WorldWideScience

Sample records for regulatory guide basis

  1. Basis for revision 2 of the U.S. Nuclear Regulatory Commission's Regulatory Guide 1.99

    International Nuclear Information System (INIS)

    Randall, P.N.

    1986-01-01

    Regulatory Guide 1.99. ''Radiation Damage to Reactor Vessel Materials,'' is being updated to reflect recent studies of the physical basis for neutron radiation damage and efforts to correlate damage to chemical composition and fluence. Revision 2 of the Guide contains several significant changes. Welds and base metal are treated separately. Nickel content is added as a variable and phosphorus removed. The exponent in the fluence factor is reduced, especially at high fluences. And, guidance is given for calculating attenuation of damage through the vessel wall. This paper describes the basis for these changes in the Guide

  2. Design basis ground motion (Ss) required on new regulatory guide

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro

    2013-01-01

    New regulatory guide is enforced on July 8. Here, it is introduced how the design basis ground motion (Ss) for seismic design of nuclear power reactor facilities was revised on the new guide. Ss is formulated as two types of earthquake ground motions, earthquake ground motions with site specific earthquake source and with no such specific source locations. The latter is going to be revised based on the recent observed near source ground motions. (author)

  3. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  4. Conformance to Regulatory Guide 1.97, Arkansas Nuclear One, Unit No. 1

    International Nuclear Information System (INIS)

    Stoffel, J.W.

    1985-08-01

    This EG and G Idaho, Inc., report reviews the submittals for Regulatory Guide 1.97 for Unit No. 1 of Arkansas Nuclear One and identifies areas of nonconformance to the regulatory guide. Exceptions to Regulatory Guide 1.97 are evaluated and those areas where sufficient basis for acceptability is not provided are identified

  5. Regulatory Control of Radiation Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  6. A proposed Regulatory Guide basis for spent fuel decay heat

    International Nuclear Information System (INIS)

    Hermann, O.W.; Parks, C.V.; Renier, J.P.

    1991-01-01

    A proposed revision to Regulatory Guide 3.54, ''Spent Fuel Heat Generation in an Independent Spent Fuel Storage Installation'' has been developed for the US Nuclear Regulatory Commission. The proposed revision includes a data base of decay heat rates calculated as a function of burnup, specific power, cooling time, initial fuel 235 U enrichment and assembly type (i.e., PWR or BWR). Validation of the calculational method was done by comparison with existing measured decay heat rates. Procedures for proper use of the data base, adjustment formulae accounting for effects due to differences in operating history and initial enrichment, and a defensible safety factor were derived. 15 refs., 6 tabs

  7. Regulatory Control of Radiation Sources. Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  8. Conformance to Regulatory Guide 1.97, Beaver Valley Power Station, Unit No. 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    Stoffel, J.W.; Udy, A.C.

    1985-11-01

    This EG and G Idaho, Inc., report reviews the submittals for Regulatory Guide 1.97 for Unit No. 2 of the Beaver Valley Power Station and identifies areas of nonconformance to the regulatory guide. Exceptions to Regulatory Guide 1.97 are evaluated and those areas where sufficient basis for acceptability is not provided are identified

  9. 75 FR 7526 - Withdrawal of Regulatory Guide

    Science.gov (United States)

    2010-02-19

    ...'s Electronic Reading Room at http://www.nrc.gov/reading-rm/doc-collections . Regulatory guides are... NUCLEAR REGULATORY COMMISSION [NRC-2010-0052] Withdrawal of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Withdrawal of Regulatory Guide 1.56, ``Maintenance of Water Purity in Boiling...

  10. 75 FR 22868 - Withdrawal of Regulatory Guide

    Science.gov (United States)

    2010-04-30

    ...'s public Web site under ``Regulatory Guides'' in the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doc-collections . Regulatory guides are also available for inspection at the NRC's... NUCLEAR REGULATORY COMMISSION [NRC-2010-0167] Withdrawal of Regulatory Guide AGENCY: Nuclear...

  11. Conformance to Regulatory Guide 1.97, River Bend Station, Unit No. 1 (Docket No. 50-458)

    International Nuclear Information System (INIS)

    Udy, A.C.

    1985-08-01

    This EG and G, Inc., report reviews the submittals for Regulatory Guide 1.97, Revision 3, for the River Bend Station, Unit No. 1. Any exception to Regulatory Guide 1.97 is evaluated and those areas where sufficient basis for acceptability is not provided are identified. 8 refs

  12. 76 FR 24539 - Final Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2011-05-02

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . Electronic copies... NUCLEAR REGULATORY COMMISSION [NRC-2010-0181] Final Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide...

  13. 75 FR 42170 - Final Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-07-20

    ... NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2009-0425] Final Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide...

  14. 75 FR 48381 - Final Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-08-10

    ... NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2010-0274] Final Regulatory Guide: Issuance, Availability AGENCY: Nuclear Regulatory Commission. ACTION: Notice of issuance and availability of Regulatory Guide...

  15. 75 FR 45173 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-08-02

    ... ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . In addition, regulatory guides are... NUCLEAR REGULATORY COMMISSION [NRC-2008-0638] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.151...

  16. 75 FR 5630 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-02-03

    ... ``Regulatory Guides'' collection of the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doc... NUCLEAR REGULATORY COMMISSION [NRC-2010-0031] Draft Regulatory Guide: Issuance, Availability... Guide, DG-4017. FOR FURTHER INFORMATION CONTACT: Gregory Chapman, U.S. Nuclear Regulatory Commission...

  17. 75 FR 16202 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-03-31

    ... Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . In addition, regulatory guides are available... NUCLEAR REGULATORY COMMISSION [NRC-2008-0644] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide (RG) 1.126...

  18. Conformance to Regulatory Guide 1.97 Slurry Power Station, Unit Nos. 1 and 2 (Docket Nos. 50-280 and 50-281)

    International Nuclear Information System (INIS)

    Stoffel, J.W.

    1985-09-01

    This EG and G Idaho, Inc., report reviews the submittals for Regulatory Guide 1.97, Revision 3, for Unit Nos. 1 and 2 of the Surry Power Station and identifies areas of nonconformance to the regulatory guide. Exceptions to Regulatory Guide 1.97 are evaluated and those areas where sufficient basis for acceptability is not provided are identified

  19. 75 FR 79049 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-12-17

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . The regulatory... NUCLEAR REGULATORY COMMISSION [NRC-2008-0427] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 3.12...

  20. 76 FR 18262 - Notice of issuance of Regulatory Guide

    Science.gov (United States)

    2011-04-01

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . The regulatory... NUCLEAR REGULATORY COMMISSION [NRC-2009-0277] Notice of issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.44...

  1. 76 FR 14107 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-03-15

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . The regulatory... NUCLEAR REGULATORY COMMISSION [NRC-2009-0276] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.43...

  2. 76 FR 14108 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-03-15

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . The regulatory... NUCLEAR REGULATORY COMMISSION [NRC-2009-0275] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.50...

  3. 75 FR 62893 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-10-13

    ... the ``Regulatory Guides'' collection of the NRC's Electronic Reading Room at http://www.nrc.gov... NUCLEAR REGULATORY COMMISSION [NRC-2010-0321] Draft Regulatory Guide: Issuance, Availability... Guide, DG-1196, ``Qualification for Cement Grouting for Prestressing Tendons in Containment Structures...

  4. 75 FR 58444 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-09-24

    ... ``Regulatory Guides'' collection of the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doc... NUCLEAR REGULATORY COMMISSION [NRC-2010-0305] Draft Regulatory Guide: Issuance, Availability... Guide, DG-1244, ``Availability of Electric Power Sources.'' FOR FURTHER INFORMATION CONTACT: Satish...

  5. 75 FR 52999 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-08-30

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . In addition... NUCLEAR REGULATORY COMMISSION [NRC-2009-0556] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 8.35...

  6. 75 FR 45171 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-08-02

    ... ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ and through the NRC's Agencywide... NUCLEAR REGULATORY COMMISSION [NRC-2010-0072] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 3.13...

  7. 75 FR 37842 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-06-30

    ... site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections/ . In addition... NUCLEAR REGULATORY COMMISSION [NRC-2009-0396] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 2.5...

  8. 75 FR 43207 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-07-23

    ... NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2009-0282] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.141...

  9. 75 FR 33361 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-06-11

    ....gov/reading-rm/doc-collections/ . In addition, regulatory guides are available for inspection at the... NUCLEAR REGULATORY COMMISSION [NRC-2009-0308] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.28...

  10. 75 FR 16525 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-04-01

    ... http://www.nrc.gov/reading-rm/doc-collections/ . In addition, regulatory guides are available for... NUCLEAR REGULATORY COMMISSION [NRC-2009-0413] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.11...

  11. 75 FR 27599 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-05-17

    ...'' at http://www.nrc.gov/reading-rm/doc-collections/ . In addition, regulatory guides are available for... NUCLEAR REGULATORY COMMISSION [NRC-2009-0492] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of issuance and availability of Regulatory Guide 6.7...

  12. 75 FR 81675 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-12-28

    ... through the NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc... NUCLEAR REGULATORY COMMISSION [NRC-2010-0031] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 4.16...

  13. 75 FR 20399 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-04-19

    ... the NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2009-0418] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 6.9...

  14. 76 FR 31382 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-05-31

    ... the NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2010-0287] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 8.2...

  15. 75 FR 28073 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-05-19

    ... ``Regulatory Guides'' collection of the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doc... NUCLEAR REGULATORY COMMISSION [NRC-2010-0181] Draft Regulatory Guide: Issuance, Availability... Guide, DG-3039, ``Standard Format and Content for Emergency Plans for Fuel Cycle and Materials...

  16. 75 FR 45166 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-08-02

    ... ``Regulatory Guides'' collection of the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doc... NUCLEAR REGULATORY COMMISSION [NRC-2010-0265] Draft Regulatory Guide: Issuance, Availability... Guide, DG-3030, ``Nuclear Criticality Safety Standards for Fuels and Material Facilities.'' [[Page 45167...

  17. 75 FR 29785 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-05-27

    ... ``Regulatory Guides'' collection of the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doc... NUCLEAR REGULATORY COMMISSION [NRC-2010-0187] Draft Regulatory Guide: Issuance, Availability... Guide, DG-1248, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License...

  18. 75 FR 12804 - Withdrawal of Regulatory Guide 8.6

    Science.gov (United States)

    2010-03-17

    ... ``Regulatory Guides'' in the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2010-0103] Withdrawal of Regulatory Guide 8.6 AGENCY: Nuclear Regulatory Commission. ACTION: Withdrawal of Regulatory Guide 8.6, ``Standard Test Procedure for Geiger-M...

  19. 75 FR 20868 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2010-04-21

    ... available through the NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc... NUCLEAR REGULATORY COMMISSION [NRC-2009-0351] Notice of Issuance of Regulatory Guide AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Issuance and Availability of Regulatory Guide 1.68.2...

  20. Conformance to Regulatory Guide 1.97, Joseph M. Farley Nuclear Plant, Unit Nos. 1 and 2 (Docket No. 50-348 and 50-364)

    International Nuclear Information System (INIS)

    Stoffel, J.W.

    1985-05-01

    This EG and G Idaho, Inc., report reviews the submittals for Regulatory Guide 1.97 for Unit Nos. 1 and 2 of the Joseph M. Farley Nuclear Plant and identifies areas of nonconformance to the regulatory guide. Exceptions to Regulatory Guide 1.97 are evaluated and those areas where sufficient basis for acceptability is not provided are identified

  1. 75 FR 2894 - Withdrawal of Regulatory Guide 1.148

    Science.gov (United States)

    2010-01-19

    ... downloading through the NRC's public Web site under ``Regulatory Guides'' in the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doc-collections . Regulatory guides are also available for... NUCLEAR REGULATORY COMMISSION [NRC-2010-0013] Withdrawal of Regulatory Guide 1.148 AGENCY: Nuclear...

  2. 75 FR 70044 - Withdrawal of Regulatory Guide 1.39

    Science.gov (United States)

    2010-11-16

    ... downloading through the NRC's public Web site under ``Regulatory Guides'' in the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doollectionsc-c . Regulatory guides are also available for... NUCLEAR REGULATORY COMMISSION [NRC-2010-0354] Withdrawal of Regulatory Guide 1.39 AGENCY: Nuclear...

  3. 76 FR 35922 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-06-20

    .... Proposed Revision 1 of Regulatory Guide (RG) 8.4, ``Personnel Monitoring Device--Direct-Reading Pocket...'' at http://www.nrc.gov/reading-rm/doc-collections/ . In addition, regulatory guides are available for... NUCLEAR REGULATORY COMMISSION [NRC-2010-0148] Notice of Issuance of Regulatory Guide AGENCY...

  4. Conformance to Regulatory Guide 1.97, Shearon Harris Nuclear Power Plant, Unit Nos. 1 and 2 (Docket Nos. 50-400 and 50-401)

    International Nuclear Information System (INIS)

    Stoffel, J.W.

    1985-09-01

    This EG and G Idaho, Inc. report reviews the submittals for Regulatory Guide 1.97, Revision 3, for Unit Nos. 1 and 2 of the Shearon Harris Nuclear Power Plant and identifies areas of nonconformance to the regulatory guide. Exceptions to Regulatory Guide 1.97 are evaluated and those areas where sufficient basis for acceptability is not provided are identified. 7 refs

  5. 76 FR 20052 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-04-11

    ... the NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2010-0187] Notice of Issuance of Regulatory Guide AGENCY... Guide 1.149, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License...

  6. Conformance to Regulatory Guide 1.97 Browns Ferry Nuclear Plant, Unit Nos. 1, 2 and 3 (Docket Nos. 50-259, 50-260, and 50-296)

    International Nuclear Information System (INIS)

    Udy, A.C.

    1985-07-01

    This EG and G Idaho, Inc., report reviews the submittals for Regulatory Guide 1.97, Revision 3, for Unit Nos. 1, 2 and 3 of the Browns Ferry Nuclear Plant and identifies areas of nonconformance to the regulatory guide. Exceptions to Regulatory Guide 1.97 are evaluated and those areas where sufficient basis for acceptability is not provided are identified

  7. Regulatory inspection of nuclear facilities and enforcement by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on the inspection of nuclear facilities, regulatory enforcement and related matters. The objective is to provide the regulatory body with a high level of confidence that operators have the processes in place to ensure compliance and that they do comply with legal requirements, including meeting the safety objectives and requirements of the regulatory body. However, in the event of non-compliance, the regulatory body should take appropriate enforcement action. This Safety Guide covers regulatory inspection and enforcement in relation to nuclear facilities such as: enrichment and fuel manufacturing plants; nuclear power plants; other reactors such as research reactors and critical assemblies; spent fuel reprocessing plants; and facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Section 2 sets out the objectives of regulatory inspection and enforcement. Section 3 covers the management of regulatory inspections. Section 4 covers the performance of regulatory inspections, including internal guidance, planning and preparation, methods of inspection and reports of inspections. Section 5 deals with regulatory enforcement actions. Section 6 covers the assessment of regulatory inspections and enforcement activities. The Appendix provides further details on inspection areas for nuclear facilities

  8. 77 FR 33253 - Regulatory Guide 8.33, Quality Management Program

    Science.gov (United States)

    2012-06-05

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0126] Regulatory Guide 8.33, Quality Management Program... Regulatory Commission (NRC or Commission) is withdrawing Regulatory Guide (RG) 8.33, ``Quality Management... Quality Management Program was deleted from the regulations as part of an overall revision in 2002 of the...

  9. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2012-02-15

    ... Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... draft regulatory guide (DG) DG-1271 ``Decommissioning of Nuclear Power Reactors.'' This guide describes... Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000. This proposed...

  10. 75 FR 18241 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-04-09

    ... Guide, DG-8036, ``Personnel Monitoring Device--Direct-Reading Pocket Dosimeters.'' FOR FURTHER.... The draft regulatory guide (DG), entitled, ``Personnel Monitoring Device--Direct-Reading Pocket... this guide included guidance on indirect-reading pocket dosimeters, this guide excludes such dosimeters...

  11. KWOC [Key-Word-Out-of-Context] Index of US Nuclear Regulatory Commission Regulatory Guide Series

    International Nuclear Information System (INIS)

    Jennings, S.D.

    1990-04-01

    To meet the objectives of the program funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a Performance Assurance Information Program that collects, compiles, and distributes program-related information, reports, and publications for the benefit of the DOE-NE program participants. THE ''KWOC Index of US Nuclear Regulatory Commission Regulatory Guide Series'' is prepared as an aid in searching for specific topics in the US Nuclear Regulatory Commission, Regulatory Guide Series

  12. Regulatory facility guide for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  13. 76 FR 28102 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-05-13

    ..., Probabilistic Risk Assessment Branch, Division of Risk Analysis, Office of Nuclear Regulatory Research, U.S... results of risk analyses are used to help justify regulatory action. As such, the principles, process, and... NUCLEAR REGULATORY COMMISSION [NRC-2009-0385] Notice of Issuance of Regulatory Guide AGENCY...

  14. Regulatory guide in support of ECCS rule revision

    International Nuclear Information System (INIS)

    Tovmassian, H.S.

    1987-01-01

    The US Nuclear Regulatory Commission staff is proposing to amend 10 CFR 50.46 and Appendix K to allow licensees to use best estimate calculations to estimate emergency core cooling system performance. This estimate in conjunction with an estimate of the uncertainty in the calculation would then be used to assure that the licensing limits set forth in 10 CFR 50.46(b) are not exceeded. The NRC staff has prepared a draft regulatory guide to assist licensees and applicants in complying with these proposed amendments. This paper sets forth the objectives of this regulatory guide, the approach taken, the difficulties encountered, and the current status of this effort

  15. Combination of the deterministic and probabilistic approaches for risk-informed decision-making in US NRC regulatory guides

    International Nuclear Information System (INIS)

    Patrik, M.; Babic, P.

    2001-06-01

    The report responds to the trend where probabilistic safety analyses are attached, on a voluntary basis (as yet), to the mandatory deterministic assessment of modifications of NPP systems or operating procedures, resulting in risk-informed type documents. It contains a nearly complete Czech translation of US NRC Regulatory Guide 1.177 and presents some suggestions for improving a) PSA study applications; b) the development of NPP documents for the regulatory body; and c) the interconnection between PSA and traditional deterministic analyses as contained in the risk-informed approach. (P.A.)

  16. 75 FR 33853 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-06-15

    .... Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment a draft guide in the... provides text and image files of NRC's public documents. If you do not have access to ADAMS or if there are... ADAMS Accession Number ML100760364. The regulatory analysis is available electronically under ADAMS...

  17. 75 FR 52996 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-08-30

    .... Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment a draft guide in the... entry into ADAMS, which provides text and image files of NRC's public documents. If you do not have.../ . The regulatory analysis may be found in ADAMS under Accession No. ML102310331. Federal Rulemaking Web...

  18. Regulatory compliance guide for DOT-7A type A packaging design

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1996-01-01

    The purpose of this guide is to provide instruction for assuring that the regulatory design requirements for a DOT-7A Type A packaging are met. This guide also supports the testing and evaluation activities that are performed on new packaging designs by a DOE-approved test facility through the DOE's DOT-7A Test Program. This Guide was updated to incorporate regulatory changes implemented by HM-169A (49 CFR, 'Transportation')

  19. Conflicts and misapplications of ANSI N509, N510, U.S. NRC Regulatory Guide 1.52 and 1.140

    International Nuclear Information System (INIS)

    Kovach, J.L.

    1987-01-01

    The nuclear industry in the early 1970's attempted to standardize air cleaning system design and testing by the development of ANSI N509, Nuclear Power Air Cleaning Units and Components and ANSI N510, Testing of Nuclear Air Cleaning Systems. Parallel to those and leaning somewhat on the same information, the USNRC has prepared first, Regulatory Guide 1.52, Design, Testing, and Maintenance Criteria for Atmosphere Clean Up of System Air Filtration and Adsorption Units of Light Water Cooled Nuclear Reactor plants, and regulatory guide 1.140, Design, Testing, and Maintenance Criteria for Normal Ventilation Exhaust System Air Filtration and Adsorption Units of Light Water Cooled Nuclear Power Plants. These documents were a good starting point and should have been the basis for the evolution of sound engineering practices. Instead of that path, the subsequent revisions were narrow in scope, uncoordinated, rarely based on experience and became nearly unworkable. Starting with the scope statement (or equivalent for the regulatory guides) the problems began to occur. Ten recommendations are made for eliminating the troublesome aspects of the regulations

  20. Development of regulatory requirements/guides for desalination unit coupled with nuclear plant

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik

    2005-10-01

    The basic design of System-integrated Modular Advanced Reactor (SMART), a small-to-medium sized integral type pressurized water reactor (PWR) with the capacity of 330MWth, has been developed in Korea. In order to demonstrate the safety and performance of the SMART design, 'Development Project of SMART-P (SMART-Pilot Plant)' has been being performed as one of the 'National Mid and Long-term Atomic Energy R and D Programs', which includes design, construction, and start-up operation of the SMART-P with the capacity of 65MWth, a 1/5 scaled-down design of the SMART. At the same time, a study on the development of regulatory requirements/guides for the desalination unit coupled with nuclear plant has been carried out by KINS in order to prepare for the forthcoming SMART-P licensing. The results of this study performed from August of 2002 to October of 2005 can be summarized as follows: (1) The general status of desalination technologies has been survey. (2) The design of the desalination plant coupled with the SMART-P has been investigated. (3) The regulatory requirements/guides relevant to a desalination unit coupled with a nuclear plant have been surveyed. (4) A direction on the development of domestic regulatory requirements/guides for a desalination unit has been established. (5) A draft of regulatory requirements/guides for a desalination unit has been developed. (6) Expert technical reviews have been performed for the draft regulatory requirements/guides for a desalination unit. The draft regulatory requirements/guides developed in this study will be finalized and can be applied directly to the licensing of the SMART-P and SMART. Furthermore, it will be also applied to the licensing of the desalination unit coupled with the nuclear plant

  1. Radiation safety in educational, medical and research institutions. Regulatory guide G-121

    International Nuclear Information System (INIS)

    2000-05-01

    This regulatory guide is intended to help educational, medical and research institutions design and implement radiation protection programs that meed regulatory requirements. This guide applied to educational, medical or research institutions that require a licence from the CNSC to posses or use radioactive materials. It describes programs to assure that radioactive materials are used safely during licensed activities. (author)

  2. Guiding College Students to Develop Academic Self-Regulatory Skills

    Science.gov (United States)

    Chen, Pin-Hwa

    2011-01-01

    This study aimed to explore the efficaciousness of a guiding model for Taiwanese college students employed to develop their academic self-regulatory skills. Twenty-eight undergraduates in a university in southern Taiwan were recruited as participants. The participants received training on the proposed guiding model and were asked to take their own…

  3. 75 FR 79049 - Final Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-12-17

    ... opened in transit. This guide also incorporates suggestions for ensuring that TIDs are properly applied..., Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2010-31729 Filed 12-16-10; 8:45 am...

  4. 77 FR 70846 - Regulatory Guide 1.182, “Assessing and Managing Risk Before Maintenance Activities at Nuclear...

    Science.gov (United States)

    2012-11-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0285] Regulatory Guide 1.182, ``Assessing and Managing Risk Before Maintenance Activities at Nuclear Power Plants'' AGENCY: Nuclear Regulatory Commission... withdrawing Regulatory Guide (RG)1.182, Revision (Rev.) 0, ``Assessing and Managing Risk Before Maintenance...

  5. Communication and Consultation with Interested Parties by the Regulatory Body. General Safety Guide

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Guide provides recommendations on meeting the safety requirements concerning communication and consultation with the public and other interested parties by the regulatory body about the possible radiation risks associated with facilities and activities, and about processes and decisions of the regulatory body. The Safety Guide can be used by authorized parties in circumstances where there are regulatory requirements placed on them for communication and consultation. It may also be used by other organizations or individuals considering their responsibilities for communication and consultation with interested parties.

  6. 76 FR 11288 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2011-03-01

    ..., telephone: 301-492- 3303 or e-mail; [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction The U..., the public can gain entry into ADAMS, which provides text and image files of NRC's public documents... analysis may be found in ADAMS under Accession No. ML102350573. Regulatory guides are not copyrighted, and...

  7. Regulatory control of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The basic requirements for the protection of persons against exposure to ionizing radiation and for the safety of radiation sources were established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards), jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/ NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO) (the Sponsoring Organizations). The application of the Basic Safety Standards is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities for radiation protection and safety. Requirements relating to the legal and governmental infrastructure for the safety of nuclear facilities and sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material are established in the Safety Requirements on Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, Safety Standards Series No. GS-R-1. This Safety Guide, which is jointly sponsored by the FAO, the IAEA, the International Labour Office, the PAHO and the WHO, gives detailed guidance on the key elements for the organization and operation of a national regulatory infrastructure for radiation safety, with particular reference to the functions of the national regulatory body that are necessary to ensure the implementation of the Basic Safety Standards. The Safety Guide is based technically on material first published in IAEA-TECDOC-10671, which was jointly sponsored by the FAO, the IAEA, the OECD/NEA, the PAHO and the WHO. The requirements established in GS-R-1 have been taken into account. The Safety Guide is oriented towards national

  8. Nuclear regulatory guides for LWR (PWR) fuel in Japan and some related safety research

    International Nuclear Information System (INIS)

    Ichikawa, M.

    1994-01-01

    The general aspects of licensing procedure for NPPs in Japan and regulatory guides are described. The expert committee reports closely related to PWR fuel are reviewed. Some major results of reactor safety research experiments at NSPR (Nuclear Safety Research Reactor of JAERI) used for establishment of related guide, are discussed. It is pointed out that the reactor safety research in Japan supports the regularity activities by establishing and revising guides and preparing the necessary regulatory data as well as improving nuclear safety. 10 figs., 4 refs

  9. Nuclear regulatory guides for LWR (PWR) fuel in Japan and some related safety research

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, M [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1994-12-31

    The general aspects of licensing procedure for NPPs in Japan and regulatory guides are described. The expert committee reports closely related to PWR fuel are reviewed. Some major results of reactor safety research experiments at NSPR (Nuclear Safety Research Reactor of JAERI) used for establishment of related guide, are discussed. It is pointed out that the reactor safety research in Japan supports the regularity activities by establishing and revising guides and preparing the necessary regulatory data as well as improving nuclear safety. 10 figs., 4 refs.

  10. Regulatory Guide 1.79 safety injection recirculation test requirements, fact or fiction

    International Nuclear Information System (INIS)

    Roberts, J.K.

    1976-01-01

    The overwhelming concern of the general public in this day of state nuclear initiatives is the basic question, ''is nuclear power safe.'' Much of this concern has focused on the emergency core cooling systems. This public attention spotlights the testing organization's responsibility during startup of proving the operation and reliability of the emergency core cooling systems. The standard established by the Nuclear Regulatory Commission for testing emergency core cooling systems is Regulatory Guide 1.79 ''Preoperational Testing of Emergency Core Cooling Systems for Pressurized Water Reactors''. The nuclear industry must satisfy the testing requirements of Regulatory Guide 1.79 to meet their responsibility to the public; and to prevent future embarrassment when questioned on the adequacy of emergency core cooling systems

  11. Risk Informed Approach for Nuclear Security Measures for Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidance to States for developing a risk informed approach and for conducting threat and risk assessments as the basis for the design and implementation of sustainable nuclear security systems and measures for prevention of, detection of, and response to criminal and intentional unauthorised acts involving nuclear and other radioactive material out of regulatory control. It describes concepts and methodologies for a risk informed approach, including identification and assessment of threats, targets, and potential consequences; threat and risk assessment methodologies, and the use of risk informed approaches as the basis for informing the development and implementation of nuclear security systems and measures. The publication is an Implementing Guide within the IAEA Nuclear Security Series and is intended for use by national policy makers, law enforcement agencies and experts from competent authorities and other relevant organizations involved in the establishment, implementation, maintenance or sustainability of nuclear security systems and measures related to nuclear and other radioactive material out of regulatory control

  12. 75 FR 48382 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-08-10

    .... Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment a draft guide in the... provides text and image files of NRC's public documents. If you do not have access to ADAMS or if there are... analysis may be found in ADAMS under Accession No. ML101740327. Federal Rulemaking Web site: Public...

  13. 77 FR 36017 - Regulatory Guide 7.3, Procedures for Picking Up and Receiving Packages of Radioactive Material

    Science.gov (United States)

    2012-06-15

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0139] Regulatory Guide 7.3, Procedures for Picking Up and... Guide (RG) 7.3, ``Procedures for Picking Up and Receiving Packages of Radioactive Material.'' The guide..., please contact the NRC's Public Document Room (PDR) reference staff at 1-800-397-4209, or 301-415-4737...

  14. Regulatory Framework and Radiation Protection as Basis for Evaluation

    International Nuclear Information System (INIS)

    Elegba, S.B.

    2010-01-01

    Regulatory Framework for Nuclear Safety and Radiation Protection International Instruments: Conventions; Safety Fundamentals; Codes of Conduct; Safety Requirements and Guide, and National Instruments:-Legislation; Regulations; Guidance Documents. The Sustainable Development Principle recognizes a duty to prevent undue burden and degradation of the environment for future generations. The prime responsibility for safety must rest with the person or organization responsible for facilities…that give rise to radiation risks” (IAEA Safety Fundamentals – SF-1). Compliance with regulations and requirements imposed by the Regulatory Body shall not relieve the organization of its prime responsibility for safety. The regulatory body shall establish and implement appropriate arrangements for a systematic approach to quality management which extend throughout the range of responsibilities and functions undertaken.”. The IAEA self-assessment model for a Regulatory Body is based on a three tier approach. This model is modular and can be used and adopted for implementation by any regulator at any stage of maturity “Start up”, “On the way”, “Mature” Small, medium size, big. The IAEA is required by its Statute to promote international cooperation while regulating safety is a national responsibility. However, radiation risks may transcend national borders and international cooperation that serves to promote and enhance safety globally by exchanging experience and by improving capabilities to control hazards, to prevent accidents, to respond to emergencies and to mitigate any harmful consequences

  15. 78 FR 55117 - Ultimate Heat Sink for Nuclear Power Plants; Draft Regulatory Guide

    Science.gov (United States)

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0203] Ultimate Heat Sink for Nuclear Power Plants; Draft... (DG), DG-1275, ``Ultimate Heat Sink for Nuclear Power Plants.'' This regulatory guide (RG) describes methods and procedures acceptable to the NRC staff that nuclear power plant facility licensees and...

  16. Discussion of Regulatory Guide 7.10, emphasizing the graded approach for establishing QA programs

    International Nuclear Information System (INIS)

    Gordon, L.; Lake, W.H.

    1983-01-01

    To assist applicants in establishing an acceptable QA program to meet the programmatic elements of Appendix E to 10 CFR Part 71, Regulatory Guide 7.10 was developed. Regulatory Guide 7.10 is organized in three self-contained ANNEXES. Guidance applicable to designer/fabricators, to users, and users of radiographic devices are in separate annexes. QA programs for packaging to transport radioactive material are similar in regard to the various operations a licensee may be involved in. However, the appropriate QA/QC effort to verify the program elements may vary significantly. This is referred to as the graded approach. Appendix A in the guide addresses the graded approach

  17. 75 FR 54921 - Withdrawal of Regulatory Guides 1.38, 1.94, and 1.116

    Science.gov (United States)

    2010-09-09

    ... Guide 1.38, ``Quality Assurance Requirements for Packaging, Shipping, Receiving, Storage, and Handling....116, ``Quality Assurance Requirements for Installation, Inspection, and Testing of Mechanical... Development Branch, Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory...

  18. Regulatory guides for qualifying the calculation methodology of Furnas by CNEN

    International Nuclear Information System (INIS)

    1987-10-01

    Regulatory guides are presented which will be used for qualifying the calculation methodology of FURNAS by CNEN, in the areas of Neutronics, Thermohydraulics, Accident Analysis and Fuel Rod Performance, as applied to Angra 1 NPP. (Author) [pt

  19. Inspection and enforcement by the regulatory body for nuclear power plants. A safety guide. A publication within the NUSS programme

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of this Safety Guide is to provide guidance on fulfilling the requirements for inspection and enforcement by the regulatory body, as set out in the Code on the Safety of Nuclear Power Plants; Governmental Organization. This Safety Guide deals with the responsibilities of the regulatory body, the organization of inspection programmes, the inspection resources of the regulatory body, methods of inspection, requirements on the applicant/licensee in regard to regulatory inspection, inspection reports, and regulatory action and enforcement. It is recognized that many of the provisions of this Safety Guide may be applicable to the regulations of other nuclear facilities and related activities including research reactors, fuel processing and manufacturing plants, irradiated fuel processing plants and radioactive waste management facilities. This Safety Guide does not deal specifically with the functions of a regulatory body responsible for such matters; however, the guidance presented here may be applied as appropriate to these activities. 11 refs, 1 fig

  20. Report of the working group 'Regulatory requirements on AM - Concept of nuclear and radiation safety during beyond-design-basis accidents'

    International Nuclear Information System (INIS)

    Bobaly, P.

    2001-01-01

    The developed working group report contains the following main paragraphs: legal basis and basis for regulatory requirements for on-site and off-site Accident Management (AM), regulatory requirements or recommendations for on-site AM and for emergency preparedness, background information concerning the implementation and review of an AM program as a basis for an AM guideline. Overview about AM/SAM implementation in member countries of the SAMINE project; measure and candidates for high level actions based upon US SAMG; interactions of severe accident research and the regulatory positions, relationship between different components of an accident management programme are also given

  1. An overview of the UK regulatory expectation for design basis accident analysis

    International Nuclear Information System (INIS)

    Trimble, Andy

    2013-01-01

    The UK Health and Safety Executive published its most recent regulatory expectations in the 2006 version of it's safety assessment principles (SAPs). This built on experience regulating the full range of facilities for which it is responsible. Thus the principles underpinning all regulatory safety case assessment are the same but the implementation differs depending on the application. This paper will describe the published design basis accident analysis (DBAA) logic in context with other technical aspects of the regulatory expectation for safety cases. It will further illustrate the DBAA methodology with practical examples from actual experience on reprocessing plant gained over the last 15 years or so. Among the examples will be the relevance of conventional safety fault initiators to nuclear safety assessment. It will further demonstrate the derivation of facility limits and conditions necessary for nuclear safety. (authors)

  2. Regulatory perspective on remaining challenges for utilization of pharmacogenomics-guided drug developments.

    Science.gov (United States)

    Otsubo, Yasuto; Ishiguro, Akihiro; Uyama, Yoshiaki

    2013-01-01

    Pharmacogenomics-guided drug development has been implemented in practice in the last decade, resulting in increased labeling of drugs with pharmacogenomic information. However, there are still many challenges remaining in utilizing this process. Here, we describe such remaining challenges from the regulatory perspective, specifically focusing on sample collection, biomarker qualification, ethnic factors, codevelopment of companion diagnostics and means to provide drugs for off-target patients. To improve the situation, it is important to strengthen international harmonization and collaboration among academia, industries and regulatory agencies, followed by the establishment of an international guideline on this topic. Communication with a regulatory agency from an early stage of drug development is also a key to success.

  3. First update to the US Nuclear Regulatory Commission's regulatory strategy for the high-level waste repository program

    International Nuclear Information System (INIS)

    Johnson, R.L.; Linehan, J.J.

    1991-01-01

    The US Nuclear Regulatory Commission (NRC) staff has updated its initial regulatory strategy for the High-Level Waste Repository Licensing Program. The update describes changes to the initial strategy and summarizes progress and future activities. This paper summarizes the first update of the regulatory strategy. In general the overall strategy of identifying and reducing uncertainties is unchanged. Identifying regulatory and institutional uncertainties is essentially complete, and therefore, the current and future emphasis is on reducing those regulatory and institutional uncertainties identified to date. The NRC staff has improved the methods of reducing regulatory uncertainties by (1) enhancing the technical basis preparation process for potential rulemakings and guidance and (2) designing a new guidance document, called a staff position, for clarifying regulatory uncertainties. For guiding the US DOE's reduction of technical uncertainties, the NRC staff will give more emphasis to prelicense application reviews and less emphasis on preparing staff technical positions

  4. Organization and staffing of the regulatory body for nuclear facilities. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this safety guide is to provide recommendations for national authorities on the appropriate management system, organization and staffing for the regulatory body responsible for the regulation of nuclear facilities in order to achieve compliance with the applicable safety requirements. This safety guide covers the organization and staffing in relation to nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And radioactive waste management facilities such as treatment, storage and disposal facilities. This safety guide also covers issues related to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation

  5. Analysis of NRC Regulatory Guide 1.21 Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Il; Yook, Dae Sik; Lee, Byung Soo [KINS, Daejeon (Korea, Republic of)

    2015-05-15

    It is essential to have a degree of uniformity in the methods used for measuring, evaluating, recording, and reporting data on radioactive material in effluents and solid wastes. For this purpose, the U.S. Nuclear Regulatory Commission (NRC) released a revised version of the Regulatory Guide 1.21 'Measuring, evaluating, and reporting radioactive material in liquid and gaseous effluents and solid waste' (revision 2) in 2009, updating the revision 1 version released in 1974. This study compares the previous revision 1 (1974) version with the revision 2 (2009) version to elaborate on the application of the guidelines to Korea. This study consists of an analysis of the 2009 Revision 2 version of the U.S. NRC Regulatory Guidelines 1.21 and an exposition of methods for its application in the domestic environment. Major revisions were made to allow for the adoption of a risk informed approach. Radionuclides with lower than 1% contribution to emission or radiation levels can be selected as principal radionuclides. Requirements for analysis of leaks and spills have been reinforced, with additional groundwater monitoring and hydrological data analysis becoming necessary.

  6. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kisner, Roger A.; Wilgen, John B.; Ewing, Paul D.; Korsah, Kofi; Antonescu, Christina E.

    2006-01-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  7. A study for the establishment of regulatory requirement and evaluation guide for station blackout in nuclear power plants

    International Nuclear Information System (INIS)

    Lim, J. H.; Koo, C. S.; Joo, W. P.; Oh, S. H.; Shin, W. K.

    1999-01-01

    The consequence of SBO event could be a severe accident unless AC power was restored within a proper time, because many safety systems depend upon AC power. Based on the severity, the SBO has been extensively studied since it was identified as Unresolved Safety Issue at USNRC. The resolution of those studies is a rule-making such as 10 CFR 50.63 and Regulatory Guide 1.155. But there is no regulatory requirements of SBO for an operating domestic nuclear power plant up to the present time. This tudy has established SBO rule(regulatory requirements and evaluation guides) for an operating PWR type of the operating nuclear power plants in Korea

  8. Conformance to Regulatory Guide 1.97, Perry Nuclear Power Plant, Unit Nos. 1 and 2 (Docket Nos. 50-440 and 50-441)

    International Nuclear Information System (INIS)

    Udy, A.C.

    1985-03-01

    This EG and G Idaho, Inc., report provides a review of the submittals for Regulatory Guide 1.97, Revision 2, for the Perry Nuclear Power Plant, Unit Nos. 1 and 2. Any exception to the guidelines of Regulatory Guide 1.97 are evaluated

  9. 77 FR 33253 - Regulatory Guide 8.24, Revision 2, Health Physics Surveys During Enriched Uranium-235 Processing...

    Science.gov (United States)

    2012-06-05

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0115] Regulatory Guide 8.24, Revision 2, Health Physics..., ``Health Physics Surveys During Enriched Uranium-235 Processing and Fuel Fabrication'' was issued with a... specifically with the following aspects of an acceptable occupational health physics program that are closely...

  10. Unsolved problems in applying U.S. regulatory guides to control system equipment

    International Nuclear Information System (INIS)

    Stade, R.E.

    1978-01-01

    Two current problems encountered when designing control systems to the United States Regulatory Guide requirements are discussed. They are: 1) Level of surge voltages that should be specified when procuring solid state control and instrumentation systems and equipment. 2) The approach to be used qualifying equipment that must meet the aging requirements. (author)

  11. A guide to ventilation requirements for uranium mines and mills. Regulatory guide G-221

    International Nuclear Information System (INIS)

    2003-06-01

    The purpose of G-221 is to help persons address the requirements for the submission of ventilation-related information when applying for a Canadian Nuclear Safety Commission (CNSC) licence to site and construct, operate or decommission a uranium mine or mill. This guide is also intended to help applicants for a uranium mine or mill licence understand their operational and maintenance obligations with respect to ventilation systems, and to help CNSC staff evaluate the adequacy of applications for uranium mine and mill licences. This guide is relevant to any application for a CNSC licence to prepare a site for and construct, operate or decommission a uranium mine or mill. In addition to summarizing the ventilation-related obligations or uranium mine and mill licensee, the guide describes and discusses the ventilation-related information that licence applicants should typically submit to meet regulatory requirements. The guide pertains to any ventilation of uranium mines and mills for the purpose of assuring the radiation safety of workers and on-site personnel. This ventilation may be associated with any underground or surface area or premise that is licensable by the CNSC as part of a uranium mine or mill. These areas and premises typically include mine workings, mill buildings, and other areas or premises involving or potentially affected by radiation or radioactive materials. Some examples of the latter include offices, effluent treatment plants, cafeterias, lunch rooms and personnel change-rooms. (author)

  12. Analysis of regulatory requirement for beyond design basis events of SMART

    International Nuclear Information System (INIS)

    Kim, W. S.; Seol, K. W.

