of pathogenic and regulatory T cells of NOD ...

    Indian Academy of Sciences (India)

    DANG SUN

    1School of Life Sciences, Tsinghua University, Qinghuayuan Road, Beijing 100084, People's Republic of China. 2Alliance ... Reestablishing a well-balanced population of regulatory T cells (Tregs) .... Definition of CpG methylation peaks: Log2 ratios between ..... How these eight genes work in T cell function differentiation.

  10. Genomewide analyses of pathogenic and regulatory T cells of NOD ...

    Indian Academy of Sciences (India)

    Reestablishing a well-balanced population of regulatory T cells (Tregs) and pathogenic T cells (Tpaths) is necessary for diabetic patients to regain glucose control. However, the molecular mechanisms modulating functional differentiation of Tpaths and Tregs remain unclear. In this study, we anal- ysed the gene expression ...

  11. A minimal murine Msx-1 gene promoter. Organization of its cis-regulatory motifs and their role in transcriptional activation in cells in culture and in transgenic mice.

    Science.gov (United States)

    Takahashi, T; Guron, C; Shetty, S; Matsui, H; Raghow, R

    1997-09-05

    To dissect the cis-regulatory elements of the murine Msx-1 promoter, which lacks a conventional TATA element, a putative Msx-1 promoter DNA fragment (from -1282 to +106 base pairs (bp)) or its congeners containing site-specific alterations were fused to luciferase reporter and introduced into NIH3T3 and C2C12 cells, and the expression of luciferase was assessed in transient expression assays. The functional consequences of the sequential 5' deletions of the promotor revealed that multiple positive and negative regulatory elements participate in regulating transcription of the Msx-1 gene. Surprisingly, however, the optimal expression of Msx-1 promoter in either NIH3T3 or C2C12 cells required only 165 bp of the upstream sequence to warrant detailed examination of its structure. Therefore, the functional consequences of site-specific deletions and point mutations of the cis-acting elements of the minimal Msx-1 promoter were systematically examined. Concomitantly, potential transcriptional factor(s) interacting with the cis-acting elements of the minimal promoter were also studied by gel electrophoretic mobility shift assays and DNase I footprinting. Combined analyses of the minimal promoter by DNase I footprinting, electrophoretic mobility shift assays, and super shift assays with specific antibodies revealed that 5'-flanking regions from -161 to -154 and from -26 to -13 of the Msx-1 promoter contains an authentic E box (proximal E box), capable of binding a protein immunologically related to the upstream stimulating factor 1 (USF-1) and a GC-rich sequence motif which can bind to Sp1 (proximal Sp1), respectively. Additionally, we observed that the promoter activation was seriously hampered if the proximal E box was removed or mutated, and the promoter activity was eliminated completely if the proximal Sp1 site was similarly altered. Absolute dependence of the Msx-1 minimal promoter on Sp1 could be demonstrated by transient expression assays in the Sp1-deficient

  12. The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis

    Science.gov (United States)

    Parsons, Michael J.; Brancaccio, Marco; Sethi, Siddharth; Maywood, Elizabeth S.; Satija, Rahul; Edwards, Jessica K.; Jagannath, Aarti; Couch, Yvonne; Finelli, Mattéa J.; Smyllie, Nicola J.; Esapa, Christopher; Butler, Rachel; Barnard, Alun R.; Chesham, Johanna E.; Saito, Shoko; Joynson, Greg; Wells, Sara; Foster, Russell G.; Oliver, Peter L.; Simon, Michelle M.; Mallon, Ann-Marie; Hastings, Michael H.; Nolan, Patrick M.

    2015-01-01

    Summary We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3Sci), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3Sci/+ SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3Sci/+ SCN slices. In conclusion, by cloning Zfhx3Sci, we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms. PMID:26232227

  13. Comparison of loline alkaloid gene clusters across fungal endophytes: predicting the co-regulatory sequence motifs and the evolutionary history.

    Science.gov (United States)

    Kutil, Brandi L; Greenwald, Charles; Liu, Gang; Spiering, Martin J; Schardl, Christopher L; Wilkinson, Heather H

    2007-10-01

    LOL, a fungal secondary metabolite gene cluster found in Epichloë and Neotyphodium species, is responsible for production of insecticidal loline alkaloids. To analyze the genetic architecture and to predict the evolutionary history of LOL, we compared five clusters from four fungal species (single clusters from Epichloë festucae, Neotyphodium sp. PauTG-1, Neotyphodium coenophialum, and two clusters we previously characterized in Neotyphodium uncinatum). Using PhyloCon to compare putative lol gene promoter regions, we have identified four motifs conserved across the lol genes in all five clusters. Each motif has significant similarity to known fungal transcription factor binding sites in the TRANSFAC database. Conservation of these motifs is further support for the hypothesis that the lol genes are co-regulated. Interestingly, the history of asexual Neotyphodium spp. includes multiple interspecific hybridization events. Comparing clusters from three Neotyphodium species and E. festucae allowed us to determine which Epichloë ancestors are the most likely contributors of LOL in these asexual species. For example, while no present day Epichloë typhina isolates are known to produce lolines, our data support the hypothesis that the E. typhina ancestor(s) of three asexual endophyte species contained a LOL gene cluster. Thus, these data support a model of evolution in which the polymorphism in loline alkaloid production phenotypes among endophyte species is likely due to the loss of the trait over time.

  14. Promzea: a pipeline for discovery of co-regulatory motifs in maize and other plant species and its application to the anthocyanin and phlobaphene biosynthetic pathways and the Maize Development Atlas.

    Science.gov (United States)

    Liseron-Monfils, Christophe; Lewis, Tim; Ashlock, Daniel; McNicholas, Paul D; Fauteux, François; Strömvik, Martina; Raizada, Manish N

    2013-03-15

    The discovery of genetic networks and cis-acting DNA motifs underlying their regulation is a major objective of transcriptome studies. The recent release of the maize genome (Zea mays L.) has facilitated in silico searches for regulatory motifs. Several algorithms exist to predict cis-acting elements, but none have been adapted for maize. A benchmark data set was used to evaluate the accuracy of three motif discovery programs: BioProspector, Weeder and MEME. Analysis showed that each motif discovery tool had limited accuracy and appeared to retrieve a distinct set of motifs. Therefore, using the benchmark, statistical filters were optimized to reduce the false discovery ratio, and then remaining motifs from all programs were combined to improve motif prediction. These principles were integrated into a user-friendly pipeline for motif discovery in maize called Promzea, available at http://www.promzea.org and on the Discovery Environment of the iPlant Collaborative website. Promzea was subsequently expanded to include rice and Arabidopsis. Within Promzea, a user enters cDNA sequences or gene IDs; corresponding upstream sequences are retrieved from the maize genome. Predicted motifs are filtered, combined and ranked. Promzea searches the chosen plant genome for genes containing each candidate motif, providing the user with the gene list and corresponding gene annotations. Promzea was validated in silico using a benchmark data set: the Promzea pipeline showed a 22% increase in nucleotide sensitivity compared to the best standalone program tool, Weeder, with equivalent nucleotide specificity. Promzea was also validated by its ability to retrieve the experimentally defined binding sites of transcription factors that regulate the maize anthocyanin and phlobaphene biosynthetic pathways. Promzea predicted additional promoter motifs, and genome-wide motif searches by Promzea identified 127 non-anthocyanin/phlobaphene genes that each contained all five predicted promoter

  15. Cation-π interactions: computational analyses of the aromatic box motif and the fluorination strategy for experimental evaluation.

    Science.gov (United States)

    Davis, Matthew R; Dougherty, Dennis A

    2015-11-21

    Cation-π interactions are common in biological systems, and many structural studies have revealed the aromatic box as a common motif. With the aim of understanding the nature of the aromatic box, several computational methods were evaluated for their ability to reproduce experimental cation-π binding energies. We find the DFT method M06 with the 6-31G(d,p) basis set performs best of several methods tested. The binding of benzene to a number of different cations (sodium, potassium, ammonium, tetramethylammonium, and guanidinium) was studied. In addition, the binding of the organic cations NH4(+) and NMe4(+) to ab initio generated aromatic boxes as well as examples of aromatic boxes from protein crystal structures were investigated. These data, along with a study of the distance dependence of the cation-π interaction, indicate that multiple aromatic residues can meaningfully contribute to cation binding, even with displacements of more than an angstrom from the optimal cation-π interaction. Progressive fluorination of benzene and indole was studied as well, and binding energies obtained were used to reaffirm the validity of the "fluorination strategy" to study cation-π interactions in vivo.

  16. Mouse transgenesis identifies conserved functional enhancers and cis-regulatory motif in the vertebrate LIM homeobox gene Lhx2 locus.

    Directory of Open Access Journals (Sweden)

    Alison P Lee

    Full Text Available The vertebrate Lhx2 is a member of the LIM homeobox family of transcription factors. It is essential for the normal development of the forebrain, eye, olfactory system and liver as well for the differentiation of lymphoid cells. However, despite the highly restricted spatio-temporal expression pattern of Lhx2, nothing is known about its transcriptional regulation. In mammals and chicken, Crb2, Dennd1a and Lhx2 constitute a conserved linkage block, while the intervening Dennd1a is lost in the fugu Lhx2 locus. To identify functional enhancers of Lhx2, we predicted conserved noncoding elements (CNEs in the human, mouse and fugu Crb2-Lhx2 loci and assayed their function in transgenic mouse at E11.5. Four of the eight CNE constructs tested functioned as tissue-specific enhancers in specific regions of the central nervous system and the dorsal root ganglia (DRG, recapitulating partial and overlapping expression patterns of Lhx2 and Crb2 genes. There was considerable overlap in the expression domains of the CNEs, which suggests that the CNEs are either redundant enhancers or regulating different genes in the locus. Using a large set of CNEs (810 CNEs associated with transcription factor-encoding genes that express predominantly in the central nervous system, we predicted four over-represented 8-mer motifs that are likely to be associated with expression in the central nervous system. Mutation of one of them in a CNE that drove reporter expression in the neural tube and DRG abolished expression in both domains indicating that this motif is essential for expression in these domains. The failure of the four functional enhancers to recapitulate the complete expression pattern of Lhx2 at E11.5 indicates that there must be other Lhx2 enhancers that are either located outside the region investigated or divergent in mammals and fishes. Other approaches such as sequence comparison between multiple mammals are required to identify and characterize such enhancers.

  17. [Regulatory effect and mechanism of RNA binding motif protein 38 on the expression of progesterone receptor in human breast cancer ZR-75-1 cells].

    Science.gov (United States)

    Lou, P P; Li, C L; Xia, T S; Shi, L; Wu, J; Zhou, X J; Wang, Y; Ding, Q

    2016-06-23

    To investigate the regulatory mechanism of RNA binding motif protein 38 (RNPC1) on the expression of progesterone receptor (PR) in breast cancer cell line ZR-75-1. Lentiviral vector was used to induce overexpression of RNPC1 in ZR-75-1 cells. qRT-PCR and Western blot were used to assess the regulatory effect of RNPC1 on PR expression. Actinomycin was used to detect the regulatory mechanism involved. Immunohistochemical (IHC) staining was used to determine the protein expression of RNPC1 and PR in 80 breast cancer tissues. IHC staining showed that the expression of RNPC1 was significantly higher in the PR positive breast cancer tissues than that in the PR negative breast cancer tissues (P<0.05). The qRT-PCR results showed that overexpression of RNPC1 in ZR-75-1 cells significantly upregulated the mRNA level of PR (1.764±0.028 vs. 1.001±0.037, P<0.01), whereas knockdown of RNPC1 did the opposite (0.579± 0.007 vs. 1.000±0.002, P<0.01). The Western blot results also showed that overexpression of RNPC1 up-regulated PR levels, while knockdown of RNPC1 resulted in down-regulation of PR levels in the ZR-75-1 cells.The actinomycin assay showed that overexpression of RNPC1 increased the mRNA stability of PR. The half-life of PR mRNA was increased from 4.0 h to 6.5 h. Knockdown of RNPC1 decreased the mRNA stability of PR and the half-life of PR transcript was decreased from 4.1 h to 3.0 h. RNPC1 plays a crucial role in regulating the expression of PR in breast cancer ZR-75-1 cells.

  18. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene.

    Science.gov (United States)

    Rim, Jong S; Kozak, Leslie P

    2002-09-13

    Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer elements. In the course of analyzing how these half-site CREs are involved in Ucp1 expression, we found that a DNA regulatory element for NF-E2 overlaps CRE2. Electrophoretic mobility shift assay and competition assays with the CRE2 element indicates that nuclear proteins from BAT, inguinal fat, and retroperitoneal fat tissue interact with the CRE2 motif (CGTCA) in a specific manner. A supershift assay using an antibody against the CRE-binding protein (CREB) shows specific affinity to the complex from CRE2 and nuclear extract of BAT. Additionally, Western blot analysis for phospho-CREB/ATF1 shows an increase in phosphorylation of CREB/ATF1 in HIB-1B cells after norepinephrine treatment. Transient transfection assay using luciferase reporter constructs also indicates that the two half-site CREs are involved in transcriptional regulation of Ucp1 in response to norepinephrine and cAMP. We also show that a second DNA regulatory element for NF-E2 is located upstream of the CRE2 region. This element, which is found in a similar location in the 5'-flanking region of the human and rodent Ucp1 genes, shows specific binding to rat and human NF-E2 by electrophoretic mobility shift assay with nuclear extracts from brown fat. Co-transfections with an Nfe2l2 expression vector and a luciferase reporter construct of the Ucp1 enhancer region provide additional evidence that Nfe2l2 is involved in the regulation of Ucp1 by cAMP-mediated signaling.

  19. The adeno-associated virus major regulatory protein Rep78-c-Jun-DNA motif complex modulates AP-1 activity

    International Nuclear Information System (INIS)

    Prasad, C. Krishna; Meyers, Craig; Zhan Dejin; You Hong; Chiriva-Internati, Maurizio; Mehta, Jawahar L.; Liu Yong; Hermonat, Paul L.

    2003-01-01

    Multiple epidemiologic studies show that adeno-associated virus (AAV) is negatively associated with cervical cancer (CX CA), a cancer which is positively associated with human papillomavirus (HPV) infection. Mechanisms for this correlation may be by Rep78's (AAV's major regulatory protein) ability to bind the HPV-16 p97 promoter DNA and inhibit transcription, to bind and interfere with the functions of the E7 oncoprotein of HPV-16, and to bind a variety of HPV-important cellular transcription factors such as Sp1 and TBP. c-Jun is another important cellular factor intimately linked to the HPV life cycle, as well as keratinocyte differentiation and skin development. Skin is the natural host tissue for both HPV and AAV. In this article it is demonstrated that Rep78 directly interacts with c-Jun, both in vitro and in vivo, as analyzed by Western blot, yeast two-hybrid cDNA, and electrophoretic mobility shift-supershift assay (EMSA supershift). Addition of anti-Rep78 antibodies inhibited the EMSA supershift. Investigating the biological implications of this interaction, Rep78 inhibited the c-Jun-dependent c-jun promoter in transient and stable chloramphenicol acetyl-transferase (CAT) assays. Rep78 also inhibited c-Jun-augmented c-jun promoter as well as the HPV-16 p97 promoter activity (also c-Jun regulated) in in vitro transcription assays in T47D nuclear extracts. Finally, the Rep78-c-Jun interaction mapped to the amino-half of Rep78. The ability of Rep78 to interact with c-Jun and down-regulate AP-1-dependent transcription suggests one more mechanism by which AAV may modulate the HPV life cycle and the carcinogenesis process

  20. Regulatory support activities of JNES by thermal-hydraulic and safety analyses

    International Nuclear Information System (INIS)

    Kasahara, Fumio

    2008-01-01

    Current status and some related topics on regulatory support activities of Japan Nuclear Energy Safety Organization (JNES) by thermal-hydraulic and safety analyses are reported. The safety of nuclear facilities is secured primarily by plant owners and operators. However, the regulatory body NISA (Nuclear and Industrial Safety Agency) has conducted a strict regulation to confirm the adequacy of the site condition as well as the basic and detailed design. The JNES has been conducting independent analyses from applicants (audit analyses, etc.) by direction of NISA and supporting its review. In addition to the audit analysis, thermal-hydraulic and safety analyses are used in such areas as analytical evaluation for investigation of causes of accidents and troubles, level 2 PSA for risk informed regulation, etc. Recent activities of audit analyses are for the application of Tsuruga 3 and 4 (APWR), the spent fuel storage facility for the establishment, and the LMFBR Monju for the core change. For the trouble event evaluation, the criticality accident analysis of Sika1 was carried out and the evaluation of effectiveness of accident management (AM) measure for Tomari 3 (PWR) and Monju was performed. The analytical codes for these evaluations are continuously revised by reflecting the state-of-art technical information and validated using the information provided by the data from JAEA, OECD project, etc. (author)

  1. Motif enrichment tool.

    Science.gov (United States)

    Blatti, Charles; Sinha, Saurabh

    2014-07-01

    The Motif Enrichment Tool (MET) provides an online interface that enables users to find major transcriptional regulators of their gene sets of interest. MET searches the appropriate regulatory region around each gene and identifies which transcription factor DNA-binding specificities (motifs) are statistically overrepresented. Motif enrichment analysis is currently available for many metazoan species including human, mouse, fruit fly, planaria and flowering plants. MET also leverages high-throughput experimental data such as ChIP-seq and DNase-seq from ENCODE and ModENCODE to identify the regulatory targets of a transcription factor with greater precision. The results from MET are produced in real time and are linked to a genome browser for easy follow-up analysis. Use of the web tool is free and open to all, and there is no login requirement. ADDRESS: http://veda.cs.uiuc.edu/MET/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. N-termini of fungal CSL transcription factors are disordered, enriched in regulatory motifs and inhibit DNA binding in fission yeast.

    Directory of Open Access Journals (Sweden)

    Martin Převorovský

    Full Text Available CSL (CBF1/RBP-Jκ/Suppressor of Hairless/LAG-1 transcription factors are the effector components of the Notch receptor signalling pathway, which is critical for metazoan development. The metazoan CSL proteins (class M can also function in a Notch-independent manner. Recently, two novel classes of CSL proteins, designated F1 and F2, have been identified in fungi. The role of the fungal CSL proteins is unclear, because the Notch pathway is not present in fungi. In fission yeast, the Cbf11 and Cbf12 CSL paralogs play antagonistic roles in cell adhesion and the coordination of cell and nuclear division. Unusually long N-terminal extensions are typical for fungal and invertebrate CSL family members. In this study, we investigate the functional significance of these extended N-termini of CSL proteins.We identify 15 novel CSL family members from 7 fungal species and conduct bioinformatic analyses of a combined dataset containing 34 fungal and 11 metazoan CSL protein sequences. We show that the long, non-conserved N-terminal tails of fungal CSL proteins are likely disordered and enriched in phosphorylation sites and PEST motifs. In a case study of Cbf12 (class F2, we provide experimental evidence that the protein is proteolytically processed and that the N-terminus inhibits the Cbf12-dependent DNA binding activity in an electrophoretic mobility shift assay.This study provides insight into the characteristics of the long N-terminal tails of fungal CSL proteins that may be crucial for controlling DNA-binding and CSL function. We propose that the regulation of DNA binding by Cbf12 via its N-terminal region represents an important means by which fission yeast strikes a balance between the class F1 and class F2 paralog activities. This mode of regulation might be shared with other CSL-positive fungi, some of which are relevant to human disease and biotechnology.

  3. Analysing success of regulatory policy transfers: Evidence from Turkish energy markets

    International Nuclear Information System (INIS)

    Dastan, Seyit Ali

    2011-01-01

    Economic regulation of public utilities has become a worldwide phenomenon with the preceding privatisation stream. It is questionable to transfer regulatory models hastily without customising the policy options or introducing necessary institutional reforms enabling the achievement of expected results of regulatory reform. Institutional configuration of a country affects credibility of regulatory commitments, quality of regulatory design, and way of policy transfer. Turkey’s energy market regulation experience confirms the decisive role of institutions in shaping the regulatory framework. - Highlights: ► The last quarter of the 20th century witnessed public sector reforms all over the world. ► The British model of utility regulation swept globally. ► In Turkey’s adoption of the utility regulation model, different factors affected in various ways. ► Higher political stability and regulatory experience provide faith in the regulatory framework.

  4. Total System Performance Assessment Sensitivity Analyses for Final Nuclear Regulatory Commission Regulations

    International Nuclear Information System (INIS)

    Bechtel SAIC Company

    2001-01-01

    This Letter Report presents the results of supplemental evaluations and analyses designed to assess long-term performance of the potential repository at Yucca Mountain. The evaluations were developed in the context of the Nuclear Regulatory Commission (NRC) final public regulation, or rule, 10 CFR Part 63 (66 FR 55732 [DIRS 156671]), which was issued on November 2, 2001. This Letter Report addresses the issues identified in the Department of Energy (DOE) technical direction letter dated October 2, 2001 (Adams 2001 [DIRS 156708]). The main objective of this Letter Report is to evaluate performance of the potential Yucca Mountain repository using assumptions consistent with performance-assessment-related provisions of 10 CFR Part 63. The incorporation of the final Environmental Protection Agency (EPA) standard, 40 CFR Part 197 (66 FR 32074 [DIRS 155216]), and the analysis of the effect of the 40 CFR Part 197 EPA final rule on long-term repository performance are presented in the Total System Performance Assessment--Analyses for Disposal of Commercial and DOE Waste Inventories at Yucca Mountain--Input to Final Environmental Impact Statement and Site Suitability Evaluation (BSC 2001 [DIRS 156460]), referred to hereafter as the FEIS/SSE Letter Report. The Total System Performance Assessment (TSPA) analyses conducted and documented prior to promulgation of the NRC final rule 10 CFR Part 63 (66 FR 55732 [DIRS 156671]), were based on the NRC proposed rule (64 FR 8640 [DIRS 101680]). Slight differences exist between the NRC's proposed and final rules which were not within the scope of the FEIS/SSE Letter Report (BSC 2001 [DIRS 156460]), the Preliminary Site Suitability Evaluation (PSSE) (DOE 2001 [DIRS 155743]), and supporting documents for these reports. These differences include (1) the possible treatment of ''unlikely'' features, events and processes (FEPs) in evaluation of both the groundwater protection standard and the human-intrusion scenario of the individual

  5. 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif

    DEFF Research Database (Denmark)

    Andersen, Sofie Dabros; Keijzers, Guido; Rampakakis, Emmanouil

    2012-01-01

    Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins...... are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding...... and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate...

  6. The Verrucomicrobia LexA-binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    Directory of Open Access Journals (Sweden)

    Ivan Erill

    2016-07-01

    Full Text Available The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  7. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response.

    Science.gov (United States)

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  8. Current regulatory developments concerning the implementation of probabilistic safety analyses for external hazards in Germany

    International Nuclear Information System (INIS)

    Krauss, Matias; Berg, Heinz-Peter

    2014-01-01

    Ministry for Environment, Nature Conservation and Nuclear Safety (BMU). This expert group, led by the Federal Office for Radiation Protection (BfS), has the task to advise the BMU on all methodological issues for the implementation of probabilistic safety analyses and has elaborated two publications on methods and data for PSA with the aim to support a unified application of the PSA in Germany. With the publication 'Safety requirements for nuclear power plants', a modern version of a German nuclear safety regulations has been published. In this regulation the broad experience of the application of the periodic safety reviews have been incorporated as a key element of regulatory supervision. Further key findings from the European safety review of nuclear power plants were taken into account after the accident at Fukushima. The revision also paid special attention to the requirements and recommendations of WENRA and IAEA. In addition, the recommendations and guidelines of the Nuclear Safety Standards Commission (KTA) and the expert group on Probabilistic Safety Analysis (PSA FAK) have also been updated. The activities of the updates have been focused the natural external hazards 'earthquake' and 'flooding' in the German regulations: - Probabilistic assessment for retrofit measures in individual cases for all operating modes and the PSA level 1 and level 2 is possible. - Deterministic and probabilistic site hazard analysis for the events 'earthquake' and 'flood' are required. - For the event 'earthquake' according to IAEA plants receives a minimum design comparable to 0.1 g >concept. - Furthermore, a seismic instrumentation independent of the location of intensity is required for each installation. - The importance of quality assured plant walk downs to determine the specified plant conditions was explicitly emphasized and required measures to ensure. - Furthermore, the existing methods for their applicability verified the associated generic data base for PSA updated. - The

  9. Accounting for Technological Change in Regulatory Impact Analyses: The Learning Curve Technique

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Margaret [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fujita, K. Sydny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-30

    Regulatory impact assessment is formally required by the U.S. and many other nations in order to help governments weigh the costs and benefits of proposed regulations, particularly as they compare to those of alternative actions and other government priorities. 1 One of the “best practices” of regulatory impact assessments, as established by the OECD, is to use estimates of costs that are grounded in economic theory. Economic theory indicates that changes in compliance costs should be expected over time as a result of factors related to technological innovation. But many U.S. regulatory impact assessments have traditionally employed a practice that is in conflict with this expectation: they take current estimates of the costs of complying with a proposed regulation and project that those costs will remain unchanged over the full time period that the regulation would be in effect.

  10. Novel binding motif and new flexibility revealed by structural analyses of a pyruvate dehydrogenase-dihydrolipoyl acetyltransferase subcomplex from the Escherichia coli pyruvate dehydrogenase multienzyme complex.

    Science.gov (United States)

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-10-24

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Novel Binding Motif and New Flexibility Revealed by Structural Analyses of a Pyruvate Dehydrogenase-Dihydrolipoyl Acetyltransferase Subcomplex from the Escherichia coli Pyruvate Dehydrogenase Multienzyme Complex*

    Science.gov (United States)

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S.; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-01-01

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. PMID:25210042

  12. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle

    Science.gov (United States)

    Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e., hypothal...

  13. Swiss regulatory use of databanks for nuclear power plant life management, surveillance and safety analyses

    International Nuclear Information System (INIS)

    Tipping, Ph.; Beutler, R.; Schoen, G.; Noeggerath, J.

    2002-01-01

    Full text: As operational time is accumulated, the overall safety and performance of nuclear power plants (NPPs) will tend to be characterised by those areas in which structures, systems and components (SSCs) have not performed as well, or as reliably, as expected. The reasons for non-availability of equipment in NPPs due to SSC material malfunction or unsatisfactory performance, leading to events or even accidents, are varied and they must be analysed in order to obtain the root causes. Once the root causes are identified, corresponding measures can be applied in order to improve reliability and therefore safety. The root cause information obtained, if brought into user-friendly databanks (DBs), can be used to follow NPP performance trends, to check whether a repair or replacement has been effective, to focus regulatory attention and NPP surveillance on known weak-spots and to serve as an advance indicator where potential problems may arise. Using the DBs, similar occurrences of failures or problems in other NPPs can be identified and generic issues recognised early on and preventative action taken. The following describes the Swiss Federal Nuclear Safety Inspectorate's (HSK) DB concepts for keeping track of NPP safety and lifetime management issues. Typical sources of data for the Inspectorate's DBs are, for example, the IAEA/NEA Incident Reporting System (IRS) reports, US-NRC Generic Letters, the Swiss NPP's own reports (monthly, annual and normal outage) and, more importantly, the document that these NPPs must issue to the Inspectorate whenever a reportable event takes place. Specifically, the reporting of events in the NPPs is laid down in the Inspectorate's Guideline (R-15 'Reporting Guideline Concerning The Operation of Nuclear Power Plants'). In this Guideline, reportable events are defined and the criteria for assessing the degree of importance or impact on nuclear safety are given. In this manner, a standard and consistent approach to data collection is

  14. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    Science.gov (United States)

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2017-03-17

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. MotifMark: Finding Regulatory Motifs in DNA Sequences

    OpenAIRE

    Hassanzadeh, Hamid Reza; Kolhe, Pushkar; Isbell, Charles L.; Wang, May D.

    2017-01-01

    The interaction between proteins and DNA is a key driving force in a significant number of biological processes such as transcriptional regulation, repair, recombination, splicing, and DNA modification. The identification of DNA-binding sites and the specificity of target proteins in binding to these regions are two important steps in understanding the mechanisms of these biological activities. A number of high-throughput technologies have recently emerged that try to quantify the affinity be...

  16. Large-scale discovery of promoter motifs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas A Down

    2007-01-01

    Full Text Available A key step in understanding gene regulation is to identify the repertoire of transcription factor binding motifs (TFBMs that form the building blocks of promoters and other regulatory elements. Identifying these experimentally is very laborious, and the number of TFBMs discovered remains relatively small, especially when compared with the hundreds of transcription factor genes predicted in metazoan genomes. We have used a recently developed statistical motif discovery approach, NestedMICA, to detect candidate TFBMs from a large set of Drosophila melanogaster promoter regions. Of the 120 motifs inferred in our initial analysis, 25 were statistically significant matches to previously reported motifs, while 87 appeared to be novel. Analysis of sequence conservation and motif positioning suggested that the great majority of these discovered motifs are predictive of functional elements in the genome. Many motifs showed associations with specific patterns of gene expression in the D. melanogaster embryo, and we were able to obtain confident annotation of expression patterns for 25 of our motifs, including eight of the novel motifs. The motifs are available through Tiffin, a new database of DNA sequence motifs. We have discovered many new motifs that are overrepresented in D. melanogaster promoter regions, and offer several independent lines of evidence that these are novel TFBMs. Our motif dictionary provides a solid foundation for further investigation of regulatory elements in Drosophila, and demonstrates techniques that should be applicable in other species. We suggest that further improvements in computational motif discovery should narrow the gap between the set of known motifs and the total number of transcription factors in metazoan genomes.

  17. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53.

    Directory of Open Access Journals (Sweden)

    Kristina Kirschner

    2015-03-01

    Full Text Available The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage and chronically activated (in senescent or pro-apoptotic conditions p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.

  18. Implementation of a laboratory information management system for environmental regulatory analyses

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W.A.; Aiken, H.B.; Spatz, T.L.; Miles, W.F.; Griffin, J.C.

    1993-09-07

    The Savannah River Technology Center created a second instance of its ORACLE based PEN LIMS to support site Environmental Restoration projects. The first instance of the database had been optimized for R&D support and did not implement rigorous sample tracking, verification, and holding times needed to support regulatory commitments. Much of the R&D instance was transferable such as the work control functions for backlog reports, work assignment sheets, and hazard communication support. A major enhancement of the regulatory LIMS was the addition of features to support a {open_quotes}standardized{close_quotes} electronic data format for environmental data reporting. The electronic format, called {open_quotes}AN92{close_quotes}, was developed by the site environmental monitoring organization and applies to both onsite and offsite environmental analytical contracts. This format incorporates EPA CLP data validation codes as well as details holding time and analytical result reporting requirements. The authors support this format by using special SQL queries to the database. The data is then automatically transferred to the environmental databases for trending and geological mapping.

  19. Low-rank coal study. Volume 4. Regulatory, environmental, and market analyses

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The regulatory, environmental, and market constraints to development of US low-rank coal resources are analyzed. Government-imposed environmental and regulatory requirements are among the most important factors that determine the markets for low-rank coal and the technology used in the extraction, delivery, and utilization systems. Both state and federal controls are examined, in light of available data on impacts and effluents associated with major low-rank coal development efforts. The market analysis examines both the penetration of existing markets by low-rank coal and the evolution of potential markets in the future. The electric utility industry consumes about 99 percent of the total low-rank coal production. This use in utility boilers rose dramatically in the 1970's and is expected to continue to grow rapidly. In the late 1980's and 1990's, industrial direct use of low-rank coal and the production of synthetic fuels are expected to start growing as major new markets.

  20. Extra-regulatory impact tests and analyses of the structural evaluation test unit

    International Nuclear Information System (INIS)

    Ludwigsen, J.S.; Ammerman, D.J.

    1995-01-01

    The structural evaluation test unit is roughly equivalent to a 1/3 scale model of a high level waste rail cask. The test unit was designed to just meet the requirements of NRC Regulatory Guide 7.6 when subjected to a 9 m (30 ft) free drop resulting in an impact velocity of 13.4 m/s (30 mph) onto an unyielding target in the end-on orientation. The test unit was then subjected to impacts with higher velocities to determine the amount of built-in conservatism in this design approach. Test impacts of 13.4, 20.1 and 26.8 m/s (30, 45, and 60 mph) were performed. This paper will describe the design, testing, and comparison of measured strains and deformations to the equivalent analytical predictions

  1. CompariMotif: quick and easy comparisons of sequence motifs.

    Science.gov (United States)

    Edwards, Richard J; Davey, Norman E; Shields, Denis C

    2008-05-15

    CompariMotif is a novel tool for making motif-motif comparisons, identifying and describing similarities between regular expression motifs. CompariMotif can identify a number of different relationships between motifs, including exact matches, variants of degenerate motifs and complex overlapping motifs. Motif relationships are scored using shared information content, allowing the best matches to be easily identified in large comparisons. Many input and search options are available, enabling a list of motifs to be compared to itself (to identify recurring motifs) or to datasets of known motifs. CompariMotif can be run online at http://bioware.ucd.ie/ and is freely available for academic use as a set of open source Python modules under a GNU General Public License from http://bioinformatics.ucd.ie/shields/software/comparimotif/

  2. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer.

    Science.gov (United States)

    Du, Zhou; Sun, Tong; Hacisuleyman, Ezgi; Fei, Teng; Wang, Xiaodong; Brown, Myles; Rinn, John L; Lee, Mary Gwo-Shu; Chen, Yiwen; Kantoff, Philip W; Liu, X Shirley

    2016-03-15

    Mounting evidence suggests that long noncoding RNAs (lncRNAs) can function as microRNA sponges and compete for microRNA binding to protein-coding transcripts. However, the prevalence, functional significance and targets of lncRNA-mediated sponge regulation of cancer are mostly unknown. Here we identify a lncRNA-mediated sponge regulatory network that affects the expression of many protein-coding prostate cancer driver genes, by integrating analysis of sequence features and gene expression profiles of both lncRNAs and protein-coding genes in tumours. We confirm the tumour-suppressive function of two lncRNAs (TUG1 and CTB-89H12.4) and their regulation of PTEN expression in prostate cancer. Surprisingly, one of the two lncRNAs, TUG1, was previously known for its function in polycomb repressive complex 2 (PRC2)-mediated transcriptional regulation, suggesting its sub-cellular localization-dependent function. Our findings not only suggest an important role of lncRNA-mediated sponge regulation in cancer, but also underscore the critical influence of cytoplasmic localization on the efficacy of a sponge lncRNA.

  3. Impact of hepatitis C virus polymorphisms on direct-acting antiviral treatment efficacy: Regulatory analyses and perspectives.

    Science.gov (United States)

    Harrington, Patrick R; Komatsu, Takashi E; Deming, Damon J; Donaldson, Eric F; O'Rear, Julian J; Naeger, Lisa K

    2018-06-01

    Several highly effective, interferon-free, direct-acting antiviral (DAA)-based regimens are available for the treatment of chronic hepatitis C virus (HCV) infection. Despite impressive efficacy overall, a small proportion of patients in registrational trials experienced treatment failure, which in some cases was associated with the detection of HCV resistance-associated substitutions (RASs) at baseline. In this article, we describe methods and key findings from independent regulatory analyses investigating the impact of baseline nonstructural (NS) 3 Q80K and NS5A RASs on the efficacy of current United States Food and Drug Administration (FDA)-approved regimens for patients with HCV genotype (GT) 1 or GT3 infection. These analyses focused on clinical trials that included patients who were previously naïve to the DAA class(es) in their investigational regimen and characterized the impact of baseline RASs that were enriched in the viral population as natural or transmitted polymorphisms (i.e., not drug-selected RASs). We used a consistent approach to optimize comparability of results across different DAA regimens and patient populations, including the use of a 15% sensitivity cutoff for next-generation sequencing results and standardized lists of NS5A RASs. These analyses confirmed that detection of NS3 Q80K or NS5A baseline RASs was associated with reduced treatment efficacy for multiple DAA regimens, but their impact was often minimized with the use of an intensified treatment regimen, such as a longer treatment duration and/or addition of ribavirin. We discuss the drug resistance-related considerations that contributed to pretreatment resistance testing and treatment recommendations in drug labeling for FDA-approved DAA regimens. Independent regulatory analyses confirmed that baseline HCV RASs can reduce the efficacy of certain DAA-based regimens in selected patient groups. However, highly effective treatment options are available for patients with or without

  4. Deciphering functional glycosaminoglycan motifs in development.

    Science.gov (United States)

    Townley, Robert A; Bülow, Hannes E

    2018-03-23

    Glycosaminoglycans (GAGs) such as heparan sulfate, chondroitin/dermatan sulfate, and keratan sulfate are linear glycans, which when attached to protein backbones form proteoglycans. GAGs are essential components of the extracellular space in metazoans. Extensive modifications of the glycans such as sulfation, deacetylation and epimerization create structural GAG motifs. These motifs regulate protein-protein interactions and are thereby repsonsible for many of the essential functions of GAGs. This review focusses on recent genetic approaches to characterize GAG motifs and their function in defined signaling pathways during development. We discuss a coding approach for GAGs that would enable computational analyses of GAG sequences such as alignments and the computation of position weight matrices to describe GAG motifs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The identification of functional motifs in temporal gene expression analysis

    Directory of Open Access Journals (Sweden)

    Michael G. Surette

    2005-01-01

    Full Text Available The identification of transcription factor binding sites is essential to the understanding of the regulation of gene expression and the reconstruction of genetic regulatory networks. The in silico identification of cis-regulatory motifs is challenging due to sequence variability and lack of sufficient data to generate consensus motifs that are of quantitative or even qualitative predictive value. To determine functional motifs in gene expression, we propose a strategy to adopt false discovery rate (FDR and estimate motif effects to evaluate combinatorial analysis of motif candidates and temporal gene expression data. The method decreases the number of predicted motifs, which can then be confirmed by genetic analysis. To assess the method we used simulated motif/expression data to evaluate parameters. We applied this approach to experimental data for a group of iron responsive genes in Salmonella typhimurium 14028S. The method identified known and potentially new ferric-uptake regulator (Fur binding sites. In addition, we identified uncharacterized functional motif candidates that correlated with specific patterns of expression. A SAS code for the simulation and analysis gene expression data is available from the first author upon request.

  6. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    . Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif....... A special viewing feature, MHC fight, allows for display of the specificity of two different MHC molecules side by side. We show how the web server can be used to discover and display surprising similarities as well as differences between MHC molecules within and between different species. The MHC motif...

  7. Novel essential residues of Hda for interaction with DnaA in the regulatory inactivation of DnaA: unique roles for Hda AAA Box VI and VII motifs.

    Science.gov (United States)

    Nakamura, Kenta; Katayama, Tsutomu

    2010-04-01

    Escherichia coli ATP-DnaA initiates chromosomal replication. For preventing extra-initiations, a complex of ADP-Hda and the DNA-loaded replicase clamp promotes DnaA-ATP hydrolysis, yielding inactive ADP-DnaA. However, the Hda-DnaA interaction mode remains unclear except that the Hda Box VII Arg finger (Arg-153) and DnaA sensor II Arg-334 within each AAA(+) domain are crucial for the DnaA-ATP hydrolysis. Here, we demonstrate that direct and functional interaction of ADP-Hda with DnaA requires the Hda residues Ser-152, Phe-118 and Asn-122 as well as Hda Arg-153 and DnaA Arg-334. Structural analyses suggest intermolecular interactions between Hda Ser-152 and DnaA Arg-334 and between Hda Phe-118 and the DnaA Walker B motif region, in addition to an intramolecular interaction between Hda Asn-122 and Arg-153. These interactions likely sustain a specific association of ADP-Hda and DnaA, promoting DnaA-ATP hydrolysis. Consistently, ATP-DnaA and ADP-DnaA interact with the ADP-Hda-DNA-clamp complex with similar affinities. Hda Phe-118 and Asn-122 are contained in the Box VI region, and their hydrophobic and electrostatic features are basically conserved in the corresponding residues of other AAA(+) proteins, suggesting a conserved role for Box VI. These findings indicate novel interaction mechanisms for Hda-DnaA as well as a potentially fundamental mechanism in AAA(+) protein interactions.

  8. [Personal motif in art].

    Science.gov (United States)

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  9. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions.

    Science.gov (United States)

    Chemes, Lucía Beatriz; de Prat-Gay, Gonzalo; Sánchez, Ignacio Enrique

    2015-06-01

    Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. POWRS: position-sensitive motif discovery.

    Directory of Open Access Journals (Sweden)

    Ian W Davis

    Full Text Available Transcription factors and the short, often degenerate DNA sequences they recognize are central regulators of gene expression, but their regulatory code is challenging to dissect experimentally. Thus, computational approaches have long been used to identify putative regulatory elements from the patterns in promoter sequences. Here we present a new algorithm "POWRS" (POsition-sensitive WoRd Set for identifying regulatory sequence motifs, specifically developed to address two common shortcomings of existing algorithms. First, POWRS uses the position-specific enrichment of regulatory elements near transcription start sites to significantly increase sensitivity, while providing new information about the preferred localization of those elements. Second, POWRS forgoes position weight matrices for a discrete motif representation that appears more resistant to over-generalization. We apply this algorithm to discover sequences related to constitutive, high-level gene expression in the model plant Arabidopsis thaliana, and then experimentally validate the importance of those elements by systematically mutating two endogenous promoters and measuring the effect on gene expression levels. This provides a foundation for future efforts to rationally engineer gene expression in plants, a problem of great importance in developing biotech crop varieties.BSD-licensed Python code at http://grassrootsbio.com/papers/powrs/.

  11. I-motif DNA structures are formed in the nuclei of human cells

    Science.gov (United States)

    Zeraati, Mahdi; Langley, David B.; Schofield, Peter; Moye, Aaron L.; Rouet, Romain; Hughes, William E.; Bryan, Tracy M.; Dinger, Marcel E.; Christ, Daniel

    2018-06-01

    Human genome function is underpinned by the primary storage of genetic information in canonical B-form DNA, with a second layer of DNA structure providing regulatory control. I-motif structures are thought to form in cytosine-rich regions of the genome and to have regulatory functions; however, in vivo evidence for the existence of such structures has so far remained elusive. Here we report the generation and characterization of an antibody fragment (iMab) that recognizes i-motif structures with high selectivity and affinity, enabling the detection of i-motifs in the nuclei of human cells. We demonstrate that the in vivo formation of such structures is cell-cycle and pH dependent. Furthermore, we provide evidence that i-motif structures are formed in regulatory regions of the human genome, including promoters and telomeric regions. Our results support the notion that i-motif structures provide key regulatory roles in the genome.

  12. The limits of de novo DNA motif discovery.

    Directory of Open Access Journals (Sweden)

    David Simcha

    Full Text Available A major challenge in molecular biology is reverse-engineering the cis-regulatory logic that plays a major role in the control of gene expression. This program includes searching through DNA sequences to identify "motifs" that serve as the binding sites for transcription factors or, more generally, are predictive of gene expression across cellular conditions. Several approaches have been proposed for de novo motif discovery-searching sequences without prior knowledge of binding sites or nucleotide patterns. However, unbiased validation is not straightforward. We consider two approaches to unbiased validation of discovered motifs: testing the statistical significance of a motif using a DNA "background" sequence model to represent the null hypothesis and measuring performance in predicting membership in gene clusters. We demonstrate that the background models typically used are "too null," resulting in overly optimistic assessments of significance, and argue that performance in predicting TF binding or expression patterns from DNA motifs should be assessed by held-out data, as in predictive learning. Applying this criterion to common motif discovery methods resulted in universally poor performance, although there is a marked improvement when motifs are statistically significant against real background sequences. Moreover, on synthetic data where "ground truth" is known, discriminative performance of all algorithms is far below the theoretical upper bound, with pronounced "over-fitting" in training. A key conclusion from this work is that the failure of de novo discovery approaches to accurately identify motifs is basically due to statistical intractability resulting from the fixed size of co-regulated gene clusters, and thus such failures do not necessarily provide evidence that unfound motifs are not active biologically. Consequently, the use of prior knowledge to enhance motif discovery is not just advantageous but necessary. An implementation of

  13. DNA motif alignment by evolving a population of Markov chains.

    Science.gov (United States)

    Bi, Chengpeng

    2009-01-30

    Deciphering cis-regulatory elements or de novo motif-finding in genomes still remains elusive although much algorithmic effort has been expended. The Markov chain Monte Carlo (MCMC) method such as Gibbs motif samplers has been widely employed to solve the de novo motif-finding problem through sequence local alignment. Nonetheless, the MCMC-based motif samplers still suffer from local maxima like EM. Therefore, as a prerequisite for finding good local alignments, these motif algorithms are often independently run a multitude of times, but without information exchange between different chains. Hence it would be worth a new algorithm design enabling such information exchange. This paper presents a novel motif-finding algorithm by evolving a population of Markov chains with information exchange (PMC), each of which is initialized as a random alignment and run by the Metropolis-Hastings sampler (MHS). It is progressively updated through a series of local alignments stochastically sampled. Explicitly, the PMC motif algorithm performs stochastic sampling as specified by a population-based proposal distribution rather than individual ones, and adaptively evolves the population as a whole towards a global maximum. The alignment information exchange is accomplished by taking advantage of the pooled motif site distributions. A distinct method for running multiple independent Markov chains (IMC) without information exchange, or dubbed as the IMC motif algorithm, is also devised to compare with its PMC counterpart. Experimental studies demonstrate that the performance could be improved if pooled information were used to run a population of motif samplers. The new PMC algorithm was able to improve the convergence and outperformed other popular algorithms tested using simulated and biological motif sequences.

  14. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  15. Structural modelling and phylogenetic analyses of PgeIF4A2 (Eukaryotic translation initiation factor) from Pennisetum glaucum reveal signature motifs with a role in stress tolerance and development.