    2000-01-01

    To enhance the safety of SMART reactor, safety and regulatory requirements associated with beyond design basis events (beyond BDE), which were developed and applied to advanced light water reactor designs, were analyzed along with a design status of passive reactor. And, based on these requirements, their applicability on the SMART design was evaluated. In the design aspect, severe accident prevention and mitigation features, containment performance, and accident management were analyzed. The evaluation results show that the requirement related to beyond DBE such as ATWS, loss of residual heat removal during shutdown operation, station blackout, fire, inter-system LOCA, and well-known events from severe accident phenomena is applicable to the SMART design. However, comprehensive approach against beyond DBE is not yet provided in the SMART design, and then it is required to designate and analyze the beyond DBE-related features. This study is expected to contribute to efforts to improve plant safety and to establish regulatory requirements for safety review

  13. Regulatory and law framework of agricultural methanization and composting activities. User's guide

    International Nuclear Information System (INIS)

    2008-08-01

    After a presentation of the general context of organic waste management (its techniques, materials, legal and regulatory sources, i.e. European and French laws), this guide indicates the main regulatory and law aspects to those wishing to implement a project of methanization or composting of organic by-products in the agricultural sector. Several aspects are therefore discussed and presented in practical sheets. They concern the health and environment regulation, but not the professional risk prevention (explosion, fire, and so on). These aspects are the project setting up, input materials (animal by-products, organic materials coming from agricultural production or from out of it), waste collection and transport, process steps, organic product valorization, biogas valorization, solid and liquid release management

  14. Regulatory viewpoint on nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    Tripp, L.E.

    1976-01-01

    Considerations of the importance of fuel quality and performance to nuclear safety, ''as low reasonably achievable'' release of radioactive materials in reactor effluents, and past fuel performance problems demonstrate the need for strong regulatory input, review and inspection of nuclear fuel quality assurance programs at all levels. Such a regulatory program is being applied in the United States of America by the US Nuclear Regulatory Commission. Quality assurance requirements are contained within government regulations. Guidance on acceptable methods of implementing portions of the quality assurance program is contained within Regulatory Guides and other NRC documents. Fuel supplier quality assurance program descriptions are reviewed as a part of the reactor licensing process. Inspections of reactor licensee control of their fuel vendors as well as direct inspections of fuel vendor quality assurance programs are conducted on a regularly scheduled basis. (author)

  15. Cyber Security in Nuclear Power Plants - U.S. NRC Regulatory Guide 5.71

    International Nuclear Information System (INIS)

    Pogacic, Goran

    2014-01-01

    We have already made a big step into new millennia and with it there is no more dilemma about presence of computers and internet in our lives. Almost all modern facilities struggle with this new dimension of information flow and how to use it to their best interest. But there is also the other side of the coin- the security threat. For nuclear power plants this threat poses even greater risk. In addition to protecting their trade secrets, personal data or other common targets of cyber attacks, nuclear power plants need to protect their digital computers, communication systems and networks up to and including the design basis threat (DBT). As stated in U.S. Nuclear Regulatory Commission (NRC) Regulatory Commission Regulations, Title 10, Code of Federal Regulations (CFR), section 73.1, 'Purpose and Scope' this includes protection against acts of radiological sabotage and prevention of the theft or diversion of special nuclear material. The main purpose of this paper is to explore the NRC Regulatory Guide (RG) 5.71 and its guidance in implementing cyber security requirements stated in NRC 10 CFR, section 73.54, 'Protection of Digital Computer and Communication Systems and Networks'. In particular, this section requires protection of digital computers, communication systems and networks associated with the following categories of functions: · safety-related and important-to-safety functions, · security functions, · emergency preparedness functions, including offsite communication, and · support systems and equipment which, if compromised, would adversely impact safety, security, or emergency preparedness functions. This section requires protection of such systems and networks from those cyber attacks that would act to modify, destroy, or compromise the integrity or confidentiality of data or software; deny access to systems, services or data; and impact the operation of systems, networks, and equipment. This paper will also present some of

  16. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a

    NARCIS (Netherlands)

    Swarts, Daan C.; Oost, van der John; Jinek, Martin

    2017-01-01

    The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both

  17. Regulatory environment of transitioning to risk-informed regulations in U.S.A

    International Nuclear Information System (INIS)

    Choi, C. H.; Kim, C. H.

    1999-01-01

    With the publication of the PRA Policy Statement and recent regulatory guides, the U.S.NRC makes a continuous approach towards risk-informed regulations with the goal of establishing an overall framework for risk-informed decisions in all regulatory activities as well as plant specific licensing issues. Faced with the changing environment of deregulation of the electricity generation market, the licensee's effort to reduce design margins to enhance flexibility and to relieve unnecessary regulatory burdens have been focused on the control and reduction of plant operating costs. The risk-informed approach provides a structured, systematic, and defensible method that can be applied not only to rulemaking, but also to licensing, inspection, enforcement, and performance assessment, as well as provides basis for prioritization in the establishment of programs and the allocation of resources. This report describes the current regulatory environment of transitioning to risk-informed regulations with an emphasis on its background, concepts, regulatory guides, proposed options for modifying the 10CFR50, and risk-informed applications in U.S.A. Review of the risk informed applications utilizing the information provided by the PRAs and their insights in the U.S.NRC and nuclear industry will provide the insights of predicting the expected regulation changes in Korea. Also it could provide the applicable methods or guides for the implementation of the risk-informed applications in plant design and operations. (author)

  18. Critical considerations on the environmental protection. On the technical regulatory guide of air

    Energy Technology Data Exchange (ETDEWEB)

    Rasch, R

    1978-11-01

    The author critically examines the problem of environmental protection maintaining living conditions even with further development of technology. He deals in detail with the success-promising slogans put forth plastics and hydrochloric acid, nuclear energy, as well as keeping the air clean, sulfur dioxide as main topic from the viewpoint of environmental protection. Furthermore, the technical regulatory guides in maintaining clean air and flue gas purification are treated.

  19. Inferring Gene Regulatory Networks Using Conditional Regulation Pattern to Guide Candidate Genes.

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    Full Text Available Combining path consistency (PC algorithms with conditional mutual information (CMI are widely used in reconstruction of gene regulatory networks. CMI has many advantages over Pearson correlation coefficient in measuring non-linear dependence to infer gene regulatory networks. It can also discriminate the direct regulations from indirect ones. However, it is still a challenge to select the conditional genes in an optimal way, which affects the performance and computation complexity of the PC algorithm. In this study, we develop a novel conditional mutual information-based algorithm, namely RPNI (Regulation Pattern based Network Inference, to infer gene regulatory networks. For conditional gene selection, we define the co-regulation pattern, indirect-regulation pattern and mixture-regulation pattern as three candidate patterns to guide the selection of candidate genes. To demonstrate the potential of our algorithm, we apply it to gene expression data from DREAM challenge. Experimental results show that RPNI outperforms existing conditional mutual information-based methods in both accuracy and time complexity for different sizes of gene samples. Furthermore, the robustness of our algorithm is demonstrated by noisy interference analysis using different types of noise.

  20. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  1. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  2. Selection of terrestrial transfer factors for radioecological assessment models and regulatory guides

    International Nuclear Information System (INIS)

    Ng, Y.C.; Hoffman, F.O.

    1983-01-01

    A parameter value for a radioecological assessment model is not a single value but a distribution of values about a central value. The sources that contribute to the variability of transfer factors to predict foodchain transport of radionuclides are enumerated. Knowledge of these sources, judgement in interpreting the available data, consideration of collateral information, and established criteria that specify the desired level of conservatism in the resulting predictions are essential elements when selecting appropriate parameter values for radioecological assessment models and regulatory guides. 39 references, 4 figures, 5 tables

  3. Selection of terrestrial transfer factors for radioecological assessment models and regulatory guides

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Y.C.; Hoffman, F.O.

    1983-01-01

    A parameter value for a radioecological assessment model is not a single value but a distribution of values about a central value. The sources that contribute to the variability of transfer factors to predict foodchain transport of radionuclides are enumerated. Knowledge of these sources, judgement in interpreting the available data, consideration of collateral information, and established criteria that specify the desired level of conservatism in the resulting predictions are essential elements when selecting appropriate parameter values for radioecological assessment models and regulatory guides. 39 references, 4 figures, 5 tables.

  4. Regulatory standpoints on the design-basis capability of safety-related motor-operated valves(MOVs) and power-operated gate valves(POGVs)

    International Nuclear Information System (INIS)

    Kim, W. T.; Kum, O. H.

    1999-01-01

    The weakness in the design-basis capability of Motor-Operated Valves(MOVs) and the susceptibility to Pressure Locking and Thermal Binding phenomena of Power-Operated Gate Valves(POGVs) have been major concerns to be resolved in the nuclear society in and abroad since Three Mile Island accident occurred in the USA in 1979. Through detailed analysis of operating experience and regulatory activities, some MOVs and POGVs have been found to be unreliable in performing their safety functions when they are required to do so under certain conditions, especially under design-basis accident conditions. Further, it is well understood that these safety problems may not be identified by the typical valve in-service testing(IST). USNRC has published three Generic Letters, GL 89-10, GL 95-07, and GL 96-05, requiring nuclear plant licensees to take appropriate actions to resolve the problems mentioned above. Korean nuclear regulatory body has made public an administration measure called 'Regulatory recommendation to verify safety functions of the safety-related MOVs and POGVs' on June 13, 1997, and in this administration measure Korean utility is asked to submit written documents to show how it assure design-basis capability of these valves. The following are among the major concerns being considered from a regulation standpoint. Program scope and implementation priority, dynamic tests under differential pressure conditions, accuracy of diagnostic equipment, torque switch setting and torque bypass percentage, weak link analysis, motor actuator sizing, corrective actions taken to resolve pressure locking and thermal binding susceptibility, and a periodic verification program for the valves once design-basis capability has been verified

  5. Steam Generator tube integrity -- US Nuclear Regulatory Commission perspective

    International Nuclear Information System (INIS)

    Murphy, E.L.; Sullivan, E.J.

    1997-01-01

    In the US, the current regulatory framework was developed in the 1970s when general wall thinning was the dominant degradation mechanism; and, as a result of changes in the forms of degradation being observed and improvements in inspection and tube repair technology, the regulatory framework needs to be updated. Operating experience indicates that the current U.S. requirements should be more stringent in some areas, while in other areas they are overly conservative. To date, this situation has been dealt with on a plant-specific basis in the US. However, the NRC staff is now developing a proposed steam generator rule as a generic framework for ensuring that the steam generator tubes are capable of performing their intended safety functions. This paper discusses the current U.S. regulatory framework for assuring steam generator (SG) tube integrity, the need to update this regulatory framework, the objectives of the new proposed rule, the US Nuclear Regulatory Commission (NRC) regulatory guide (RG) that will accompany the rule, how risk considerations affect the development of the new rule, and some outstanding issues relating to the rule that the NRC is still dealing with

  6. Working draft regulatory guide on release criteria for decommissioning: NRC staff's draft for comment

    International Nuclear Information System (INIS)

    Daily, M.C.; Huffert, A.; Cardile, F.; Malaro, J.C.

    1994-08-01

    The Nuclear Regulatory Commission's (NRC) regulations in 10 CFR 20 are being amended to include radiological criteria for decommissioning of lands and structures at nuclear facilities. 10 CFR Part 20, Subpart E establishes criteria for the remediation of contaminated sites or facilities that will allow their release for future use with or without restrictions. The criteria include a Total Effective Dose Equivalent (TEDE) limit of 15 mrem/year (0.15 mSv/y) that should not be exceeded by an average individual among those who could potentially receive the greatest exposure from any residual activity within a facility or on a site. The criteria also require a licensee to reduce any residual radioactivity to as-low-as-reasonably-achievable (ALARA) levels. This staff draft guide describes acceptable procedures for determining the predicted dose level (PDL) from any residual radioactivity at the site. It describes the basic features of the calculational models and the associated default assumptions and parameter values the NRC staff would find acceptable in calculating PDLs. Appendices A, B, and C provide numerical values that can be used to estimate the dose from residual radioactivity remaining at a site. Since 10 CFR Part 20, Subpart E introduces several new concepts, definitions and discussions are included in a regulatory position concepts section of the guide to assist licensees in understanding some of the philosophy underlying the rule

  7. The Composite Regulatory Basis of the Large X-Effect in Mouse Speciation.

    Science.gov (United States)

    Larson, Erica L; Keeble, Sara; Vanderpool, Dan; Dean, Matthew D; Good, Jeffrey M

    2017-02-01

    The disruption of meiotic sex chromosome inactivation (MSCI) has been proposed to be a major developmental mechanism underlying the rapid evolution of hybrid male sterility. We tested this idea by analyzing cell-specific gene expression across spermatogenesis in two lineages of house mice and their sterile and fertile reciprocal hybrids. We found pervasive disruption of sex chromosome gene expression in sterile hybrids at every stage of spermatogenesis. Failure of MSCI was developmentally preceded by increased silencing of autosomal genes, supporting the hypothesis that divergence at the hybrid incompatibility gene, Prdm9, results in increased rates of autosomal asynapsis which in turn triggers widespread silencing of unsynapsed chromatin. We also detected opposite patterns of postmeiotic overexpression or hyper-repression of the sex chromosomes in reciprocal hybrids, supporting the hypothesis that genomic conflict has driven functional divergence that leads to deleterious X-Y dosage imbalances in hybrids. Our developmental timeline also exposed more subtle patterns of mitotic misregulation on the X chromosome, a previously undocumented stage of spermatogenic disruption in this cross. These results indicate that multiple hybrid incompatibilities have converged on a common regulatory phenotype, the disrupted expression of the sex chromosomes during spermatogenesis. Collectively, these data reveal a composite regulatory basis to hybrid male sterility in mice that helps resolve the mechanistic underpinnings of the well-documented large X-effect in mice speciation. We propose that the inherent sensitivity of spermatogenesis to X-linked regulatory disruption has the potential to be a major driver of reproductive isolation in species with chromosomal sex determination. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Federal guide for a radiological response: Supporting the Nuclear Regulatory Commission during the initial hours of a serious accident

    International Nuclear Information System (INIS)

    Hogan, R.T.

    1993-11-01

    This document is a planning guide for those Federal agencies that work with the Nuclear Regulatory commission (NRC) during the initial hours of response to a serious radiological emergency in which the NRC is the Lead Federal Agency (LFA). These Federal agencies are: DOE, EPA, USDA, HHS, NOAA, and FEMA. This guide is intended to help these agencies prepare for a prompt response. Instructions are provided on receiving the initial notification, the type of person to send to the scene, the facility at which people are needed, how to get them to that facility, and what they should do when they arrive. Federal agencies not specifically mentioned in this guide may also be asked to support the NRC

  9. The revised version of the German Radiation Protection Regulatory Guide for Medical Applications (Richtlinie Strahlenschutz in der Medizin)

    International Nuclear Information System (INIS)

    Kemmer, W.

    1995-01-01

    The revised version of the regulatory guide, effective since 1 June 1993, is intended to enhance and effect in practice a harmonisation of approval and acceptance procedures and standardized testing processes for acceptance and approval, as well as to facilitate governmental supervisory functions relating to the application of radioactive substances and ionizing radiation in the medical field. The guide can furthermore serve as a useful source of reference and information for doctors or medical personnel being trained in applying the Radiation Protection Ordinance, or for acquisition of the required expert knowledge in medical radiological protection. (orig./HP) [de

  10. Mechanistic Basis for Plant Responses to Drought Stress : Regulatory Mechanism of Abscisic Acid Signaling

    Science.gov (United States)

    Miyakawa, Takuya; Tanokura, Masaru

    The phytohormone abscisic acid (ABA) plays a key role in the rapid adaptation of plants to environmental stresses such as drought and high salinity. Accumulated ABA in plant cells promotes stomatal closure in guard cells and transcription of stress-tolerant genes. Our understanding of ABA responses dramatically improved by the discovery of both PYR/PYL/RCAR as a soluble ABA receptor and inhibitory complex of a protein phospatase PP2C and a protein kinase SnRK2. Moreover, several structural analyses of PYR/PYL/RCAR revealed the mechanistic basis for the regulatory mechanism of ABA signaling, which provides a rational framework for the design of alternative agonists in future.

  11. Technical basis for environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Wood, R.T.; Hassan, M.; Tanaka, T.J.

    1998-01-01

    This document presents the results of studies sponsored by the Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. The studies were conducted by Oak Ridge National Laboratory (ORNL), Sandia National Laboratories (SNL), and Brookhaven National Laboratory (BNL). The studies address the following: (1) adequacy of the present test methods for qualification of digital I and C systems; (2) preferred (i.e., Regulatory Guide-endorsed) standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging for equipment to be located in a benign environment; and (5) determination of an appropriate approach for addressing the impact of smoke in digital equipment qualification programs. Significant findings from the studies form the technical basis for a recommended approach to the environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

  12. Technical basis for environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K.; Wood, R.T. [Oak Ridge National Lab., TN (United States); Hassan, M. [Brookhaven National Lab., Upton, NY (United States); Tanaka, T.J. [Sandia National Labs., Albuquerque, NM (United States)

    1998-01-01

    This document presents the results of studies sponsored by the Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. The studies were conducted by Oak Ridge National Laboratory (ORNL), Sandia National Laboratories (SNL), and Brookhaven National Laboratory (BNL). The studies address the following: (1) adequacy of the present test methods for qualification of digital I and C systems; (2) preferred (i.e., Regulatory Guide-endorsed) standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging for equipment to be located in a benign environment; and (5) determination of an appropriate approach for addressing the impact of smoke in digital equipment qualification programs. Significant findings from the studies form the technical basis for a recommended approach to the environmental qualification of microprocessor-based safety-related equipment in nuclear power plants.

  13. Nuclear safety and security culture - an integrated approach to regulatory oversight

    International Nuclear Information System (INIS)

    Tronea, M.; Ciurea Ercau, C.

    2013-01-01

    The paper presents the development and implementation of regulatory guidelines for the oversight of safety and security culture within licensees organizations. CNCAN (the National Commission for Nuclear Activities of Romania) has used the International Atomic Energy Agency (IAEA) attributes for a strong safety culture as the basis for its regulatory guidelines providing support to the reviewers and inspectors for recognizing and gathering information relevant to safety culture. These guidelines are in process of being extended to address also security culture, based on the IAEA Nuclear Security Series No. 7 document Nuclear Security Culture: Implementing Guide. Recognizing that safety and security cultures coexist and need to reinforce each other because they share the common objective of limiting risk and that similar regulatory review and inspection processes are in place for nuclear security oversight, an integrated approach is considered justified, moreover since the common elements of these cultures outweigh the differences. (authors)

  14. Criticality Safety in the Handling of Fissile Material. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-05-15

    This Safety Guide provides guidance and recommendations on how to meet the relevant requirements for ensuring subcriticality when dealing with fissile material and for planning the response to criticality accidents. The guidance and recommendations are applicable to both regulatory bodies and operating organizations. The objectives of criticality safety are to prevent a self-sustained nuclear chain reaction and to minimize the consequences of this if it were to occur. The Safety Guide makes recommendations on how to ensure subcriticality in systems involving fissile materials during normal operation, anticipated operational occurrences, and, in the case of accident conditions, within design basis accidents, from initial design through commissioning, operation, and decommissioning and disposal.

  15. Regulatory requirements on accident management and emergency preparedness - concept of nuclear and radiation safety during beyond-design-basis accidents

    International Nuclear Information System (INIS)

    Yanke, R.

    2002-01-01

    Actual practice the and proposals for further activities in the field of Accident Management (AM) in the member countries of the Co-operation Forum of WWER regulators and in Western countries have been assessed. Further the results of the last working group on AM , the overview of interactions of severe accident research and the regulatory positions in various countries, IAEA reports, practice in Switzerland and Finland, were taken into consideration. From this information, the working group derived recommendations on Accident Management. The general proposals correspond to the present state of the art on AM. They do not describe the whole spectra of recommendations on AM for NPPs with WWER reactors. A basis for the implementation of an AM program is given, which could be extended in a follow-up working group. The developments and research concerning AM have to be continued. The positions of various countries with regard to the 'Interactions of severe accident research and the regulatory positions' are given. On the basis of the working group proposals, the WWER regulators could set regulatory requirements and support further developments of AM strategies, making use of the benefits of common features of NPPs with WWER reactors. Concerted actions in the field of AM between the WWER regulators would bundle the development of a unified concept of recommendations and speed up the implementation of AM measures in order to minimise the risks involved in nuclear power generation

  16. Security programs for Category I or II nuclear material or certain nuclear facilities. Regulatory guide G-274

    International Nuclear Information System (INIS)

    2003-03-01

    The purpose of this regulatory guide is to help applicants for a Canadian Nuclear Safety Commission (CNSC) licence in respect of Category I or II nuclear material - other than a licence to transport - , or a nuclear facility consisting of a nuclear reactor that may exceed 10 MW thermal power during normal operation, prepare and submit the security information to be included with the application, pursuant to the Nuclear Safety and Control Act (NSCA). Category I and II nuclear material are defined in Appendix B to this guide. This guide describes: the security information that should typically be included with the application for any licence referred to above; how the security information may be organized and presented in a separate document (hereinafter 'the security program description'), in order to assist CNSC review and processing of the application; and, the administrative procedures to be followed when preparing, submitting or revising the security program description. (author)

  17. Assessment guide for tornado effect on Nuclear Power Plants (draft) with its commentaries

    International Nuclear Information System (INIS)

    Inoue, Hiroto; Fukunishi, Shiro; Suzuki, Tetsuo

    2013-10-01

    In the context of a severe accident at the Fukushima Daiichi Nuclear Power Station (NPS) operated by the Tokyo Electric Power Company (TEPCO) due to the 2011 off the Pacific coast of Tohoku Earthquake and Tsunami, Nuclear Regulation Authority (NRA) was established on September 19, 2012 under the relevant law. After that NRA organized a task force for studying new regulatory standards for nuclear power plants (NPPs) in consideration of lessons learned from the severe accident at Fukushima. In the task force open meeting, through discussing about design basis external natural events which should be considered in the new regulatory standards, tornado was newly introduced into new regulatory standards as an external natural event. Based on the decision that tornado was newly introduced into new regulatory standards, the Secretariat of the Nuclear Regulation Authority (SNRA) commissioned the Japan Nuclear Energy Safety Organization (JNES) to study an assessment guide for tornado effect on NPPs intended to be used for an official safety review for a NPP construction. JNES organized Sectional Committee for Tornado Effect Assessment Guide consisting of experts in meteorology and wind engineering fields, discussing about assessment methods for tornado effect on NPPs, draft version of the assessment guide for tornado effect on NPPs was completed on April 4, 2013, and JNES submitted the draft guide to SNRA on the same date. After that NRA called for public comments for the draft version of the assessment guide, the draft version of the assessment guide was partly amended taking posted public comments account, and tornado effect assessment guide was officially released on June 19, 2013. Contents in this paper are as follows, assessment guide for tornado effect on NPPs (Draft version on April 4, 2013), supplementary documents, calculation examples, and future tasks for further improved reliability of tornado effect assessment on NPPs. This draft guide consists of six chapters

  18. Assessment guide for tornado effect on Nuclear Power Plants (draft) with its commentaries

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hiroto; Fukunishi, Shiro; Suzuki, Tetsuo [Japan Nuclear Energy Safety Organization, Seismic Safety Department, Tokyo (Japan)

    2013-10-15

    In the context of a severe accident at the Fukushima Daiichi Nuclear Power Station (NPS) operated by the Tokyo Electric Power Company (TEPCO) due to the 2011 off the Pacific coast of Tohoku Earthquake and Tsunami, Nuclear Regulation Authority (NRA) was established on September 19, 2012 under the relevant law. After that NRA organized a task force for studying new regulatory standards for nuclear power plants (NPPs) in consideration of lessons learned from the severe accident at Fukushima. In the task force open meeting, through discussing about design basis external natural events which should be considered in the new regulatory standards, tornado was newly introduced into new regulatory standards as an external natural event. Based on the decision that tornado was newly introduced into new regulatory standards, the Secretariat of the Nuclear Regulation Authority (SNRA) commissioned the Japan Nuclear Energy Safety Organization (JNES) to study an assessment guide for tornado effect on NPPs intended to be used for an official safety review for a NPP construction. JNES organized Sectional Committee for Tornado Effect Assessment Guide consisting of experts in meteorology and wind engineering fields, discussing about assessment methods for tornado effect on NPPs, draft version of the assessment guide for tornado effect on NPPs was completed on April 4, 2013, and JNES submitted the draft guide to SNRA on the same date. After that NRA called for public comments for the draft version of the assessment guide, the draft version of the assessment guide was partly amended taking posted public comments account, and tornado effect assessment guide was officially released on June 19, 2013. Contents in this paper are as follows, assessment guide for tornado effect on NPPs (Draft version on April 4, 2013), supplementary documents, calculation examples, and future tasks for further improved reliability of tornado effect assessment on NPPs. This draft guide consists of six chapters

  19. Machine learning (ML)-guided OPC using basis functions of polar Fourier transform

    Science.gov (United States)

    Choi, Suhyeong; Shim, Seongbo; Shin, Youngsoo

    2016-03-01

    With shrinking feature size, runtime has become a limitation of model-based OPC (MB-OPC). A few machine learning-guided OPC (ML-OPC) have been studied as candidates for next-generation OPC, but they all employ too many parameters (e.g. local densities), which set their own limitations. We propose to use basis functions of polar Fourier transform (PFT) as parameters of ML-OPC. Since PFT functions are orthogonal each other and well reflect light phenomena, the number of parameters can significantly be reduced without loss of OPC accuracy. Experiments demonstrate that our new ML-OPC achieves 80% reduction in OPC time and 35% reduction in the error of predicted mask bias when compared to conventional ML-OPC.

  20. System requirements and design description for the document basis database interface (DocBasis)

    International Nuclear Information System (INIS)

    Lehman, W.J.

    1997-01-01

    This document describes system requirements and the design description for the Document Basis Database Interface (DocBasis). The DocBasis application is used to manage procedures used within the tank farms. The application maintains information in a small database to track the document basis for a procedure, as well as the current version/modification level and the basis for the procedure. The basis for each procedure is substantiated by Administrative, Technical, Procedural, and Regulatory requirements. The DocBasis user interface was developed by Science Applications International Corporation (SAIC)

  1. Survey of materials and other problems of relevance in safety engineering, and an assessment of their reflection in regulatory guides for conventional and nuclear engineering (1. technical report)

    International Nuclear Information System (INIS)

    Trunk, M.; Herter, K.H.

    1984-01-01

    Survey and assessment of nuclear engineering specifications and regulatory guides (ASME-BPVC Section III, division 1,2 and KTA, BS 5500) with regard to materials, dimensioning and testing for the purpose of showing to what extent available technical codes, regulatory guides and safety codes are useful in preventing failures and defining the safe limit. The other question examined is that of how these codes ought to be brought up to date in order to reflect the latest state of the art in science and technology. (orig./HP) [de

  2. Regulatory Facility Guide for Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    This guide provides detailed compilations of international, federal, and state transportation related regulations applicable to shipments originating at or destined to Tennessee facilities. Information on preferred routes is also given.

  3. The integration of the quality assurance approach into the regulatory review stages in Italy

    International Nuclear Information System (INIS)

    Maniori, D.

    1979-01-01

    The control activities of CNEN, the Italian Regulatory Body on Nuclear Power Plant Installations, are carried out on the basis of two main lines of action. These are a thorough and detailed examination of the project at different stages of its development, and a careful assessment of the reliability of the organizations involved in respect of their capability to perform their duties correctly. The paper illustrates in some detail the different stages in which the project examinations are carried out, the documents pertinent to each stage, and the way in which the organizational requirements match the different steps. The regulatory guides and documents prepared on this subject are also briefly presented. (author)

  4. Regulatory control for safe usage of radiation sources in India

    International Nuclear Information System (INIS)

    Ghosh, P.K.; Sonawane, A.U.

    1998-01-01

    The widespread applications of radioactive materials and radiation generating equipment in the field of industry, medicine agriculture and research in India necessitated the establishment of an efficient regulatory framework and consequently the Atomic Energy Regulatory Board (AERB) was constituted to exercise regulatory control over the safe usage of the radioactive materials and the radiation generating equipment. The Atomic Energy Act, 1962 and the Radiation Protection Rules, 1971 promulgated under the Act forms the basis of radiation safety in India and Chairman, AERB is the Competent Authority to enforce the regulatory provisions of the Radiation Protection Rules, 1971, for safe use of radiation source in the country. AERB has published a number of documents such as Radiation Surveillance Procedures, Standards, Codes, Guides and Manuals for safe use and handling of radioactive materials and radiation generating equipment. Apart from nuclear fuel cycle documents, these publications pertain to industrial radiography, medical application of radiation, transport of radioactive material, industrial gamma irradiators, X-ray units etc. AERB safety related publications are based on international standards e.g. BSS, IAEA, ICRP, ISO etc. This paper outlines the methodology of regulatory control exercised by AERB for safe use of the radioactive materials and the radiation generating equipment in the country. (author)

  5. II-1 General regulatory guide for staff on duty; II-1 Opsti pravilnik za rad dezurnog osoblja

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-01

    Personnel responsible for RA reactor operation is working in shifts. This regulatory guide describes in detail rights, tasks and responsibilities of each staff member in duty when operating the reactor under regular conditions, during start-up, during shutdown, during repair and maintenance shutdown periods. Rad reaktora odvija se po smenama. Ovaj pravilnik regulise prava, duznosti i odgovornost svakog od clanova tima u smeni pojedinacno u regularnim uslovima rada, prilikom remonta, u toku stajanja, dostizanja nominalne snage, zaustavljanja rada reaktora.

  6. 76 FR 32878 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2011-06-07

    ...: Mekonen [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction The U.S. Nuclear Regulatory..., the public can gain entry into ADAMS, which provides text and image files of the NRC's [email protected] . The Regulatory Analysis is available electronically under ADAMS Accession Number...

  7. 76 FR 5215 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2011-01-28

    ... . SUPPLEMENTARY INFORMATION: I. Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing for public... . From this page, the public can gain entry into ADAMS, which provides text and image files of NRC's... [email protected] . The Regulatory Analysis is available electronically under ADAMS Accession...

  8. Standard Guide for Specifying Thermal Performance of Geothermal Power Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers power plant performance terms and criteria for use in evaluation and comparison of geothermal energy conversion and power generation systems. The special nature of these geothermal systems makes performance criteria commonly used to evaluate conventional fossil fuel-fired systems of limited value. This guide identifies the limitations of the less useful criteria and defines an equitable basis for measuring the quality of differing thermal cycles and plant equipment for geothermal resources. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  9. Development of Draft Regulatory Guide on Accident Analysis for Nuclear Power Plants with New Safety Design Features

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok; Woo, Sweng Woong; Hwang, Tae Suk [KINS, Daejeon (Korea, Republic of); Sim, Suk K; Hwang, Min Jeong [Environment and Energy Technology, Daejeon (Korea, Republic of)

    2016-05-15

    The present paper discusses the development process of the draft version of regulatory guide (DRG) on accident analysis of the NPP having the NSFD and its result. Based on the consideration on the lesson learned from the previous licensing review, a draft regulatory guide (DRG) on accident analysis for NPP with new safety design features (NSDF) was developed. New safety design features (NSDF) have been introduced to the new constructing nuclear power plants (NPP) since the early 2000 and the issuance of construction permit of SKN Units 3 and 4. Typical examples of the new safety features includes Fluidic Device (FD) within Safety Injection Tanks (SIT), Passive Auxiliary Feedwater System (PAFS), ECCS Core Barrel Duct (ECBD) which were adopted in APR1400 design and/or APR+ design to improve the safety margin of the plants for the postulated accidents of interest. Also several studies of new concept of the safety system such as Hybrid ECCS design have been reported. General and/or specific guideline of accident analysis considering the NSDF has been requested. Realistic evaluation of the impact of NSDF on accident with uncertainty and separated accident analysis accounting the NSDF impact were specified in the DRG. Per the developmental process, identification of key issues, demonstration of the DRG with specific accident with specific NSDF, and improvement of DGR for the key issues and their resolution will be conducted.

  10. Regulatory and law framework of agricultural methanization and composting activities. User's guide; Le cadre reglementaire et juridique des activites agricoles de methanisation et de compostage. Guide Pratique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-08-15

    After a presentation of the general context of organic waste management (its techniques, materials, legal and regulatory sources, i.e. European and French laws), this guide indicates the main regulatory and law aspects to those wishing to implement a project of methanization or composting of organic by-products in the agricultural sector. Several aspects are therefore discussed and presented in practical sheets. They concern the health and environment regulation, but not the professional risk prevention (explosion, fire, and so on). These aspects are the project setting up, input materials (animal by-products, organic materials coming from agricultural production or from out of it), waste collection and transport, process steps, organic product valorization, biogas valorization, solid and liquid release management

  11. Introduction of regulatory guide on cyber security of L and C systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kang, Y.; Jeong, C. H.; Kim, D. I.

    2008-01-01

    In the case of unauthorized individuals, systems and entities or process threatening the instrumentation and control systems of nuclear facilities using the intrinsic vulnerabilities of digital based technologies, those systems may lose their own required functions. The loss of required functions of the systems can seriously affect the safety of nuclear facilities. Consequently, digital instrumentation and control systems, which perform functions important to safety, should be designed and operated to respond to cyber threats capitalizing on the vulnerabilities of digital based technologies. To make it possible, the developers and licensees of nuclear facilities should perform appropriate cyber security activities throughout the whole life cycle of digital instrumentation and control systems. Under the goal of securing the safety of nuclear facilities, this paper presents the regulatory on cyber security activities to remove the cyber threats that exploit the vulnerabilities of digital instrumentation and control systems and to mitigate the effect of such threats. Presented regulatory guide includes establishing the cyber security policy and plan, analyzing and classifying the cyber threats and cyber security assessment of digital instrumentation and control systems. (authors)

  12. Commissioning of research reactors. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    The objective of this Safety Guide is to provide recommendations on meeting the requirements for the commissioning of research reactors on the basis of international best practices. Specifically, it provides recommendations on fulfilling the requirements established in paras 6.44 and 7.42-7.50 of International Atomic Energy Agency, Safety of Research Reactors, IAEA Safety Standards Series No. NS-R-4, IAEA, Vienna (2005) and guidance and specific and consequential recommendations relating to the recommendations presented in paras 615-621 of International Atomic Energy Agency, Safety in the Utilization and Modification of Research Reactors, Safety Series No. 35-G2, IAEA, Vienna (1994) and paras 228-229 of International Atomic Energy Agency, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, Safety Series No. 35-G1, IAEA, Vienna (1994). This Safety Guide is intended for use by all organizations involved in commissioning for a research reactor, including the operating organization, the regulatory body and other organizations involved in the research reactor project

  13. 76 FR 23845 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2011-04-28

    ... INFORMATION: I. Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment a... provides text and image files of the NRC's public documents. If you do not have access to ADAMS or if there...- 800-397-4209, 301-415-4737, or by e-mail to [email protected] . The Regulatory Analysis is...

  14. USNRC regulatory guidance for engineered safety feature air cleaning systems

    International Nuclear Information System (INIS)

    Bellamy, R.R.

    1991-01-01

    The need for clear, technically appropriate, and easily implementable guidance for the design, testing, and maintenance of nuclear air cleaning systems has long been recognized. Numerous industry consensus standards have been issued and revised over the last 30 years. Guidance has also been published by the US Nuclear Regulatory Commission in the form of regulations, regulatory guides, standard review plans, NUREG documents, and information notices. This paper will summarize the latest revisions to these documents and emphasize Regulatory Guide 1.52, Design, Testing, and Maintenance Criteria for Post-Accident Engineered-Safety-Feature Atmosphere Cleanup System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants, which was last revised in 1978. The USNRC has undertaken a project to revise this regulatory guide, and the status of that revision is highlighted

  15. An introduction to a new IAEA safety guide: 'ageing management for nuclear power plants'

    International Nuclear Information System (INIS)

    Pachner, J.; Inagaki, T.; Kang, K.S.

    2008-01-01

    This paper reports on a new IAEA Safety Guide entitled 'Ageing Management for Nuclear Power Plants' which is currently in an advanced draft form, awaiting approval of publication. The new Safety Guide will be an umbrella document for a comprehensive set of guidance documents on ageing management which have been issued by the IAEA. The Safety Guide first presents basic concepts of ageing management as a common basis for the recommendations on: proactive management of ageing throughout the life cycle of a nuclear power plant (NPP); systematic approach to managing ageing in the operation of NPPs; managing obsolescence; and review of ageing management for long term operation (life extension). The Safety Guide is intended to assist operators in establishing, implementing and improving systematic ageing management programs in NPPs and may be used by regulators in preparing regulatory standards and guides, and in verifying that ageing in nuclear power plants is being effectively managed. (author)

  16. REPOSITORY RADIATION SHIELDING DESIGN GUIDE

    International Nuclear Information System (INIS)

    M. Haas; E.M. Fortsch

    1997-01-01

    The scope of this document includes radiation safety considerations used in the design of facilities for the Yucca Mountain Site Characterization Project (YMP). The purpose of the Repository Radiation Shielding Design Guide is to document the approach used in the radiological design of the Mined Geologic Disposal System (MGDS) surface and subsurface facilities for the protection of workers, the public, and the environment. This document is intended to ensure that a common methodology is used by all groups that may be involved with Radiological Design. This document will also assist in ensuring the long term survivability of the information basis used for radiological safety design and will assist in satisfying the documentation requirements of the licensing body, the Nuclear Regulatory Commission (NRC). This design guide provides referenceable information that is current and maintained under the YMP Quality Assurance (QA) Program. Furthermore, this approach is consistent with maintaining continuity in spite of a changing design environment. This approach also serves to ensure common inter-disciplinary interpretation and application of data

  17. REPOSITORY RADIATION SHIELDING DESIGN GUIDE

    Energy Technology Data Exchange (ETDEWEB)

    M. Haas; E.M. Fortsch

    1997-09-12

    The scope of this document includes radiation safety considerations used in the design of facilities for the Yucca Mountain Site Characterization Project (YMP). The purpose of the Repository Radiation Shielding Design Guide is to document the approach used in the radiological design of the Mined Geologic Disposal System (MGDS) surface and subsurface facilities for the protection of workers, the public, and the environment. This document is intended to ensure that a common methodology is used by all groups that may be involved with Radiological Design. This document will also assist in ensuring the long term survivability of the information basis used for radiological safety design and will assist in satisfying the documentation requirements of the licensing body, the Nuclear Regulatory Commission (NRC). This design guide provides referenceable information that is current and maintained under the YMP Quality Assurance (QA) Program. Furthermore, this approach is consistent with maintaining continuity in spite of a changing design environment. This approach also serves to ensure common inter-disciplinary interpretation and application of data.

  18. Assessment of compliance with regulatory requirements for a best estimate methodology for evaluation of ECCS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Un Chul; Jang, Jin Wook; Lim, Ho Gon; Jeong, Ik [Seoul National Univ., Seoul (Korea, Republic of); Sim, Suk Ku [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-03-15

    Best estimate methodology for evaluation of ECCS proposed by KEPCO(KREM) os using thermal-hydraulic best-estimate code and the topical report for the methodology is described that it meets the regulatory requirement of USNRC regulatory guide. In this research the assessment of compliance with regulatory guide. In this research the assessment of compliance with regulatory requirements for the methodology is performed. The state of licensing procedure of other countries and best-estimate evaluation methodologies of Europe is also investigated, The applicability of models and propriety of procedure of uncertainty analysis of KREM are appraised and compliance with USNRC regulatory guide is assessed.

  19. Radiation practices and regulatory control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The general principles to be observed in the regulatory control of ionizing radiation use and practices are specified in the guide. It also takes into account of additions and alterations needed for for compliance with the European Union (EU) directives that have not been mentioned in other STUK/ST-guides. (6 refs.).

  20. Radiation practices and regulatory control

    International Nuclear Information System (INIS)

    1997-01-01

    The general principles to be observed in the regulatory control of ionizing radiation use and practices are specified in the guide. It also takes into account of additions and alterations needed for for compliance with the European Union (EU) directives that have not been mentioned in other STUK/ST-guides. (6 refs.)

  1. The regulatory process for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of this publication is to provide general guidance to Member States for regulating the decommissioning of nuclear facilities within the established nuclear regulatory framework. The Guide should also be useful to those responsible for, or interested in, the decommissioning of nuclear facilities. The Guide describes in general terms the process to be used in regulating decommissioning and the considerations to be applied in the development of decommissioning regulations and guides. It also delineates the responsibilities of the regulatory body and the licensee in decommissioning. The provisions of this Guide are intended to apply to all facilities within the nuclear fuel cycle and larger industrial installations using long lived radionuclides. For smaller installations, however, less extensive planning and less complex regulatory control systems should be acceptable. The Guide deals primarily with decommissioning after planned shutdown. Most provisions, however, are also applicable to decommissioning after an abnormal event, once cleanup operations have been terminated. The decommissioning planning in this case must take account of the abnormal event. 28 refs, 1 fig

  2. ENSI’s regulatory framework strategy

    International Nuclear Information System (INIS)

    2015-03-01

    This short brochure issued by the Swiss Federal Nuclear Safety Inspectorate ENSI defines the organisation’s regulatory framework strategy. Six guiding principles are declared and discussed: Comprehensive harmonisation with relevant international requirements, basing the regulatory framework on existing, tried-and-tested regulations, issuing of its own guidelines only when it is necessary to do so, guidelines to be drawn up transparently and with the involvement of all stakeholders and basing the level of detail of its regulatory framework on hazard potential and risk

  3. The path from biomarker discovery to regulatory qualification

    CERN Document Server

    Goodsaid, Federico

    2013-01-01

    The Path from Biomarker Discovery to Regulatory Qualification is a unique guide that focuses on biomarker qualification, its history and current regulatory settings in both the US and abroad. This multi-contributed book provides a detailed look at the next step to developing biomarkers for clinical use and covers overall concepts, challenges, strategies and solutions based on the experiences of regulatory authorities and scientists. Members of the regulatory, pharmaceutical and biomarker development communities will benefit the most from using this book-it is a complete and practical guide to biomarker qualification, providing valuable insight to an ever-evolving and important area of regulatory science. For complimentary access to chapter 13, 'Classic' Biomarkers of Liver Injury, by John R. Senior, Associate Director for Science, Food and Drug Administration, Silver Spring, Maryland, USA, please visit the following site:  http://tinyurl.com/ClassicBiomarkers Contains a collection of experiences of different...

  4. 76 FR 28102 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-05-13

    ... Analysis, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555... qualitative, traditional or probabilistic), data, and criteria for considering risk are appropriate for making... 10 CFR part 52, ``Licenses, Certifications, and Approvals for Nuclear Power Plants.'' Other types of...

  5. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  6. Determination of Design Basis Earthquake ground motion

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1997-01-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  7. 76 FR 2425 - Draft Regulatory Guide: Reissuance and Availability

    Science.gov (United States)

    2011-01-13

    ... INFORMATION: I. Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment a..., the public can gain entry into ADAMS, which provides text and image files of NRC's public [email protected] . The Regulatory Analysis is available electronically under ADAMS Accession Number...

  8. Nuclear Security Systems and Measures for the Detection of Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidance to Member States for the development, or improvement of nuclear security systems and measures for the detection of criminal or unauthorized acts with nuclear security implications involving nuclear and other radioactive material out of regulatory control. It describes the elements of an effective nuclear security detection architecture which is composed of an integrated set of nuclear security systems and measures, and is based on an appropriate legal and regulatory framework for the implementation of the national detection strategy. The publication is an implementing guide within the IAEA Nuclear Security Series and is intended for use by national policy makers, legislative bodies, competent authorities, institutions, and individuals involved in the establishment, implementation, maintenance or sustainability of nuclear security systems and measures for the detection of nuclear and other radioactive material out of regulatory control

  9. 75 FR 9002 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-02-26

    ... Guide, DG-3040, ``Design, Construction, and Inspection of Embankment Retention Systems at Fuel Cycle... October 1973. This guide describes some engineering practices and methods generally considered by the NRC to be satisfactory for the design, construction, and inspection of embankment retention systems used...