    Science.gov (United States)

    Agarwal, Aakrati; Mudgil, Yashwanti; Pandey, Saurabh; Fartyal, Dhirendra; Reddy, Malireddy K

    2016-01-01

    Eukaryotic translation initiation factor 4A (eIF4A) is an indispensable component of the translation machinery and also play a role in developmental processes and stress alleviation in plants and animals. Different eIF4A isoforms are present in the cytosol of the cell, namely, eIF4A1, eIF4A2, and eIF4A3 and their expression is tightly regulated in cap-dependent translation. We revealed the structural model of PgeIF4A2 protein using the crystal structure of Homo sapiens eIF4A3 (PDB ID: 2J0S) as template by Modeller 9.12. The resultant PgeIF4A2 model structure was refined by PROCHECK, ProSA, Verify3D and RMSD that showed the model structure is reliable with 77 % amino acid sequence identity with template. Investigation revealed two conserved signatures for ATP-dependent RNA Helicase DEAD-box conserved site (VLDEADEML) and RNA helicase DEAD-box type, Q-motif in sheet-turn-helix and α-helical region respectively. All these conserved motifs are responsible for response during developmental stages and stress tolerance in plants.

  16. Annotating RNA motifs in sequences and alignments.

    Science.gov (United States)

    Gardner, Paul P; Eldai, Hisham

    2015-01-01

    RNA performs a diverse array of important functions across all cellular life. These functions include important roles in translation, building translational machinery and maturing messenger RNA. More recent discoveries include the miRNAs and bacterial sRNAs that regulate gene expression, the thermosensors, riboswitches and other cis-regulatory elements that help prokaryotes sense their environment and eukaryotic piRNAs that suppress transposition. However, there can be a long period between the initial discovery of a RNA and determining its function. We present a bioinformatic approach to characterize RNA motifs, which are critical components of many RNA structure-function relationships. These motifs can, in some instances, provide researchers with functional hypotheses for uncharacterized RNAs. Moreover, we introduce a new profile-based database of RNA motifs--RMfam--and illustrate some applications for investigating the evolution and functional characterization of RNA. All the data and scripts associated with this work are available from: https://github.com/ppgardne/RMfam. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. A speedup technique for (l, d-motif finding algorithms

    Directory of Open Access Journals (Sweden)

    Dinh Hieu

    2011-03-01

    Full Text Available Abstract Background The discovery of patterns in DNA, RNA, and protein sequences has led to the solution of many vital biological problems. For instance, the identification of patterns in nucleic acid sequences has resulted in the determination of open reading frames, identification of promoter elements of genes, identification of intron/exon splicing sites, identification of SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have proven to be extremely helpful in domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, etc. Motifs are important patterns that are helpful in finding transcriptional regulatory elements, transcription factor binding sites, functional genomics, drug design, etc. As a result, numerous papers have been written to solve the motif search problem. Results Three versions of the motif search problem have been proposed in the literature: Simple Motif Search (SMS, (l, d-motif search (or Planted Motif Search (PMS, and Edit-distance-based Motif Search (EMS. In this paper we focus on PMS. Two kinds of algorithms can be found in the literature for solving the PMS problem: exact and approximate. An exact algorithm identifies the motifs always and an approximate algorithm may fail to identify some or all of the motifs. The exact version of PMS problem has been shown to be NP-hard. Exact algorithms proposed in the literature for PMS take time that is exponential in some of the underlying parameters. In this paper we propose a generic technique that can be used to speedup PMS algorithms. Conclusions We present a speedup technique that can be used on any PMS algorithm. We have tested our speedup technique on a number of algorithms. These experimental results show that our speedup technique is indeed very

  18. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin

    2015-01-01

    Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.

  19. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells

    KAUST Repository

    Wong, Ka-Chun

    2015-09-27

    Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.

  20. The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress.

    Science.gov (United States)

    Hu, Wei; Yan, Yan; Shi, Haitao; Liu, Juhua; Miao, Hongxia; Tie, Weiwei; Ding, Zehong; Ding, XuPo; Wu, Chunlai; Liu, Yang; Wang, Jiashui; Xu, Biyu; Jin, Zhiqiang

    2017-08-29

    Abscisic acid (ABA) signaling plays a crucial role in developmental and environmental adaptation processes of plants. However, the PYL-PP2C-SnRK2 families that function as the core components of ABA signaling are not well understood in banana. In the present study, 24 PYL, 87 PP2C, and 11 SnRK2 genes were identified from banana, which was further supported by evolutionary relationships, conserved motif and gene structure analyses. The comprehensive transcriptomic analyses showed that banana PYL-PP2C-SnRK2 genes are involved in tissue development, fruit development and ripening, and response to abiotic stress in two cultivated varieties. Moreover, comparative expression analyses of PYL-PP2C-SnRK2 genes between BaXi Jiao (BX) and Fen Jiao (FJ) revealed that PYL-PP2C-SnRK2-mediated ABA signaling might positively regulate banana fruit ripening and tolerance to cold, salt, and osmotic stresses. Finally, interaction networks and co-expression assays demonstrated that the core components of ABA signaling were more active in FJ than in BX in response to abiotic stress, further supporting the crucial role of the genes in tolerance to abiotic stress in banana. This study provides new insights into the complicated transcriptional control of PYL-PP2C-SnRK2 genes, improves the understanding of PYL-PP2C-SnRK2-mediated ABA signaling in the regulation of fruit development, ripening, and response to abiotic stress, and identifies some candidate genes for genetic improvement of banana.

  1. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins.

    Science.gov (United States)

    Wang, Ying; Ding, Jun; Daniell, Henry; Hu, Haiyan; Li, Xiaoman

    2012-09-01

    Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes.

  2. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  3. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  4. Improved bolt models for use in global analyses of storage and transportation casks subject to extra-regulatory loading

    International Nuclear Information System (INIS)

    Kalan, R.J.; Ammerman, D.J.; Gwinn, K.W.

    2004-01-01

    Transportation and storage casks subjected to extra-regulatory loadings may experience large stresses and strains in key structural components. One of the areas susceptible to these large stresses and strains is the bolted joint retaining any closure lid on an overpack or a canister. Modeling this joint accurately is necessary in evaluating the performance of the cask under extreme loading conditions. However, developing detailed models of a bolt in a large cask finite element model can dramatically increase the computational time, making the analysis prohibitive. Sandia National Laboratories used a series of calibrated, detailed, bolt finite element sub-models to develop a modified-beam bolt-model in order to examine the response of a storage cask and closure to severe accident loadings. The initial sub-models were calibrated for tension and shear loading using test data for large diameter bolts. Next, using the calibrated test model, sub-models of the actual joints were developed to obtain force-displacement curves and failure points for the bolted joint. These functions were used to develop a modified beam element representation of the bolted joint, which could be incorporated into the larger cask finite element model. This paper will address the modeling and assumptions used for the development of the initial calibration models, the joint sub-models and the modified beam model

  5. Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (Treg)-like cells

    International Nuclear Information System (INIS)

    Kim, Joon-Young; Kim, Han-Jong; Hurt, Elaine M.; Chen, Xin; Howard, O.M. Zack; Farrar, William L.

    2007-01-01

    FOXP3, a forkhead transcription factor is essential for the development and function of CD4 + CD25 + regulatory T cells (Tregs). In contrast to conversion of murine naive T cells to Tregs by transduction of Foxp3, it is controversial whether ectopic expression of FOXP3 in human CD4 + T cells is sufficient for acquisition of suppressive activity. Here, we show that retroviral transduction of FOXP3 induces a Treg phenotype in human leukemic CD4 + Jurkat-T cells, evidenced by increased expression of Treg-associated cell surface markers as well as inhibition of cytokine production. Furthermore, FOXP3-transduced Jurkat-T cells suppress the proliferation of human CD4 + CD25 - T cells. Additionally, DNA microarray analysis identifies Treg-related genes regulated by FOXP3. Our study demonstrates that enforced expression of FOXP3 confers Treg-like properties on Jurkat-T cells, which can be a convenient and efficient Treg-like cell model for further study to identify Treg cell surface markers and target genes regulated by FOXP3

  6. A tandem sequence motif acts as a distance-dependent enhancer in a set of genes involved in translation by binding the proteins NonO and SFPQ

    Directory of Open Access Journals (Sweden)

    Roepcke Stefan

    2011-12-01

    Full Text Available Abstract Background Bioinformatic analyses of expression control sequences in promoters of co-expressed or functionally related genes enable the discovery of common regulatory sequence motifs that might be involved in co-ordinated gene expression. By studying promoter sequences of the human ribosomal protein genes we recently identified a novel highly specific Localized Tandem Sequence Motif (LTSM. In this work we sought to identify additional genes and LTSM-binding proteins to elucidate potential regulatory mechanisms. Results Genome-wide analyses allowed finding a considerable number of additional LTSM-positive genes, the products of which are involved in translation, among them, translation initiation and elongation factors, and 5S rRNA. Electromobility shift assays then showed specific signals demonstrating the binding of protein complexes to LTSM in ribosomal protein gene promoters. Pull-down assays with LTSM-containing oligonucleotides and subsequent mass spectrometric analysis identified the related multifunctional nucleotide binding proteins NonO and SFPQ in the binding complex. Functional characterization then revealed that LTSM enhances the transcriptional activity of the promoters in dependency of the distance from the transcription start site. Conclusions Our data demonstrate the power of bioinformatic analyses for the identification of biologically relevant sequence motifs. LTSM and the here found LTSM-binding proteins NonO and SFPQ were discovered through a synergistic combination of bioinformatic and biochemical methods and are regulators of the expression of a set of genes of the translational apparatus in a distance-dependent manner.

  7. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  8. Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B

    Science.gov (United States)

    2013-01-01

    Background Canine osteosarcoma is clinically nearly identical to the human disease, but is common and highly heritable, making genetic dissection feasible. Results Through genome-wide association analyses in three breeds (greyhounds, Rottweilers, and Irish wolfhounds), we identify 33 inherited risk loci explaining 55% to 85% of phenotype variance in each breed. The greyhound locus exhibiting the strongest association, located 150 kilobases upstream of the genes CDKN2A/B, is also the most rearranged locus in canine osteosarcoma tumors. The top germline candidate variant is found at a >90% frequency in Rottweilers and Irish wolfhounds, and alters an evolutionarily constrained element that we show has strong enhancer activity in human osteosarcoma cells. In all three breeds, osteosarcoma-associated loci and regions of reduced heterozygosity are enriched for genes in pathways connected to bone differentiation and growth. Several pathways, including one of genes regulated by miR124, are also enriched for somatic copy-number changes in tumors. Conclusions Mapping a complex cancer in multiple dog breeds reveals a polygenic spectrum of germline risk factors pointing to specific pathways as drivers of disease. PMID:24330828

  9. Regulatory complexity revealed by integrated cytological and RNA-seq analyses of meiotic substages in mouse spermatocytes.

    Science.gov (United States)

    Ball, Robyn L; Fujiwara, Yasuhiro; Sun, Fengyun; Hu, Jianjun; Hibbs, Matthew A; Handel, Mary Ann; Carter, Gregory W

    2016-08-12

    The continuous and non-synchronous nature of postnatal male germ-cell development has impeded stage-specific resolution of molecular events of mammalian meiotic prophase in the testis. Here the juvenile onset of spermatogenesis in mice is analyzed by combining cytological and transcriptomic data in a novel computational analysis that allows decomposition of the transcriptional programs of spermatogonia and meiotic prophase substages. Germ cells from testes of individual mice were obtained at two-day intervals from 8 to 18 days post-partum (dpp), prepared as surface-spread chromatin and immunolabeled for meiotic stage-specific protein markers (STRA8, SYCP3, phosphorylated H2AFX, and HISTH1T). Eight stages were discriminated cytologically by combinatorial antibody labeling, and RNA-seq was performed on the same samples. Independent principal component analyses of cytological and transcriptomic data yielded similar patterns for both data types, providing strong evidence for substage-specific gene expression signatures. A novel permutation-based maximum covariance analysis (PMCA) was developed to map co-expressed transcripts to one or more of the eight meiotic prophase substages, thereby linking distinct molecular programs to cytologically defined cell states. Expression of meiosis-specific genes is not substage-limited, suggesting regulation of substage transitions at other levels. This integrated analysis provides a general method for resolving complex cell populations. Here it revealed not only features of meiotic substage-specific gene expression, but also a network of substage-specific transcription factors and relationships to potential target genes.

  10. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    Directory of Open Access Journals (Sweden)

    Lynch Michael

    2010-05-01

    Full Text Available Abstract Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1 shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2 are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3 reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  11. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium.

    Science.gov (United States)

    Catania, Francesco; Lynch, Michael

    2010-05-04

    In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  12. PISMA: A Visual Representation of Motif Distribution in DNA Sequences

    Directory of Open Access Journals (Sweden)

    Rogelio Alcántara-Silva

    2017-03-01

    Full Text Available Background: Because the graphical presentation and analysis of motif distribution can provide insights for experimental hypothesis, PISMA aims at identifying motifs on DNA sequences, counting and showing them graphically. The motif length ranges from 2 to 10 bases, and the DNA sequences range up to 10 kb. The motif distribution is shown as a bar-code–like, as a gene-map–like, and as a transcript scheme. Results: We obtained graphical schemes of the CpG site distribution from 91 human papillomavirus genomes. Also, we present 2 analyses: one of DNA motifs associated with either methylation-resistant or methylation-sensitive CpG islands and another analysis of motifs associated with exosome RNA secretion. Availability and Implementation: PISMA is developed in Java; it is executable in any type of hardware and in diverse operating systems. PISMA is freely available to noncommercial users. The English version and the User Manual are provided in Supplementary Files 1 and 2, and a Spanish version is available at www.biomedicas.unam.mx/wp-content/software/pisma.zip and www.biomedicas.unam.mx/wp-content/pdf/manual/pisma.pdf .

  13. Selection of a discount rate for use in NRC regulatory analyses and application of discount rates to future averted health effects

    International Nuclear Information System (INIS)

    Paananen, O.H.; Hendrickson, P.L.

    1993-01-01

    The principal objective of this report is to provide background information and recommendations on the use of discount rates in the regulatory analysis process. The report focuses on two issues selecting the appropriate discount rate or rates to use when conducting a regulatory analysis, and applying the selected discount rate to future health-related benefits estimated to result from alternative regulatory actions

  14. Motif signatures of transcribed enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios

    2017-09-14

    In mammalian cells, transcribed enhancers (TrEn) play important roles in the initiation of gene expression and maintenance of gene expression levels in spatiotemporal manner. One of the most challenging questions in biology today is how the genomic characteristics of enhancers relate to enhancer activities. This is particularly critical, as several recent studies have linked enhancer sequence motifs to specific functional roles. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers genomic code in a more systematic way. To address this problem, we developed a novel computational method, TELS, aimed at identifying predictive cell type/tissue specific motif signatures. We used TELS to compile a comprehensive catalog of motif signatures for all known TrEn identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that distinct cell type/tissue specific motif signatures characterize TrEn. These signatures allow discriminating successfully a) TrEn from random controls, proxy of non-enhancer activity, and b) cell type/tissue specific TrEn from enhancers expressed and transcribed in different cell types/tissues. TELS codes and datasets are publicly available at http://www.cbrc.kaust.edu.sa/TELS.

  15. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.

    Science.gov (United States)

    Ozaki, Haruka; Iwasaki, Wataru

    2016-08-01

    As a key mechanism of gene regulation, transcription factors (TFs) bind to DNA by recognizing specific short sequence patterns that are called DNA-binding motifs. A single TF can accept ambiguity within its DNA-binding motifs, which comprise both canonical (typical) and non-canonical motifs. Clarification of such DNA-binding motif ambiguity is crucial for revealing gene regulatory networks and evaluating mutations in cis-regulatory elements. Although chromatin immunoprecipitation sequencing (ChIP-seq) now provides abundant data on the genomic sequences to which a given TF binds, existing motif discovery methods are unable to directly answer whether a given TF can bind to a specific DNA-binding motif. Here, we report a method for clarifying the DNA-binding motif ambiguity, MOCCS. Given ChIP-Seq data of any TF, MOCCS comprehensively analyzes and describes every k-mer to which that TF binds. Analysis of simulated datasets revealed that MOCCS is applicable to various ChIP-Seq datasets, requiring only a few minutes per dataset. Application to the ENCODE ChIP-Seq datasets proved that MOCCS directly evaluates whether a given TF binds to each DNA-binding motif, even if known position weight matrix models do not provide sufficient information on DNA-binding motif ambiguity. Furthermore, users are not required to provide numerous parameters or background genomic sequence models that are typically unavailable. MOCCS is implemented in Perl and R and is freely available via https://github.com/yuifu/moccs. By complementing existing motif-discovery software, MOCCS will contribute to the basic understanding of how the genome controls diverse cellular processes via DNA-protein interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination.

    Science.gov (United States)

    Qin, Weihua; Wolf, Patricia; Liu, Nan; Link, Stephanie; Smets, Martha; La Mastra, Federica; Forné, Ignasi; Pichler, Garwin; Hörl, David; Fellinger, Karin; Spada, Fabio; Bonapace, Ian Marc; Imhof, Axel; Harz, Hartmann; Leonhardt, Heinrich

    2015-08-01

    DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase activity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-deficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and illustrate the multifaceted interplay between DNA and histone modifications. The identification and functional characterization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquitination might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance.

  17. Transduction motif analysis of gastric cancer based on a human signaling network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Li, D.Z.; Jiang, C.S.; Wang, W. [Fuzhou General Hospital of Nanjing Command, Department of Gastroenterology, Fuzhou, China, Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, Fuzhou (China)

    2014-04-04

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  18. Enrichment of Circular Code Motifs in the Genes of the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Christian J. Michel

    2017-12-01

    Full Text Available A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since X is a maximal C 3 self-complementary trinucleotide circular code. Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the original (reading frame. Since 1996, the theory of circular codes in genes has mainly been developed by analysing the properties of the 20 trinucleotides of X , using combinatorics and statistical approaches. For the first time, we test this theory by analysing the X motifs, i.e., motifs from the circular code X , in the complete genome of the yeast Saccharomyces cerevisiae. Several properties of X motifs are identified by basic statistics (at the frequency level, and evaluated by comparison to R motifs, i.e., random motifs generated from 30 different random codes R . We first show that the frequency of X motifs is significantly greater than that of R motifs in the genome of S. cerevisiae. We then verify that no significant difference is observed between the frequencies of X and R motifs in the non-coding regions of S. cerevisiae, but that the occurrence number of X motifs is significantly higher than R motifs in the genes (protein-coding regions. This property is true for all cardinalities of X motifs (from 4 to 20 and for all 16 chromosomes. We further investigate the distribution of X motifs in the three frames of S. cerevisiae genes and show that they occur more frequently in the reading frame, regardless of their cardinality or their length. Finally, the ratio of X genes, i.e., genes with at least one X motif, to non- X genes, in the set of verified genes is significantly different to that observed in the set of putative or dubious genes with no experimental evidence. These results, taken together

  19. Enrichment of Circular Code Motifs in the Genes of the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Michel, Christian J; Ngoune, Viviane Nguefack; Poch, Olivier; Ripp, Raymond; Thompson, Julie D

    2017-12-03

    A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since X is a maximal C3 self-complementary trinucleotide circular code. Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the original (reading) frame. Since 1996, the theory of circular codes in genes has mainly been developed by analysing the properties of the 20 trinucleotides of X, using combinatorics and statistical approaches. For the first time, we test this theory by analysing the X motifs, i.e., motifs from the circular code X, in the complete genome of the yeast Saccharomyces cerevisiae . Several properties of X motifs are identified by basic statistics (at the frequency level), and evaluated by comparison to R motifs, i.e., random motifs generated from 30 different random codes R. We first show that the frequency of X motifs is significantly greater than that of R motifs in the genome of S. cerevisiae . We then verify that no significant difference is observed between the frequencies of X and R motifs in the non-coding regions of S. cerevisiae , but that the occurrence number of X motifs is significantly higher than R motifs in the genes (protein-coding regions). This property is true for all cardinalities of X motifs (from 4 to 20) and for all 16 chromosomes. We further investigate the distribution of X motifs in the three frames of S. cerevisiae genes and show that they occur more frequently in the reading frame, regardless of their cardinality or their length. Finally, the ratio of X genes, i.e., genes with at least one X motif, to non-X genes, in the set of verified genes is significantly different to that observed in the set of putative or dubious genes with no experimental evidence. These results, taken together, represent the first

  20. Kopi dan Kakao dalam Kreasi Motif Batik Khas Jember

    Directory of Open Access Journals (Sweden)

    Irfa'ina Rohana Salma

    2015-06-01

    Full Text Available ABSTRAK Batik Jember selama ini identik dengan motif daun tembakau. Visualisasi daun tembakau dalam motif Batik Jember cukup lemah, yaitu kurang berkarakter karena motif yang muncul adalah seperti gambar daun pada umumnya. Oleh karena itu perlu diciptakan desain motif batik khas Jember yang sumber inspirasinya digali dari kekayaan alam lainnya dari Jember yang mempunyai bentuk spesifik dan karakteristik sehingga identitas motif bisa didapatkan dengan lebih kuat. Hasil alam khas Jember tersebut adalah kopi dan kakao. Tujuan penciptaan seni ini adalah untuk menghasilkan motif batik  baru yang mempunyai ciri khas Jember. Metode yang digunakan yaitu pengumpulan data, pengamatan mendalam terhadap objek penciptaan, pengkajian sumber inspirasi, pembuatan desain motif, dan perwujudan menjadi batik. Dari penciptaan seni ini berhasil dikreasikan 6 (enam motif batik yaitu: (1 Motif Uwoh Kopi; (2 Motif Godong Kopi;  (3 Motif Ceplok Kakao; (4 Motif Kakao Raja; (5 Motif Kakao Biru; dan (6 Motif Wiji Mukti. Berdasarkan hasil penilaian “Selera Estetika” diketahui bahwa motif yang paling banyak disukai adalah Motif Uwoh Kopi dan Motif Kakao Raja. Kata kunci: Motif Woh Kopi, Motif Godong Kopi, Motif Ceplok Kakao, Motif Kakao Raja, Motif Kakao Biru, Motif Wiji Mukti ABSTRACTBatik Jember is synonymous with tobacco leaf motif. Tobacco leaf shape is quite weak in the visual appearance characterized as that motif emerges like a picture of leaves in general. Therefore, it is necessary to create a distinctive design motif extracted from other natural resources of Jember that have specific shapes and characteristics that can be obtained as the stronger motif identity. The typical natural resources from Jember are coffee and cocoa. The purpose of the creation of this art is to produce the unique, creative and innovative batik and have specific characteristics of Jember. The method used are data collection, observation of the object, reviewing inspiration sources

  1. Systematic identification of cis-regulatory sequences active in mouse and human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Marica Grskovic

    2007-08-01

    Full Text Available Understanding the transcriptional regulation of pluripotent cells is of fundamental interest and will greatly inform efforts aimed at directing differentiation of embryonic stem (ES cells or reprogramming somatic cells. We first analyzed the transcriptional profiles of mouse ES cells and primordial germ cells and identified genes upregulated in pluripotent cells both in vitro and in vivo. These genes are enriched for roles in transcription, chromatin remodeling, cell cycle, and DNA repair. We developed a novel computational algorithm, CompMoby, which combines analyses of sequences both aligned and non-aligned between different genomes with a probabilistic segmentation model to systematically predict short DNA motifs that regulate gene expression. CompMoby was used to identify conserved overrepresented motifs in genes upregulated in pluripotent cells. We show that the motifs are preferentially active in undifferentiated mouse ES and embryonic germ cells in a sequence-specific manner, and that they can act as enhancers in the context of an endogenous promoter. Importantly, the activity of the motifs is conserved in human ES cells. We further show that the transcription factor NF-Y specifically binds to one of the motifs, is differentially expressed during ES cell differentiation, and is required for ES cell proliferation. This study provides novel insights into the transcriptional regulatory networks of pluripotent cells. Our results suggest that this systematic approach can be broadly applied to understanding transcriptional networks in mammalian species.

  2. DNA regulatory motif selection based on support vector machine ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... ... gene expression values of controls and i x i y. 1 i y = 1 i y = −. 1. 2. { , ,..., , } i i i im i g. x x. x y. = 1. 2. 1. 2. , ,..., ,. , ,..., k i i i im. x x x. x x x x x. = =.

  3. Statistical tests to compare motif count exceptionalities

    Directory of Open Access Journals (Sweden)

    Vandewalle Vincent

    2007-03-01

    Full Text Available Abstract Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use.

  4. XcisClique: analysis of regulatory bicliques

    Directory of Open Access Journals (Sweden)

    Grene Ruth

    2006-04-01

    Full Text Available Abstract Background Modeling of cis-elements or regulatory motifs in promoter (upstream regions of genes is a challenging computational problem. In this work, set of regulatory motifs simultaneously present in the promoters of a set of genes is modeled as a biclique in a suitably defined bipartite graph. A biologically meaningful co-occurrence of multiple cis-elements in a gene promoter is assessed by the combined analysis of genomic and gene expression data. Greater statistical significance is associated with a set of genes that shares a common set of regulatory motifs, while simultaneously exhibiting highly correlated gene expression under given experimental conditions. Methods XcisClique, the system developed in this work, is a comprehensive infrastructure that associates annotated genome and gene expression data, models known cis-elements as regular expressions, identifies maximal bicliques in a bipartite gene-motif graph; and ranks bicliques based on their computed statistical significance. Significance is a function of the probability of occurrence of those motifs in a biclique (a hypergeometric distribution, and on the new sum of absolute values statistic (SAV that uses Spearman correlations of gene expression vectors. SAV is a statistic well-suited for this purpose as described in the discussion. Results XcisClique identifies new motif and gene combinations that might indicate as yet unidentified involvement of sets of genes in biological functions and processes. It currently supports Arabidopsis thaliana and can be adapted to other organisms, assuming the existence of annotated genomic sequences, suitable gene expression data, and identified regulatory motifs. A subset of Xcis Clique functionalities, including the motif visualization component MotifSee, source code, and supplementary material are available at https://bioinformatics.cs.vt.edu/xcisclique/.

  5. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle

    OpenAIRE

    Ferrell, James E.

    2013-01-01

    The study of eukaryotic cell cycle regulation over the last several decades has led to a remarkably detailed understanding of the complex regulatory system that drives this fundamental process. This allows us to now look for recurring motifs in the regulatory system. Among these are negative feedback loops, which underpin checkpoints and generate cell cycle oscillations; positive feedback loops, which promote oscillations and make cell cycle transitions switch-like and unidirectional; and rec...

  6. BayesMotif: de novo protein sorting motif discovery from impure datasets.

    Science.gov (United States)

    Hu, Jianjun; Zhang, Fan

    2010-01-18

    Protein sorting is the process that newly synthesized proteins are transported to their target locations within or outside of the cell. This process is precisely regulated by protein sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences usually located at the N-terminals or C-terminals of protein sequences. Genome-wide experimental identification of protein sorting signals is extremely time-consuming and costly. Effective computational algorithms for de novo discovery of protein sorting signals is needed to improve the understanding of protein sorting mechanisms. We formulated the protein sorting motif discovery problem as a classification problem and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a common type of protein sorting motifs in which a highly conserved anchor is present along with a less conserved motif regions. A false positive removal procedure is developed to iteratively remove sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from impure input sequences. Experiments on both implanted motif datasets and real-world datasets showed that the enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein sequence dataset. It also shows that the false positive removal procedure can help to identify true motifs even when there is only 20% of the input sequences containing true motif instances. We proposed BayesMotif, a novel Bayesian classification based algorithm for de novo discovery of a special category of anchored protein sorting motifs from impure datasets. Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the motifs which may help to overcome the limitations of

  7. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....

  8. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model

    Directory of Open Access Journals (Sweden)

    Wasserman Wyeth W

    2011-03-01

    Full Text Available Abstract Background To understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs, microRNAs (miRNAs and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date. Results To identify and analyze molecular interaction networks, we developed MIR@NT@N, an integrative approach based on a meta-regulation network model and a large-scale database. MIR@NT@N uses a graph-based approach to predict novel molecular actors across multiple regulatory processes (i.e. TFs acting on protein-coding or miRNA genes, or miRNAs acting on messenger RNAs. Exploiting these predictions, the user can generate networks and further analyze them to identify sub-networks, including motifs such as feedback and feedforward loops (FBL and FFL. In addition, networks can be built from lists of molecular actors with an a priori role in a given biological process to predict novel and unanticipated interactions. Analyses can be contextualized and filtered by integrating additional information such as microarray expression data. All results, including generated graphs, can be visualized, saved and exported into various formats. MIR@NT@N performances have been evaluated using published data and then applied to the regulatory program underlying epithelium to mesenchyme transition (EMT, an evolutionary-conserved process which is implicated in embryonic development and disease. Conclusions MIR@NT@N is an effective computational approach to identify novel molecular regulations and to predict gene regulatory networks and sub-networks including conserved motifs within a given biological context. Taking advantage of the M@IA environment, MIR@NT@N is a user-friendly web resource freely available at http

  9. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

    Science.gov (United States)

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2014-02-20

    ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data.

  10. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.

    Energy Technology Data Exchange (ETDEWEB)

    Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.

    2003-06-01

    OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.

  11. MSDmotif: exploring protein sites and motifs

    Directory of Open Access Journals (Sweden)

    Henrick Kim

    2008-07-01

    Full Text Available Abstract Background Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure. Results We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated system where a results page is also a search form. A set of motif statistics is available for analysis. This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and Ramachandran plots for each residue. The binding statistics are presented in association with properties that include a ligand fragment library. Access is also provided through the distributed Annotation System (DAS protocol. An additional entry point facilitates XML requests with XML responses. Conclusion MSDmotif is unique by combining chemical, sequence and 3D data in a single search engine with a range of search and visualisation options. It provides multiple views of data found in the PDB archive for exploring protein structures.

  12. Helping Students Understand Gene Regulation with Online Tools: A Review of MEME and Melina II, Motif Discovery Tools for Active Learning in Biology

    Directory of Open Access Journals (Sweden)

    David Treves

    2012-08-01

    Full Text Available Review of: MEME and Melina II, which are two free and easy-to-use online motif discovery tools that can be employed to actively engage students in learning about gene regulatory elements.

  13. Phylogeny based discovery of regulatory elements

    Directory of Open Access Journals (Sweden)

    Cohen Barak A

    2006-05-01

    Full Text Available Abstract Background Algorithms that locate evolutionarily conserved sequences have become powerful tools for finding functional DNA elements, including transcription factor binding sites; however, most methods do not take advantage of an explicit model for the constrained evolution of functional DNA sequences. Results We developed a probabilistic framework that combines an HKY85 model, which assigns probabilities to different base substitutions between species, and weight matrix models of transcription factor binding sites, which describe the probabilities of observing particular nucleotides at specific positions in the binding site. The method incorporates the phylogenies of the species under consideration and takes into account the position specific variation of transcription factor binding sites. Using our framework we assessed the suitability of alignments of genomic sequences from commonly used species as substrates for comparative genomic approaches to regulatory motif finding. We then applied this technique to Saccharomyces cerevisiae and related species by examining all possible six base pair DNA sequences (hexamers and identifying sequences that are conserved in a significant number of promoters. By combining similar conserved hexamers we reconstructed known cis-regulatory motifs and made predictions of previously unidentified motifs. We tested one prediction experimentally, finding it to be a regulatory element involved in the transcriptional response to glucose. Conclusion The experimental validation of a regulatory element prediction missed by other large-scale motif finding studies demonstrates that our approach is a useful addition to the current suite of tools for finding regulatory motifs.

  14. In silico analysis of cis-acting regulatory elements in 5' regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana.

    Science.gov (United States)

    Ibraheem, Omodele; Botha, Christiaan E J; Bradley, Graeme

    2010-12-01

    The regulation of gene expression involves a multifarious regulatory system. Each gene contains a unique combination of cis-acting regulatory sequence elements in the 5' regulatory region that determines its temporal and spatial expression. Cis-acting regulatory elements are essential transcriptional gene regulatory units; they control many biological processes and stress responses. Thus a full understanding of the transcriptional gene regulation system will depend on successful functional analyses of cis-acting elements. Cis-acting regulatory elements present within the 5' regulatory region of the sucrose transporter gene families in rice (Oryza sativa Japonica cultivar-group) and Arabidopsis thaliana, were identified using a bioinformatics approach. The possible cis-acting regulatory elements were predicted by scanning 1.5kbp of 5' regulatory regions of the sucrose transporter genes translational start sites, using Plant CARE, PLACE and Genomatix Matinspector professional databases. Several cis-acting regulatory elements that are associated with plant development, plant hormonal regulation and stress response were identified, and were present in varying frequencies within the 1.5kbp of 5' regulatory region, among which are; A-box, RY, CAT, Pyrimidine-box, Sucrose-box, ABRE, ARF, ERE, GARE, Me-JA, ARE, DRE, GA-motif, GATA, GT-1, MYC, MYB, W-box, and I-box. This result reveals the probable cis-acting regulatory elements that possibly are involved in the expression and regulation of sucrose transporter gene families in rice and Arabidopsis thaliana during cellular development or environmental stress conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Temporal motifs in time-dependent networks

    International Nuclear Information System (INIS)

    Kovanen, Lauri; Karsai, Márton; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2011-01-01

    Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as telecommunication, neural signal processing, biochemical reaction and human social interaction networks. We introduce the framework of temporal motifs to study the mesoscale topological–temporal structure of temporal networks in which the events of nodes do not overlap in time. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences to coloured directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network

  16. Motif discovery in ranked lists of sequences

    DEFF Research Database (Denmark)

    Nielsen, Morten Muhlig; Tataru, Paula; Madsen, Tobias

    2016-01-01

    Motif analysis has long been an important method to characterize biological functionality and the current growth of sequencing-based genomics experiments further extends its potential. These diverse experiments often generate sequence lists ranked by some functional property. There is therefore...... advantage of the regular expression feature, including enrichments for combinations of different microRNA seed sites. The method is implemented and made publicly available as an R package and supports high parallelization on multi-core machinery....... a growing need for motif analysis methods that can exploit this coupled data structure and be tailored for specific biological questions. Here, we present an exploratory motif analysis tool, Regmex (REGular expression Motif EXplorer), which offers several methods to evaluate the correlation of motifs...

  17. How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs

    KAUST Repository

    Alam, Tanvir

    2014-05-29

    LD motifs (leucine-aspartic acidmotifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs. © 2014 Biochemical Society.

  18. How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs

    KAUST Repository

    Alam, Tanvir; Alazmi, Meshari; Gao, Xin; Arold, Stefan T.

    2014-01-01

    LD motifs (leucine-aspartic acidmotifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs. © 2014 Biochemical Society.

  19. MotifNet: a web-server for network motif analysis.

    Science.gov (United States)

    Smoly, Ilan Y; Lerman, Eugene; Ziv-Ukelson, Michal; Yeger-Lotem, Esti

    2017-06-15

    Network motifs are small topological patterns that recur in a network significantly more often than expected by chance. Their identification emerged as a powerful approach for uncovering the design principles underlying complex networks. However, available tools for network motif analysis typically require download and execution of computationally intensive software on a local computer. We present MotifNet, the first open-access web-server for network motif analysis. MotifNet allows researchers to analyze integrated networks, where nodes and edges may be labeled, and to search for motifs of up to eight nodes. The output motifs are presented graphically and the user can interactively filter them by their significance, number of instances, node and edge labels, and node identities, and view their instances. MotifNet also allows the user to distinguish between motifs that are centered on specific nodes and motifs that recur in distinct parts of the network. MotifNet is freely available at http://netbio.bgu.ac.il/motifnet . The website was implemented using ReactJs and supports all major browsers. The server interface was implemented in Python with data stored on a MySQL database. estiyl@bgu.ac.il or michaluz@cs.bgu.ac.il. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  1. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    Science.gov (United States)

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  2. Hunting Motifs in Situla Art

    Directory of Open Access Journals (Sweden)

    Andrej Preložnik

    2013-07-01

    Full Text Available Situla art developed as an echo of the toreutic style which had spread from the Near East through the Phoenicians, Greeks and Etruscans as far as the Veneti, Raeti, Histri, and their eastern neighbours in the region of Dolenjska (Lower Carniola. An Early Iron Age phenomenon (c. 600—300 BC, it rep- resents the major and most arresting form of the contemporary visual arts in an area stretching from the foot of the Apennines in the south to the Drava and Sava rivers in the east. Indeed, individual pieces have found their way across the Alpine passes and all the way north to the Danube. In the world and art of the situlae, a prominent role is accorded to ani- mals. They are displayed in numerous representations of human activities on artefacts crafted in the classic situla style – that is, between the late 6th  and early 5th centuries BC – as passive participants (e.g. in pageants or in harness or as an active element of the situla narrative. The most typical example of the latter is the hunting scene. Today we know at least four objects decorat- ed exclusively with hunting themes, and a number of situlae and other larger vessels where hunting scenes are embedded in composite narratives. All this suggests a popularity unparallelled by any other genre. Clearly recognisable are various hunting techniques and weapons, each associated with a particu- lar type of game (Fig. 1. The chase of a stag with javelin, horse and hound is depicted on the long- familiar and repeatedly published fibula of Zagorje (Fig. 2. It displays a hound mauling the stag’s back and a hunter on horseback pursuing a hind, her neck already pierced by the javelin. To judge by the (so far unnoticed shaft end un- der the stag’s muzzle, the hunter would have been brandishing a second jave- lin as well, like the warrior of the Vače fibula or the rider of the Nesactium situla, presumably himself a hunter. Many parallels to his motif are known from Greece, Etruria, and

  3. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2015-01-01

    Full Text Available Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD of heat shock 70 kDa protein (PDB: 1HJO with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD simulation. Human DNA binding domain of p53 motif (SCMGGMNR retrieved from UniProt (UniProtKB: P04637 was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  4. Disclosure as a regulatory tool

    DEFF Research Database (Denmark)

    Sørensen, Karsten Engsig

    2006-01-01

    The chapter analyses how disclure can be used as a regulatory tool and analyses how it has been applied so far in the area of financial market law and consumer law.......The chapter analyses how disclure can be used as a regulatory tool and analyses how it has been applied so far in the area of financial market law and consumer law....

  5. Parallel motif extraction from very long sequences

    KAUST Repository

    Sahli, Majed; Mansour, Essam; Kalnis, Panos

    2013-01-01

    Motifs are frequent patterns used to identify biological functionality in genomic sequences, periodicity in time series, or user trends in web logs. In contrast to a lot of existing work that focuses on collections of many short sequences, modern

  6. Bayesian centroid estimation for motif discovery.

    Science.gov (United States)

    Carvalho, Luis

    2013-01-01

    Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  7. Bayesian centroid estimation for motif discovery.

    Directory of Open Access Journals (Sweden)

    Luis Carvalho

    Full Text Available Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  8. Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks.

    Science.gov (United States)

    Fischer, Martin; Grossmann, Patrick; Padi, Megha; DeCaprio, James A

    2016-07-27

    Cell cycle (CC) and TP53 regulatory networks are frequently deregulated in cancer. While numerous genome-wide studies of TP53 and CC-regulated genes have been performed, significant variation between studies has made it difficult to assess regulation of any given gene of interest. To overcome the limitation of individual studies, we developed a meta-analysis approach to identify high confidence target genes that reflect their frequency of identification in independent datasets. Gene regulatory networks were generated by comparing differential expression of TP53 and CC-regulated genes with chromatin immunoprecipitation studies for TP53, RB1, E2F, DREAM, B-MYB, FOXM1 and MuvB. RNA-seq data from p21-null cells revealed that gene downregulation by TP53 generally requires p21 (CDKN1A). Genes downregulated by TP53 were also identified as CC genes bound by the DREAM complex. The transcription factors RB, E2F1 and E2F7 bind to a subset of DREAM target genes that function in G1/S of the CC while B-MYB, FOXM1 and MuvB control G2/M gene expression. Our approach yields high confidence ranked target gene maps for TP53, DREAM, MMB-FOXM1 and RB-E2F and enables prediction and distinction of CC regulation. A web-based atlas at www.targetgenereg.org enables assessing the regulation of any human gene of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Codon based co-occurrence network motifs in human mitochondria

    Directory of Open Access Journals (Sweden)

    Pramod Shinde

    2017-10-01

    Full Text Available The nucleotide polymorphism in human mitochondrial genome (mtDNA tolled by codon position bias plays an indispensable role in human population dispersion and expansion. Herein, we constructed genome-wide nucleotide co-occurrence networks using a massive data consisting of five different geographical regions and around 3000 samples for each region. We developed a powerful network model to describe complex mitochondrial evolutionary patterns between codon and non-codon positions. It was interesting to report a different evolution of Asian genomes than those of the rest which is divulged by network motifs. We found evidence that mtDNA undergoes substantial amounts of adaptive evolution, a finding which was supported by a number of previous studies. The dominance of higher order motifs indicated the importance of long-range nucleotide co-occurrence in genomic diversity. Most notably, codon motifs apparently underpinned the preferences among codon positions for co-evolution which is probably highly biased during the origin of the genetic code. Our analyses manifested that codon position co-evolution is very well conserved across human sub-populations and independently maintained within human sub-populations implying the selective role of evolutionary processes on codon position co-evolution. Ergo, this study provided a framework to investigate cooperative genomic interactions which are critical in underlying complex mitochondrial evolution.

  10. qPMS7: a fast algorithm for finding (ℓ, d-motifs in DNA and protein sequences.

    Directory of Open Access Journals (Sweden)

    Hieu Dinh

    Full Text Available Detection of rare events happening in a set of DNA/protein sequences could lead to new biological discoveries. One kind of such rare events is the presence of patterns called motifs in DNA/protein sequences. Finding motifs is a challenging problem since the general version of motif search has been proven to be intractable. Motifs discovery is an important problem in biology. For example, it is useful in the detection of transcription factor binding sites and transcriptional regulatory elements that are very crucial in understanding gene function, human disease, drug design, etc. Many versions of the motif search problem have been proposed in the literature. One such is the (ℓ, d-motif search (or Planted Motif Search (PMS. A generalized version of the PMS problem, namely, Quorum Planted Motif Search (qPMS, is shown to accurately model motifs in real data. However, solving the qPMS problem is an extremely difficult task because a special case of it, the PMS Problem, is already NP-hard, which means that any algorithm solving it can be expected to take exponential time in the worse case scenario. In this paper, we propose a novel algorithm named qPMS7 that tackles the qPMS problem on real data as well as challenging instances. Experimental results show that our Algorithm qPMS7 is on an average 5 times faster than the state-of-art algorithm. The executable program of Algorithm qPMS7 is freely available on the web at http://pms.engr.uconn.edu/downloads/qPMS7.zip. Our online motif discovery tools that use Algorithm qPMS7 are freely available at http://pms.engr.uconn.edu or http://motifsearch.com.

  11. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    Science.gov (United States)

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  12. Cost tradeoffs in consequence management at nuclear power plants: A risk based approach to setting optimal long-term interdiction limits for regulatory analyses

    International Nuclear Information System (INIS)

    Mubayi, V.

    1995-05-01

    The consequences of severe accidents at nuclear power plants can be limited by various protective actions, including emergency responses and long-term measures, to reduce exposures of affected populations. Each of these protective actions involve costs to society. The costs of the long-term protective actions depend on the criterion adopted for the allowable level of long-term exposure. This criterion, called the ''long term interdiction limit,'' is expressed in terms of the projected dose to an individual over a certain time period from the long-term exposure pathways. The two measures of offsite consequences, latent cancers and costs, are inversely related and the choice of an interdiction limit is, in effect, a trade-off between these two measures. By monetizing the health effects (through ascribing a monetary value to life lost), the costs of the two consequence measures vary with the interdiction limit, the health effect costs increasing as the limit is relaxed and the protective action costs decreasing. The minimum of the total cost curve can be used to calculate an optimal long term interdiction limit. The calculation of such an optimal limit is presented for each of five US nuclear power plants which were analyzed for severe accident risk in the NUREG-1150 program by the Nuclear Regulatory Commission

  13. Overlapping ETS and CRE Motifs (G/CCGGAAGTGACGTCA) Preferentially Bound by GABPα and CREB Proteins

    Science.gov (United States)

    Chatterjee, Raghunath; Zhao, Jianfei; He, Ximiao; Shlyakhtenko, Andrey; Mann, Ishminder; Waterfall, Joshua J.; Meltzer, Paul; Sathyanarayana, B. K.; FitzGerald, Peter C.; Vinson, Charles

    2012-01-01

    Previously, we identified 8-bps long DNA sequences (8-mers) that localize in human proximal promoters and grouped them into known transcription factor binding sites (TFBS). We now examine split 8-mers consisting of two 4-mers separated by 1-bp to 30-bps (X4-N1-30-X4) to identify pairs of TFBS that localize in proximal promoters at a precise distance. These include two overlapping TFBS: the ETS⇔ETS motif (C/GCCGGAAGCGGAA) and the ETS⇔CRE motif (C/GCGGAAGTGACGTCAC). The nucleotides in bold are part of both TFBS. Molecular modeling shows that the ETS⇔CRE motif can be bound simultaneously by both the ETS and the B-ZIP domains without protein-protein clashes. The electrophoretic mobility shift assay (EMSA) shows that the ETS protein GABPα and the B-ZIP protein CREB preferentially bind to the ETS⇔CRE motif only when the two TFBS overlap precisely. In contrast, the ETS domain of ETV5 and CREB interfere with each other for binding the ETS⇔CRE. The 11-mer (CGGAAGTGACG), the conserved part of the ETS⇔CRE motif, occurs 226 times in the human genome and 83% are in known regulatory regions. In vivo GABPα and CREB ChIP-seq peaks identified the ETS⇔CRE as the most enriched motif occurring in promoters of genes involved in mRNA processing, cellular catabolic processes, and stress response, suggesting that a specific class of genes is regulated by this composite motif. PMID:23050235

  14. A Simple Decision Rule for Recognition of Poly(A) Tail Signal Motifs in Human Genome

    KAUST Repository

    AbouEisha, Hassan M.

    2015-05-12

    Background is the numerous attempts were made to predict motifs in genomic sequences that correspond to poly (A) tail signals. Vast portion of this effort has been directed to a plethora of nonlinear classification methods. Even when such approaches yield good discriminant results, identifying dominant features of regulatory mechanisms nevertheless remains a challenge. In this work, we look at decision rules that may help identifying such features. Findings are we present a simple decision rule for classification of candidate poly (A) tail signal motifs in human genomic sequence obtained by evaluating features during the construction of gradient boosted trees. We found that values of a single feature based on the frequency of adenine in the genomic sequence surrounding candidate signal and the number of consecutive adenine molecules in a well-defined region immediately following the motif displays good discriminative potential in classification of poly (A) tail motifs for samples covered by the rule. Conclusions is the resulting simple rule can be used as an efficient filter in construction of more complex poly(A) tail motifs classification algorithms.

  15. Integrated in silico Analyses of Regulatory and Metabolic Networks of Synechococcus sp. PCC 7002 Reveal Relationships between Gene Centrality and Essentiality

    Directory of Open Access Journals (Sweden)

    Hyun-Seob Song

    2015-03-01

    Full Text Available Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as “topologically important.” Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termed as “functionally important” genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.

  16. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  17. Analisis Unsur Matematika pada Motif Sulam Usus

    Directory of Open Access Journals (Sweden)

    Fredi Ganda Putra

    2017-12-01

    Full Text Available Based on interviews with researchers sources said that the beginning of the intestine embroidery is an art of genuine crafts. Called the intestine embroidery because this technique is a technique of combining a strand of cloth resembling the intestine formed according to the pattern by means of embroidered using a thread. Intestinal embroidery techniques were originally used to create a cover of the women's customary wardrobe of Lampung or often referred to as bebe. But not many people in Lampung, especially people who live in Lampung are still many who do not know and recognize the intestine embroidery because most only know tapis only characteristic of Lampung, besides that there are other cultural results that is embroidered intestine. There are still many who do not know that the intestine motif there is a knowledge of mathematics. The researcher's problem formulation is whether there are mathematical elements contained in the intestine embroidery motif based on the concept of geometry. The purpose of this study is to determine whether there are elements of mathematics contained in the intestine motif based on the concept of geometry. Subjects in this study consisted of 4 people obtained by purposive sampling technique. From the results of data analysis conducted by using descriptive analysis and discussion as follows: (1 Intestinal embroidery motif contains the meaning of mathematics and culture or often called Etnomatematika. On the meaning of culture there is a link between the embroidery intestine with a culture that has been there before as the existence of cultural linkage between Hindu belief Buddhism and there are similarities of motifs and decorative patterns contained in the motif embroidery intestine with ornamental variety in Indonesia. (2 The relationship between the intestine with mathematical motifs there are elements of mathematics such as geometry elements in the form of geometry of dimension one and dimension two, and the

  18. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle

    DEFF Research Database (Denmark)

    Salleh, M. S.; Mazzoni, G.; Höglund, J. K.

    2017-01-01

    -throughput RNA sequencing data of liver biopsies from 19 dairy cows were used to identify differentially expressed genes (DEGs) between high- and low-FE groups of cows (based on Residual Feed Intake or RFI). Subsequently, a profile of the pathways connecting the DEGs to FE was generated, and a list of candidate...... genes and biomarkers was derived for their potential inclusion in breeding programmes to improve FE. The bovine RNA-Seq gene expression data from the liver was analysed to identify DEGs and, subsequently, identify the molecular mechanisms, pathways and possible candidate biomarkers of feed efficiency....... On average, 57 million reads (short reads or short mRNA sequences ...

  19. Metabolic and molecular analyses of white mutant Vaccinium berries show down-regulation of MYBPA1-type R2R3 MYB regulatory factor.

    Science.gov (United States)

    Primetta, Anja K; Karppinen, Katja; Riihinen, Kaisu R; Jaakola, Laura

    2015-09-01

    MYBPA1-type R2R3 MYB transcription factor shows down-regulation in white mutant berries of Vaccinium uliginosum deficient in anthocyanins but not proanthocyanidins suggesting a role in the regulation of anthocyanin biosynthesis. Berries of the genus Vaccinium are among the best natural sources of flavonoids. In this study, the expression of structural and regulatory flavonoid biosynthetic genes and the accumulation of flavonoids in white mutant and blue-colored wild-type bog bilberry (V. uliginosum) fruits were measured at different stages of berry development. In contrast to high contents of anthocyanins in ripe blue-colored berries, only traces were detected by HPLC-ESI-MS in ripe white mutant berries. However, similar profile and high levels of flavonol glycosides and proanthocyanidins were quantified in both ripe white and ripe wild-type berries. Analysis with qRT-PCR showed strong down-regulation of structural genes chalcone synthase (VuCHS), dihydroflavonol 4-reductase (VuDFR) and anthocyanidin synthase (VuANS) as well as MYBPA1-type transcription factor VuMYBPA1 in white berries during ripening compared to wild-type berries. The profiles of transcript accumulation of chalcone isomerase (VuCHI), anthocyanidin reductase (VuANR), leucoanthocyanidin reductase (VuLAR) and flavonoid 3'5' hydroxylase (VuF3'5'H) were more similar between the white and the wild-type berries during fruit development, while expression of UDP-glucose: flavonoid 3-O-glucosyltransferase (VuUFGT) showed similar trend but fourfold lower level in white mutant. VuMYBPA1, the R2R3 MYB family member, is a homologue of VmMYB2 of V. myrtillus and VcMYBPA1 of V. corymbosum and belongs to MYBPA1-type MYB family which members are shown in some species to be related with proanthocyanidin biosynthesis in fruits. Our results combined with earlier data of the role of VmMYB2 in white mutant berries of V. myrtillus suggest that the regulation of anthocyanin biosynthesis in Vaccinium species could differ

  20. Armadillo motifs involved in vesicular transport.

    Directory of Open Access Journals (Sweden)

    Harald Striegl

    Full Text Available Armadillo (ARM repeat proteins function in various cellular processes including vesicular transport and membrane tethering. They contain an imperfect repeating sequence motif that forms a conserved three-dimensional structure. Recently, structural and functional insight into tethering mediated by the ARM-repeat protein p115 has been provided. Here we describe the p115 ARM-motifs for reasons of clarity and nomenclature and show that both sequence and structure are highly conserved among ARM-repeat proteins. We argue that there is no need to invoke repeat types other than ARM repeats for a proper description of the structure of the p115 globular head region. Additionally, we propose to define a new subfamily of ARM-like proteins and show lack of evidence that the ARM motifs found in p115 are present in other long coiled-coil tethering factors of the golgin family.

  1. An Analysis of Multi-type Relational Interactions in FMA Using Graph Motifs with Disjointness Constraints

    Science.gov (United States)

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation. PMID:23304382

  2. An analysis of multi-type relational interactions in FMA using graph motifs with disjointness constraints.

    Science.gov (United States)

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.

  3. Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses.

    Science.gov (United States)

    Bergmann, Tobias; Lindvall, Mikaela; Moore, Erin; Moore, Eugene; Sidney, John; Miller, Donald; Tallmadge, Rebecca L; Myers, Paisley T; Malaker, Stacy A; Shabanowitz, Jeffrey; Osterrieder, Nikolaus; Peters, Bjoern; Hunt, Donald F; Antczak, Douglas F; Sette, Alessandro

    2017-05-01

    Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.

  4. Regulatory agencies and regulatory risk

    OpenAIRE

    Knieps, Günter; Weiß, Hans-Jörg

    2008-01-01

    The aim of this paper is to show that regulatory risk is due to the discretionary behaviour of regulatory agencies, caused by a too extensive regulatory mandate provided by the legislator. The normative point of reference and a behavioural model of regulatory agencies based on the positive theory of regulation are presented. Regulatory risk with regard to the future behaviour of regulatory agencies is modelled as the consequence of the ex ante uncertainty about the relative influence of inter...

  5. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit; Bajic, Vladimir B.; Kaushik, Dinesh

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  6. Parallel motif extraction from very long sequences

    KAUST Repository

    Sahli, Majed

    2013-01-01

    Motifs are frequent patterns used to identify biological functionality in genomic sequences, periodicity in time series, or user trends in web logs. In contrast to a lot of existing work that focuses on collections of many short sequences, modern applications require mining of motifs in one very long sequence (i.e., in the order of several gigabytes). For this case, there exist statistical approaches that are fast but inaccurate; or combinatorial methods that are sound and complete. Unfortunately, existing combinatorial methods are serial and very slow. Consequently, they are limited to very short sequences (i.e., a few megabytes), small alphabets (typically 4 symbols for DNA sequences), and restricted types of motifs. This paper presents ACME, a combinatorial method for extracting motifs from a single very long sequence. ACME arranges the search space in contiguous blocks that take advantage of the cache hierarchy in modern architectures, and achieves almost an order of magnitude performance gain in serial execution. It also decomposes the search space in a smart way that allows scalability to thousands of processors with more than 90% speedup. ACME is the only method that: (i) scales to gigabyte-long sequences; (ii) handles large alphabets; (iii) supports interesting types of motifs with minimal additional cost; and (iv) is optimized for a variety of architectures such as multi-core systems, clusters in the cloud, and supercomputers. ACME reduces the extraction time for an exact-length query from 4 hours to 7 minutes on a typical workstation; handles 3 orders of magnitude longer sequences; and scales up to 16, 384 cores on a supercomputer. Copyright is held by the owner/author(s).

  7. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-01-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  8. DNA motif elucidation using belief propagation.

    Science.gov (United States)

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.

  9. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  10. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    Science.gov (United States)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  11. Global regulatory roles of the cAMP/PKA pathway revealed by phenotypic, transcriptomic and phosphoproteomic analyses in a null mutant of the PKA catalytic subunit in Candida albicans.

    Science.gov (United States)

    Cao, Chengjun; Wu, Mei; Bing, Jian; Tao, Li; Ding, Xuefen; Liu, Xiaoyun; Huang, Guanghua

    2017-07-01

    The conserved cAMP-dependent protein kinase (PKA) plays critical roles in the regulation of morphological transitions and virulence in the human fungal pathogen Candida albicans. It has long been thought that the PKA catalytic subunit is essential for cell viability in this fungus. Paradoxically, the single adenylyl cyclase-encoding gene, CYR1, which is required for the production of cAMP in C. albicans, is not essential for cell growth. Here, a double mutant of TPK1 and TPK2 (tpk2/tpk2 tpk1/tpk1, t2t1), which encode two isoforms of the PKA catalytic subunit was successfully generated, suggesting that this subunit is not essential for cell viability. Inactivation of the PKA catalytic subunit blocked filamentation and dramatically attenuated white-to-opaque switching, but promoted sexual mating. Comparative transcriptomic analyses demonstrated that the t2t1 and cyr1/cyr1 mutants exhibited similar global gene expression profiles. Compared with the WT strain, the general transcriptional activity and metabolism were significantly decreased in both the t2t1 and cyr1/cyr1 mutants. Using combined phosphoproteomic and bioinformatic analyses, we identified 181 potential PKA phosphorylation targets, which represent 148 unique proteins involved in a wide spectrum of biological processes. The study sheds new insights into the global regulatory features of the cAMP/PKA pathway in C. albicans. © 2017 John Wiley & Sons Ltd.

  12. Poly(A) motif prediction using spectral latent features from human DNA sequences

    KAUST Repository

    Xie, Bo; Jankovic, Boris R.; Bajic, Vladimir B.; Song, Le; Gao, Xin

    2013-01-01

    Motivation: Polyadenylation is the addition of a poly(A) tail to an RNA molecule. Identifying DNA sequence motifs that signal the addition of poly(A) tails is essential to improved genome annotation and better understanding of the regulatory mechanisms and stability of mRNA.Existing poly(A) motif predictors demonstrate that information extracted from the surrounding nucleotide sequences of candidate poly(A) motifs can differentiate true motifs from the false ones to a great extent. A variety of sophisticated features has been explored, including sequential, structural, statistical, thermodynamic and evolutionary properties. However, most of these methods involve extensive manual feature engineering, which can be time-consuming and can require in-depth domain knowledge.Results: We propose a novel machine-learning method for poly(A) motif prediction by marrying generative learning (hidden Markov models) and discriminative learning (support vector machines). Generative learning provides a rich palette on which the uncertainty and diversity of sequence information can be handled, while discriminative learning allows the performance of the classification task to be directly optimized. Here, we used hidden Markov models for fitting the DNA sequence dynamics, and developed an efficient spectral algorithm for extracting latent variable information from these models. These spectral latent features were then fed into support vector machines to fine-tune the classification performance.We evaluated our proposed method on a comprehensive human poly(A) dataset that consists of 14 740 samples from 12 of the most abundant variants of human poly(A) motifs. Compared with one of the previous state-of-the-art methods in the literature (the random forest model with expert-crafted features), our method reduces the average error rate, false-negative rate and false-positive rate by 26, 15 and 35%, respectively. Meanwhile, our method makes ?30% fewer error predictions relative to the other

  13. Poly(A) motif prediction using spectral latent features from human DNA sequences

    KAUST Repository

    Xie, Bo

    2013-06-21

    Motivation: Polyadenylation is the addition of a poly(A) tail to an RNA molecule. Identifying DNA sequence motifs that signal the addition of poly(A) tails is essential to improved genome annotation and better understanding of the regulatory mechanisms and stability of mRNA.Existing poly(A) motif predictors demonstrate that information extracted from the surrounding nucleotide sequences of candidate poly(A) motifs can differentiate true motifs from the false ones to a great extent. A variety of sophisticated features has been explored, including sequential, structural, statistical, thermodynamic and evolutionary properties. However, most of these methods involve extensive manual feature engineering, which can be time-consuming and can require in-depth domain knowledge.Results: We propose a novel machine-learning method for poly(A) motif prediction by marrying generative learning (hidden Markov models) and discriminative learning (support vector machines). Generative learning provides a rich palette on which the uncertainty and diversity of sequence information can be handled, while discriminative learning allows the performance of the classification task to be directly optimized. Here, we used hidden Markov models for fitting the DNA sequence dynamics, and developed an efficient spectral algorithm for extracting latent variable information from these models. These spectral latent features were then fed into support vector machines to fine-tune the classification performance.We evaluated our proposed method on a comprehensive human poly(A) dataset that consists of 14 740 samples from 12 of the most abundant variants of human poly(A) motifs. Compared with one of the previous state-of-the-art methods in the literature (the random forest model with expert-crafted features), our method reduces the average error rate, false-negative rate and false-positive rate by 26, 15 and 35%, respectively. Meanwhile, our method makes ?30% fewer error predictions relative to the other

  14. Heart morphogenesis gene regulatory networks revealed by temporal expression analysis.

    Science.gov (United States)

    Hill, Jonathon T; Demarest, Bradley; Gorsi, Bushra; Smith, Megan; Yost, H Joseph

    2017-10-01

    During embryogenesis the heart forms as a linear tube that then undergoes multiple simultaneous morphogenetic events to obtain its mature shape. To understand the gene regulatory networks (GRNs) driving this phase of heart development, during which many congenital heart disease malformations likely arise, we conducted an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and identified 5861 genes with altered expression. We clustered the genes by temporal expression pattern, identified transcription factor binding motifs enriched in each cluster, and generated a model GRN for the major gene batteries in heart morphogenesis. This approach predicted hundreds of regulatory interactions and found batteries enriched in specific cell and tissue types, indicating that the approach can be used to narrow the search for novel genetic markers and regulatory interactions. Subsequent analyses confirmed the GRN using two mutants, Tbx5 and nkx2-5 , and identified sets of duplicated zebrafish genes that do not show temporal subfunctionalization. This dataset provides an essential resource for future studies on the genetic/epigenetic pathways implicated in congenital heart defects and the mechanisms of cardiac transcriptional regulation. © 2017. Published by The Company of Biologists Ltd.

  15. A Woman Voice in an Epic: Tracing Gendered Motifs in Anne Vabarna's Peko

    Directory of Open Access Journals (Sweden)

    Andreas Kalkun

    2008-12-01

    Full Text Available In the article the gendered motifs found in Anne Vabarna’s Seto epic Peko are analysed. Besides the narrative telling of the life of the male hero, the motives regarding eating, refusing to eat or offering food, and the aspect of the female body or its control deserve to be noticed. These scenes do not communicate the main plot, they are often related to minor characters of the epic and slow down the narrative, but at the same time they clearly carry artistic purpose and meaning. I consider these motifs, present in the liminal parts of the epic, to be the dominant symbols of the epic where the author’s feminine world is being exposed. Observing these motifs of Peko in the context of Seto religious worldview, the life of Anne Vabarna and the social position of Seto women, the symbols become eloquent and informative.

  16. Dynamic motifs in socio-economic networks

    Science.gov (United States)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  17. DistAMo: A web-based tool to characterize DNA-motif distribution on bacterial chromosomes

    Directory of Open Access Journals (Sweden)

    Patrick eSobetzko

    2016-03-01

    Full Text Available Short DNA motifs are involved in a multitude of functions such as for example chromosome segregation, DNA replication or mismatch repair. Distribution of such motifs is often not random and the specific chromosomal pattern relates to the respective motif function. Computational approaches which quantitatively assess such chromosomal motif patterns are necessary. Here we present a new computer tool DistAMo (Distribution Analysis of DNA Motifs. The algorithm uses codon redundancy to calculate the relative abundance of short DNA motifs from single genes to entire chromosomes. Comparative genomics analyses of the GATC-motif distribution in γ-proteobacterial genomes using DistAMo revealed that (i genes beside the replication origin are enriched in GATCs, (ii genome-wide GATC distribution follows a distinct pattern and (iii genes involved in DNA replication and repair are enriched in GATCs. These features are specific for bacterial chromosomes encoding a Dam methyltransferase. The new software is available as a stand-alone or as an easy-to-use web-based server version at http://www.computational.bio.uni-giessen.de/distamo.

  18. Super-transient scaling in time-delay autonomous Boolean network motifs

    Energy Technology Data Exchange (ETDEWEB)

    D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  19. An essential GT motif in the lamin A promoter mediates activation by CREB-binding protein

    International Nuclear Information System (INIS)

    Janaki Ramaiah, M.; Parnaik, Veena K.

    2006-01-01

    Lamin A is an important component of nuclear architecture in mammalian cells. Mutations in the human lamin A gene lead to highly degenerative disorders that affect specific tissues. In studies directed towards understanding the mode of regulation of the lamin A promoter, we have identified an essential GT motif at -55 position by reporter gene assays and mutational analysis. Binding of this sequence to Sp transcription factors has been observed in electrophoretic mobility shift assays and by chromatin immunoprecipitation studies. Further functional analysis by co-expression of recombinant proteins and ChIP assays has shown an important regulatory role for CREB-binding protein in promoter activation, which is mediated by the GT motif

  20. CONTEMPORARY USAGE OF TRADITIONAL TURKISH MOTIFS IN PRODUCT DESIGNS

    Directory of Open Access Journals (Sweden)

    Tulay Gumuser

    2012-12-01

    Full Text Available The aim of this study is to identify the traditional Turkish motifs and its relations among present industrial designs. Traditional Turkish motifs played a very important role in 16th century onwards. The arts of the Ottoman Empire were used because of their symbolic meanings and unique styles. When we examine these motifs we encounter; Tiger Stripe, Three Spot (Çintemani, Rumi, Hatayi, Penç, Cloud, Crescent, Star, Crown, Hyacinth, Tulip and Carnation motifs. Nowadays, Turkish designers have begun to use these traditional Turkish motifs in their designs so as to create differences and awareness in the world design. The examples of these industrial designs, using the Turkish motifs, have survived and have Ottoman heritage and historical value. In this study, the Turkish motifs will be examined along with their focus on contemporary Turkish industrial designs used today.

  1. Regulatory activities

    International Nuclear Information System (INIS)

    2001-01-01

    This publication, compiled in 8 chapters, presents the regulatory system developed by the Nuclear Regulatory Authority (NRA) of the Argentine Republic. The following activities and developed topics in this document describe: the evolution of the nuclear regulatory activity in Argentina; the Argentine regulatory system; the nuclear regulatory laws and standards; the inspection and safeguards of nuclear facilities; the emergency systems; the environmental systems; the environmental monitoring; the analysis laboratories on physical and biological dosimetry, prenatal irradiation, internal irradiation, radiation measurements, detection techniques on nuclear testing, medical program on radiation protection; the institutional relations with national and international organization; the training courses and meeting; the technical information

  2. Aplikasi Ornamen Khas Maluku untuk Pengembangan Desain Motif Batik

    Directory of Open Access Journals (Sweden)

    Masiswo Masiswo

    2016-04-01

    Full Text Available ABSTRAKMaluku memiliki banyak ragam hias budaya warisan nilai leluhur berupa ornamen etnis yang merupakan kesenian dan keterampilan kerajinan. Hasil warisan tersebut sampai saat ini masih lestari hidup serta dapat dinikmati sebagai konsumsi rohani yang memuaskan manusia. Berkaitan dengan keberlangsungan nilai-nilai tradisi etnis yang berwujud pada ornamen-ornamen daerah Maluku, maka dikembangkan untuk kebutuhan manusia berupa motif batik pada kain. Pengembangan ornamen ini lebih menekankan pada representasi akan bentuk-bentuk ornamen yang diterapkan pada kerajinan batik berupa motif khas Maluku. Pengembangan alternatif desain motif batik dibuat tiga variasi yang bersumber dari ornamen khas Maluku dibuat prototipe produknya dan diuji ketahanan luntur warnanya. Hasil uji ketahanan luntur warna terhadap gosokan basah dari tiga prototipe produk berpredikat baik sekali terdapat pada “Motif Siwa” dan predikat baik pada motif “Siwa Talang” dan motif “Matahari Siwa Talang”.Kata kunci: desain, Maluku, motif batik, ornamenABSTRACTMaluku has much decorative ancestral cultural heritage value in the form of ornament ethnic arts and crafts skills. The result of the legacy is still sustainable living can be enjoyed as well as satisfying spiritual human consumption.Related to the sustainability of traditional values in the form of ethnic ornaments Maluku, it was developed for human needs in the form of batik cloth . The development of these ornaments will be more emphasis on the representation forms of ornamentation that is applied to a batik motif Maluku. Development of alternative design motif made three variations. The development of three alternative design motifs derived from the Maluku ornaments made and tested a prototype product color fastness. The test results of color fastness to wet rubbing of the three prototypes are excellent products predicated on the "Motif Siwa" and a good rating on the motif "Siwa Talang" and motif "Matahari Siwa

  3. Identity and functions of CxxC-derived motifs.

    Science.gov (United States)

    Fomenko, Dmitri E; Gladyshev, Vadim N

    2003-09-30

    Two cysteines separated by two other residues (the CxxC motif) are employed by many redox proteins for formation, isomerization, and reduction of disulfide bonds and for other redox functions. The place of the C-terminal cysteine in this motif may be occupied by serine (the CxxS motif), modifying the functional repertoire of redox proteins. Here we found that the CxxC motif may also give rise to a motif, in which the C-terminal cysteine is replaced with threonine (the CxxT motif). Moreover, in contrast to a view that the N-terminal cysteine in the CxxC motif always serves as a nucleophilic attacking group, this residue could also be replaced with threonine (the TxxC motif), serine (the SxxC motif), or other residues. In each of these CxxC-derived motifs, the presence of a downstream alpha-helix was strongly favored. A search for conserved CxxC-derived motif/helix patterns in four complete genomes representing bacteria, archaea, and eukaryotes identified known redox proteins and suggested possible redox functions for several additional proteins. Catalytic sites in peroxiredoxins were major representatives of the TxxC motif, whereas those in glutathione peroxidases represented the CxxT motif. Structural assessments indicated that threonines in these enzymes could stabilize catalytic thiolates, suggesting revisions to previously proposed catalytic triads. Each of the CxxC-derived motifs was also observed in natural selenium-containing proteins, in which selenocysteine was present in place of a catalytic cysteine.

  4. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  5. μXRF analysis of decoration motifs on Majolica pottery

    International Nuclear Information System (INIS)

    Padilla Lavarez, Roman; Van Espen, Pierr M.; Janssens, K; Schalm, O.

    2001-01-01

    μXRF analysis of decoration motifs on Majolica pottery in fragments corresponding to several Majolica types was carried out using an spectrometer comprising a low power Mo X-ray tube and a elliptic-shape concentration lens with a 60 um spot. Both surface scanning and spot measurements were carried a out, allowing the qualitative identification of the inorganic pigments used for the surface painting decoration and the quantitative analysis of the main glaze composition. The absence of interference signal arising from the excitation on the underlying paste when analysing thin-lead glazing was evaluated, allowing ensuring the suitable of the analytical procedures. A distinction was found between different types of majolica by the composition of the lead tin glaze enamel and by the presence of other elements in the blue, black and orange decoration

  6. Generic Properties of Random Gene Regulatory Networks.

    Science.gov (United States)

    Li, Zhiyuan; Bianco, Simone; Zhang, Zhaoyang; Tang, Chao

    2013-12-01

    Modeling gene regulatory networks (GRNs) is an important topic in systems biology. Although there has been much work focusing on various specific systems, the generic behavior of GRNs with continuous variables is still elusive. In particular, it is not clear typically how attractors partition among the three types of orbits: steady state, periodic and chaotic, and how the dynamical properties change with network's topological characteristics. In this work, we first investigated these questions in random GRNs with different network sizes, connectivity, fraction of inhibitory links and transcription regulation rules. Then we searched for the core motifs that govern the dynamic behavior of large GRNs. We show that the stability of a random GRN is typically governed by a few embedding motifs of small sizes, and therefore can in general be understood in the context of these short motifs. Our results provide insights for the study and design of genetic networks.

  7. UKIRAN KERAWANG ACEH GAYO SEBAGAI INSPIRASI PENCIPTAAN MOTIF BATIK KHAS GAYO

    Directory of Open Access Journals (Sweden)

    Irfa ina Rohana Salma

    2016-12-01

    Full Text Available ABSTRAK Industri batik mulai berkembang di Gayo, tetapi belum memiliki motif batik khas daerah. Oleh karena itu perlu diciptakan motif batik khas Gayo, dengan mengambil inspirasi dari ukiran yang terdapat pada rumah tradisional yang biasa disebut ukiran kerawang Gayo. Tujuan penciptaan seni ini adalah untuk menciptakan motif batik yang memiliki ciri khas Gayo. Metode yang digunakan yaitu eksplorasi ide, perancangan, dan perwujudan menjadi motif batik. Dalam kegiatan ini telah diciptakan enam motif batik khas Gayo yaitu: (1 Motif Ceplok Gayo; (2 Motif Gayo Tegak; (3 Motif Gayo Lurus; (4 Motif Parang Gayo; (5 Motif Gayo Lembut; dan (6 Motif Geometris Gayo. Hasil uji kesukaan terhadap motif kepada lima puluh responden menunjukkan bahwa Motif Ceplok Gayo paling banyak dipilih oleh responden yaitu sebesar 19%, sedangkan Motif Parang Gayo 18%, Motif Gayo Lembut 17%, Motif Geometris Gayo 17%, Motif Gayo Lurus 15% dan Motif Gayo Tegak 14%. Rata-rata motif yang dihasilkan mendapatkan apresiasi yang baik dari responden, sehingga semua motif layak diproduksi sebagai batik khas Gayo.Kata kunci: batik Gayo, Motif Ceplok Gayo, Motif Parang Gayo.ABSTRACTBatik industry began to develop in Gayo, but have not had a typical batik motif itself. Therefore, it is necessary to create batik motifs of Gayo, by taking inspiration from the carvings found in traditional houses commonly called kerawang Gayo. The purpose of this art is to create motifs those have a Gayo characteristic. The method used are the idea exploration, design, and motifs embodiment. In this activity has created six Gayo batik motifs, namely: (1 Motif Ceplok Gayo; (2 Motif Gayo Tegak; (3 Motif GayoLurus; (4 Motif Parang Gayo; (5 Motif Gayo Lembut; dan (6 Motif Geometris Gayo. The test results fondness of the motives to fifty respondents indicated that the Motif Ceplok Gayo most preferred by respondents ie 19%, while Motif Parang Gayo 18%, Motif Gayo Lembut 17%, Motif Geometris Gayo 17%, Motif Gayo

  8. Dystroglycan versatility in cell adhesion: a tale of multiple motifs

    Directory of Open Access Journals (Sweden)

    Winder Steve J

    2010-02-01

    Full Text Available Abstract Dystroglycan is a ubiquitously expressed heterodimeric adhesion receptor. The extracellular α-subunit makes connections with a number of laminin G domain ligands including laminins, agrin and perlecan in the extracellular matrix and the transmembrane β-subunit makes connections to the actin filament network via cytoskeletal linkers including dystrophin, utrophin, ezrin and plectin, depending on context. Originally discovered as part of the dystrophin glycoprotein complex of skeletal muscle, dystroglycan is an important adhesion molecule and signalling scaffold in a multitude of cell types and tissues and is involved in several diseases. Dystroglycan has emerged as a multifunctional adhesion platform with many interacting partners associating with its short unstructured cytoplasmic domain. Two particular hotspots are the cytoplasmic juxtamembrane region and at the very carboxy terminus of dystroglycan. Regions which between them have several overlapping functions: in the juxtamembrane region; a nuclear localisation signal, ezrin/radixin/moesin protein, rapsyn and ERK MAP Kinase binding function, and at the C terminus a regulatory tyrosine governing WW, SH2 and SH3 domain interactions. We will discuss the binding partners for these motifs and how their interactions and regulation can modulate the involvement of dystroglycan in a range of different adhesion structures and functions depending on context. Thus dystroglycan presents as a multifunctional scaffold involved in adhesion and adhesion-mediated signalling with its functions under exquisite spatio-temporal regulation.

  9. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    Science.gov (United States)

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  10. Structural Diversity in Conserved Regions Like the DRY-Motif among Viral 7TM Receptors-A Consequence of Evolutionary Pressure?

    DEFF Research Database (Denmark)

    Mølleskov-Jensen, Ann-Sofie; Sparre-Ulrich, Alexander Hovard; Davis-Poynter, Nicholas

    2012-01-01

    Several herpes- and poxviruses have captured chemokine receptors from their hosts and modified these to their own benefit. The human and viral chemokine receptors belong to class A 7 transmembrane (TM) receptors which are characterized by several structural motifs like the DRY-motif in TM3...... and the C-terminal tail. In the DRY-motif, the arginine residue serves important purposes by being directly involved in G protein coupling. Interestingly, among the viral receptors there is a greater diversity in the DRY-motif compared to their endogenous receptor homologous. The C-terminal receptor tail...... constitutes another regulatory region that through a number of phosphorylation sites is involved in signaling, desensitization, and internalization. Also this region is more variable among virus-encoded 7TM receptors compared to human class A receptors. In this review we will focus on these two structural...

  11. Structural motifs of pre-nucleation clusters.

    Science.gov (United States)

    Zhang, Y; Türkmen, I R; Wassermann, B; Erko, A; Rühl, E

    2013-10-07

    Structural motifs of pre-nucleation clusters prepared in single, optically levitated supersaturated aqueous aerosol microparticles containing CaBr2 as a model system are reported. Cluster formation is identified by means of X-ray absorption in the Br K-edge regime. The salt concentration beyond the saturation point is varied by controlling the humidity in the ambient atmosphere surrounding the 15-30 μm microdroplets. This leads to the formation of metastable supersaturated liquid particles. Distinct spectral shifts in near-edge spectra as a function of salt concentration are observed, in which the energy position of the Br K-edge is red-shifted by up to 7.1 ± 0.4 eV if the dilute solution is compared to the solid. The K-edge positions of supersaturated solutions are found between these limits. The changes in electronic structure are rationalized in terms of the formation of pre-nucleation clusters. This assumption is verified by spectral simulations using first-principle density functional theory and molecular dynamics calculations, in which structural motifs are considered, explaining the experimental results. These consist of solvated CaBr2 moieties, rather than building blocks forming calcium bromide hexahydrates, the crystal system that is formed by drying aqueous CaBr2 solutions.

  12. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Science.gov (United States)

    Oliveira, Graziele Pereira; Andrade, Ana Cláudia dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Arantes, Thalita Souza; Boratto, Paulo Victor Miranda; Silva, Ludmila Karen dos Santos; Dornas, Fábio Pio; Trindade, Giliane de Souza; Drumond, Betânia Paiva; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2017-01-01

    For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations. PMID:28117683

  13. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Graziele Pereira Oliveira

    2017-01-01

    Full Text Available For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV, raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’ that could be evolved gradually by nucleotides’ gain and loss and point mutations.

  14. Regulatory guidance document

    International Nuclear Information System (INIS)

    1994-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) Program Management System Manual requires preparation of the OCRWM Regulatory Guidance Document (RGD) that addresses licensing, environmental compliance, and safety and health compliance. The document provides: regulatory compliance policy; guidance to OCRWM organizational elements to ensure a consistent approach when complying with regulatory requirements; strategies to achieve policy objectives; organizational responsibilities for regulatory compliance; guidance with regard to Program compliance oversight; and guidance on the contents of a project-level Regulatory Compliance Plan. The scope of the RGD includes site suitability evaluation, licensing, environmental compliance, and safety and health compliance, in accordance with the direction provided by Section 4.6.3 of the PMS Manual. Site suitability evaluation and regulatory compliance during site characterization are significant activities, particularly with regard to the YW MSA. OCRWM's evaluation of whether the Yucca Mountain site is suitable for repository development must precede its submittal of a license application to the Nuclear Regulatory Commission (NRC). Accordingly, site suitability evaluation is discussed in Chapter 4, and the general statements of policy regarding site suitability evaluation are discussed in Section 2.1. Although much of the data and analyses may initially be similar, the licensing process is discussed separately in Chapter 5. Environmental compliance is discussed in Chapter 6. Safety and Health compliance is discussed in Chapter 7

  15. Parole, Sintagmatik, dan Paradigmatik Motif Batik Mega Mendung

    Directory of Open Access Journals (Sweden)

    Rudi - Nababan

    2012-04-01

    Full Text Available ABSTRACT   Discussing traditional batik is related a lot to the organization system of fine arts element ac- companying it, either the pattern of the motif or the technique of the making. In this case, the motif of Mega Mendung Cirebon certainly has patterns and rules which are traditionally different from the other motifs in other areas. Through  semiotics analysis especially with Saussure and Pierce concept, it can be traced that batik with Cirebon motif, in this case Mega Mendung motif, has parole and langue system, as unique fine arts language in batik, and structure of visual syntagmatic and paradigmatic. In the context of batik motif as fine arts language, it is surely related to sign system as symbol and icon.       Keywords: visual semiotic, Cirebon’s batik.

  16. Managing Regulatory Body Competence

    International Nuclear Information System (INIS)

    2013-01-01

    In 2001, the IAEA published TECDOC 1254, which examined the way in which the recognized functions of a regulatory body for nuclear facilities results in competence needs. Using the systematic approach to training (SAT), TECDOC 1254 provided a framework for regulatory bodies for managing training and developing and their maintaining their competence. It has been successfully used by many regulators. The IAEA has also introduced a methodology and an assessment tool - Guidelines for Systematic Assessment of Regulatory Competence Needs (SARCoN) - which provides practical guidance on analysing the training and development needs of a regulatory body and, through a gap analysis, guidance on establishing competence needs and how to meet them. In 2009, the IAEA established a steering committee (supported by a bureau) with the mission to advise the IAEA on how it could best assist Member States to develop suitable competence management systems for their regulatory bodies. The committee recommended the development of a safety report on managing staff competence as an integral part of a regulatory body's management system. This Safety Report was developed in response to this request. It supersedes TECDOC 1254, broadens its application to regulatory bodies for all facilities and activities, and builds upon the experience gained through the application of TECDOC 1254 and SARCoN and the feedback received from Member States. This Safety Report applies to the management of adequate competence as needs change, and as such is equally applicable to the needs of States 'embarking' on a nuclear power programme. It also deals with the special case of building up the competence of regulatory bodies as part of the overall process of establishing an 'embarking' State's regulatory system

  17. Crystallization and preliminary X-ray diffraction analysis of motif N from Saccharomyces cerevisiae Dbf4

    International Nuclear Information System (INIS)

    Matthews, Lindsay A.; Duong, Andrew; Prasad, Ajai A.; Duncker, Bernard P.; Guarné, Alba

    2009-01-01

    To understand the role of the Cdc7–Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. The Cdc7–Dbf4 complex plays an instrumental role in the initiation of DNA replication and is a target of replication-checkpoint responses in Saccharomyces cerevisiae. Cdc7 is a conserved serine/threonine kinase whose activity depends on association with its regulatory subunit, Dbf4. A conserved sequence near the N-terminus of Dbf4 (motif N) is necessary for the interaction of Cdc7–Dbf4 with the checkpoint kinase Rad53. To understand the role of the Cdc7–Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. A complete native data set was collected at 100 K from crystals that diffracted X-rays to 2.75 Å resolution and structure determination is currently under way

  18. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    Full Text Available Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are 'structural' (induced subgraphs and 'functional' (partial subgraphs. Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.

  19. The MARVEL transmembrane motif of occludin mediates oligomerization and targeting to the basolateral surface in epithelia.

    Science.gov (United States)

    Yaffe, Yakey; Shepshelovitch, Jeanne; Nevo-Yassaf, Inbar; Yeheskel, Adva; Shmerling, Hedva; Kwiatek, Joanna M; Gaus, Katharina; Pasmanik-Chor, Metsada; Hirschberg, Koret

    2012-08-01

    Occludin (Ocln), a MARVEL-motif-containing protein, is found in all tight junctions. MARVEL motifs are comprised of four transmembrane helices associated with the localization to or formation of diverse membrane subdomains by interacting with the proximal lipid environment. The functions of the Ocln MARVEL motif are unknown. Bioinformatics sequence- and structure-based analyses demonstrated that the MARVEL domain of Ocln family proteins has distinct evolutionarily conserved sequence features that are consistent with its basolateral membrane localization. Live-cell microscopy, fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) were used to analyze the intracellular distribution and self-association of fluorescent-protein-tagged full-length human Ocln or the Ocln MARVEL motif excluding the cytosolic C- and N-termini (amino acids 60-269, FP-MARVEL-Ocln). FP-MARVEL-Ocln efficiently arrived at the plasma membrane (PM) and was sorted to the basolateral PM in filter-grown polarized MDCK cells. A series of conserved aromatic amino acids within the MARVEL domain were found to be associated with Ocln dimerization using BiFC. FP-MARVEL-Ocln inhibited membrane pore growth during Triton-X-100-induced solubilization and was shown to increase the membrane-ordered state using Laurdan, a lipid dye. These data demonstrate that the Ocln MARVEL domain mediates self-association and correct sorting to the basolateral membrane.

  20. Rekayasa Pengembangan Desain Motif Batik Khas Melayu

    Directory of Open Access Journals (Sweden)

    Eustasia Sri Murwati

    2016-04-01

    Full Text Available ABSTRAKPengembangan desain batik melalui rancang bangun perekayasaan desain menurut ragam hias Melayu meliputi pengembangan motif dan proses, termasuk pemilihan komposisi warna. Proses yang sering dilakukan yaitu proses celup, penghilangan lilin dan celup warna tumpangan atau proses colet, celup, penghilangan lilin atau celup kemudian penghilangan lilin yang disebut Batik Kelengan. Setiap pulau di Indonesia mempunyai ciri khas budaya dan kesenian yang dikenal dengan corak/ragam hias khas daerah, juga ornamen yang diminati oleh masyarakat dari daerah tersebut atau dari daerah lain. Kondisi demikian mendorong pertumbuhan industri kerajinan yang memanfaatkan unsur–unsur seni. Adapun motif yang diperoleh adalah: Ayam Berlaga, Bungo Matahari, Kuntum Bersanding, Lancang Kuning, Encong Kerinci, Durian Pecah, Bungo Bintang, Bungo Pauh Kecil, Riang-riang, Bungo Nagaro. Pengembangan desain tersebut dipilih 3 produk terbaik yang dinilai oleh 5 penilai yang ahli di bidang desain batik, yaitu motif Durian Pecah, Ayam Berlaga, dan Bungo Matahari. Rancang bangun diversifikasi desain dengan memanfaatkan unsur–unsur seni dan ketrampilan etnis Melayu yaitu pemilihan ragam hias dan motif batik Melayu untuk diterapkan ke bahan sandang dengan komposisi warna yang menarik, sehingga produk memenuhi selera konsumen. Memperbaiki keberagaman batik dengan meningkatkan desain produk antara lain menuangkan ragam hias Melayu ke dalam proses batik yang menggunakan berbagai macam warna sehingga komposisi warna memadai. Diperoleh hasil produk batik dengan ragam hias Melayu yang berkualitas dan komposisi warna yang sesuai dengan karakter ragam hias Melayu. Rancang bangun desain produk untuk mendapatkan formulasi desain serta kelayakan prosesnya dengan penekanan pada teknologi akrab lingkungan dilaksanakan dengan alternatif pendekatan yaitu penciptaan desain bentuk baru.Kata kunci: desain, batik, rancang bangun, ragam hias, MelayuABSTRACTDevelopment of batik design through

  1. Transnationalism as a motif in family stories.

    Science.gov (United States)

    Stone, Elizabeth; Gomez, Erica; Hotzoglou, Despina; Lipnitsky, Jane Y

    2005-12-01

    Family stories have long been recognized as a vehicle for assessing components of a family's emotional and social life, including the degree to which an immigrant family has been willing to assimilate. Transnationalism, defined as living in one or more cultures and maintaining connections to both, is now increasingly common. A qualitative study of family stories in the family of those who appear completely "American" suggests that an affiliation with one's home country is nevertheless detectable in the stories via motifs such as (1) positively connotated home remedies, (2) continuing denigration of home country "enemies," (3) extensive knowledge of the home country history and politics, (4) praise of endogamy and negative assessment of exogamy, (5) superiority of home country to America, and (6) beauty of home country. Furthermore, an awareness of which model--assimilationist or transnational--governs a family's experience may help clarify a clinician's understanding of a family's strengths, vulnerabilities, and mode of framing their cultural experiences.

  2. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Hanke, S.; Hinsby, A. M.

    2008-01-01

    set of 481 unique phosphotyrosine (Tyr(P)) peptides by sequence similarity to known ligands of the Src homology 2 (SH2) and the phosphotyrosine binding (PTB) domains. From 20 clusters we extracted 16 known and four new interaction motifs. Using quantitative mass spectrometry we pulled down Tyr......(P)-specific binding partners for peptides corresponding to the extracted motifs. We confirmed numerous previously known interaction motifs and found 15 new interactions mediated by phosphosites not previously known to bind SH2 or PTB. Remarkably, a novel hydrophobic N-terminal motif ((L/V/I)(L/V/I)pY) was identified...

  3. DNA mutation motifs in the genes associated with inherited diseases.

    Directory of Open Access Journals (Sweden)

    Michal Růžička

    Full Text Available Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs rarely associated with mutations (coldspots and frequently associated with mutations (hotspots exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.

  4. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection.

    Directory of Open Access Journals (Sweden)

    Yoichiro Shibata

    2012-06-01

    Full Text Available Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species.

  5. Assessing local structure motifs using order parameters for motif recognition, interstitial identification, and diffusion path characterization

    Science.gov (United States)

    Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; Haranczyk, Maciej

    2017-11-01

    Structure-property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal closed packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  6. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    Directory of Open Access Journals (Sweden)

    Nils E. R. Zimmermann

    2017-11-01

    Full Text Available Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP database (61,422 compounds for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  7. Probing structural changes of self assembled i-motif DNA

    KAUST Repository

    Lee, Iljoon; Patil, Sachin; Fhayli, Karim; Alsaiari, Shahad K.; Khashab, Niveen M.

    2015-01-01

    We report an i-motif structural probing system based on Thioflavin T (ThT) as a fluorescent sensor. This probe can discriminate the structural changes of RET and Rb i-motif sequences according to pH change. This journal is

  8. RNA recognition motif (RRM)-containing proteins in Bombyx mori

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... Recognition Motif (RRM), sometimes referred to as. RNP1, is one of the first identified domains for RNA interaction. RRM is very common ..... Apart from the RRM motif, eIF3-S9 has a Trp-Asp. (WD) repeat domain, Poly (A) ...

  9. BlockLogo: Visualization of peptide and sequence motif conservation

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian

    2013-01-01

    BlockLogo is a web-server application for the visualization of protein and nucleotide fragments, continuous protein sequence motifs, and discontinuous sequence motifs using calculation of block entropy from multiple sequence alignments. The user input consists of a multiple sequence alignment, se...

  10. Fingerprint motifs of phytases | Fan | African Journal of Biotechnology

    African Journals Online (AJOL)

    Among the total of potential 173 phytases gained in 11 plant genomes through MAST, PAPhys are the major phytases, and HAPhys are the minor, and other phytase groups are not found in planta. Keywords: Phytase, fingerprint motif, multiple EM for motif elicitation (MEME), MAST African Journal of Biotechnology Vol.