  10. Competent authority regulatory control of the transport of radioactive material

    International Nuclear Information System (INIS)

    1987-04-01

    The purpose of this guide is to assist competent authorities in regulating the transport of radioactive materials and to assist users of transport regulations in their interactions with competent authorities. The guide should assist specifically those countries which are establishing their regulatory framework and further assist countries with established procedures to harmonize their application and implementation of the IAEA Regulations. This guide specifically covers various aspects of the competent authority implementation of the IAEA Regulations for the Safe Transport of Radioactive Material. In addition, physical protection and safeguards control of the transport of nuclear materials as well as third party liability aspects are briefly discussed. This is because they have to be taken into account in overall transport regulatory activities, especially when establishing the regulatory framework

  11. Inspection and enforcement by the regulatory body for nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    This Safety Guide was prepared as part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to nuclear power plants. It supplements the Code of Practice on Governmental Organization for the Regulation of Nuclear Power Plants, IAEA Safety Series No.50-C-G and should be used in conjunction with that document. The purpose of this Guide is to provide information, guidance and recommendations to assist Member States in (1) establishing and conducting a regulatory inspection programme for nuclear power plants, (2) establishing requirements for the applicant/licensee in regard to regulatory inspection, (3) establishing a system for enforcing compliance with the requirements and decisions of the regulatory body

  12. AVS user's guide on the basis of practice

    International Nuclear Information System (INIS)

    Masuko, Kenji; Kato, Katsumi; Kume, Etsuo; Fujii, Minoru.

    1997-07-01

    The special guides for the use of visualization software AVS have been developed at Japan Atomic Energy Research Institute (JAERI). The purpose of these guides is to help the AVS users understand easily the use of the one, due to the fact that it is so difficult for beginners to understand the original manuals. In this report, 'Transportation Evacuation Simulation' is taken up as an object of visualization, and the procedure of visualization and images recording by using the AVS are described. By using the AVS according to this report, a series of the procedure which are necessary for use of the AVS can be acquired. (author)

  13. Regulatory control of fuel design and manufacturing

    International Nuclear Information System (INIS)

    1994-01-01

    The regulatory control of the design and manufacturing of the nuclear fuel and of the control rods aims to ensure conformance to set requirements during normal operating conditions, anticipated operational transients and postulated accident conditions. The regulatory control of design, manufacturing, receiving inspections and the start of operation of the nuclear fuel are specified in the guide. The regulatory control procedure also applies to the control rods and the shield elements

  14. Annual Report 2008. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2009-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2008. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  15. Annual Report 2007. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2008-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  16. Development of regulatory guide for review of aging management of the operating NPP

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Tae Myung; Lee, Jae Kyung [Cheongju Univ., Cheongju (Korea, Republic of); Kim, Young Ryul [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2001-03-15

    This is the final report of the second year study. Based on the first year study, proposal of revised guidelines, analysis of revised or newly issued IAEA safety guides and reference guidelines of developed countries, and proposal of detailed guidelines of aging management in PSR have been performed in the second year study. The summary of results in the study so far can be summarized as below, overall view on PSR and idea of effective domestic application were leaded through additional investigation and comparison of legal basis, experiences and current status of PSR implementation among the countries having operating NPPs including Korea. Strategies of adequate application of PSR are roughly reevaluated and totally reestablished in summary from the analysis in factor by factor basis of PSR implementation experience in foreign countries and background of IAEA guidelines. Models and draft framework of PSR report in the first year study were summarized and reevaluated, and structure and outline options of PSR guidelines for judging the PSR report are newly proposed with comparison of their strengths and weaknesses based on the first year study. Among the opt ions, guidelines framework equivalent to the PSR report was picked up as the best. For the judgement of aging management, the most appropriate one was chosen for the detailed judgement of aging management review in our PSR being based on the Standard Review Plan for License Renewal (SRP-LR) in United States considering potential future usage in the judgement for continued operation of old NPP at the time of expiration of its design life. A draft PSR guidelines is prepared and attached by revision of basic guidelines issued in 2000, considering the issues discussed for the draft revision of IAEA PSR guide, the draft IAEA document about 'experience of PSR implementation of member states', and the characteristics of Hungarian PSR Guidelines.

  17. Reactor aging research. United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Vassilaros, M.G.

    1998-01-01

    The reactor ageing research activities in USA described, are focused on the research of reactor vessel integrity, including regulatory issues and technical aspects. Current emphasis are described for fracture analysis, embrittlement research, inspection capabilities, validation od annealing rule, revision of regulatory guide

  18. 77 FR 68162 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Regulatory...

    Science.gov (United States)

    2012-11-15

    ... discuss Regulatory Guide 1.79, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized Water Reactors,'' Revision 2, and Regulatory Guide 1.79.1, ``Initial Test Program of Emergency Core...

  19. Regulatory Guide 1.131: Qualification tests of electric cables, field splices, and connections for light-water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Criterion III, ''Design Control,'' of Appendix B, ''Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plant,'' to 10 CFR Part 50, ''Licensing of Production and Utilization Facilities,'' requires that, where a test program is used to verify the adequacy of a specific design feature, it include suitable qualification testing of a prototype unit under the most adverse design conditions. This regulatory guide describes a method acceptable to the NRC staff for complying with the Commission's regulations with regard to qualification testing of electric cables, field splices, and connections for service in light-water-cooled nuclear power plants to ensure that the cables, field splices, and connections can perform their safety-related functions. The fire test provisions of this guide do not apply to qualification for an installed configuration

  20. Rationales for regulatory activity

    Energy Technology Data Exchange (ETDEWEB)

    Perhac, R.M. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-02-01

    The author provides an outline which touches on the types of concerns about risk evaluation which are addressed in the process of establishing regulatory guides. Broadly he says regulatory activity serves three broad constituents: (1) Paternalism (private risk); (2) Promotion of social welfare (public risks); (3) Protection of individual rights (public risks). He then discusses some of the major issues encountered in reaching a decision on what is an acceptable level of risk within each of these areas, and how one establishes such a level.

  1. Annual Report 2009. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  2. Regulatory control of nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this book is to support IAEA training courses and workshops in the field of regulatory control of nuclear power plants as well as to support the regulatory bodies of Member States in their own training activities. The target group is the professional staff members of nuclear safety regulatory bodies supervising nuclear power plants and having duties and responsibilities in the following regulatory fields: regulatory framework; regulatory organization; regulatory guidance; licensing and licensing documents; assessment of safety; and regulatory inspection and enforcement. Important topics such as regulatory competence and quality of regulatory work as well as emergency preparedness and public communication are also covered. The book also presents the key issues of nuclear safety such as 'defence-in-depth' and safety culture and explains how these should be taken into account in regulatory work, e.g. during safety assessment and regulatory inspection. The book also reflects how nuclear safety has been developed during the years on the basis of operating experience feedback and results of safety research by giving topical examples. The examples cover development of operating procedures and accident management to cope with complicated incidents and severe accidents to stress the importance of regulatory role in nuclear safety research. The main target group is new staff members of regulatory bodies, but the book also offers good examples for more experienced inspectors to be used as comparison and discussion basis in internal workshops organized by the regulatory bodies for refreshing and continuing training. The book was originally compiled on the basis of presentations provided during the two regulatory control training courses in 1997 and 1998. The textbook was reviewed at the beginning of the years 2000 and 2002 by IAEA staff members and consistency with the latest revisions of safety standards have been ensured. The textbook was completed in the

  3. The legal, regulatory and safety basis for opening WIPP

    International Nuclear Information System (INIS)

    Dials, G.E.

    1997-01-01

    Current laws in the United States of America direct the U.S. Department of Energy (DOE) to site, design, operate, and decommission a deep geological repository for safe disposal of transuranic radioactive waste (TRUW) at the Waste Isolation Pilot Plant (WIPP) site. In 1993, the DOE established the Carlsbad Area Office (CAO) to integrate the nation's management of TRUW and to open the WIPP site for safe disposal of TRUW in compliance with applicable laws and regulations. The CAO submitted the final Compliance Certification Application (CCA) in 1996, and is on schedule to open WIPP in November 1997, about three years earlier than scheduled before the establishment of the CAO. The performance assessment (PA) embodied in the CCA demonstrates that WIPP meets the EPA's regulatory requirements for radioactive releases for the 10,000 year regulatory period in both the undisturbed and disturbed (human intrusion) scenarios. Detailed planning, compliance-based research and development (R and D), teamwork among project participants and early and open iterative interactions with the regulators, oversight groups and other interested parties in the certification/permitting process are key components of the progress in the safe disposal of long-lived radioactive wastes. (author)

  4. Enabling legislation and regulatory determinations for a nuclear power programme

    International Nuclear Information System (INIS)

    Ha Vinh Phuong

    1977-01-01

    General remarks on objectives and scope of enabling legislation, on the regulatory body and on the IAEA activities and assistance in regulatory matters e.g. the IAEA Safety Guides which are in preparation. (HP) [de

  5. Federal and state regulatory requirements for decontamination and decommissioning at US Department of Energy Oak Ridge Operations Facilities

    International Nuclear Information System (INIS)

    Etnier, E.L.; Houlberg, L.M.; Bock, R.E.

    1994-06-01

    The purpose of this report is to address regulatory requirements for decontamination and decommissioning (D and D) activities at the Oak Ridge Reservation and Paducah Gaseous Diffusion Plant. This report is a summary of potential federal and state regulatory requirements applicable to general D and D activities. Excerpts are presented in the text and tables from the complete set of regulatory requirements. This report should be used as a guide to the major regulatory issues related to D and D. Compliance with other federal, state, and local regulations not addressed here may be required and should be addressed carefully by project management on a site-specific basis. The report summarizes the major acts and implementing regulations (e.g., Resource and Conservation Recovery Act, Clean Air Act, and Toxic Substances Control Act) only with regard to D and D activities. Additional regulatory drivers for D and D activities may be established through negotiated agreements, such as the Federal Facility Agreement and the US Environmental Protection Agency Mixed Waste Federal Facility Compliance Agreement; these are discussed in this report. The DOE orders and Energy Systems procedures also are summarized briefly in instances where they directly apply to D and D

  6. Guidelines on how to meet the requirement to keep all exposures as low as reasonably achievable. Regulatory guide

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of Regulatory Guide G-129 (E) is to provide Atomic Energy Control Board (AECB) licensees with guidelines on how to meet the forthcoming AECB regulatory requirement to keep doses received by workers and members of the public As Low As Reasonably Achievable (ALARA), social and economic factors taken into account. it is realized that the scope for realistic dose reductions will vary depending on the nature of the licensed activity. Therefore, criteria are given in section D for determining if doses can be deemed to be as low as reasonably achievable without further evaluation. The elements that the AECB considers to be essential in the approach to ALARA are described in section E and are summarized as follows: a demonstrated management commitment to the ALARA principle; the implementation of ALARA through a licensee's organization and management, provision of resources, training, establishment of action levels, documentation and other measures; and regular operational reviews. The above elements will be the focus of any AECB assessment to verify compliance with the requirement to keep radiation exposures as low as reasonably achievable. (author)

  7. Transportation and packaging resource guide

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, J.W.; Gove, R.M.; Welch, M.J.

    1994-12-01

    The purpose of this resource guide is to provide a convenient reference document of information that may be useful to the U.S. Department of Energy (DOE) and DOE contractor personnel involved in packaging and transportation activities. An attempt has been made to present the terminology of DOE community usage as it currently exists. DOE`s mission is changing with emphasis on environmental cleanup. The terminology or nomenclature that has resulted from this expanded mission is included for the packaging and transportation user for reference purposes. Older terms still in use during the transition have been maintained. The Packaging and Transportation Resource Guide consists of four sections: Sect. 1, Introduction; Sect. 2, Abbreviations and Acronyms; Sect. 3, Definitions; and Sect. 4, References for packaging and transportation of hazardous materials and related activities, and Appendices A and B. Information has been collected from DOE Orders and DOE documents; U.S Department of Transportation (DOT), U.S. Environmental Protection Agency (EPA), and U.S. Nuclear Regulatory Commission (NRC) regulations; and International Atomic Energy Agency (IAEA) standards and other international documents. The definitions included in this guide may not always be a regulatory definition but are the more common DOE usage. In addition, the definitions vary among regulatory agencies. It is, therefore, suggested that if a definition is to be used in a regulatory or a legal compliance issue, the definition should be verified with the appropriate regulation. To assist in locating definitions in the regulations, a listing of all definition sections in the regulations are included in Appendix B. In many instances, the appropriate regulatory reference is indicated in the right-hand margin.

  8. Transportation and packaging resource guide

    International Nuclear Information System (INIS)

    Arendt, J.W.; Gove, R.M.; Welch, M.J.

    1994-12-01

    The purpose of this resource guide is to provide a convenient reference document of information that may be useful to the U.S. Department of Energy (DOE) and DOE contractor personnel involved in packaging and transportation activities. An attempt has been made to present the terminology of DOE community usage as it currently exists. DOE's mission is changing with emphasis on environmental cleanup. The terminology or nomenclature that has resulted from this expanded mission is included for the packaging and transportation user for reference purposes. Older terms still in use during the transition have been maintained. The Packaging and Transportation Resource Guide consists of four sections: Sect. 1, Introduction; Sect. 2, Abbreviations and Acronyms; Sect. 3, Definitions; and Sect. 4, References for packaging and transportation of hazardous materials and related activities, and Appendices A and B. Information has been collected from DOE Orders and DOE documents; U.S Department of Transportation (DOT), U.S. Environmental Protection Agency (EPA), and U.S. Nuclear Regulatory Commission (NRC) regulations; and International Atomic Energy Agency (IAEA) standards and other international documents. The definitions included in this guide may not always be a regulatory definition but are the more common DOE usage. In addition, the definitions vary among regulatory agencies. It is, therefore, suggested that if a definition is to be used in a regulatory or a legal compliance issue, the definition should be verified with the appropriate regulation. To assist in locating definitions in the regulations, a listing of all definition sections in the regulations are included in Appendix B. In many instances, the appropriate regulatory reference is indicated in the right-hand margin

  9. A technical basis for meeting waste form stability requirements of 10 CFR 61

    International Nuclear Information System (INIS)

    Chang, W.Y.; Skoski, L.; Eng, R.; Tuite, P.T.

    1988-01-01

    To assure that solidified low level waste forms meet the stability requirements of 10 CFR 61 regulations, the US Nuclear Regulatory Commission (NRC) has published Branch Technical Positions (BTPs) and draft Regulatory Guide on waste form stability. These guidance documents describe the test procedures and acceptance criteria for six stability parameters: leachability, compressive strength, immersion effect, radiation effect, thermal stability and biodegradability. The most recent set of recommended tests and acceptance criteria are presented in the November 1986 Preliminary Draft Regulatory Guide Low Level Waste Form Stability. The objective of this study was to: (1) investigate the regulatory and technical bases for the required stability tests, (2) evaluate the relevance of these tests and acceptance criteria based on actual test results, and (3) recommended alternatives to the testing and acceptance criteria. The latter two objectives are discussed in this paper

  10. Management of the Regulatory Authority Information

    International Nuclear Information System (INIS)

    Suman, H.

    2003-01-01

    Safe Management of the Regulatory Authority Information is one of the essential elements to ensure the effectiveness of the regulatory program as a whole. This paper briefly describes the information management basis in RNRO, which is in charge of the regulatory authority tasks in Syria. SINA-2, a computational tool prepared in RNRO for managing the information related to the inventory of radiation sources and users, is also introduced

  11. Regulatory framework for nuclear power plant operation

    International Nuclear Information System (INIS)

    Perez Alcaniz, T.; Esteban Barriendos, M.

    1995-01-01

    As the framework of standards and requirements covering each phase of nuclear power plant project and operation developed, plant owners defined their licensing commitments (codes, rules and design requirements) during the project and construction phase before start-up and incorporated regulatory requirements imposed by the regulatory Body during the licensing process prior to operation. This produces a regulatory framework for operating a plant. It includes the Licensing Basis, which is the starting point for analyzing and incorporating new requirements, and for re-evaluation of existing ones. This presentation focuses on the problems of applying this regulatory framework to new operating activities, in particular to new projects, analyzing new requirements, and reconsidering existing ones. Clearly establishing a plant's licensing basis allows all organizations involved in plant operation to apply the requirements in a more rational way. (Author)

  12. Regulatory document R-104, Regulatory objectives, requirements and guidelines for the disposal of radioactive wastes - long-term aspects

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose and scope of this document is to present the regulatory basis for judging the long-term acceptability of radioactive waste disposal options. The basic objectives of radioactive waste disposal are given as are the regulatory requirements to be satisfied. (NEA)

  13. 76 FR 24538 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2011-05-02

    ... with the motor starter for electric motors on motor-operated valves. This method would ensure that the..., Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2011-10561 Filed 4-29-11; 8:45 am...

  14. Standard Guide for Packaging Materials for Foods to Be Irradiated

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides a format to assist producers and users of food packaging materials in selecting materials that have the desirable characteristics for their intended use and comply with applicable standards or government authorizations. It outlines parameters that should be considered when selecting food-contact packaging materials intended for use during irradiation of prepackaged foods and it examines the criteria for fitness for their use. 1.2 This guide identifies known regulations and regulatory frameworks worldwide pertaining to packaging materials for holding foods during irradiation; but it does not address all regulatory issues associated with the selection and use of packaging materials for foods to be irradiated. It is the responsibility of the user of this guide to determine the pertinent regulatory issues in each country where foods are to be irradiated and where irradiated foods are distributed. 1.3 This guide does not address all of the food safety issues associated with the synergisti...

  15. Comparative study of Malaysian and Philippine regulatory infrastructures on radiation and nuclear safety with international standards

    International Nuclear Information System (INIS)

    Cayabo, Lynette B.

    2013-06-01

    This study presents the results of the critical reviews, analysis, and comparison of the regulatory infrastructures for radiation and nuclear safety of Malaysis and the Philippines usi ng the IAEA safety requirements, GSR Part 1, G overnment, Legal and Regulatory Framework for Safety'' as the main basis and in part, the GSR Part 3, R adiation Protection and Safety of Radiation Sources: International Basic Safety Standards . The scope of the comparison includes the elements of the relevant legislations, the regulatory system and processes including the core functions of the regulatory body (authorization, review and assessment, inspection and enforcement, development of regulations and guides); and the staffing and training of regulatory body. The respective availabe data of the Malaysian and Philippine regulatory infrastructures and current practices were gathered and analyzed. Recommendations to fill the gaps and strengthen the existing regulatory infrastructure of each country was given using as bases relevant IAEA safety guides. Based on the analysis made, the main findings are: the legislations of both countries do not contain al the elements of teh national policy and strategy for safety as well as those of teh framework for safety in GR Part I. Among the provision that need to be included in the legislations are: emergency planning and response; decommissioning of facilities safe management of radioactive wastes and spent fuel; competence for safety; and technical sevices. Provisions on coordination of different authorities with safety responsibilities within the regulatory framework for safety as well as liaison with advisory bodies and support organizations need to be enhanced. The Philippines needs to establish an independent regulatory body, ie. separate from organizations charged with promotion of nuclear technologies and responsible for facilitiesand activities. Graded approach on the system of notification and authorization by registration and

  16. Nuclear regulatory regime in Lithuania

    International Nuclear Information System (INIS)

    Kutas, S.

    1999-01-01

    The Law on Nuclear Energy establishes the legal basis for nuclear safety in the Republic of Lithuania. It assigns the responsibility for safety to the operating organization of a nuclear facility and outlines the tasks of the operator and the regulatory authority. According to this Law, the Nuclear Power Safety Inspectorate (VATESI) shall implement state regulation of nuclear safety. Standards and rules, guides and regulations of nuclear safety and radiation protection approved by the Government or by the institutions authorised. It is mandatory for all public and local authorities, enterprises, institutions, organisations, their associations, the officials and other persons whose activities are related to the operation of nuclear facilities, to the use and management of nuclear and radioactive materials therein. Safety guarantee in nuclear energy based on the requirements of the laws and regulations of the Republic of Lithuania, on the requirements of the international treaties to which the Republic of Lithuania is a party, also on the recommendations of the IAEA and other international organisations and authorities

  17. Guide to the economic regulation of the gas industry

    International Nuclear Information System (INIS)

    1999-12-01

    The guide provides: concise information on the institutional structure, legislation and licensing of the gas industry; a history of regulatory and commercial development in the industry; an examination of the current regulatory issues. (Author)

  18. Radiation protection and safety guide no. GRPB-G-4: inspection

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    The use of ionizing radiation and radiation sources in Ghana is on the increase due to national developmental efforts in Health Care, Food and Agriculture, Industry, Science and Technology. This regulatory Guide has been developed to assist both the Regulatory Body (Radiation Protection Board) and operating organizations to perform systematic inspections commensurate with the level of hazard associated with the application of radiation sources and radioactive materials. The present Guide applies to the Radiation Protection and Safety inspection and/or audit conducted by the Radiation Protection Board or Radiation Safety Officer. The present Guide is applicable in Ghana and to foreign suppliers of radiation sources. The present Guide applies to notifying person, licensee, or registrant and unauthorized practice

  19. 75 FR 1830 - Final Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-01-13

    ... (RG) 5.71, ``Cyber Security Programs for Nuclear Facilities.'' FOR FURTHER INFORMATION CONTACT: Karl J... review of applications for permits and licenses. RG 5.71, ``Cyber Security Programs for Nuclear... Nuclear Regulatory Research concerning cyber security program development and the collective body of...

  20. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  1. Annual Report 2010. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2010-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across six chapters and seven annexes the activities developed by the organism during 2010. The main topic are: institutional issues; regulatory guides and standards; argentinean nuclear regulatory system; quality assurance of the ARN; the institutional communications; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the safeguards and the physical protection; the environmental control; the institutional relations; the training and the public information. Also, this publication have annexes with the following content: the regulatory framework; regulatory documents; inspections to medical, industrial and training installations; measurement and evaluation of the drinking water of Ezeiza; international expert's report on the application of the international standards of radiological protection of the public in the zone of the Ezeiza Atomic Center; ethical code

  2. Annual Report 2011. Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across six chapters and seven annexes the activities developed by the organism during 2011. The main topic are: institutional issues; regulatory guides and standards; argentinean nuclear regulatory system; quality assurance of the ARN; the institutional communications; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the safeguards and the physical protection; the environmental control; the institutional relations; the training and the public information. Also, this publication have annexes with the following content: the regulatory framework; regulatory documents; inspections to medical, industrial and training installations; measurement and evaluation of the drinking water of Ezeiza; international expert's report on the application of the international standards of radiological protection of the public in the zone of the Ezeiza Atomic Center; ethical code

  3. Regulatory systems-based licensing guidance documentation

    International Nuclear Information System (INIS)

    Delligatti, M.S.

    1991-01-01

    The US Nuclear Regulatory Commission (NRC) has developed a series of licensing guidance documents based on the regulatory requirements in Part 60 of Title 10 of the Code of Federal Regulations (10 CFR Part 60). This regulatory systems-based approach to licensing guidance documentation relies on the definition of the high-level waste repository in 10 CFR Part 60. A document which is important for the frame-work it gives to other programmatic licensing guidance is the Draft Regulatory Guide open-quotes Format and Content for the License Application for the High-Level Waste Repositoryclose quotes (FCRG). The FCRG describes a format and content acceptable to NRC for a high-level waste repository license application pursuant to the requirements of 10 CFR Part 60. Other licensing guidance documents will be compatible with the FCRG

  4. Development, Use and Maintenance of the Design Basis Threat. Implementing Guide (French Edition); Elaboration, utilisation et actualisation de la menace de reference. Guide d'application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    This publication provides guidance on how to develop, use and maintain a design basis threat (DBT). It is intended for decision makers from organizations with roles and responsibilities for the development, use and maintenance of the DBT. This implementing guide describes a DBT; identifies and recommends the roles and responsibilities of organizations that should be involved in the development, use and maintenance of a DBT; describes how to conduct a national threat assessment as a precursor to a DBT; explains how a DBT can be developed; explains how a DBT is incorporated into a State's nuclear security regime; and explains the conditions for a review of the DBT, and how the review and update are conducted.

  5. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This publication supports the Safety Requirements on the Safety of Nuclear Power Plants: Design. This Safety Guide was prepared on the basis of a systematic review of all the relevant publications including the Safety Fundamentals, Safety of Nuclear Power Plants: Design, current and ongoing revisions of other Safety Guides, INSAG reports and other publications that have addressed the safety of nuclear power plants. This Safety Guide also provides guidance for Contracting Parties to the Convention on Nuclear Safety in meeting their obligations under Article 14 on Assessment and Verification of Safety. The Safety Requirements publication entitled Safety of Nuclear Power Plants: Design states that a comprehensive safety assessment and an independent verification of the safety assessment shall be carried out before the design is submitted to the regulatory body. This publication provides guidance on how this requirement should be met. This Safety Guide provides recommendations to designers for carrying out a safety assessment during the initial design process and design modifications, as well as to the operating organization in carrying out independent verification of the safety assessment of new nuclear power plants with a new or already existing design. The recommendations for performing a safety assessment are suitable also as guidance for the safety review of an existing plant. The objective of reviewing existing plants against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The methods and the recommendations of this Safety Guide can also be used by regulatory bodies for the conduct of the regulatory review and assessment. Although most recommendations of this Safety Guide are general and applicable to all types of nuclear reactors, some specific recommendations and examples apply mostly to water cooled reactors. Terms such as 'safety assessment', 'safety analysis' and 'independent

  6. Risk-based regulation: A regulatory perspective

    International Nuclear Information System (INIS)

    Scarborough, J.C.

    1993-01-01

    In the early development of regulations for nuclear power plants, risk was implicitly considered through qualitative assessments and engineering reliability principles and practices. Examples included worst case analysis, defense in depth, and the single failure criterion. However, the contributions of various systems, structures, components and operator actions to plant safety were not explicitly assessed since a methodology for this purpose had not been developed. As a consequence of the TMI accident, the use of more quantitative risk methodology and information in regulation such as probabilistic risk analysis (PRA) increased. The use of both qualitative and quantitative consideration of risk in regulation has been a set of regulations and regulatory guides and practices that ensure adequate protection of public health and safety. Presently, the development of PRA techniques has developed to the point that safety goals, expressed in terms of risk, have been established to help guide further regulatory decision making. This paper presents the personal opinions of the author as regards the use of risk today in nuclear power plant regulation, areas of further information needs, and necessary plans for moving toward a more systematic use of risk-based information in regulatory initiatives in the future

  7. Probabilistic safety analysis procedures guide

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Bari, R.A.; Buslik, A.J.

    1984-01-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of tissues affecting reactor safety. This guide addresses the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant and from loss of offsite electric power. The scope includes analyses of problem-solving (cognitive) human errors, a determination of importance of the various core damage accident sequences, and an explicit treatment and display of uncertainties for the key accident sequences. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance) and the risk associated with external accident initiators, as consensus is developed regarding suitable methodologies in these areas. This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are essential for regulatory decision making. Methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study

  8. Molecular basis of calcium-sensitizing and desensitizing mutations of the human cardiac troponin C regulatory domain: a multi-scale simulation study.

    Directory of Open Access Journals (Sweden)

    Peter Michael Kekenes-Huskey

    Full Text Available Troponin C (TnC is implicated in the initiation of myocyte contraction via binding of cytosolic Ca²⁺ and subsequent recognition of the Troponin I switch peptide. Mutations of the cardiac TnC N-terminal regulatory domain have been shown to alter both calcium binding and myofilament force generation. We have performed molecular dynamics simulations of engineered TnC variants that increase or decrease Ca²⁺ sensitivity, in order to understand the structural basis of their impact on TnC function. We will use the distinction for mutants that are associated with increased Ca²⁺ affinity and for those mutants with reduced affinity. Our studies demonstrate that for GOF mutants V44Q and L48Q, the structure of the physiologically-active site II Ca²⁺ binding site in the Ca²⁺-free (apo state closely resembled the Ca²⁺-bound (holo state. In contrast, site II is very labile for LOF mutants E40A and V79Q in the apo form and bears little resemblance with the holo conformation. We hypothesize that these phenomena contribute to the increased association rate, k(on, for the GOF mutants relative to LOF. Furthermore, we observe significant positive and negative positional correlations between helices in the GOF holo mutants that are not found in the LOF mutants. We anticipate these correlations may contribute either directly to Ca²⁺ affinity or indirectly through TnI association. Our observations based on the structure and dynamics of mutant TnC provide rationale for binding trends observed in GOF and LOF mutants and will guide the development of inotropic drugs that target TnC.

  9. ENSI’s regulatory framework strategy; Regelwerksstrategie des ENSI -- Stratégie réglementaire de l’IFSN -- ENSI’s regulatory framework strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-03-15

    This short brochure issued by the Swiss Federal Nuclear Safety Inspectorate ENSI defines the organisation’s regulatory framework strategy. Six guiding principles are declared and discussed: Comprehensive harmonisation with relevant international requirements, basing the regulatory framework on existing, tried-and-tested regulations, issuing of its own guidelines only when it is necessary to do so, guidelines to be drawn up transparently and with the involvement of all stakeholders and basing the level of detail of its regulatory framework on hazard potential and risk.

  10. 76 FR 10917 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2011-02-28

    ..., telephone: 301-251- 7627 or e-mail: [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction The... . From this page, the public can gain entry into ADAMS, which provides text and image files of NRC's....nrc.gov/reading-rm/doc-collections/ . The regulatory analysis may be found in ADAMS under Accession No...

  11. Views from the japanese regulatory authority

    International Nuclear Information System (INIS)

    Aoyama, S.

    2004-01-01

    The legislation system for regulation of radioisotope in Japan was established in 1957. The system has been revised gradually since its establishment. Major amendments of the law were made in 1988 on the basis of ICRP Publication 26 and in 2000 on the basis of Publication 60. Main principles provided in the publication have been already introduced into the law. However, some concepts proposed in the recommendations are still under discussion. The current status of implementation of the ICRP recommendations in the Japanese regulatory system is summarised. Views from the regulatory authority of Japan on the points to be improved in the current system of radiological protection are presented. (author)

  12. 75 FR 53352 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-08-31

    ..., telephone: (301) 251- 7483 or e-mail [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction... image files of NRC's public documents. If you do not have access to ADAMS or if there are problems in... Reading Room at http://www.nrc.gov/reading-rm/doc-collections/ . The regulatory analysis may be found in...

  13. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  14. 76 FR 2725 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2011-01-14

    ...-0001, telephone: 301-415-7495 or e- mail [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction..., which provides text and image files of NRC's public documents. If you do not have access to ADAMS or if... 1-800-397-4209, 301-415-4737, or by e-mail to [email protected] . The Regulatory Analysis is...

  15. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  16. Regulations and guides for nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The purpose of the present Guide is to provide information, guidance and recommendations to assist the regulatory body of a Member State in establishing its own regulations and guides. It discusses the purpose, the method and procedure of establishment, and the content and legal status of these documents, and it explains how to use the Codes of Practice and Safety Guides issued by the IAEA under the Nuclear Safety Standards (NUSS) programme. Certain aspects of how to use other international standards and appropriate regulations and guides from other countries are discussed

  17. Nuclear Regulatory Infrastructure in the Philippines

    International Nuclear Information System (INIS)

    Leonin, Teofilo V. Jr.

    2015-01-01

    Regulating the use of radioactive materials in the Philippines involves the adherence to legislation, regulations, standards and regulatory guides. It is based on a detailed review and assessment of the radiation safety program of owners and users of these materials and associated equipment against safety requirements and on additional verification of the operating practices and procedures. Republic Acts 5207 and 2067, both as amended, are implemented through the regulations which are titled Code of PNRI Regulations or CPRs are developed and issued together with supporting regulatory guides, Bulletins and other documents detailing the safety requirements. These issuance adhere to internationally accepted requirements on radiation protection, and nuclear safety and security, as well as safeguards. Design documents and technical Specifications of important radioactive materials, equipment and components are required to be submitted and reviewed by the PNRI before the issuance of an authorization in the form of a license Verification of adherence to regulations and safety requirements are periodically checked through the implementation of an inspection and enforcement program. The ISO certified regulatory management system of PNRI is documented in a QMS manual that provides guidance on all work processes. It involves systematic planning and evaluation of activities, multiple means of getting feedback on the work processes, and continuous efforts to improve its effectiveness. Efforts are implemented in order to strengthen the transparency openness, independence, technical competence and effectiveness of the regulatory body. (author)

  18. 78 FR 19057 - Self-Regulatory Organizations; ICE Clear Europe Limited; Notice of Filing Proposed Rule Changes...

    Science.gov (United States)

    2013-03-28

    ... categories. II. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for, the... by ICEEU. A. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for, the.... 78q-1(b)(3)(F). B. Self-Regulatory Organization's Statement on Burden on Competition ICE Clear Europe...

  19. Ontario hydro radioactive material transportation field guide

    International Nuclear Information System (INIS)

    Howe, W.

    1987-01-01

    The recent introduction of both the AECB Transport Packaging of Radioactive Material Regulations and Transport Canada's Transportation of Dangerous Goods Regulations have significantly altered the requirements for transporting radioactive material in Canada. Extensive additional training as well as certification of several hundred Ontario Hydro employees has been necessary to ensure compliance with the additional and revised regulatory requirements. To assist in the training of personnel, an 'active' corporate Ontario Hydro Field Guide for Radioactive Material Transport document has been developed and published. The contents of this Field Guide identify current Ontario Hydro equipment and procedures as well as the updated relevant regulatory requirements within Canada. In addition, to satisfying Ontario Hydro requirements for this type of information over two thousand of these Field Guides have been provided to key emergency response personnel throughout the province of Ontario to assist in their transportation accident response training

  20. Communication Regulatory Science: Mapping a New Field.

    Science.gov (United States)

    Noar, Seth M; Cappella, Joseph N; Price, Simani

    2017-12-13

    Communication regulatory science is an emerging field that uses validated techniques, tools, and models to inform regulatory actions that promote optimal communication outcomes and benefit the public. In the opening article to this special issue on communication and tobacco regulatory science, we 1) describe Food and Drug Administration (FDA) regulation of tobacco products in the US; 2) introduce communication regulatory science and provide examples in the tobacco regulatory science realm; and 3) describe the special issue process and final set of articles. Communication research on tobacco regulatory science is a burgeoning area of inquiry, and this work advances communication science, informs and potentially guides the FDA, and may help to withstand legal challenges brought by the tobacco industry. This research has the potential to have a major impact on the tobacco epidemic and population health by helping implement the most effective communications to prevent tobacco initiation and increase cessation. This special issue provides an example of 10 studies that exemplify tobacco regulatory science and demonstrate how the health communication field can affect regulation and benefit public health.

  1. Nuclear regulatory decision making

    International Nuclear Information System (INIS)

    2005-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that nuclear utilities operate their plants at all times in an acceptably safe manner. In meeting this objective, the regulatory body should strive to ensure that its regulatory decisions are technically sound, consistent from case to case, and timely. In addition, the regulator must be aware that its decisions and the circumstances surrounding those decisions can affect how its stakeholders, such as government policy makers, the industry it regulates, and the public, view it as an effective and credible regulator. In order to maintain the confidence of those stakeholders, the regulator should make sure that its decisions are transparent, have a clear basis in law and regulations, and are seen by impartial observers to be fair to all parties. Based on the work of a Nuclear Energy Agency (NEA) expert group, this report discusses some of the basic principles and criteria that a regulatory body should consider in making decisions and describes the elements of an integrated framework for regulatory decision making. (author)

  2. Current products and future plan of regulatory research for risk-informed regulation in Korea

    International Nuclear Information System (INIS)

    Sung, Key Yong; Lee, Chang Ju; Kim, Woong Sik; Kim, Hho Jung

    2003-01-01

    The first phase of a regulatory research project for risk-informed regulation (RIR) and applications (RIA) was finished in March of 2002. Various results that could be useful for preparing Korean RIR system have been developed. One of the remarkable outputs is development of reactor safety goals and acceptance criteria for RIR and RIA in Korea. The Safety Goal has a 4-tier hierarchical structure and each tier has specified goals classified for their usage. Regulatory review guides for probabilistic safety assessment (PSA) including level-1, level-2 and low power and shutdown PSA have been updated by reflecting new information obtained from not only the overseas documents but also experience and insights from regulatory review in Korea. In addition, draft regulatory guides for risk-informed in-service inspection, in-service testing, importance ranking of motor-operated valves, and AOT/STI change of Technical Specifications have been developed for preparing ongoing and future licensing work. Risk-based inspection guides with inspection items selected from a viewpoint of risk importance have been suggested for Korean standard NPPs as well. In the second phase of a research project (April of 2002 to March of 2005), two regulatory research projects on RIR were initiated. One is a study on institutionalization of risk-informed and performance-based regulation. Main topics of this project are evaluation of benefit and characteristics of RIR, development of optimized Korean RIR model, impact analysis for the change of current regulation framework, and suggestion of RIR-related laws and rules. The other is focusing on the development in the areas of a regulatory audit PSA model and regulatory guides for risk monitoring, and application techniques of risk information to the significance determination of plant performance indicators and inspection findings. It is expected that a concrete scheme and detailed regulatory techniques for embodiment of RIR system in Korea will be

  3. 76 FR 40943 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-07-12

    ... Criterion III, ``Design Control,'' of Appendix B, ``Quality Assurance Criteria for Nuclear Power Plants and... high functional reliability, design quality, and a secure development and operational environment for... Development Branch, Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2011-17441 Filed...

  4. Impact of regulatory science on global public health

    OpenAIRE

    Meghal Patel; Margaret Ann Miller

    2012-01-01

    Regulatory science plays a vital role in protecting and promoting global public health by providing the scientific basis for ensuring that food and medical products are safe, properly labeled, and effective. Regulatory science research was first developed for the determination of product safety in the early part of the 20th Century, and continues to support innovation of the processes needed for regulatory policy decisions. Historically, public health laws and regulations were enacted followi...

  5. 75 FR 13599 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-03-22

    ... Guide, DG-8040, ``Health Physics Surveys During Enriched Uranium-235 Processing and Fuel Fabrication... it deal specifically with the following aspects of an acceptable occupational health physics program that are closely related to surveys: (1) The number and qualification of the health physics staff, (2...

  6. Canadian and United States regulatory models compared: doses from atmospheric pathways

    International Nuclear Information System (INIS)

    Peterson, S-R.

    1997-01-01

    CANDU reactors sold offshore are licensed primarily to satisfy Canadian Regulations. For radioactive emissions during normal operation, the Canadian Standards Association's CAN/CSA-N288.1-M87 is used. This standard provides guidelines and methodologies for calculating a rate of radionuclide release that exposes a member of the public to the annual dose limit. To calculate doses from air concentrations, either CSA-N288.1 or the Regulatory Guide 1.109 of the United States Nuclear Regulatory Commission, which has already been used to license light-water reactors in these countries, may be used. When dose predictions from CSA-N288.1 are compared with those from the U.S. Regulatory Guides, the differences in projected doses raise questions about the predictions. This report explains differences between the two models for ingestion, inhalation, external and immersion doses

  7. Use and regulatory control of dental X-ray installations

    International Nuclear Information System (INIS)

    1999-01-01

    In the guide the safety requirements concerning dental X-ray installations and their use, prerequisities for exemption from a safety licence, and regulatory control are presented. The guide applies to conventional dental X-ray installations, by which an image is created on an X-ray film or other image receptor placed inside the mouth, and panorama tomography installations for dentition and the cephalostats associated with these. The guide does not apply to multitechnique tomography installations intended for the special imaging of the skull or jaws

  8. Information resources in state regulatory agencies-a California perspective

    Energy Technology Data Exchange (ETDEWEB)

    DiZio, S.M. [California Environmental Protection Agency, Sacramento (United States)

    1990-12-31

    Various state regulatory agencies have expressed a need for networking with information gatherers/researchers to produce a concise compilation of primary information so that the basis for regulatory standards can be scientifically referenced. California has instituted several programs to retrieve primary information, generate primary information through research, and generate unique regulatory standards by integrating the primary literature and the products of research. This paper describes these programs.

  9. Challenges in Strengthening Regulatory Infrastructure in a Non-Nuclear Country

    International Nuclear Information System (INIS)

    Bosnjak, J.

    2016-01-01

    The State Regulatory Agency for Radiation and Nuclear Safety (SRARNS) is established as the effectively independent regulatory body for radiation and nuclear safety based on the Law on Radiation and Nuclear Safety in Bosnia and Herzegovina promulgated in November 2007. After its complete reorganization in the last few years, the regulatory system is compatible with relevant IAEA Safety Standards and Guides for safety and security of radioactive sources. The paper gives an overview of the new regulatory framework in Bosnia and Herzegovina, with special focus on challenges faced by Bosnia and Herzegovina, which are actually typical challenges for regulator in small non-nuclear country in strengthening regulatory infrastructure in regulating radiation sources and radioactive waste. (author)

  10. A guide to approaching regulatory considerations for lentiviral-mediated gene therapies.

    Science.gov (United States)

    White, Michael; Whittaker, Roger; Stoll, Elizabeth Ann

    2017-06-12

    Lentiviral vectors are increasingly the gene transfer tool of choice for gene or cell therapies, with multiple clinical investigations showing promise for this viral vector in terms of both safety and efficacy. The third-generation vector system is well-characterized, effectively delivers genetic material and maintains long-term stable expression in target cells, delivers larger amounts of genetic material than other methods, is non-pathogenic and does not cause an inflammatory response in the recipient. This report aims to help academic scientists and regulatory managers negotiate the governance framework to achieve successful translation of a lentiviral vector-based gene therapy. The focus is on European regulations, and how they are administered in the United Kingdom, although many of the principles will be similar for other regions including the United States. The report justifies the rationale for using third-generation lentiviral vectors to achieve gene delivery for in vivo and ex vivo applications; briefly summarises the extant regulatory guidance for gene therapies, categorised as advanced therapeutic medicinal products (ATMPs); provides guidance on specific regulatory issues regarding gene therapies; presents an overview of the key stakeholders to be approached when pursuing clinical trials authorization for an ATMP; and includes a brief catalogue of the documentation required to submit an application for regulatory approval of a new gene therapy.

  11. Development approach on usage of radiation and inspection of QA according to the change of approval procedure of safety regulatory guides

    International Nuclear Information System (INIS)

    Oh, B. J.; Ahn, H. Z.; Kim, S. W.; Yoo, S. O.; Kang, S. C.; Yang, S. H.; Han, S. J.; Kim, H. S.; Kim, H. J.

    2002-01-01

    In accordance with 2001 amendment of the Atomic Energy Act(AEA), KINS also amended its internal 'Regulation on Implementation of Entrusted AEA-related Work'. Up to now the nuclear safety-specialized institute has used its internally developed guidelines in the safety regulation. From now on, however, the institute will enhance the objectivity and transparency by having the instruments approved by the Ministry of Science ad Technology. In this paper, we introduced the major points and directions to be considered to the development of the safety regulatory guides on Inspection for the quality assurance of the nuclear reactor facilities and the use of radioisotopes, and review and inspection for dosimeter reading

  12. 77 FR 29391 - An Approach for Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific...

    Science.gov (United States)

    2012-05-17

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0110] An Approach for Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment. SUMMARY: The U.S. Nuclear Regulatory...

  13. 18 CFR 367.13 - Accounting to be on accrual basis.

    Science.gov (United States)

    2010-04-01

    ... ACT General Instructions § 367.13 Accounting to be on accrual basis. (a) The service company is... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Accounting to be on accrual basis. 367.13 Section 367.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...

  14. Regulatory control of nuclear facility valves and their actuators

    International Nuclear Information System (INIS)

    1993-01-01

    The methods and procedures by which the Finnish Centre for Radiation and Nuclear Safety (STUK) regulates valves and their actuators in nuclear power plants and in other nuclear facilities are specified in the guide. The scope of regulation depends on the Safety Class of the valve and the actuator in question. The Safety Classification principles for the systems, structures and components of the nuclear power plants are described in the guide YVL 2.1 and the regulatory control of the nuclear facility safety valves is described in the guide YVL 5.4

  15. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  16. Structural basis for CRISPR RNA-guided DNA recognition by Cascade

    NARCIS (Netherlands)

    Jore, M.M.; Lundgren, N.M.J.; Duijn, van E.; Bultema, J.B.; Westra, E.R.; Oost, van der J.; Brouns, S.J.J.; Beijer, M.R.

    2011-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and

  17. Structural basis for CRISPR RNA-guided DNA recognition by Cascade

    NARCIS (Netherlands)

    Jore, Matthijs M.; Lundgren, Magnus; van Duijn, Esther; Bultema, Jelle B.; Westra, Edze R.; Waghmare, Sakharam P.; Wiedenheft, Blake; Pul, Uemit; Wurm, Reinhild; Wagner, Rolf; Beijer, Marieke R.; Barendregt, Arjan; Zhou, Kaihong; Snijders, Ambrosius P. L.; Dickman, Mark J.; Doudna, Jennifer A.; Boekema, Egbert J.; Heck, Albert J. R.; van der Oost, John; Brouns, Stan J. J.; Pul, Ümit

    The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and

  18. Site-specific parameter values for the Nuclear Regulatory Commission's food pathway dose model

    International Nuclear Information System (INIS)

    Hamby, D.M.

    1992-01-01

    Routine operations at the Savannah River Site (SRS) in Western South Carolina result in radionuclide releases to the atmosphere and to the Savannah River. The resulting radiation doses to the off-site maximum individual and the off-site population within 80 km of the SRS are estimated on a yearly basis. These estimates are currently generated using dose models prescribed for the commercial nuclear power industry by the Nuclear Regulatory Commission (NRC). The NRC provides default values for dose-model parameters for facilities without resources to develop site-specific values. A survey of land- and water-use characteristics for the Savannah River area has been conducted to determine site-specific values for water recreation, consumption, and agricultural parameters used in the NRC Regulatory Guide 1.109 (1977) dosimetric models. These site parameters include local characteristics of meat, milk, and vegetable production; recreational and commercial activities on the Savannah River; and meat, milk, vegetable, and seafood consumption rates. This paper describes how parameter data were obtained at the Savannah River Site and the impacts of such data on off-site dose. Dose estimates using site-specific parameter values are compared to estimates using the NRC default values

  19. Design Guide for Category I reactors critical facilities

    International Nuclear Information System (INIS)

    Brynda, W.J.; Powell, R.W.

    1978-08-01

    The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned critical facilities be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission

  20. Improvement in Cuba of the regulatory mark in the industrial X-ray practice

    International Nuclear Information System (INIS)

    Lopez Forteza; Yamil; Quevedo Garcia, Jose R.; Jerez Vegueria, Pablo F.; Dumenigo Gonzalez, Cruz; De la Fuente Puch, Andres; Diaz Guerra, Pedro

    2003-01-01

    The Cuban regulatory mark as regards nuclear and radiological security until the year 2002 had not had a Guide of Security linked to the practice of Industrial X-ray. The improvement of the national regulatory mark, by the light of the international recommendations and the national experience of the inspection and licensing regulatory activity of this practice took to necessity of the existence of a Guide of Security that allowed in an effective way to make complete the established approaches of security in the Basic Norms of Security (NBS), during the operation of the teams of Industrial X-ray. The present work exposes and they expose the main aspects that are included in this document that they constitute from an or another way precision to that settled down in the NBS

  1. Technical Basis for Electromagnetic Compatibility Regulatory Guidance Update

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Paul D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Korsah, Kofi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wood, Richard Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mays, Gary T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    The objective of this report is to serve as the technical basis document for the next, planned revision of this RG that highlights and provides the rationale for the recommended changes. The structure of this document follows and summarizes the several assessment activities undertaken during the course of this project to evaluate new and updated electromagnetic compatibility (EMC) standards, testing methods and limits, and relevant technology developments being incorporated into plant activities that may have EMI/RFI implications, as well as other specific issues, including impacts of electrostatic discharge (ESD) on safety equipment and impacts on increased usage of wireless devices in nuclear power plants.

  2. Prevention as a main objective in the regulatory practices relating to research reactors

    International Nuclear Information System (INIS)

    Waldman, Ricardo M.

    2006-01-01

    In Argentina the use of research reactors and critical facilities are very diverse, varying since the production of radionuclides, to the investigation or the teaching. Also diverse are the licensing characteristics, going from the National Atomic Energy Commission-Argentina to national universities. The strategy utilized for the regulatory control is based especially in the prevention. The prevention covers: regulatory framework, to emit standards and regulatory guides, to licensing installations and the personnel. (author) [es

  3. Exemption from Regulatory Control of Goods Containing Small Amounts of Radioactive Material

    International Nuclear Information System (INIS)

    2012-01-01

    Small amounts of radioactive material may be added to various goods for functional reasons. Several such items are currently available for either professional or personal use. These include ionization chamber smoke detectors, thoriated-tungsten welding rods, luminous dials, electrical devices and electric discharge lamps. Some of these goods may be intended for particular types of market such as cinemas or other places to which the public may have access, but they are unlikely to be provided directly to members of the public. Other goods may be intended for wide scale use and therefore readily available on the market as consumer products through commercial outlets where personal and household products are normally purchased. Members of the public may be exposed to ionizing radiation as a consequence of activities such as transport, storage, use and disposal of such goods. The IAEA safety standards provide the basic requirements for regulatory control of such goods. The most relevant documents are the Governmental, Legal and Regulatory Framework for Safety and the International Basic Safety Standards (hereafter referred to as the BSS). These requirements include notification of a practice to the regulatory body and authorization of the practice by the regulatory body. Provision is made for the exemption of practices from these and other regulatory requirements based on general criteria given in the BSS or any exemption levels specified by the regulatory body on the basis of these criteria. The BSS, which are jointly sponsored by the IAEA and several other international organizations, apply to all facilities and all activities for peaceful purposes that give rise to exposure to radiation. In the interest of harmonization of approaches among Member States, some guidance on the application of the criteria for exemption has been provided in a number of Safety Guides, e.g. Regulatory Control of Radiation Sources, IAEA Safety Standards Series No. GS-G-1.5 (2004) and the

  4. 13 CFR 120.463 - Regulatory accounting-What are SBA's regulatory accounting requirements for SBA Supervised Lenders?

    Science.gov (United States)

    2010-01-01

    ... basis in accordance with Generally Accepted Accounting Principles (GAAP) as promulgated by the Financial Accounting Standards Board (FASB), supplemented by Regulatory Accounting Principles (RAP) as identified by... set forth in FASB Statement of Financial Accounting Standards No. 15, Accounting by Debtors and...

  5. Annual Report 2007. Nuclear Regulatory Authority; Informe Anual 2007. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across tree parts and seven annexes the activities developed by the organism during 2007. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  6. Annual Report 2008. Nuclear Regulatory Authority; Informe Anual 2008. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2008. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the occupational surveillance; the environmental monitoring; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  7. Review of Legislation and Regulatory Framework in Ukraine with Regard to Environmental Radiation Monitoring

    International Nuclear Information System (INIS)

    Goldammer, Wolfgang; Batandjieva, Borislava; Nasvit, Oleg; German, Olga

    2009-06-01

    The aim of this review is to compare the current legal basis and regulatory framework in Ukraine to the relevant international safety requirements and to identify shortcomings, such as deficiencies and internal contradictions. However, no assessment of its practical implementation is made beyond the aspects related to environmental radiation monitoring. The report focuses on 13 areas present in the in the Ukrainian legislation and regulatory framework: R-1 Radiation monitoring R-2 Definition of responsibilities R-3 Normal situations R-4 Emergencies R-5 Long-term monitoring R-6 Intervention in cases of lasting exposure R-7 Use of monitoring data R-8 Record keeping R-9 Reporting to the regulatory authority R-10 Public information R-11 Human and financial resources R-12 Transboundary aspects R-13 Quality assurance. For each topic a description of the current situation and an evaluation is carried out. Ranking is then supplied supported by its evaluation. In brief these categories are: A: The national legal and regulatory documents are harmonised in substance with the international safety requirements; B: Substantial differences exist between the national and international requirements which should be addressed with the view to harmonise the legislation; C: Substantial deficiencies exist in the legal and/or regulatory bases which results in no or at least partial compliance with international safety requirements. P: In addition practical issues are also provided to indicates where practical implementation of the legislation and regulatory basis is not adequate in all respects. This report then presents main observations and conclusions of the review. On this basis, the report derives general suggestions for improvement of the legal and regulatory bases. These should be considered by the Ukrainian Government and the regulatory authorities within an action plan to improve the legal basis for radiological monitoring of the environment and to facilitate its implementation

  8. Review of Legislation and Regulatory Framework in Ukraine with Regard to Environmental Radiation Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, Wolfgang; Batandjieva, Borislava (Private Consultants (Ukraine)); Nasvit, Oleg (National Security and Defence Council of Ukraine, Kyiv (Ukraine)); German, Olga (Swedish Radiation Safety Authority, Stockholm (Sweden))

    2009-06-15

    The aim of this review is to compare the current legal basis and regulatory framework in Ukraine to the relevant international safety requirements and to identify shortcomings, such as deficiencies and internal contradictions. However, no assessment of its practical implementation is made beyond the aspects related to environmental radiation monitoring. The report focuses on 13 areas present in the in the Ukrainian legislation and regulatory framework: R-1 Radiation monitoring R-2 Definition of responsibilities R-3 Normal situations R-4 Emergencies R-5 Long-term monitoring R-6 Intervention in cases of lasting exposure R-7 Use of monitoring data R-8 Record keeping R-9 Reporting to the regulatory authority R-10 Public information R-11 Human and financial resources R-12 Transboundary aspects R-13 Quality assurance. For each topic a description of the current situation and an evaluation is carried out. Ranking is then supplied supported by its evaluation. In brief these categories are: A: The national legal and regulatory documents are harmonised in substance with the international safety requirements; B: Substantial differences exist between the national and international requirements which should be addressed with the view to harmonise the legislation; C: Substantial deficiencies exist in the legal and/or regulatory bases which results in no or at least partial compliance with international safety requirements. P: In addition practical issues are also provided to indicates where practical implementation of the legislation and regulatory basis is not adequate in all respects. This report then presents main observations and conclusions of the review. On this basis, the report derives general suggestions for improvement of the legal and regulatory bases. These should be considered by the Ukrainian Government and the regulatory authorities within an action plan to improve the legal basis for radiological monitoring of the environment and to facilitate its implementation

  9. Current products and future plan of regulatory technology R and D for risk-informed regulation and applications

    International Nuclear Information System (INIS)

    Song, K. Y.; Lee, C. J.; Kim, W. S.; Jeong, D. W.; Kim, H. J.

    2002-01-01

    The first phase of a R and D project for risk-informed regulation (RIR) and applications (RIA) has been finished. Various results which would be useful for preparing domestic RIR system were accomplished, in areas of safety goals and general principles of RIR, which provide fundamental bases for establishment of RIR system as well as regulatory review guides, which ensure the quality for PSA. RIA guidelines for ISI, IST, MOV, Tech.-Sepc. also have been developed, implementing some pilot plant applications. As essential documents for actual RIR inspection, risk-informed inspection guides and implementation guide for maintenance effectiveness were prepared. In the second phase of R and D, two projects on RIR area will be performed. One is to study on institutionalization of RIR and performance-based regulation, another is to develop a PSA model for regulatory audit as well as regulatory technology for risk monitoring

  10. Qualifications and training of staff of the regulatory body for nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    This Safety Guide was prepared as part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to nuclear power plants. It supplements the Agency's Safety Series No.50-C-G, entitled ''Governmental Organization for the Regulation of Nuclear Power Plants: A Code of Practice'', and is mainly concerned with the qualifications and training requirements of the staff of bodies regulating nuclear power plants. It is not concerned with staff for regulating other phases of the fuel cycle, such as fuel fabrication and management. This Guide provides recommendations and guidance for establishing the qualifications required for the staff of the regulatory body. These requirements include academic training, work experience and other abilities. It also establishes the training programmes and activities necessary for personnel within the regulatory body

  11. Structural Basis of Rap Phosphatase Inhibition by Phr Peptides

    Science.gov (United States)

    Gallego del Sol, Francisca; Marina, Alberto

    2013-01-01

    Two-component systems, composed of a sensor histidine kinase and an effector response regulator (RR), are the main signal transduction devices in bacteria. In Bacillus, the Rap protein family modulates complex signaling processes mediated by two-component systems, such as competence, sporulation, or biofilm formation, by inhibiting the RR components involved in these pathways. Despite the high degree of sequence homology, Rap proteins exert their activity by two completely different mechanisms of action: inducing RR dephosphorylation or blocking RR binding to its target promoter. However the regulatory mechanism involving Rap proteins is even more complex since Rap activity is antagonized by specific signaling peptides (Phr) through a mechanism that remains unknown at the molecular level. Using X-ray analyses, we determined the structure of RapF, the anti-activator of competence RR ComA, alone and in complex with its regulatory peptide PhrF. The structural and functional data presented herein reveal that peptide PhrF blocks the RapF-ComA interaction through an allosteric mechanism. PhrF accommodates in the C-terminal tetratricopeptide repeat domain of RapF by inducing its constriction, a conformational change propagated by a pronounced rotation to the N-terminal ComA-binding domain. This movement partially disrupts the ComA binding site by triggering the ComA disassociation, whose interaction with RapF is also sterically impaired in the PhrF-induced conformation of RapF. Sequence analyses of the Rap proteins, guided by the RapF-PhrF structure, unveil the molecular basis of Phr recognition and discrimination, allowing us to relax the Phr specificity of RapF by a single residue change. PMID:23526880

  12. Establishing 'design basis threat' in Norway

    International Nuclear Information System (INIS)

    Maerli, M.B.; Naadland, E.; Reistad, O.

    2002-01-01

    Full text: INFCIRC 225 (Rev. 4) assumes that a state's physical protection system should be based on the state's evaluation of the threat, and that this should be reflected in the relevant legislation. Other factors should also be considered, including the state's emergency response capabilities and the existing and relevant measures of the state's system of accounting for and control of nuclear material. A design basis threat developed from an evaluation by the state of the threat of unauthorized removal of nuclear material and of sabotage of nuclear material and nuclear facilities is an essential element of a state's system of physical protection. The state should continuously review the threat, and evaluate the implications of any changes in that threat for the required levels and the methods of physical protection. As part of a national design basis threat assessment, this paper evaluates the risk of nuclear or radiological terrorism and sabotage in Norway. Possible scenarios are presented and plausible consequences are discussed with a view to characterize the risks. The need for more stringent regulatory requirements will be discussed, together with the (positive) impact of improved systems and procedures of physical protection on nuclear emergency planning. Special emphasis is placed on discussing the design basis threat for different scenarios in order to systemize regulatory efforts to update the current legislation, requirement for operators' contingency planning, response efforts and the need for emergency exercises. (author)

  13. Regulatory difficulties in a developing country

    International Nuclear Information System (INIS)

    Jacobs, W.R. Jr.

    1978-01-01

    The regulatory agency assigned the task of regulating the initial entry into the field of nuclear power generation by a developing country has a very difficult job. Based on the authors' experience during the start-up and initial operation of Ko-Ri Unit I, the first power reactor in the Republic of Korea, observations on regulatory difficulties and recommendations for improved regulatory effectiveness are offered. The problem areas can be loosely grouped into three general categories: (1) Lack of adequate technical knowledge which is the basis for all effective regulation; (2) Difficulties with understanding and utilization of the required regulatory documentation; (3) Failure to establish the proper regulatory environment. Examples are cited from actual experience during the Ko-Ri Unit I start-up to demonstrate the impact that regulatory activities can have on a plant construction and testing programme. The problems encountered are not unique to developing countries but also exist in the United States of America. Recommendations are offered which should be beneficial to either newly formed regulatory agencies or agencies wishing to improve their abilities and effectiveness. These include: (1) Additional training of regulatory inspectors in plant operations; (2) Additional experience gained by participation in regulatory activities in other countries; (3) Increased attention given to regulatory documents, especially plant technical specifications; (4) Establishment of formal lines of communication between the utility and the regulatory agency; (5) Clear definition of regulatory responsibilities to avoid areas of overlapping jurisdiction; (6) Active participation by the regulatory staff very early in the project. It is hoped that these and other recommendations offered will greatly improve regulatory effectiveness and at the same time demonstrate that when the decision is made to 'go nuclear', a strong commitment must be made to develop and support a technically

  14. Packaging supplier inspection guide

    International Nuclear Information System (INIS)

    Stromberg, H.M.; Gregg, R.E.; Kido, C.; Boyle, C.D.

    1991-05-01

    This is document is a guide for conducting quality assurance inspections of transportations packaging suppliers, where suppliers are defined as designers, fabricators, distributors, users, or owners of transportation packaging. This document can be used during an inspection to determine regulatory compliance within the requirements of 10 Code of Federal Regulations, Part 71, Subpart H (10 CFR 71.101--71.135). The guidance described in this document provides a framework for an inspection. It provides the inspector with the flexibility to adapt the methods and concepts presented here to meet the needs of the particular facility being inspected. The guide was developed to ensure a structured and consistent approach for inspections. The method treats each activity at a supplier facility as a separate entity (or functional element), and combines the activities within the framework of an ''inspection tree.'' The method separates each functional element into several areas of performance and then identifies guidelines, based on regulatory requirements, to be used to qualitatively rate each area. This document was developed to serve as a field manual to facilitate the work of inspectors. 1 ref., 1 fig., 5 tabs

  15. RAF/9/049: Enhancing and Sustaining the National Regulatory Bodies for safety

    International Nuclear Information System (INIS)

    Keter, C.J.

    2017-01-01

    The main objective of this project is to enhance regulatory infrastructure, sustainability and cooperation among national regulatory bodies. This will support strengthening of the existing regulatory framework and capacity building in the region. Self-Assessment using the Self-Assessment Regulatory Infrastructure for Safety (SARIS) was completed on 26th May 2016. Changes made to the legislation is ongoing. The Nuclear Regulatory Bill 2017 is at an advanced stage and about to be tabled to Cabinet. The project objectives shall be addressed under a new project, RAF/9/058 – Improving the Regulatory Framework for the Control of Radiation Sources in Member States. Two major tasks for Kenya to focus include Review of regulations on waste safety, radiation sources and on safety of NPP and advising on drafting of radiation safety guides

  16. Manual on brachytherapy. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to brachytherapy: its application and procedures guides

  17. 76 FR 61447 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Proposed...

    Science.gov (United States)

    2011-10-04

    ... 240.19b-4. I. Self-Regulatory Organization's Statement of the Terms of Substance of the Proposed Rule... its filing with the Commission, the self-regulatory organization included statements concerning the... such statements. A. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for...

  18. Annual Report 2009. Nuclear Regulatory Authority; Informe Anual 2009. Autoridad Regulatoria Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The present Annual Report of Activities of the Nuclear Regulatory Authority (ARN), prepared regularly from the creation as independent institution, describes across four parts and seven annexes the activities developed by the organism during 2009. The main topic are: the organization and the activity of the ARN; the regulatory standards; the licensing and inspection of nuclear power plants and critical facilities; the emergency systems; the environmental monitoring; the occupational surveillance; the training and the public information; improved organizational and budgetary developments. Also, this publication have annexes with the following content: regulatory documents; inspections to medical, industrial and training installations; regulatory guides; measurement and evaluation of the drinking water of Ezeiza.

  19. Study on risk factors of PWR accidents beyond design basis

    International Nuclear Information System (INIS)

    Ahn, Seung Hoon; Nah, W. J.; Bang, Y. S.; Oh, D. Y.; Oh, S. H.

    2005-01-01

    Development of the regulatory guidelines for Beyond Design Basis Accidents (BDBA) with high risk requires a detailed investigation of major factors contributing to the event risk. In this study, each event was classified by the level of risk, based on the probabilistic safety assessment results, so that BDBA with high risk could be selected, with consideration of foreign and domestic regulations, and operating experiences. The regulatory requirements and technical backgrounds for the selected accidents were investigated, and effective regulatory approaches for risk reduction of the accidents. The following conclusions were drawn from this study: - Selected high risk BDBA is station blackout, anticipated without scram, total loss of feedwater. - Major contributors to the risk of selected events were investigated, and appropriate assessment of them was recommended for development of the regulatory guidelines

  20. Seismic Hazards in Site Evaluation for Nuclear Installations. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear installations. It supplements the Safety Requirements publication on Site Evaluation for Nuclear Installations. The present publication provides guidance and recommends procedures for the evaluation of seismic hazards for nuclear power plants and other nuclear installations. It supersedes Evaluation of Seismic Hazards for Nuclear Power Plants, IAEA Safety Standards Series No. NS-G-3.3 (2002). In this publication, the following was taken into account: the need for seismic hazard curves and ground motion spectra for the probabilistic safety assessment of external events for new and existing nuclear installations; feedback of information from IAEA reviews of seismic safety studies for nuclear installations performed over the previous decade; collective knowledge gained from recent significant earthquakes; and new approaches in methods of analysis, particularly in the areas of probabilistic seismic hazard analysis and strong motion simulation. In the evaluation of a site for a nuclear installation, engineering solutions will generally be available to mitigate, by means of certain design features, the potential vibratory effects of earthquakes. However, such solutions cannot always be demonstrated to be adequate for mitigating the effects of phenomena of significant permanent ground displacement such as surface faulting, subsidence, ground collapse or fault creep. The objective of this Safety Guide is to provide recommendations and guidance on evaluating seismic hazards at a nuclear installation site and, in particular, on how to determine: (a) the vibratory ground motion hazards, in order to establish the design basis ground motions and other relevant parameters for both new and existing nuclear installations; and (b) the potential for fault displacement and the rate of fault displacement that could affect the feasibility of the site or the safe operation of the installation at

  1. Infrastructure of the Regulatory Authority and Performance Indexes

    International Nuclear Information System (INIS)

    Velasquez, Silvia

    2001-01-01

    This presentation overviews the following issues: elements of a control regulatory program, inspections program, procedures, indexes of users performance, priorities on: registration, criteria for practices of low risk, dose levels in medical exposures, dose constraints and training of personnel. These aspects are considered in the guides prepared within ARCAL XX framework

  2. 76 FR 77275 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing of...

    Science.gov (United States)

    2011-12-12

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-65900; File No. SR-ISE-2011-82] Self-Regulatory... text of these statements may be examined at the places specified in Item IV below. The self-regulatory... such statements. A. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for...

  3. User Guide for Automated Wetland Determination Data Sheets

    Science.gov (United States)

    2017-07-25

    are not visible to the user . As a result, it is important that users open a fresh copy of the Excel® file for every use and ensure that macros are...input on the ADS and this user guide. REFERENCES Berkowitz, J. F. 2011a. Regionalizing the Corps of Engineers wetland delineation manual : Process...Wetlands Regulatory Assistance Program ERDC/TN WRAP-17-1 July 2017 Approved for public release; distribution is unlimited. User Guide for

  4. Advancing towards commonsense regulation of mixed waste: Regulatory update

    International Nuclear Information System (INIS)

    Porter, C.L.

    1996-01-01

    The author previously presented the basis for regulating mixed waste according to the primary hazard (either chemical or radiological) in order to avoid the inefficient practice of open-quotes dual regulationclose quotes of mixed waste. In addition to covering the technical basis, recommendations were made on how to capitalize upon a window of opportunity for implementation of a open-quotes primary hazards approachclose quotes. Some of those recommendations have been pursued and the resulting advances on the regulatory front are exciting. This paper chronicles those pursuits, presents in capsule form the massive amount of data assembled, and summarizes the changing regulatory framework. The data supports the premise that disposal of stabilized mixed waste in a low-level radioactive waste (LLW) disposal facility is protective of human health and the environment. Based on that premise, proposed regulatory changes, if finalized, will eliminate much of the open-quotes dual regulationclose quotes of mixed waste

  5. Codes and standards and other guidance cited in regulatory documents

    International Nuclear Information System (INIS)

    Nickolaus, J.R.; Bohlander, K.L.

    1996-08-01

    As part of the U.S. Nuclear Regulatory Commission (NRC) Standard Review Plan Update and Development Program (SRP-UDP), Pacific Northwest National Laboratory developed a listing of industry consensus codes and standards and other government and industry guidance referred to in regulatory documents. The SRP-UDP has been completed and the SRP-Maintenance Program (SRP-MP) is now maintaining this listing. Besides updating previous information, Revision 3 adds approximately 80 citations. This listing identifies the version of the code or standard cited in the regulatory document, the regulatory document, and the current version of the code or standard. It also provides a summary characterization of the nature of the citation. This listing was developed from electronic searches of the Code of Federal Regulations and the NRC's Bulletins, Information Notices, Circulars, Enforcement Manual, Generic Letters, Inspection Manual, Policy Statements, Regulatory Guides, Standard Technical Specifications and the Standard Review Plan (NUREG-0800)

  6. Codes and standards and other guidance cited in regulatory documents

    Energy Technology Data Exchange (ETDEWEB)

    Nickolaus, J.R.; Bohlander, K.L.

    1996-08-01

    As part of the U.S. Nuclear Regulatory Commission (NRC) Standard Review Plan Update and Development Program (SRP-UDP), Pacific Northwest National Laboratory developed a listing of industry consensus codes and standards and other government and industry guidance referred to in regulatory documents. The SRP-UDP has been completed and the SRP-Maintenance Program (SRP-MP) is now maintaining this listing. Besides updating previous information, Revision 3 adds approximately 80 citations. This listing identifies the version of the code or standard cited in the regulatory document, the regulatory document, and the current version of the code or standard. It also provides a summary characterization of the nature of the citation. This listing was developed from electronic searches of the Code of Federal Regulations and the NRC`s Bulletins, Information Notices, Circulars, Enforcement Manual, Generic Letters, Inspection Manual, Policy Statements, Regulatory Guides, Standard Technical Specifications and the Standard Review Plan (NUREG-0800).

  7. Manual on gamma radiography. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to gamma radiography: its application and procedures guides

  8. Manual on shielded enclosures. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to shielding enclosures: their application and procedures guides

  9. Manual on nuclear gauges. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to nuclear gauges: their application and procedures guides

  10. Compliance assurance for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2009-01-01

    The objectives of this Safety Guide are to assist competent authorities in the development and maintenance of compliance assurance programmes in connection with the transport of radioactive material, and to assist applicants, licensees and organizations in their interactions with competent authorities. In order to increase cooperation between competent authorities and to promote the uniform application of international regulations and recommendations, it is desirable to adopt a common approach to regulatory activities. This Safety Guide is intended to assist in accomplishing such a uniform application by recommending most of the actions for which competent authorities need to provide in their programmes for ensuring compliance with the Transport Regulations. This Safety Guide addresses radiation safety aspects of the transport of radioactive material; that is, the subjects that are covered by the Transport Regulations. Radioactive material may have other dangerous properties, however, such as explosiveness, flammability, pyrophoricity, chemical toxicity and corrosiveness; these properties are required to be taken into account in the regulatory control of the design and transport of packages. Physical protection and systems for accounting for and control of nuclear material are also discussed in this Safety Guide. These subjects are not within the scope of the Transport Regulations, but information on them is included here because they must be taken into account in the overall regulatory control of transport, especially when the regulatory framework is being established. Section 1 informs about the background, the objective, the scope and the structure of this publication. Section 2 provides recommendations on the responsibilities and functions of the competent authority. Section 3 provides information on the various national and international regulations and guides for the transport of radioactive material. Section 4 provides recommendations on carrying out

  11. The Regulatory Independence of FANR

    International Nuclear Information System (INIS)

    ALNuaimi, Fatema; Choi, Kwang Shik

    2012-01-01

    Regulatory independence is meant to provide a conservative system of policy making in order to comply with the problems that are forecasted upon the basis of assumptions. The Federal Authorization of Nuclear Regulation (FANR) is a regulatory commission that was formed to be regulatory body that governs the generation of nuclear power in United Arab Emirates. It was established under the UAE nuclear law (9/2009) as an independent regulatory body that was tasked with the regulation of all nuclear activities in the United Arab Emirates. As an independent body, FANR was tasked with ensuring that the regulation of the nuclear sector is done in effective and transparent manner to ensure its accountability to the people. Being independent, the regulatory body develops national nuclear regulations based on laid down safety standards by the International Atomic Energy Agency, ensuring that they are based on scientific and proven technologies The role of FANR is to ensure that the all corporations that undertake nuclear activities follow the laid down procedures and objectives and ensure safety measures are taken keenly to ensure the safety of the workers and the general public while at the same time ensuring the environment is free from nuclear radiations

  12. The Regulatory Independence of FANR

    Energy Technology Data Exchange (ETDEWEB)

    ALNuaimi, Fatema; Choi, Kwang Shik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    Regulatory independence is meant to provide a conservative system of policy making in order to comply with the problems that are forecasted upon the basis of assumptions. The Federal Authorization of Nuclear Regulation (FANR) is a regulatory commission that was formed to be regulatory body that governs the generation of nuclear power in United Arab Emirates. It was established under the UAE nuclear law (9/2009) as an independent regulatory body that was tasked with the regulation of all nuclear activities in the United Arab Emirates. As an independent body, FANR was tasked with ensuring that the regulation of the nuclear sector is done in effective and transparent manner to ensure its accountability to the people. Being independent, the regulatory body develops national nuclear regulations based on laid down safety standards by the International Atomic Energy Agency, ensuring that they are based on scientific and proven technologies The role of FANR is to ensure that the all corporations that undertake nuclear activities follow the laid down procedures and objectives and ensure safety measures are taken keenly to ensure the safety of the workers and the general public while at the same time ensuring the environment is free from nuclear radiations

  13. Technical Basis Document (TBD) and user guides

    International Nuclear Information System (INIS)

    Chiaro, P.J. Jr.

    1998-09-01

    A Technical Basis Document (TBD) should provide the background information for establishment of an instrument's operational requirements. Due to the amount and location of DOE facilities, no one set of requirements is possible. Operational requirements will vary based on the local environments and missions at each facility. Environmental conditions that can affect an instrument's operations are ambient temperature, humidity, and radio frequency, and to a lesser extent, magnetic fields, and interfering ionizing radiations. Consideration should also be made regarding how an instrument is to be used. If an instrument will be transported around the facility, vibration and shock can cause problems if they are not addressed in the TBD. This document provides guidance for the development of a TBD. This document applies to radiation instruments used for personnel and equipment contamination monitoring, dose rate monitoring, and air monitoring

  14. The Safety Case and Safety Assessment for the Disposal of Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    This Safety Guide provides guidance and recommendations on meeting the safety requirements in respect of the safety case and supporting safety assessment for the disposal of radioactive waste. The safety case and supporting safety assessment provide the basis for demonstration of safety and for licensing of radioactive waste disposal facilities and assist and guide decisions on siting, design and operations. The safety case is also the main basis on which dialogue with interested parties is conducted and on which confidence in the safety of the disposal facility is developed. This Safety Guide is relevant for operating organizations preparing the safety case as well as for the regulatory body responsible for developing the regulations and regulatory guidance that determine the basis and scope of the safety case. Contents: 1. Introduction; 2. Demonstrating the safety of radioactive waste disposal; 3. Safety principles and safety requirements; 4. The safety case for disposal of radioactive waste; 5. Radiological impact assessment for the period after closure; 6. Specific issues; 7. Documentation and use of the safety case; 8. Regulatory review process.

  15. Codes and standards and other guidance cited in regulatory documents. Revision 1

    International Nuclear Information System (INIS)

    Ankrum, A.; Nickolaus, J.; Vinther, R.; Maguire-Moffitt, N.; Hammer, J.; Sherfey, L.; Warner, R.

    1994-08-01

    As part of the US Nuclear Regulatory Commission (NRC) Standard Review Plan Update and Development Program, Pacific Northwest Laboratory developed a listing of industry consensus codes and standards and other government and industry guidance referred to in regulatory documents. In addition to updating previous information, Revision 1 adds citations from the NRC Inspection Manual and the Improved Standard Technical Specifications. This listing identifies the version of the code or standard cited in the regulatory document, the regulatory document, and the current version of the code or standard. It also provides a summary characterization of the nature of the citation. This listing was developed from electronic searches of the Code of Federal Regulations and the NRC's Bulletins, Information Notices, Circulars, Generic Letters, Policy Statements, Regulatory Guides, and the Standard Review Plan (NUREG-0800)

  16. Codes and standards and other guidance cited in regulatory documents. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Ankrum, A.; Nickolaus, J.; Vinther, R.; Maguire-Moffitt, N.; Hammer, J.; Sherfey, L.; Warner, R. [Pacific Northwest Lab., Richland, WA (United States)

    1994-08-01

    As part of the US Nuclear Regulatory Commission (NRC) Standard Review Plan Update and Development Program, Pacific Northwest Laboratory developed a listing of industry consensus codes and standards and other government and industry guidance referred to in regulatory documents. In addition to updating previous information, Revision 1 adds citations from the NRC Inspection Manual and the Improved Standard Technical Specifications. This listing identifies the version of the code or standard cited in the regulatory document, the regulatory document, and the current version of the code or standard. It also provides a summary characterization of the nature of the citation. This listing was developed from electronic searches of the Code of Federal Regulations and the NRC`s Bulletins, Information Notices, Circulars, Generic Letters, Policy Statements, Regulatory Guides, and the Standard Review Plan (NUREG-0800).

  17. Manual on panoramic gamma irradiators (categories 2 and 4). Incorporating: Applications guide, procedures guide, basics guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The document is the first revision of a previous one published in 1993 to provide guidance on the safe use and regulation of self-contained gamma irradiators (Co-60 or Cs-137 sources) in different fields of application. It includes three parts: Applications Guide, which describes the main applications of self-contained gamma irradiators, the type of equipment, including safety systems, operation and maintenance, and how to deal with incidents. Procedures Guide, which gives step by step instructions on how to carry out the practice. Basics Guide, which explains the fundamentals of radiation, the system of units, interaction of radiation with matter radiation detection, etc. The manual is aimed primarily at persons handling such radiation sources on a daily routine basis, as well as at the competent authorities for training of workers in radiation protection or for setting up local radiation protection rules.

  18. Manual on panoramic gamma irradiators (categories 2 and 4). Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    The document is the first revision of a previous one published in 1993 to provide guidance on the safe use and regulation of self-contained gamma irradiators (Co-60 or Cs-137 sources) in different fields of application. It includes three parts: Applications Guide, which describes the main applications of self-contained gamma irradiators, the type of equipment, including safety systems, operation and maintenance, and how to deal with incidents. Procedures Guide, which gives step by step instructions on how to carry out the practice. Basics Guide, which explains the fundamentals of radiation, the system of units, interaction of radiation with matter radiation detection, etc. The manual is aimed primarily at persons handling such radiation sources on a daily routine basis, as well as at the competent authorities for training of workers in radiation protection or for setting up local radiation protection rules

  19. Indexes to Nuclear Regulatory Commission issuances, January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This document provides digests and indexes for issuances of the Nuclear Regulatory Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, the Directors Decisions, and the Decisions on Petitions for Rulemaking. These indexes and digests are intended to serve as a guide to the issuances.

  20. Indexes to Nuclear Regulatory Commission issuances, January--March 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This document provides digests and indexes for issuances of the Nuclear Regulatory Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, the Directors Decisions, and the Decisions on Petitions for Rulemaking. These indexes and digests are intended to serve as a guide to the issuances

  1. 77 FR 306 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing of...

    Science.gov (United States)

    2012-01-04

    ...). \\2\\ 17 CFR 240.19b-4. Self-Regulatory Organization's Statement of the Terms of Substance of the... contained in Chapter XXIVB. II. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for, the Proposed Rule Change In its filing with the Commission, the self-regulatory organization...

  2. Standard Guide for Radiation Protection Program for Decommissioning Operations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations. 1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project. 1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan. 1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of...

  3. Methodology used by the spanish nuclear regulatory body in the radiological impact assessment

    International Nuclear Information System (INIS)

    Diaz de la Cruz, F.

    1979-01-01

    The radiological risk assessment derived from the operation of a nuclear power plant is done in Spain with methods taken basically from the U.S.N.R.C. regulatory guides. This report presents the way followed by the Spanish Regulatory Body in order to arrive to an official decision on the acceptability of a nuclear plant in the different steps of the licensing. (author)

  4. Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The objective of this Safety Guide is to provide recommendations on how to meet the requirements of the BSS with regard to irradiation facilities. This Safety Guide provides specific, practical recommendations on the safe design and operation of gamma, electron and X ray irradiators for use by operating organizations and the designers of these facilities, and by regulatory bodies. SCOPE. The facilities considered in this publication include five types of irradiator, whether operated on a commercial basis or for research and development purposes. This publication is concerned with radiation safety issues and not with the uses of irradiators, nor does it cover the irradiation of product or its quality management. The five types of irradiator are: - Panoramic dry source storage irradiators; - Underwater irradiators, in which both the source and the product being irradiated are under water; - Panoramic wet source storage irradiators; - Electron beam irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process; - X ray irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process. Consideration of non-radiation-related risks and of the benefits resulting from the operation of irradiators is outside the scope of this Safety Guide. The practices of radiotherapy and radiography are also outside the scope of this Safety Guide. Category I gamma irradiators (i.e. 'self-shielded' irradiators) are outside the scope of this Safety Guide

  5. Regulatory pathways for vaccines for developing countries.

    Science.gov (United States)

    Milstien, Julie; Belgharbi, Lahouari

    2004-01-01

    Vaccines that are designed for use only in developing countries face regulatory hurdles that may restrict their use. There are two primary reasons for this: most regulatory authorities are set up to address regulation of products for use only within their jurisdictions and regulatory authorities in developing countries traditionally have been considered weak. Some options for regulatory pathways for such products have been identified: licensing in the country of manufacture, file review by the European Medicines Evaluation Agency on behalf of WHO, export to a country with a competent national regulatory authority (NRA) that could handle all regulatory functions for the developing country market, shared manufacturing and licensing in a developing country with competent manufacturing and regulatory capacity, and use of a contracted independent entity for global regulatory approval. These options have been evaluated on the basis of five criteria: assurance of all regulatory functions for the life of the product, appropriateness of epidemiological assessment, applicability to products no longer used in the domestic market of the manufacturing country, reduction of regulatory risk for the manufacturer, and existing rules and regulations for implementation. No one option satisfies all criteria. For all options, national infrastructures (including the underlying regulatory legislative framework, particularly to formulate and implement local evidence-based vaccine policy) must be developed. WHO has led work to develop this capacity with some success. The paper outlines additional areas of action required by the international community to assure development and use of vaccines needed for the developing world. PMID:15042235

  6. 77 FR 74715 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing and Immediate Effectiveness...

    Science.gov (United States)

    2012-12-17

    .... Self-Regulatory Organization's Statement of the Terms of Substance of the Proposed Rule Change The... Room. II. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for, the... significant aspects of such statements. A. Self-Regulatory Organization's Statement of the Purpose of, and...

  7. 77 FR 34420 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing and Immediate Effectiveness...

    Science.gov (United States)

    2012-06-11

    ... statements. A. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for, the... respect to marking Strategy Trades would be uniformly applied to members. B. Self-Regulatory Organization... the Act. C. Self-Regulatory Organization's Statement on Comments on the Proposed Rule Change Received...

  8. Analysis of in-service inspection guides for post-tensioning systems in containment structures with greased tendons

    International Nuclear Information System (INIS)

    Bae, I. H.; Choi, I. G.; Seo, J. M.

    2000-01-01

    Prestressed concrete containments(PCC) are inspected periodically to ensure structural integrity and to identify and correct problems before they come critical. These inspections are conducted in accordance with the Nuclear Regulatory Committee(NRC) Regulatory Guide. As experience with the surveillance mounts, the guide is revised to keep pace with technological advances in containment design and to reflect the knowledge obtained experience. In the study, an analysis of the available utility surveillance data and an evaluation of the NRC Regulatory Guide and the ASME Code are conducted. The results indicate that the average value of the lower bound defined in Regulatory Guide 1.35.1 can be less than the minimum required force level at 40 years for the existing containment and thus an acceptable alternative has to be presented to meet the allowance of the guide. Tendons in excess of the upper bound or 70% of the ultimate tensile strength of the tendon are observed. Such an occurrence indicates tendon behavior outside the tolerance band that expected, and the cause of such behavior has to be investigated. It is shown that the behavior of the predicted prestressing force with time based on assumed losses does quite different from that of the measured tendon force with time and, therefore, studies for the significant factors, such as shrinkage and creep of concrete, that influence the time-dependent losses in PCC are needed. Additional research on the long-term effects of the impurity levels on the effectiveness of the grease seems justified

  9. Safety design guides for fire protection for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide establishes design requirements to ensure the radiological risk to the public due to fire is acceptable and operating personnel are adequately protected from the hazards of fires. This safety design guide also specifies the safety criteria for fire protection to be applied to mitigate fires and recommends the fire protection program to be established to initiate, coordinate and document the design activities associated with fire protection. The requirements for fire protection outlined in this safety design guide shall be satisfied in the design stage and the change status of the regulatory requirements, code and standards should be traced and incorporated into this safety design guide accordingly. 1 fig., (Author) .new

  10. Guide to ground water remediation at CERCLA response action and RCRA corrective action sites

    International Nuclear Information System (INIS)

    1995-10-01

    This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM's after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide's scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary

  11. A Process Perspective on Regulation: A Grounded Theory Study into Regulatory Practice in Newly Liberalized Network-Based Markets

    NARCIS (Netherlands)

    Ubacht, J.