  11. Identification of sequence motifs significantly associated with antisense activity

    Directory of Open Access Journals (Sweden)

    Peek Andrew S

    2007-06-01

    Full Text Available Abstract Background Predicting the suppression activity of antisense oligonucleotide sequences is the main goal of the rational design of nucleic acids. To create an effective predictive model, it is important to know what properties of an oligonucleotide sequence associate significantly with antisense activity. Also, for the model to be efficient we must know what properties do not associate significantly and can be omitted from the model. This paper will discuss the results of a randomization procedure to find motifs that associate significantly with either high or low antisense suppression activity, analysis of their properties, as well as the results of support vector machine modelling using these significant motifs as features. Results We discovered 155 motifs that associate significantly with high antisense suppression activity and 202 motifs that associate significantly with low suppression activity. The motifs range in length from 2 to 5 bases, contain several motifs that have been previously discovered as associating highly with antisense activity, and have thermodynamic properties consistent with previous work associating thermodynamic properties of sequences with their antisense activity. Statistical analysis revealed no correlation between a motif's position within an antisense sequence and that sequences antisense activity. Also, many significant motifs existed as subwords of other significant motifs. Support vector regression experiments indicated that the feature set of significant motifs increased correlation compared to all possible motifs as well as several subsets of the significant motifs. Conclusion The thermodynamic properties of the significantly associated motifs support existing data correlating the thermodynamic properties of the antisense oligonucleotide with antisense efficiency, reinforcing our hypothesis that antisense suppression is strongly associated with probe/target thermodynamics, as there are no enzymatic

  12. An efficient identification strategy of clonal tea cultivars using long-core motif SSR markers.

    Science.gov (United States)

    Wang, Rang Jian; Gao, Xiang Feng; Kong, Xiang Rui; Yang, Jun

    2016-01-01

    Microsatellites, or simple sequence repeats (SSRs), especially those with long-core motifs (tri-, tetra-, penta-, and hexa-nucleotide) represent an excellent tool for DNA fingerprinting. SSRs with long-core motifs are preferred since neighbor alleles are more easily separated and identified from each other, which render the interpretation of electropherograms and the true alleles more reliable. In the present work, with the purpose of characterizing a set of core SSR markers with long-core motifs for well fingerprinting clonal cultivars of tea (Camellia sinensis), we analyzed 66 elite clonal tea cultivars in China with 33 initially-chosen long-core motif SSR markers covering all the 15 linkage groups of tea plant genome. A set of 6 SSR markers were conclusively selected as core SSR markers after further selection. The polymorphic information content (PIC) of the core SSR markers was >0.5, with ≤5 alleles in each marker containing 10 or fewer genotypes. Phylogenetic analysis revealed that the core SSR markers were not strongly correlated with the trait 'cultivar processing-property'. The combined probability of identity (PID) between two random cultivars for the whole set of 6 SSR markers was estimated to be 2.22 × 10(-5), which was quite low, confirmed the usefulness of the proposed SSR markers for fingerprinting analyses in Camellia sinensis. Moreover, for the sake of quickly discriminating the clonal tea cultivars, a cultivar identification diagram (CID) was subsequently established using these core markers, which fully reflected the identification process and provided the immediate information about which SSR markers were needed to identify a cultivar chosen among the tested ones. The results suggested that long-core motif SSR markers used in the investigation contributed to the accurate and efficient identification of the clonal tea cultivars and enabled the protection of intellectual property.

  13. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1994-01-01

    -regulation of the TCR. Furthermore, analysis of a series of CD3 gamma truncation mutants indicated that in addition to S126 phosphorylation a motif C-terminal of S126 was required for TCR down-regulation. Point mutation analyses confirmed this observation and demonstrated that a membrane-proximal di-leucine motif (L131......, indicating that the TCR was down-regulated by endocytosis via clathrin coated pits. Based on the present results and previously published observations on intracellular receptor sorting, a general model for intracellular sorting of receptors containing di-leucine- or tyrosine-based motifs is proposed....

  14. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  15. Sequence-specific high mobility group box factors recognize 10-12-base pair minor groove motifs

    DEFF Research Database (Denmark)

    van Beest, M; Dooijes, D; van De Wetering, M

    2000-01-01

    Sequence-specific high mobility group (HMG) box factors bind and bend DNA via interactions in the minor groove. Three-dimensional NMR analyses have provided the structural basis for this interaction. The cognate HMG domain DNA motif is generally believed to span 6-8 bases. However, alignment...

  16. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data

    Directory of Open Access Journals (Sweden)

    de los Reyes Benildo G

    2008-04-01

    Full Text Available Abstract Background Integrating data from multiple global assays and curated databases is essential to understand the spatio-temporal interactions within cells. Different experiments measure cellular processes at various widths and depths, while databases contain biological information based on established facts or published data. Integrating these complementary datasets helps infer a mutually consistent transcriptional regulatory network (TRN with strong similarity to the structure of the underlying genetic regulatory modules. Decomposing the TRN into a small set of recurring regulatory patterns, called network motifs (NM, facilitates the inference. Identifying NMs defined by specific transcription factors (TF establishes the framework structure of a TRN and allows the inference of TF-target gene relationship. This paper introduces a computational framework for utilizing data from multiple sources to infer TF-target gene relationships on the basis of NMs. The data include time course gene expression profiles, genome-wide location analysis data, binding sequence data, and gene ontology (GO information. Results The proposed computational framework was tested using gene expression data associated with cell cycle progression in yeast. Among 800 cell cycle related genes, 85 were identified as candidate TFs and classified into four previously defined NMs. The NMs for a subset of TFs are obtained from literature. Support vector machine (SVM classifiers were used to estimate NMs for the remaining TFs. The potential downstream target genes for the TFs were clustered into 34 biologically significant groups. The relationships between TFs and potential target gene clusters were examined by training recurrent neural networks whose topologies mimic the NMs to which the TFs are classified. The identified relationships between TFs and gene clusters were evaluated using the following biological validation and statistical analyses: (1 Gene set enrichment

  17. Nencki Genomics Database--Ensembl funcgen enhanced with intersections, user data and genome-wide TFBS motifs.

    Science.gov (United States)

    Krystkowiak, Izabella; Lenart, Jakub; Debski, Konrad; Kuterba, Piotr; Petas, Michal; Kaminska, Bozena; Dabrowski, Michal

    2013-01-01

    We present the Nencki Genomics Database, which extends the functionality of Ensembl Regulatory Build (funcgen) for the three species: human, mouse and rat. The key enhancements over Ensembl funcgen include the following: (i) a user can add private data, analyze them alongside the public data and manage access rights; (ii) inside the database, we provide efficient procedures for computing intersections between regulatory features and for mapping them to the genes. To Ensembl funcgen-derived data, which include data from ENCODE, we add information on conserved non-coding (putative regulatory) sequences, and on genome-wide occurrence of transcription factor binding site motifs from the current versions of two major motif libraries, namely, Jaspar and Transfac. The intersections and mapping to the genes are pre-computed for the public data, and the result of any procedure run on the data added by the users is stored back into the database, thus incrementally increasing the body of pre-computed data. As the Ensembl funcgen schema for the rat is currently not populated, our database is the first database of regulatory features for this frequently used laboratory animal. The database is accessible without registration using the mysql client: mysql -h database.nencki-genomics.org -u public. Registration is required only to add or access private data. A WSDL webservice provides access to the database from any SOAP client, including the Taverna Workbench with a graphical user interface.

  18. Motif statistics and spike correlations in neuronal networks

    International Nuclear Information System (INIS)

    Hu, Yu; Shea-Brown, Eric; Trousdale, James; Josić, Krešimir

    2013-01-01

    Motifs are patterns of subgraphs of complex networks. We studied the impact of such patterns of connectivity on the level of correlated, or synchronized, spiking activity among pairs of cells in a recurrent network of integrate and fire neurons. For a range of network architectures, we find that the pairwise correlation coefficients, averaged across the network, can be closely approximated using only three statistics of network connectivity. These are the overall network connection probability and the frequencies of two second order motifs: diverging motifs, in which one cell provides input to two others, and chain motifs, in which two cells are connected via a third intermediary cell. Specifically, the prevalence of diverging and chain motifs tends to increase correlation. Our method is based on linear response theory, which enables us to express spiking statistics using linear algebra, and a resumming technique, which extrapolates from second order motifs to predict the overall effect of coupling on network correlation. Our motif-based results seek to isolate the effect of network architecture perturbatively from a known network state. (paper)

  19. Triadic motifs in the dependence networks of virtual societies

    Science.gov (United States)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  20. RNA motif search with data-driven element ordering.

    Science.gov (United States)

    Rampášek, Ladislav; Jimenez, Randi M; Lupták, Andrej; Vinař, Tomáš; Brejová, Broňa

    2016-05-18

    In this paper, we study the problem of RNA motif search in long genomic sequences. This approach uses a combination of sequence and structure constraints to uncover new distant homologs of known functional RNAs. The problem is NP-hard and is traditionally solved by backtracking algorithms. We have designed a new algorithm for RNA motif search and implemented a new motif search tool RNArobo. The tool enhances the RNAbob descriptor language, allowing insertions in helices, which enables better characterization of ribozymes and aptamers. A typical RNA motif consists of multiple elements and the running time of the algorithm is highly dependent on their ordering. By approaching the element ordering problem in a principled way, we demonstrate more than 100-fold speedup of the search for complex motifs compared to previously published tools. We have developed a new method for RNA motif search that allows for a significant speedup of the search of complex motifs that include pseudoknots. Such speed improvements are crucial at a time when the rate of DNA sequencing outpaces growth in computing. RNArobo is available at http://compbio.fmph.uniba.sk/rnarobo .

  1. Triadic motifs in the dependence networks of virtual societies.

    Science.gov (United States)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-10

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  2. Homeric Motifs in Cavafy’s Poem »Priam’s Night Journey«

    Directory of Open Access Journals (Sweden)

    Dragica Fabjan Andritsakos

    2016-12-01

    Full Text Available The paper discusses Homeric motifs in ‘Priam’s Night Journey’, a poem by the contemporary Greek poet Constantine P. Cavafy and, more precisely, one of the ten poems composed by Cavafy on mythological themes. The discussion begins by comparing Cavafy’s treatment of a motif from the Iliad, Canto 24 – Priam’s journey to Achilles – with its ancient counterpart. The question of Cavafy’s sources is addressed as well: does the poet draw on the Ancient Greek original or on the Modern Greek translation? The second part of the article analyses in detail those passages which closely lean on the ancient epic, and concludes by illustrating Cavafy’s departure from the myth, which emerges most radically in the close of the poem.

  3. A Study on the Motif Pattern of Dark-Cloud Cover in the Securities

    Directory of Open Access Journals (Sweden)

    Long Jing

    2017-01-01

    Full Text Available Morphological analysis is the analysis and mining of the graphics formed of the securities price changes. Investors need to forecast the trend of future before buying and selling points, which can avoid great loss. Therefore, the analysis of motif pattern of K-line in the form of futures investment technology analysis is very significant. Based on the thoughts of short-term trend clustering, this paper proposes a method of detecting the motif pattern of Dark-Cloud Cover in stock time series by analysing stock historic data and K-line shape, in order to predict the stock market trends. And we prove the effectiveness and practicality of the method by a series of experimental analysis.

  4. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    Science.gov (United States)

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.

  5. Targeting functional motifs of a protein family

    Science.gov (United States)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  6. ROMANIAN FOLKLORE MOTIFS IN FASHION DESIGN

    Directory of Open Access Journals (Sweden)

    MOCENCO Alexandra

    2014-05-01

    Full Text Available The traditional Romanian costume such as the entire popular art (architecture, woodcarvins, pottery etc. was born and lasted in our country since ancient times. Closely related to human existence, the traditional costume reflected over the years as reflected nowadays, the mentality and artistic conception of the people. Today the traditional Romanian costume became an inspiration source to the wholesale fashion production industry designers, both Romanian and international. Although the contemporary designers are working in accordance with a vision, using a wide area of styles, methods and current technology, they usually return to traditional techniques and ethnic folklore motifs, which converts and resize them, integrating them in their contemporary space. Adrian Oianu is a very appreciated Romanian designer who launched two collections inspired by his native’s country traditional costumes: “Suflecata pan’ la brau” (“Turned up ‘til the belt” and “Bucurie” (“Joy”. Dorin Negrau had as inspiration for his “Lost” collection the traditional costume from the Bihor region. Yves Saint Laurent had a collection inspired by the Romanian traditional flax blouses called “La blouse roumaine”. The paper presents the traditional Romanian values throw fashion collections. The research activity will create innovative concepts to support the garment industry in order to develop their own brand and to bring the design activities in Romania at an international level. The research was conducted during the initial stage of a project, financed through national founds, consisting in a documentary study on ethnographic characteristics of the popular costume from different regions of the country.

  7. Review article: The mountain motif in the plot of Matthew

    Directory of Open Access Journals (Sweden)

    Gert J. Volschenk

    2010-09-01

    Full Text Available This article reviewed T.L. Donaldson’s book, Jesus on the mountain: A study in Matthean theology, published in 1985 by JSOT Press, Sheffield, and focused on the mountain motif in the structure and plot of the Gospel of Matthew, in addition to the work of Donaldson on the mountain motif as a literary motif and as theological symbol. The mountain is a primary theological setting for Jesus’ ministry and thus is an important setting, serving as one of the literary devices by which Matthew structured and progressed his narrative. The Zion theological and eschatological significance and Second Temple Judaism serve as the historical and theological background for the mountain motif. The last mountain setting (Mt 28:16–20 is the culmination of the three theological themes in the plot of Matthew, namely Christology, ecclesiology and salvation history.

  8. Methods and statistics for combining motif match scores.

    Science.gov (United States)

    Bailey, T L; Gribskov, M

    1998-01-01

    Position-specific scoring matrices are useful for representing and searching for protein sequence motifs. A sequence family can often be described by a group of one or more motifs, and an effective search must combine the scores for matching a sequence to each of the motifs in the group. We describe three methods for combining match scores and estimating the statistical significance of the combined scores and evaluate the search quality (classification accuracy) and the accuracy of the estimate of statistical significance of each. The three methods are: 1) sum of scores, 2) sum of reduced variates, 3) product of score p-values. We show that method 3) is superior to the other two methods in both regards, and that combining motif scores indeed gives better search accuracy. The MAST sequence homology search algorithm utilizing the product of p-values scoring method is available for interactive use and downloading at URL http:/(/)www.sdsc.edu/MEME.

  9. PlantCARE, a plant cis-acting regulatory element database

    OpenAIRE

    Rombauts, Stephane; Déhais, Patrice; Van Montagu, Marc; Rouzé, Pierre

    1999-01-01

    PlantCARE is a database of plant cis- acting regulatory elements, enhancers and repressors. Besides the transcription motifs found on a sequence, it also offers a link to the EMBL entry that contains the full gene sequence as well as a description of the conditions in which a motif becomes functional. The information on these sites is given by matrices, consensus and individual site sequences on particular genes, depending on the available information. PlantCARE is a relational database avail...

  10. Regulatory Anatomy

    DEFF Research Database (Denmark)

    Hoeyer, Klaus

    2015-01-01

    This article proposes the term “safety logics” to understand attempts within the European Union (EU) to harmonize member state legislation to ensure a safe and stable supply of human biological material for transplants and transfusions. With safety logics, I refer to assemblages of discourses, le...... they arise. In short, I expose the regulatory anatomy of the policy landscape....

  11. Regulatory Governance

    DEFF Research Database (Denmark)

    Kjær, Poul F.; Vetterlein, Antje

    2018-01-01

    Regulatory governance frameworks have become essential building blocks of world society. From supply chains to the regimes surrounding international organizations, extensive governance frameworks have emerged which structure and channel a variety of social exchanges, including economic, political...... by the International Transitional Administrations (ITAs) in Kosovo and Iraq as well as global supply chains and their impact on the garment industry in Bangladesh....

  12. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  13. BEAM web server: a tool for structural RNA motif discovery.

    Science.gov (United States)

    Pietrosanto, Marco; Adinolfi, Marta; Casula, Riccardo; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2018-03-15

    RNA structural motif finding is a relevant problem that becomes computationally hard when working on high-throughput data (e.g. eCLIP, PAR-CLIP), often represented by thousands of RNA molecules. Currently, the BEAM server is the only web tool capable to handle tens of thousands of RNA in input with a motif discovery procedure that is only limited by the current secondary structure prediction accuracies. The recently developed method BEAM (BEAr Motifs finder) can analyze tens of thousands of RNA molecules and identify RNA secondary structure motifs associated to a measure of their statistical significance. BEAM is extremely fast thanks to the BEAR encoding that transforms each RNA secondary structure in a string of characters. BEAM also exploits the evolutionary knowledge contained in a substitution matrix of secondary structure elements, extracted from the RFAM database of families of homologous RNAs. The BEAM web server has been designed to streamline data pre-processing by automatically handling folding and encoding of RNA sequences, giving users a choice for the preferred folding program. The server provides an intuitive and informative results page with the list of secondary structure motifs identified, the logo of each motif, its significance, graphic representation and information about its position in the RNA molecules sharing it. The web server is freely available at http://beam.uniroma2.it/ and it is implemented in NodeJS and Python with all major browsers supported. marco.pietrosanto@uniroma2.it. Supplementary data are available at Bioinformatics online.

  14. Characterizing Motif Dynamics of Electric Brain Activity Using Symbolic Analysis

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2014-10-01

    Full Text Available Motifs are small recurring circuits of interactions which constitute the backbone of networked systems. Characterizing motif dynamics is therefore key to understanding the functioning of such systems. Here we propose a method to define and quantify the temporal variability and time scales of electroencephalogram (EEG motifs of resting brain activity. Given a triplet of EEG sensors, links between them are calculated by means of linear correlation; each pattern of links (i.e., each motif is then associated to a symbol, and its appearance frequency is analyzed by means of Shannon entropy. Our results show that each motif becomes observable with different coupling thresholds and evolves at its own time scale, with fronto-temporal sensors emerging at high thresholds and changing at fast time scales, and parietal ones at low thresholds and changing at slower rates. Finally, while motif dynamics differed across individuals, for each subject, it showed robustness across experimental conditions, indicating that it could represent an individual dynamical signature.

  15. Efficient motif finding algorithms for large-alphabet inputs

    Directory of Open Access Journals (Sweden)

    Pavlovic Vladimir

    2010-10-01

    Full Text Available Abstract Background We consider the problem of identifying motifs, recurring or conserved patterns, in the biological sequence data sets. To solve this task, we present a new deterministic algorithm for finding patterns that are embedded as exact or inexact instances in all or most of the input strings. Results The proposed algorithm (1 improves search efficiency compared to existing algorithms, and (2 scales well with the size of alphabet. On a synthetic planted DNA motif finding problem our algorithm is over 10× more efficient than MITRA, PMSPrune, and RISOTTO for long motifs. Improvements are orders of magnitude higher in the same setting with large alphabets. On benchmark TF-binding site problems (FNP, CRP, LexA we observed reduction in running time of over 12×, with high detection accuracy. The algorithm was also successful in rapidly identifying protein motifs in Lipocalin, Zinc metallopeptidase, and supersecondary structure motifs for Cadherin and Immunoglobin families. Conclusions Our algorithm reduces computational complexity of the current motif finding algorithms and demonstrate strong running time improvements over existing exact algorithms, especially in important and difficult cases of large-alphabet sequences.

  16. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    Science.gov (United States)

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology.

  17. An experimental test of a fundamental food web motif.

    Science.gov (United States)

    Rip, Jason M K; McCann, Kevin S; Lynn, Denis H; Fawcett, Sonia

    2010-06-07

    Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure-the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities.

  18. Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes.

    Science.gov (United States)

    Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C

    2009-02-01

    Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.

  19. An effective approach for annotation of protein families with low sequence similarity and conserved motifs: identifying GDSL hydrolases across the plant kingdom.

    Science.gov (United States)

    Vujaklija, Ivan; Bielen, Ana; Paradžik, Tina; Biđin, Siniša; Goldstein, Pavle; Vujaklija, Dušica

    2016-02-18

    The massive accumulation of protein sequences arising from the rapid development of high-throughput sequencing, coupled with automatic annotation, results in high levels of incorrect annotations. In this study, we describe an approach to decrease annotation errors of protein families characterized by low overall sequence similarity. The GDSL lipolytic family comprises proteins with multifunctional properties and high potential for pharmaceutical and industrial applications. The number of proteins assigned to this family has increased rapidly over the last few years. In particular, the natural abundance of GDSL enzymes reported recently in plants indicates that they could be a good source of novel GDSL enzymes. We noticed that a significant proportion of annotated sequences lack specific GDSL motif(s) or catalytic residue(s). Here, we applied motif-based sequence analyses to identify enzymes possessing conserved GDSL motifs in selected proteomes across the plant kingdom. Motif-based HMM scanning (Viterbi decoding-VD and posterior decoding-PD) and the here described PD/VD protocol were successfully applied on 12 selected plant proteomes to identify sequences with GDSL motifs. A significant number of identified GDSL sequences were novel. Moreover, our scanning approach successfully detected protein sequences lacking at least one of the essential motifs (171/820) annotated by Pfam profile search (PfamA) as GDSL. Based on these analyses we provide a curated list of GDSL enzymes from the selected plants. CLANS clustering and phylogenetic analysis helped us to gain a better insight into the evolutionary relationship of all identified GDSL sequences. Three novel GDSL subfamilies as well as unreported variations in GDSL motifs were discovered in this study. In addition, analyses of selected proteomes showed a remarkable expansion of GDSL enzymes in the lycophyte, Selaginella moellendorffii. Finally, we provide a general motif-HMM scanner which is easily accessible through

  20. 76 FR 28102 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-05-13

    ..., Probabilistic Risk Assessment Branch, Division of Risk Analysis, Office of Nuclear Regulatory Research, U.S... results of risk analyses are used to help justify regulatory action. As such, the principles, process, and... NUCLEAR REGULATORY COMMISSION [NRC-2009-0385] Notice of Issuance of Regulatory Guide AGENCY...

  1. Convulxin, a C-type lectin-like protein, inhibits HCASMCs functions via WAD-motif/integrin-αv interaction and NF-κB-independent gene suppression of GRO and IL-8

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chun-Ho; Chiang, Tin-Bin [Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City, Taiwan (China); Wang, Wen-Jeng, E-mail: wjwang@mail.cgust.edu.tw [Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City, Taiwan (China); Department of Neurological Surgery, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City, Taiwan (China)

    2017-03-15

    Convulxin (CVX), a C-type lectin-like protein (CLPs), is a potent platelet aggregation inducer. To evaluate its potential applications in angiogenic diseases, the multimeric CVX were further explored on its mode of actions toward human coronary artery smooth muscle cells (HCASMCs). The N-terminus of β-chain of CVX (CVX-β) contains a putative disintegrin-like domain with a conserved motif upon the sequence comparison with other CLPs. Importantly, native CVX had no cytotoxic activity as examined by electrophoretic pattern. A Trp-Ala–Asp (WAD)-containing octapeptide, MTWADAEK, was thereafter synthesized and analyzed in functional assays. In the case of specific integrin antagonists as positive controls, the anti-angiogenic effects of CVX on HCASMCs were investigated by series of functional analyses. CVX showed to exhibit multiple inhibitory activities toward HCASMCs proliferation, adhesion and invasion with a dose- and integrin αvβ3-dependent fashion. However, the WAD-octapeptide exerting a minor potency could also work as an active peptidomimetic. In addition, flow cytometric analysis demonstrated both the intact CVX and synthetic peptide can specifically interact with integrin-αv on HCASMCs and CVX was shown to have a down-regulatory effect on the gene expression of CXC-chemokines, such as growth-related oncogene and interleukin-8. According to nuclear factor-κB (NF-κB) p65 translocation assay and Western blotting analysis, the NF-κB activation was not involved in the signaling events of CVX-induced gene expression. In conclusion, CVX may act as a disintegrin-like protein via the interactions of WAD-motif in CVX-β with integrin-αv on HCASMCs and it also is a gene suppressor with the ability to diminish the expression of two CXC-chemokines in a NF-κB-independent manner. Indeed, more extensive investigations are needed and might create a new avenue for the development of a novel angiostatic agent. - Highlights: • The tetrameric convulxin (CVX) with WAD-motif

  2. Convulxin, a C-type lectin-like protein, inhibits HCASMCs functions via WAD-motif/integrin-αv interaction and NF-κB-independent gene suppression of GRO and IL-8

    International Nuclear Information System (INIS)

    Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng

    2017-01-01

    Convulxin (CVX), a C-type lectin-like protein (CLPs), is a potent platelet aggregation inducer. To evaluate its potential applications in angiogenic diseases, the multimeric CVX were further explored on its mode of actions toward human coronary artery smooth muscle cells (HCASMCs). The N-terminus of β-chain of CVX (CVX-β) contains a putative disintegrin-like domain with a conserved motif upon the sequence comparison with other CLPs. Importantly, native CVX had no cytotoxic activity as examined by electrophoretic pattern. A Trp-Ala–Asp (WAD)-containing octapeptide, MTWADAEK, was thereafter synthesized and analyzed in functional assays. In the case of specific integrin antagonists as positive controls, the anti-angiogenic effects of CVX on HCASMCs were investigated by series of functional analyses. CVX showed to exhibit multiple inhibitory activities toward HCASMCs proliferation, adhesion and invasion with a dose- and integrin αvβ3-dependent fashion. However, the WAD-octapeptide exerting a minor potency could also work as an active peptidomimetic. In addition, flow cytometric analysis demonstrated both the intact CVX and synthetic peptide can specifically interact with integrin-αv on HCASMCs and CVX was shown to have a down-regulatory effect on the gene expression of CXC-chemokines, such as growth-related oncogene and interleukin-8. According to nuclear factor-κB (NF-κB) p65 translocation assay and Western blotting analysis, the NF-κB activation was not involved in the signaling events of CVX-induced gene expression. In conclusion, CVX may act as a disintegrin-like protein via the interactions of WAD-motif in CVX-β with integrin-αv on HCASMCs and it also is a gene suppressor with the ability to diminish the expression of two CXC-chemokines in a NF-κB-independent manner. Indeed, more extensive investigations are needed and might create a new avenue for the development of a novel angiostatic agent. - Highlights: • The tetrameric convulxin (CVX) with WAD-motif

  3. Verification of the MOTIF code version 3.0

    International Nuclear Information System (INIS)

    Chan, T.; Guvanasen, V.; Nakka, B.W.; Reid, J.A.K.; Scheier, N.W.; Stanchell, F.W.

    1996-12-01

    As part of the Canadian Nuclear Fuel Waste Management Program (CNFWMP), AECL has developed a three-dimensional finite-element code, MOTIF (Model Of Transport In Fractured/ porous media), for detailed modelling of groundwater flow, heat transport and solute transport in a fractured rock mass. The code solves the transient and steady-state equations of groundwater flow, solute (including one-species radionuclide) transport, and heat transport in variably saturated fractured/porous media. The initial development was completed in 1985 (Guvanasen 1985) and version 3.0 was completed in 1986. This version is documented in detail in Guvanasen and Chan (in preparation). This report describes a series of fourteen verification cases which has been used to test the numerical solution techniques and coding of MOTIF, as well as demonstrate some of the MOTIF analysis capabilities. For each case the MOTIF solution has been compared with a corresponding analytical or independently developed alternate numerical solution. Several of the verification cases were included in Level 1 of the International Hydrologic Code Intercomparison Project (HYDROCOIN). The MOTIF results for these cases were also described in the HYDROCOIN Secretariat's compilation and comparison of results submitted by the various project teams (Swedish Nuclear Power Inspectorate 1988). It is evident from the graphical comparisons presented that the MOTIF solutions for the fourteen verification cases are generally in excellent agreement with known analytical or numerical solutions obtained from independent sources. This series of verification studies has established the ability of the MOTIF finite-element code to accurately model the groundwater flow and solute and heat transport phenomena for which it is intended. (author). 20 refs., 14 tabs., 32 figs

  4. Mechanisms of zero-lag synchronization in cortical motifs.

    Directory of Open Access Journals (Sweden)

    Leonardo L Gollo

    2014-04-01

    Full Text Available Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of "dynamical relaying"--a mechanism that relies on a specific network motif--has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair--a "resonance pair"--plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying from those that do not (such as the common driving triad. Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain.

  5. Phyloproteomic Analysis of 11780 Six-Residue-Long Motifs Occurrences

    Directory of Open Access Journals (Sweden)

    O. V. Galzitskaya

    2015-01-01

    Full Text Available How is it possible to find good traits for phylogenetic reconstructions? Here, we present a new phyloproteomic criterion that is an occurrence of simple motifs which can be imprints of evolution history. We studied the occurrences of 11780 six-residue-long motifs consisting of two randomly located amino acids in 97 eukaryotic and 25 bacterial proteomes. For all eukaryotic proteomes, with the exception of the Amoebozoa, Stramenopiles, and Diplomonadida kingdoms, the number of proteins containing the motifs from the first group (one of the two amino acids occurs once at the terminal position made about 20%; in the case of motifs from the second (one of two amino acids occurs one time within the pattern and third (the two amino acids occur randomly groups, 30% and 50%, respectively. For bacterial proteomes, this relationship was 10%, 27%, and 63%, respectively. The matrices of correlation coefficients between numbers of proteins where a motif from the set of 11780 motifs appears at least once in 9 kingdoms and 5 phyla of bacteria were calculated. Among the correlation coefficients for eukaryotic proteomes, the correlation between the animal and fungi kingdoms (0.62 is higher than between fungi and plants (0.54. Our study provides support that animals and fungi are sibling kingdoms. Comparison of the frequencies of six-residue-long motifs in different proteomes allows obtaining phylogenetic relationships based on similarities between these frequencies: the Diplomonadida kingdoms are more close to Bacteria than to Eukaryota; Stramenopiles and Amoebozoa are more close to each other than to other kingdoms of Eukaryota.

  6. Neutral forces acting on intragenomic variability shape the Escherichia coli regulatory network topology.

    Science.gov (United States)

    Ruths, Troy; Nakhleh, Luay

    2013-05-07

    Cis-regulatory networks (CRNs) play a central role in cellular decision making. Like every other biological system, CRNs undergo evolution, which shapes their properties by a combination of adaptive and nonadaptive evolutionary forces. Teasing apart these forces is an important step toward functional analyses of the different components of CRNs, designing regulatory perturbation experiments, and constructing synthetic networks. Although tests of neutrality and selection based on molecular sequence data exist, no such tests are currently available based on CRNs. In this work, we present a unique genotype model of CRNs that is grounded in a genomic context and demonstrate its use in identifying portions of the CRN with properties explainable by neutral evolutionary forces at the system, subsystem, and operon levels. We leverage our model against experimentally derived data from Escherichia coli. The results of this analysis show statistically significant and substantial neutral trends in properties previously identified as adaptive in origin--degree distribution, clustering coefficient, and motifs--within the E. coli CRN. Our model captures the tightly coupled genome-interactome of an organism and enables analyses of how evolutionary events acting at the genome level, such as mutation, and at the population level, such as genetic drift, give rise to neutral patterns that we can quantify in CRNs.

  7. Principal component analysis for predicting transcription-factor binding motifs from array-derived data

    Directory of Open Access Journals (Sweden)

    Vincenti Matthew P

    2005-11-01

    Full Text Available Abstract Background The responses to interleukin 1 (IL-1 in human chondrocytes constitute a complex regulatory mechanism, where multiple transcription factors interact combinatorially to transcription-factor binding motifs (TFBMs. In order to select a critical set of TFBMs from genomic DNA information and an array-derived data, an efficient algorithm to solve a combinatorial optimization problem is required. Although computational approaches based on evolutionary algorithms are commonly employed, an analytical algorithm would be useful to predict TFBMs at nearly no computational cost and evaluate varying modelling conditions. Singular value decomposition (SVD is a powerful method to derive primary components of a given matrix. Applying SVD to a promoter matrix defined from regulatory DNA sequences, we derived a novel method to predict the critical set of TFBMs. Results The promoter matrix was defined to establish a quantitative relationship between the IL-1-driven mRNA alteration and genomic DNA sequences of the IL-1 responsive genes. The matrix was decomposed with SVD, and the effects of 8 potential TFBMs (5'-CAGGC-3', 5'-CGCCC-3', 5'-CCGCC-3', 5'-ATGGG-3', 5'-GGGAA-3', 5'-CGTCC-3', 5'-AAAGG-3', and 5'-ACCCA-3' were predicted from a pool of 512 random DNA sequences. The prediction included matches to the core binding motifs of biologically known TFBMs such as AP2, SP1, EGR1, KROX, GC-BOX, ABI4, ETF, E2F, SRF, STAT, IK-1, PPARγ, STAF, ROAZ, and NFκB, and their significance was evaluated numerically using Monte Carlo simulation and genetic algorithm. Conclusion The described SVD-based prediction is an analytical method to provide a set of potential TFBMs involved in transcriptional regulation. The results would be useful to evaluate analytically a contribution of individual DNA sequences.

  8. Binding properties of SUMO-interacting motifs (SIMs) in yeast.

    Science.gov (United States)

    Jardin, Christophe; Horn, Anselm H C; Sticht, Heinrich

    2015-03-01

    Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.

  9. HOXA1 and TALE proteins display cross-regulatory interactions and form a combinatorial binding code on HOXA1 targets.

    Science.gov (United States)

    De Kumar, Bony; Parker, Hugo J; Paulson, Ariel; Parrish, Mark E; Pushel, Irina; Singh, Narendra Pratap; Zhang, Ying; Slaughter, Brian D; Unruh, Jay R; Florens, Laurence; Zeitlinger, Julia; Krumlauf, Robb

    2017-09-01

    Hoxa1 has diverse functional roles in differentiation and development. We identify and characterize properties of regions bound by HOXA1 on a genome-wide basis in differentiating mouse ES cells. HOXA1-bound regions are enriched for clusters of consensus binding motifs for HOX, PBX, and MEIS, and many display co-occupancy of PBX and MEIS. PBX and MEIS are members of the TALE family and genome-wide analysis of multiple TALE members (PBX, MEIS, TGIF, PREP1, and PREP2) shows that nearly all HOXA1 targets display occupancy of one or more TALE members. The combinatorial binding patterns of TALE proteins define distinct classes of HOXA1 targets, which may create functional diversity. Transgenic reporter assays in zebrafish confirm enhancer activities for many HOXA1-bound regions and the importance of HOX-PBX and TGIF motifs for their regulation. Proteomic analyses show that HOXA1 physically interacts on chromatin with PBX, MEIS, and PREP family members, but not with TGIF, suggesting that TGIF may have an independent input into HOXA1-bound regions. Therefore, TALE proteins appear to represent a wide repertoire of HOX cofactors, which may coregulate enhancers through distinct mechanisms. We also discover extensive auto- and cross-regulatory interactions among the Hoxa1 and TALE genes, indicating that the specificity of HOXA1 during development may be regulated though a complex cross-regulatory network of HOXA1 and TALE proteins. This study provides new insight into a regulatory network involving combinatorial interactions between HOXA1 and TALE proteins. © 2017 De Kumar et al.; Published by Cold Spring Harbor Laboratory Press.

  10. How pathogens use linear motifs to perturb host cell networks

    KAUST Repository

    Via, Allegra; Uyar, Bora; Brun, Christine; Zanzoni, Andreas

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.

  11. Discovery of candidate KEN-box motifs using cell cycle keyword enrichment combined with native disorder prediction and motif conservation.

    Science.gov (United States)

    Michael, Sushama; Travé, Gilles; Ramu, Chenna; Chica, Claudia; Gibson, Toby J

    2008-02-15

    KEN-box-mediated target selection is one of the mechanisms used in the proteasomal destruction of mitotic cell cycle proteins via the APC/C complex. While annotating the Eukaryotic Linear Motif resource (ELM, http://elm.eu.org/), we found that KEN motifs were significantly enriched in human protein entries with cell cycle keywords in the UniProt/Swiss-Prot database-implying that KEN-boxes might be more common than reported. Matches to short linear motifs in protein database searches are not, per se, significant. KEN-box enrichment with cell cycle Gene Ontology terms suggests that collectively these motifs are functional but does not prove that any given instance is so. Candidates were surveyed for native disorder prediction using GlobPlot and IUPred and for motif conservation in homologues. Among >25 strong new candidates, the most notable are human HIPK2, CHFR, CDC27, Dab2, Upf2, kinesin Eg5, DNA Topoisomerase 1 and yeast Cdc5 and Swi5. A similar number of weaker candidates were present. These proteins have yet to be tested for APC/C targeted destruction, providing potential new avenues of research.

  12. Algal MIPs, high diversity and conserved motifs.

    Science.gov (United States)

    Anderberg, Hanna I; Danielson, Jonas Å H; Johanson, Urban

    2011-04-21

    Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.

  13. Algal MIPs, high diversity and conserved motifs

    Directory of Open Access Journals (Sweden)

    Johanson Urban

    2011-04-01

    Full Text Available Abstract Background Major intrinsic proteins (MIPs also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs and GlpF-like Intrinsic Proteins (GIPs, are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.

  14. Bioinformatic analysis of cis-regulatory interactions between progesterone and estrogen receptors in breast cancer

    Directory of Open Access Journals (Sweden)

    Matloob Khushi

    2014-11-01

    Full Text Available Chromatin factors interact with each other in a cell and sequence-specific manner in order to regulate transcription and a wealth of publically available datasets exists describing the genomic locations of these interactions. Our recently published BiSA (Binding Sites Analyser database contains transcription factor binding locations and epigenetic modifications collected from published studies and provides tools to analyse stored and imported data. Using BiSA we investigated the overlapping cis-regulatory role of estrogen receptor alpha (ERα and progesterone receptor (PR in the T-47D breast cancer cell line. We found that ERα binding sites overlap with a subset of PR binding sites. To investigate further, we re-analysed raw data to remove any biases introduced by the use of distinct tools in the original publications. We identified 22,152 PR and 18,560 ERα binding sites (<5% false discovery rate with 4,358 overlapping regions among the two datasets. BiSA statistical analysis revealed a non-significant overall overlap correlation between the two factors, suggesting that ERα and PR are not partner factors and do not require each other for binding to occur. However, Monte Carlo simulation by Binary Interval Search (BITS, Relevant Distance, Absolute Distance, Jaccard and Projection tests by Genometricorr revealed a statistically significant spatial correlation of binding regions on chromosome between the two factors. Motif analysis revealed that the shared binding regions were enriched with binding motifs for ERα, PR and a number of other transcription and pioneer factors. Some of these factors are known to co-locate with ERα and PR binding. Therefore spatially close proximity of ERα binding sites with PR binding sites suggests that ERα and PR, in general function independently at the molecular level, but that their activities converge on a specific subset of transcriptional targets.

  15. Regulatory network of GATA3 in pediatric acute lymphoblastic leukemia.

    Science.gov (United States)

    Hou, Qianqian; Liao, Fei; Zhang, Shouyue; Zhang, Duyu; Zhang, Yan; Zhou, Xueyan; Xia, Xuyang; Ye, Yuanxin; Yang, Hanshuo; Li, Zhaozhi; Wang, Leiming; Wang, Xi; Ma, Zhigui; Zhu, Yiping; Ouyang, Liang; Wang, Yuelan; Zhang, Hui; Yang, Li; Xu, Heng; Shu, Yang

    2017-05-30

    GATA3 polymorphisms were reported to be significantly associated with susceptibility of pediatric B-lineage acute lymphoblastic leukemia (ALL), by impacting on GATA3 expression. We noticed that ALL-related GATA3 polymorphism located around in the tissue-specific enhancer, and significantly associated with GATA3 expression. Although the regulatory network of GATA3 has been well reported in T cells, the functional status of GATA3 is poorly understood in B-ALL. We thus conducted genome-wide gene expression association analyses to reveal expression associated genes and pathways in nine independent B-ALL patient cohorts. In B-ALL patients, 173 candidates were identified to be significantly associated with GATA3 expression, including some reported GATA3-related genes (e.g., ITM2A) and well-known tumor-related genes (e.g., STAT4). Some of the candidates exhibit tissue-specific and subtype-specific association with GATA3. Through overexpression and down-regulation of GATA3 in leukemia cell lines, several reported and novel GATA3 regulated genes were validated. Moreover, association of GATA3 expression and its targets can be impacted by SNPs (e.g., rs4894953), which locate in the potential GATA3 binding motif. Our findings suggest that GATA3 may be involved in multiple tumor-related pathways (e.g., STAT/JAK pathway) in B-ALL to impact leukemogenesis through epigenetic regulation.

  16. Genome Analysis of Conserved Dehydrin Motifs in Vascular Plants

    Directory of Open Access Journals (Sweden)

    Ahmad A. Malik

    2017-05-01

    Full Text Available Dehydrins, a large family of abiotic stress proteins, are defined by the presence of a mostly conserved motif known as the K-segment, and may also contain two other conserved motifs known as the Y-segment and S-segment. Using the dehydrin literature, we developed a sequence motif definition of the K-segment, which we used to create a large dataset of dehydrin sequences by searching the Pfam00257 dehydrin dataset and the Phytozome 10 sequences of vascular plants. A comprehensive analysis of these sequences reveals that lysine residues are highly conserved in the K-segment, while the amino acid type is often conserved at other positions. Despite the Y-segment name, the central tyrosine is somewhat conserved, but can be substituted with two other small aromatic amino acids (phenylalanine or histidine. The S-segment contains a series of serine residues, but in some proteins is also preceded by a conserved LHR sequence. In many dehydrins containing all three of these motifs the S-segment is linked to the K-segment by a GXGGRRKK motif (where X can be any amino acid, suggesting a functional linkage between these two motifs. An analysis of the sequences shows that the dehydrin architecture and several biochemical properties (isoelectric point, molecular mass, and hydrophobicity score are dependent on each other, and that some dehydrin architectures are overexpressed during certain abiotic stress, suggesting that they may be optimized for a specific abiotic stress while others are involved in all forms of dehydration stress (drought, cold, and salinity.

  17. BayesMD: flexible biological modeling for motif discovery

    DEFF Research Database (Denmark)

    Tang, Man-Hung Eric; Krogh, Anders; Winther, Ole

    2008-01-01

    We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained on trans......We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained...

  18. Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and

  19. Structure of the central RNA recognition motif of human TIA-1 at 1.95 A resolution

    International Nuclear Information System (INIS)

    Kumar, Amit O.; Swenson, Matthew C.; Benning, Matthew M.; Kielkopf, Clara L.

    2008-01-01

    T-cell-restricted intracellular antigen-1 (TIA-1) regulates alternative pre-mRNA splicing in the nucleus, and mRNA translation in the cytoplasm, by recognizing uridine-rich sequences of RNAs. As a step towards understanding RNA recognition by this regulatory factor, the X-ray structure of the central RNA recognition motif (RRM2) of human TIA-1 is presented at 1.95 A resolution. Comparison with structurally homologous RRM-RNA complexes identifies residues at the RNA interfaces that are conserved in TIA-1-RRM2. The versatile capability of RNP motifs to interact with either proteins or RNA is reinforced by symmetry-related protein-protein interactions mediated by the RNP motifs of TIA-1-RRM2. Importantly, the TIA-1-RRM2 structure reveals the locations of mutations responsible for inhibiting nuclear import. In contrast with previous assumptions, the mutated residues are buried within the hydrophobic interior of the domain, where they would be likely to destabilize the RRM fold rather than directly inhibit RNA binding

  20. Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage.

    Science.gov (United States)

    Freyre-González, Julio A; Tauch, Andreas

    2017-09-10

    Corynebacterium glutamicum is a Gram-positive, anaerobic, rod-shaped soil bacterium able to grow on a diversity of carbon sources like sugars and organic acids. It is a biotechnological relevant organism because of its highly efficient ability to biosynthesize amino acids, such as l-glutamic acid and l-lysine. Here, we reconstructed the most complete C. glutamicum regulatory network to date and comprehensively analyzed its global organizational properties, systems-level features and functional architecture. Our analyses show the tremendous power of Abasy Atlas to study the functional organization of regulatory networks. We created two models of the C. glutamicum regulatory network: all-evidences (containing both weak and strong supported interactions, genomic coverage=73%) and strongly-supported (only accounting for strongly supported evidences, genomic coverage=71%). Using state-of-the-art methodologies, we prove that power-law behaviors truly govern the connectivity and clustering coefficient distributions. We found a non-previously reported circuit motif that we named complex feed-forward motif. We highlighted the importance of feedback loops for the functional architecture, beyond whether they are statistically over-represented or not in the network. We show that the previously reported top-down approach is inadequate to infer the hierarchy governing a regulatory network because feedback bridges different hierarchical layers, and the top-down approach disregards the presence of intermodular genes shaping the integration layer. Our findings all together further support a diamond-shaped, three-layered hierarchy exhibiting some feedback between processing and coordination layers, which is shaped by four classes of systems-level elements: global regulators, locally autonomous modules, basal machinery and intermodular genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Novel Structural and Functional Motifs in cellulose synthase (CesA Genes of Bread Wheat (Triticum aestivum, L..

    Directory of Open Access Journals (Sweden)

    Simerjeet Kaur

    Full Text Available Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean revealed motifs unique to monocots (Poales or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production.

  2. Regulatory Physiology

    Science.gov (United States)

    Lane, Helen W.; Whitson, Peggy A.; Putcha, Lakshmi; Baker, Ellen; Smith, Scott M.; Stewart, Karen; Gretebeck, Randall; Nimmagudda, R. R.; Schoeller, Dale A.; Davis-Street, Janis

    1999-01-01

    As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.

  3. Regulatory Benchmarking

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2017-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The appli......Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of bench-marking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  4. Regulatory Benchmarking

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2017-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The appli......Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of benchmarking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  5. Distinct repeat motifs at the C-terminal region of CagA of Helicobacter pylori strains isolated from diseased patients and asymptomatic individuals in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Santanu

    2012-05-01

    Full Text Available Abstract Background Infection with Helicobacter pylori strains that express CagA is associated with gastritis, peptic ulcer disease, and gastric adenocarcinoma. The biological function of CagA depends on tyrosine phosphorylation by a cellular kinase. The phosphate acceptor tyrosine moiety is present within the EPIYA motif at the C-terminal region of the protein. This region is highly polymorphic due to variations in the number of EPIYA motifs and the polymorphism found in spacer regions among EPIYA motifs. The aim of this study was to analyze the polymorphism at the C-terminal end of CagA and to evaluate its association with the clinical status of the host in West Bengal, India. Results Seventy-seven H. pylori strains isolated from patients with various clinical statuses were used to characterize the C-ternimal polymorphic region of CagA. Our analysis showed that there is no correlation between the previously described CagA types and various disease outcomes in Indian context. Further analyses of different CagA structures revealed that the repeat units in the spacer sequences within the EPIYA motifs are actually more discrete than the previously proposed models of CagA variants. Conclusion Our analyses suggest that EPIYA motifs as well as the spacer sequence units are present as distinct insertions and deletions, which possibly have arisen from extensive recombination events. Moreover, we have identified several new CagA types, which could not be typed by the existing systems and therefore, we have proposed a new typing system. We hypothesize that a cagA gene encoding higher number EPIYA motifs may perhaps have arisen from cagA genes that encode lesser EPIYA motifs by acquisition of DNA segments through recombination events.

  6. One size does not fit all: On how Markov model order dictates performance of genomic sequence analyses

    Science.gov (United States)

    Narlikar, Leelavati; Mehta, Nidhi; Galande, Sanjeev; Arjunwadkar, Mihir

    2013-01-01

    The structural simplicity and ability to capture serial correlations make Markov models a popular modeling choice in several genomic analyses, such as identification of motifs, genes and regulatory elements. A critical, yet relatively unexplored, issue is the determination of the order of the Markov model. Most biological applications use a predetermined order for all data sets indiscriminately. Here, we show the vast variation in the performance of such applications with the order. To identify the ‘optimal’ order, we investigated two model selection criteria: Akaike information criterion and Bayesian information criterion (BIC). The BIC optimal order delivers the best performance for mammalian phylogeny reconstruction and motif discovery. Importantly, this order is different from orders typically used by many tools, suggesting that a simple additional step determining this order can significantly improve results. Further, we describe a novel classification approach based on BIC optimal Markov models to predict functionality of tissue-specific promoters. Our classifier discriminates between promoters active across 12 different tissues with remarkable accuracy, yielding 3 times the precision expected by chance. Application to the metagenomics problem of identifying the taxum from a short DNA fragment yields accuracies at least as high as the more complex mainstream methodologies, while retaining conceptual and computational simplicity. PMID:23267010

  7. Regulatory aspects of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kristensen, K.

    1985-01-01

    Regulatory systems in the field of radiopharmaceuticals have two main purposes: efficacy and safety. Efficacy expresses the quality of the diagnostic and therapeutic process for the patient. Safety involves the patient, the staff, and the environment. The world situation regarding regulations for radiopharmaceuticals is reviewed on the basis of a survey in WHO Member States. The main content of such regulations is discussed. The special properties of radiopharmaceuticals compared with ordinary drugs may call for modified regulations. Several countries are preparing such regulations. Close co-operation and good understanding among scientists working in hospital research, industry and regulatory bodies will be of great importance for the fast and safe introduction of new radiopharmaceuticals for the benefit of the patient. Before introducing new legislation in this field, a radiopharmaceutical expert should analyse the situation in the country and the relationship to the existing regulations. It is expected that the most important factor in promoting the fast introduction of new, safe and effective radiopharmaceuticals will be the training of people working within the regulatory bodies. It is foreseen that the IAEA and WHO will have an important role to play by providing expert advice and training in this area. (author)

  8. The KYxxL motif in Rad17 protein is essential for the interaction with the 9–1–1 complex

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Yasunori, E-mail: fukumoto@faculty.chiba-u.jp [Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan); Ikeuchi, Masayoshi; Nakayama, Yuji [Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414 (Japan); Yamaguchi, Naoto, E-mail: nyama@faculty.chiba-u.jp [Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan)

    2016-09-02

    ATR-dependent DNA damage checkpoint is the major DNA damage checkpoint against UV irradiation and DNA replication stress. The Rad17–RFC and Rad9–Rad1–Hus1 (9–1–1) complexes interact with each other to contribute to ATR signaling, however, the precise regulatory mechanism of the interaction has not been established. Here, we identified a conserved sequence motif, KYxxL, in the AAA+ domain of Rad17 protein, and demonstrated that this motif is essential for the interaction with the 9–1–1 complex. We also show that UV-induced Rad17 phosphorylation is increased in the Rad17 KYxxL mutants. These data indicate that the interaction with the 9–1–1 complex is not required for Rad17 protein to be an efficient substrate for the UV-induced phosphorylation. Our data also raise the possibility that the 9–1–1 complex plays a negative regulatory role in the Rad17 phosphorylation. We also show that the nucleotide-binding activity of Rad17 is required for its nuclear localization. - Highlights: • We have identified a conserved KYxxL motif in Rad17 protein. • The KYxxL motif is crucial for the interaction with the 9–1–1 complex. • The KYxxL motif is dispensable or inhibitory for UV-induced Rad17 phosphorylation. • Nucleotide binding of Rad17 is required for its nuclear localization.

  9. SSTRAP: A computational model for genomic motif discovery ...

    African Journals Online (AJOL)

    Computational methods can potentially provide high-quality prediction of biological molecules such as DNA binding sites and Transcription factors and therefore reduce the time needed for experimental verification and challenges associated with experimental methods. These biological molecules or motifs have significant ...

  10. Identification of a Baeyer-Villiger monooxygenase sequence motif

    NARCIS (Netherlands)

    Fraaije, MW; Kamerbeek, NM; van Berkel, WJH; Janssen, DB; Kamerbeek, Nanne M.; Berkel, Willem J.H. van

    2002-01-01

    Baeyer-Villiger monooxygenases (BVMOs) form a distinct class of flavoproteins that catalyze the insertion of an oxygen atom in a C-C bond using dioxygen and NAD(P)H. Using newly characterized BVMO sequences, we have uncovered a BVMO-identifying sequence motif: FXGXXXRXXXW(P/D). Studies with

  11. Linear motif atlas for phosphorylation-dependent signaling

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Jensen, LJ; Diella, F

    2008-01-01

    bind to them remains a challenge. NetPhorest is an atlas of consensus sequence motifs that covers 179 kinases and 104 phosphorylation-dependent binding domains [Src homology 2 (SH2), phosphotyrosine binding (PTB), BRCA1 C-terminal (BRCT), WW, and 14-3-3]. The atlas reveals new aspects of signaling...

  12. [Cover motifs of the Tidsskrift. A 14-year cavalcade].

    Science.gov (United States)

    Nylenna, M

    1998-12-10

    In 1985 the Journal of the Norwegian Medical Association changed its cover policy, moving the table of contents inside the Journal and introducing cover illustrations. This article provides an analysis of all cover illustrations published over this 14-year period, 420 covers in all. There is a great variation in cover motifs and designs and a development towards more general motifs. The initial emphasis on historical and medical aspects is now less pronounced, while the use of works of art and nature motifs has increased, and the cover now more often has a direct bearing on the specific contents of the issue. Professor of medical history Oivind Larsen has photographed two thirds of the covers and contributed 95% of the inside essay-style reflections on the cover motif. Over the years, he has expanded the role of the historian of medicine disseminating knowledge to include that of the raconteur with a personal tone of voice. The Journal's covers are now one of its most characteristic features, emblematic of the Journal's ambition of standing for quality and timelessness vis-à-vis the news media, and of its aim of bridging the gap between medicine and the humanities.

  13. Perspektif Psikologi Humanistik Abraham Maslow dalam Meninjau Motif Pelaku Pembunuhan

    OpenAIRE

    Nurwatie, Azrina; Fauzia, Rahmi; Akbar, Sukma Noor

    2014-01-01

    Fokus penelitian ini diarahkan pada motif pelaku pembunuhan dengan meninjaunya melalui perspektif psikologi humanistik Abraham Maslow. Subyek dalam penelitian ini berjumlah dua orang narapidana yang berada di Lapas Kelas IIA Anak Martapura dengan kasus pembunuhan. Metode penelitian yang digunakan dalam penelitian ini adalah metode penelitian kualitatif. Teknik pengumpulan data melalui wawancara, observasi, dokumentasi,dan pemeriksaan psikologis (tes grafis). Berdasarkan hasil analisis data da...

  14. Motifs in triadic random graphs based on Steiner triple systems

    Science.gov (United States)

    Winkler, Marco; Reichardt, Jörg

    2013-08-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.

  15. Genetic analysis of beta1 integrin "activation motifs" in mice

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Meyer, Hannelore; Legate, Kyle R

    2006-01-01

    -null phenotype in vivo. Surprisingly, neither the substitution of the tyrosines with phenylalanine nor the aspartic acid with alanine resulted in an obvious defect. These data suggest that the NPXY motifs of the beta1 integrin tail are essential for beta1 integrin function, whereas tyrosine phosphorylation...

  16. Insights into the motif preference of APOBEC3 enzymes.

    Directory of Open Access Journals (Sweden)

    Diako Ebrahimi

    Full Text Available We used a multivariate data analysis approach to identify motifs associated with HIV hypermutation by different APOBEC3 enzymes. The analysis showed that APOBEC3G targets G mainly within GG, TG, TGG, GGG, TGGG and also GGGT. The G nucleotides flanked by a C at the 3' end (in +1 and +2 positions were indicated as disfavoured targets by APOBEC3G. The G nucleotides within GGGG were found to be targeted at a frequency much less than what is expected. We found that the infrequent G-to-A mutation within GGGG is not limited to the inaccessibility, to APOBEC3, of poly Gs in the central and 3'polypurine tracts (PPTs which remain double stranded during the HIV reverse transcription. GGGG motifs outside the PPTs were also disfavoured. The motifs GGAG and GAGG were also found to be disfavoured targets for APOBEC3. The motif-dependent mutation of G within the HIV genome by members of the APOBEC3 family other than APOBEC3G was limited to GA→AA changes. The results did not show evidence of other types of context dependent G-to-A changes in the HIV genome.

  17. Analysis of network motifs in cellular regulation: Structural similarities, input-output relations and signal integration.

    Science.gov (United States)

    Straube, Ronny

    2017-12-01

    Much of the complexity of regulatory networks derives from the necessity to integrate multiple signals and to avoid malfunction due to cross-talk or harmful perturbations. Hence, one may expect that the input-output behavior of larger networks is not necessarily more complex than that of smaller network motifs which suggests that both can, under certain conditions, be described by similar equations. In this review, we illustrate this approach by discussing the similarities that exist in the steady state descriptions of a simple bimolecular reaction, covalent modification cycles and bacterial two-component systems. Interestingly, in all three systems fundamental input-output characteristics such as thresholds, ultrasensitivity or concentration robustness are described by structurally similar equations. Depending on the system the meaning of the parameters can differ ranging from protein concentrations and affinity constants to complex parameter combinations which allows for a quantitative understanding of signal integration in these systems. We argue that this approach may also be extended to larger regulatory networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  19. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure, Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N. [Pacific Northwest Lab., Richland, WA (United States)

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1988), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the {prime}978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  20. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ''green field'' condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities

  1. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure, Volume 1, Final report

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1988), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the '978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ''green field'' condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities

  2. Sequence alignment reveals possible MAPK docking motifs on HIV proteins.

    Directory of Open Access Journals (Sweden)

    Perry Evans

    Full Text Available Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs. MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.

  3. Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.).

    Science.gov (United States)

    Yin, Tao; Wu, Hanying; Zhang, Shanglong; Lu, Hongyu; Zhang, Lingxiao; Xu, Yong; Chen, Daming; Liu, Jingmei

    2009-01-01

    A 1.8 kb 5'-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from -986 to -959 and from -472 to -424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative beta-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were approximately 10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves.

  4. 78 FR 53483 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Science.gov (United States)

    2013-08-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00025; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria (ITAAC) completion...

  5. 78 FR 53484 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4

    Science.gov (United States)

    2013-08-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00026; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria (ITAAC) completion...

  6. 78 FR 38411 - Vogtle Electric Generating Plant, Unit 4; Inspections, Tests, Analyses, and Acceptance Criteria

    Science.gov (United States)

    2013-06-26

    ... Plant, Unit 4; Inspections, Tests, Analyses, and Acceptance Criteria AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria completion. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) staff has determined that the inspections, tests...

  7. 78 FR 65007 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Science.gov (United States)

    2013-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00026; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria completion...

  8. Computational and molecular dissection of an X-box cis-Regulatory module

    OpenAIRE

    Warrington, Timothy Burton

    2015-01-01

    Ciliopathies are a class of human diseases marked by dysfunction of the cellular organelle, cilia. While many of the molecular components that make up cilia have been identified and studied, comparatively little is understood about the transcriptional regulation of genes encoding these components. The conserved transcription factor Regulatory Factor X (RFX)/DAF-19, which acts through binding to the cis-regulatory motif known as X-box, has been shown to regulate ciliary genes in many animals f...

  9. IPTV Market Development and Regulatory Aspects

    DEFF Research Database (Denmark)

    Tadayoni, Reza; Sigurdsson, Halldór Matthias

    2006-01-01

    The aim of this paper is to analyse the development of IPTV technology / market and to discuss major regulatory parameters. A general overview of architectures and the technologies deployed for establishing IPTV services is given and the main stake holder identified, along with, the current service...... architecture, the available content in IPTV platforms, and the current business models. Furthermore the regulatory framework of the TV broadcast and IPTV in Europe is analysed....

  10. Proteome-level assessment of origin, prevalence and function of Leucine-Aspartic Acid (LD) motifs

    KAUST Repository

    Alam, Tanvir; Alazmi, Meshari; Naser, Rayan Mohammad Mahmoud; Huser, Franceline; Momin, Afaque Ahmad Imtiyaz; Walkiewicz, Katarzyna Wiktoria; Canlas, Christian; Huser, Raphaë l; Ali, Amal J.; Merzaban, Jasmeen; Bajic, Vladimir B.; Gao, Xin; Arold, Stefan T.

    2018-01-01

    and migration, and revealed a new type of inverse LD motif consensus. Our evolutionary analysis suggested that LD motif signalling originated in the common unicellular ancestor of opisthokonts and amoebozoa by co-opting nuclear export sequences. Inter

  11. BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements.

    Science.gov (United States)

    De Witte, Dieter; Van de Velde, Jan; Decap, Dries; Van Bel, Michiel; Audenaert, Pieter; Demeester, Piet; Dhoedt, Bart; Vandepoele, Klaas; Fostier, Jan

    2015-12-01

    The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  12. A Nuclear Ribosomal DNA Phylogeny of Acer Inferred with Maximum Likelihood, Splits Graphs, and Motif Analysis of 606 Sequences

    Science.gov (United States)

    Grimm, Guido W.; Renner, Susanne S.; Stamatakis, Alexandros; Hemleben, Vera

    2007-01-01

    The multi-copy internal transcribed spacer (ITS) region of nuclear ribosomal DNA is widely used to infer phylogenetic relationships among closely related taxa. Here we use maximum likelihood (ML) and splits graph analyses to extract phylogenetic information from ~ 600 mostly cloned ITS sequences, representing 81 species and subspecies of Acer, and both species of its sister Dipteronia. Additional analyses compared sequence motifs in Acer and several hundred Anacardiaceae, Burseraceae, Meliaceae, Rutaceae, and Sapindaceae ITS sequences in GenBank. We also assessed the effects of using smaller data sets of consensus sequences with ambiguity coding (accounting for within-species variation) instead of the full (partly redundant) original sequences. Neighbor-nets and bipartition networks were used to visualize conflict among character state patterns. Species clusters observed in the trees and networks largely agree with morphology-based classifications; of de Jong’s (1994) 16 sections, nine are supported in neighbor-net and bipartition networks, and ten by sequence motifs and the ML tree; of his 19 series, 14 are supported in networks, motifs, and the ML tree. Most nodes had higher bootstrap support with matrices of 105 or 40 consensus sequences than with the original matrix. Within-taxon ITS divergence did not differ between diploid and polyploid Acer, and there was little evidence of differentiated parental ITS haplotypes, suggesting that concerted evolution in Acer acts rapidly. PMID:19455198

  13. A Nuclear Ribosomal DNA Phylogeny of Acer Inferred with Maximum Likelihood, Splits Graphs, and Motif Analysis of 606 Sequences

    Directory of Open Access Journals (Sweden)

    Guido W. Grimm

    2006-01-01

    Full Text Available The multi-copy internal transcribed spacer (ITS region of nuclear ribosomal DNA is widely used to infer phylogenetic relationships among closely related taxa. Here we use maximum likelihood (ML and splits graph analyses to extract phylogenetic information from ~ 600 mostly cloned ITS sequences, representing 81 species and subspecies of Acer, and both species of its sister Dipteronia. Additional analyses compared sequence motifs in Acer and several hundred Anacardiaceae, Burseraceae, Meliaceae, Rutaceae, and Sapindaceae ITS sequences in GenBank. We also assessed the effects of using smaller data sets of consensus sequences with ambiguity coding (accounting for within-species variation instead of the full (partly redundant original sequences. Neighbor-nets and bipartition networks were used to visualize conflict among character state patterns. Species clusters observed in the trees and networks largely agree with morphology-based classifications; of de Jong’s (1994 16 sections, nine are supported in neighbor-net and bipartition networks, and ten by sequence motifs and the ML tree; of his 19 series, 14 are supported in networks, motifs, and the ML tree. Most nodes had higher bootstrap support with matrices of 105 or 40 consensus sequences than with the original matrix. Within-taxon ITS divergence did not differ between diploid and polyploid Acer, and there was little evidence of differentiated parental ITS haplotypes, suggesting that concerted evolution in Acer acts rapidly.

  14. Biomimetic trapping cocktail to screen reactive metabolites: use of an amino acid and DNA motif mixture as light/heavy isotope pairs differing in mass shift.

    Science.gov (United States)

    Hosaka, Shuto; Honda, Takuto; Lee, Seon Hwa; Oe, Tomoyuki

    2018-06-01

    Candidate drugs that can be metabolically transformed into reactive electrophilic products, such as epoxides, quinones, and nitroso compounds, are of special concern because subsequent covalent binding to bio-macromolecules can cause adverse drug reactions, such as allergic reactions, hepatotoxicity, and genotoxicity. Several strategies have been reported for screening reactive metabolites, such as a covalent binding assay with radioisotope-labeled drugs and a trapping method followed by LC-MS/MS analyses. Of these, a trapping method using glutathione is the most common, especially at the early stage of drug development. However, the cysteine of glutathione is not the only nucleophilic site in vivo; lysine, histidine, arginine, and DNA bases are also nucleophilic. Indeed, the glutathione trapping method tends to overlook several types of reactive metabolites, such as aldehydes, acylglucuronides, and nitroso compounds. Here, we introduce an alternate way for screening reactive metabolites as follows: A mixture of the light and heavy isotopes of simplified amino acid motifs and a DNA motif is used as a biomimetic trapping cocktail. This mixture consists of [ 2 H 0 ]/[ 2 H 3 ]-1-methylguanidine (arginine motif, Δ 3 Da), [ 2 H 0 ]/[ 2 H 4 ]-2-mercaptoethanol (cysteine motif, Δ 4 Da), [ 2 H 0 ]/[ 2 H 5 ]-4-methylimidazole (histidine motif, Δ 5 Da), [ 2 H 0 ]/[ 2 H 9 ]-n-butylamine (lysine motif, Δ 9 Da), and [ 13 C 0 , 15 N 0 ]/[ 13 C 1 , 15 N 2 ]-2'-deoxyguanosine (DNA motif, Δ 3 Da). Mass tag triggered data-dependent acquisition is used to find the characteristic doublet peaks, followed by specific identification of the light isotope peak using MS/MS. Forty-two model drugs were examined using an in vitro microsome experiment to validate the strategy. Graphical abstract Biomimetic trapping cocktail to screen reactive metabolites.

  15. The Pectin Methylesterase Gene Complement of Phytophthora sojae: Structural and Functional Analyses, and the Evolutionary Relationships with Its Oomycete Homologs.

    Science.gov (United States)

    Horowitz, Brent B; Ospina-Giraldo, Manuel D

    2015-01-01

    Phytophthora sojae is an oomycete pathogen that causes the disease known as root and stem rot in soybean plants, frequently leading to massive economic damage. Additionally, P. sojae is increasingly being utilized as a model for phytopathogenic oomycete research. Despite the economic and scientific importance of P. sojae, the mechanism by which it penetrates the host roots is not yet fully understood. It has been found that oomycetes are not capable of penetrating the cell wall solely through mechanical force, suggesting that alternative factors facilitate breakdown of the host cell wall. Pectin methylesterases have been suggested to be important for Phytophthora pathogenicity, but no data exist on their role in the P. sojae infection process. We have scanned the newly revised version of the annotated P. sojae genome for the presence of putative pectin methylesterases genes and conducted a sequence analysis of all gene models found. We also searched for potential regulatory motifs in the promoter region of the proposed P. sojae models, and investigated the gene expression levels throughout the early course of infection on soybean plants. We found that P. sojae contains a large repertoire of pectin methylesterase-coding genes and that most of these genes display similar motifs in the promoter region, indicating the possibility of a shared regulatory mechanism. Phylogenetic analyses confirmed the evolutionary relatedness of the pectin methylesterase-coding genes within and across Phytophthora spp. In addition, the gene duplication events that led to the emergence of this gene family appear to have occurred prior to many speciation events in the genus Phytophthora. Our results also indicate that the highest levels of expression occurred in the first 24 hours post inoculation, with expression falling after this time. Our study provides evidence that pectin methylesterases may be important for the early action of the P. sojae infection process.

  16. The Pectin Methylesterase Gene Complement of Phytophthora sojae: Structural and Functional Analyses, and the Evolutionary Relationships with Its Oomycete Homologs.

    Directory of Open Access Journals (Sweden)

    Brent B Horowitz

    Full Text Available Phytophthora sojae is an oomycete pathogen that causes the disease known as root and stem rot in soybean plants, frequently leading to massive economic damage. Additionally, P. sojae is increasingly being utilized as a model for phytopathogenic oomycete research. Despite the economic and scientific importance of P. sojae, the mechanism by which it penetrates the host roots is not yet fully understood. It has been found that oomycetes are not capable of penetrating the cell wall solely through mechanical force, suggesting that alternative factors facilitate breakdown of the host cell wall. Pectin methylesterases have been suggested to be important for Phytophthora pathogenicity, but no data exist on their role in the P. sojae infection process. We have scanned the newly revised version of the annotated P. sojae genome for the presence of putative pectin methylesterases genes and conducted a sequence analysis of all gene models found. We also searched for potential regulatory motifs in the promoter region of the proposed P. sojae models, and investigated the gene expression levels throughout the early course of infection on soybean plants. We found that P. sojae contains a large repertoire of pectin methylesterase-coding genes and that most of these genes display similar motifs in the promoter region, indicating the possibility of a shared regulatory mechanism. Phylogenetic analyses confirmed the evolutionary relatedness of the pectin methylesterase-coding genes within and across Phytophthora spp. In addition, the gene duplication events that led to the emergence of this gene family appear to have occurred prior to many speciation events in the genus Phytophthora. Our results also indicate that the highest levels of expression occurred in the first 24 hours post inoculation, with expression falling after this time. Our study provides evidence that pectin methylesterases may be important for the early action of the P. sojae infection process.

  17. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-01

    LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  18. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs.

    Science.gov (United States)

    Regad, Leslie; Martin, Juliette; Camproux, Anne-Claude

    2011-06-20

    One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.

  19. WildSpan: mining structured motifs from protein sequences

    Directory of Open Access Journals (Sweden)

    Chen Chien-Yu

    2011-03-01

    Full Text Available Abstract Background Automatic extraction of motifs from biological sequences is an important research problem in study of molecular biology. For proteins, it is desired to discover sequence motifs containing a large number of wildcard symbols, as the residues associated with functional sites are usually largely separated in sequences. Discovering such patterns is time-consuming because abundant combinations exist when long gaps (a gap consists of one or more successive wildcards are considered. Mining algorithms often employ constraints to narrow down the search space in order to increase efficiency. However, improper constraint models might degrade the sensitivity and specificity of the motifs discovered by computational methods. We previously proposed a new constraint model to handle large wildcard regions for discovering functional motifs of proteins. The patterns that satisfy the proposed constraint model are called W-patterns. A W-pattern is a structured motif that groups motif symbols into pattern blocks interleaved with large irregular gaps. Considering large gaps reflects the fact that functional residues are not always from a single region of protein sequences, and restricting motif symbols into clusters corresponds to the observation that short motifs are frequently present within protein families. To efficiently discover W-patterns for large-scale sequence annotation and function prediction, this paper first formally introduces the problem to solve and proposes an algorithm named WildSpan (sequential pattern mining across large wildcard regions that incorporates several pruning strategies to largely reduce the mining cost. Results WildSpan is shown to efficiently find W-patterns containing conserved residues that are far separated in sequences. We conducted experiments with two mining strategies, protein-based and family-based mining, to evaluate the usefulness of W-patterns and performance of WildSpan. The protein-based mining mode

  20. Core signalling motif displaying multistability through multi-state enzymes

    DEFF Research Database (Denmark)

    Feng, Song; Saez Cornellana, Meritxell; Wiuf, Carsten Henrik

    2016-01-01

    Bistability, and more generally multistability, is a key system dynamics feature enabling decision-making and memory in cells. Deciphering the molecular determinants of multistability is thus crucial for a better understanding of cellular pathways and their (re)engineering in synthetic biology....... Here, we show that a key motif found predominantly in eukaryotic signalling systems, namely a futile signalling cycle, can display bistability when featuring a two-state kinase. We provide necessary and sufficient mathematical conditions on the kinetic parameters of this motif that guarantee...... the existence of multiple steady states. These conditions foster the intuition that bistability arises as a consequence of competition between the two states of the kinase. Extending from this result, we find that increasing the number of kinase states linearly translates into an increase in the number...

  1. Factoring local sequence composition in motif significance analysis.

    Science.gov (United States)

    Ng, Patrick; Keich, Uri

    2008-01-01

    We recently introduced a biologically realistic and reliable significance analysis of the output of a popular class of motif finders. In this paper we further improve our significance analysis by incorporating local base composition information. Relying on realistic biological data simulation, as well as on FDR analysis applied to real data, we show that our method is significantly better than the increasingly popular practice of using the normal approximation to estimate the significance of a finder's output. Finally we turn to leveraging our reliable significance analysis to improve the actual motif finding task. Specifically, endowing a variant of the Gibbs Sampler with our improved significance analysis we demonstrate that de novo finders can perform better than has been perceived. Significantly, our new variant outperforms all the finders reviewed in a recently published comprehensive analysis of the Harbison genome-wide binding location data. Interestingly, many of these finders incorporate additional information such as nucleosome positioning and the significance of binding data.

  2. Neoanalysis, Orality, and Intertextuality: An Examination of Homeric Motif Transference

    Directory of Open Access Journals (Sweden)

    Jonathan Burgess

    2006-03-01

    Full Text Available In Homeric studies scholars have speculated on the influence of (non-surviving preHomeric material on the Iliad. This article expands this line of argument from an oralist perspective, with reference to modern intertextual theory. It concludes that preHomeric and nonHomeric motifs from oral traditions were transferred into the epic poem, creating an intertextually allusive poetics that would have been recognizable to an early Greek audience informed of mythological traditions.

  3. Motif Subscriber Menonton Channel YouTube Raditya Dika

    OpenAIRE

    Mellyaningsih, Adinda

    2016-01-01

    Penelitian ini dilakukan untuk mengetahui motif para subscriber dalam menonton channelYouTube Raditya Dika. Raditya Dika merupakan YouTuber Indonesia dengan jumlah subscriber terbanyak dan merupakan orang pertama di Indonesia yang mendapatkan penghargaan Certifies Award oleh YouTube. Peneliti menggunakan teori Uses and Gratification dengan empat indikator, yaitu hiburan dan relaksasi, hubungan antar pribadi, mencari informasi, dan persahabatan. Metode dalam penelitian ini adalah online survei...

  4. Perception Enhancement using Visual Attributes in Sequence Motif Visualization

    OpenAIRE

    Oon, Yin; Lee, Nung; Kok, Wei

    2016-01-01

    Sequence logo is a well-accepted scientific method to visualize the conservation characteristics of biological sequence motifs. Previous studies found that using sequence logo graphical representation for scientific evidence reports or arguments could seriously cause biases and misinterpretation by users. This study investigates on the visual attributes performance of a sequence logo in helping users to perceive and interpret the information based on preattentive theories and Gestalt principl...

  5. Exon silencing by UAGG motifs in response to neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Ping An

    2007-02-01

    Full Text Available Alternative pre-mRNA splicing plays fundamental roles in neurons by generating functional diversity in proteins associated with the communication and connectivity of the synapse. The CI cassette of the NMDA R1 receptor is one of a variety of exons that show an increase in exon skipping in response to cell excitation, but the molecular nature of this splicing responsiveness is not yet understood. Here we investigate the molecular basis for the induced changes in splicing of the CI cassette exon in primary rat cortical cultures in response to KCl-induced depolarization using an expression assay with a tight neuron-specific readout. In this system, exon silencing in response to neuronal excitation was mediated by multiple UAGG-type silencing motifs, and transfer of the motifs to a constitutive exon conferred a similar responsiveness by gain of function. Biochemical analysis of protein binding to UAGG motifs in extracts prepared from treated and mock-treated cortical cultures showed an increase in nuclear hnRNP A1-RNA binding activity in parallel with excitation. Evidence for the role of the NMDA receptor and calcium signaling in the induced splicing response was shown by the use of specific antagonists, as well as cell-permeable inhibitors of signaling pathways. Finally, a wider role for exon-skipping responsiveness is shown to involve additional exons with UAGG-related silencing motifs, and transcripts involved in synaptic functions. These results suggest that, at the post-transcriptional level, excitable exons such as the CI cassette may be involved in strategies by which neurons mount adaptive responses to hyperstimulation.

  6. Multiple TPR motifs characterize the Fanconi anemia FANCG protein.

    Science.gov (United States)

    Blom, Eric; van de Vrugt, Henri J; de Vries, Yne; de Winter, Johan P; Arwert, Fré; Joenje, Hans

    2004-01-05

    The genome protection pathway that is defective in patients with Fanconi anemia (FA) is controlled by at least eight genes, including BRCA2. A key step in the pathway involves the monoubiquitylation of FANCD2, which critically depends on a multi-subunit nuclear 'core complex' of at least six FANC proteins (FANCA, -C, -E, -F, -G, and -L). Except for FANCL, which has WD40 repeats and a RING finger domain, no significant domain structure has so far been recognized in any of the core complex proteins. By using a homology search strategy comparing the human FANCG protein sequence with its ortholog sequences in Oryzias latipes (Japanese rice fish) and Danio rerio (zebrafish) we identified at least seven tetratricopeptide repeat motifs (TPRs) covering a major part of this protein. TPRs are degenerate 34-amino acid repeat motifs which function as scaffolds mediating protein-protein interactions, often found in multiprotein complexes. In four out of five TPR motifs tested (TPR1, -2, -5, and -6), targeted missense mutagenesis disrupting the motifs at the critical position 8 of each TPR caused complete or partial loss of FANCG function. Loss of function was evident from failure of the mutant proteins to complement the cellular FA phenotype in FA-G lymphoblasts, which was correlated with loss of binding to FANCA. Although the TPR4 mutant fully complemented the cells, it showed a reduced interaction with FANCA, suggesting that this TPR may also be of functional importance. The recognition of FANCG as a typical TPR protein predicts this protein to play a key role in the assembly and/or stabilization of the nuclear FA protein core complex.

  7. Efficient sequential and parallel algorithms for planted motif search.

    Science.gov (United States)

    Nicolae, Marius; Rajasekaran, Sanguthevar

    2014-01-31

    Motif searching is an important step in the detection of rare events occurring in a set of DNA or protein sequences. One formulation of the problem is known as (l,d)-motif search or Planted Motif Search (PMS). In PMS we are given two integers l and d and n biological sequences. We want to find all sequences of length l that appear in each of the input sequences with at most d mismatches. The PMS problem is NP-complete. PMS algorithms are typically evaluated on certain instances considered challenging. Despite ample research in the area, a considerable performance gap exists because many state of the art algorithms have large runtimes even for moderately challenging instances. This paper presents a fast exact parallel PMS algorithm called PMS8. PMS8 is the first algorithm to solve the challenging (l,d) instances (25,10) and (26,11). PMS8 is also efficient on instances with larger l and d such as (50,21). We include a comparison of PMS8 with several state of the art algorithms on multiple problem instances. This paper also presents necessary and sufficient conditions for 3 l-mers to have a common d-neighbor. The program is freely available at http://engr.uconn.edu/~man09004/PMS8/. We present PMS8, an efficient exact algorithm for Planted Motif Search. PMS8 introduces novel ideas for generating common neighborhoods. We have also implemented a parallel version for this algorithm. PMS8 can solve instances not solved by any previous algorithms.

  8. Aplikasi Ornamen Khas Maluku untuk Pengembangan Desain Motif Batik

    OpenAIRE

    Masiswo Masiswo; Vivin Atika

    2016-01-01

    ABSTRAKMaluku memiliki banyak ragam hias budaya warisan nilai leluhur berupa ornamen etnis yang merupakan kesenian dan keterampilan kerajinan. Hasil warisan tersebut sampai saat ini masih lestari hidup serta dapat dinikmati sebagai konsumsi rohani yang memuaskan manusia. Berkaitan dengan keberlangsungan nilai-nilai tradisi etnis yang berwujud pada ornamen-ornamen daerah Maluku, maka dikembangkan untuk kebutuhan manusia berupa motif batik pada kain. Pengembangan ornamen ini lebih menekankan pa...

  9. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element.

    Science.gov (United States)

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-07-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5'-NNCCAC-3' and 5'-GCGMGN'N'-3' (M:A or C; N and N' form Watson-Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences.

  10. Fear as dread of a God who kills and abuses? About a darker side of a key, but still forgotten biblical motif

    Directory of Open Access Journals (Sweden)

    Pieter G.R. de Villiers

    2013-10-01

    Full Text Available This article investigates the motif of fear of God in biblical texts and contexts by discussing its use to indicate dread and by analysing the implications and consequences of such a reading of this key motif. After a brief overview of research on and contextual information about fear of God, it investigates fear as an intense and extreme human emotion and considers the reason why the motif is used by biblical authors in their discussions of the divine-human relationship, especially in the light of the fact that dread of God implies that God is a threatening force and dangerous power. It then evaluates how biblical authors embed fear within a configuration of thought that contains crucial themes of justice and holiness, without moving beyond this dimension of dread. Finally it investigates some hermeneutical considerations to cope with the challenges that an understanding of fear of God as dread brings with it.

  11. The heptanucleotide motif GAGACGC is a key component of a cis-acting promoter element that is critical for SnSAG1 expression in Sarcocystis neurona.

    Science.gov (United States)

    Gaji, Rajshekhar Y; Howe, Daniel K

    2009-07-01

    The apicomplexan parasite Sarcocystis neurona undergoes a complex process of intracellular development, during which many genes are temporally regulated. The described study was undertaken to begin identifying the basic promoter elements that control gene expression in S. neurona. Sequence analysis of the 5'-flanking region of five S. neurona genes revealed a conserved heptanucleotide motif GAGACGC that is similar to the WGAGACG motif described upstream of multiple genes in Toxoplasma gondii. The promoter region for the major surface antigen gene SnSAG1, which contains three heptanucleotide motifs within 135 bases of the transcription start site, was dissected by functional analysis using a dual luciferase reporter assay. These analyses revealed that a minimal promoter fragment containing all three motifs was sufficient to drive reporter molecule expression, with the presence and orientation of the 5'-most heptanucleotide motif being absolutely critical for promoter function. Further studies should help to identify additional sequence elements important for promoter function and for controlling gene expression during intracellular development by this apicomplexan pathogen.

  12. ROMANIAN TRADITIONAL MOTIF ELEMENT OF MODERNITY IN CLOTHING

    Directory of Open Access Journals (Sweden)

    ŞUTEU Marius Darius

    2017-05-01

    Full Text Available In this paper are presented the phases for improving from an aesthetic point of view a clothing item, the T-shirt for women using software design patterns, computerised graphics and textile different modern technologies including: industrial embroidery, digital printing, sublimation. In the first phase a documentation was prepared in the University of Oradea and traditional motif was selected from a collection comprising a number of Romanian traditional motifs from different parts of the country and were reintepreted and stylized whilst preserving the symbolism and color range specified to the area. For the styling phase was used CorelDraw vector graphics program that allows changing the shape, size and color of the drawings without affecting the identity of the pattern. The embroidery was done using BERNINA Embroidery Software Designer Plus Software. This software allows you to export the model to any domestic or industrial embroidery machine regardless of brand. Finally we observed the resistance of the printed and embroided model to various: elasticity, resistance to abrasion and a sensory analysis on the preservation of color. After testing we noticed the imprint resistance applied to the fabric, resulting in a quality that makes possible to keep the Romanian traditional motif from generation to generation.

  13. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  14. Organofluorine chemistry: synthesis and conformation of vicinal fluoromethylene motifs.

    Science.gov (United States)

    O'Hagan, David

    2012-04-20

    The C-F bond is the most polar bond in organic chemistry, and thus the bond has a relatively large dipole moment with a significant -ve charge density on the fluorine atom and correspondingly a +ve charge density on carbon. The electrostatic nature of the bond renders it the strongest one in organic chemistry. However, the fluorine atom itself is nonpolarizable, and thus, despite the charge localization on fluorine, it is a poor hydrogen-bonding acceptor. These properties of the C-F bond make it attractive in the design of nonviscous but polar organic compounds, with a polarity limited to influencing the intramolecular nature of the molecule and less so intermolecular interactions with the immediate environment. In this Perspective, the synthesis of aliphatic chains carrying multivicinal fluoromethylene motifs is described. It emerges that the dipoles of adjacent C-F bonds orientate relative to each other, and thus, individual diastereoisomers display different backbone carbon chain conformations. These conformational preferences recognize the influence of the well-known gauche effect associated with 1,2-difluoroethane but extend to considering 1,3-fluorine-fluorine dipolar repulsions. The synthesis of carbon chains carrying two, three, four, five, and six vicinal fluoromethylene motifs is described, with an emphasis on our own research contributions. These motifs obey almost predictable conformational behavior, and they emerge as candidates for inclusion in the design of performance organic molecules. © 2012 American Chemical Society

  15. THE MOTIF OF THE PRODIGAL SON IN IVAN TURGENEV'S NOVELS

    Directory of Open Access Journals (Sweden)

    Valentina Ivanovna Gabdullina

    2013-11-01

    Full Text Available The author questions the perception of Ivan Turgenev as a “non- Christian writer” and studies the problem of the prodigal son motif functioning in a series of his novels. In his novels, Turgenev pictured different phases of the archetypal story, originating from the Gospel parable of the prodigal son. In the novel Rudin he depicted the phase of spiritual wanderings of the hero who had lost touch with his native land — Russia. In his next novels (Home of the Gentry, Fathers and Sons and Smoke, after leading his hero in circles and sending him back to his paternal home, Turgenev reconstructs the model of human behavior, represented in the parable, thereby recognizing the immutability of the idea formalized in the Gospel. The motif of the return to Russian land gets its completion in Turgenev's last novel Virgin Soil, in which the author paradoxically connects the Westernist idea with the Gospel imperative. Solomin, the son of a deacon, sent by his wise father out to Europe “to get education”, studies in England, masters the European knowledge and returns back “to his native land” to establish his own business in inland Russia. Thus, a series of Turgenev's novels, in which he portrayed different phases of social life, are interlinked with the motif of the prodigal son, who is represented by novels' main characters.

  16. The city as a motif in Slovene youth literature

    Directory of Open Access Journals (Sweden)

    Milena Mileva Blažić

    2003-01-01

    Full Text Available The article presents the city as motif of Slovenian youth literature in four different periods, beginning in the first period of original Slovenian youth literature in the second half of the 19th century, second period in the first half of the 20th century, third period in the second half of the 20th century and after 1950, when significant books were produced in the field of short modern stories, emphasising on picture books and realistic narrative prose, and the fourth period after 1990. A discernable shift can be observed in the thirties of the 20th century, during the times of socialist realism. The most significant change occurred after 1960, when massive migration from rural to urban environments caused by industrialisation began. The motif of urban environment especially marked modern realistic narrative, coined problematic narrative after 1990, with its focus on issues of growing up in such environments. The city as motif or theme doesn’t appear only in realistic narrative, but since the early 20th century also in fantastic narrative, thus it dichotomically presents the image of real world in Slovenian youth realistic narrative.

  17. TOPDOM: database of conservatively located domains and motifs in proteins.

    Science.gov (United States)

    Varga, Julia; Dobson, László; Tusnády, Gábor E

    2016-09-01

    The TOPDOM database-originally created as a collection of domains and motifs located consistently on the same side of the membranes in α-helical transmembrane proteins-has been updated and extended by taking into consideration consistently localized domains and motifs in globular proteins, too. By taking advantage of the recently developed CCTOP algorithm to determine the type of a protein and predict topology in case of transmembrane proteins, and by applying a thorough search for domains and motifs as well as utilizing the most up-to-date version of all source databases, we managed to reach a 6-fold increase in the size of the whole database and a 2-fold increase in the number of transmembrane proteins. TOPDOM database is available at http://topdom.enzim.hu The webpage utilizes the common Apache, PHP5 and MySQL software to provide the user interface for accessing and searching the database. The database itself is generated on a high performance computer. tusnady.gabor@ttk.mta.hu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  18. Statistical significance of cis-regulatory modules

    Directory of Open Access Journals (Sweden)

    Smith Andrew D

    2007-01-01

    Full Text Available Abstract Background It is becoming increasingly important for researchers to be able to scan through large genomic regions for transcription factor binding sites or clusters of binding sites forming cis-regulatory modules. Correspondingly, there has been a push to develop algorithms for the rapid detection and assessment of cis-regulatory modules. While various algorithms for this purpose have been introduced, most are not well suited for rapid, genome scale scanning. Results We introduce methods designed for the detection and statistical evaluation of cis-regulatory modules, modeled as either clusters of individual binding sites or as combinations of sites with constrained organization. In order to determine the statistical significance of module sites, we first need a method to determine the statistical significance of single transcription factor binding site matches. We introduce a straightforward method of estimating the statistical significance of single site matches using a database of known promoters to produce data structures that can be used to estimate p-values for binding site matches. We next introduce a technique to calculate the statistical significance of the arrangement of binding sites within a module using a max-gap model. If the module scanned for has defined organizational parameters, the probability of the module is corrected to account for organizational constraints. The statistical significance of single site matches and the architecture of sites within the module can be combined to provide an overall estimation of statistical significance of cis-regulatory module sites. Conclusion The methods introduced in this paper allow for the detection and statistical evaluation of single transcription factor binding sites and cis-regulatory modules. The features described are implemented in the Search Tool for Occurrences of Regulatory Motifs (STORM and MODSTORM software.

  19. As to achieve regulatory action, regulatory approaches

    International Nuclear Information System (INIS)

    Cid, R.; Encinas, D.

    2014-01-01

    The achievement of the effectiveness in the performance of a nuclear regulatory body has been a permanent challenge in the recent history of nuclear regulation. In the post-Fukushima era this challenge is even more important. This article addresses the subject from two complementary points of view: the characteristics of an effective regulatory body and the regulatory approaches. This work is based on the most recent studies carried out by the Committee on Nuclear Regulatory Activities, CNRA (OECD/NEA), as well as on the experience of the Consejo de Seguridad Nuclear, CSN, the Spanish regulatory body. Rafael Cid is the representative of CSN in these project: Diego Encinas has participated in the study on regulatory approaches. (Author)

  20. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane

    DEFF Research Database (Denmark)

    Geisler, C; Dietrich, J; Nielsen, B L

    1998-01-01

    Many integral membrane proteins contain leucine-based motifs within their cytoplasmic domains that mediate internalization and intracellular sorting. Two types of leucine-based motifs have been identified. One type is dependent on phosphorylation, whereas the other type, which includes an acidic...... amino acid, is constitutively active. In this study, we have investigated how the spacing relative to the plasma membrane affects the function of both types of leucine-based motifs. For phosphorylation-dependent leucine-based motifs, a minimal spacing of 7 residues between the plasma membrane...... and the phospho-acceptor was required for phosphorylation and thereby activation of the motifs. For constitutively active leucine-based motifs, a minimal spacing of 6 residues between the plasma membrane and the acidic residue was required for optimal activity of the motifs. In addition, we found that the acidic...

  1. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks.

    Science.gov (United States)

    Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario

    2018-03-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.

  2. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  3. A Novel Dual-cre Motif Enables Two-Way Autoregulation of CcpA in Clostridium acetobutylicum.

    Science.gov (United States)

    Zhang, Lu; Liu, Yanqiang; Yang, Yunpeng; Jiang, Weihong; Gu, Yang

    2018-04-15

    The master regulator CcpA (catabolite control protein A) manages a large and complex regulatory network that is essential for cellular physiology and metabolism in Gram-positive bacteria. Although CcpA can affect the expression of target genes by binding to a cis -acting catabolite-responsive element ( cre ), whether and how the expression of CcpA is regulated remain poorly explored. Here, we report a novel dual- cre motif that is employed by the CcpA in Clostridium acetobutylicum , a typical solventogenic Clostridium species, for autoregulation. Two cre sites are involved in CcpA autoregulation, and they reside in the promoter and coding regions of CcpA. In this dual- cre motif, cre P , in the promoter region, positively regulates ccpA transcription, whereas cre ORF , in the coding region, negatively regulates this transcription, thus enabling two-way autoregulation of CcpA. Although CcpA bound cre P more strongly than cre ORF in vitro , the in vivo assay showed that cre ORF -based repression dominates CcpA autoregulation during the entire fermentation. Finally, a synonymous mutation of cre ORF was made within the coding region, achieving an increased intracellular CcpA expression and improved cellular performance. This study provides new insights into the regulatory role of CcpA in C. acetobutylicum and, moreover, contributes a new engineering strategy for this industrial strain. IMPORTANCE CcpA is known to be a key transcription factor in Gram-positive bacteria. However, it is still unclear whether and how the intracellular CcpA level is regulated, which may be essential for maintaining normal cell physiology and metabolism. We discovered here that CcpA employs a dual- cre motif to autoregulate, enabling dynamic control of its own expression level during the entire fermentation process. This finding answers the questions above and fills a void in our understanding of the regulatory network of CcpA. Interference in CcpA autoregulation leads to improved cellular

  4. Regulatory analysis technical evaluation handbook. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this Handbook is to provide guidance to the regulatory analyst to promote preparation of quality regulatory analysis documents and to implement the policies of the Regulatory Analysis Guidelines of the US Nuclear Regulatory Commission (NUREG/BR-0058 Rev. 2). This Handbook expands upon policy concepts included in the NRC Guidelines and translates the six steps in preparing regulatory analyses into implementable methodologies for the analyst. It provides standardized methods of preparation and presentation of regulatory analyses, with the inclusion of input that will satisfy all backfit requirements and requirements of NRC's Committee to Review Generic Requirements. Information on the objectives of the safety goal evaluation process and potential data sources for preparing a safety goal evaluation is also included. Consistent application of the methods provided here will result in more directly comparable analyses, thus aiding decision-makers in evaluating and comparing various regulatory actions. The handbook is being issued in loose-leaf format to facilitate revisions. NRC intends to periodically revise the handbook as new and improved guidance, data, and methods become available

  5. Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif

    Directory of Open Access Journals (Sweden)

    Launey Thomas

    2011-06-01

    Full Text Available Abstract Background The interactions between PDZ (PSD-95, Dlg, ZO-1 domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C- terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level. Results Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V or type-II (x-x-V-x-I/V PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode. We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif. Conclusions Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.