    The transition from a former monopolistic towards a more competitive market in
    newly liberalized network-based markets raises regulatory issues. National Regulatory Authorities (NRA) face the challenge to deal with these issues in order to guide the transition process. Although this transition

  12. Two standards - CSA-N288.1 and USNRC regulatory guides 1.109, 1.111 for chronic atmospheric releases from nuclear facilities - compared

    International Nuclear Information System (INIS)

    Peterson, S-R.

    1997-05-01

    Although the Canadian Standards Association's 'Guidelines for Calculating Derived Release Limits for Radioactive Material in Airborne and Liquid Effluents for Normal Operation of Nuclear Facilities', CSA-N288.1-M87 (CSA 1987) can be used to license CANDU (CANadian Deuterium Uranium) reactors sold off-shore, in practice purchasers may wish to use the United States Regulatory Guides (RG) 1.109 (United States Nuclear Regulatory Commission 1977a) and 1.111 (USNRC 1977b) to calculate doses from routine atmospheric releases to members of a critical group. When differences in dose predictions are found between the two standards, CSA-N288.1 comes under attack. This paper explains the differences between the two models. The two atmospheric dispersion models were compared for a ground level release and an elevated release such as from CANDU 6. For a ground level release, CSA's dilution factors were slightly more than half of RG's. For the elevated release, following recommendations in each guide, CSA's dilution coefficient is higher than RG's within 1000 m of the stack and only slightly lower farther away. All differences can be accounted for by different mathematical formulations and assumptions about height at which wind speed is measured. Ingestion, inhalation, immersion and external doses predicted by the two models were compared for unit release (Bq s -1 ) and for realistic source terms of a suite of 33 radionuclides commonly released from both CANDUs and Pressurized Water Reactors (PWRs). To demonstrate real differences in the models, ingestion doses for the two models were compared using the CSA diet in both models and CSA predictions were recalculated to account for decay which occurs between harvest and ingestion in RG. Once all assumptions are equalized, there is very little difference in dose predictions of the two models that cannot be explained by different parameter values. Both models have outdated dose conversion factors, and the use of improved numbers will

  13. Regulatory review of probabilistic safety assessment (PSA) level 1

    International Nuclear Information System (INIS)

    2000-02-01

    Probabilistic safety assessment (PSA) is increasingly being used as part of the decision making process to assess the level of safety of nuclear power plants. The methodologies in use are maturing and the insights gained from the PSAs are being used along with those from the deterministic analysis. Many regulatory authorities consider that the current state of the art in PSA (especially Level 1 PSA) is sufficiently well developed that it can be used centrally in the regulatory decision making process - referred to as 'risk informed regulation'. For these applications to be successful, it will be necessary for regulatory authorities to have a high degree of confidence in PSA. However, at the IAEA Technical Committee Meeting on Use of PSA in the Regulatory Process in 1994 and at the OECD Nuclear Energy Agency Committee for Nuclear Regulatory Activities (CNRA) 'Special Issues' Meeting in 1997 on Review Procedures and Criteria for Different Regulatory Applications of PSA, it was recognized that formal regulatory review guidance for PSA did not exist. The senior regulators noted that there was a need to produce some international guidance for reviewing PSAs to establish an agreed basis for assessing whether important technological and methodological issues in PSAs are treated adequately and to verify that conclusions reached are appropriate. In 1997 the IAEA and OECD Nuclear Energy Agency agreed to produce in co-operation a technical document on the regulatory review of PSA. This publication is intended to provide guidance to regulatory authorities on how to review the PSA for a nuclear power plant to gain confidence that it has been carried out to an acceptable standard so that it can be used as the basis for taking risk informed decisions within a regulatory decision making process. The document gives guidance on how to set about reviewing a PSA and on the technical issues that need to be addressed. This publication gives guidance for the review of Level 1 PSA for

  14. Manual on high energy teletherapy. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to high energy radiotherapy: its application and procedures guides

  15. Regulatory review of probabilistic safety assessment (PSA) Level 2

    International Nuclear Information System (INIS)

    2001-07-01

    Probabilistic safety assessment (PSA) is increasingly being used as part of the decision making process to assess the level of safety of nuclear power plants. The methodologies in use are maturing and the insights gained from the PSAs are being used along with those from deterministic analysis. Many regulatory authorities consider the current state of the art in PSA to be sufficiently well developed for results to be used centrally in the regulatory decision making process-referred to as risk informed regulation. For these applications to be successful, it will be necessary for the regulatory authority to have a high degree of confidence in the PSA. However, at the 1994 IAEA Technical Committee Meeting on Use of PSA in the Regulatory Process and at the OECD Nuclear Energy Agency Committee for Nuclear Regulatory Activities (CNRA) 'Special Issues' meeting in 1997 on Review Procedures and Criteria for Different Regulatory Applications of PSA, it was recognized that formal regulatory review guidance for PSA did not exist. The senior regulators noted that there was a need to produce some international guidance for reviewing PSAs to establish an agreed basis for assessing whether important technological and methodological issues in PSAs are treated adequately and to verify that conclusions reached are appropriate. In 1997, the IAEA and OECD Nuclear Energy Agency agreed to produce, in cooperation, guidance on Regulatory Review of PSA. This led to the publication of IAEA-TECDOC-1135 on the Regulatory Review of Probabilistic Safety Assessment (PSA) Level 1, which gives advice for the review of Level 1 PSA for initiating events occurring at power plants. This TECDOC extends the coverage to address the regulatory review of Level 2 PSA.These publications are intended to provide guidance to regulatory authorities on how to review the PSA for a nuclear power plant to gain confidence that it has been carried out to an acceptable level of quality so that it can be used as the

  16. Strengthening Regulatory Competence through Techno-managerial Knowledge Integration: Indian Experience

    International Nuclear Information System (INIS)

    Kuchibhotla, S.

    2016-01-01

    Competence development is the process of identifying the competencies required to perform a given job, role or set of tasks successfully at workplace. Strengthening regulatory competence, for the nuclear regulator, is essential to ensure skilled and competent human resources for performing the functions of the Regulatory Body. The strengthening of existing competence level for the Indian nuclear regulator, takes into account the understanding of the elements such as legal basis and regulatory processes governing operations of regulatory body, technological competences for performing regulatory functions, competences pertinent to regulatory practices, and competences related to personal and interpersonal effectiveness within the organization. Competency data from AERB divisions was compiled to identify gaps at various positions with recommendations for making specialized training modules and modifications to basic and refresher training modules. The exercise is aimed at providing continual improvement in skills and knowledge of human resources at AERB in a phased manner. (author)

  17. 75 FR 39714 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Rule Change by...

    Science.gov (United States)

    2010-07-12

    ... have been prepared by the self-regulatory organization. The Commission is publishing this notice to....C. 78a. \\3\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of the Terms of the.... II. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for, the Proposed...

  18. 75 FR 27609 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing and Immediate Effectiveness of...

    Science.gov (United States)

    2010-05-17

    ... have been prepared by the self-regulatory organization. The Commission is publishing this notice to....C. 78a. \\3\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of the Terms of Substance... Reference Room. II. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for, the...

  19. Radioactive Waste Management BasisSept 2001

    International Nuclear Information System (INIS)

    Goodwin, S.S.

    2011-01-01

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  20. Manual on self-contained gamma irradiators (categories 1 and 3). Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    The document is the first revision of a previous one published in 1993 to provide guidance on the safe use and regulation of panoramic gamma irradiators (Co-60 or Cs-137 sources) in different fields of application. It includes three parts: Applications Guide, which describes the main applications of panoramic gamma irradiators, the type of equipment, including safety systems, operation and maintenance, and how to deal with incidents. Procedures Guide, which gives step by step instructions on how to carry out the practice. Basics Guide, which explains the fundamentals of radiation, the system of units, interaction of radiation with matter radiation detection, etc. and which is common to all documents in the series. The manual is aimed primarily at persons handling such radiation sources on a daily routine basis, as well as at the competent authorities for training of workers in radiation protection or for setting up local radiation protection rules

  1. Strengthening Regulatory Competence in Pakistan

    International Nuclear Information System (INIS)

    Sadiq, M.

    2016-01-01

    Capacity building of Pakistan Nuclear Regulatory Authority is considered an essential element in pursuit of its vision to become a world class regulatory body. Since its inception in 2001, PNRA has continuously endeavoured to invest in its people, develop training infrastructure and impart sound knowledge and professional skills with the aim to improve its regulatory effectiveness. The use of nuclear and radioactive material in Pakistan has increased manifold in recent years, thus induction of more manpower was needed for regulatory oversight. PNRA adopted two pronged approach for meeting the manpower demand (a) employment of university graduates through fast track recruitment drive and (b) induction of graduates by offering fellowships for Master degree programs. Although, the newly employed staff was selected on the basis of their excellent academic qualifications in basic and applied sciences, but they required rigorous knowledge and skills in regulatory perspectives. In order to implement a structured training program, PNRA conducted Training Needs Assessment (TNA) and identified competency gaps of the regulatory staff in legal, technical, regulatory practice and behavioural domains. PNRA took several initiatives for capacity building which included establishment of a training centre for sustainability of trainings, initiation of a fellowship scheme for Master program, attachment of staff at local institutes for on-the-job training and placement at foreign regulatory bodies and organizations for technical development with the assistance of IAEA. The above strategies have been very beneficial in competence building of the PNRA staff to perform all regulatory activities indigenously for nuclear power plants, research reactors and radiation facilities. Provision of vibrant technical support to IAEA and Member States in various programs by PNRA is a landmark of these competence development efforts. This paper summarizes PNRA initiatives and the International Atomic

  2. External man-induced events in relation to nuclear power plant design. A Safety Guide. A publication within the NUSS programme

    International Nuclear Information System (INIS)

    1996-01-01

    In order to take account of lessons learned since the first publication of the NUSS programme was issued, it was decided in 1986 to revise and reissue the Codes and Safety Guides. During the original development of these publications, as well as during the revision process, care was taken to ensure that all Member States, in particular those with active nuclear power programmes, could provide their input. Several independent reviews took place including a final one by the Nuclear Safety Standards Advisory Group (NUSSAG). The revised Codes were approved by the Board of Governors in June 1988. In the revision process new developments in technology and methods of analysis have been incorporated on the basis of international consensus. It is hoped that the revised Codes will be used, and that they will be accepted and respected by Member States as a basis for regulation of the safety of power reactors within the national legal and regulatory framework. 28 refs, 9 figs, 1 tab

  3. Development of regulatory guidance on safety reviews of nuclear power plants in Germany. A survey on accomplished and current PSA activities

    International Nuclear Information System (INIS)

    Berg, H.-P.; Froehmel, T.; Goertz, R.; Rehs, B.

    2005-01-01

    The paper describes the key points of the accomplished and current regulatory activities in order to revise PSA guide and the corresponding technical documents in Germany. The regulatory German PSA guide covers the fundamental requirements concerning the performance of PSAs in the frame of comprehensive safety reviews. The technical details regarding the performance of PSA are set out in two technical documents (PSA Methods and PSA Data) that have been developed by a working group of PSA experts (FAK PSA). Based on the experiences from the first series of PSRs, international experiences and the fact that PSR is mandatory since April 2002 revisions of all guides are underway. The first guide to be updated is the PSA guide together with the corresponding technical documents. The working programme and the revision process of FAK PSA was finished at the end of 2004 and the technical documents have recently been republished. (author)

  4. Safety design guides for containment extension for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for containment extension describes the containment isolation philosophy and containment extension requirements. The metal extensions and components falling within the scope of ASME Section III are classified in accordance with the CAN/CSA-N285.0 and CAN/CSA-N285.3. The special consideration for the leak monitoring capability, seismic qualification and inspection requirements for containment extensions, etc., are defined in this design guide. In addition, the containment isolation systems are defined and summarized schematically in appendix A. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. (Author) .new

  5. Regulatory aspects of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kristensen, K.

    1985-01-01

    Regulatory systems in the field of radiopharmaceuticals have two main purposes: efficacy and safety. Efficacy expresses the quality of the diagnostic and therapeutic process for the patient. Safety involves the patient, the staff, and the environment. The world situation regarding regulations for radiopharmaceuticals is reviewed on the basis of a survey in WHO Member States. The main content of such regulations is discussed. The special properties of radiopharmaceuticals compared with ordinary drugs may call for modified regulations. Several countries are preparing such regulations. Close co-operation and good understanding among scientists working in hospital research, industry and regulatory bodies will be of great importance for the fast and safe introduction of new radiopharmaceuticals for the benefit of the patient. Before introducing new legislation in this field, a radiopharmaceutical expert should analyse the situation in the country and the relationship to the existing regulations. It is expected that the most important factor in promoting the fast introduction of new, safe and effective radiopharmaceuticals will be the training of people working within the regulatory bodies. It is foreseen that the IAEA and WHO will have an important role to play by providing expert advice and training in this area. (author)

  6. NRC [Nuclear Regulatory Commission] editorial style guide

    International Nuclear Information System (INIS)

    Beeson, J.F.; Calure, B.A.; Gable, D.; Lesar, M.T.; Mejac, M.F.; Sanders, R.F.

    1989-10-01

    Editorial style refers to the choices that writers, editors, and secretaries make to eliminate inconsistencies in their documents. These choices apply to the recurrent features of a document such as abbreviations, capitalization, compound words, numbers, symbols, and punctuation, as well as to references and footnotes. Making these choices is sometimes difficult because usage changes as the language evolves. Consider the use of hyphens, for example. Do we write non-power reactor or nonpower reactor? Is it on-site incident or onsite incident? Although usage is moving away from the use of hyphens with prefixes, the authorities who compile style guides do not always agree about which choice to use at a given time. Moreover, each discipline -- law, physics, mathematics -- has specific standards that apply to the publications for that discipline. Even in an area as seemingly certain as spelling, overlapping usage exists. Reputable dictionaries show both ''align'' and ''aline'' as correct spellings. Likewise, ''disc, disk, and diskette'' currently coexist as equally valid choices

  7. Regulatory guidance for license renewal

    International Nuclear Information System (INIS)

    Thoma, John A.

    1991-01-01

    The proposed 10 CFR Part 54 rule proceduralizes the process for license renewal by identifying both the administrative and technical requirements for a renewal application. To amplify and support this regulation, written guidance has been provided in the form of a draft Regulatory Guide (DG 1009) and a draft Standard Review Plan for License Renewal (NUREG 1299). This guidance is scheduled to be finalized in 1992. Similar guidance will be provided for the proposed revisions to 10 CFR Part 51 concerning the environmental aspects of license renewal. (author)

  8. RADTRAN 4: User guide

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Kanipe, F.L.

    1992-01-01

    RADTRAN 4 is used to evaluate radiological consequences of incident-free transportation, as well as the radiological risks from vehicular accidents occurring during transportation. This User Guide is Volume 3 in a series of four volume of the documentation of the RADTRAN 4 computer code for transportation risk analysis. The other three volumes are Volume 1, the Executive Summary; Volume 2, the Technical Manual; and Volume 4, the Programmer's Manual. The theoretical and calculational basis for the operations performed by RADTRAN 4 are discussed in Volume 2. Throughout this User Guide the reader will be referred to Volume 2 for detailed discussions of certain RADTRAN features. This User Guide supersedes the document ''RADTRAN III'' by Madsen et al. (1983). This RADTRAN 4 User Guide specifies and describes the required data, control inputs, input sequences, user options, program limitations, and other activities necessary for execution of the RADTRAN 4 computer code

  9. Marketing and Distributive Education. Food Marketing Curriculum Guide

    Science.gov (United States)

    Northern Illinois Univ., DeKalb. Dept. of Business Education and Administration Services.

    This document is one of four curriculum guides designed to provide the curriculum coordinator with a basis for planning a comprehensive program in the field of marketing as well as to provide marketing and distributive education teachers with maximum flexibility. Introductory information provides directions for using the guide and information on…

  10. 77 FR 31060 - Self-Regulatory Organizations; the Options Clearing Corporation; Notice of Filing and of Proposed...

    Science.gov (United States)

    2012-05-24

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-67021; File No. SR-OCC-2012-07] Self-Regulatory... from interested persons. \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization... equity options. II. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for...

  11. The Role of Level-3 PSA in the Regulatory Structure for the Licensing of Future NPPs

    International Nuclear Information System (INIS)

    Jeong, Jong Tae; Han, Sang Hoon

    2008-01-01

    The probabilistic safety assessment (PSA) provides a systematic analysis to identify and quantify all risks that the plant imposed to the operators, general public and the environment and thus demonstrates compliance to regulatory risk criteria. Therefore, the PSA has been being played an important role in the development of safety requirements for the existing plants, mainly reactors using light water technology. However, the existing safety requirements may not be fully applicable to the future reactors due to the advances in technology, new safety options, and new strategies for managing abnormal plant conditions. Therefore, a comprehensive set of technology-neutral safety requirements are being developed by the IAEA and USNRC. Especially, USNRC is developing a basis for a regulatory structure that is applicable to all types of reactor designs, including gas-cooled, liquid metal, and heavy and light water-moderated reactors because metrics such as core damage and large early release may not be applicable to some advanced reactor designs. They are developing this kind of basis for a regulatory structure in order to provide a technology neutral safety approach that will guide the design, construction and operation, as well as safety assessment, of innovative reactors. They are using the quantitative safety goals expressed by means of a frequency-consequence diagram. Within this approach, the scope of the PSA needs to encompass a whole spectrum of off-normal events including frequent, infrequent, and rare initiating events and event sequences. These events include a spectrum of releases from minor to major, and sequences that address conditions less than the core damage sequences. It also needs to address the dose consequences of these event sequences as measured at the exclusion area boundary (EAB). In order to obtain dose consequences for the whole spectrum of off-normal events, the dose evaluation by using the deterministic and probabilistic approaches has to be

  12. Predisposal management of low and intermediate level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2003-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power reactors and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of LLW. This Safety Guide deals with the safety issues associated with the predisposal management of LLW from nuclear fuel cycle facilities, large research and development installations and radioisotope production facilities. This includes all steps and activities in the management of waste, from its initial generation to its final acceptance at a waste disposal facility or the removal of regulatory control. The predisposal management of radioactive waste includes decommissioning. The term 'decommissioning' encompasses both the process of decommissioning a facility and the management of the waste that results (prior to its disposal). Recommendations on the process of decommissioning are provided in Refs. Recommendations on the management of the waste resulting from decommissioning are included in this Safety Guide. Although the mining and milling of uranium and thorium ores is part of the nuclear fuel cycle, the management of the operational waste (e.g. waste rock, tailings and effluent treatment waste) from these activities is not within the scope of this Safety Guide. The LLW that is

  13. NRPA develops regulatory cooperation with Central Asian authorities for nuclear safety and radiation protection

    International Nuclear Information System (INIS)

    2009-01-01

    With the support of the Norwegian Ministry of Foreign Affairs, the NRPA has initiated a regional regulatory cooperation project with Kazakhstan, Kyrgyzstan and Tajikistan to improve regulations on nuclear safety, radiation protection and environmental issues, and assist the countries in re mediating radioactively contaminated sites. There is a critical lack in the regulatory basis for carrying out such remediation work, including a lack of relevant radiation and environmental safety norms and standards, licensing procedures and requirements for monitoring, as well as expertise to transform such a basis into practice. (Author)

  14. Management of the radon-related risk. Guide for local authorities. Guide for employers

    International Nuclear Information System (INIS)

    Struillou, Yves; Gupta, Olivier

    2017-01-01

    A first guide aims at being an aid to decision by specifying obligations of local authorities as owners of buildings open to public or as employers, but also at being a support for their health and social actions in terms of information on radon risk in housing. After a presentation of the risk related to radon (health risks, radon propagation, regulatory areas concerned by radon risk management in France), the report indicates the various obligations and mandatory actions for local authorities as building owner and as employer, and actions to be undertaken for existing and new buildings. Technical sheets are provided regarding radon detection, certifications, simple actions, technical diagnosis, remediation works, efficiency control of technical solutions, expert in radiation protection. The second guide aims at being an aid to decision by specifying obligations for employers in terms of management of radon-related risk to which some workers might be exposed, and at providing some good practice recommendations. After a presentation of the risk related to radon (health risks, radon propagation, regulatory areas concerned by radon risk management in France), the report addresses how to organise the radon-related risk management, how to measure radon in work places, how to interpret results and which actions to undertake. Technical sheets are provided regarding radon detection, certifications, simple actions, technical diagnosis, remediation works, efficiency control of technical solutions, expert in radiation protection

  15. Review of NRC Commission Papers on Regulatory Basis for Licensing and Regulating Reprocessing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Yeong; Shin, Hyeong Ki [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    Spent nuclear fuel (SNF) accumulated in nuclear power plant has been a serious issue in most countries with operating nuclear power plants. Direct disposal of SNF could be a solution of the problem but many countries including the Republic of Korea have had a hard time selecting a site for high level waste repository because of low public acceptance. SNF recycling technologies consisting of reprocessing and transmutation have been developed so as to reduce the final volume of the disposed radioactive waste and to diminish the radiotoxicity of the waste. The Republic of Korea is now developing pyroprocessing and sodium-cooled fast reactor (SFR) technology to be used for the recycling of the wastes. KAERI has a plan to construct a pyroprocessing facility with a capacity of 30 tHM/y and a facility manufacturing TRU fuel for SFR by 2025. However, to license these facility and secure the safety, the current regulatory system related to SNF treatment needs to be improved and amended since the system has been developed focusing on facilities to examine irradiated nuclear materials. Status of reprocessing facility regulations developed by U.S.NRC was reviewed based on SECY papers. U.S.NRC has approved the development of a new rule referred to nationally as '10CFR Part 7x'. Existing 10CFR 50 and 70 has been evolved mainly for nuclear power plants and fuel cycle facilities whose radiological hazard is much lower than reprocessing plants respectively. U.S.NRC also derived many regulatory gaps including safety assessment methods, technical specification, general design criteria and waste classification and continue to develop the regulatory framework limited in scope to the resolution of Gap 5.

  16. Project margins of advanced reactor design WWER-500

    International Nuclear Information System (INIS)

    Rogov, M.F.; Birukov, G.I.; Ershov, V.G.; Volkov, B.E.

    1994-01-01

    Project criteria for design of advanced WWER-500 reactor within design conditions are compared to the requirements of the Russian regulatory guides. Normal operation limits, safe operation limits for main anticipated operational occurrences and design limits accepted for design basis accidents are considered as in preliminary safety report. It is shown that the basic design criteria in the design of WWER-500 for the anticipated operational occurrences and for design basis accidents are more severe than required in the following regulatory guides General Safety Regulations for Nuclear Power Plants and Nuclear Safety Rules for Reactors of Nuclear Power Plants. This provides certain margins from safety point of view

  17. Safety Culture Implementation in Indonesian Nuclear Energy Regulatory Agency (BAPETEN)

    International Nuclear Information System (INIS)

    Nurwidi Astuti, Y.H.; Dewanto, P.

    2016-01-01

    The Indonesia Nuclear Energy Act no. 10 of 1997 clearly stated that Nuclear Energy Regulatory Agency (BAPETEN) is the Nuclear Regulatory Body. This is the legal basis of BAPETEN to perform regulatory functions on the use of nuclear energy in Indonesia, including regulation, authorisation, inspection and enforcement. The Independent regulatory functions are stipulated in Article 4 and Article 14 of the Nuclear Energy Act no. 10 (1997) which require the government to establish regulatory body that is reporting directly to the president and has responsibility to control of the use of nuclear energy. BAPETEN has been start fully its functioning on January 4, 1999. In it roles as a regulatory body, the main aspect that continues and always to be developed is the safety culture. One of the objectives of regulatory functions is “to increase legal awareness of nuclear energy of the user to develop safety culture” (Article 15, point d), while in the elucidation of article 15 it is stipulated that “safety culture is that of characteristics and attitudes in organizations and individual that emphasise the importance of safety”.

  18. Best Basis Inventory Maintenance Tool (BBIM) Database Description and User Guide

    International Nuclear Information System (INIS)

    TRAN, T.T.

    2000-01-01

    The Best Basis Inventory Maintenance Tool (BBIM) is a computer database application with built-in calculations that model the chemical composition of the Hanford tank wastes in terms of three fundamental parameters: (1) Analyte concentration; (2) Waste density; and (3) Waste volume. Using these parameters, the BBIM is able to calculate for all of the Best-Basis constituents in each of the 177 tanks: (1) Total tank waste inventories; (2) Phase-based inventories; and (3) Phase-based concentrations. Calculations are handled differently depending upon the pedigree or type of the underlying data; for example, the input concentration could be in solid units, such as ''ug/g'' or in liquid units, such as ''ug/mL''. In each of these cases, there would be slight variations to the basic inventory calculation formula (Concentration - Density - Volume). In addition to calculating inventories, the BBIM also documents the source of the underlying data and how the calculations were performed. An enhancement is planned for 1Q00 to account for wastes transferred between tanks. When this is in place, the BBIM will be able to reflect ongoing Tank Farm operations, and will continuously (with a slight lag behind operational activities) maintain the documented best-basis inventory

  19. Guide to federal regulation of sales of imported electricity in Canada, Mexico and the United States

    International Nuclear Information System (INIS)

    2005-01-01

    This Guide to Federal Regulation of Sales of Imported Electricity in Canada, Mexico, and the United States promotes cross-border electricity trade. It provides information on federal regulation of cross-border electricity trade and is intended to be used together with a companion guide called the North American Regulation of International Electricity Trade which outlines regulations for the construction and operation of cross-border power lines and the permitting requirements for electricity exports and imports between Canada, Mexico and the United States. The guide outlines the basic elements of the general federal regulatory process that applies to a given North American cross-border electricity trade. It offers an improved understanding of the applicable country's federal regulatory regime. Different federal government agencies within each country may regulate different aspects of a particular cross-border electricity trade. This guide does not examine the requirements that may apply at the state or provincial government levels. Rather, it is a collaborative effort of the 3 national energy departments and energy regulators that support the Experts Group on Electricity Regulatory Issues, a specialized unit assembled by the North American Energy Working Group (NAEWG). It was noted that the energy policies and regulations of each nation can change periodically

  20. Establishing a regulatory value chain model: An innovative approach to strengthening medicines regulatory systems in resource-constrained settings.

    Science.gov (United States)

    Chahal, Harinder Singh; Kashfipour, Farrah; Susko, Matt; Feachem, Neelam Sekhri; Boyle, Colin

    2016-05-01

    Medicines Regulatory Authorities (MRAs) are an essential part of national health systems and are charged with protecting and promoting public health through regulation of medicines. However, MRAs in resource-constrained settings often struggle to provide effective oversight of market entry and use of health commodities. This paper proposes a regulatory value chain model (RVCM) that policymakers and regulators can use as a conceptual framework to guide investments aimed at strengthening regulatory systems. The RVCM incorporates nine core functions of MRAs into five modules: (i) clear guidelines and requirements; (ii) control of clinical trials; (iii) market authorization of medical products; (iv) pre-market quality control; and (v) post-market activities. Application of the RVCM allows national stakeholders to identify and prioritize investments according to where they can add the most value to the regulatory process. Depending on the economy, capacity, and needs of a country, some functions can be elevated to a regional or supranational level, while others can be maintained at the national level. In contrast to a "one size fits all" approach to regulation in which each country manages the full regulatory process at the national level, the RVCM encourages leveraging the expertise and capabilities of other MRAs where shared processes strengthen regulation. This value chain approach provides a framework for policymakers to maximize investment impact while striving to reach the goal of safe, affordable, and rapidly accessible medicines for all.

  1. Development of dose calculation program (DBADOSE) incorporating alternative source term due to design basis accident

    International Nuclear Information System (INIS)

    Bae, Young Jig; Nam, Ki Mun; Lee, Yu Jong; Chung, Chan Young

    2003-01-01

    Source terms presented in TID-14844 and Regulatory Guide 1.4 have been used for radiological analysis of design basis accidents for licensing existing pressurized water reactor (PWR). However, more realistic and physically-based source term based on results of study and experiments for about 30 years after the publication of TID-14844 was developed and presented in NUREG-1465 published by U.S NRC in 1995. In addition, ICRP has revised dose concepts and criteria through the publication of ICRP-9, 26, 60 and recommended effective dose concepts rather than critical organ concept since the publication of ICRP-26. Accordingly, multipurpose computer program called DBADOSE incorporating alternative source terms in NUREG-1465 and effective dose concepts in ICRP-60 was developed. Comparison of results of DBADOSE with those of POSTDBA and STARDOSE was performed and verified and no significant difference and inaccuracy were found. DBADOSE will be used to evaluate accidental doses for licensing application according to the domestic laws that are expected to be revised in the near future

  2. Regulatory good practices relating to monitoring and assessment of ageing nuclear power plants. A compilation of the 1991/92 Peer Group discussion considerations as they relate to operational plants. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    In 1974 the IAEA established a Nuclear Safety Standards (NUSS) programme within which 5 Codes and 55 Safety Guides have been produced in the areas of Governmental Organization, Siting, Design, Operation and Quality Assurance. The NUSS Codes and Guides are a collection of basic and derived requirements for the safety of nuclear power plants with thermal neutron reactors. They have been developed in such a manner as to ensure the broadest international consensus. This broad consensus is one of the reasons for the relatively general wording of the main principles and sometimes causes problems when these principles are applied in the design of nuclear power plants. The requirements, particularly those of the Codes, often need interpretation in specific cases. In many areas national regulations and technical standards are available, but often these leave some questions unanswered and their practical application on a case-by-case basis is necessary. To assist in the application and interpretation of the NUSS Safety Standards and Safety Guides, the preparation of a number of Safety Practices publications has been commenced. Ibis publication is intended to assist regulators and also operating organizations. It is a compilation of the reports of the 1991/92 Peer Group discussions which considered regulatory good practices relating to monitoring and assessment of the ageing of nuclear power plants. Therefore names of participated countries in this documents are those at time of 1991/92 Peer Group discussions. It identifies those common regulatory features which require continuous reinforcement and examples of good regulatory practices that were recommended by senior regulators in the Peer Group discussions. The purpose of this publication is to provide a compilation of the 1991/92 Peer Group discussions relating to operational plant. This document the covers practices in the 20 countries participating in this round of Peer Group discussions. The document is a synopsis of

  3. Regulatory good practices relating to monitoring and assessment of ageing nuclear power plants. A compilation of the 1991/92 Peer Group discussion considerations as they relate to operational plants. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    In 1974 the IAEA established a Nuclear Safety Standards (NUSS) programme within which 5 Codes and 55 Safety Guides have been produced in the areas of Governmental Organization, Siting, Design, Operation and Quality Assurance. The NUSS Codes and Guides are a collection of basic and derived requirements for the safety of nuclear power plants with thermal neutron reactors. They have been developed in such a manner as to ensure the broadest international consensus. This broad consensus is one of the reasons for the relatively general wording of the main principles and sometimes causes problems when these principles are applied in the design of nuclear power plants. The requirements, particularly those of the Codes, often need interpretation in specific cases. In many areas national regulations and technical standards are available, but often these leave some questions unanswered and their practical application on a case-by-case basis is necessary. To assist in the application and interpretation of the NUSS Safety Standards and Safety Guides, the preparation of a number of Safety Practices publications has been commenced. Ibis publication is intended to assist regulators and also operating organizations. It is a compilation of the reports of the 1991/92 Peer Group discussions which considered regulatory good practices relating to monitoring and assessment of the ageing of nuclear power plants. Therefore names of participated countries in this documents are those at time of 1991/92 Peer Group discussions. It identifies those common regulatory features which require continuous reinforcement and examples of good regulatory practices that were recommended by senior regulators in the Peer Group discussions. The purpose of this publication is to provide a compilation of the 1991/92 Peer Group discussions relating to operational plant. This document the covers practices in the 20 countries participating in this round of Peer Group discussions. The document is a synopsis of

  4. Regulatory agencies and regulatory risk

    OpenAIRE

    Knieps, Günter; Weiß, Hans-Jörg

    2008-01-01

    The aim of this paper is to show that regulatory risk is due to the discretionary behaviour of regulatory agencies, caused by a too extensive regulatory mandate provided by the legislator. The normative point of reference and a behavioural model of regulatory agencies based on the positive theory of regulation are presented. Regulatory risk with regard to the future behaviour of regulatory agencies is modelled as the consequence of the ex ante uncertainty about the relative influence of inter...

  5. Preoperative imaging as the basis for image-guided neurosurgery

    International Nuclear Information System (INIS)

    Winkler, D.; Strauss, G.; Hesse, S.; Sabri, O.; Goldammer, A.; Meixensberger, J.; Hund-Georgiadis, M.; Richter, A.; Kahn, T.

    2004-01-01

    With the progressive development of soft- and hardware, the acceptance of image-guided neurosurgery has increased dramatically. Additional image data are required to analyze the nature and the dimensions of pathological processes and the surrounding tissue. In this context, fMRI, SPECT, PET, as well as special modalities of CT and MR imaging, are routinely used. Secondary post-processing options are used to detect intracerebral lesions as well as adjacent functional eloquent regions in the parenchymatous organ pre- and intraoperatively. The integration of different image information guarantees the precise planning and realization of surgical maneuvers. The segmentation of interesting structures and risk structures, as well as their implementation in the neuronavigation systems, help to avoid additional intraoperative traumatization and offer a higher level of safety and precision. In this article the value and limitations of presurgical imaging will be discussed. (orig.) [de

  6. Projecting regulatory expectations for advanced reactor designs

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    This paper explores the overarching safety principles that will likely guide the safety design of advanced reactor technologies. As will be shown, the already established safety framework provides a solid foundation for the safety design of future nuclear power plants. As a specific example, the principle of 'proven technology' is presented in greater detail and its implications for a novel technology are discussed. Research, modeling and prototyping are shown to be components in satisfying this principle. While the fundamental safety principles are in place, their interpretation may depend both on the considered technology as well as the national context. Thus, the regulatory authority will need to be engaged, at an appropriate stage of the technology development, in specifying the regulatory requirements that will have to be met for a specific reactor design. (author)

  7. Regulatory approach of the monitoring the effectiveness of maintenance at nuclear power plants program

    International Nuclear Information System (INIS)

    Vajgel, Stefan

    2009-03-01

    The electrical power generation using nuclear power plants requires this installation being safety, reliable and available for the working periods. For this purpose, an adequate, effective and well conducted maintenance program makes an essential and useful tool to the owner of the plant. However, it is necessary to follow the regulatory requirements for this program implementation which monitories this maintenance effectiveness. There are Brazilian norms requirements which must be followed. The international regulatory guides establish these requirements in good details but it is necessary to verify if this methodology for implementing can be totally applied here in Brazil. Then, the american guide NUMARC 93-01 which details how can be implemented a program for this monitoring, shows some methods for using. In this thesis, the Delphi and Probabilistic Safety Analysis were briefly included because they were preferred for implementing this monitoring.in a Brazilian plant. The results which are being obtained show that, looking the regulatory aspects, the NUMARC 93-01 follows our regulations and gives good results for the plant management. (author)

  8. Guide of the environmental impact of the wind farms; Guide de l'etude d'impact sur l'environnement des parcs eoliens

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This guide provides a general approach and a methodology of implementing environmental evaluations of the wind farms: the regulatory framework of the impact study, the methodology of the study, the natural areas, landscape and heritage, noise and public health and the specific case of offshore wind turbines. (A.L.B.)

  9. Safety design guides for seismic requirements for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for seismic requirements for CANDU 9 describes the seismic design philosophy, defines the applicable earthquakes and identifies the structures and systems requiring seismic qualification to ensure that the essential safety function can be adequately satisfied following earthquake. The detailed requirements for structures, systems and components which must be seismically qualified are specified in the Appendix. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 1 fig., (Author) .new

  10. Treatment of osteoid osteoma using CT-guided radiofrequency ablation versus MR-guided laser ablation: A cost comparison

    International Nuclear Information System (INIS)

    Maurer, M.H.; Gebauer, B.; Wieners, G.; De Bucourt, M.; Renz, D.M.; Hamm, B.; Streitparth, F.

    2012-01-01

    Objective: To compare the costs of CT-guided radiofrequency ablation (RFA) and MR-guided laser ablation (LA) for minimally invasive percutaneous treatment of osteoid osteoma. Materials and methods: Between November 2005 and October 2011, 20 patients (14 males, 6 females, mean age 20.3 ± 9.1 years) underwent CT-guided RFA and 24 patients (18 males, 6 females; mean age, 23.8 ± 13.8 years) MR-guided LA (open 1.0 Tesla, Panorama HFO, Philips, Best, Netherlands) for osteoid osteoma diagnosed on the basis of clinical presentation and imaging findings. Prorated costs of equipment use (purchase, depreciation, and maintenance), staff costs, and expenditure for disposables were identified for CT-guided RFA and MR-guided LA procedures. Results: The average total costs per patient were EUR 1762 for CT-guided RFA and EUR 1417 for MR-guided LA. These were (RFA/LA) EUR 92/260 for equipment use, EUR 149/208 for staff, and EUR 870/300 for disposables. Conclusion: MR-guided LA is less expensive than CT-guided RFA for minimally invasive percutaneous ablation of osteoid osteoma. The higher costs of RFA are primarily due to the higher price of the disposable RFA probes.

  11. The scientific and regulatory basis for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Savage, D.

    1995-01-01

    The disposal of radioactive waste is a central issue in the future of nuclear power and poses considerable technical, political and social issues. This book addresses these topics in an integrated fashion using performance assessment of the disposal concept as a unifying theme. Subjects addressed include: regulatory criteria; waste types, sources and characteristics; man-made or ''engineered'' barriers; the selection and evaluation of geological disposal media; the use of underground research laboratories; the movement of radionuclides in the biosphere; repository performance assessment tools approaches; addressing uncertainty and spatial variability; assessing information from natural systems; and looking at radioactive waste in relation to other wastes. (Author)

  12. Users guide to REGIONAL-1: a regional assessment model

    International Nuclear Information System (INIS)

    Davis, W.E.; Eadie, W.J.; Powell, D.C.

    1979-09-01

    A guide was prepared to allow a user to run the PNL long-range transport model, REGIONAL 1. REGIONAL 1 is a computer model set up to run atmospheric assessments on a regional basis. The model has the capability of being run in three modes for a single time period. The three modes are: (1) no deposition, (2) dry deposition, (3) wet and dry deposition. The guide provides the physical and mathematical basis used in the model for calculating transport, diffusion, and deposition for all three modes. Also the guide includes a program listing with an explanation of the listings and an example in the form of a short-term assessment for 48 hours. The purpose of the example is to allow a person who has past experience with programming and meteorology to operate the assessment model and compare his results with the guide results. This comparison will assure the user that the program is operating in a proper fashion

  13. Manual on therapeutic uses of iodine-131. Incorporating: Applications guide, procedures guide, basics guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to therapeutic uses of Iodine-131: its application and procedures guides.

  14. Manual on therapeutic uses of iodine-131. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to therapeutic uses of Iodine-131: its application and procedures guides

  15. 76 FR 46330 - NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft...

    Science.gov (United States)

    2011-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0568] NUREG-1934, Nuclear Power Plant Fire Modeling... 1023259), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft Report for...), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft for Comment,'' is...

  16. Regulatory Considerations for the Long Term Cooling Safe Shutdown Requirements of the Passive Residual Heat Removal Systems in Advanced Reactors

    International Nuclear Information System (INIS)

    Sim, S. K.; Bae, S. H.; Kim, Y. S.; Hwang, Min Jeong; Bang, Young Seok; Hwang, Taesuk

    2016-01-01

    USNRC approved safe shutdown at 215.6 .deg. C for a safe and long term cooling state for the redundant passive RHRSs by SECY-94-084. USNRC issued COLA(Combined Construction and Operating License) for the Levy County NP Unit-1/2 for the AP1000 passive RHRSs in 2014. Korea Hydro and Nuclear Power(KHNP) is developing APR+ and adopted Passive Auxiliary Feedwater System(PAFS) as a new passive RHRS design. Korea Institute of Nuclear Safety(KINS) has been developing regulatory guides for the advanced safety design features of the advanced ALWRs which has plan to construct in near future in Korea[5]. Safety and regulatory issues as well as the safe shut down requirements of the passive RHRS are discussed and considerations in developing regulatory guides for the passive RHRS are presented herein. Passive RHRSs have been introduced as new safety design features for the advanced reactors under development in Korea. These passive RHRSs have potential advantages over existing active RHRS, however, their functions are limited due to inherent ability of passive heat removal processes. It is high time to evaluate the performance of the passive PRHRs and develop regulatory guides for the safety as well as the performance analyses of the passive RHRS

  17. South African Regulatory Framework for Nuclear Power Plant Life Management

    International Nuclear Information System (INIS)

    Mbebe, B.Z.

    2012-01-01

    The paper presents the regulatory approach to plant life management (PLiM) adopted by the National Nuclear Regulator (NNR) in South Africa, the licensing basis and regulatory requirements for Koeberg Nuclear Power Station (KNPS),operational programmes ensuring continued safe operation, issues related to the ageing of the plant, and the requirements for spent fuel as well as radioactive waste management. The paper will further present insights from the Periodic Safety Review (PSR) and Long Term Asset Management. (author)

  18. 76 FR 77877 - Self-Regulatory Organizations; EDGA Exchange, Inc.; Notice of Filing of Proposed Rule Change To...

    Science.gov (United States)

    2011-12-14

    .... \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of the...). II. Self-Regulatory Organization's Statement of the Purpose of, and Statutory Basis for, the Proposed... self-regulatory organization has prepared summaries, set forth in Sections A, B and C below, of the...

  19. Testing the Usability of Two Online Research Guides

    Directory of Open Access Journals (Sweden)

    Luigina Vileno

    2011-01-01

    Full Text Available This article describes usability testing of two online research guides. One guide was in the area of applied human sciences and the other was geared toward the discipline of psychology. Six undergraduate students were given several tasks to complete by using the guides. The participants also completed two questionnaires. One described the participants’ demographics and how much time they spent on the Internet on a daily basis. On the other questionnaire, filled out after the usability test, the participants rated the online research guides. Overall, the online research guides were found to be difficult to use. By observing how the participants interacted with the online research guides, the author has identified several problem areas that need to be addressed.