  6. Noise transmission and delay-induced stochasticoscillations in biochemical network motifs

    Institute of Scientific and Technical Information of China (English)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Fumihiko Sakata

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations,we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation.We systematically analyse the effects of time delays,the feedback mechanism,and biological stochasticity on the power spectra.It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator.Delay-induced stochastic resonance can be expected,which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations.Through the analysis of the power spectrum,a new approach is proposed to estimate the oscillation period.

  7. Noise transmission and delay-induced stochastic oscillations in biochemical network motifs

    International Nuclear Information System (INIS)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Sakata Fumihiko

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations, we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation. We systematically analyse the effects of time delays, the feedback mechanism, and biological stochasticity on the power spectra. It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator. Delay-induced stochastic resonance can be expected, which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations. Through the analysis of the power spectrum, a new approach is proposed to estimate the oscillation period. (interdisciplinary physics and related areas of science and technology)

  8. Deciphering RNA Regulatory Elements Involved in the Developmental and Environmental Gene Regulation of Trypanosoma brucei.

    Science.gov (United States)

    Gazestani, Vahid H; Salavati, Reza

    2015-01-01

    Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.

  9. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence

    Science.gov (United States)

    Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya

    2015-01-01

    Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930

  10. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence.

    Directory of Open Access Journals (Sweden)

    Kacy L Gordon

    2015-05-01

    Full Text Available Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2 from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements.

  11. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors

    DEFF Research Database (Denmark)

    Österlund, Tobias; Bordel, Sergio; Nielsen, Jens

    2015-01-01

    % for the human network. The high controllability (low number of drivers needed to control the system) in yeast, mouse and human is due to the presence of internal loops in their regulatory networks where the TFs regulate each other in a circular fashion. We refer to these internal loops as circular control...... motifs (CCM). The E. coli transcriptional regulatory network, which does not have any CCMs, shows a hierarchical structure of the transcriptional regulatory network in contrast to the eukaryal networks. The presence of CCMs also has influence on the stability of these networks, as the presence of cycles...

  12. Sequence-based classification using discriminatory motif feature selection.

    Directory of Open Access Journals (Sweden)

    Hao Xiong

    Full Text Available Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all k-mer patterns. The motivation behind such (enumerative approaches is to minimize the potential for overlooking important features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature generation to patterns of length ≤ k, such that potentially important, longer (> k predictors are not considered. Second, features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules. Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif finding. In addition to the traditional training and validation partitions, our framework entails a third level of data partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the discovery partition to yield a (small set of features. These features are then used as inputs to a classifier in the training partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its modularity (any discriminatory motif finder and any classifier can be deployed and its universality (all data, including sequences that are unaligned and/or of unequal length, can be accommodated. We illustrate our approach on two nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation. Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python pipeline implementing the approach is

  13. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    Energy Technology Data Exchange (ETDEWEB)

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by

  14. Indonesian Traditional Toys and the Development of Batik Motifs

    Directory of Open Access Journals (Sweden)

    Bagus Indrayana

    2016-06-01

    Full Text Available There is a wide array of traditional toys in Indonesia. In the past, traditional toys played an important role for skill and creativity development of children. Today, the position of traditional toys in the society is displaced by toys from large-scale manufacturers. Given the critical role of traditional toys for children’s motoric and social development, there is a need to develop media that can be used to promote these traditional products and strengthen their position in the public. We propose to use Batik as a way to effectively disseminate and promote traditional toys to the general public. Apart from this, using traditional toys to create new Batik motifs can have an economic value for the producers of Batik, promote Indonesian products and enrich the Indonesian Batik. This study aims to explore the variety of traditional toys, mainly from Klaten and Magelang, in the Central Java province of Indonesia, and use them as the basis for the development of Batik motif creation. This study used Trilogi Keseimbangan (or Harmony Trilogy aesthetic theory analytical approach that explains the creation of craft consists of the following phases: exploration, design, and materialization. The creation method in this study adopts Tiga Tahap Enam Langkah (Three Phases, Six Steps method offered in the theory. The finding in the field found that the traditional toys material used in Klaten and Magelang, mostly made from waste wood, plywood, and zinc. The manufacturing process is done manually by two or three craftsmen using a simple technology. The traditional toys are designed by the artisans mostly, although there may be designs from the clients. In addition, we also found that the traditional toys have never been used as a Batik motif. The traditional toys Batik motif presented in this work is researcher’s design. For the purposes of this study, we first research the variety of traditional toys available in the market today in Indonesia. We look

  15. Dimensionality of social networks using motifs and eigenvalues.

    Directory of Open Access Journals (Sweden)

    Anthony Bonato

    Full Text Available We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find that a social network model with nodes and links sampled from an m-dimensional metric space with power-law distributed influence regions best fits samples from real-world networks when m scales logarithmically with the number of nodes of the network. This supports a logarithmic dimension hypothesis, and we provide evidence with two different social networks, Facebook and LinkedIn. Further, we employ two different methods for confirming the hypothesis: the first uses the distribution of motif counts, and the second exploits the eigenvalue distribution.

  16. Robustness and backbone motif of a cancer network regulated by miR-17-92 cluster during the G1/S transition.

    Directory of Open Access Journals (Sweden)

    Lijian Yang

    Full Text Available Based on interactions among transcription factors, oncogenes, tumor suppressors and microRNAs, a Boolean model of cancer network regulated by miR-17-92 cluster is constructed, and the network is associated with the control of G1/S transition in the mammalian cell cycle. The robustness properties of this regulatory network are investigated by virtue of the Boolean network theory. It is found that, during G1/S transition in the cell cycle process, the regulatory networks are robustly constructed, and the robustness property is largely preserved with respect to small perturbations to the network. By using the unique process-based approach, the structure of this network is analyzed. It is shown that the network can be decomposed into a backbone motif which provides the main biological functions, and a remaining motif which makes the regulatory system more stable. The critical role of miR-17-92 in suppressing the G1/S cell cycle checkpoint and increasing the uncontrolled proliferation of the cancer cells by targeting a genetic network of interacting proteins is displayed with our model.

  17. RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections.

    Science.gov (United States)

    Castro-Mondragon, Jaime Abraham; Jaeger, Sébastien; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques

    2017-07-27

    Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. CMD: A Database to Store the Bonding States of Cysteine Motifs with Secondary Structures

    Directory of Open Access Journals (Sweden)

    Hamed Bostan

    2012-01-01

    Full Text Available Computational approaches to the disulphide bonding state and its connectivity pattern prediction are based on various descriptors. One descriptor is the amino acid sequence motifs flanking the cysteine residue motifs. Despite the existence of disulphide bonding information in many databases and applications, there is no complete reference and motif query available at the moment. Cysteine motif database (CMD is the first online resource that stores all cysteine residues, their flanking motifs with their secondary structure, and propensity values assignment derived from the laboratory data. We extracted more than 3 million cysteine motifs from PDB and UniProt data, annotated with secondary structure assignment, propensity value assignment, and frequency of occurrence and coefficiency of their bonding status. Removal of redundancies generated 15875 unique flanking motifs that are always bonded and 41577 unique patterns that are always nonbonded. Queries are based on the protein ID, FASTA sequence, sequence motif, and secondary structure individually or in batch format using the provided APIs that allow remote users to query our database via third party software and/or high throughput screening/querying. The CMD offers extensive information about the bonded, free cysteine residues, and their motifs that allows in-depth characterization of the sequence motif composition.

  19. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-25

    Leucine-aspartic acid (LD) motifs are short helical protein-protein interaction motifs involved in cell motility, survival and communication. LD motif interactions are also implicated in cancer metastasis and are targeted by several viruses. LD motifs are notoriously difficult to detect because sequence pattern searches lead to an excessively high number of false positives. Hence, despite 20 years of research, only six LD motif–containing proteins are known in humans, three of which are close homologues of the paxillin family. To enable the proteome-wide discovery of LD motifs, we developed LD Motif Finder (LDMF), a web tool based on machine learning that combines sequence information with structural predictions to detect LD motifs with high accuracy. LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  20. Galectin-1-asialofetuin interaction is inhibited by peptides containing the tyr-xxx-tyr motif acting on the glycoprotein.

    Science.gov (United States)

    Wéber, Edit; Hetényi, Anasztázia; Váczi, Balázs; Szolnoki, Eva; Fajka-Boja, Roberta; Tubak, Vilmos; Monostori, Eva; Martinek, Tamás A

    2010-01-25

    Galectin-1 (Gal-1), a ubiquitous beta-galactoside-binding protein expressed by various normal and pathological tissues, has been implicated in cancer and autoimmune/inflammatory diseases in consequence of its regulatory role in adhesion, cell viability, proliferation, and angiogenesis. The functions of Gal-1 depend on its affinity for beta-galactoside-containing glycoconjugates; accordingly, the inhibition of sugar binding blocks its functions, hence promising potential therapeutic tools. The Tyr-Xxx-Tyr peptide motifs have been reported to be glycomimetic sequences, mainly on the basis of their inhibitory effect on the Gal-1-asialofetuin (ASF) interaction. However, the results regarding the efficacy of the Tyr-Xxx-Tyr motif as a glycomimetic inhibitor are still controversial. The present STD and trNOE NMR experiments reveal that the Tyr-Xxx-Tyr peptides studied do not bind to Gal-1, whereas their binding to ASF is clearly detected. (15)N,(1)H HSQC titrations with (15)N-labeled Gal-1 confirm the absence of any peptide-Gal-1 interaction. These data indicate that the Tyr-Xxx-Tyr peptides tested in this work are not glycomimetics as they interact with ASF via an unrevealed molecular linkage.

  1. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach

    Directory of Open Access Journals (Sweden)

    Buer Jan

    2004-12-01

    Full Text Available Abstract Background Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. Results In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. Conclusion The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E

  2. Knowledge management for efficient quantitative analyses during regulatory reviews.

    Science.gov (United States)

    Krudys, Kevin; Li, Fang; Florian, Jeffry; Tornoe, Christoffer; Chen, Ying; Bhattaram, Atul; Jadhav, Pravin; Neal, Lauren; Wang, Yaning; Gobburu, Joga; Lee, Peter I D

    2011-11-01

    Knowledge management comprises the strategies and methods employed to generate and leverage knowledge within an organization. This report outlines the activities within the Division of Pharmacometrics at the US FDA to effectively manage knowledge with the ultimate goal of improving drug development and advancing public health. The infrastructure required for pharmacometric knowledge management includes provisions for data standards, queryable databases, libraries of modeling tools, archiving of analysis results and reporting templates for effective communication. Two examples of knowledge management systems developed within the Division of Pharmacometrics are used to illustrate these principles. The benefits of sound knowledge management include increased productivity, allowing reviewers to focus on research questions spanning new drug applications, such as improved trial design and biomarker development. The future of knowledge management depends on the collaboration between the FDA and industry to implement data and model standards to enhance sharing and dissemination of knowledge.

  3. Use of Host-like Peptide Motifs in Viral Proteins Is a Prevalent Strategy in Host-Virus Interactions

    Directory of Open Access Journals (Sweden)

    Tzachi Hagai

    2014-06-01

    Full Text Available Viruses interact extensively with host proteins, but the mechanisms controlling these interactions are not well understood. We present a comprehensive analysis of eukaryotic linear motifs (ELMs in 2,208 viral genomes and reveal that viruses exploit molecular mimicry of host-like ELMs to possibly assist in host-virus interactions. Using a statistical genomics approach, we identify a large number of potentially functional ELMs and observe that the occurrence of ELMs is often evolutionarily conserved but not uniform across virus families. Some viral proteins contain multiple types of ELMs, in striking similarity to complex regulatory modules in host proteins, suggesting that ELMs may act combinatorially to assist viral replication. Furthermore, a simple evolutionary model suggests that the inherent structural simplicity of ELMs often enables them to tolerate mutations and evolve quickly. Our findings suggest that ELMs may allow fast rewiring of host-virus interactions, which likely assists rapid viral evolution and adaptation to diverse environments.

  4. Professional and Regulatory Search

    Science.gov (United States)

    Professional and Regulatory search are designed for people who use EPA web resources to do their job. You will be searching collections where information that is not relevant to Environmental and Regulatory professionals.

  5. HBVRegDB: Annotation, comparison, detection and visualization of regulatory elements in hepatitis B virus sequences

    Directory of Open Access Journals (Sweden)

    Firth Andrew E

    2007-12-01

    Full Text Available Abstract Background The many Hepadnaviridae sequences available have widely varied functional annotation. The genomes are very compact (~3.2 kb but contain multiple layers of functional regulatory elements in addition to coding regions. Key regions are subject to purifying selection, as mutations in these regions will produce non-functional viruses. Results These genomic sequences have been organized into a structured database to facilitate research at the molecular level. HBVRegDB is a comparative genomic analysis tool with an integrated underlying sequence database. The database contains genomic sequence data from representative viruses. In addition to INSDC and RefSeq annotation, HBVRegDB also contains expert and systematically calculated annotations (e.g. promoters and comparative genome analysis results (e.g. blastn, tblastx. It also contains analyses based on curated HBV alignments. Information about conserved regions – including primary conservation (e.g. CDS-Plotcon and RNA secondary structure predictions (e.g. Alidot – is integrated into the database. A large amount of data is graphically presented using the GBrowse (Generic Genome Browser adapted for analysis of viral genomes. Flexible query access is provided based on any annotated genomic feature. Novel regulatory motifs can be found by analysing the annotated sequences. Conclusion HBVRegDB serves as a knowledge database and as a comparative genomic analysis tool for molecular biologists investigating HBV. It is publicly available and complementary to other viral and HBV focused datasets and tools http://hbvregdb.otago.ac.nz. The availability of multiple and highly annotated sequences of viral genomes in one database combined with comparative analysis tools facilitates detection of novel genomic elements.

  6. Romanian traditional motif - element of modernity in clothing

    Science.gov (United States)

    Doble, L.; Stan, O.; Suteu, M. D.; Albu, A.; Bohm, G.; Tsatsarou-Michalaki, A.; Gialinou, E.

    2017-10-01

    In this paper are presented the phases for improving from an aesthetic point of view a clothing item, the jacket respectively, with a straight cut for women using software design patterns, computerised graphics and textile different modern technologies including: industrial embroidery, digital printing, sublimation. In the first phase a documentation was prepared in the Ethnographic Museum of Transylvania from Cluj Napoca where more traditional motifs were selected specific to Transylvania etnographic region and were reintepreted and stylized whilst preserving the symbolism and color range specified to the area. For the styling phase was used CorelDraw vector graphics program that allows changing the shape, size and color of the drawings without affecting the identity of the pattern. In the patterns design phase Gemini CAD software was used and for the modeling and model development Optitex software was used. The part for garnishing the model was performed using Embrodery machine software reproducing the stylized motif identically. In order to obtain a significantly improved aesthetic look and an added artistic value the pattern chosen for the jacket was done using a combination of modern textile technologies. This has allowed the realization of a particular texture on the surface of the designed product, demonstrating that traditional patterns can be reintepreted in modern clothing

  7. THE MOTIF OF THE SECOND COMING IN RUSSIAN FANTASTIC FICTION

    Directory of Open Access Journals (Sweden)

    Tatyana I. Khoruzhenko

    2017-06-01

    Full Text Available The motif of the Second Coming of Christ takes a special place in Russian fantastic fiction at the turn of the millennium. In the recent decades allusions to the Gospel topic appears in increasing frequency in the genre of fantasy. The aim of the given article was to analyze the peculiarities of the depiction of the subject of Advent in Russian fantastic fiction. As the basis for the research the novels of Y. Voznesenskaya, N. Perumov, V. Khlumov, S. Lukyanenko and T. Ustimenko are of particular interest. The Advent motif appears in the story line of each of the novels in question. Though, the attitude of the authors to the image of the Savior and his second coming to the world fluctuates: from a respectful expectation (Y. Voznesenskaya, T. Ustimenko, S. Lukyanenko to the depiction of the Savior as a monster (N. Perumov. The possibility of an ambivalent interpretation of the Savior is the eloquent evidence of desacralization of this image. The profaning of the sacred is one of the tendencies of the modern popular culture. The genre of fantastic fiction, as a product of mass culture, has caught this trend quite precisely.

  8. Regulation of amyloid precursor protein processing by its KFERQ motif.

    Science.gov (United States)

    Park, Ji-Seon; Kim, Dong-Hou; Yoon, Seung-Yong

    2016-06-01

    Understanding of trafficking, processing, and degradation mechanisms of amyloid precursor protein (APP) is important because APP can be processed to produce β-amyloid (Aβ), a key pathogenic molecule in Alzheimer's disease (AD). Here, we found that APP contains KFERQ motif at its C-terminus, a consensus sequence for chaperone-mediated autophagy (CMA) or microautophagy which are another types of autophagy for degradation of pathogenic molecules in neurodegenerative diseases. Deletion of KFERQ in APP increased C-terminal fragments (CTFs) and secreted N-terminal fragments of APP and kept it away from lysosomes. KFERQ deletion did not abolish the interaction of APP or its cleaved products with heat shock cognate protein 70 (Hsc70), a protein necessary for CMA or microautophagy. These findings suggest that KFERQ motif is important for normal processing and degradation of APP to preclude the accumulation of APP-CTFs although it may not be important for CMA or microautophagy. [BMB Reports 2016; 49(6): 337-342].

  9. Network motif frequency vectors reveal evolving metabolic network organisation.

    Science.gov (United States)

    Pearcy, Nicole; Crofts, Jonathan J; Chuzhanova, Nadia

    2015-01-01

    At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this underlying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biological features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic networks.

  10. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints

    OpenAIRE

    Schwessinger, R; Suciu, MC; McGowan, SJ; Telenius, J; Taylor, S; Higgs, DR; Hughes, JR

    2017-01-01

    In the era of genome-wide association studies (GWAS) and personalized medicine, predicting the impact of single nucleotide polymorphisms (SNPs) in regulatory elements is an important goal. Current approaches to determine the potential of regulatory SNPs depend on inadequate knowledge of cell-specific DNA binding motifs. Here, we present Sasquatch, a new computational approach that uses DNase footprint data to estimate and visualize the effects of noncoding variants on transcription factor bin...

  11. Future nuclear regulatory challenges

    International Nuclear Information System (INIS)

    Royen, J.

    1998-01-01

    In December 1996, the NEA Committee on Nuclear Regulatory Activities concluded that changes resulting from economic deregulation and other recent developments affecting nuclear power programmes have consequences both for licensees and regulatory authorities. A number of potential problems and issues which will present a challenge to nuclear regulatory bodies over the next ten years have been identified in a report just released. (author)

  12. A novel polymorphic repeat in the upstream regulatory region of the estrogen-induced gene EIG121 is not associated with the risk of developing breast or endometrial cancer.

    Science.gov (United States)

    Bolton, Katherine A; Holliday, Elizabeth G; Attia, John; Bowden, Nikola A; Avery-Kiejda, Kelly A; Scott, Rodney J

    2016-05-26

    The estrogen-induced gene 121 (EIG121) has been associated with breast and endometrial cancers, but its mechanism of action remains unknown. In a genome-wide search for tandem repeats, we found that EIG121 contains a short tandem repeat (STR) in its upstream regulatory region which has the potential to alter gene expression. The presence of this STR has not previously been analysed in relation to breast or endometrial cancer risk. In this study, the lengths of this STR were determined by PCR, fragment analysis and sequencing using DNA from 223 breast cancer patients, 204 endometrial cancer patients and 220 healthy controls to determine if they were associated with the risk of developing breast or endometrial cancer. We found this repeat to be highly variable with the number of copies of the AG motif ranging from 27 to 72 and having a bimodal distribution. No statistically significant association was identified between the length of this STR and the risk of developing breast or endometrial cancer or age at diagnosis. The STR in the upstream regulatory region of EIG121 is highly polymorphic, but is not associated with the risk of developing breast or endometrial cancer in the cohorts analysed here. While this polymorphic STR in the regulatory region of EIG121 appears to have no impact on the risk of developing breast or endometrial cancer, its association with disease recurrence or overall survival remains to be determined.

  13. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    Science.gov (United States)

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  14. Legal principles of regulatory administration and nuclear safety regulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyeong Hui; Cheong, Sang Kee [Hannam Univ., Taejon (Korea, Republic of)

    2000-12-15

    This research presents a critical analysis and evaluation of principles of administrative laws in order to provide framework of structural reform on the nuclear safety regulation system. The focus of this analysis and evaluation is centered around the area of origin of regulatory administrative laws; authorities of regulation; procedures of regulatory actions; regulatory enforcement; and administrative relief system. In chapter 2 the concept of regulatory administration is analysed. Chapter 3 identifies the origin of regulatory administration and the principles of administration laws. It also examines legal nature of the nuclear safety standard. In relation to regulatory authorities. Chapter 4 identifies role and responsibility of administration authorities and institutions. It also examines fundamental principles of delegation of power. Then the chapter discusses the nuclear safety regulation authorities and their roles and responsibilities. Chapter 5 classifies and examines regulatory administration actions. Chapter 6 evaluates enforcement measure for effectiveness of regulation. Finally, chapter 7 discusses the administrative relief system for reviewing unreasonable regulatory acts.

  15. I-Ad-binding peptides derived from unrelated protein antigens share a common structural motif

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S

    1988-01-01

    on the I-Ad binding of the immunogenic peptide OVA 323-339. The results obtained demonstrated the very permissive nature of Ag-Ia interaction. We also showed that unrelated peptides that are good I-Ad binders share a common structural motif and speculated that recognition of such motifs could represent...... that I-Ad molecules recognize a large library of Ag by virtue of common structural motifs present in peptides derived from phylogenetically unrelated proteins....

  16. Lucky Motifs in Chinese Folk Art: Interpreting Paper-cut from Chinese Shaanxi

    OpenAIRE

    Xuxiao WANG

    2013-01-01

    Paper-cut is not simply a form of traditional Chinese folk art. Lucky motifs developed in paper-cut certainly acquired profound cultural connotations. As paper-cut is a time-honoured skill across the nation, interpreting those motifs requires cultural receptiveness and anthropological sensitivity. The author of this article analyzes examples of paper-cut from Northern Shaanxi, China, to identify the cohesive motifs and explore the auspiciousness of the specific concepts of Fu, Lu, Shou, Xi. T...

  17. Low-dimensional morphospace of topological motifs in human fMRI brain networks

    Directory of Open Access Journals (Sweden)

    Sarah E. Morgan

    2018-06-01

    Full Text Available We present a low-dimensional morphospace of fMRI brain networks, where axes are defined in a data-driven manner based on the network motifs. The morphospace allows us to identify the key variations in healthy fMRI networks in terms of their underlying motifs, and we observe that two principal components (PCs can account for 97% of the motif variability. The first PC of the motif distribution is correlated with efficiency and inversely correlated with transitivity. Hence this axis approximately conforms to the well-known economical small-world trade-off between integration and segregation in brain networks. Finally, we show that the economical clustering generative model proposed by Vértes et al. (2012 can approximately reproduce the motif morphospace of the real fMRI brain networks, in contrast to other generative models. Overall, the motif morphospace provides a powerful way to visualize the relationships between network properties and to investigate generative or constraining factors in the formation of complex human brain functional networks. Motifs have been described as the building blocks of complex networks. Meanwhile, a morphospace allows networks to be placed in a common space and can reveal the relationships between different network properties and elucidate the driving forces behind network topology. We combine the concepts of motifs and morphospaces to create the first motif morphospace of fMRI brain networks. Crucially, the morphospace axes are defined by the motifs, in a data-driven manner. We observe strong correlations between the networks’ positions in morphospace and their global topological properties, suggesting that motif morphospaces are a powerful way to capture the topology of networks in a low-dimensional space and to compare generative models of brain networks. Motif morphospaces could also be used to study other complex networks’ topologies.

  18. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2011-06-01

    Full Text Available Abstract Background One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Results Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet, which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i ubiquitous motifs, shared by several superfamilies and (ii superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P and SAH/SAM. Conclusions Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.

  19. Regulatory activities; Actividades regulatorias

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This publication, compiled in 8 chapters, presents the regulatory system developed by the Nuclear Regulatory Authority (NRA) of the Argentine Republic. The following activities and developed topics in this document describe: the evolution of the nuclear regulatory activity in Argentina; the Argentine regulatory system; the nuclear regulatory laws and standards; the inspection and safeguards of nuclear facilities; the emergency systems; the environmental systems; the environmental monitoring; the analysis laboratories on physical and biological dosimetry, prenatal irradiation, internal irradiation, radiation measurements, detection techniques on nuclear testing, medical program on radiation protection; the institutional relations with national and international organization; the training courses and meeting; the technical information.

  20. Hybrid DNA i-motif: Aminoethylprolyl-PNA (pC5) enhance the stability of DNA (dC5) i-motif structure.

    Science.gov (United States)

    Gade, Chandrasekhar Reddy; Sharma, Nagendra K

    2017-12-15

    This report describes the synthesis of C-rich sequence, cytosine pentamer, of aep-PNA and its biophysical studies for the formation of hybrid DNA:aep-PNAi-motif structure with DNA cytosine pentamer (dC 5 ) under acidic pH conditions. Herein, the CD/UV/NMR/ESI-Mass studies strongly support the formation of stable hybrid DNA i-motif structure with aep-PNA even near acidic conditions. Hence aep-PNA C-rich sequence cytosine could be considered as potential DNA i-motif stabilizing agents in vivo conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Purification and functional motifs of the recombinant ATPase of orf virus.

    Science.gov (United States)

    Lin, Fong-Yuan; Chan, Kun-Wei; Wang, Chi-Young; Wong, Min-Liang; Hsu, Wei-Li

    2011-10-01

    Our previous study showed that the recombinant ATPase encoded by the A32L gene of orf virus displayed ATP hydrolysis activity as predicted from its amino acids sequence. This viral ATPase contains four known functional motifs (motifs I-IV) and a novel AYDG motif; they are essential for ATP hydrolysis reaction by binding ATP and magnesium ions. The motifs I and II correspond with the Walker A and B motifs of the typical ATPase, respectively. To examine the biochemical roles of these five conserved motifs, recombinant ATPases of five deletion mutants derived from the Taiping strain were expressed and purified. Their ATPase functions were assayed and compared with those of two wild type strains, Taiping and Nantou isolated in Taiwan. Our results showed that deletions at motifs I-III or IV exhibited lower activity than that of the wild type. Interestingly, deletion of AYDG motif decreased the ATPase activity more significantly than those of motifs I-IV deletions. Divalent ions such as magnesium and calcium were essential for ATPase activity. Moreover, our recombinant proteins of orf virus also demonstrated GTPase activity, though weaker than the original ATPase activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Crystal Structure of (+)-[delta]-Cadinene Synthase from Gossypium arboreum and Evolutionary Divergence of Metal Binding Motifs for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gennadios, Heather A.; Gonzalez, Veronica; Di Costanzo, Luigi; Li, Amang; Yu, Fanglei; Miller, David J.; Allemann, Rudolf K.; Christianson, David W.; (UPENN); (Cardiff); (UC)

    2009-09-11

    (+)-{delta}-Cadinene synthase (DCS) from Gossypium arboreum (tree cotton) is a sesquiterpene cyclase that catalyzes the cyclization of farnesyl diphosphate in the first committed step of the biosynthesis of gossypol, a phytoalexin that defends the plant from bacterial and fungal pathogens. Here, we report the X-ray crystal structure of unliganded DCS at 2.4 {angstrom} resolution and the structure of its complex with three putative Mg{sup 2+} ions and the substrate analogue inhibitor 2-fluorofarnesyl diphosphate (2F-FPP) at 2.75 {angstrom} resolution. These structures illuminate unusual features that accommodate the trinuclear metal cluster required for substrate binding and catalysis. Like other terpenoid cyclases, DCS contains a characteristic aspartate-rich D{sup 307}DTYD{sup 311} motif on helix D that interacts with Mg{sub A}{sup 2+} and Mg{sub C}{sup 2+}. However, DCS appears to be unique among terpenoid cyclases in that it does not contain the 'NSE/DTE' motif on helix H that specifically chelates Mg{sub B}{sup 2+}, which is usually found as the signature sequence (N,D)D(L,I,V)X(S,T)XXXE (boldface indicates Mg{sub B}{sup 2+} ligands). Instead, DCS contains a second aspartate-rich motif, D{sup 451}DVAE{sup 455}, that interacts with Mg{sub B}{sup 2+}. In this regard, DCS is more similar to the isoprenoid chain elongation enzyme farnesyl diphosphate synthase, which also contains two aspartate-rich motifs, rather than the greater family of terpenoid cyclases. Nevertheless, the structure of the DCS-2F-FPP complex shows that the structure of the trinuclear magnesium cluster is generally similar to that of other terpenoid cyclases despite the alternative Mg{sub B}{sup 2+} binding motif. Analyses of DCS mutants with alanine substitutions in the D{sup 307}DTYD{sup 311} and D{sup 451}DVAE{sup 455} segments reveal the contributions of these segments to catalysis.

  3. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    Science.gov (United States)

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  4. Nuclear import of influenza B virus nucleoprotein: Involvement of an N-terminal nuclear localization signal and a cleavage-protection motif

    International Nuclear Information System (INIS)

    Wanitchang, Asawin; Narkpuk, Jaraspim; Jongkaewwattana, Anan

    2013-01-01

    The nucleoprotein of influenza B virus (BNP) shares several characteristics with its influenza A virus counterpart (ANP), including localization in the host's nucleus. However, while the nuclear localization signal(s) (NLS) of ANP are well characterized, little is known about those of BNP. In this study, we showed that the fusion protein bearing the BNP N-terminus fused with GFP (N70–GFP) is exclusively nuclear, and identified a highly conserved KRXR motif spanning residues 44–47 as a putative NLS. In addition, we demonstrated that residues 3–15 of BNP, though not an NLS, are also crucial for nuclear import. Results from mutational analyses of N70–GFP and the full-length BNP suggest that this region may be required for protection of the N-terminus from proteolytic cleavage. Altogether, we propose that the N-terminal region of BNP contains the NLS and cleavage-protection motif, which together drive its nuclear localization. - Highlights: • The N-terminal region of BNP is required for nuclear accumulation. • The conserved motif at position 44–47 is a putative nuclear localization signal. • The first 15 amino acids of BNP may function as a cleavage-protection motif. • BNP may get access to the nucleus via a mechanism distinct from ANP

  5. Nuclear import of influenza B virus nucleoprotein: Involvement of an N-terminal nuclear localization signal and a cleavage-protection motif

    Energy Technology Data Exchange (ETDEWEB)

    Wanitchang, Asawin; Narkpuk, Jaraspim; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th

    2013-08-15

    The nucleoprotein of influenza B virus (BNP) shares several characteristics with its influenza A virus counterpart (ANP), including localization in the host's nucleus. However, while the nuclear localization signal(s) (NLS) of ANP are well characterized, little is known about those of BNP. In this study, we showed that the fusion protein bearing the BNP N-terminus fused with GFP (N70–GFP) is exclusively nuclear, and identified a highly conserved KRXR motif spanning residues 44–47 as a putative NLS. In addition, we demonstrated that residues 3–15 of BNP, though not an NLS, are also crucial for nuclear import. Results from mutational analyses of N70–GFP and the full-length BNP suggest that this region may be required for protection of the N-terminus from proteolytic cleavage. Altogether, we propose that the N-terminal region of BNP contains the NLS and cleavage-protection motif, which together drive its nuclear localization. - Highlights: • The N-terminal region of BNP is required for nuclear accumulation. • The conserved motif at position 44–47 is a putative nuclear localization signal. • The first 15 amino acids of BNP may function as a cleavage-protection motif. • BNP may get access to the nucleus via a mechanism distinct from ANP.

  6. Sequential dynamics in the motif of excitatory coupled elements

    Science.gov (United States)

    Korotkov, Alexander G.; Kazakov, Alexey O.; Osipov, Grigory V.

    2015-11-01

    In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka-Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka-Volterra model.

  7. Study on online community user motif using web usage mining

    Science.gov (United States)

    Alphy, Meera; Sharma, Ajay

    2016-04-01

    The Web usage mining is the application of data mining, which is used to extract useful information from the online community. The World Wide Web contains at least 4.73 billion pages according to Indexed Web and it contains at least 228.52 million pages according Dutch Indexed web on 6th august 2015, Thursday. It’s difficult to get needed data from these billions of web pages in World Wide Web. Here is the importance of web usage mining. Personalizing the search engine helps the web user to identify the most used data in an easy way. It reduces the time consumption; automatic site search and automatic restore the useful sites. This study represents the old techniques to latest techniques used in pattern discovery and analysis in web usage mining from 1996 to 2015. Analyzing user motif helps in the improvement of business, e-commerce, personalisation and improvement of websites.

  8. The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif

    Directory of Open Access Journals (Sweden)

    Grishin Nick V

    2009-01-01

    Full Text Available Abstract Background Argonaute (Ago proteins interact with small regulatory RNAs to mediate gene regulatory pathways. A recent report by Kiriakidou et al. 1 describes an MC sequence region identified in Ago2 that displays similarity to the cap-binding motif in translation initiation factor 4E (eIF4E. In a cap-bound eIF4E structure, two important aromatic residues of the motif stack on either side of a 7-methylguanosine 5'-triphosphate (m7Gppp base. The corresponding Ago2 aromatic residues (F450 and F505 were hypothesized to perform the same cap-binding function. However, the detected similarity between the MC sequence and the eIF4E cap-binding motif was questionable. Results A number of sequence-based and structure-based bioinformatics methods reveal the reported similarity between the Ago2 MC sequence region and the eIF4E cap-binding motif to be spurious. Alternatively, the MC sequence region is confidently assigned to the N-terminus of the Ago piwi module, within the mid domain of experimentally determined prokaryotic Ago structures. Confident mapping of the Ago2 MC sequence region to the piwi mid domain results in a homology-based structure model that positions the identified aromatic residues over 20 Å apart, with one of the aromatic side chains (F450 contributing instead to the hydrophobic core of the domain. Conclusion Correct functional prediction based on weak sequence similarity requires substantial evolutionary and structural support. The evolutionary context of the Ago mid domain suggested by multiple sequence alignment is limited to a conserved hydrophobicity profile required for the fold and a motif following the MC region that binds guide RNA. Mapping of the MC sequence to the mid domain structure reveals Ago2 aromatics that are incompatible with eIF4E-like mRNA cap-binding, yet display some limited local structure similarities that cause the chance sequence match to eIF4E. Reviewers This article was reviewed by Arcady Mushegian

  9. Identification of putative cis-regulatory elements in Cryptosporidium parvum by de novo pattern finding

    Directory of Open Access Journals (Sweden)

    Kissinger Jessica C

    2007-01-01

    Full Text Available Abstract Background Cryptosporidium parvum is a unicellular eukaryote in the phylum Apicomplexa. It is an obligate intracellular parasite that causes diarrhea and is a significant AIDS-related pathogen. Cryptosporidium parvum is not amenable to long-term laboratory cultivation or classical molecular genetic analysis. The parasite exhibits a complex life cycle, a broad host range, and fundamental mechanisms of gene regulation remain unknown. We have used data from the recently sequenced genome of this organism to uncover clues about gene regulation in C. parvum. We have applied two pattern finding algorithms MEME and AlignACE to identify conserved, over-represented motifs in the 5' upstream regions of genes in C. parvum. To support our findings, we have established comparative real-time -PCR expression profiles for the groups of genes examined computationally. Results We find that groups of genes that share a function or belong to a common pathway share upstream motifs. Different motifs are conserved upstream of different groups of genes. Comparative real-time PCR studies show co-expression of genes within each group (in sub-sets during the life cycle of the parasite, suggesting co-regulation of these genes may be driven by the use of conserved upstream motifs. Conclusion This is one of the first attempts to characterize cis-regulatory elements in the absence of any previously characterized elements and with very limited expression data (seven genes only. Using de novo pattern finding algorithms, we have identified specific DNA motifs that are conserved upstream of genes belonging to the same metabolic pathway or gene family. We have demonstrated the co-expression of these genes (often in subsets using comparative real-time-PCR experiments thus establishing evidence for these conserved motifs as putative cis-regulatory elements. Given the lack of prior information concerning expression patterns and organization of promoters in C. parvum we

  10. Structural fragment clustering reveals novel structural and functional motifs in α-helical transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Vassilev Boris

    2010-04-01

    Full Text Available Abstract Background A large proportion of an organism's genome encodes for membrane proteins. Membrane proteins are important for many cellular processes, and several diseases can be linked to mutations in them. With the tremendous growth of sequence data, there is an increasing need to reliably identify membrane proteins from sequence, to functionally annotate them, and to correctly predict their topology. Results We introduce a technique called structural fragment clustering, which learns sequential motifs from 3D structural fragments. From over 500,000 fragments, we obtain 213 statistically significant, non-redundant, and novel motifs that are highly specific to α-helical transmembrane proteins. From these 213 motifs, 58 of them were assigned to function and checked in the scientific literature for a biological assessment. Seventy percent of the motifs are found in co-factor, ligand, and ion binding sites, 30% at protein interaction interfaces, and 12% bind specific lipids such as glycerol or cardiolipins. The vast majority of motifs (94% appear across evolutionarily unrelated families, highlighting the modularity of functional design in membrane proteins. We describe three novel motifs in detail: (1 a dimer interface motif found in voltage-gated chloride channels, (2 a proton transfer motif found in heme-copper oxidases, and (3 a convergently evolved interface helix motif found in an aspartate symporter, a serine protease, and cytochrome b. Conclusions Our findings suggest that functional modules exist in membrane proteins, and that they occur in completely different evolutionary contexts and cover different binding sites. Structural fragment clustering allows us to link sequence motifs to function through clusters of structural fragments. The sequence motifs can be applied to identify and characterize membrane proteins in novel genomes.

  11. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize

    Directory of Open Access Journals (Sweden)

    Weibin eSong

    2016-01-01

    Full Text Available VQ motif-containing proteins play crucial roles in abiotic stress responses in plants. Recent studies have shown that some VQ proteins physically interact with WRKY transcription factors to activate downstream genes. In the present study, we identified and characterized genes encoding VQ motif-containing proteins using the most recent version of the maize genome sequence. In total, 61VQ genes were identified. In a cluster analysis, these genes clustered into nine groups together with their homologous genes in rice and Arabidopsis. Most of the VQ genes (57 out of 61 numbers identified in maize were found to be single-copy genes. Analyses of RNA-seq data obtained using seedlings under long-term drought treatment showed that the expression levels of most ZmVQ genes (41 out of 61 members changed during the drought stress response. Quantitative real-time PCR analyses showed that most of the ZmVQ genes were responsive to NaCl treatment. Also, approximately half of the ZmVQ genes were co-expressed with ZmWRKY genes. The identification of these VQ genes in the maize genome and knowledge of their expression profiles under drought and osmotic stresses will provide a solid foundation for exploring their specific functions in the abiotic stress responses of maize.

  12. Uncertainty Analyses and Strategy

    International Nuclear Information System (INIS)

    Kevin Coppersmith

    2001-01-01

    The DOE identified a variety of uncertainties, arising from different sources, during its assessment of the performance of a potential geologic repository at the Yucca Mountain site. In general, the number and detail of process models developed for the Yucca Mountain site, and the complex coupling among those models, make the direct incorporation of all uncertainties difficult. The DOE has addressed these issues in a number of ways using an approach to uncertainties that is focused on producing a defensible evaluation of the performance of a potential repository. The treatment of uncertainties oriented toward defensible assessments has led to analyses and models with so-called ''conservative'' assumptions and parameter bounds, where conservative implies lower performance than might be demonstrated with a more realistic representation. The varying maturity of the analyses and models, and uneven level of data availability, result in total system level analyses with a mix of realistic and conservative estimates (for both probabilistic representations and single values). That is, some inputs have realistically represented uncertainties, and others are conservatively estimated or bounded. However, this approach is consistent with the ''reasonable assurance'' approach to compliance demonstration, which was called for in the U.S. Nuclear Regulatory Commission's (NRC) proposed 10 CFR Part 63 regulation (64 FR 8640 [DIRS 101680]). A risk analysis that includes conservatism in the inputs will result in conservative risk estimates. Therefore, the approach taken for the Total System Performance Assessment for the Site Recommendation (TSPA-SR) provides a reasonable representation of processes and conservatism for purposes of site recommendation. However, mixing unknown degrees of conservatism in models and parameter representations reduces the transparency of the analysis and makes the development of coherent and consistent probability statements about projected repository

  13. Analysis of alkaptonuria (AKU) mutations and polymorphisms reveals that the CCC sequence motif is a mutational hot spot in the homogentisate 1,2 dioxygenase gene (HGO).

    Science.gov (United States)

    Beltrán-Valero de Bernabé, D; Jimenez, F J; Aquaron, R; Rodríguez de Córdoba, S

    1999-01-01

    We recently showed that alkaptonuria (AKU) is caused by loss-of-function mutations in the homogentisate 1,2 dioxygenase gene (HGO). Herein we describe haplotype and mutational analyses of HGO in seven new AKU pedigrees. These analyses identified two novel single-nucleotide polymorphisms (INV4+31A-->G and INV11+18A-->G) and six novel AKU mutations (INV1-1G-->A, W60G, Y62C, A122D, P230T, and D291E), which further illustrates the remarkable allelic heterogeneity found in AKU. Reexamination of all 29 mutations and polymorphisms thus far described in HGO shows that these nucleotide changes are not randomly distributed; the CCC sequence motif and its inverted complement, GGG, are preferentially mutated. These analyses also demonstrated that the nucleotide substitutions in HGO do not involve CpG dinucleotides, which illustrates important differences between HGO and other genes for the occurrence of mutation at specific short-sequence motifs. Because the CCC sequence motifs comprise a significant proportion (34.5%) of all mutated bases that have been observed in HGO, we conclude that the CCC triplet is a mutational hot spot in HGO. PMID:10205262

  14. Wayward Warriors: The Viking Motif in Swedish and English Children's Literature

    Science.gov (United States)

    Sundmark, Björn

    2014-01-01

    In this article the Viking motif in children's literature is explored--from its roots in (adult) nationalist and antiquarian discourse, over pedagogical and historical texts for children, to the eventual diversification (or dissolution) of the motif into different genres and forms. The focus is on Swedish Viking narratives, but points of…

  15. Physical-chemical property based sequence motifs and methods regarding same

    Science.gov (United States)

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  16. Gene Isolation Using Degenerate Primers Targeting Protein Motif: A Laboratory Exercise

    Science.gov (United States)

    Yeo, Brandon Pei Hui; Foong, Lian Chee; Tam, Sheh May; Lee, Vivian; Hwang, Siaw San

    2018-01-01

    Structures and functions of protein motifs are widely included in many biology-based course syllabi. However, little emphasis is placed to link this knowledge to applications in biotechnology to enhance the learning experience. Here, the conserved motifs of nucleotide binding site-leucine rich repeats (NBS-LRR) proteins, successfully used for the…

  17. MOMFER: A Search Engine of Thompson's Motif-Index of Folk Literature

    NARCIS (Netherlands)

    Karsdorp, F.B.; van der Meulen, Marten; Meder, Theo; van den Bosch, Antal

    2015-01-01

    More than fifty years after the first edition of Thompson's seminal Motif-Indexof Folk Literature, we present an online search engine tailored to fully disclose the index digitally. This search engine, called MOMFER, greatly enhances the searchability of the Motif-Index and provides exciting new

  18. High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif

    NARCIS (Netherlands)

    Senchou, V.; Weide, R.L.; Carrasco, A.; Bouyssou, H.; Pont-Lezica, R.; Govers, F.; Canut, H.

    2004-01-01

    The RGD tripeptide sequence, a cell adhesion motif present in several extracellular matrix proteins of mammalians, is involved in numerous plant processes. In plant-pathogen interactions, the RGD motif is believed to reduce plant defence responses by disrupting adhesions between the cell wall and

  19. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation

    DEFF Research Database (Denmark)

    Hauge, Camilla; Antal, Torben L; Hirschberg, Daniel

    2007-01-01

    investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within...