  20. Standard guide for digital detector array radiology

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This standard is a user guide, which is intended to serve as a tutorial for selection and use of various digital detector array systems nominally composed of the detector array and an imaging system to perform digital radiography. This guide also serves as an in-detail reference for the following standards: Practices E2597, , and E2737. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. Guide for selection and calibration of dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    2002-01-01

    This guide covers the basis for selecting and calibrating dosimetry systems used to measure absorbed dose in gamma ray or X-ray fields and in electron beams used for radiation processing. It discusses the types of dosimetry systems that may be employed during calibration or on a routine basis as part of quality assurance in commercial radiation processing of products. This guide also discusses interpretation of absorbed dose and briefly outlines measurements of the uncertainties associated with the dosimetry. The details of the calibration of the analytical instrumentation are addressed in individual dosimetry system standard practices. The absorbed-dose range covered is up to 1 MGy (100 Mrad). Source energies covered are from 0.1 to 50 MeV photons and electrons. This guide should be used along with standard practices and guides for specific dosimetry systems and applications covered in other standards. Dosimetry for radiation processing with neutrons or heavy charged particles is not covered in this guide

  2. Nuclear Regulatory Commission and its role in environmental standards

    International Nuclear Information System (INIS)

    Mattson, R.J.

    1976-01-01

    The NRC and its predecessors in the Atomic Energy Commission represent considerable experience in environmental standards setting. The Atomic Energy Act of 1954, the 1970 Supreme Court decision on Federal pre-emption of radiation standards, the Calvert Cliffs decision of 1971, the Energy Reorganization Act of 1974, and the Appendix I ''as low as reasonably achievable'' decision of 1975, to name a few of our landmarks, are representative of the scars and the achievements of being in a role of national leadership in radiation protection. The NRC, through a variety of legislative authorities, administrative regulations, regulatory guides, and national consensus standards regulates the commercial applications of nuclear energy. The purposes of regulation are the protection of the environment, public health and safety, and national security. To understand NRC's responsibilities relative to those of other Federal and state agencies concerned with environmental protection, we will briefly review the legislative authorities which underlie our regulatory program. Then we will examine the intent or the spirit of that program as embodied in our system of regulations, guides, and standards. Finally we will speak to what's happening today and what we see in the future for environmental standards

  3. Electricity and telecommunications regulatory institutions in small and developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Stern, J. [London Business School, London (United Kingdom)

    2000-09-01

    The spread of utility liberalisation and privatisation to middle and low income developing countries raises the problem of whether and how they can establish an effective regulatory capability of whether the supply of regulatory services is likely to be insufficient. The paper presents evidence on the size of electricity regulatory agencies in 24 mainly middle and lower income countries as well as the number of high-level, specialist regulatory staff and the potential resource pool from post-school education. The paper also discusses how far the problem can be alleviated and/or avoided by the use of regulation by contract, regulation by multi-national regulatory agency or contracting-out. The paper concludes that such solutions are unlikely to be generally effective but that informal exchanges of information and pooling of resources between national regulators on a market-driven basis, as seen in Southern Africa and the EU, is a promising option. The paper concludes by pointing to the need to ascertain the minimum required regulatory capability in developing countries as perceived by Governments and potential investors. (author)

  4. Nuclear Security Systems and Measures for the Detection of Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear terrorism and the illicit trafficking of nuclear and other radioactive material threaten the security of all States. There are large quantities of diverse radioactive material in existence, which are used in areas such as health, the environment, agriculture and industry. The possibility that nuclear and other radioactive material may be used for terrorist acts cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material, and to establish capabilities for detection and response to nuclear and other radioactive material out of regulatory control. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This approach recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in nuclear and other radioactive material; national response plans; and contingency measures. Within its nuclear security programme, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking; and to detect and respond to nuclear security events. This is an Implementing Guide on nuclear security systems and measures for the detection of nuclear and other radioactive material out of regulatory control. The objective of the publication is to provide guidance to Member States for the

  5. Principles for the exemption of radiation sources and practices from regulatory control

    International Nuclear Information System (INIS)

    1988-01-01

    Radiation sources, including equipment and installations, which emit ionizing radiations, are potentially harmful to health and their use should therefore be regulated. Some types of radiation source, however, do not need to be subject to regulatory control, because they present such a low hazard that it would be a needless waste of time and effort to exercise control by a regulatory process and they can therefore be exempted from it. An Advisory Group Meeting was convened in Vienna in March 1988 sponsored jointly by the IAEA and NEA. This Safety Guide is the result of that meeting and represents a first international consensus on the subject of exemption principles. This document is issued as an IAEA Safety Guide since it recommends a procedure which might be followed in implementing the Basic Safety Standards (BSS) for Radiation Protection. Its purpose is to recommend a policy on exemptions from the BSS system of notification, registration and licensing. 15 refs

  6. 29 CFR 1990.111 - General statement of regulatory policy.

    Science.gov (United States)

    2010-07-01

    ... CARCINOGENS The Osha Cancer Policy § 1990.111 General statement of regulatory policy. (a) This part establishes the criteria and procedures under which substances will be regulated by OSHA as potential... case-by-case basis in the rulemaking proceedings on individual substances. Any permissible exposure...

  7. Performance-based quality assurance: the regulatory viewpoint

    International Nuclear Information System (INIS)

    Sajaroff, Pedro M.

    2000-01-01

    This paper complements and upgrades a previous one recently presented, the aim is a further contribution to a wide dissemination of this new methodology and way of thinking. Modern quality management techniques emphasizes errors prevention instead of finding and correcting them, in line with the new generation of ISO-9000 documents. Performance-based QA is coherent with this 'right-first-time' attitude, resting on the managerial role (establishing and applying policies and instructions allowing to integrate quality objectives to everyday work) and on the responsibility of every single involved person (the attainment of such objectives). The contents of the final draft of the revised IAEA NUSS Code on QA -namely 'Quality Assurance for Safety in Nuclear Power Plants and other Nuclear Facilities', is based on that approach, so it is not perspective. The text only contains ten basic requirements, where the objective is improving nuclear safety through an improvement in the methods applied for attaining quality during design, construction, commissioning, operation and decommissioning of nuclear installations. These requirements are assigned to: 'Management' (QA programme; training and qualification; non-conformance control and corrective actions; document control and records); 'Performance' (work; design; procurement; inspection and testing for acceptance) and 'Assessment' (management self-assessment; independent assessment). The management is responsible for planning, organization, direction, control and support; the line groups are responsible for attaining quality; and the assessment group is responsible for analyzing the management's and the line groups' effectiveness. From the regulatory point of view in the performance context, operating organizations will have to demonstrate the effective fulfillment of QA requirements to the satisfaction of regulatory authorities. This is not a novel mechanism, it is usual within the regulatory performance approach. The Code is

  8. Finance and Credit. Curriculum Guide. Marketing and Distributive Education.

    Science.gov (United States)

    Northern Illinois Univ., DeKalb. Dept. of Business Education and Administration Services.

    Designed to be used with the General Marketing Curriculum Guide (ED 156 860), this guide is intended to provide the curriculum coordinator with a basis for planning a comprehensive program in the field of marketing and to allow marketing and distributive education teacher-coordinators maximum flexibility. It contains job competency sheets in ten…

  9. 78 FR 43947 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Science.gov (United States)

    2013-07-22

    .... I. Self-Regulatory Organization's Statement of the Terms of Substance of the Proposed Rule Change... Basis for, the Proposed Rule Change In its filing with the Commission, the self-regulatory organization... because it will provide member organizations with greater flexibility in managing their personnel...

  10. Design reviews from a regulatory perspective

    International Nuclear Information System (INIS)

    Foster, B.D.

    1991-01-01

    This paper presents views on the role of the licensing engineer in the design process with specific emphasis on design reviews and the automated information management tools that support design reviews. The licensing engineer is seen as an important member of a design review team. The initial focus of the licensing engineer during design reviews is shown to be on ensuring that applicable regulatory requirements are addressed by the design. The utility of an automated tool, such as a commitments management system, to support regulatory requirements identification is discussed. The next responsibility of the licensing engineer is seen as verifying that regulatory requirements are transformed into measurable performance requirements. Performance requirements are shown to provide the basis for developing detailed design review criteria. Licensing engineer input during design reviews is discussed. This input is shown to be especially critical in cases where review findings may impact application of regulatory requirements. The use of automated tools in supporting design reviews is discussed. An information structure is proposed to support design reviews in a regulated environment. This information structure is shown to be useful to activities beyond design reviews. Incorporation of the proposed information structure into the Licensing Support System is proposed

  11. Considering public confidence in developing regulatory programs

    International Nuclear Information System (INIS)

    Collins, S.J.

    2001-01-01

    In the area of public trust and in any investment, planning and strategy are important. While it is accepted in the United States that an essential part of our mission is to leverage our resources to improving Public Confidence this performance goal must be planned for, managed and measured. Similar to our premier performance goal of Maintaining Safety, a strategy must be developed and integrated with our external stake holders but with internal regulatory staff as well. In order to do that, business is to be conducted in an open environment, the basis for regulatory decisions has to be available through public documents and public meetings, communication must be done in clear and consistent terms. (N.C.)

  12. Reassessing Occupational Licensing Of Tour Guides (Opinion Piece

    Directory of Open Access Journals (Sweden)

    Amir SHANI

    2017-06-01

    Full Text Available It is conventionally held that to protect tourists from incompetent and/or unscrupulous tour guides, governments should require guides to be licensed in order to legally practice their profession. Despite the implementation of such regulatory statutes in many countries, it is argued in this opinion paper that the severe drawbacks of licensing demands should be re-evaluated by both policy-makers and tourism scholars. The licensing of guides is not only an ineffective means of quality assurance, with negative consequences for many of those involved, but it also undermines the ethical foundations of a free society. Furthermore, licensing is an archaic practice for ensuring standardization among the members of a profession in a way that is no longer suitable for addressing the challenges of the tourism industry in the 21st century, in which a wide variety of specialized and innovative guided tours are offered to tourists. Although this commentary presents a firm stand against the compulsory licensing of tour guides, it should be seen as an invitation for open discussion among tourism researchers regarding the necessity of licensing tour guides in particular, and of government tourism regulation in general. Moreover, further research is needed to clarify key points on the issue of the professional licensing of tour guides.

  13. Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America

    International Nuclear Information System (INIS)

    Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M.; Ward, Duane L.

    2011-01-01

    The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.

  14. Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M.; Ward, Duane L.

    2011-11-01

    The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.

  15. Quality Management Program

    International Nuclear Information System (INIS)

    1991-10-01

    According to section 35.32, ''Quality Management Program,'' of 10 CFR Part 35, ''Medical Use of Byproduct Material,'' applicants or licensees, as applicable, are required to establish a quality management (QM) program. This regulatory guide provides guidance to licensees and applicants for developing policies and procedures for the QM program. This guide does not restrict or limit the licensee from using other guidance that may be equally useful in developing a QM program, e.g., information available from the Joint Commission on Accreditation of Healthcare Organizations or the American College of Radiology. Any information collection activities mentioned in this regulatory guide are contained as requirements in 10 CFR Part 35, which provides the regulatory basis for this guide. This information collection requirements in 10 CFR Part 35 have been cleared under OMB Clearance No. 3150-0010

  16. Establishment of regulatory framework for the development reactor licensing

    International Nuclear Information System (INIS)

    Jo, Jong C.; Yune, Young G.; Kim, Woong S.; Ahn, Sang K.; Kim, In G.; Kim, Hho J.

    2003-01-01

    With a trend that various types of advanced reactor designs are currently under development worldwide, the Korea Atomic Energy Research Institute has been developing an advanced reactor called ' System-integrated Modular Advanced Reactor (SMART)', which is a small sized integral type pressurized water reactor with a rated thermal power of 330 MW. To demonstrate the safety and the performance of the SMART reactor design, the SMART Research and Development Center has embarked to build a scaled-down pilot plant of SMART, called 'SMART-P' with a rated thermal power of 65 MW. In preparation for the forthcoming applications for both construction permit and operating license of SMART-P in the near future, the Korea Institute of Nuclear Safety is developing a new regulatory framework for licensing review of such a development reactor, which covers establishment of licensing process, identification and resolution of technical and safety issues, development of regulatory evaluation or verification-purpose computer codes and analytical methods, and establishment of design-specific, general design and operating criteria, regulations, and associated regulatory guides. This paper presents the current activities for establishing a regulatory framework for the licensing of a research and development reactor. Discussions are made on the SMART-P development program, the current Korean regulatory framework for reactor licensing, the SMART-P licensing-related issues, and the approach and strategy for developing an effective regulatory framework for the SMART-P licensing

  17. Analysis of ultimate-heat-sink spray ponds. Technical report

    International Nuclear Information System (INIS)

    Codell, R.

    1981-08-01

    This report develops models which can be utilized in the design of certain types of spray ponds used in ultimate heat sinks at nuclear power plants, and ways in which the models may be employed to determine the design basis required by U.S. Nuclear Regulatory Commission Regulatory Guide 1.27

  18. Environmental conditions using thermal-hydraulics computer code GOTHIC for beyond design basis external events

    International Nuclear Information System (INIS)

    Pleskunas, R.J.

    2015-01-01

    In response to the Fukushima Dai-ichi beyond design basis accident in March 2011, the Nuclear Regulatory Commission (NRC) issued Order EA-12-049, 'Issuance of Order to Modify Licenses with Regard to Requirements for Mitigation Strategies Beyond-Design-Basis-External-Events'. To outline the process to be used by individual licensees to define and implement site-specific diverse and flexible mitigation strategies (FLEX) that reduce the risks associated with beyond design basis conditions, Nuclear Energy Institute document NEI 12-06, 'Diverse and Flexible Coping Strategies (FLEX) Implementation Guide', was issued. A beyond design basis external event (BDBEE) is postulated to cause an Extended Loss of AC Power (ELAP), which will result in a loss of ventilation which has the potential to impact room habitability and equipment operability. During the ELAP, portable FLEX equipment will be used to achieve and maintain safe shutdown, and only a minimal set of instruments and controls will be available. Given these circumstances, analysis is required to determine the environmental conditions in several vital areas of the Nuclear Power Plant. The BDBEE mitigating strategies require certain room environments to be maintained such that they can support the occupancy of personnel and the functionality of equipment located therein, which is required to support the strategies associated with compliance to NRC Order EA-12-049. Three thermal-hydraulic analyses of vital areas during an extended loss of AC power using the GOTHIC computer code will be presented: 1) Safety-related pump and instrument room transient analysis; 2) Control Room transient analysis; and 3) Auxiliary/Control Building transient analysis. GOTHIC (Generation of Thermal-Hydraulic Information for Containment) is a general purpose thermal-hydraulics software package for the analysis of nuclear power plant containments, confinement buildings, and system components. It is a volume/path/heat sink

  19. Study of the effects of a tornado on a nuclear plant(from the point of view of civil engineering)

    International Nuclear Information System (INIS)

    Melendro, J.

    2010-01-01

    is to analyze the applicability of Regulatory Guide 1.76 d esign basis Tornado and Tornado Missiles for Nuclear Power Plants , assessing the guide / standard compliance of a nuclear facility with respect to it, identifying the actions required for the compliance if applicable and valuation, with engineering judgment, the benefits for the plant would total or partial implantation of the guide.

  20. 77 FR 64148 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Regulatory...

    Science.gov (United States)

    2012-10-18

    ... Regulatory Guides (RG) RG 1.79, ````Preoperational Testing of Emergency Core Cooling Systems for Pressurized Water Reactors,'' Revision 2 and RG 1.79.1, ``Initial Test Program of Emergency Core Cooling Systems for...

  1. [Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis].

    Science.gov (United States)

    Lu, Zhenghui; Zhou, Yuling; Zhang, Xiaozhou; Zhang, Guimin

    2015-11-01

    Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed.

  2. 76 FR 44155 - Pacific Halibut Fisheries; Catch Sharing Plan for Guided Sport and Commercial Fisheries in Alaska

    Science.gov (United States)

    2011-07-22

    ... Halibut Fisheries II. History of Management in the Guided Sport Halibut Fisheries III. Proposed Catch... consistency and uniformity in halibut sport fishing regulations in all regulatory areas. At that time, the... (649.5 mt). During that time period, guided sport harvests were approximately 1,750,000 lbs (793.8 mt...

  3. Comparative analysis of regulatory elements in different germin-like ...

    African Journals Online (AJOL)

    It was observed that these promoters have important regulatory elements, which are involved in various important functions. These elements have been compared on the basis of location, copy number, and distributed on positive and negative strands. It was also observed that some of these elements are common and ...

  4. Regulatory aspects of NPP safety

    International Nuclear Information System (INIS)

    Kastchiev, G.

    1999-01-01

    Extensive review of the NPP Safety is presented including tasks of Ministry of Health, Ministry of Internal Affairs, Ministry of Environment and Waters, Ministry of Defense in the field of national system for monitoring the nuclear power. In the frame of national nuclear safety legislation Bulgaria is in the process of approximation of the national legislation to that of EC. Detailed analysis of the status of regulatory body, its functions, organisation structure, responsibilities and future tasks is included. Basis for establishing the system of regulatory inspections and safety enforcement as well as intensification of inspections is described. Assessment of safety modifications is concerned with complex program for reconstruction of Units 1-4 of Kozloduy NPP, as well as for modernisation of Units 5 and 6. Qualification and licensing of the NPP personnel, Year 2000 problem, priorities and the need of international assistance are mentioned

  5. Decommissioning of nuclear fuel cycle facilities. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this Safety Guide is to provide guidance to regulatory bodies and operating organizations on planning and provision for the safe management of the decommissioning of non-reactor nuclear fuel cycle facilities. While the basic safety considerations for the decommissioning of nuclear fuel cycle facilities are similar to those for nuclear power plants, there are important differences, notably in the design and operating parameters for the facilities, the type of radioactive material and the support systems available. It is the objective of this Safety Guide to provide guidance for the shutdown and eventual decommissioning of such facilities, their individual characteristics being taken into account

  6. Guide of the environmental impact of the wind farms; Guide de l'etude d'impact sur l'environnement des parcs eoliens

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This guide provides a general approach and a methodology of implementing environmental evaluations of the wind farms: the regulatory framework of the impact study, the methodology of the study, the natural areas, landscape and heritage, noise and public health and the specific case of offshore wind turbines. (A.L.B.)

  7. Level of evidence for reasonable assurance guides to prediction

    International Nuclear Information System (INIS)

    Schweitzer, D.G.; Sastre, C.

    1987-04-01

    Over the past years, the DOE Contractors have produced a great deal of work that has been extensively reviewed and criticized by the Nuclear Regulatory Commission (NRC), the Materials Review Board (MRB) of the DOE, the Advisory Committee on Reactor Safeguards (ACRS), and the technical support group at Brookhaven National Laboratory (BNL). Common aspects of the reviews and criticisms have provided information on the level of evidence required by the scientific community to defend performance claims. Important indicators of the type of evidence that the NRC will require for favorable decisions of reasonable assurance also can be obtained from 10 CFR 60 and its rationale, from NRC guides and Technical Position papers, from past reviews of the DOE programs by NRC Contractors, and from the use of reasonable assurance by the NRC in its 1984 Waste Confidence Decision. This report describes general concepts related to the acceptability and unacceptability of the level of evidence needed to defend claims with reasonable assurance. The concepts were formulated on the basis of analyses of the NRC position papers, and of common aspects of the reviews and criticisms dealing with compliance demonstration

  8. Low enriched uranium fuel conversion and fuel shipping guide

    International Nuclear Information System (INIS)

    1997-01-01

    The analysis of reactor core physics and thermal hydraulics was completed in 1993. A supplement to the Final Safety Analysis Report describing the results of these analyses was submitted to the Nuclear Regulatory Commission along with proposed Technical Specifications in May, 1993. Discussions with the NRC staff led to a submittal of revised proposed Technical Specifications in February, 1994. The analytical work is complete. A second portion of the grant was to develop a fuel shipping guide for university research reactors. Such a guide was developed and is available for use by the research reactor community

  9. Magnetic Field Analysis of Plasma Guide in Galathea Trimyx

    Directory of Open Access Journals (Sweden)

    Jin Xianji

    2016-01-01

    Full Text Available You Galathea Trimyx is a kind of small size, multipole magnetic confinement devices in controlled thermonuclear fusion. Plasma guide is one of important part in Galathea Trimyx which is responsible for transporting fast and slow plasma bunches ejected from plasma gun. The distribution and uniformity of magnetic field in completed plasma guide is analyzed in detail, including in x -axis direction and in z-axis direction. On the basis, the motion of plasma in the guide is discussed.

  10. Competencies Setup for Nuclear Regulatory Staff in Thailand

    International Nuclear Information System (INIS)

    Pingish, Panupong; Siripirom, Lopchai; Nakkaew, Pongpan; Manuwong, Theerapatt; Wongsamarn, Vichian

    2010-01-01

    Competencies setup for regulatory bodies oversee a research reactor and nuclear power reactors in Thailand, concentrating on staff development in areas of review and assessment, inspection and enforcement, authorization, and development of regulations and guides. The regulatory body in Thailand is the Bureau of Nuclear Safety Regulation (BNSR) which belongs to the Office of Atoms for Peace (OAP). The BNSR is divided into 4 groups according to the International Atomic Energy Agency (IAEA). These groups are the nuclear safety administration group, nuclear safety technical support group, nuclear safety assessment and licensing group, and the nuclear installations inspection group. Each group is divided into senior and junior positions. The competencies model was used for implementation of staff qualification, career planning and professional progression by BNSR. Competencies are related to knowledge, skills and attitudes (KSAs) needed to perform their job. A key issue is obtaining competencies for the regulatory bodies. The systematic approach to training (SAT) has been used in several countries for improvement regulator performance. The SAT contains 5 steps, including analysis, design, development, implementation and evaluation, to achieve competencies. The SAT provides a logical progression from the identification of competencies required to perform a job to the design, development and implementation of training using the competencies model. In the first step, BNSR performs an operating analysis of training needs assessment (TNA) by using gap analysis technique, as suggested by IAEA. Individual regulatory bodies address the gap using appropriate training program, after comparing the actual and desired competency profiles to determine the gap. This paper examines competencies setup for regulatory staff of BNSR as a result of gaps analysis to establish a scheme for design characteristics of regulatory staff and training courses, thereby enhancing the regulatory

  11. Review of regulatory requirements for digital I and C systems

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Lee, Cheol Kwon; Lee, Jang Soo [and others

    2001-11-01

    This work analyzed and summarized systematically various regulatory requirements that are necessary to develop digital nuclear instrumentation and control (I and C) systems, especially safety systems. The requirements are categorized into system, hardware, software, and quality assurance aspects. This report provides the explanations of terms and abbreviations to help readers understand. Furthermore, appendices of this report summarize the code and standards corresponding to each principal regulatory requirement. The hierarchical structure of regulatory requirements has Nuclear Energy Laws, Enforcement Regulations of Nuclear Energy Laws, and Notifications of Ministry of Science and Technology as utmost level requirements [In case of the US, 10 CFR 50 Appendix A, 10 CFR 50 Appendix B, 10 CFR 50.55a(h), 10 CFR 50.49, etc.]. The requirements include the Draft Regulatory Guidelines for Digital I and C Systems [In case of the US, Standard Review Plan (NUREG-0800), Regulatory Guide, Branch Technical Position (BTP)], KEPIC as standards [In case of the US, IEEE Standards, IEC Standards, ISA, Military Standard, etc.], and various reports issued by Korea Institute of Nuclear Safety [In case of the US, NUREG reports, EPRI reports, etc.]. This report can be referred for the development of safety grade control equipment, plant protection system, and engineered safety feature actuation system.

  12. Review of regulatory requirements for digital I and C systems

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Lee, Cheol Kwon; Lee, Jang Soo

    2001-11-01

    This work analyzed and summarized systematically various regulatory requirements that are necessary to develop digital nuclear instrumentation and control (I and C) systems, especially safety systems. The requirements are categorized into system, hardware, software, and quality assurance aspects. This report provides the explanations of terms and abbreviations to help readers understand. Furthermore, appendices of this report summarize the code and standards corresponding to each principal regulatory requirement. The hierarchical structure of regulatory requirements has Nuclear Energy Laws, Enforcement Regulations of Nuclear Energy Laws, and Notifications of Ministry of Science and Technology as utmost level requirements [In case of the US, 10 CFR 50 Appendix A, 10 CFR 50 Appendix B, 10 CFR 50.55a(h), 10 CFR 50.49, etc.]. The requirements include the Draft Regulatory Guidelines for Digital I and C Systems [In case of the US, Standard Review Plan (NUREG-0800), Regulatory Guide, Branch Technical Position (BTP)], KEPIC as standards [In case of the US, IEEE Standards, IEC Standards, ISA, Military Standard, etc.], and various reports issued by Korea Institute of Nuclear Safety [In case of the US, NUREG reports, EPRI reports, etc.]. This report can be referred for the development of safety grade control equipment, plant protection system, and engineered safety feature actuation system

  13. The regulatory requirements, design bases, researches and assessments in the field of Ukrainian NPP's seismic safety

    International Nuclear Information System (INIS)

    Mykolaychuk, O.; Mayboroda, O.; Krytskyy, V.; Karnaukhov, O.

    2001-01-01

    State Nuclear Regulatory Authority of Ukraine (SNRA) pays large attention to problem of nuclear installations seismic stability. As a result the seismic design regulatory guides is revised, additional seismic researches of NPP sites are conducted, seismic reassessment of NPP designs were begun. The experts involved address all seismic related factors under close contact with the staff of NPP, design institutes and research organizations. This document takes stock on the situation and the research programs. (author)

  14. The process of regulatory authorization. A report by the CRPPH expert group on the regulatory application of Authorization (EGRA)

    International Nuclear Information System (INIS)

    2006-01-01

    Governments and regulatory authorities are responsible for the definition of regulatory controls or conditions, if any, that should be applied to radioactive sources or radiation exposure situations in order to protect the public, workers and the environment. Although countries use different policy and structural approaches to fulfill this responsibility, the recommendations of the International Commission on Radiological Protection (ICRP) are generally used as at least part of the basis for protection. Previously, the ICRP recommended the use of variable approaches to protection. New ICRP recommendations are proposing a single, conceptually simple and self-coherent approach to defining appropriate protection under all circumstances. While the ICRP has been reviewing the broad principles of protection, the NEA Committee on Radiation Protection and Public Health (CRPPH) has been focusing its efforts on how radiological protection could be better implemented by governments and/or regulatory authorities. To this end, the CRPPH has developed a concept that it calls ''the process of regulatory authorization''. It is described in detail in this report, and is intended to help regulatory authorities apply more transparently, coherently and simply the broad recommendations of the ICRP to the real-life business of radiological protection regulation and application. In developing this concept, the CRPPH recognizes the importance of an appropriate level of stakeholder involvement in the process. (author)

  15. A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Haitao Guo

    2017-01-01

    Full Text Available The discovery of cis-regulatory modules (CRMs is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it with five existing methods. Experimental results show that ComSPS performs better than them.

  16. A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model

    Science.gov (United States)

    2017-01-01

    The discovery of cis-regulatory modules (CRMs) is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it with five existing methods. Experimental results show that ComSPS performs better than them. PMID:28497059

  17. Advances in Canadian regulatory practice

    International Nuclear Information System (INIS)

    Waddington, J.G.

    1993-03-01

    The new General Amendments to the Regulations, new recommendations on dose limits, developments in techniques and safety thinking, and aging of plant are all contributing to the need for a significant number of new regulatory document on a wide range of topics. this paper highlights a number of initiatives taken in response to these pressures, giving a brief background to the initiative and, where possible, outlining some of the ideas in the document licensing guides on new dose limits, dosimetry, safety analysis, reliability, fault tree analysis, reporting requirements, human factors, software, the ALARA principle, backfitting and the licensing process. (Author) 29 refs., fig., 4 tabs

  18. PFP functional development planning guide

    International Nuclear Information System (INIS)

    SINCLAIR, J.C.

    1999-01-01

    The PFP Functional Development Planning Guide presents the strategy and process used for the identification, development, and analysis of functions (activities) necessary to satisfy the requirements within the Plutonium Finishing Plant (PFP) integrated project baseline. The functional analysis will provide the basis for the development of a function driven work breakdown structure. Future revisions to this document will include as attachments the results of the PFP Functional Analysis resulting from this approach. This document is intended be a Project-owned management tool. As such, the guide will periodically require revisions resulting from improvements of the information, processes, and techniques as now described

  19. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    Science.gov (United States)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  20. Design basis programs and improvements in plant operation

    International Nuclear Information System (INIS)

    Metcalf, M.F.

    1991-01-01

    Public Service Electric and Gas (PSE and G) Company operates three commercial nuclear power plants in southern New Jersey. The three plants are of different designs and vintages (two pressurized water reactors licensed in 1976 and 1980 and one boiling water reactor licensed in 1986). As the industry recognized the need to develop design basis programs, PSE and G also realized the need after a voluntary 52-day shutdown of one unit because of electrical design basis problems. In its drive to be a premier electric utility, PSE and G has been aggressively active in developing design basis documents (DBDs) with supporting projects and refined uses to obtain the expected value and see the return on investment. Progress on Salem is nearly 75% complete, while Hope Creek is 20% complete. To data, PSE and G has experienced success in the use of DBDs in areas such as development of plant modifications, development of the reliability-centered maintenance program, procedure upgrades, improved document retrieval, resolution of regulatory issues, and training. The paper examines the design basis development process, supporting projects, and expected improvements in plant operations as a result of these efforts

  1. Global Social Media Directory: A Resource Guide

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, Christine F.; Piatt, Andrew W.

    2014-10-23

    The Global Social Media Directory is a resource guide providing information on social networking services around the globe. This information changes rapidly, therefore, this document will be updated on a regular basis and as funding permits.

  2. Management of waste from the use of radioactive material in medicine, industry, agriculture, research and education safety guide

    CERN Document Server

    2005-01-01

    This Safety Guide provides recommendations and guidance on the > fulfilment of the safety requirements established in Safety Standards > Series No. WS-R-2, Predisposal Management of Radioactive Waste, > Including Decommissioning. It covers the roles and responsibilities of > different bodies involved in the predisposal management of radioactive > waste and in the handling and processing of radioactive material. It > is intended for organizations generating and handling radioactive > waste or handling such waste on a centralized basis for and the > regulatory body responsible for regulating such activities.  > Contents: 1. Introduction; 2. Protection of human health and the > environment; 3. Roles and responsibilities; 4. General safety > considerations; 5. Predisposal management of radioactive waste; 6. > Acceptance of radioactive waste in disposal facilities; 7. Record > keeping and reporting; 8. Management systems; Appendix I: Fault > schedule for safety assessment and environmental impact assessment; > Ap...

  3. A structural basis for the regulatory inactivation of DnaA.

    Science.gov (United States)

    Xu, Qingping; McMullan, Daniel; Abdubek, Polat; Astakhova, Tamara; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C; Duan, Lian; Elsliger, Marc-Andre; Feuerhelm, Julie; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Johnson, Hope A; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Sri Krishna, S; Kumar, Abhinav; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L; Sefcovic, Natasha; Trame, Christine; van den Bedem, Henry; Weekes, Dana; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2009-01-16

    Regulatory inactivation of DnaA is dependent on Hda (homologous to DnaA), a protein homologous to the AAA+ (ATPases associated with diverse cellular activities) ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 A resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174 and 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation that promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type of mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel beta-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP-bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda.

  4. Design guide for Category III reactors: pool type reactors

    International Nuclear Information System (INIS)

    Brynda, W.J.; Lobner, P.R.; Powell, R.W.; Straker, E.A.

    1978-11-01

    The Department of Energy (DOE) in the ERDA Manual requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirement of Category III reactor structures, components, and systems

  5. Below regulatory concern standards: The limits of state and local authority

    International Nuclear Information System (INIS)

    Silverman, D.J.

    1990-01-01

    The paper discusses: (1) the scope of the Nuclear Regulatory Commission's authority to develop and implement below regulatory concern or BRC standards; and (2) the limitations on the legal authority of states and local governments to create impediments to full implementation of such standards. The paper demonstrates that the NRC is acting well within its statutory authority in developing BRC regulations and guidelines, and that the ability of state and local governments to impede generators' use of those regulations and guidelines on the basis of legal or regulatory initiatives is substantially circumscribed. While some generators may be reluctant, as a result of political factors, to utilize BRC standards, the decision whether or not to use such standards should not be made without careful consideration of the applicable legal and regulatory limitations on state and local authority

  6. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory NolR

    Science.gov (United States)

    The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory...

  7. Electromobility guide; Wegweiser Elektromobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Becks, Thomas; De Doncker, Rik; Karg, Ludwig; Rehtanz, Christian; Reinhardt, Andreas-Michael; Willums, Jan-Olaf [eds.

    2010-07-01

    Knowing about funded projects and their results helps to safeguard own innovation activities, promotes precompetition know-how transfer and makes it easier to use synergetic effects. This is where the new ''Electromobility Guide'' has a contribution to make. It gives the reader basic information on more than 150 national and international projects about electromobility. It names contact partners and gives corresponding details to make it easier to collect additional information. Our intention is for the Electromobility Guide to act as an incentive for sharing current, authentic, correct and reliable information about all electromobility projects in order to expand the joint data basis. Please help us in this respect and support electromobility in Germany with your knowledge. (orig.)

  8. Impact of regulatory science on global public health

    Directory of Open Access Journals (Sweden)

    Meghal Patel

    2012-07-01

    Full Text Available Regulatory science plays a vital role in protecting and promoting global public health by providing the scientific basis for ensuring that food and medical products are safe, properly labeled, and effective. Regulatory science research was first developed for the determination of product safety in the early part of the 20th Century, and continues to support innovation of the processes needed for regulatory policy decisions. Historically, public health laws and regulations were enacted following public health tragedies, and often the research tools and techniques required to execute these laws lagged behind the public health needs. Throughout history, similar public health problems relating to food and pharmaceutical products have occurred in countries around the world, and have usually led to the development of equivalent solutions. For example, most countries require a demonstration of pharmaceutical safety and efficacy prior to marketing these products using approaches that are similar to those initiated in the United States. The globalization of food and medical products has created a shift in regulatory compliance such that gaps in food and medical product safety can generate international problems. Improvements in regulatory research can advance the regulatory paradigm toward a more preventative, proactive framework. These improvements will advance at a greater pace with international collaboration by providing additional resources and new perspectives for approaching and anticipating public health problems. The following is a review of how past public health disasters have shaped the current regulatory landscape, and where innovation can facilitate the shift from reactive policies to proactive policies.

  9. Impact of regulatory science on global public health.

    Science.gov (United States)

    Patel, Meghal; Miller, Margaret Ann

    2012-07-01

    Regulatory science plays a vital role in protecting and promoting global public health by providing the scientific basis for ensuring that food and medical products are safe, properly labeled, and effective. Regulatory science research was first developed for the determination of product safety in the early part of the 20th Century, and continues to support innovation of the processes needed for regulatory policy decisions. Historically, public health laws and regulations were enacted following public health tragedies, and often the research tools and techniques required to execute these laws lagged behind the public health needs. Throughout history, similar public health problems relating to food and pharmaceutical products have occurred in countries around the world, and have usually led to the development of equivalent solutions. For example, most countries require a demonstration of pharmaceutical safety and efficacy prior to marketing these products using approaches that are similar to those initiated in the United States. The globalization of food and medical products has created a shift in regulatory compliance such that gaps in food and medical product safety can generate international problems. Improvements in regulatory research can advance the regulatory paradigm toward a more preventative, proactive framework. These improvements will advance at a greater pace with international collaboration by providing additional resources and new perspectives for approaching and anticipating public health problems. The following is a review of how past public health disasters have shaped the current regulatory landscape, and where innovation can facilitate the shift from reactive policies to proactive policies. Copyright © 2012. Published by Elsevier B.V.

  10. Acceptance criteria for the physical protection upgrade rule requirements for fixed sites. Information guide

    International Nuclear Information System (INIS)

    Dwyer, P.

    1980-09-01

    This document has been developed as a tool to assist in providing consistent evaluation of upgraded physical security plans submitted in response to the Physical Protection Upgrade Rule, effective March 25, 1980. It presents a means for assuring licensee compliance with every regulatory requirement of particular significance to the protection of the public health and safety. Acceptance criteria are included to determine the extent to which each licensee meets the regulatory requirements. The format parallels Regulatory Guide 5.52, Standard Format and Content of a Licensee Physical Protection Plan for Strategic Special Nuclear Material at Fixed Sites

  11. 77 FR 40385 - Withdrawal of Regulatory Guide 7.3; Procedures for Picking Up and Receiving Packages of...

    Science.gov (United States)

    2012-07-09

    ... Picking Up and Receiving Packages of Radioactive Material AGENCY: Nuclear Regulatory Commission. ACTION.... Nuclear Regulatory Commission (NRC or Commission) is withdrawing RG 7.3, ``Procedures for Picking Up and... Public Document Room (PDR) reference staff at 1-800-397-4209, or 301-415-4737, or by email at PDR...

  12. Seismic methodology in determining basis earthquake for nuclear installation

    International Nuclear Information System (INIS)

    Ameli Zamani, Sh.

    2008-01-01

    Design basis earthquake ground motions for nuclear installations should be determined to assure the design purpose of reactor safety: that reactors should be built and operated to pose no undue risk to public health and safety from earthquake and other hazards. Regarding the influence of seismic hazard to a site, large numbers of earthquake ground motions can be predicted considering possible variability among the source, path, and site parameters. However, seismic safety design using all predicted ground motions is practically impossible. In the determination of design basis earthquake ground motions it is therefore important to represent the influences of the large numbers of earthquake ground motions derived from the seismic ground motion prediction methods for the surrounding seismic sources. Viewing the relations between current design basis earthquake ground motion determination and modem earthquake ground motion estimation, a development of risk-informed design basis earthquake ground motion methodology is discussed for insight into the on going modernization of the Examination Guide for Seismic Design on NPP

  13. Defense-in-depth approach against a beyond design basis event

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, H., E-mail: Hoa.hoang@ge.com [GE Hitachi Nuclear Energy, 1989 Little Orchard St., 95125 San Jose, California (United States)

    2013-10-15

    The US industry, with the approval of the Nuclear Regulatory Commission, is promoting an approach to add diverse and flexible mitigation strategies, or Flex, that will increase the defense-in-depth capability for the nuclear power plants in the event of beyond design basis event, such as at the Fukushima Dai-ichi station. The objective of Flex is to establish and indefinite coping capability to prevent damage to the fuel in the core and spent fuel pool, and to maintain the containment function by utilizing installed equipment, on-site portable equipment and pre-staged off-site resources. This capability will address both an extended loss of all Ac power and a loss of ultimate heat sink which could arise following a design basis event with additional failures, and conditions from a beyond design basis event. (author)

  14. Defense-in-depth approach against a beyond design basis event

    International Nuclear Information System (INIS)

    Hoang, H.

    2013-10-01

    The US industry, with the approval of the Nuclear Regulatory Commission, is promoting an approach to add diverse and flexible mitigation strategies, or Flex, that will increase the defense-in-depth capability for the nuclear power plants in the event of beyond design basis event, such as at the Fukushima Dai-ichi station. The objective of Flex is to establish and indefinite coping capability to prevent damage to the fuel in the core and spent fuel pool, and to maintain the containment function by utilizing installed equipment, on-site portable equipment and pre-staged off-site resources. This capability will address both an extended loss of all Ac power and a loss of ultimate heat sink which could arise following a design basis event with additional failures, and conditions from a beyond design basis event. (author)

  15. Legislative and regulatory aspects of nuclear power reactor licensing in the U.S.A

    International Nuclear Information System (INIS)

    Malsch, M.G.

    1976-01-01

    An explanation of the origins, statutory basis and development of the present regulatory system in the US. A description of the various actions which must be taken by a license applicant and by the USNRC before a nuclear power plant can be constructed and placed on-line. Account of the current regulatory practices followed by the USNRC in licensing nuclear power reactors. (orig./HP) [de

  16. Safeguards Implementation Practices Guide on Provision of Information to the IAEA

    International Nuclear Information System (INIS)

    2016-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement and is furthered through a common understanding of the respective rights and obligations of States and the IAEA. To address this, in 2012 the IAEA published IAEA Services Series No. 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding and improving cooperation in safeguards implementation. To meet their safeguards obligations, States may establish different processes and procedures at the national level, and set up their infrastructure to meet their specific needs. Indeed, a variety of approaches are to be expected, owing to differences in the size and complexity of States’ nuclear programmes, their regulatory framework and other factors. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. This SIP Guide addresses the important topic of the provision of information by States to the IAEA. Declarations by States form the basis for IAEA verification activities, and the quality and timeliness of such declarations impact significantly the efficiency of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and their use is voluntary. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear

  17. Regulation of Federal radioactive waste activities. Report to Congress on extending the Nuclear Regulatory Commission's licensing or regulatory authority to Federal radioactive waste storage and disposal activities

    International Nuclear Information System (INIS)

    1979-09-01

    The report contains two recommendations for extending the Commission's regulatory authority: (1) NRC licensing authority should be extended to cover all new DOE facilities for disposal of transuranic (TRU) waste and nondefense low-level waste. (2) A pilot program, focused on a few specific DOE waste management activities, should be established to test the feasibility of extending NRC regulatory authority on a consultative basis to DOE waste management activities not now covered by NRC's licensing authority or its extension as recommended in Recommendation 1

  18. Probabilistic safety analysis procedures guide, Sections 8-12. Volume 2, Rev. 1

    International Nuclear Information System (INIS)

    McCann, M.; Reed, J.; Ruger, C.; Shiu, K.; Teichmann, T.; Unione, A.; Youngblood, R.

    1985-08-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. It will be revised as comments are received, and as experience is gained from its use. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of issues affecting reactor safety. The first volume of the guide describes the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant (i.e., intrinsic to plant operation) and from loss of off-site electric power. The scope includes human reliability analysis, a determination of the importance of various core damage accident sequences, and an explicit treatment and display of uncertainties for key accident sequences. This second volume deals with the treatment of the so-called external events including seismic disturbances, fires, floods, etc. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance). This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are valuable for regulatory decision making. For internal events, methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study. For external events, more explicit guidance is given

  19. Continuous improvement of the regulatory framework for the control of medical exposure

    International Nuclear Information System (INIS)

    Larcher, Ana M.; Ortiz Lopez, Pedro; Arias, Cesar; Marechal, Maria H.; Hernandez Alvarez, Ramon; Ferrer Garcia, Natividad; Castaneda Mucino, Antonia; Faller, Blanca

    2008-01-01

    One of the key elements to guide the improvement of the regulatory control is the availability of a self-assessment tool for regulatory performance. Although there is general guidance on self-assessment for regulators and users (IAEA), there is a need for more specific advice on how to address challenges and difficulties faced by regulatory bodies, when regulating radiation protection of patients. Examples of these challenges are the need for regulatory initiatives, in cooperation with health and education authorities, professional bodies and equipment suppliers, and to put in place necessary elements that are beyond responsibility of individual user of radiation, to enable them compliance with safety standards. Purpose: Within the programme of the Ibero American Forum of Nuclear and Radiation Safety Regulatory Organizations, a project to develop such a self-assessment tool for the regulatory control of medical exposure has been designed. Method: National experiences in transposing and enforcing the international radiation safety standards, as to how the requirements are included in national regulations are reviewed. Further, difficulties to the implementation of safety requirements are analyzed and a self-assessment approach and possible regulatory solutions a are presented. Results and discussion: In this study the following documents are being produced: 1) transposition of international requirements into national regulations in the six countries of the Forum, 2) difficulties to implement and enforce the requirements, 3) guidance on self-assessment of regulatory framework for medical exposure, 4) suggested contribution to the revision of international radiation safety standards. (author)

  20. Below regulatory concern - or simply exempt?

    International Nuclear Information System (INIS)

    Brodsky, A.