  20. Proteome-level assessment of origin, prevalence and function of Leucine-Aspartic Acid (LD) motifs

    KAUST Repository

    Alam, Tanvir

    2018-03-11

    Short Linear Motifs (SLiMs) contribute to almost every cellular function by connecting appropriate protein partners. Accurate prediction of SLiMs is difficult due to their shortness and sequence degeneracy. Leucine-aspartic acid (LD) motifs are SLiMs that link paxillin family proteins to factors controlling (cancer) cell adhesion, motility and survival. The existence and importance of LD motifs beyond the paxillin family is poorly understood. To enable a proteome-wide assessment of these motifs, we developed an active-learning based framework that iteratively integrates computational predictions with experimental validation. Our analysis of the human proteome identified a dozen proteins that contain LD motifs, all being involved in cell adhesion and migration, and revealed a new type of inverse LD motif consensus. Our evolutionary analysis suggested that LD motif signalling originated in the common unicellular ancestor of opisthokonts and amoebozoa by co-opting nuclear export sequences. Inter-species comparison revealed a conserved LD signalling core, and reveals the emergence of species-specific adaptive connections, while maintaining a strong functional focus of the LD motif interactome. Collectively, our data elucidate the mechanisms underlying the origin and adaptation of an ancestral SLiM.

  1. A proposed vestigial translation initiation motif in VP1 of hepatitis A virus.

    Science.gov (United States)

    Kang, Jeong-Ah; Funkhouser, Ann W

    2002-07-01

    The internal ribosome entry site (IRES) of picornaviruses has a 3' polypyrimidine tract (PPT) 16-24 bases upstream of an AUG triplet (PPT/AUG motif). This motif is critical in determining the efficiency of cap-independent translation. HAV has a conserved PPT/AUG motif consisting of a nine base sequence (AGGUUUUUC) 23 bases upstream of the preferred AUG start codon. This HAV-specific PPT/AUG motif is repeated and conserved in VP1 of HAV, but not of other picornaviruses. We proposed that the PPT/AUG motif in the open reading frame initiated translation and/or had an impact on the life cycle of the virus. In vitro translation of mutant bicistronic mRNAs and growth in cell culture of mutant viruses provided no evidence that the VP1 PPT/AUG motif had any impact on either translation or growth. HAV differs from other picornaviruses in its inefficient growth in cell culture. Since the HAV-specific PPT/AUG motif is found in only 1 in 300,000 reported viral sequences outside the hepatovirus genus, this motif may be a vestigial translation initiation element and may have played a role in determining the unusual phenotype of HAV.

  2. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  3. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    Science.gov (United States)

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  4. Research and regulatory review

    International Nuclear Information System (INIS)

    Macleod, J.S.; Fryer, D.R.H.

    1979-01-01

    To enable the regulatory review to be effectively undertaken by the regulatory body, there is a need for it to have ready access to information generated by research activities. Certain advantages have been seen to be gained by the regulatory body itself directly allocating and controlling some portion of these activities. The princial reasons for reaching this conclusion are summarised and a brief description of the Inspectorates directly sponsored programme outlined. (author)

  5. Regulatory Commission of Alaska

    Science.gov (United States)

    Map Help Regulatory Commission of Alaska Login Forgot Password Arrow Image Forgot password? View Cart login Procedures for Requesting Login For Consumers General Information Telephone Electric Natural Gas

  6. Thermal Stability of Modified i-Motif Oligonucleotides with Naphthalimide Intercalating Nucleic Acids

    DEFF Research Database (Denmark)

    El-Sayed, Ahmed Ali; Pedersen, Erik B.; Khaireldin, Nahid Y.

    2016-01-01

    In continuation of our investigation of characteristics and thermodynamic properties of the i-motif 5′-d[(CCCTAA)3CCCT)] upon insertion of intercalating nucleotides into the cytosine-rich oligonucleotide, this article evaluates the stabilities of i-motif oligonucleotides upon insertion of naphtha......In continuation of our investigation of characteristics and thermodynamic properties of the i-motif 5′-d[(CCCTAA)3CCCT)] upon insertion of intercalating nucleotides into the cytosine-rich oligonucleotide, this article evaluates the stabilities of i-motif oligonucleotides upon insertion...... of naphthalimide (1H-benzo[de]isoquinoline-1,3(2H)-dione) as the intercalating nucleic acid. The stabilities of i-motif structures with inserted naphthalimide intercalating nucleotides were studied using UV melting temperatures (Tm) and circular dichroism spectra at different pH values and conditions (crowding...

  7. A CRE/AP-1-like motif is essential for induced syncytin-2 expression and fusion in human trophoblast-like model.

    Directory of Open Access Journals (Sweden)

    Chirine Toufaily

    Full Text Available Syncytin-2 is encoded by the envelope gene of Endogenous Retrovirus-FRD (ERVFRD-1 and plays a critical role in fusion of placental trophoblasts leading to the formation of the multinucleated syncytiotrophoblast. Its expression is consequently regulated in a strict manner. In the present study, we have identified a forskolin-responsive region located between positions -300 to -150 in the Syncytin-2 promoter region. This 150 bp region in the context of a minimal promoter mediated an 80-fold induction of promoter activity following forskolin stimulation. EMSA analyses with competition experiments with nuclear extracts from forskolin-stimulated BeWo cells demonstrated that the -211 to -177 region specifically bound two forskolin-induced complexes, one of them containing a CRE/AP-1-like motif. Site-directed mutagenesis of the CRE/AP-1 binding site in the context of the Syncytin-2 promoter or a heterologous promoter showed that this motif was mostly essential for forskolin-induced promoter activity. Transfection experiments with dominant negative mutants and constitutively activated CREB expression vectors in addition to Chromatin Immunoprecipitation suggested that a CREB family member, CREB2 was binding and acting through the CRE/AP-1 motif. We further demonstrated the binding of JunD to this same motif. Similar to forskolin and soluble cAMP, CREB2 and JunD overexpression induced Syncytin-2 promoter activity in a CRE/AP-1-dependent manner and Syncytin-2 expression. In addition, BeWo cell fusion was induced by both CREB2 and JunD overexpression, while being repressed following silencing of either gene. These results thereby demonstrate that induced expression of Syncytin-2 is highly dependent on the interaction of bZIP-containing transcription factors to a CRE/AP-1 motif and that this element is important for the regulation of Syncytin-2 expression, which results in the formation of the peripheral syncytiotrophoblast layer.

  8. The transcriptional regulatory network of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Joaquín Sanz

    Full Text Available Under the perspectives of network science and systems biology, the characterization of transcriptional regulatory (TR networks beyond the context of model organisms offers a versatile tool whose potential remains yet mainly unexplored. In this work, we present an updated version of the TR network of Mycobacterium tuberculosis (M.tb, which incorporates newly characterized transcriptional regulations coming from 31 recent, different experimental works available in the literature. As a result of the incorporation of these data, the new network doubles the size of previous data collections, incorporating more than a third of the entire genome of the bacterium. We also present an exhaustive topological analysis of the new assembled network, focusing on the statistical characterization of motifs significances and the comparison with other model organisms. The expanded M.tb transcriptional regulatory network, considering its volume and completeness, constitutes an important resource for diverse tasks such as dynamic modeling of gene expression and signaling processes, computational reliability determination or protein function prediction, being the latter of particular relevance, given that the function of only a small percent of the proteins of M.tb is known.

  9. The crystal structure of the regulatory domain of the human sodium-driven chloride/bicarbonate exchanger.

    Science.gov (United States)

    Alvadia, Carolina M; Sommer, Theis; Bjerregaard-Andersen, Kaare; Damkier, Helle Hasager; Montrasio, Michele; Aalkjaer, Christian; Morth, J Preben

    2017-09-21

    The sodium-driven chloride/bicarbonate exchanger (NDCBE) is essential for maintaining homeostatic pH in neurons. The crystal structure at 2.8 Å resolution of the regulatory N-terminal domain of human NDCBE represents the first crystal structure of an electroneutral sodium-bicarbonate cotransporter. The crystal structure forms an equivalent dimeric interface as observed for the cytoplasmic domain of Band 3, and thus establishes that the consensus motif VTVLP is the key minimal dimerization motif. The VTVLP motif is highly conserved and likely to be the physiologically relevant interface for all other members of the SLC4 family. A novel conserved Zn 2+ -binding motif present in the N-terminal domain of NDCBE is identified and characterized in vitro. Cellular studies confirm the Zn 2+ dependent transport of two electroneutral bicarbonate transporters, NCBE and NBCn1. The Zn 2+ site is mapped to a cluster of histidines close to the conserved ETARWLKFEE motif and likely plays a role in the regulation of this important motif. The combined structural and bioinformatics analysis provides a model that predicts with additional confidence the physiologically relevant interface between the cytoplasmic domain and the transmembrane domain.

  10. In silico discovery of transcription regulatory elements in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Le Roch Karine G

    2008-02-01

    Full Text Available Abstract Background With the sequence of the Plasmodium falciparum genome and several global mRNA and protein life cycle expression profiling projects now completed, elucidating the underlying networks of transcriptional control important for the progression of the parasite life cycle is highly pertinent to the development of new anti-malarials. To date, relatively little is known regarding the specific mechanisms the parasite employs to regulate gene expression at the mRNA level, with studies of the P. falciparum genome sequence having revealed few cis-regulatory elements and associated transcription factors. Although it is possible the parasite may evoke mechanisms of transcriptional control drastically different from those used by other eukaryotic organisms, the extreme AT-rich nature of P. falciparum intergenic regions (~90% AT presents significant challenges to in silico cis-regulatory element discovery. Results We have developed an algorithm called Gene Enrichment Motif Searching (GEMS that uses a hypergeometric-based scoring function and a position-weight matrix optimization routine to identify with high-confidence regulatory elements in the nucleotide-biased and repeat sequence-rich P. falciparum genome. When applied to promoter regions of genes contained within 21 co-expression gene clusters generated from P. falciparum life cycle microarray data using the semi-supervised clustering algorithm Ontology-based Pattern Identification, GEMS identified 34 putative cis-regulatory elements associated with a variety of parasite processes including sexual development, cell invasion, antigenic variation and protein biosynthesis. Among these candidates were novel motifs, as well as many of the elements for which biological experimental evidence already exists in the Plasmodium literature. To provide evidence for the biological relevance of a cell invasion-related element predicted by GEMS, reporter gene and electrophoretic mobility shift assays

  11. A Repeating Sulfated Galactan Motif Resuscitates Dormant Micrococcus luteus Bacteria.

    Science.gov (United States)

    Böttcher, Thomas; Szamosvári, Dávid; Clardy, Jon

    2018-07-01

    Only a small fraction of bacteria can autonomously initiate growth on agar plates. Nongrowing bacteria typically enter a metabolically inactive dormant state and require specific chemical trigger factors or signals to exit this state and to resume growth. Micrococcus luteus has become a model organism for this important yet poorly understood phenomenon. Only a few resuscitation signals have been described to date, and all of them are produced endogenously by bacterial species. We report the discovery of a novel type of resuscitation signal that allows M. luteus to grow on agar but not agarose plates. Fractionation of the agar polysaccharide complex and sulfation of agarose allowed us to identify the signal as highly sulfated saccharides found in agar or carrageenans. Purification of hydrolyzed κ-carrageenan ultimately led to the identification of the signal as a small fragment of a large linear polysaccharide, i.e., an oligosaccharide of five or more sugars with a repeating disaccharide motif containing d-galactose-4-sulfate (G4S) 1,4-linked to 3,6-anhydro-α-d-galactose (DA), G4S-(DA-G4S) n ≥2 IMPORTANCE Most environmental bacteria cannot initiate growth on agar plates, but they can flourish on the same plates once growth is initiated. While there are a number of names for and manifestations of this phenomenon, the underlying cause appears to be the requirement for a molecular signal indicating safe growing conditions. Micrococcus luteus has become a model organism for studying this growth initiation process, often called resuscitation, because of its apparent connection with the persistent or dormant form of Mycobacterium tuberculosis , an important human pathogen. In this report, we identify a highly sulfated saccharide from agar or carrageenans that robustly resuscitates dormant M. luteus on agarose plates. We identified and characterized the signal as a small repeating disaccharide motif. Our results indicate that signals inherent in or absent from the

  12. Sequence-specific DNA binding by MYC/MAX to low-affinity non-E-box motifs.

    Directory of Open Access Journals (Sweden)

    Michael Allevato

    Full Text Available The MYC oncoprotein regulates transcription of a large fraction of the genome as an obligatory heterodimer with the transcription factor MAX. The MYC:MAX heterodimer and MAX:MAX homodimer (hereafter MYC/MAX bind Enhancer box (E-box DNA elements (CANNTG and have the greatest affinity for the canonical MYC E-box (CME CACGTG. However, MYC:MAX also recognizes E-box variants and was reported to bind DNA in a "non-specific" fashion in vitro and in vivo. Here, in order to identify potential additional non-canonical binding sites for MYC/MAX, we employed high throughput in vitro protein-binding microarrays, along with electrophoretic mobility-shift assays and bioinformatic analyses of MYC-bound genomic loci in vivo. We identified all hexameric motifs preferentially bound by MYC/MAX in vitro, which include the low-affinity non-E-box sequence AACGTT, and found that the vast majority (87% of MYC-bound genomic sites in a human B cell line contain at least one of the top 21 motifs bound by MYC:MAX in vitro. We further show that high MYC/MAX concentrations are needed for specific binding to the low-affinity sequence AACGTT in vitro and that elevated MYC levels in vivo more markedly increase the occupancy of AACGTT sites relative to CME sites, especially at distal intergenic and intragenic loci. Hence, MYC binds diverse DNA motifs with a broad range of affinities in a sequence-specific and dose-dependent manner, suggesting that MYC overexpression has more selective effects on the tumor transcriptome than previously thought.

  13. One motif to bind them: A small-XXX-small motif affects transmembrane domain 1 oligomerization, function, localization, and cross-talk between two yeast GPCRs.

    Science.gov (United States)

    Lock, Antonia; Forfar, Rachel; Weston, Cathryn; Bowsher, Leo; Upton, Graham J G; Reynolds, Christopher A; Ladds, Graham; Dixon, Ann M

    2014-12-01

    G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix-helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs. Copyright © 2014. Published by Elsevier B.V.

  14. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks

    Science.gov (United States)

    Marbach, Daniel; Roy, Sushmita; Ay, Ferhat; Meyer, Patrick E.; Candeias, Rogerio; Kahveci, Tamer; Bristow, Christopher A.; Kellis, Manolis

    2012-01-01

    Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene expression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we predict ∼300,000 regulatory edges in a network of ∼600 TFs and 12,000 target genes. We validate our predictions using known regulatory interactions, gene functional annotations, tissue-specific expression, protein–protein interactions, and three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for hundreds of previously uncharacterized genes, including many in nervous system development, which are independently confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and demonstrates the power of data integration for network inference and studies of gene regulation at the systems level. PMID:22456606

  15. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.

    Science.gov (United States)

    Marbach, Daniel; Roy, Sushmita; Ay, Ferhat; Meyer, Patrick E; Candeias, Rogerio; Kahveci, Tamer; Bristow, Christopher A; Kellis, Manolis

    2012-07-01

    Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene expression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we predict ∼300,000 regulatory edges in a network of ∼600 TFs and 12,000 target genes. We validate our predictions using known regulatory interactions, gene functional annotations, tissue-specific expression, protein-protein interactions, and three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for hundreds of previously uncharacterized genes, including many in nervous system development, which are independently confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and demonstrates the power of data integration for network inference and studies of gene regulation at the systems level.

  16. NRC Regulatory Agenda

    International Nuclear Information System (INIS)

    1991-10-01

    The NRC Regulatory Agenda is a compilation of all rules on which the NRC has recently completed action, or has proposed action, or is considering action, and all petitions for rulemaking which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  17. NRC regulatory agenda

    International Nuclear Information System (INIS)

    1993-04-01

    The NRC Regulatory Agenda is a compilation of all rules on which the NRC has recently completed action, or has proposed action, or is considering action, and all petitions for rulemaking which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  18. NRC regulatory agenda

    International Nuclear Information System (INIS)

    1990-01-01

    The NRC Regulatory Agenda is a compilation of all rules on which the NRC has proposed or is considering action and all petitions for rulemaking which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  19. NRC regulatory agenda

    International Nuclear Information System (INIS)

    1991-04-01

    The NRC Regulatory Agenda is a compilation of all rules on which the NRC has recently completed action or has proposed, or is considering action and all petitions for rulemaking which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  20. NRC Regulatory Agenda

    International Nuclear Information System (INIS)

    1991-08-01

    The NRC Regulatory Agenda is a compilation of all rules on which the NRC has recently completed action or has proposed, or is considering action and all petitions for rulemaking which have been received by the commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter

  1. Trust in regulatory regimes

    NARCIS (Netherlands)

    Six, Frédérique; Verhoest, Koen

    2017-01-01

    Within political and administrative sciences generally, trust as a concept is contested, especially in the field of regulatory governance. This groundbreaking book is the first to systematically explore the role and dynamics of trust within regulatory regimes. Conceptualizing, mapping and analyzing

  2. Nuclear Regulatory legislation

    International Nuclear Information System (INIS)

    1984-06-01

    This compilation of statutes and material pertaining to nuclear regulatory legislation through the 97th Congress, 2nd Session, has been prepared by the Office of the Executive Legal Director, U.S. Nuclear Regulatory Commission, with the assistance of staff, for use as an internal resource document

  3. Improving nuclear regulatory effectiveness

    International Nuclear Information System (INIS)

    2001-01-01

    Ensuring that nuclear installations are operated and maintained in such a way that their impact on public health and safety is as low as reasonably practicable has been and will continue to be the cornerstone of nuclear regulation. In the past, nuclear incidents provided the main impetus for regulatory change. Today, economic factors, deregulation, technological advancements, government oversight and the general requirements for openness and accountability are leading regulatory bodies to review their effectiveness. In addition, seeking to enhance the present level of nuclear safety by continuously improving the effectiveness of regulatory bodies is seen as one of the ways to strengthen public confidence in the regulatory systems. This report covers the basic concepts underlying nuclear regulatory effectiveness, advances being made and future requirements. The intended audience is primarily nuclear safety regulators, but government authorities, nuclear power plant operators and the general public may also be interested. (author)

  4. 78 FR 1624 - Fall 2012 Regulatory Agenda

    Science.gov (United States)

    2013-01-08

    ...), studies or analyses of the possible need for regulatory action, requests for public comment on the need... (NESHAP): Reinforced Plastic Composites Production To comment or learn more about these retrospective.... Agency Contact: Hans Scheifele, Environmental Protection Agency, Office of Chemical Safety and Pollution...

  5. Perkembangan Motif Sineas Film Indie dalam Menghadapi Industri Film Mainstream

    Directory of Open Access Journals (Sweden)

    Yoppy Ardiyono

    2016-03-01

    Full Text Available The research aims to review to review determine the effect and its impact raised by motive - a motive the ada in the hearts period travel time history of film short against cinematographer-filmmaker as principal especially filmmakers left path (indie. The used platform theory research hearts singer adopts from theory commodification media vincent mosco. Singer helped shift theory understanding the motive filmmakers working hearts differences fundamental basis of political pressure economic happens under with demands regime. The method used is descriptive qualitative research methods. Data collection techniques through observation of the environment of an independent film live and in-depth interviews with speakers including mr. Yang prayer orangutan direct contact 'with realm of research. Coupled with study to review the literature references adding insight research. And that was concluded change appears motif among indie film cinematographer it is true the situation is closely linked to the mainstream industry, konstilasi politics, and the orientation of capitalism. Necessary their one thing is clear and systematic regulation from the government to the future movement of currents sidestream (indie more with good operates professionally arranged, the air so that the contribution of indie cinema film land for progress can feels good to yourself indie filmmakers as well as those of its main industries.

  6. Crammed signaling motifs in the T-cell receptor.

    Science.gov (United States)

    Borroto, Aldo; Abia, David; Alarcón, Balbino

    2014-09-01

    Although the T cell antigen receptor (TCR) is long known to contain multiple signaling subunits (CD3γ, CD3δ, CD3ɛ and CD3ζ), their role in signal transduction is still not well understood. The presence of at least one immunoreceptor tyrosine-based activation motif (ITAM) in each CD3 subunit has led to the idea that the multiplication of such elements essentially serves to amplify signals. However, the evolutionary conservation of non-ITAM sequences suggests that each CD3 subunit is likely to have specific non-redundant roles at some stage of development or in mature T cell function. The CD3ɛ subunit is paradigmatic because in a relatively short cytoplasmic sequence (∼55 amino acids) it contains several docking sites for proteins involved in intracellular trafficking and signaling, proteins whose relevance in T cell activation is slowly starting to be revealed. In this review we will summarize our current knowledge on the signaling effectors that bind directly to the TCR and we will propose a hierarchy in their response to TCR triggering. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. ARCHETYPES AND MYTHOLOGICAL MOTIFS: JOHN UPDIKE’S LEGACY REVISITED

    Directory of Open Access Journals (Sweden)

    Loreta Ulvydienė

    2018-04-01

    Full Text Available John Updike is widely considered to be one of the greatest, one of the most popular and sometimes most controversial writers concerned with the American small town and middle-class materialism. A lot of literary critics and researchers observe that Updike’s finest work came from his exploration of ordinary America and from his use of elegant prose, rich with metaphor, to portray the public and private feelings of Americans, their daily rounds of life. In addition, discussing Updike’s individual works a lot of literary critics and researchers have observed the writer’s attempts to re-write myth in “the mythical age”1 of the twentieth century. Naturally enough, as the return to myth is assumed to be a certain feature of the Modernist movement, half a century later since Updike’s famous novel Centaur was penned, it is indispensable to re-examine the writer’s fictional intentions in the usage of myth. More importantly, it is needful to determine whether we can see the mythic elements and realistic details as a continuum or as the contrasted opposites in his so called “historical chronicles”. Updike’s novels and stories are filled with mythological motifs and character archetypes. Thus, the study aims at revisiting John Updike’s creation considering mythological elements and archetypal images of his heroes alongside with heroic masculinity, war, terrorism and American perfectionism.

  8. Convulxin, a C-type lectin-like protein, inhibits HCASMCs functions via WAD-motif/integrin-αv interaction and NF-κB-independent gene suppression of GRO and IL-8.

    Science.gov (United States)

    Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng

    2017-03-15

    Convulxin (CVX), a C-type lectin-like protein (CLPs), is a potent platelet aggregation inducer. To evaluate its potential applications in angiogenic diseases, the multimeric CVX were further explored on its mode of actions toward human coronary artery smooth muscle cells (HCASMCs). The N-terminus of β-chain of CVX (CVX-β) contains a putative disintegrin-like domain with a conserved motif upon the sequence comparison with other CLPs. Importantly, native CVX had no cytotoxic activity as examined by electrophoretic pattern. A Trp-Ala-Asp (WAD)-containing octapeptide, MTWADAEK, was thereafter synthesized and analyzed in functional assays. In the case of specific integrin antagonists as positive controls, the anti-angiogenic effects of CVX on HCASMCs were investigated by series of functional analyses. CVX showed to exhibit multiple inhibitory activities toward HCASMCs proliferation, adhesion and invasion with a dose- and integrin αvβ3-dependent fashion. However, the WAD-octapeptide exerting a minor potency could also work as an active peptidomimetic. In addition, flow cytometric analysis demonstrated both the intact CVX and synthetic peptide can specifically interact with integrin-αv on HCASMCs and CVX was shown to have a down-regulatory effect on the gene expression of CXC-chemokines, such as growth-related oncogene and interleukin-8. According to nuclear factor-κB (NF-κB) p65 translocation assay and Western blotting analysis, the NF-κB activation was not involved in the signaling events of CVX-induced gene expression. In conclusion, CVX may act as a disintegrin-like protein via the interactions of WAD-motif in CVX-β with integrin-αv on HCASMCs and it also is a gene suppressor with the ability to diminish the expression of two CXC-chemokines in a NF-κB-independent manner. Indeed, more extensive investigations are needed and might create a new avenue for the development of a novel angiostatic agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Argo_CUDA: Exhaustive GPU based approach for motif discovery in large DNA datasets.

    Science.gov (United States)

    Vishnevsky, Oleg V; Bocharnikov, Andrey V; Kolchanov, Nikolay A

    2018-02-01

    The development of chromatin immunoprecipitation sequencing (ChIP-seq) technology has revolutionized the genetic analysis of the basic mechanisms underlying transcription regulation and led to accumulation of information about a huge amount of DNA sequences. There are a lot of web services which are currently available for de novo motif discovery in datasets containing information about DNA/protein binding. An enormous motif diversity makes their finding challenging. In order to avoid the difficulties, researchers use different stochastic approaches. Unfortunately, the efficiency of the motif discovery programs dramatically declines with the query set size increase. This leads to the fact that only a fraction of top "peak" ChIP-Seq segments can be analyzed or the area of analysis should be narrowed. Thus, the motif discovery in massive datasets remains a challenging issue. Argo_Compute Unified Device Architecture (CUDA) web service is designed to process the massive DNA data. It is a program for the detection of degenerate oligonucleotide motifs of fixed length written in 15-letter IUPAC code. Argo_CUDA is a full-exhaustive approach based on the high-performance GPU technologies. Compared with the existing motif discovery web services, Argo_CUDA shows good prediction quality on simulated sets. The analysis of ChIP-Seq sequences revealed the motifs which correspond to known transcription factor binding sites.

  10. Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family

    Science.gov (United States)

    Soufari, Heddy

    2017-01-01

    Precise regulation of mRNA processing, translation, localization, and stability relies on specific interactions with RNA-binding proteins whose biological function and target preference are dictated by their preferred RNA motifs. The RBPMS family of RNA-binding proteins is defined by a conserved RNA recognition motif (RRM) domain found in metazoan RBPMS/Hermes and RBPMS2, Drosophila couch potato, and MEC-8 from Caenorhabditis elegans. In order to determine the parameters of RNA sequence recognition by the RBPMS family, we have first used the N-terminal domain from MEC-8 in binding assays and have demonstrated a preference for two GCAC motifs optimally separated by >6 nucleotides (nt). We have also determined the crystal structure of the dimeric N-terminal RRM domain from MEC-8 in the unbound form, and in complex with an oligonucleotide harboring two copies of the optimal GCAC motif. The atomic details reveal the molecular network that provides specificity to all four bases in the motif, including multiple hydrogen bonds to the initial guanine. Further studies with human RBPMS, as well as Drosophila couch potato, confirm a general preference for this double GCAC motif by other members of the protein family and the presence of this motif in known targets. PMID:28003515

  11. Distance-dependent duplex DNA destabilization proximal to G-quadruplex/i-motif sequences

    Science.gov (United States)

    König, Sebastian L. B.; Huppert, Julian L.; Sigel, Roland K. O.; Evans, Amanda C.

    2013-01-01

    G-quadruplexes and i-motifs are complementary examples of non-canonical nucleic acid substructure conformations. G-quadruplex thermodynamic stability has been extensively studied for a variety of base sequences, but the degree of duplex destabilization that adjacent quadruplex structure formation can cause has yet to be fully addressed. Stable in vivo formation of these alternative nucleic acid structures is likely to be highly dependent on whether sufficient spacing exists between neighbouring duplex- and quadruplex-/i-motif-forming regions to accommodate quadruplexes or i-motifs without disrupting duplex stability. Prediction of putative G-quadruplex-forming regions is likely to be assisted by further understanding of what distance (number of base pairs) is required for duplexes to remain stable as quadruplexes or i-motifs form. Using oligonucleotide constructs derived from precedented G-quadruplexes and i-motif-forming bcl-2 P1 promoter region, initial biophysical stability studies indicate that the formation of G-quadruplex and i-motif conformations do destabilize proximal duplex regions. The undermining effect that quadruplex formation can have on duplex stability is mitigated with increased distance from the duplex region: a spacing of five base pairs or more is sufficient to maintain duplex stability proximal to predicted quadruplex/i-motif-forming regions. PMID:23771141

  12. MODA: an efficient algorithm for network motif discovery in biological networks.

    Science.gov (United States)

    Omidi, Saeed; Schreiber, Falk; Masoudi-Nejad, Ali

    2009-10-01

    In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

  13. Comparative analysis of evolutionarily conserved motifs of epidermal growth factor receptor 2 (HER2) predicts novel potential therapeutic epitopes

    DEFF Research Database (Denmark)

    Deng, Xiaohong; Zheng, Xuxu; Yang, Huanming

    2014-01-01

    druggable epitopes/targets. We employed the PROSITE Scan to detect structurally conserved motifs and PRINTS to search for linearly conserved motifs of ECD HER2. We found that the epitopes recognized by trastuzumab and pertuzumab are located in the predicted conserved motifs of ECD HER2, supporting our...

  14. Identification of a putative nuclear export signal motif in human NANOG homeobox domain

    International Nuclear Information System (INIS)

    Park, Sung-Won; Do, Hyun-Jin; Huh, Sun-Hyung; Sung, Boreum; Uhm, Sang-Jun; Song, Hyuk; Kim, Nam-Hyung; Kim, Jae-Hwan

    2012-01-01

    Highlights: ► We found the putative nuclear export signal motif within human NANOG homeodomain. ► Leucine-rich residues are important for human NANOG homeodomain nuclear export. ► CRM1-specific inhibitor LMB blocked the potent human NANOG NES-mediated nuclear export. -- Abstract: NANOG is a homeobox-containing transcription factor that plays an important role in pluripotent stem cells and tumorigenic cells. To understand how nuclear localization of human NANOG is regulated, the NANOG sequence was examined and a leucine-rich nuclear export signal (NES) motif ( 125 MQELSNILNL 134 ) was found in the homeodomain (HD). To functionally validate the putative NES motif, deletion and site-directed mutants were fused to an EGFP expression vector and transfected into COS-7 cells, and the localization of the proteins was examined. While hNANOG HD exclusively localized to the nucleus, a mutant with both NLSs deleted and only the putative NES motif contained (hNANOG HD-ΔNLSs) was predominantly cytoplasmic, as observed by nucleo/cytoplasmic fractionation and Western blot analysis as well as confocal microscopy. Furthermore, site-directed mutagenesis of the putative NES motif in a partial hNANOG HD only containing either one of the two NLS motifs led to localization in the nucleus, suggesting that the NES motif may play a functional role in nuclear export. Furthermore, CRM1-specific nuclear export inhibitor LMB blocked the hNANOG potent NES-mediated export, suggesting that the leucine-rich motif may function in CRM1-mediated nuclear export of hNANOG. Collectively, a NES motif is present in the hNANOG HD and may be functionally involved in CRM1-mediated nuclear export pathway.

  15. Controllable Molecular Packing Motif and Overlap Type in Organic Nanomaterials for Advanced Optical Properties

    Directory of Open Access Journals (Sweden)

    Taoyu Zou

    2018-01-01

    Full Text Available The optical properties of organic materials are very sensitive to subtle structural modification, and a proper understanding of the structure-property relationship is essential to improve the performance of organic electronic devices. The phase transitions of the η-CuPc to the α-CuPc, then to the β-CuPc were investigated using In situ X-ray diffraction and the differential scanning calorimetry (DSC. The five stages in the phase-transition process from low to high-temperature were observed, which consisted of (1 the η-CuPc; (2 a mixture of the η- and α-CuPc; (3 a mixture of the η-, α- and β-CuPc; (4 a mixture of the α- and β-CuPc; and (5 the β-CuPc. The vibrational and optical properties at different phase-transition stages were correlated to molecular packing motif and molecule overlap type through systematic analyses of the Fourier–transform infrared, Raman and UV-VIS spectra. Moreover, the mechanism for the morphology evolution was also discussed in detail.

  16. Natural HLA-B*2705 Protein Ligands with Glutamine as Anchor Motif

    Science.gov (United States)

    Infantes, Susana; Lorente, Elena; Barnea, Eilon; Beer, Ilan; Barriga, Alejandro; Lasala, Fátima; Jiménez, Mercedes; Admon, Arie; López, Daniel

    2013-01-01

    The presentation of short viral peptide antigens by human leukocyte antigen (HLA) class I molecules on cell surfaces is a key step in the activation of cytotoxic T lymphocytes, which mediate the killing of pathogen-infected cells or initiate autoimmune tissue damage. HLA-B27 is a well known class I molecule that is used to study both facets of the cellular immune response. Using mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of HLA-B*2705+ cells, we identified 200 naturally processed HLA-B*2705 ligands. Our analyses revealed that a change in the position (P) 2 anchor motif was detected in the 3% of HLA-B*2705 ligands identified. B*2705 class I molecules were able to bind these six GlnP2 peptides, which showed significant homology to pathogenic bacterial sequences, with a broad range of affinities. One of these ligands was able to bind with distinct conformations to HLA-B27 subtypes differentially associated with ankylosing spondylitis. These conformational differences could be sufficient to initiate autoimmune damage in patients with ankylosing spondylitis-associated subtypes. Therefore, these kinds of peptides (short, with GlnP2, and similar low affinity to all HLA-B27 subtypes tested but with unlike conformations in differentially ankylosing spondylitis-associated subtypes) must not be excluded from future researches involving potential arthritogenic peptides. PMID:23430249

  17. BIOPEP-PBIL Tool for the Analysis of the Structure of Biologically Active Motifs Derived from Food Proteins

    Directory of Open Access Journals (Sweden)

    Jerzy Dziuba

    2011-01-01

    Full Text Available This work describes a flexible technique for the analysis of protein sequences as a source of motifs affecting bodily functions. The BIOPEP database, along with the Pôle Bioinformatique Lyonnais (PBIL server, were applied to define which activities of peptides dominated in their protein precursors and which structure of the protein contained the most of the revealed activities. Such an approach could be helpful in finding some structural requirements for peptide(s to be regarded as biologically active (bioactive. It was found that apart from the activities of peptides that commonly occur in the majority of proteins (e.g. ACE inhibitors, all analyzed proteins can be a source of motifs involved in e.g. activation of ubiquitin-mediated proteolysis. This could be important in designing diets for patients who suffer from neural diseases. The structure and bioactivity analyses revealed that if peptides were to be 'bioactive', it is essential that they assume the position of a coil (or combination of coil and a-helix in the sequence of their protein precursors. However, it is recommended to consider the factors such as the length of peptide chains, the number of peptides in the database as well as the repeatability of the occurrence of characteristic amino acids, both in the peptide and in the protein when studying the bioactivity and structure of biomolecules.

  18. Salt-bridge Swapping in the EXXERFXYY Motif of Proton Coupled Oligopeptide Transporters

    DEFF Research Database (Denmark)

    Aduri, Nanda G; Prabhala, Bala K; Ernst, Heidi A

    2015-01-01

    to as E1XXE2R), located on Helix I, in interactions with the proton. In this study we investigated the intracellular substrate accumulation by motif variants with all possible combinations of glutamate residues changed to glutamine and arginine changed to a tyrosine; the latter being a natural variant......-motif salt bridge, i.e. R-E2 to R-E1, which is consistent with previous structural studies. Molecular dynamics simulations of the motif variants E1XXE2R and E1XXQ2R support this mechanism. The simulations showed that upon changing conformation, arginine pushes Helix V, through interactions with the highly...

  19. Stochastic Resonance in Neuronal Network Motifs with Ornstein-Uhlenbeck Colored Noise

    Directory of Open Access Journals (Sweden)

    Xuyang Lou

    2014-01-01

    Full Text Available We consider here the effect of the Ornstein-Uhlenbeck colored noise on the stochastic resonance of the feed-forward-loop (FFL network motif. The FFL motif is modeled through the FitzHugh-Nagumo neuron model as well as the chemical coupling. Our results show that the noise intensity and the correlation time of the noise process serve as the control parameters, which have great impacts on the stochastic dynamics of the FFL motif. We find that, with a proper choice of noise intensities and the correlation time of the noise process, the signal-to-noise ratio (SNR can display more than one peak.

  20. Methodology for the Systematic Assessment of the Regulatory Competence Needs (SARCoN) for Regulatory Bodies of Nuclear Installations

    International Nuclear Information System (INIS)

    2015-03-01

    A regulatory body’s competence is dependent, among other things, on the competence of its staff. A necessary, but not sufficient, condition for a regulatory body to be competent is that its staff can perform the tasks related to the functions of the regulatory body. In 2001, the IAEA published TECDOC 1254, Training the Staff of the Regulatory Body for Nuclear Facilities: A Competency Framework, which examines the manner in which the recognized regulatory functions of a nuclear regulatory body results in competence needs. Using the internationally recognized systematic approach to training, TECDOC 1254 provides a framework for regulatory bodies for managing training and developing, and maintaining the competence of its staff. It has been successfully used by many regulatory bodies all over the world, including States embarking on a nuclear power programme. The IAEA has also introduced a methodology and an assessment tool — Guidelines for Systematic Assessment of Regulatory Competence Needs (SARCoN) — which provides practical guidance on analysing the training and development needs of a regulatory body and, through a gap analysis, guidance on establishing competence needs and how to meet them. In 2013, the IAEA published Safety Reports Series No. 79, Managing Regulatory Body Competence, which provides generic guidance based on IAEA safety requirements in the development of a competence management system within a regulatory body’s integrated management system. An appendix in the Safety Report deals with the special case of building up the competence of regulatory bodies as part of the overall process of establishing an embarking State’s regulatory system. This publication provides guidance for the analysis of required and existing competences to identify those required by the regulatory body to perform its functions and therefore associated needs for acquiring competences. Hence, it is equally applicable to the needs of States embarking on nuclear power

  1. A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Haitao Guo

    2017-01-01

    Full Text Available The discovery of cis-regulatory modules (CRMs is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it with five existing methods. Experimental results show that ComSPS performs better than them.

  2. A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model

    Science.gov (United States)

    2017-01-01

    The discovery of cis-regulatory modules (CRMs) is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it with five existing methods. Experimental results show that ComSPS performs better than them. PMID:28497059

  3. Genome-wide identification and function analyses of heat shock transcription factors in potato

    Directory of Open Access Journals (Sweden)

    Ruimin eTang

    2016-04-01

    Full Text Available Heat shock transcription factors (Hsfs play vital roles in the regulation of tolerance to various stresses in living organisms. To dissect the mechanisms of the Hsfs in potato adaptation to abiotic stresses, genome and transcriptome analyses of Hsf gene family were investigated in Solanum tuberosum L. Twenty-seven StHsf members were identified by bioinformatics and phylogenetic analyses and were classified into A, B and C groups according to their structural and phylogenetic features. StHsfs in the same class shared similar gene structures and conserved motifs. The chromosomal location analysis showed that 27 Hsfs were located in 10 of 12 chromosomes (except chromosome 1 and chromosome 5 and that 18 of these genes formed 9 paralogous pairs. Expression profiles of StHsfs in 12 different organs and tissues uncovered distinct spatial expression patterns of these genes and their potential roles in the process of growth and development. Promoter and quantitative real-time polymerase chain reaction (qRT-PCR detections of StHsfs were conducted and demonstrated that these genes were all responsive to various stresses. StHsf004, StHsf007, StHsf009, StHsf014 and StHsf019 were constitutively expressed under non-stress conditions, and some specific Hsfs became the predominant Hsfs in response to different abiotic stresses, indicating their important and diverse regulatory roles in adverse conditions. A co-expression network between StHsfs and StHsf-co-expressed genes was generated based on the publicly-available potato transcriptomic databases and identified key candidate StHsfs for further functional studies.

  4. oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets.

    Science.gov (United States)

    Kwon, Andrew T; Arenillas, David J; Worsley Hunt, Rebecca; Wasserman, Wyeth W

    2012-09-01

    oPOSSUM-3 is a web-accessible software system for identification of over-represented transcription factor binding sites (TFBS) and TFBS families in either DNA sequences of co-expressed genes or sequences generated from high-throughput methods, such as ChIP-Seq. Validation of the system with known sets of co-regulated genes and published ChIP-Seq data demonstrates the capacity for oPOSSUM-3 to identify mediating transcription factors (TF) for co-regulated genes or co-recovered sequences. oPOSSUM-3 is available at http://opossum.cisreg.ca.

  5. REDfly: a Regulatory Element Database for Drosophila.

    Science.gov (United States)

    Gallo, Steven M; Li, Long; Hu, Zihua; Halfon, Marc S

    2006-02-01

    Bioinformatics studies of transcriptional regulation in the metazoa are significantly hindered by the absence of readily available data on large numbers of transcriptional cis-regulatory modules (CRMs). Even the richly annotated Drosophila melanogaster genome lacks extensive CRM information. We therefore present here a database of Drosophila CRMs curated from the literature complete with both DNA sequence and a searchable description of the gene expression pattern regulated by each CRM. This resource should greatly facilitate the development of computational approaches to CRM discovery as well as bioinformatics analyses of regulatory sequence properties and evolution.

  6. NRC regulatory agenda

    International Nuclear Information System (INIS)

    1990-10-01

    The Regulatory Agenda is a quarterly compilation of all rules on which the NRC has recently completed action or has proposed, or is considering action and of all petitions for rulemaking that the NRC has received that are pending disposition

  7. NRC regulatory agenda

    International Nuclear Information System (INIS)

    1990-04-01

    The Regulatory Agenda is a quarterly compilation of all rules on which the NRC has recently completed action or has proposed, or is considering action and of all petitions for rulemaking that the NRC has received that are pending disposition

  8. Through the regulatory hoop

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1985-01-01

    There are many regulatory hoops through which waste generators, brokers, and disposal site operators must jump to dispose of waste safely. As the proposed exclusionary date of January 1, 1986, approaches, these regulatory hoops have the distinct possibility of multiplying or at least changing shape. The state of Washington, in its role as an Agreement State with the US Nuclear Regulatory Commission, licenses and inspects the commercial operator of the Northwest Compact's low-level radioactive waste disposal site on the Hanford Reservation. Washington has received as much as 53%, or 1.4 million cubic feet per year, of the nation's total volume of waste disposed. To control such a large volume of waste, a regulatory program involving six agencies has developed over the years in Washington

  9. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles.

    Science.gov (United States)

    Heyward, Catherine A; Pettitt, Trevor R; Leney, Sophie E; Welsh, Gavin I; Tavaré, Jeremy M; Wakelam, Michael J O

    2008-05-20

    Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.

  10. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles

    Directory of Open Access Journals (Sweden)

    Welsh Gavin I

    2008-05-01

    Full Text Available Abstract Background Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Results Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. Conclusion The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.

  11. A Simple Decision Rule for Recognition of Poly(A) Tail Signal Motifs in Human Genome

    KAUST Repository

    AbouEisha, Hassan M.; Chikalov, Igor; Moshkov, Mikhail; Jankovic, Boris R.

    2015-01-01

    Background is the numerous attempts were made to predict motifs in genomic sequences that correspond to poly (A) tail signals. Vast portion of this effort has been directed to a plethora of nonlinear classification methods. Even when such approaches

  12. Lucky Motifs in Chinese Folk Art: Interpreting Paper-cut from Chinese Shaanxi

    Directory of Open Access Journals (Sweden)

    Xuxiao WANG

    2013-11-01

    Full Text Available Paper-cut is not simply a form of traditional Chinese folk art. Lucky motifs developed in paper-cut certainly acquired profound cultural connotations. As paper-cut is a time-honoured skill across the nation, interpreting those motifs requires cultural receptiveness and anthropological sensitivity. The author of this article analyzes examples of paper-cut from Northern Shaanxi, China, to identify the cohesive motifs and explore the auspiciousness of the specific concepts of Fu, Lu, Shou, Xi. The paper-cut of Northern Shaanxi is an ideal representative of the craft as a whole because of the relative stability of this region in history, in terms of both art and culture. Furthermore, its straightforward style provides a clear demonstration of motifs regarding folk understanding of expectations for life.

  13. Design of Fashion Accessories Using Akwa-Ocha Motifs and Symbols

    African Journals Online (AJOL)

    Nneka Umera-Okeke

    Nkpopu: holes. 16. Osikapa na ... accessories anchors in both social semiotics and archetypal theories. Social semiotics theory as ... the two earrings incorporate the Onwa (moon) motif in spherical shape and in black colour. They are held ...

  14. On the origin of distribution patterns of motifs in biological networks

    Directory of Open Access Journals (Sweden)

    Lesk Arthur M

    2008-08-01

    Full Text Available Abstract Background Inventories of small subgraphs in biological networks have identified commonly-recurring patterns, called motifs. The inference that these motifs have been selected for function rests on the idea that their occurrences are significantly more frequent than random. Results Our analysis of several large biological networks suggests, in contrast, that the frequencies of appearance of common subgraphs are similar in natural and corresponding random networks. Conclusion Indeed, certain topological features of biological networks give rise naturally to the common appearance of the motifs. We therefore question whether frequencies of occurrences are reasonable evidence that the structures of motifs have been selected for their functional contribution to the operation of networks.

  15. Exploiting publicly available biological and biochemical information for the discovery of novel short linear motifs.

    KAUST Repository

    Sayadi, Ahmed; Briganti, Leonardo; Tramontano, Anna; Via, Allegra

    2011-01-01

    The function of proteins is often mediated by short linear segments of their amino acid sequence, called Short Linear Motifs or SLiMs, the identification of which can provide important information about a protein function. However, the short length

  16. FTZ-Factor1 and Fushi tarazu interact via conserved nuclear receptor and coactivator motifs

    Science.gov (United States)

    Schwartz, Carol J.E.; Sampson, Heidi M.; Hlousek, Daniela; Percival-Smith, Anthony; Copeland, John W.R.; Simmonds, Andrew J.; Krause, Henry M.