    1991-01-01

    The US Nuclear Regulatory Commission published a policy statement last summer on ''below regulatory concern'' (BRC), which exempted small quantities of radioactive material from regulatory control and would allow the deregulated disposal of some low level waste. The policy drew opposition from several groups. NRC is not planning to revise its BRC policy statement, but wants to develop a concensus on how to implement the policy. Although the Commission's publication of a long needed policy framework for guiding exemption decisions should be welcomed by those of us who have been concerned with making such decisions, there is an urgent need for further consensus building. The policy statement offers only broad guidelines, some of which could be confusing and seem contradictory. The policy statement by itself could further erode public confidence in the NRC's commitment to specific limits of risk, and the ability of its staff to independently evaluate the risks. Another reason why it is appropriate and urgent to embark upon consensus building involving all parties and the public, is that the risks of low level radioactive waste disposal as practiced and proposed in the United States have long been exaggerated in biased reports that receive most media attention. A consensus process needs to be established so that the public can have confidence that its concerns have been properly addressed. (author)

  1. Guide relative to the regulatory requirements applicable to the radioactive materials transport in airport area

    International Nuclear Information System (INIS)

    2006-02-01

    This guide makes an inventory of all the points necessary for the correct functioning of the transport of radioactive materials in airport zone. Stowage of the parcels, program of radiological protection (P.R.P.), operation of transport, quality assurance, radiation dose evaluation, radiation monitoring, dose optimization, storage management, are the principal points of this guide. (N.C.)

  2. Regulatory experience in nuclear power station decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.; Waters, R.E.; Taylor, F.E.; Burrows, P.I.

    1995-01-01

    In the UK, decommissioning on a licensed nuclear site is regulated and controlled by HM Nuclear Installations Inspectorate on behalf of the Health and Safety Executive. The same legislative framework used for operating nuclear power stations is also applied to decommissioning activities and provides a continuous but flexible safety regime until there is no danger from ionising radiations. The regulatory strategy is discussed, taking into account Government policy and international guidance for decommissioning and the implications of the recent white paper reviewing radioactive waste management policy. Although each site is treated on a case by case basis as regulatory experience is gained from decommissioning commercial nuclear power stations in the UK, generic issues have been identified and current regulatory thinking on them is indicated. Overall it is concluded that decommissioning is an evolving process where dismantling and waste disposal should be carried out as soon as reasonably practicable. Waste stored on site should, where it is practical and cost effective, be in a state of passive safety. (Author)

  3. High integrity software for nuclear power plants: Candidate guidelines, technical basis and research needs. Main report, Volume 2

    International Nuclear Information System (INIS)

    Seth, S.; Bail, W.; Cleaves, D.; Cohen, H.; Hybertson, D.; Schaefer, C.; Stark, G.; Ta, A.; Ulery, B.

    1995-06-01

    The work documented in this report was performed in support of the US Nuclear Regulatory Commission to examine the technical basis for candidate guidelines that could be considered in reviewing and evaluating high integrity computer e following software development and assurance activities: Requirements specification; design; coding; verification and validation, inclukding static analysis and dynamic testing; safety analysis; operation and maintenance; configuration management; quality assurance; and planning and management. Each activity (framework element) was subdivided into technical areas (framework subelements). The report describes the development of approximately 200 candidate guidelines that span the entire ran e identification, categorization and prioritization of technical basis for those candidate guidelines; and the identification, categorization and prioritization of research needs for improving the technical basis. The report has two volumes: Volume 1, Executive Summary includes an overview of the framwork and of each framework element, the complete set of candidate guidelines, the results of the assessment of the technical basis for each candidate guideline, and a discussion of research needs that support the regulatory function; this document, Volume 2, is the main report

  4. High integrity software for nuclear power plants: Candidate guidelines, technical basis and research needs. Main report, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Seth, S.; Bail, W.; Cleaves, D.; Cohen, H.; Hybertson, D.; Schaefer, C.; Stark, G.; Ta, A.; Ulery, B. [Mitre Corp., McLean, VA (United States)

    1995-06-01

    The work documented in this report was performed in support of the US Nuclear Regulatory Commission to examine the technical basis for candidate guidelines that could be considered in reviewing and evaluating high integrity computer e following software development and assurance activities: Requirements specification; design; coding; verification and validation, inclukding static analysis and dynamic testing; safety analysis; operation and maintenance; configuration management; quality assurance; and planning and management. Each activity (framework element) was subdivided into technical areas (framework subelements). The report describes the development of approximately 200 candidate guidelines that span the entire ran e identification, categorization and prioritization of technical basis for those candidate guidelines; and the identification, categorization and prioritization of research needs for improving the technical basis. The report has two volumes: Volume 1, Executive Summary includes an overview of the framwork and of each framework element, the complete set of candidate guidelines, the results of the assessment of the technical basis for each candidate guideline, and a discussion of research needs that support the regulatory function; this document, Volume 2, is the main report.

  5. Guide to the economic regulation of the electricity industry

    International Nuclear Information System (INIS)

    1999-06-01

    Guide to the Economic Regulation of the Electricity Industry, part of the series of OXERA Guides to Regulation, is designed as an essential work of reference for those who work in regulation and for practitioners who need to understand the needs and mechanics of regulation. The 154-page document provides: comprehensive coverage of the institutional and legal framework which defines the regulation of the electricity industry; an examination of current regulatory issues and developments in the industry; explanations of the roles of the key players; a condensed account of all the relevant legal documents; coverage of the industry in Scotland and Northern Ireland. (Author)

  6. National legislative and regulatory activities

    International Nuclear Information System (INIS)

    2015-01-01

    uses of nuclear energy, signed on 1 September 2014, in Beijing; Nuclear security - Order No. 181/2014 for approval of norms regarding the protection of nuclear installation against cyber threats; Nuclear safety and radiological protection - Order No. 51/2015 for approval of the Nuclear Safety Guide regarding industrial codes and standards for nuclear power plants; Order No. 199/2015 for approval of the norms regarding nuclear safety policy and technical operation conditions for nuclear installations; Order No. 177/2015 for approval of norms regarding nuclear safety policy and independent assessment of nuclear safety; Order No. 180/2015 for approval of the guide regarding independent verification of the nuclear safety analyses and evaluation for nuclear installations; Order No. 198/2015 for approval of the guide regarding the framework and content of the nuclear safety final report for nuclear power plants; 7 - Slovak Republic: International co-operation - Details about international agreements concluded by the Slovak Republic; Liability and compensation - Regulation No. 170/2015 Establishing a List of Radioactive Materials, Their Quantities and Their Physical and Chemical Parameters Justifying the Low Risk of Nuclear Damage; General legislation - amendments to existing NRA regulations; 8 - Slovenia: General legislation - Amendments to the Ionising Radiation Protection and Nuclear Safety Act; 9 - Switzerland: Radioactive waste management; Liability and compensation Obligation of insurance, risks not covered by private insurers - Partial revision of the Ordinance on Nuclear Third Party Liability (ORCN); 10 - USA: Licensing and regulatory infrastructure - Commission authorises issuance of combined licence for Fermi Nuclear Power Plant in Monroe County, Michigan; Radioactive waste management - NRC conducts final public meetings on Yucca Mountain Environmental Report Supplement

  7. 78 FR 64030 - Monitoring Criteria and Methods To Calculate Occupational Radiation Doses

    Science.gov (United States)

    2013-10-25

    ... constitute backfitting as defined in 10 CFR 50.109 (the Backfit Rule) and would not be otherwise inconsistent... licensing basis for the facility. If this draft regulatory guide is finalized, the NRC may apply the revised... improvements in all published guides are encouraged at any time. ADDRESSES: You may submit comment by any of...

  8. Guidelines for IAEA International Regulatory Review Teams (IRRTs)

    International Nuclear Information System (INIS)

    2002-01-01

    reviewed by the experts. The scope includes the working protocol that is adopted to conduct the missions, identifies the advanced reference material the regulatory body should provide together with review points and specimen questions that are used to help guide the interviews conducted by the experts. The report also provides guidance on the format and content of the mission report that is to be produced to record the findings of the mission

  9. Shutdown, dismantling and decommissioning of nuclear facilities in France - Guide no. 6 - Update of 30/08/2016

    International Nuclear Information System (INIS)

    2016-01-01

    After a recall of the regulatory context and references, this guide addresses the strategy for an immediate dismantling of an installation, the dismantling planning, the different phases of the end of life of nuclear base installations, the authorization of definitive stop and dismantling, the preliminary phase preparing the definitive stop (regulatory context, technical aspects), the dismantling phase (regulatory context, technical aspects for the concerned operations, the security functions, hardware important for security, taking ageing into account), and the final status of installations (downgrading, constraints)

  10. Technical basis and evaluation criteria for an air sampling/monitoring program

    International Nuclear Information System (INIS)

    Gregory, D.C.; Bryan, W.L.; Falter, K.G.

    1993-01-01

    Air sampling and monitoring programs at DOE facilities need to be reviewed in light of revised requirements and guidance found in, for example, DOE Order 5480.6 (RadCon Manual). Accordingly, the Oak Ridge National Laboratory (ORNL) air monitoring program is being revised and placed on a sound technical basis. A draft technical basis document has been written to establish placement criteria for instruments and to guide the ''retrospective sampling or real-time monitoring'' decision. Facility evaluations are being used to document air sampling/monitoring needs, and instruments are being evaluated in light of these needs. The steps used to develop this program and the technical basis for instrument placement are described

  11. Standard guide for preparation of plastics and polymeric specimens for microstructural examination

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This guide covers recommended procedures and guidelines for the preparation of plastic and polymeric specimens for microstructural examination by light and electron microscopy. 1.2 This guide is applicable to most semi-rigid and rigid plastics, including engineering plastics. This guide is also applicable to some non-rigid plastics. 1.3 The procedures and guidelines presented in this guide are those which generally produce satisfactory specimens. This guide does not describe the variations in techniques required to solve individual problems. 1.4 Many detailed descriptions of grinding and polishing of plastics and polymers are available (1-7). 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  12. WHO informal consultation on scientific basis for regulatory evaluation of candidate human vaccines from plants, Geneva, Switzerland, 24-25 January 2005.

    NARCIS (Netherlands)

    Laan, Jan Willem van der; Minor, Philip; Mahoney, Richard; Arntzen, Charles; Shin, Jinho; Wood, David

    2006-01-01

    In January 2005, WHO convened a meeting of leading experts in plant-derived vaccines and experts from regulatory authorities for an informal discussion on the state-of-the-art and to analyse whether specific guidance might be needed for plant-derived vaccines that is not yet provided by regulatory

  13. Preliminary Evaluation Methodology of ECCS Performance for Design Basis LOCA Redefinition

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Ahn, Seung Hoon; Seul, Kwang Won

    2010-01-01

    To improve their existing regulations, the USNRC has made efforts to develop the risk-informed and performance-based regulation (RIPBR) approaches. As a part of these efforts, the rule revision of 10CFR50.46 (ECCS Acceptance Criteria) is underway, considering some options for 4 categories of spectrum of break sizes, ECCS functional reliability, ECCS evaluation model, and ECCS acceptance criteria. Since the potential for safety benefits and unnecessary burden reduction from design basis LOCA redefinition is high relative to other options, the USNRC is proceeding with the rulemaking for design basis LOCA redefinition. An instantaneous break with a flow rate equivalent to a double ended guillotine break (DEGB) of the largest primary piping system in the plant is widely recognized as an extremely unlikely event, while redefinition of design basis LOCA can affect the existing regulatory practices and approaches. In this study, the status of the design basis LOCA redefinition and OECD/NEA SMAP (Safety Margin Action Plan) methodology are introduced. Preliminary evaluation methodology of ECCS performance for LOCA is developed and discussed for design basis LOCA redefinition

  14. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  15. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  16. Guide to the safe handling of radioactive wastes at nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    This guide discusses the responsibilities of the regulatory authorities, the design considerations of waste management systems and the source and characteristics of waste. Present techniques for treating, conditioning, storing and disposing of gaseous, liquid and solid wastes on and from the site are summarized, and a consensus of good practice in waste management based on current knowledge and experience is given. The guide also contains brief chapters on transport of wastes, monitoring systems, safety analyses and a review of future trends in waste management

  17. Recommended revisions to nuclear regulatory commission seismic design criteria

    International Nuclear Information System (INIS)

    Coats, D.W.

    1981-01-01

    Task Action Plan (TAP) A-40 was developed by consolidating specific technical assistance studies initiated to identify and quantify the conservatism inherent in the seismic design sequence of current NRC criteria. Task 10 of TAP A-40 provided a technical review of the results of the other nine engineering and seismological tasks in TAP A-40 and recommended changes to the existing NRC criteria based on this review. We used the team approach to accomplish the objectives of Task 10 in an efficient manner and to provide the best technical product possible within the limited time available. The team consisted of a core group of Lawrence Livermore National Laboratory personnel and selected consultants. The recommendations summarized in this paper were not based solely on the results of the tasks in TAP A-40 but went far beyond that data base to encompass all available and appropriate literature. Some recommendations are based on the expertise of core members and consultants that stem from unpublished data, research, and experience. Copies of the pertinent sections of the Standard Review Plan (SRP) and Regulatory Guides as well as the reports developed under TAP A-40 were provided to the participants. These reports, other available engineering literature, and the experience of the consultants and core group provided technical basis for the recommendations. (orig./HP)

  18. Radiation safety and regulatory aspects in Medical Facilities

    International Nuclear Information System (INIS)

    Banerjee, Sharmila

    2017-01-01

    Radiation safety and regulatory aspect of medical facilities are relevant in the context where radiation is used in providing healthcare to human patients. These include facilities, which carry out radiological procedures in diagnostic radiology, including dentistry, image-guided interventional procedures, nuclear medicine, and radiation therapy. The safety regulations provide recommendations and guidance on meeting the requirements for the safe use of radiation in medicine. The different safety aspects which come under its purview are the personnel involved in medical facilities where radiological procedures are performed which include the medical practitioners, radiation technologists, medical physicists, radiopharmacists, radiation protection and over and above all the patients. Regulatory aspects cover the guidelines provided by ethics committees, which regulate the administration of radioactive formulation in human patients. Nuclear medicine is a modality that utilizes radiopharmaceuticals either for diagnosis of physiological disorders related to anatomy, physiology and patho-physiology and for diagnosis and treatment of cancer

  19. Good Practice Guide Waste Minimization/Pollution Prevention

    Energy Technology Data Exchange (ETDEWEB)

    J Dorsey

    1999-10-14

    This Good Practice Guide provides tools, information, and examples for promoting the implementation of pollution prevention during the design phases of U.S. Department of Energy (DOE) projects. It is one of several Guides for implementing DOE Order 430.1, Life-cycle Asset Management. DOE Order 430.1 provides requirements for DOE, in partnership with its contractors, to plan, acquire, operate, maintain, and dispose of physical assets. The goals of designing for pollution prevention are to minimize raw material consumption, energy consumption, waste generation, health and safety impacts, and ecological degradation over the entire life of the facility (EPA 1993a). Users of this Guide will learn to translate national policy and regulatory requirements for pollution prevention into action at the project level. The Guide was written to be applicable to all DOE projects, regardless of project size or design phase. Users are expected to interpret the Guide for their individual project's circumstances, applying a graded approach so that the effort is consistent with the anticipated waste generation and resource consumption of the physical asset. This Guide employs a combination of pollution prevention opportunity assessment (PPOA) methods and design for environment (DfE) philosophies. The PPOA process was primarily developed for existing products, processes, and facilities. The PPOA process has been modified in this Guide to address the circumstances of the DOE design process as delineated in DOE Order 430.1 and its associated Good Practice Guides. This modified form of the PPOA is termed the Pollution Prevention Design Assessment (P2DA). Information on current nationwide methods and successes in designing for the environment also have been reviewed and are integrated into this guidance.

  20. Upgrading Atucha 1 nuclear power plant. Regulatory perspective

    International Nuclear Information System (INIS)

    Caruso, G.

    1998-01-01

    Atucha 1 nuclear power plant has unique design and its commercial operation started in 1974. The upgrading decisions, the basis for an upgrading program and its status of implementation are presented. Regulatory decisions derived from the performance-based approach have the advantage that they enable balancing of the overall plant risk and identifying at different plant levels the areas where improvements are necessary. (author)

  1. CSA guide to Canadian wind turbine codes and standards

    International Nuclear Information System (INIS)

    2008-01-01

    The Canadian wind energy sector has become one of the fastest-growing wind energy markets in the world. Growth of the industry has been supported by various government agencies. However, many projects have experienced cost over-runs or cancellations as a result of unclear regulatory requirements, and wind energy developers are currently subject to a variety of approval processes involving several different authorities. This Canadian Standards Association (CSA) guide provided general information on codes and standards related to the design, approval, installation, operation, and maintenance of wind turbines in Canada. CSA codes and standards were developed by considering 5 new standards adopted by the International Electrotechnical Commission (IEC) Technical Committee on Wind Turbines. The standards described in this document related to acoustic noise measurement techniques; power performance measurements of electricity-producing wind turbines; lightning protection for wind turbine generator systems; design requirements for turbines; and design requirements for small wind turbines. The guide addressed specific subject areas related to the development of wind energy projects that involve formal or regulatory approval processes. Subject areas included issues related to safety, environmental design considerations, site selection, and mechanical systems. Information on associated standards and codes was also included

  2. Costs of regulatory compliance: categories and estimating techniques

    International Nuclear Information System (INIS)

    Schulte, S.C.; McDonald, C.L.; Wood, M.T.; Cole, R.M.; Hauschulz, K.

    1978-10-01

    Use of the categorization scheme and cost estimating approaches presented in this report can make cost estimates of regulation required compliance activities of value to policy makers. The report describes a uniform assessment framework that when used would assure that cost studies are generated on an equivalent basis. Such normalization would make comparisons of different compliance activity cost estimates more meaningful, thus enabling the relative merits of different regulatory options to be more effectively judged. The framework establishes uniform cost reporting accounts and cost estimating approaches for use in assessing the costs of complying with regulatory actions. The framework was specifically developed for use in a current study at Pacific Northwest Laboratory. However, use of the procedures for other applications is also appropriate

  3. As to achieve regulatory action, regulatory approaches

    International Nuclear Information System (INIS)

    Cid, R.; Encinas, D.

    2014-01-01

    The achievement of the effectiveness in the performance of a nuclear regulatory body has been a permanent challenge in the recent history of nuclear regulation. In the post-Fukushima era this challenge is even more important. This article addresses the subject from two complementary points of view: the characteristics of an effective regulatory body and the regulatory approaches. This work is based on the most recent studies carried out by the Committee on Nuclear Regulatory Activities, CNRA (OECD/NEA), as well as on the experience of the Consejo de Seguridad Nuclear, CSN, the Spanish regulatory body. Rafael Cid is the representative of CSN in these project: Diego Encinas has participated in the study on regulatory approaches. (Author)

  4. Ageing Management for Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  5. Ageing Management for Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  6. The response of pile-guided floats subjected to dynamic loading : volume I final report.

    Science.gov (United States)

    2014-08-01

    Pile : - : Guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to dynamic : forces such as wind generated waves and impacts from vessels. This project developed a rational basis fo...

  7. Continuous Improvement of the Regulatory Framework for the Control of Medical Exposure

    International Nuclear Information System (INIS)

    Larcher, A.M.; Ortiz lopez, Pedro; Arias, Cesar; Marechal, Maria H.; Hernandez Alvarez, Ramon; Ferrer Garcia, Natividad; Castaneda Mucino, Antonia; Faller, Blanca

    2011-01-01

    Background: One of the key elements to guide the improvement of the regulatory control is the availability of a self-assessment tool for regulatory performance. Although there is general guidance on self-assessment for regulators and users (IAEA), there is a need for specific advice on how to address challenges and difficulties faced by regulatory bodies, when regulating radiation protection of patients. Examples of these challenges are the need of regulatory initiatives, in cooperation with health and education authorities, professional bodies and equipment suppliers, and to put in place necessary elements that are beyond responsibility of individual users of radiation, to enable them compliance with safety standards. Purpose: within the programme of the Ibero American Forum of Nuclear and Radiation Safety Regulatory Organizations, a project to develop such a self assessment tool for the regulatory control of medical exposure has been designed. Method: national experiences in transposing and enforcing the international radiation safety standards, as to how the requirements are included in national regulations are reviewed. Further, difficulties to the implementation of safety requirements are included in national regulations are analyzed and a self assessment approach and possible regulatory solutions are presented. Results and discussion: in tis study the following documents are being produced: 1) Transposition of international requirements into national regulations in the six countries of the Forum, 2) difficulties to implement and enforce the requirements, 3) guidance on self assessment of regulatory framework for medical exposure, 4) suggested contribution to the revision of international radiation safety standards. (authors)

  8. Revision of the protective action guides manual for nuclear incidents

    International Nuclear Information System (INIS)

    DeCair, S.; MacKinney, J.

    2007-01-01

    EPA's 1992 Manual of Protective Action Guides and Protective Actions for Nuclear Incidents, referred to as the PAG Manual, is a radiological emergency planning and response tool for emergency management officials at the Federal, state, tribal, and local levels. A Protective Action Guide is defined as, the projected dose to reference man, or other defined individual, from a release of radioactive material at which a specific protective action to reduce or avoid that dose is recommended'. The updated version of the PAG Manual accomplishes these key objectives: applying the existing 1992 protective action guides and protective actions to new radiological and nuclear scenarios of concern; updating the dosimetry basis; lowering the recommended dose for administration of stable iodine; providing new guidance concerning consumption of drinking water during or after a radiological emergency; updating the dosimetry basis for all derived levels, and, adding guidance for dealing with long-term site restoration following a major radiological release. (author)

  9. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  10. Radiation protection and safety guide no. GRPB-G-5: safe use of x-rays

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1998-01-01

    If properly utilized, the use of x-rays can be instrumental in the improvement of the health and welfare of the public. This regulatory guide was developed to assist and encourage registrants in the safe and constructive use of x-rays and to prohibit and prevent exposure to ionizing radiation in amounts which are or may be detrimental to health. The present guide applies to the use of x-rays for diagnostic, therapeutic, and non medical purposes

  11. Basis for radiation protection of the nuclear worker

    International Nuclear Information System (INIS)

    Guevara, F.A.

    1982-01-01

    A description is given of the standards for protection of persons who work in areas that have a potential for radiation exposure. A review is given of the units of radiation exposure and dose equivalent and of the value of the maximum permissible dose limits for occupational exposure. Federal Regulations and Regulatory Guides for radiation protection are discussed. Average occupational equivalent doses experienced in several operations typical of the United States Nuclear Industry are presented and shown to be significantly lower than the maximum permissible. The concept of maintaining radiation doses to As-Low-As-Reasonably-Achievable is discussed and the practice of imposing engineering and administrative controls to provide effective radiation protection for the nuclear worker is described

  12. Conduct of regulatory review and assessment during the licensing process for nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    This Safety Guide was prepared as part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to nuclear power plants. It supplements the Code of Practice on Governmental Organization for the Regulation of Nuclear Power Plants (IAEA Safety Series No. 50-C-G) and is concerned with the review and assessment by the regulatory body of all information submitted in support of licence applications, in the various phases of the licensing process. The purpose of the Guide is to provide information, recommendations and guidance for the conduct of these activities. The scope of the review and assessment will encompass the safety aspects of siting, construction, commissioning, operation and decommissioning of each nuclear power plant

  13. Licensing evaluation of CANDU-PHW nuclear power plants relative to U.S. regulatory requirements

    International Nuclear Information System (INIS)

    Erp, J.B. van

    1978-01-01

    Differences between the U.S. and Canadian approach to safety and licensing are discussed. U.S. regulatory requirements are evaluated as regards their applicability to CANDU-PHW reactors; vice-versa the CANDU-PHW reactor is evaluated with respect to current Regulatory Requirements and Guides. A number of design modifications are proposed to be incorporated into the CANDU-PHW reactor in order to facilitate its introduction into the U.S. These modifications are proposed solely for the purpose of maintaining consistency within the current U.S. regulatory system and not out of a need to improve the safety of current-design CANDU-PHW nuclear power plants. A number of issues are identified which still require resolution. Most of these issues are concerned with design areas not (yet) covered by the ASME code. (author)

  14. Technical bases for regulatory review; comparison of practices, standards and guides

    International Nuclear Information System (INIS)

    Vinck, W.; Naurer, H.; Van Reijen, G.

    1979-01-01

    In first place, national licensing and regulatory scenes are presentd, as well as correlations between: a) Correlations and industrial standards; b) national and international developments. The purpose of harmonisation efforts and ongoing activities, especially within the EC, are highlighted. For the purpose of being sufficiently specific, three specific areas are dealt with as examples, explaining how actual application of practices and criteria in EC Member States correlate (or not) to one another including the points of convergence and divergences: protection against aircraft crash, seismic effects, protection against fuel handling accidents. Conclusive remarks deal with the origin in and relative importance of discrepancies in safety practices and criteria. (author)

  15. Development of an international BRC [Below Regulatory Concern] limit

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.

    1987-07-01

    The International Atomic Energy Agency (IAEA) has recently investigated the exemption from regulatory control of radiation sources containing limited quantities of radioactive materials. Early efforts were entitled de minimis and were aimed at establishing a philosophical basis and radiation dose limits. The main objectives of more recent work on exemption are to illustrate a method for developing practical radiological criteria, to establish generic criteria, and to determine the practicability of the preliminary exemption principles. The method used to develop the criteria relies on models to evaluate the potential radiation exposure pathways and scenarios for individuals and population groups potentially present following the unrestricted release of materials. This paper describes the assessment methods, presents the generic results expressed in terms of the limiting concentrations of selected radionuclides in municipal waste, and provides a comparison with recent regulatory efforts in the United States for considering selected wastes being Below Regulatory Concern (BRC). 17 refs., 4 tabs

  16. Application of the concepts of exclusion, exemption and clearance. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    The objective of this Safety Guide is to provide guidance to national authorities, including regulatory bodies, and operating organizations on the application of the concepts of exclusion, exemption and clearance as established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The Safety Guide includes specific values of activity concentration for both radionuclides of natural origin and those of artificial origin that may be used for bulk amounts of material for the purpose of applying exclusion or exemption. It also elaborates on the possible application of these values to clearance

  17. 75 FR 68632 - Program for Allocation of Regulatory Responsibilities Pursuant to Rule 17d-2; Notice of Filing of...

    Science.gov (United States)

    2010-11-08

    ... good faith and best effort basis and no warranties, express or implied, are made by any Participating... understood that the term ``Regulatory Responsibility'' does not include, and each of the Participating... responsibilities with respect to the regulatory activities being assumed by the DREA under the terms of this...

  18. The future of yogurt: scientific and regulatory needs.

    Science.gov (United States)

    German, J Bruce

    2014-05-01

    Lactation biology, microbial selection, and human diversity are central themes that could guide investment in scientific research, industrial innovation, and regulatory policy oversight to propel yogurt into the central role for health-promoting food products. The ability of yogurt to provide the nourishing properties of milk together with the live microorganisms from fermentation provides a unique combination of food assets. Academic research must now define the various targets on which these biological assets act to improve health and develop the metrics that can quantitatively document their benefits. The food industry must reconcile that yogurt and its microorganisms cannot be expected to provide measurable benefits for all consumers, at all doses, and at all times. A supportive regulatory oversight must demand safety and yet encourage innovations that support a value proposition for yogurt in health. Health valuation in the marketplace will be driven by parallel innovations, including accurate assessment technologies, validated microbial ingredients, and health-aware consumers.

  19. Safety culture competition - expectations of a regulatory authority

    International Nuclear Information System (INIS)

    Keil, D.; Gloeckle, W.

    2000-01-01

    The accident at the Chernobyl nuclear power station on April 26, 1986 influenced the development of reactor safety and promulgated two basic concepts especially in Germany. On the one hand, extensive measures of in-plant accident management have greatly reduced the so-called residual risk. On the other hand, a comprehensive safety approach has been initiated which comprises the nuclear power plant as a system together with people, technology, and organization and also includes safety culture. In a modern regulatory concept based on the dynamic development of safety, the authority's classical regulatory function of controlling is supplemented by the objective of promoting safety. While preserving the division of responsibilities between the regulatory authority and plant operators, the authority uses 'constructive critical dialog' as a tool to enhance safety. Besides the regulatory assessment of safety culture on the basis of indications or indicators, also the continuous promotion of safety culture in a dialog with plant operators is seen as one of the duties of a regulatory authority. Continued efforts are necessary to maintain the high level of safety culture in German nuclear power plants. Operators are expected to establish a safety management which assigns top priority to safety issues, and which pursues the goal of supervising and promoting safety culture. Developments on the deregulated electricity markets must not lead to safety aspects ranking second to economic aspects. Moreover, also under changed boundary conditions, only the safe operation of nuclear power plants ensures economic viability. (orig.) [de

  20. Technical guide to criticality alarm system design

    International Nuclear Information System (INIS)

    Greenfield, B.

    2009-01-01

    An instructional manual was created to guide criticality safety engineers through the technical aspects of designing a criticality alarm system (CAS) for Dept. of Energy (DOE) hazard class 1 and 2 facilities. The manual was structured such that it can be used by engineers designing completely new systems and by those who are working with existing facilities. Major design tasks are thoroughly analyzed to provide concise direction for how to complete the analysis. Regulatory and technical performance requirements were both addressed. (authors)

  1. Preliminary Consideration for the Development of Regulatory Level 2 PSA Model

    International Nuclear Information System (INIS)

    Lee, Chang-Ju

    2006-01-01

    In order to assess the validity of PSA (probabilistic safety assessment) results and to establish regulatory requirements for relevant safety issues most of the regulators want to develop an independent and convenient risk assessment model including Level 2 PSA area. As this model and framework should be implicitly independent on the licensee's PSA model, it has a primary objective directly for applying to the risk-informed regulatory affairs and for supporting those kinds of works. According this, the regulator can take an objective view for the uncertainty of risk information made by the licensee and keep up the capability and decision-making framework for overall risk assessment results. In addition, the regulatory model may be used to verify and validate the operational risk levels of all engineered safety features of nuclear power plants (NPPs). An issue for plant-specific application of safety goals was previously identified in the US NRC's risk-informed regulatory guidance development activities, and discussed in many Commission papers, e. g. SECY-97-287, which identifies the goal for large early release frequency (LERF). LERF defines a containment performance criteria derived from the quantitative health objectives. As we know, the LERF was chosen to assess risk significance in Regulatory Guide 1.174 (2002) again, which provides one measure of the performance of the containment barrier, and represents a surrogate for early health effects

  2. Decision-making behavior of experts at nuclear power plants. Regulatory focus influence on cognitive heuristics

    International Nuclear Information System (INIS)

    Beck, Johannes

    2015-09-01

    The goal of this research project was to examine factors, on the basis of regulatory focus theory and the heuristics and biases approach, that influence decision-making processes of experts at nuclear power plants. Findings show that this group applies anchoring (heuristic) when evaluating conjunctive and disjunctive events and that they maintain a constant regulatory focus characteristic. No influence of the experts' characteristic regulatory focus on cognitive heuristics could be established. Theoretical and practical consequences on decision-making behavior of experts are presented. Finally, a method for measuring the use of heuristics especially in the nuclear industry is discussed.

  3. High integrity software for nuclear power plants: Candidate guidelines, technical basis and research needs. Executive summary: Volume 1

    International Nuclear Information System (INIS)

    Seth, S.; Bail, W.; Cleaves, D.; Cohen, H.; Hybertson, D.; Schaefer, C.; Stark, G.; Ta, A.; Ulery, B.

    1995-06-01

    The work documented in this report was performed in support of the US Nuclear Regulatory Commission to examine the technical basis for candidate guidelines that could be considered in reviewing and evaluating high integrity computer software used in the safety systems of nuclear power plants. The framework for the work consisted of the following software development and assurance activities: requirements specification; design; coding; verification and validation, including static analysis and dynamic testing; safety analysis; operation and maintenance; configuration management; quality assurance; and planning and management. Each activity (framework element) was subdivided into technical areas (framework subelements). The report describes the development of approximately 200 candidate guidelines that span the entire range of software life-cycle activities; the assessment of the technical basis for those candidate guidelines; and the identification, categorization and prioritization of research needs for improving the technical basis. The report has two volumes: Volume 1, Executive Summary, includes an overview of the framework and of each framework element, the complete set of candidate guidelines, the results of the assessment of the technical basis for each candidate guideline, and a discussion of research needs that support the regulatory function; Volume 2 is the main report

  4. Technical basis document for natural event hazards

    International Nuclear Information System (INIS)

    CARSON, D.M.

    2003-01-01

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for natural event hazards (NEH)-initiated representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report

  5. Regulatory aspects of fusion power-lessons from fission plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Brunnader, H.; Sood, S.K.

    1993-01-01

    Experience from fission reactors has shown the regulatory process for licensing a nuclear facility to be legalistic, lengthy, unpredictable, and costly. This experience also indicates that much of the regulatory debate is focused on safety margins, that is, the smaller the safety margins the bigger the regulatory debate and the greater the amount of proof required to satisfy the regulatory. Such experience suggests that caution and prudence guide the development of a regulatory regime for fusion reactors. Fusion has intrinsic safety and environmental advantages over fission, which should alleviate significantly, or even eliminate, the regulatory problems associated with fission. The absence of a criticality concern and the absence of fission products preclude a Chernobyl type accident from occurring in a fusion reactor. Although in a fusion reactor there are large inventories of radioactive products that can be mobilized, the total quantity is orders of magnitude smaller than in fission power reactors. The bulk of the radioactivity in a fusion reactor is either activation products in steel structures, or tritium fuel supplies safely stored in the form of a metal tritide in storage beds. The quantity of tritium that can be mobilized under accident conditions is much less than ten million curies. This compares very favorably with a fission product inventory greater than ten billion curies in a fission power reactor. Furthermore, in a fission reactor, all of the reactivity is contained in a steel vessel that is pressurized to about 150 atmospheres, whereas in a fusion reactor, the inventory of radioactive material is dispersed in different areas of the plant, such that it is improbable that a single event could give rise to the release of the entire inventory to the environment. With such significant intrinsic safety advantages there is no a priori need to make fusion requirements/regulations more demanding and more stringent than fission

  6. Marketing and Distributive Education Curriculum Planning Guide.

    Science.gov (United States)

    Northern Illinois Univ., DeKalb. Dept. of Business Education and Administration Services.

    This planning guide in marketing and distributive education is designed to provide the curriculum coordinator and instructor with a basis for planning a comprehensive program in the career field of marketing. Such programs require competencies in sales, sales promotion, buying, transporting, storing, financing, marketing research, and management.…

  7. Quantitative safety goals for the regulatory process

    International Nuclear Information System (INIS)

    Joksimovic, V.; O'Donnell, L.F.

    1981-01-01

    The paper offers a brief summary of the current regulatory background in the USA, emphasizing nuclear, related to the establishment of quantitative safety goals as a way to respond to the key issue of 'how safe is safe enough'. General Atomic has taken a leading role in advocating the use of probabilistic risk assessment techniques in the regulatory process. This has led to understanding of the importance of quantitative safety goals. The approach developed by GA is discussed in the paper. It is centred around definition of quantitative safety regions. The regions were termed: design basis, safety margin or design capability and safety research. The design basis region is bounded by the frequency of 10 -4 /reactor-year and consequences of no identifiable public injury. 10 -4 /reactor-year is associated with the total projected lifetime of a commercial US nuclear power programme. Events which have a 50% chance of happening are included in the design basis region. In the safety margin region, which extends below the design basis region, protection is provided against some events whose probability of not happening during the expected course of the US nuclear power programme is within the range of 50 to 90%. Setting the lower mean frequency to this region of 10 -5 /reactor-year is equivalent to offering 90% assurance that an accident of given severity will not happen. Rare events with a mean frequency below 10 -5 can be predicted to occur. However, accidents predicted to have a probability of less than 10 -6 are 99% certain not to happen at all, and are thus not anticipated to affect public health and safety. The area between 10 -5 and 10 -6 defines the frequency portion of the safety research region. Safety goals associated with individual risk to a maximum-exposed member of public, general societal risk and property risk are proposed in the paper

  8. Regulatory body core competencies: when should a regulator contract a TSO?

    International Nuclear Information System (INIS)

    Wieland, Patricia; Salati de Almeida, Ivan P.; Almeida, Claudio U.; Costa, Eduardo M.

    2008-01-01

    The main nuclear regulatory functions are authorization, safety review and assessment, inspection and enforcement and development of regulations and guides. Additionally, the following supplementary functions may be executed by the regulatory body: research and development, emergency response and international cooperation. In order to function properly, the regulatory body should also have the following support functions: general management, logistics, training, communication and information, information technology support, institutional relationship, internal controls and audits, ombudsman and legal support. Technical Support Organizations (TSOs) may assist the regulatory body in meeting the challenges in a rapid growing and changing environment. Specially when there is a temporary need for a wider technical expertise diversity, short time to finish a project or when the cost of developing and maintaining infrastructure of their own laboratories for analysis and research is too high and may deviate the focus on the regulator's mission. Decision on the 'size' of the regulatory body and on what can be contracted to a Technical Support Organization (TSO) depends on the resources and capabilities needed to fulfil the regulatory functions efficiently. It is important to establish the core competencies that must be at the regulatory body, keeping the focus on the regulatory goals and define the real need to contract a TSO, weighting the benefits and disadvantages. As a contribution to the definition of the regulatory core competencies, the paper discusses what is essential to be kept at the regulatory body and what can be delegated to a TSO; how to manage and control the work of the TSO; the cost effectiveness of contracting, sharing of tacit knowledge; how to handle eventual conflicts between the parties involved in the licensing process; contract types and risk evaluation, concerning the dependence on a TSO, eventual change of partners and the intellectual capital

  9. Probabilistic safety analysis procedures guide. Sections 1-7 and appendices. Volume 1, Revision 1

    International Nuclear Information System (INIS)

    Bari, R.A.; Buslik, A.J.; Cho, N.Z.

    1985-08-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. It will be revised as comments are received, and as experience is gained from its use. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of issues affecting reactor safety. This first volume of the guide describes the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant (i.e., intrinsic to plant operation) and from loss of off-site electric power. The scope includes human reliability analysis, a determination of the importance of various core damage accident sequences, and an explicit treatment and display of uncertainties for key accident sequences. The second volume deals with the treatment of the so-called external events including seismic disturbances, fires, floods, etc. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance). This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are valuable for regulatory decision making. For internal events, methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study. For external events, more explicit guidance is given

  10. Overview of NRC's human factors regulatory research program

    International Nuclear Information System (INIS)

    Coffman, F.D. Jr.

    1989-01-01

    The human factors research program is divided into distinct and interrelated program activities: (1) Personnel Performance measurement, (2) Personnel Subsystem, (3) Human-System Interface, (4) Organization and Management, and (5) a group of Reliability Assessment activities. The purpose of the Personnel Performance Measurement activity is to improve the Agency's understanding of the factors influencing personnel performance and the effects on the safety of nuclear operations and maintenance by developing improvements to methods for collecting and managing personnel performance data. Personnel Subsystem research will broaden the understanding of such factors as staffing, qualifications, and training that influence human performance in the nuclear system and will develop the technical basis for regulatory guidance to reduce any adverse impact of these influences on nuclear safety. Research in the Human-System Interface activity will provide the technical basis for ensuring that the interface between the system and the human user supports safe operations and maintenance. Organization and Management research will result in the development of tools for evaluating organization and management issues within the nuclear industry. And finally, the Reliability Assessment group of activities includes multidisciplinary research that will integrate human and hardware considerations for evaluating reliability and risk in NRC licensing, inspection, and regulatory decisions

  11. Good Practice Guide Waste Minimization/Pollution Prevention; TOPICAL

    International Nuclear Information System (INIS)

    J Dorsey

    1999-01-01

    This Good Practice Guide provides tools, information, and examples for promoting the implementation of pollution prevention during the design phases of U.S. Department of Energy (DOE) projects. It is one of several Guides for implementing DOE Order 430.1, Life-cycle Asset Management. DOE Order 430.1 provides requirements for DOE, in partnership with its contractors, to plan, acquire, operate, maintain, and dispose of physical assets. The goals of designing for pollution prevention are to minimize raw material consumption, energy consumption, waste generation, health and safety impacts, and ecological degradation over the entire life of the facility (EPA 1993a). Users of this Guide will learn to translate national policy and regulatory requirements for pollution prevention into action at the project level. The Guide was written to be applicable to all DOE projects, regardless of project size or design phase. Users are expected to interpret the Guide for their individual project's circumstances, applying a graded approach so that the effort is consistent with the anticipated waste generation and resource consumption of the physical asset. This Guide employs a combination of pollution prevention opportunity assessment (PPOA) methods and design for environment (DfE) philosophies. The PPOA process was primarily developed for existing products, processes, and facilities. The PPOA process has been modified in this Guide to address the circumstances of the DOE design process as delineated in DOE Order 430.1 and its associated Good Practice Guides. This modified form of the PPOA is termed the Pollution Prevention Design Assessment (P2DA). Information on current nationwide methods and successes in designing for the environment also have been reviewed and are integrated into this guidance

  12. BWR NSSS design basis documentation

    International Nuclear Information System (INIS)

    Vij, R.S.; Bates, R.E.