    2001-01-01

    To activate transcription, most nuclear receptor proteins require coactivators that bind to their ligand-binding domains (LBDs). The Drosophila FTZ-Factor1 (FTZ-F1) protein is a conserved member of the nuclear receptor superfamily, but was previously thought to lack an AF2 motif, a motif that is required for ligand and coactivator binding. Here we show that FTZ-F1 does have an AF2 motif and that it is required to bind a coactivator, the homeodomain-containing protein Fushi tarazu (FTZ). We also show that FTZ contains an AF2-interacting nuclear receptor box, the first to be found in a homeodomain protein. Both interaction motifs are shown to be necessary for physical interactions in vitro and for functional interactions in developing embryos. These unexpected findings have important implications for the conserved homologs of the two proteins. PMID:11157757

  17. Dual Nature of Translational Control by Regulatory BC RNAs ▿

    Science.gov (United States)

    Eom, Taesun; Berardi, Valerio; Zhong, Jun; Risuleo, Gianfranco; Tiedge, Henri

    2011-01-01

    In higher eukaryotes, increasing evidence suggests, gene expression is to a large degree controlled by RNA. Regulatory RNAs have been implicated in the management of neuronal function and plasticity in mammalian brains. However, much of the molecular-mechanistic framework that enables neuronal regulatory RNAs to control gene expression remains poorly understood. Here, we establish molecular mechanisms that underlie the regulatory capacity of neuronal BC RNAs in the translational control of gene expression. We report that regulatory BC RNAs employ a two-pronged approach in translational control. One of two distinct repression mechanisms is mediated by C-loop motifs in BC RNA 3′ stem-loop domains. These C-loops bind to eIF4B and prevent the factor's interaction with 18S rRNA of the small ribosomal subunit. In the second mechanism, the central A-rich domains of BC RNAs target eIF4A, specifically inhibiting its RNA helicase activity. Thus, BC RNAs repress translation initiation in a bimodal mechanistic approach. As BC RNA functionality has evolved independently in rodent and primate lineages, our data suggest that BC RNA translational control was necessitated and implemented during mammalian phylogenetic development of complex neural systems. PMID:21930783

  18. Discriminative Motif Discovery via Simulated Evolution and Random Under-Sampling

    OpenAIRE

    Song, Tao; Gu, Hong

    2014-01-01

    Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the sta...

  19. Pipeline for the Analysis of ChIP-seq Data and New Motif Ranking Procedure

    KAUST Repository

    Ashoor, Haitham

    2011-06-01

    This thesis presents a computational methodology for ab-initio identification of transcription factor binding sites based on ChIP-seq data. This method consists of three main steps, namely ChIP-seq data processing, motif discovery and models selection. A novel method for ranking the models of motifs identified in this process is proposed. This method combines multiple factors in order to rank the provided candidate motifs. It combines the model coverage of the ChIP-seq fragments that contain motifs from which that model is built, the suitable background data made up of shuffled ChIP-seq fragments, and the p-value that resulted from evaluating the model on actual and background data. Two ChIP-seq datasets retrieved from ENCODE project are used to evaluate and demonstrate the ability of the method to predict correct TFBSs with high precision. The first dataset relates to neuron-restrictive silencer factor, NRSF, while the second one corresponds to growth-associated binding protein, GABP. The pipeline system shows high precision prediction for both datasets, as in both cases the top ranked motif closely resembles the known motifs for the respective transcription factors.

  20. Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

    Science.gov (United States)

    Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  1. Motif formation and industry specific topologies in the Japanese business firm network

    Science.gov (United States)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  2. GPUmotif: an ultra-fast and energy-efficient motif analysis program using graphics processing units.

    Science.gov (United States)

    Zandevakili, Pooya; Hu, Ming; Qin, Zhaohui

    2012-01-01

    Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS) that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU)-accelerated motif analysis program named GPUmotif. We proposed a "fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/

  3. GPUmotif: an ultra-fast and energy-efficient motif analysis program using graphics processing units.

    Directory of Open Access Journals (Sweden)

    Pooya Zandevakili

    Full Text Available Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU-accelerated motif analysis program named GPUmotif. We proposed a "fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/

  4. Short Arginine Motifs Drive Protein Stickiness in the Escherichia coli Cytoplasm.

    Science.gov (United States)

    Kyne, Ciara; Crowley, Peter B

    2017-09-19

    Although essential to numerous biotech applications, knowledge of molecular recognition by arginine-rich motifs in live cells remains limited. 1 H, 15 N HSQC and 19 F NMR spectroscopies were used to investigate the effects of C-terminal -GR n (n = 1-5) motifs on GB1 interactions in Escherichia coli cells and cell extracts. While the "biologically inert" GB1 yields high-quality in-cell spectra, the -GR n fusions with n = 4 or 5 were undetectable. This result suggests that a tetra-arginine motif is sufficient to drive interactions between a test protein and macromolecules in the E. coli cytoplasm. The inclusion of a 12 residue flexible linker between GB1 and the -GR 5 motif did not improve detection of the "inert" domain. In contrast, all of the constructs were detectable in cell lysates and extracts, suggesting that the arginine-mediated complexes were weak. Together these data reveal the significance of weak interactions between short arginine-rich motifs and the E. coli cytoplasm and demonstrate the potential of such motifs to modify protein interactions in living cells. These interactions must be considered in the design of (in vivo) nanoscale assemblies that rely on arginine-rich sequences.

  5. Discriminative motif discovery via simulated evolution and random under-sampling.

    Directory of Open Access Journals (Sweden)

    Tao Song

    Full Text Available Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the stage of Hidden Markov Models (HMMs training, a random under-sampling method is introduced for the imbalance between the positive and negative datasets. It is shown that, in the task of discovering targeting motifs of nine subcellular compartments, the motifs found by our method are more conserved than the methods without considering data imbalance problem and recover the most known targeting motifs from Minimotif Miner and InterPro. Meanwhile, we use the found motifs to predict protein subcellular localization and achieve higher prediction precision and recall for the minority classes.

  6. Discriminative motif discovery via simulated evolution and random under-sampling.

    Science.gov (United States)

    Song, Tao; Gu, Hong

    2014-01-01

    Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the stage of Hidden Markov Models (HMMs) training, a random under-sampling method is introduced for the imbalance between the positive and negative datasets. It is shown that, in the task of discovering targeting motifs of nine subcellular compartments, the motifs found by our method are more conserved than the methods without considering data imbalance problem and recover the most known targeting motifs from Minimotif Miner and InterPro. Meanwhile, we use the found motifs to predict protein subcellular localization and achieve higher prediction precision and recall for the minority classes.

  7. Improved i-motif thermal stability by insertion of anthraquinone monomers

    DEFF Research Database (Denmark)

    Gouda, Alaa S; Amine, Mahasen S.; Pedersen, Erik Bjerregaard

    2017-01-01

    In order to gain insight into how to improve thermal stability of i-motifs when used in the context of biomedical and nanotechnological applications, novel anthraquinone-modified i-motifs were synthesized by insertion of 1,8-, 1,4-, 1,5- and 2,6-disubstituted anthraquinone monomers into the TAA...... loops of a 22mer cytosine-rich human telomeric DNA sequence. The influence of the four anthraquinone linkers on the i-motif thermal stability was investigated at 295 nm and pH 5.5. Anthraquinone monomers modulate the i-motif stability in a position-depending manner and the modulation also depends...... unlocked nucleic acid monomers or twisted intercalating nucleic acid. The 2,6-disubstituted anthraquinone linker replacing T10 enabled a significant increase of i-motif thermal melting by 8.2 °C. A substantial increase of 5.0 °C in i-motif thermal melting was recorded when both A6 and T16 were modified...

  8. Fast social-like learning of complex behaviors based on motor motifs

    Science.gov (United States)

    Calvo Tapia, Carlos; Tyukin, Ivan Y.; Makarov, Valeri A.

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n -1 )! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n -1 ) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  9. Bounded search for de novo identification of degenerate cis-regulatory elements

    Directory of Open Access Journals (Sweden)

    Khetani Radhika S

    2006-05-01

    Full Text Available Abstract Background The identification of statistically overrepresented sequences in the upstream regions of coregulated genes should theoretically permit the identification of potential cis-regulatory elements. However, in practice many cis-regulatory elements are highly degenerate, precluding the use of an exhaustive word-counting strategy for their identification. While numerous methods exist for inferring base distributions using a position weight matrix, recent studies suggest that the independence assumptions inherent in the model, as well as the inability to reach a global optimum, limit this approach. Results In this paper, we report PRISM, a degenerate motif finder that leverages the relationship between the statistical significance of a set of binding sites and that of the individual binding sites. PRISM first identifies overrepresented, non-degenerate consensus motifs, then iteratively relaxes each one into a high-scoring degenerate motif. This approach requires no tunable parameters, thereby lending itself to unbiased performance comparisons. We therefore compare PRISM's performance against nine popular motif finders on 28 well-characterized S. cerevisiae regulons. PRISM consistently outperforms all other programs. Finally, we use PRISM to predict the binding sites of uncharacterized regulons. Our results support a proposed mechanism of action for the yeast cell-cycle transcription factor Stb1, whose binding site has not been determined experimentally. Conclusion The relationship between statistical measures of the binding sites and the set as a whole leads to a simple means of identifying the diverse range of cis-regulatory elements to which a protein binds. This approach leverages the advantages of word-counting, in that position dependencies are implicitly accounted for and local optima are more easily avoided. While we sacrifice guaranteed optimality to prevent the exponential blowup of exhaustive search, we prove that the error

  10. A set of tetra-nucleotide core motif SSR markers for efficient identification of potato (Solanum tuberosum) cultivars.

    Science.gov (United States)

    Kishine, Masahiro; Tsutsumi, Katsuji; Kitta, Kazumi

    2017-12-01

    Simple sequence repeat (SSR) is a popular tool for individual fingerprinting. The long-core motif (e.g. tetra-, penta-, and hexa-nucleotide) simple sequence repeats (SSRs) are preferred because they make it easier to separate and distinguish neighbor alleles. In the present study, a new set of 8 tetra-nucleotide SSRs in potato ( Solanum tuberosum ) is reported. By using these 8 markers, 72 out of 76 cultivars obtained from Japan and the United States were clearly discriminated, while two pairs, both of which arose from natural variation, showed identical profiles. The combined probability of identity between two random cultivars for the set of 8 SSR markers was estimated to be 1.10 × 10 -8 , confirming the usefulness of the proposed SSR markers for fingerprinting analyses of potato.

  11. Prenatal exposure of mice to diethylstilbestrol disrupts T-cell differentiation by regulating Fas/Fas ligand expression through estrogen receptor element and nuclear factor-κB motifs.

    Science.gov (United States)

    Singh, Narendra P; Singh, Udai P; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2012-11-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effect of prenatal exposure to DES on thymocyte differentiation involving apoptotic pathways. Prenatal DES exposure caused thymic atrophy, apoptosis, and up-regulation of Fas and Fas ligand (FasL) expression in thymocytes. To examine the mechanism underlying DES-mediated regulation of Fas and FasL, we performed luciferase assays using T cells transfected with luciferase reporter constructs containing full-length Fas or FasL promoters. There was significant luciferase induction in the presence of Fas or FasL promoters after DES exposure. Further analysis demonstrated the presence of several cis-regulatory motifs on both Fas and FasL promoters. When DES-induced transcription factors were analyzed, estrogen receptor element (ERE), nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein-1 motifs on the Fas promoter, as well as ERE, NF-κB, and NF-AT motifs on the FasL promoter, showed binding affinity with the transcription factors. Electrophoretic mobility-shift assays were performed to verify the binding affinity of cis-regulatory motifs of Fas or FasL promoters with transcription factors. There was shift in mobility of probes (ERE or NF-κB2) of both Fas and FasL in the presence of nuclear proteins from DES-treated cells, and the shift was specific to DES because these probes failed to shift their mobility in the presence of nuclear proteins from vehicle-treated cells. Together, the current study demonstrates that prenatal exposure to DES triggers significant alterations in apoptotic molecules expressed on thymocytes, which may affect T-cell differentiation and cause long-term effects on the immune functions.

  12. Structural and Functional Motifs in Influenza Virus RNAs

    Directory of Open Access Journals (Sweden)

    Damien Ferhadian

    2018-03-01

    have now been validated experimentally and their role in the viral life cycle demonstrated. This review aims to compile the structural motifs found in the different RNA classes (vRNA, cRNA, and vmRNA of influenza viruses and their function in the viral replication cycle.

  13. Regulatory reform in Mexico's natural gas sector

    International Nuclear Information System (INIS)

    1996-01-01

    In recent years Mexico has implemented remarkable structural changes in its economy. However, until recently its large and key energy sector was largely unreformed. This is now changing. In 1995 the Mexican Government introduced legislative changes permitting private sector involvement in natural gas storage, transportation and distribution. Subsequent directives set up a detailed regulatory framework. These developments offer considerable promise, not only for natural gas sector development but also for growth in the closely linked electricity sector. This study analyses the changes which have taken place and the rationale for the regulatory framework which has been established. The study also contains recommendations to assist the Government of Mexico in effectively implementing its natural gas sector reforms and in maximizing the benefits to be realised through the new regulatory framework. (author)

  14. FORECAST: Regulatory effects cost analysis software annual

    International Nuclear Information System (INIS)

    Lopez, B.; Sciacca, F.W.

    1991-11-01

    Over the past several years the NRC has developed a generic cost methodology for the quantification of cost/economic impacts associated with a wide range of new or revised regulatory requirements. This methodology has been developed to aid the NRC in preparing Regulatory Impact Analyses (RIAs). These generic costing methods can be useful in quantifying impacts both to industry and to the NRC. The FORECAST program was developed to facilitate the use of the generic costing methodology. This PC program integrates the major cost considerations that may be required because of a regulatory change. FORECAST automates much of the calculations typically needed in an RIA and thus reduces the time and labor required to perform these analysis. More importantly, its integrated and consistent treatment of the different cost elements should help assure comprehensiveness, uniformity, and accuracy in the preparation of needed cost estimates

  15. Insights into the evolution and diversification of the AT-hook Motif Nuclear Localized gene family in land plants.

    Science.gov (United States)

    Zhao, Jianfei; Favero, David S; Qiu, Jiwen; Roalson, Eric H; Neff, Michael M

    2014-10-14

    Members of the ancient land-plant-specific transcription factor AT-Hook Motif Nuclear Localized (AHL) gene family regulate various biological processes. However, the relationships among the AHL genes, as well as their evolutionary history, still remain unexplored. We analyzed over 500 AHL genes from 19 land plant species, ranging from the early diverging Physcomitrella patens and Selaginella to a variety of monocot and dicot flowering plants. We classified the AHL proteins into three types (Type-I/-II/-III) based on the number and composition of their functional domains, the AT-hook motif(s) and PPC domain. We further inferred their phylogenies via Bayesian inference analysis and predicted gene gain/loss events throughout their diversification. Our analyses suggested that the AHL gene family emerged in embryophytes and further evolved into two distinct clades, with Type-I AHLs forming one clade (Clade-A), and the other two types together diversifying in another (Clade-B). The two AHL clades likely diverged before the separation of Physcomitrella patens from the vascular plant lineage. In angiosperms, Clade-A AHLs expanded into 5 subfamilies; while, the ones in Clade-B expanded into 4 subfamilies. Examination of their expression patterns suggests that the AHLs within each clade share similar expression patterns with each other; however, AHLs in one monophyletic clade exhibit distinct expression patterns from the ones in the other clade. Over-expression of a Glycine max AHL PPC domain in Arabidopsis thaliana recapitulates the phenotype observed when over-expressing its Arabidopsis thaliana counterpart. This result suggests that the AHL genes from different land plant species may share conserved functions in regulating plant growth and development. Our study further suggests that such functional conservation may be due to conserved physical interactions among the PPC domains of AHL proteins. Our analyses reveal a possible evolutionary scenario for the AHL gene family

  16. Perceptions of regulatory approaches

    International Nuclear Information System (INIS)

    Halin, Magnus; Leinonen, Ruusaliisa

    2012-01-01

    Ms. Ruusaliisa Leinonen and Mr. Magnus Halin from Fortum gave a joint presentation on industry perceptions of regulatory oversight of LMfS/SC. It was concluded that an open culture of discussion exists between the regulator (STUK) and the licensee, based on the common goal of nuclear safety. An example was provided of on how regulatory interventions helped foster improvements to individual and collective dose rate trends, which had remained static. Regulatory interventions included discussions on the ALARA concept to reinforce the requirement to continuously strive for improvements in safety performance. Safety culture has also been built into regulatory inspections in recent years. Training days have also been organised by the regulatory body to help develop a shared understanding of safety culture between licensee and regulatory personnel. Fortum has also developed their own training for managers and supervisors. Training and ongoing discussion on LMfS/SC safety culture is considered particularly important because both Fortum and the regulatory body are experiencing an influx of new staff due to the demographic profile of their organisations. It was noted that further work is needed to reach a common understanding of safety culture on a practical level (e.g., for a mechanic setting to work), and in relation to the inspection criteria used by the regulator. The challenges associated with companies with a mix of energy types were also discussed. This can make it more difficult to understand responsibilities and decision making processes, including the role of the parent body organisation. It also makes communication more challenging due to increased complexity and a larger number of stakeholders

  17. Selection of functional 2A sequences within foot-and-mouth disease virus; requirements for the NPGP motif with a distinct codon bias

    DEFF Research Database (Denmark)

    Kjær, Jonas; Belsham, Graham J.

    2018-01-01

    Foot-and-mouth disease virus (FMDV) has a positive-sense ssRNA genome including a single, large, open reading frame. Splitting of the encoded polyprotein at the 2A/2B junction is mediated by the 2A peptide (18 residues long) which induces a non-proteolytic, co-translational, "cleavage" at its own C......-terminus. A conserved feature among variants of 2A is the C-terminal motif N16P17G18/P19 where P19 is the first residue of 2B. It has been shown previously that certain amino acid substitutions can be tolerated at residues E14, S15 and N16 within the 2A sequence of infectious FMDVs but no variants at residues P17, G18...... or P19 have been identified. In this study, using highly degenerate primers, we analysed if any other residues can be present at each position of the NPG/P motif within infectious FMDV. No alternative forms of this motif were found to be encoded by rescued FMDVs after 2, 3 or 4 passages. However...

  18. Use of a Yeast tRNase Killer Toxin to Diagnose Kti12 Motifs Required for tRNA Modification by Elongator.

    Science.gov (United States)

    Mehlgarten, Constance; Prochaska, Heike; Hammermeister, Alexander; Abdel-Fattah, Wael; Wagner, Melanie; Krutyhołowa, Rościsław; Jun, Sang Eun; Kim, Gyung-Tae; Glatt, Sebastian; Breunig, Karin D; Stark, Michael J R; Schaffrath, Raffael

    2017-09-05

    Saccharomyces cerevisiae cells are killed by zymocin, a tRNase ribotoxin complex from Kluyveromyces lactis , which cleaves anticodons and inhibits protein synthesis. Zymocin's action requires specific chemical modification of uridine bases in the anticodon wobble position (U34) by the Elongator complex (Elp1-Elp6). Hence, loss of anticodon modification in mutants lacking Elongator or related KTI ( K. lactis Toxin Insensitive) genes protects against tRNA cleavage and confers resistance to the toxin. Here, we show that zymocin can be used as a tool to genetically analyse KTI12 , a gene previously shown to code for an Elongator partner protein. From a kti12 mutant pool of zymocin survivors, we identify motifs in Kti12 that are functionally directly coupled to Elongator activity. In addition, shared requirement of U34 modifications for nonsense and missense tRNA suppression ( SUP4 ; SOE1 ) strongly suggests that Kti12 and Elongator cooperate to assure proper tRNA functioning. We show that the Kti12 motifs are conserved in plant ortholog DRL1/ELO4 from Arabidopsis thaliana and seem to be involved in binding of cofactors (e.g., nucleotides, calmodulin). Elongator interaction defects triggered by mutations in these motifs correlate with phenotypes typical for loss of U34 modification. Thus, tRNA modification by Elongator appears to require physical contact with Kti12, and our preliminary data suggest that metabolic signals may affect proper communication between them.

  19. Organization of nuclear regulatory activities

    International Nuclear Information System (INIS)

    Blidaru, Valentin

    2008-01-01

    facilities; - Accident analyses; - Criticality calculations; - Licensing process for TRIGA research reactor; - Application of RESP code for CANDU type power reactors. The main tasks, objectives and methodologies applied by the Regulatory Authority are presented. The main nuclear facilities to which specific regulatory approaches are applied are: - Cernavoda Nuclear Power Plant Unit 1; - Cernavoda NPP Unit 2; - TRIGA Research reactor; - WWR-S research reactor (in conservation); - Specific installations related to the nuclear safety area of licensing, namely; - devices as C-2, C-5, C-6, by the TRIGA research reactor; - criticality aspects relating to transportation and storage of the fresh and spent fuels; - CANDU6 fuel plant; - dry storage facilities for spent fuel. The second half of the paper deals with specific aspects concerning the TRIGA research reactors. There are described the regulatory approaches and the licensing process, it is given a presentation of the configuration of the reactor, the operation of replacing the HEU fuel by LEU fuel, operation and applications of the reactor and finally specific aspects of the licensing process. These aspects concern the following issues: - reactivity accidents; - core interaction; - fuel temperature; prompt negative temperature coefficient. The regulatory approach for further licensing process deals with the following aspects: - nuclear safety documentation assessment for the reactor and each experimental device; - the operational licence to be issued for the whole nuclear unit; - technical nuclear safety documentation to be revised by the licensee and additional safety assessment to be performed for the reactor itself and also for the experimental devices in order to establish the concordance with the design changes (conversion to LEU from HEU fuel, 6 control rods in the reactor control system); - technical limits and conditions to be well established according to the tests conclusions or independent calculations and safety

  20. Radiation and desiccation response motif mediates radiation induced gene expression in D. radiodurans

    International Nuclear Information System (INIS)

    Anaganti, Narasimha; Basu, Bhakti; Apte, Shree Kumar

    2015-01-01

    Deinococcus radiodurans is an extremophile that withstands lethal doses of several DNA damaging agents such as gamma irradiation, UV rays, desiccation and chemical mutagens. The organism responds to DNA damage by inducing expression of several DNA repair genes. At least 25 radiation inducible gene promoters harbour a 17 bp palindromic sequence known as radiation and desiccation response motif (RDRM) implicated in gamma radiation inducible gene expression. However, mechanistic details of gamma radiation-responsive up-regulation in gene expression remain enigmatic. The promoters of highly radiation induced genes ddrB (DR0070), gyrB (DR0906), gyrA (DR1913), a hypothetical gene (DR1143) and recA (DR2338) from D. radiodurans were cloned in a green fluorescence protein (GFP)-based promoter probe shuttle vector pKG and their promoter activity was assessed in both E. coli as well as in D. radiodurans. The gyrA, gyrB and DR1143 gene promoters were active in E. coli although ddrB and recA promoters showed very weak activity. In D. radiodurans, all the five promoters were induced several fold following 6 kGy gamma irradiation. Highest induction was observed for ddrB promoter (25 fold), followed by DR1143 promoter (15 fold). The induction in the activity of gyrB, gyrA and recA promoters was 5, 3 and 2 fold, respectively. To assess the role of RDRM, the 17 bp palindromic sequence was deleted from these promoters. The promoters devoid of RDRM sequence displayed increase in the basal expression activity, but the radiation-responsive induction in promoter activity was completely lost. The substitution of two conserved bases of RDRM sequence yielded decreased radiation induction of PDR0070 promoter. Deletion of 5 bases from 5'-end of PDR0070 RDRM increased basal promoter activity, but radiation induction was completely abolished. Replacement of RDRM with non specific sequence of PDR0070 resulted in loss of basal expression and radiation induction. The results demonstrate that

  1. Pol II promoter prediction using characteristic 4-mer motifs: a machine learning approach

    Directory of Open Access Journals (Sweden)

    Shoyaib Mohammad

    2008-10-01

    Full Text Available Abstract Background Eukaryotic promoter prediction using computational analysis techniques is one of the most difficult jobs in computational genomics that is essential for constructing and understanding genetic regulatory networks. The increased availability of sequence data for various eukaryotic organisms in recent years has necessitated for better tools and techniques for the prediction and analysis of promoters in eukaryotic sequences. Many promoter prediction methods and tools have been developed to date but they have yet to provide acceptable predictive performance. One obvious criteria to improve on current methods is to devise a better system for selecting appropriate features of promoters that distinguish them from non-promoters. Secondly improved performance can be achieved by enhancing the predictive ability of the machine learning algorithms used. Results In this paper, a novel approach is presented in which 128 4-mer motifs in conjunction with a non-linear machine-learning algorithm utilising a Support Vector Machine (SVM are used to distinguish between promoter and non-promoter DNA sequences. By applying this approach to plant, Drosophila, human, mouse and rat sequences, the classification model has showed 7-fold cross-validation percentage accuracies of 83.81%, 94.82%, 91.25%, 90.77% and 82.35% respectively. The high sensitivity and specificity value of 0.86 and 0.90 for plant; 0.96 and 0.92 for Drosophila; 0.88 and 0.92 for human; 0.78 and 0.84 for mouse and 0.82 and 0.80 for rat demonstrate that this technique is less prone to false positive results and exhibits better performance than many other tools. Moreover, this model successfully identifies location of promoter using TATA weight matrix. Conclusion The high sensitivity and specificity indicate that 4-mer frequencies in conjunction with supervised machine-learning methods can be beneficial in the identification of RNA pol II promoters comparative to other methods. This

  2. Memetic algorithms for de novo motif-finding in biomedical sequences.

    Science.gov (United States)

    Bi, Chengpeng

    2012-09-01

    The objectives of this study are to design and implement a new memetic algorithm for de novo motif discovery, which is then applied to detect important signals hidden in various biomedical molecular sequences. In this paper, memetic algorithms are developed and tested in de novo motif-finding problems. Several strategies in the algorithm design are employed that are to not only efficiently explore the multiple sequence local alignment space, but also effectively uncover the molecular signals. As a result, there are a number of key features in the implementation of the memetic motif-finding algorithm (MaMotif), including a chromosome replacement operator, a chromosome alteration-aware local search operator, a truncated local search strategy, and a stochastic operation of local search imposed on individual learning. To test the new algorithm, we compare MaMotif with a few of other similar algorithms using simulated and experimental data including genomic DNA, primary microRNA sequences (let-7 family), and transmembrane protein sequences. The new memetic motif-finding algorithm is successfully implemented in C++, and exhaustively tested with various simulated and real biological sequences. In the simulation, it shows that MaMotif is the most time-efficient algorithm compared with others, that is, it runs 2 times faster than the expectation maximization (EM) method and 16 times faster than the genetic algorithm-based EM hybrid. In both simulated and experimental testing, results show that the new algorithm is compared favorably or superior to other algorithms. Notably, MaMotif is able to successfully discover the transcription factors' binding sites in the chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) data, correctly uncover the RNA splicing signals in gene expression, and precisely find the highly conserved helix motif in the transmembrane protein sequences, as well as rightly detect the palindromic segments in the primary micro

  3. Search for 5'-leader regulatory RNA structures based on gene annotation aided by the RiboGap database.

    Science.gov (United States)

    Naghdi, Mohammad Reza; Smail, Katia; Wang, Joy X; Wade, Fallou; Breaker, Ronald R; Perreault, Jonathan

    2017-03-15

    The discovery of noncoding RNAs (ncRNAs) and their importance for gene regulation led us to develop bioinformatics tools to pursue the discovery of novel ncRNAs. Finding ncRNAs de novo is challenging, first due to the difficulty of retrieving large numbers of sequences for given gene activities, and second due to exponential demands on calculation needed for comparative genomics on a large scale. Recently, several tools for the prediction of conserved RNA secondary structure were developed, but many of them are not designed to uncover new ncRNAs, or are too slow for conducting analyses on a large scale. Here we present various approaches using the database RiboGap as a primary tool for finding known ncRNAs and for uncovering simple sequence motifs with regulatory roles. This database also can be used to easily extract intergenic sequences of eubacteria and archaea to find conserved RNA structures upstream of given genes. We also show how to extend analysis further to choose the best candidate ncRNAs for experimental validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Nuclear regulatory decision making

    International Nuclear Information System (INIS)

    Wieland, Patricia; Almeida, Ivan Pedro Salati de

    2011-01-01

    The scientific considerations upon which the nuclear regulations are based provide objective criteria for decisions on nuclear safety matters. However, the decisions that a regulatory agency takes go far beyond granting or not an operating license based on assessment of compliance. It may involve decisions about hiring experts or research, appeals, responses to other government agencies, international agreements, etc.. In all cases, top management of the regulatory agency should hear and decide the best balance between the benefits of regulatory action and undue risks and other associated impacts that may arise, including issues of credibility and reputation. The establishment of a decision framework based on well established principles and criteria ensures performance stability and consistency, preventing individual subjectivity. This article analyzes the challenges to the decision-making by regulatory agencies to ensure coherence and consistency in decisions, even in situations where there is uncertainty, lack of reliable information and even divergence of opinions among experts. The article explores the basic elements for a framework for regulatory decision-making. (author)

  5. Nuclear regulatory decision making

    International Nuclear Information System (INIS)

    2005-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear utilities operate their plants at all times in an acceptably safe manner. In meeting this objective, the regulatory body should strive to ensure that its regulatory decisions are technically sound, consistent from case to case, and timely. In addition, the regulator must be aware that its decisions and the circumstances surrounding those decisions can affect how its stakeholders, such as government policy makers, the industry it regulates, and the public, view it as an effective and credible regulator. In order to maintain the confidence of those stakeholders, the regulator should make sure that its decisions are transparent, have a clear basis in law and regulations, and are seen by impartial observers to be fair to all parties. Based on the work of a Nuclear Energy Agency (NEA) expert group, this report discusses some of the basic principles and criteria that a regulatory body should consider in making decisions and describes the elements of an integrated framework for regulatory decision making. (author)

  6. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Hironori Waki

    2011-10-01

    Full Text Available Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type-specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq. FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA-mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our

  7. Global Banking System Regulatory Environment

    Directory of Open Access Journals (Sweden)

    Oleh Mozhovyi

    2017-03-01

    Full Text Available The international and domestic experience shows that the main factors of financial destabilization during the financial crises are in the banking sector. The article reveals that the vulnerability of the financial system is connected with functions, deposit and credit transactions, risks distribution and ensuring liquidity; banks act as a major factor in stabilisation measures in the current context of globalization processes, since the economic stability of banking activities relates directly to all the entities and only stable banking system can withstand the crisis phenomena. Therefore, as a result of the analysis, it is proved that not only reduction of risks of banks is needed, but also introduction of the effective supervision system over implementation of the requirements and standards to prevent these risks. According to modern international approaches, banks use the so-called prudential supervision, which is based on the risk management assessment policy on the part of the Bank’s management, and regulatory bodies contribute to implementation of such policy. The authors have concluded that not only modern specificity of banks, but also the impact of supervision systems and regulation of modern trends in development of the banking should be analysed. Application of the general regulatory principles and banking risks methodology is required. The task of supervision is distribution of reliable risk management practices in the banking system, taking into account national peculiarities of development.

  8. Use of risk information in regulatory reviews

    International Nuclear Information System (INIS)

    Sagar, B.; Benke, R.; Mohanty, S.

    2004-01-01

    The regulatory framework for licensing any high-level waste repository at Yucca Mountain in the United States, calls for appropriate use of risk information to ensure operational safety during the pre-closure period and long-term safety during the post-closure period. This paper focuses on the post-closure period. Regulations in the Code of Federal Regulations (CFR), Title 10, Part 63, apply to any repository at Yucca Mountain and envision use of probabilistic methods to develop quantitative risk information. Accumulated engineering and scientific experience at Yucca Mountain and analog sites and quantitative risk information from studies conducted by the implementer, regulator, and others are combined to formulate 'risk insights,' which are then used to plan and execute regulatory reviews. The U.S. Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA) recently consolidated the knowledge gained during several g ears and developed such risk insights for the potential repository at Yucca Mountain. This paper discusses the types of risk information used to generate risk insights and how the risk insights will be used in regulatory reviews. A companion paper presents more details on sensitivity analysis methods used to generate risk information. (authors)

  9. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill, E-mail: ccheon@sookmyung.ac.kr

    2016-03-25

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. - Highlights: • Multiple regions on the Arabidopsis Raptor protein were found to be involved in substrate binding. • N-terminal end of the Arabidopsis ribosomal S6 kinase 1 (AtS6K1) was responsible for interacting with AtRaptor1. • The Raptor-interacting fragment of AtS6K1 could be utilized as an effective inhibitor of plant TOR signaling.

  10. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor

    International Nuclear Information System (INIS)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill

    2016-01-01

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. - Highlights: • Multiple regions on the Arabidopsis Raptor protein were found to be involved in substrate binding. • N-terminal end of the Arabidopsis ribosomal S6 kinase 1 (AtS6K1) was responsible for interacting with AtRaptor1. • The Raptor-interacting fragment of AtS6K1 could be utilized as an effective inhibitor of plant TOR signaling.

  11. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor.

    Science.gov (United States)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill

    2016-03-25

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2011-06-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a fundamental role in the regulation of gene expression by translational repression or target mRNA degradation. Regulatory elements in miRNA promoters are less well studied, but may reveal a link between their expression and a specific cell type. Results To explore this link in myeloid cells, miRNA expression profiles were generated from monocytes and dendritic cells (DCs. Differences in miRNA expression among monocytes, DCs and their stimulated progeny were observed. Furthermore, putative promoter regions of miRNAs that are significantly up-regulated in DCs were screened for Transcription Factor Binding Sites (TFBSs based on TFBS motif matching score, the degree to which those TFBSs are over-represented in the promoters of the up-regulated miRNAs, and the extent of conservation of the TFBSs in mammals. Conclusions Analysis of evolutionarily conserved TFBSs in DC promoters revealed preferential clustering of sites within 500 bp upstream of the precursor miRNAs and that many mRNAs of cognate TFs of the conserved TFBSs were indeed expressed in the DCs. Taken together, our data provide evidence that selected miRNAs expressed in DCs have evolutionarily conserved TFBSs relevant to DC biology in their promoters.

  13. Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination.

    Science.gov (United States)

    Wiese, Claudia; Hinz, John M; Tebbs, Robert S; Nham, Peter B; Urbin, Salustra S; Collins, David W; Thompson, Larry H; Schild, David

    2006-01-01

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  14. Disparate requirements for the Walker A and B ATPase motifs ofhuman RAD51D in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Hinz, John M.; Tebbs, Robert S.; Nham, Peter B.; Urbin, Salustra S.; Collins, David W.; Thompson, Larry H.; Schild, David

    2006-04-21

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C, and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks. Ectopic expression of wild type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  15. APOCALYPTIC MOTIFS IN THE CYCLE OF STORIES BY M.A. BULGAKOV «NOTES OF A YOUNG DOCTOR»

    Directory of Open Access Journals (Sweden)

    Evgeniy Igorevich Erokhov

    2015-10-01

    Full Text Available The motif analysis of a cycle of stories by M.A. Bulgakov «Notes of a Young Doctor» from the point of view of their apocalyptic problematics was first performed in this article. To identify apocalyptic motifs the method of motif analysis, developed by B.M. Gasparov, was used which will also help to prove the interpenetration of motifs in the cycle of stories. The result of the research work is the identification of apocalyptic motifs which are manifested in the experiences of the main character and the events taking place around him and passing through the prism of physician’s perception of the world. Our identified motifs show that the stories in the cycle are united not only thematically and with the help of the image of the main character, but with the help of the motifs which reflect interpenetration of apocalyptic motifs in the stories of one cycle. There are the following apocalyptic motifs in the cycle of stories by Bulgakov: diseases, darkness (as part of the landscape, resurrection from the dead and beast. They all belong to the biblical type which is allocated on the basis of the associative bond of these motifs with the biblical texts.

  16. Nuclear Regulatory Legislation

    International Nuclear Information System (INIS)

    1989-08-01

    This compilation of statutes and material pertaining to nuclear regulatory legislation through the 100th Congress, 2nd Session, has been prepared by the Office of the General Counsel, US Nuclear Regulatory Commission, with the assistance of staff, for use as an internal resource document. Persons using this document are placed on notice that it may not be used as an authoritative citation in lieu of the primary legislative sources. Furthermore, while every effort has been made to ensure the completeness and accuracy of this material, neither the United States Government, the Nuclear Regulatory Commission, nor any of their employees makes any expressed or implied warranty or assumes liability for the accuracy or completeness of the material presented in this compilation

  17. Regulatory and licensee surveys

    International Nuclear Information System (INIS)

    2009-01-01

    Prior to the workshop two CSNI/WGHOF surveys were distributed. One survey was directed at regulatory bodies and the other was directed at plant licensees. The surveys were: 1 - Regulatory Expectations of Licensees' Arrangements to Ensure Suitable Organisational Structure, Resources and Competencies to Manage Safety (sent to WGHOF regulatory members). The survey requested that the respondents provide a brief overview of the situation related to plant organisations in their country, their regulatory expectations and their formal requirements. The survey addressed three subjects: the demonstration and documentation of organisational structures, resources and competencies, organisational changes, issues for improvement (for both current and new plants). Responses were received from eleven regulatory bodies. 2 - Approaches to Justify Organisational Suitability (sent to selected licensees). The purpose of the survey to was to gain an understanding of how licensees ensure organisational suitability, resources and competencies. This information was used to assist in the development of the issues and subjects that were addressed at the group discussion sessions. Responses were received from over fifteen licensees from nine countries. The survey requested that the licensees provide information on how they ensure effective organisational structures at their plants. The survey grouped the questions into the following four categories: organisational safety functions, resource and competence, decision-making and communication, good examples and improvement needs. The findings from these surveys were used in conjunction with other factors to identify the key issues for the workshop discussion sessions. The responses from these two surveys are discussed briefly in Sections 4 and 5 of this report. More extensive reviews of the regulatory and licensee responses are provided in Appendix 1

  18. Prediction of regulatory elements

    DEFF Research Database (Denmark)

    Sandelin, Albin

    2008-01-01

    Finding the regulatory mechanisms responsible for gene expression remains one of the most important challenges for biomedical research. A major focus in cellular biology is to find functional transcription factor binding sites (TFBS) responsible for the regulation of a downstream gene. As wet......-lab methods are time consuming and expensive, it is not realistic to identify TFBS for all uncharacterized genes in the genome by purely experimental means. Computational methods aimed at predicting potential regulatory regions can increase the efficiency of wet-lab experiments significantly. Here, methods...

  19. Rationales for regulatory activity

    Energy Technology Data Exchange (ETDEWEB)

    Perhac, R.M. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-02-01

    The author provides an outline which touches on the types of concerns about risk evaluation which are addressed in the process of establishing regulatory guides. Broadly he says regulatory activity serves three broad constituents: (1) Paternalism (private risk); (2) Promotion of social welfare (public risks); (3) Protection of individual rights (public risks). He then discusses some of the major issues encountered in reaching a decision on what is an acceptable level of risk within each of these areas, and how one establishes such a level.

  20. KIRMES: kernel-based identification of regulatory modules in euchromatic sequences.

    Science.gov (United States)

    Schultheiss, Sebastian J; Busch, Wolfgang; Lohmann, Jan U; Kohlbacher, Oliver; Rätsch, Gunnar

    2009-08-15

    Understanding transcriptional regulation is one of the main challenges in computational biology. An important problem is the identification of transcription factor (TF) binding sites in promoter regions of potential TF target genes. It is typically approached by position weight matrix-based motif identification algorithms using Gibbs sampling, or heuristics to extend seed oligos. Such algorithms succeed in identifying single, relatively well-conserved binding sites, but tend to fail when it comes to the identification of combinations of several degenerate binding sites, as those often found in cis-regulatory modules. We propose a new algorithm that combines the benefits of existing motif finding with the ones of support vector machines (SVMs) to find degenerate motifs in order to improve the modeling of regulatory modules. In experiments on microarray data from Arabidopsis thaliana, we were able to show that the newly developed strategy significantly improves the recognition of TF targets. The python source code (open source-licensed under GPL), the data for the experiments and a Galaxy-based web service are available at http://www.fml.mpg.de/raetsch/suppl/kirmes/.

  1. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis.

    Science.gov (United States)

    Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R

    2005-09-01

    We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.

  2. Efficient sequential and parallel algorithms for finding edit distance based motifs.

    Science.gov (United States)

    Pal, Soumitra; Xiao, Peng; Rajasekaran, Sanguthevar

    2016-08-18

    Motif search is an important step in extracting meaningful patterns from biological data. The general problem of motif search is intractable and there is a pressing need to develop efficient, exact and approximation algorithms to solve this problem. In this paper, we present several novel, exact, sequential and parallel algorithms for solving the (l,d) Edit-distance-based Motif Search (EMS) problem: given two integers l,d and n biological strings, find all strings of length l that appear in each input string with atmost d errors of types substitution, insertion and deletion. One popular technique to solve the problem is to explore for each input string the set of all possible l-mers that belong to the d-neighborhood of any substring of the input string and output those which are common for all input strings. We introduce a novel and provably efficient neighborhood exploration technique. We show that it is enough to consider the candidates in neighborhood which are at a distance exactly d. We compactly represent these candidate motifs using wildcard characters and efficiently explore them with very few repetitions. Our sequential algorithm uses a trie based data structure to efficiently store and sort the candidate motifs. Our parallel algorithm in a multi-core shared memory setting uses arrays for storing and a novel modification of radix-sort for sorting the candidate motifs. The algorithms for EMS are customarily evaluated on several challenging instances such as (8,1), (12,2), (16,3), (20,4), and so on. The best previously known algorithm, EMS1, is sequential and in estimated 3 days solves up to instance (16,3). Our sequential algorithms are more than 20 times faster on (16,3). On other hard instances such as (9,2), (11,3), (13,4), our algorithms are much faster. Our parallel algorithm has more than 600 % scaling performance while using 16 threads. Our algorithms have pushed up the state-of-the-art of EMS solvers and we believe that the techniques introduced in

  3. The CD3 gamma leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation

    DEFF Research Database (Denmark)

    von Essen, Marina; Menné, Charlotte; Nielsen, Bodil L

    2002-01-01

    . The other pathway is dependent on protein kinase C (PKC)-mediated activation of the CD3 gamma di-leucine-based receptor-sorting motif. Previous studies have failed to demonstrate a connection between ligand- and PKC-induced TCR down-regulation. Thus, although an apparent paradox, the dogma has been...... that ligand- and PKC-induced TCR down-regulations are not interrelated. By analyses of a newly developed CD3 gamma-negative T cell variant, freshly isolated and PHA-activated PBMC, and a mouse T cell line, we challenged this dogma and demonstrate in this work that PKC activation and the CD3 gamma di...

  4. Functional and comparative genomics analyses of pmp22 in medaka fish

    Directory of Open Access Journals (Sweden)

    Kawarabayasi Yutaka

    2009-06-01

    Full Text Available Abstract Background Pmp22, a member of the junction protein family Claudin/EMP/PMP22, plays an important role in myelin formation. Increase of pmp22 transcription causes peripheral neuropathy, Charcot-Marie-Tooth disease type1A (CMT1A. The pathophysiological phenotype of CMT1A is aberrant axonal myelination which induces a reduction in nerve conduction velocity (NCV. Several CMT1A model rodents have been established by overexpressing pmp22. Thus, it is thought that pmp22 expression must be tightly regulated for correct myelin formation in mammals. Interestingly, the myelin sheath is also present in other jawed vertebrates. The purpose of this study is to analyze the evolutionary conservation of the association between pmp22 transcription level and vertebrate myelin formation, and to find the conserved non-coding sequences for pmp22 regulation by comparative genomics analyses between jawed fishes and mammals. Results A transgenic pmp22 over-expression medaka fish line was established. The transgenic fish had approximately one fifth the peripheral NCV values of controls, and aberrant myelination of transgenic fish in the peripheral nerve system (PNS was observed. We successfully confirmed that medaka fish pmp22 has the same exon-intron structure as mammals, and identified some known conserved regulatory motifs. Furthermore, we found novel conserved sequences in the first intron and 3'UTR. Conclusion Medaka fish undergo abnormalities in the PNS when pmp22 transcription increases. This result indicates that an adequate pmp22 transcription level is necessary for correct myelination of jawed vertebrates. Comparison of pmp22 orthologs between distantly related species identifies evolutionary conserved sequences that contribute to precise regulation of pmp22 expression.

  5. Through the Portal: Viking Motifs Incorporated in the Romanesque Style in Telemark, Norway

    Directory of Open Access Journals (Sweden)

    Kristine Ødeby

    2013-09-01

    Full Text Available This paper presents the results of an analysis of motifs identified on six carved wooden Romanesque portal panels from the Norwegian county of Telemark. The findings suggest that animal motifs in the Late Viking style survived long into the Late Medieval period and were reused on these medieval portals. Stylistically, late expressions of Viking animal art do not differ a great deal from those of the subsequent Romanesque style. However, their symbolical differences are considered to be significant. The motifs themselves, and the issue of whether the Romanesque style adopted motifs from pre-Christian art, have attracted less attention. The motif portraying Sigurd slaying the dragon is considered in depth. It will be suggested that Sigurd, serving as a mediator between the old and the new beliefs when he appeared in late Viking contexts, was given a new role when portrayed in Christian art. Metaphor and liminality are a central part of this paper, and the theories of Alfred Gell and Margrete Andås suggest that the portal itself affects those who pass through it, and that the iconography is meaningful from a liminal perspective.

  6. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity.

    Science.gov (United States)

    Johnson, Rachel M; Rath, Arianna; Deber, Charles M

    2006-12-01

    Although the intrinsic low solubility of membrane proteins presents challenges to their high-resolution structure determination, insight into the amino acid sequence features and forces that stabilize their folds has been provided through study of sequence-dependent helix-helix interactions between single transmembrane (TM) helices. While the stability of helix-helix partnerships mediated by the Gly-xxx-Gly (GG4) motif is known to be generally modulated by distal interfacial residues, it has not been established whether the position of this motif, with respect to the ends of a given TM segment, affects dimer affinity. Here we examine the relationship between motif position and affinity in the homodimers of 2 single-spanning membrane protein TM sequences: glycophorin A (GpA) and bacteriophage M13 coat protein (MCP). Using the TOXCAT assay for dimer affinity on a series of GpA and MCP TM segments that have been modified with either 4 Leu residues at each end or with 8 Leu residues at the N-terminal end, we show that in each protein, centrally located GG4 motifs are capable of stronger helix-helix interactions than those proximal to TM helix ends, even when surrounding interfacial residues are maintained. The relative importance of GG4 motifs in stabilizing helix-helix interactions therefore must be considered not only in its specific residue context but also in terms of the location of the interactive surface relative to the N and C termini of alpha-helical TM segments.