    2004-01-01

    In 1985 an incident at Toledo Edison's Davis Besse plant caused the U.S. Nuclear Regulatory Commission (NRC) to re-evaluate the technical information that the utilities had readily available to support the design of their plants. The Design Basis programs, currently on going in most U.S. utilities, have been the nuclear industry's response to the needs identified by this re-evaluation. In order to understand the Design Basis programs which have been implemented by the U.S. nuclear utilities, it is necessary to understand the problem as it was perceived by the nuclear industry (the utilities, the original NSSS designers and the regulators) after the Davis-Besse incident, the subsequent programs undertaken by the industry under the leadership of INPO and NUMARC, the NRC's actions, and the overall evolution of the industry's vision in relation to this problem. This paper presents the history of the design basis efforts from the first recognition of the problem by the NRC after the Davis-Besse incident, describes the actions taken by the NRC, INPO, NUMARC, the U.S. utilities and the NSSS designers, and brings the problem statement up-to-date in relation to the vision presently held by the U.S. nuclear industry. It then presents a technical discussion to develop a detailed definition of design basis information to support the problem statement. The information originally supplied by the NSSS designers during the plant design and construction is discussed as well as its relationship to the previously defined design basis information. This section of the paper concludes by defining the additional information needed by nuclear utilities to satisfy the requirements developed from the problem statement. Having developed a definition of the additional information (i.e., information not originally supplied during design and construction) required to solve the design basis problem as it is presently perceived by the U.S. nuclear industry, the paper then discusses design basis

  13. Design basis tropical cyclone for nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The general characteristics of tropical cyclones are discussed in this Safety Guide, with particular emphasis on their pressure and wind structures in the light of available data. General methods are given for the evaluation of the relevant parameters of a Probable Maximum Tropical Cyclone (PMTC), which can be used as the Design Basis Tropical Cyclone (DBTC); these parameters then serve as inputs for the derivation of a design basis surge and a design basis wind. A possible method is also given for the evaluation of the PMTC pressure and wind field based on an approach valid primarily for a particular region. This method depends on the results of a theoretical study on the tropical cyclone structure and makes use of a large amount of data, including aircraft reconnaissance observations for 170 most intense tropical cyclones near the coast of Japan, Taiwan and the Philippines for the period 1960-1974, as well as detailed analyses of all the extreme storms along the Gulf of Mexico and the east coast of the USA during 1900-1978, for the determination of the necessary parameters

  14. Nuclear Regulatory Commission staff approaches to improving the integration of regulatory guidance documents and prelicensing reviews

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1994-01-01

    The Nuclear Regulatory Commission staff is conducting numerous activities to improve the integration of its regulatory guidance documents (i.e., License Application Review Plan (LARP) and open-quotes Format and Content for the License Application for the High-Level Waste repositoryclose quotes (FCRG)) and pre-license application (LA) reviews. Those activities related to the regulatory guidance documents consist of: (1) developing an hierarchy of example evaluation findings for LARP; (2) identifying LARP review plan interfaces; (3) conducting an integration review of LARP review strategies; (4) correlating LARP to the ongoing technical program; and (5) revising the FCRG. Some of the more important strategies the staff is using to improve the integration of pre-LA reviews with the LA review include: (1) use of the draft LARP to guide the staff's pre-LA reviews; (2) focus detailed pre-LA reviews on key technical uncertainties; (3) identify and track concerns with DOE's program; and (4) use results of pre-LA reviews in LA reviews. The purpose of this paper is to describe these ongoing activities and strategies and discuss some of the new work that is planned to be included in LARP Revision 1 and the final FCRG, which are scheduled to be issued in late 1994. These activities reflect both the importance the staff has placed on integration and the staff's approach to improving integration in these areas. The staff anticipates that the results of these activities, when incorporated in the FCRG, LARP, and pre-LA reviews, will improve its guidance for DOE's ongoing site characterization program and LA annotated outline development

  15. Structural basis for recognition of S-adenosylhomocysteine by riboswitches

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A.L.; Heroux, A.; Reyes, F. E.; Batey, R. T.

    2010-11-01

    S-adenosyl-(L)-homocysteine (SAH) riboswitches are regulatory elements found in bacterial mRNAs that up-regulate genes involved in the S-adenosyl-(L)-methionine (SAM) regeneration cycle. To understand the structural basis of SAH-dependent regulation by RNA, we have solved the structure of its metabolite-binding domain in complex with SAH. This structure reveals an unusual pseudoknot topology that creates a shallow groove on the surface of the RNA that binds SAH primarily through interactions with the adenine ring and methionine main chain atoms and discriminates against SAM through a steric mechanism. Chemical probing and calorimetric analysis indicate that the unliganded RNA can access bound-like conformations that are significantly stabilized by SAH to direct folding of the downstream regulatory switch. Strikingly, we find that metabolites bearing an adenine ring, including ATP, bind this aptamer with sufficiently high affinity such that normal intracellular concentrations of these compounds may influence regulation of the riboswitch.

  16. Structural Basis for Recognition of S-adenosylhomocysteine by Riboswitches

    Energy Technology Data Exchange (ETDEWEB)

    A Edwards; F Reyes; A Heroux; R Batey

    2011-12-31

    S-adenosyl-(L)-homocysteine (SAH) riboswitches are regulatory elements found in bacterial mRNAs that up-regulate genes involved in the S-adenosyl-(L)-methionine (SAM) regeneration cycle. To understand the structural basis of SAH-dependent regulation by RNA, we have solved the structure of its metabolite-binding domain in complex with SAH. This structure reveals an unusual pseudoknot topology that creates a shallow groove on the surface of the RNA that binds SAH primarily through interactions with the adenine ring and methionine main chain atoms and discriminates against SAM through a steric mechanism. Chemical probing and calorimetric analysis indicate that the unliganded RNA can access bound-like conformations that are significantly stabilized by SAH to direct folding of the downstream regulatory switch. Strikingly, we find that metabolites bearing an adenine ring, including ATP, bind this aptamer with sufficiently high affinity such that normal intracellular concentrations of these compounds may influence regulation of the riboswitch.

  17. Regulatory requirement of the Juragua nuclear Power Plant PSA

    International Nuclear Information System (INIS)

    Valhuerdi Debesa, C.

    1996-01-01

    Probabilistic Safety Assessment has proved to be a powerful tool for improving the knowledge of the safety insides of Nuclear Power Plants and increasing the efficiency of the safety measures adopted by both operators and regulators. In this paper the regulatory approach adopted in Cuba with regard to the PSA , the scope of the requirement and the basis and proposal of this decision are presented

  18. 1974 annual report to Congress. Part one: operating and developmental functions. Part two: regulatory functions

    International Nuclear Information System (INIS)

    1974-01-01

    This report is of a nontechnical nature, with numerous photographs. The first part contains chapters on the reorganization of the AEC to ERDA and NRC, the history of the AEC: 1946--1975, energy research and development, breeder reactors, public health and safety, fusion research, environmental research, biomedical research, physical research, nuclear materials, national security, and management of radioactive waste. The part on regulatory functions contains chapters on nuclear regulation in 1974, 1974 nuclear power licensing, fuels and materials licensing, nuclear materials and plant protection, regulatory operations, nuclear standards development, public participation in regulation, and state and international liaison. Appendixes give membership of various boards and committees, changes in rules and regulations, a list of AEC regulatory guides, and a table of nuclear electric generating units in operation, under construction, or planned. (U.S.)

  19. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.

    Directory of Open Access Journals (Sweden)

    Flavia Vischi Winck

    . Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas.

  20. Defining Tobacco Regulatory Science Competencies.

    Science.gov (United States)

    Wipfli, Heather L; Berman, Micah; Hanson, Kacey; Kelder, Steven; Solis, Amy; Villanti, Andrea C; Ribeiro, Carla M P; Meissner, Helen I; Anderson, Roger

    2017-02-01

    In 2013, the National Institutes of Health and the Food and Drug Administration funded a network of 14 Tobacco Centers of Regulatory Science (TCORS) with a mission that included research and training. A cross-TCORS Panel was established to define tobacco regulatory science (TRS) competencies to help harmonize and guide their emerging educational programs. The purpose of this paper is to describe the Panel's work to develop core TRS domains and competencies. The Panel developed the list of domains and competencies using a semistructured Delphi method divided into four phases occurring between November 2013 and August 2015. The final proposed list included a total of 51 competencies across six core domains and 28 competencies across five specialized domains. There is a need for continued discussion to establish the utility of the proposed set of competencies for emerging TRS curricula and to identify the best strategies for incorporating these competencies into TRS training programs. Given the field's broad multidisciplinary nature, further experience is needed to refine the core domains that should be covered in TRS training programs versus knowledge obtained in more specialized programs. Regulatory science to inform the regulation of tobacco products is an emerging field. The paper provides an initial list of core and specialized domains and competencies to be used in developing curricula for new and emerging training programs aimed at preparing a new cohort of scientists to conduct critical TRS research. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Scientific, statistical, practical, and regulatory considerations in design space development.

    Science.gov (United States)

    Debevec, Veronika; Srčič, Stanko; Horvat, Matej

    2018-03-01

    The quality by design (QbD) paradigm guides the pharmaceutical industry towards improved understanding of products and processes, and at the same time facilitates a high degree of manufacturing and regulatory flexibility throughout the establishment of the design space. This review article presents scientific, statistical and regulatory considerations in design space development. All key development milestones, starting with planning, selection of factors, experimental execution, data analysis, model development and assessment, verification, and validation, and ending with design space submission, are presented and discussed. The focus is especially on frequently ignored topics, like management of factors and CQAs that will not be included in experimental design, evaluation of risk of failure on design space edges, or modeling scale-up strategy. Moreover, development of a design space that is independent of manufacturing scale is proposed as the preferred approach.

  2. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.

    Science.gov (United States)

    Klann, Tyler S; Black, Joshua B; Chellappan, Malathi; Safi, Alexias; Song, Lingyun; Hilton, Isaac B; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2017-06-01

    Large genome-mapping consortia and thousands of genome-wide association studies have identified non-protein-coding elements in the genome as having a central role in various biological processes. However, decoding the functions of the millions of putative regulatory elements discovered in these studies remains challenging. CRISPR-Cas9-based epigenome editing technologies have enabled precise perturbation of the activity of specific regulatory elements. Here we describe CRISPR-Cas9-based epigenomic regulatory element screening (CERES) for improved high-throughput screening of regulatory element activity in the native genomic context. Using dCas9 KRAB repressor and dCas9 p300 activator constructs and lentiviral single guide RNA libraries to target DNase I hypersensitive sites surrounding a gene of interest, we carried out both loss- and gain-of-function screens to identify regulatory elements for the β-globin and HER2 loci in human cells. CERES readily identified known and previously unidentified regulatory elements, some of which were dependent on cell type or direction of perturbation. This technology allows the high-throughput functional annotation of putative regulatory elements in their native chromosomal context.

  3. Construction for Nuclear Installations. Specific Safety Guide

    International Nuclear Information System (INIS)

    2015-01-01

    This Safety Guide provides recommendations and guidance based on international good practices in the construction of nuclear installations, which will enable construction to proceed with high quality. It can be applied to support the development, implementation and assessment of construction methods and procedures and the identification of good practices for ensuring the quality of the construction to meet the design intent and ensure safety. It will be a useful tool for regulatory bodies, licensees and new entrant countries for nuclear power plants and other nuclear installations

  4. Regulatory basis for the Waste Isolation Pilot Plant performance assessment

    International Nuclear Information System (INIS)

    Howard, Bryan A.; Crawford, M.B.; Galson, D.A.; Marietta, Melvin G.

    2000-01-01

    The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA to demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal

  5. Development of PSA audit guideline and regulatory PSA model for SMART

    International Nuclear Information System (INIS)

    Cho, Namchul; Lee, Chang-Ju; Kim, I.S.

    2012-01-01

    SMART is under development for dual purposes of power generation and seawater desalination in Korea. It is an integral reactor type with a thermal power output of 330 MW and employs advanced design features such as a passive system for the removal of residual heat and also the setting of all the components of the primary system inside the reactor pressure vessel. It is essential to develop new probabilistic safety assessment (PSA) validation guidance for SMART. For the purpose of regulatory verification to the risk level of SMART, the insights and key issues on the PSA are identified with referring some worldwide safety guides as well as its design characteristics. Regulatory PSA model under the development for the design confirmation and its preliminary result are also described. (authors)

  6. Standard Guide for Wet Sieve Analysis of Ceramic Whiteware Clays

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This guide covers the wet sieve analysis of ceramic whiteware clays. This guide is intended for use in testing shipments of clay as well as for plant control tests. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  7. Safety design guide for pipe rupture protection for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for pipe rupture protection identifies high-energy systems in which pipe ruptures must be postulated to occur, as well as systems that must be protected from the dynamic effects of such ruptures. Dynamic effects considered in this SDG consist of pipe whip (including missiles generated by pipe ruptures, if any) and jet impingement, Requirements for protection against the dynamic effects of a postulated pipe rupture and method of protection of essential structures, systems and components are specified for these effects. The change status for the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 2 tabs., 5 refs. (Author) .new

  8. Standard guide for making quality nondestructive assay measurements

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide is a compendium of Quality Measurement Practices for performing measurements of radioactive material using nondestructive assay (NDA) instruments. The primary purpose of the guide is to assist users in arriving at quality NDA results, that is, results that satisfy the end user’s needs. This is accomplished by providing an acceptable and uniform basis for the collection, analysis, comparison, and application of data. The recommendations are not compulsory or prerequisites to achieving quality NDA measurements, but are considered contributory in most areas. 1.2 This guide applies to the use of NDA instrumentation for the measurement of nuclear materials by the observation of spontaneous or stimulated nuclear radiations, including photons, neutrons, or the flow of heat. Recommended calibration, operating, and assurance methods represent guiding principles based on current NDA technology. The diversity of industry-wide nuclear materials measurement applications and instrumentation precludes disc...

  9. Fast radial basis functions for engineering applications

    CERN Document Server

    Biancolini, Marco Evangelos

    2017-01-01

    This book presents the first “How To” guide to the use of radial basis functions (RBF). It provides a clear vision of their potential, an overview of ready-for-use computational tools and precise guidelines to implement new engineering applications of RBF. Radial basis functions (RBF) are a mathematical tool mature enough for useful engineering applications. Their mathematical foundation is well established and the tool has proven to be effective in many fields, as the mathematical framework can be adapted in several ways. A candidate application can be faced considering the features of RBF:  multidimensional space (including 2D and 3D), numerous radial functions available, global and compact support, interpolation/regression. This great flexibility makes RBF attractive – and their great potential has only been partially discovered. This is because of the difficulty in taking a first step toward RBF as they are not commonly part of engineers’ cultural background, but also due to the numerical complex...

  10. REGULATORY FUNDAMENTALS FOR IMPLEMENTATION OF INFORMATION TECHNOLOGY PROJECTS IN INDUSTRY

    Directory of Open Access Journals (Sweden)

    L. V. Gubich

    2016-01-01

    Full Text Available The article provides an overview of the existing regulatory basis for the development of IIST. The features of IT projects management and a brief description of methodological recommendations on implementation of IT projects of the State scientific and technical Program «Electronic enterprise resource planning (CALS-ERP-technology» for 2011–2015 are considered.

  11. Assessment of regulatory effectiveness. Peer discussions on regulatory practices

    International Nuclear Information System (INIS)

    1999-09-01

    This report arises from the seventh series of peer discussions on regulatory practices entitled 'Assessment of Regulatory Effectiveness'. The term 'regulatory effectiveness' covers the quality of the work and level of performance of a regulatory body. In this sense, regulatory effectiveness applies to regulatory body activities aimed at preventing safety degradation and ensuring that an acceptable level of safety is being maintained by the regulated operating organizations. In addition, regulatory effectiveness encompasses the promotion of safety improvements, the timely and cost effective performance of regulatory functions in a manner which ensures the confidence of the operating organizations, the general public and the government, and striving for continuous improvements to performance. Senior regulators from 22 Member States participated in two peer group discussions during March and May 1999. The discussions were focused on the elements of an effective regulatory body, possible indicators of regulatory effectiveness and its assessment. This report presents the outcome of these meetings and recommendations of good practices identified by senior regulators, which do not necessarily reflect those of the governments of the nominating Member States, the organizations they belong to, or the International Atomic Energy Agency. In order to protect people and the environment from hazards associated with nuclear facilities, the main objective of a nuclear regulatory body is to ensure that a high level of safety in the nuclear activities under its jurisdiction is achieved, maintained and within the control of operating organizations. Even if it is possible to directly judge objective safety levels at nuclear facilities, such safety levels would not provide an exclusive indicator of regulatory effectiveness. The way the regulatory body ensures the safety of workers and the public and the way it discharges its responsibilities also determine its effectiveness. Hence the

  12. Patient's radioprotection and analysis of DPC practices and certification of health facilities - Methodological guide

    International Nuclear Information System (INIS)

    Bataillon, Remy; Lafont, Marielle; Rousse, Carole; Vuillez, Jean-Philippe; Ducou Le Pointe, Hubert; Grenier, Nicolas; Lartigau, Eric; Orcel, Philippe; Dujarric, Francis; Beaupin, Alain; Bar, Olivier; Blondet, Emmanuelle; Combe, Valerie; Pages, Frederique

    2012-11-01

    This methodological guide has been published in compliance with French and European regulatory texts to define the modalities of implementation of the assessment of clinical practices resulting in exposure to ionizing radiation in medical environment (radiotherapy, radio-surgery, interventional radiology, nuclear medicine), to promote clinical audits, and to ease the implementation of programs of continuous professional development in radiotherapy, radiology and nuclear medicine. This guide proposes an analysis of professional practices through analysis sheets which address several aspects: scope, practice data, objectives in terms of improvement of radiation protection, regulatory and institutional references, operational objectives, methods, approaches and tools, follow-up indicators, actions to improve practices, professional target, collective approach, program organisation, and program valorisation in existing arrangements. It also gives 20 program proposals which notably aim at a continuous professional development, 5 of them dealing with diagnosis-oriented imagery-based examinations, 9 with radiology and risk management, 4 with radiotherapy, and 2 with nuclear medicine

  13. Homozygous deletion in MYL9 expands the molecular basis of megacystis-microcolon-intestinal hypoperistalsis syndrome.

    Science.gov (United States)

    Moreno, Carolina Araujo; Sobreira, Nara; Pugh, Elizabeth; Zhang, Peng; Steel, Gary; Torres, Fábio Rossi; Cavalcanti, Denise Pontes

    2018-05-01

    Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is a severe disease characterized by functional obstruction in the urinary and gastrointestinal tract. The molecular basis of this condition started to be defined recently, and the genes related to the syndrome (ACTG2-heterozygous variant in sporadic cases; and MYH11 (myosin heavy chain 11), LMOD1 (leiomodin 1) and MYLK (myosin light chain (MLC) kinase)-autosomal recessive inheritance), encode proteins involved in the smooth muscle contraction, supporting a myopathic basis for the disease. In the present article, we described a family with two affected siblings with MMIHS born to consanguineous parents and the molecular investigation performed to define the genetic etiology. Previous whole exome sequencing of the affected child and parents did not identify a candidate gene for the disease in this family, but now we present a reanalysis of the data that led to the identification of a homozygous deletion encompassing the last exon of MYL9 (myosin regulatory light chain 9) in the affected individual. MYL9 gene encodes a regulatory myosin MLC and the phosphorylation of this protein is a crucial step in the contraction process of smooth muscle cell. Despite the absence of human or animal phenotype related to MYL9, a cause-effect relationship between MYL9 and the MMIHS seems biologically plausible. The present study reveals a strong candidate gene for autosomal recessive forms of MMIHS, expanding the molecular basis of this disease and reinforces the myopathic basis of this condition.

  14. Neural basis of decision making guided by emotional outcomes.

    Science.gov (United States)

    Katahira, Kentaro; Matsuda, Yoshi-Taka; Fujimura, Tomomi; Ueno, Kenichi; Asamizuya, Takeshi; Suzuki, Chisato; Cheng, Kang; Okanoya, Kazuo; Okada, Masato

    2015-05-01

    Emotional events resulting from a choice influence an individual's subsequent decision making. Although the relationship between emotion and decision making has been widely discussed, previous studies have mainly investigated decision outcomes that can easily be mapped to reward and punishment, including monetary gain/loss, gustatory stimuli, and pain. These studies regard emotion as a modulator of decision making that can be made rationally in the absence of emotions. In our daily lives, however, we often encounter various emotional events that affect decisions by themselves, and mapping the events to a reward or punishment is often not straightforward. In this study, we investigated the neural substrates of how such emotional decision outcomes affect subsequent decision making. By using functional magnetic resonance imaging (fMRI), we measured brain activities of humans during a stochastic decision-making task in which various emotional pictures were presented as decision outcomes. We found that pleasant pictures differentially activated the midbrain, fusiform gyrus, and parahippocampal gyrus, whereas unpleasant pictures differentially activated the ventral striatum, compared with neutral pictures. We assumed that the emotional decision outcomes affect the subsequent decision by updating the value of the options, a process modeled by reinforcement learning models, and that the brain regions representing the prediction error that drives the reinforcement learning are involved in guiding subsequent decisions. We found that some regions of the striatum and the insula were separately correlated with the prediction error for either pleasant pictures or unpleasant pictures, whereas the precuneus was correlated with prediction errors for both pleasant and unpleasant pictures. Copyright © 2015 the American Physiological Society.

  15. Neural basis of decision making guided by emotional outcomes

    Science.gov (United States)

    Matsuda, Yoshi-Taka; Fujimura, Tomomi; Ueno, Kenichi; Asamizuya, Takeshi; Suzuki, Chisato; Cheng, Kang; Okanoya, Kazuo; Okada, Masato

    2015-01-01

    Emotional events resulting from a choice influence an individual's subsequent decision making. Although the relationship between emotion and decision making has been widely discussed, previous studies have mainly investigated decision outcomes that can easily be mapped to reward and punishment, including monetary gain/loss, gustatory stimuli, and pain. These studies regard emotion as a modulator of decision making that can be made rationally in the absence of emotions. In our daily lives, however, we often encounter various emotional events that affect decisions by themselves, and mapping the events to a reward or punishment is often not straightforward. In this study, we investigated the neural substrates of how such emotional decision outcomes affect subsequent decision making. By using functional magnetic resonance imaging (fMRI), we measured brain activities of humans during a stochastic decision-making task in which various emotional pictures were presented as decision outcomes. We found that pleasant pictures differentially activated the midbrain, fusiform gyrus, and parahippocampal gyrus, whereas unpleasant pictures differentially activated the ventral striatum, compared with neutral pictures. We assumed that the emotional decision outcomes affect the subsequent decision by updating the value of the options, a process modeled by reinforcement learning models, and that the brain regions representing the prediction error that drives the reinforcement learning are involved in guiding subsequent decisions. We found that some regions of the striatum and the insula were separately correlated with the prediction error for either pleasant pictures or unpleasant pictures, whereas the precuneus was correlated with prediction errors for both pleasant and unpleasant pictures. PMID:25695644

  16. Regulatory decision making by decision analyses

    International Nuclear Information System (INIS)

    Holmberg, J.; Pulkkinen, U.

    1993-11-01

    The Technical Research Centre of Finland (VTT) has studied with the Finnish Centre for Radiation and Nuclear Safety (STUK) the applicability of decision analytic approach to the treatment of nuclear safety related problems at the regulatory body. The role of probabilistic safety assessment (PSA) in decision making has also been discussed. In the study, inspectors from STUK exercised with a decision analytic approach by reoperationalizing two occurred and solved problems. The research scientist from VTT acted as systems analysts guiding the analysis process. The first case was related to a common cause failure phenomenon in solenoid valves controlling pneumatic valves important to safety of the plant. The problem of the regulatory body was to judge whether to allow continued operation or to require more detailed inspections and in which time chedule the inspections should be done. The latter problem was to evaluate design changes of external electrical grid connections after a fire incident had revealed weakness in the separation of electrical system. In both cases, the decision analysis was carried out several sessions in which decision makers, technical experts as well as experts of decision analysis participated. A multi-attribute value function was applied as a decision model so that attributes had to be defined to quantify the levels of achievements of the objectives. The attributes included both indicators related to the level of operational safety of the plant such as core damage frequency given by PSA, and indicators related to the safety culture, i.e., how well the chosen option fits on the regulatory policy. (24 refs., 6 figs., 9 tabs.)

  17. Independence in regulatory decision making - INSAG-17. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    2003-01-01

    This report is intended to promote a common understanding among legislators and other political decision makers, nuclear safety regulators and licensees of the concept of independence in regulatory decision making and how to achieve it. Other interest groups, such as non-governmental organizations and members of the public interested in the regulation of nuclear safety, may also find the report useful. The principles concerning the independence of regulatory organizations are developed and discussed in publications in the IAEA's Safety Standards Series. Although the principles relating to protecting the independence of the regulatory body provide the necessary basis for independence in regulatory decision making, there are additional factors and features that require attention to ensure independence in the decision making by the regulatory body. This INSAG report highlights and discusses a number of such factors and features

  18. Guide to the periodic inspection of nuclear reactor steel pressure vessels

    International Nuclear Information System (INIS)

    1969-01-01

    This Guide is intended to provide general information and guidance to reactor owners or operators, inspection authorities, certifying authorities or regulatory bodies who are responsible for establishing inspection procedures for specific reactors or reactor types, and for the preparation of national codes or standards. The recommendations of the Guide apply primarily to water-cooled steel reactor vessels which are at a sufficiently early stage of design so that recommendations to provide accessibility for inspection can be incorporated into the early stages of design and inspection planning. However, much of the contents of the Guide are also applicable in part to vessels for other reactor types, such as gas-cooled, pressure-tube, or liquid-metal-cooled reactors, and also to some existing water-cooled reactors and reactors which are in advanced stage of design or construction. 46 refs, figs, 1 tab

  19. A call for action: Improve reporting of research studies to increase the scientific basis for regulatory decision-making

    DEFF Research Database (Denmark)

    Ågerstrand, Marlene; Christiansen, Sofie; Hanberg, Annika

    2018-01-01

    This is a call for action to scientific journals to introduce reporting requirements for toxicity and ecotoxicity studies. Such reporting requirements will support the use of peer-reviewed research studies in regulatory decision-making. Moreover, this could improve the reliability and reproducibi...

  20. 75 FR 25303 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Regulatory...

    Science.gov (United States)

    2010-05-07

    ...: Wednesday, May 19, 2010--1 p.m. until 5 p.m. The Subcommittee will review Draft Final Regulatory Guide 1.216 (previously DG-1203) ``Containment Structural Integrity Evaluation for Internal Pressure Loadings Above Design... the time allotted to present oral statements can be obtained from the website cited above or by...

  1. Design guide for category II reactors light and heavy water cooled reactors

    International Nuclear Information System (INIS)

    Brynda, W.J.; Lobner, P.R.; Powell, R.W.; Straker, E.A.

    1978-05-01

    The Department of Energy (DOE), in the ERDA Manual, requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification operation, maintainance, and decommissioning of DOW-owned reactors be in accordance with generally uniform standards, guide and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirements of Category II reactor structure, components, and systems

  2. Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This standard guide defines the process for developing a strategy for dispositioning concrete from nuclear facility decommissioning. It outlines a 10-step method to evaluate disposal options for radioactively contaminated concrete. One of the steps is to complete a detailed analysis of the cost and dose to nonradiation workers (the public); the methodology and supporting data to perform this analysis are detailed in the appendices. The resulting data can be used to balance dose and cost and select the best disposal option. These data, which establish a technical basis to apply to release the concrete, can be used in several ways: (1) to show that the release meets existing release criteria, (2) to establish a basis to request release of the concrete on a case-by-case basis, (3) to develop a basis for establishing release criteria where none exists. 1.2 This standard guide is based on the “Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Sites,” (1) from ...

  3. NORM - practical guide; NORM - guia pratico

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Rocio dos (ed.)

    2016-07-01

    The experience of the authors and a literature review on the evaluation of national and international regulatory guides are presented. The objective is to help understand the need to implement the best practices for NORM management in the industries that produce the NORM wastes. The book should act as a reference point, basic, friendly and useful to assist the reader in NORM management activities. The reader should be warned that management requires consultation and involvement of a significant number of stakeholders, in addition to the approval of competent authorities. A list and the technical biography of the authors are also described.

  4. The future of yogurt: scientific and regulatory needs1234

    Science.gov (United States)

    German, J Bruce

    2014-01-01

    Lactation biology, microbial selection, and human diversity are central themes that could guide investment in scientific research, industrial innovation, and regulatory policy oversight to propel yogurt into the central role for health-promoting food products. The ability of yogurt to provide the nourishing properties of milk together with the live microorganisms from fermentation provides a unique combination of food assets. Academic research must now define the various targets on which these biological assets act to improve health and develop the metrics that can quantitatively document their benefits. The food industry must reconcile that yogurt and its microorganisms cannot be expected to provide measurable benefits for all consumers, at all doses, and at all times. A supportive regulatory oversight must demand safety and yet encourage innovations that support a value proposition for yogurt in health. Health valuation in the marketplace will be driven by parallel innovations, including accurate assessment technologies, validated microbial ingredients, and health-aware consumers. PMID:24695899

  5. Risk assessment, management, communication: a guide to selected sources. Update. Information guide

    International Nuclear Information System (INIS)

    1987-05-01

    This is the first update to the March 1987 publication entitled Risk Assessment, Management, Communication: A Guide to Selected Sources. The risk update series is divided into three major sections: Assessment, Management, and Communication. This update also includes subsections on hazardous waste, radiation, and a number of specific chemicals. Due to the expanding literature on risk, other subsections may be added to updates in the future. Each Table of Contents contains a complete list of the subsections. Updates are produced on a quarterly basis

  6. Key Regulatory Issues for Digital Instrumentation and Control Systems at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Korsah, Kofi; Wood, Richard Thomas

    2008-01-01

    To help reduce the uncertainty associated with application of digital instrumentation and controls (I and C) technology in nuclear power plants, the Nuclear Regulatory Commission (NRC) has issued six Interim Staff Guidance (ISG) documents that address the current regulatory positions on what are considered the significant digital I and C issues. These six documents address the following topics: Cyber Security, Diversity and Defense-in-Depth, Risk Informed Digital I and C Regulation, Communication issues, Human Factors and the Digital I and C Licensing Process (currently issued as Draft). After allowing for further refinement based on additional technical insight gathered by NRC staff through near-term research and detailed review of relevant experience, it is expected that updated positions ultimately will be incorporated into regulatory guides and staff review procedures. This paper presents an overview of the guidance provided by the NRC-issued ISGs on key technology considerations (i.e., the first five documents above) for safety-related digital I and C systems.

  7. Preliminary regulatory assessment of nuclear power plants vulnerabilities

    International Nuclear Information System (INIS)

    Kostadinov, V.; Petelin, S.

    2004-01-01

    Preliminary attempts to develop models for nuclear regulatory vulnerability assessment of nuclear power plants are presented. Development of the philosophy and computer tools could be new and important insight for management of nuclear operators and nuclear regulatory bodies who face difficult questions about how to assess the vulnerability of nuclear power plants and other nuclear facilities to external and internal threats. In the situation where different and hidden threat sources are dispersed throughout the world, the assessment of security and safe operation of nuclear power plants is very important. Capability to evaluate plant vulnerability to different kinds of threats, like human and natural occurrences and terrorist attacks and preparation of emergency response plans and estimation of costs are of vital importance for assurance of national security. On the basis of such vital insights, nuclear operators and nuclear regulatory bodies could plan and optimise changes in oversight procedures, organisations, equipment, hardware and software to reduce risks taking into account security and safety of nuclear power plants operation, budget, manpower, and other limitations. Initial qualitative estimations of adapted assessments for nuclear applications are shortly presented. (author)

  8. Regulatory activities and their research and development support in the CSSR

    International Nuclear Information System (INIS)

    Klik, F.; Kriz, Z.

    1977-01-01

    According to the existing laws the Czechoslovak Atomic Energy Commission (CSAEC) is authorized to regulate the Czechoslovak nuclear activities with respect to the nuclear safety, waste management and accountability and control of nuclear materials. Its activity with respect to nuclear safety consists mainly of: preparation of safety code of practices supplemented by safety guides for nuclear facilities, assessment of nuclear safety and issuing of binding opinion on nuclear safety for licensing of nuclear facilities, inspection of nuclear safety during construction and operation of nuclear facilities. The first part of the paper deals with the regulatory implementation. This covers the first stage specified by the construction and operation of research reactors only, the second stage specified by the design, construction, commissioning and operation of the first prototype nuclear power plant and the present stage specified by the construction and commissioning of a number of industrially developed nuclear power reactors. The present stage of regulatory implementation is described in detail. This covers the development of regulatory documentation such as safety code of practices and safety guides and the main safety requirements included in the existing safety code of practices for the siting, design and operation of nuclear power plants equipped with pressure water reactors. Then the general licensing procedures and organization including the structure and contents of safety documentation required for the licensing of siting, construction and operation of nuclear power plants is also described. The paper deals also with the inspection practices applied during construction, commissioning and operation of nuclear power plant in order to verify that the licensing conditions and requirements are fulfilled. The paper gives also some basic information about coordination of CSAEC nuclear safety regulatory activity with the regulatory activities of other governmental bodies

  9. Legislation and regulatory infrastructure for the safety of radioactive waste management

    International Nuclear Information System (INIS)

    Hoegberg, L.

    2000-01-01

    The essential generic characteristics of a national legislative and regulatory system for the safety of radioactive waste management are defined and discussed. The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management as well as other relevant international legal instruments and guidelines are discussed. Special emphasis is given to the following characteristics of a national legislative and regulatory system: (i) definition of responsibilities, (ii) financing of future costs, (iii) nuclear and radiation safety requirements, (iv) siting and licensing procedures, (v) regulatory functions, and (vi) international co-operation. It is concluded that there exists an internationally endorsed basis for establishing effective national legislation and regulatory infrastructures for the safety of radioactive waste management. It is underlined that the continuing internationalization of the nuclear industry stresses the need for national legislation and regulatory infrastructure to be based on such internationally endorsed principles and standards. It is pointed out that regulators are accountable to the public and have to gain public trust by being active in the public arena, demonstrating their competence and integrity. Finally, prescriptive and goal-oriented international safety regimes are briefly discussed in the light of experience so far gained with the Convention on Nuclear Safety. (author)

  10. The radon issue: Considerations on regulatory approaches and exposure evaluations on the basis of recent epidemiological results

    International Nuclear Information System (INIS)

    Bochicchio, Francesco

    2008-01-01

    Recent epidemiological results have shown consistent statistically significant increases of lung cancer risk due to exposure to radon in dwellings at moderate levels of exposure, and a strong synergism with cigarette smoking. These results are summarized and discussed in relation to their possible implications for the regulatory control of radon and for future policies for the control of radon risk

  11. Computer-guided laser for neurosurgery.

    Science.gov (United States)

    Koivukangas, J; Louhisalmi, Y

    1990-01-01

    On the basis of over 40 neurosurgical laser operations, including CO2, Nd-YAG and simultaneous CO2/Nd-YAG laser procedures, a computer-guided system for spatial control of the laser beam has been developed. The pilot laser has several modes: it can direct the neurosurgeon along the central axis of the surgical microscope to stereotactically determined point-like targets or outline selected layers of underlying volume targets onto superficial surfaces such as scalp and cortex and onto the tissue at the appropriate depth. The active treatment laser can be guided by preoperative CT/MRI or intraoperative ultrasound image data for layer-by-layer resection of tumor. The laser system can be connected to the surgical field by rigid stereotactic means or by neuronavigator. In the present system, a special brain surgery adapter coordinates the imaging system and laser to the surgical field. Thus, the laser system can be used for image-guided surgical orientation, for demarcation of lesions and for actual layer-by-layer removal of tumor.

  12. Regulatory instrument review: Management of aging of LWR [light water reactor] major safety-related components

    International Nuclear Information System (INIS)

    Werry, E.V.

    1990-10-01

    This report comprises Volume 1 of a review of US nuclear plant regulatory instruments to determine the amount and kind of information they contain on managing the aging of safety-related components in US nuclear power plants. The review was conducted for the US Nuclear Regulatory Commission (NRC) by the Pacific Northwest Laboratory (PNL) under the NRC Nuclear Plant Aging Research (NPAR) Program. Eight selected regulatory instruments, e.g., NRC Regulatory Guides and the Code of Federal Regulations, were reviewed for safety-related information on five selected components: reactor pressure vessels, steam generators, primary piping, pressurizers, and emergency diesel generators. Volume 2 will be concluded in FY 1991 and will also cover selected major safety-related components, e.g., pumps, valves and cables. The focus of the review was on 26 NPAR-defined safety-related aging issues, including examination, inspection, and maintenance and repair; excessive/harsh testing; and irradiation embrittlement. The major conclusion of the review is that safety-related regulatory instruments do provide implicit guidance for aging management, but include little explicit guidance. The major recommendation is that the instruments be revised or augmented to explicitly address the management of aging

  13. Proactive error analysis of ultrasound-guided axillary brachial plexus block performance.

    LENUS (Irish Health Repository)

    O'Sullivan, Owen

    2012-07-13

    Detailed description of the tasks anesthetists undertake during the performance of a complex procedure, such as ultrasound-guided peripheral nerve blockade, allows elements that are vulnerable to human error to be identified. We have applied 3 task analysis tools to one such procedure, namely, ultrasound-guided axillary brachial plexus blockade, with the intention that the results may form a basis to enhance training and performance of the procedure.

  14. Regulatory Guide 1.122: Development of floor design response spectra for seismic design of floor-supported equipment or components

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    ''Reactor Site Criteria,'' requires, in part, that safety-related structures, systems, and components remain functional in the event of a Safe Shutdown Earthquake (SSE). It specifies the use of a suitable dynamic analysis as one method of ensuring that the structures, systems, and components can withstand the seismic loads. Similarly, paragraph (a)(2) of Section VI of the same appendix requires, in part, that the structures, systems, and components necessary for continued operation without undue risk to the health and safety of the public remain functional in the event of an Operating Basis Earthquake (OBE). Again, the use of suitable dynamic analysis is specified as one method of ensuring that the structures, systems, and components can withstand the seismic loads. This guide describes methods acceptable to the NRC staff for developing two horizontal and one vertical floor design response spectra at various floors or other equipment-support locations of interest from the time-history motions resulting from the dynamic analysis of the supporting structure. These floor design response spectra are needed for the dynamic analysis of the systems or equipment supported at various locations of the supporting structure

  15. Developing a CANDU industry maintenance guide. A 'community of practice' compendium

    International Nuclear Information System (INIS)

    Von Hatten, P.; Hoye, D.S.

    2011-01-01

    The CANDU Owners Group (COG) has initiated a joint utility project to create an Industry Maintenance Guide. The primary goal of the guide is to provide a structured template of activities to implement the maintenance program, based on industry best practices, and with consideration for new regulatory requirements identified in the Canadian Nuclear Safety Commission document S210. The guide will be prepared with a macro view of the maintenance program, which includes core maintenance activities as well as supporting activities and programs in Engineering, Supply Chain and Work Management. Currently there is no such document that solidly links all the requirements to develop, support and execute a maintenance program. Some elements are captured in various industry documents such as INPO documents AP928, Work Management, AP913, Equipment Reliability and AP908, Materials and Services. The guide will not replicate these good practices, but will focus on how they are linked and interrelate to create an optimum program. It is expected that utilities will be able to utilize the guide to take the next incremental step in performance based on cross functional alignment and efficiency.

  16. Design basis document open-item resolution and reportability

    International Nuclear Information System (INIS)

    Gambhir, S.K.; Livingston, B.R.; Purcell, J.J.; Erickson, E.A.

    1989-01-01

    In the process of reconstituting the design bases for older nuclear power plants, information or references may not be available to fully define the design requirements or to document and verify the adequacy of the design. Also, information that is in conflict with other data is identified. The missing and conflicting information must be reconstituted in order to adequately document the design bases of the plant. For these operating facilities, the identification, tracking, and resolution of missing or conflicting information is very important when the reporting requirements stipulated by 10CFR21, 10CFR50.72, and 10CFR50.73 are considered. Additionally, controlled documentation (calculations, drawings, etc.) used to develop the design basis documents may contain conflicting data. In some cases, conflicts between the as-built design and licensing or design basis requirements established in specific commitments to the U.S. Nuclear Regulatory Commission may be identified. Furthermore, concerns regarding the adequacy of safety-related systems or components to perform their required function may be identified that would warrant prompt action by the licensee. The approach discussed in this paper was used by Omaha Public Power District for the ongoing design basis reconstitution effort at the Fort Calhoun nuclear plant

  17. Official publication of the regulatory guide concerning control of LAW and MAW with negligible heat release, which are not delivered to the waste collection station of the Land

    International Nuclear Information System (INIS)

    1989-01-01

    Control of the LAW and MAW from nuclear installations is to be made so as to ensure that amounts, residence and status of conditioning of the wastes can be determined any time in order to provide for a safe interim storage or ultimate disposal by supervision and control of all waste management steps (waste treatment, conditioning, interim storage, transport). The checks have to determine the radionuclide inventory, and, independent of aforesaid measurements, the nuclear fuel content (e.g. Pu) has to be declared if the limit of 74 Bq/g is exceeded. The provisions of the regulatory guide are intended to be valid for a period of three years, and shall then be replaced by a statutory instrument (an ordinance to be prepared by the joint Committee of the Laender for Nuclear Energy - Executive Committee). (orig./HP) [de

  18. Regulatory assessment of safety culture in nuclear organisations - current trends and challenges

    International Nuclear Information System (INIS)

    Tronea, M.

    2010-01-01

    The paper gives an overview of the current practices in the area of regulatory assessment of safety culture in nuclear organisations and of the associated challenges. While the assessment and inspection procedures currently in use by regulatory authorities worldwide are directed primarily at verifying compliance with the licensing basis, there is a recognised need for a more systematic approach to the identification, collection and review of data relevant to the safety culture in licensees' organisations. The paper presents a proposal for using the existing regulatory inspection practices for gathering information relevant to safety culture and for assessing it in an integrated manner. The proposal is based on the latest requirements and guidance issued by the International Atomic Energy Agency (IAEA) on management systems for nuclear facilities and activities, particularly as regards the attributes needed for a strong nuclear safety culture. (author)

  19. Evaluation of the safety culture in the regulatory activity in Camaguey province

    International Nuclear Information System (INIS)

    Naranjo Lopez, A.M.; Barreras Caballero, A.; Damera Martinez, A.

    1999-01-01

    Previous studied accomplished in the country have permitted to evaluate the activity of the regulatory body in nuclear safety matter in part of the national territory. These studies did not encompass the Camaguey province. In the work are shown the results of the study in this part of the territory, accomplished as of the survey elaborated by the National Nuclear Safety Center using guides it ASCOT and other documents of the IAEA

  20. THE ROLE OF SELF-REGULATORY AUDITING ASSOCIATIONS IN ARRANGEMENT OF AUDIT ACTIVITIES QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    Zinaida P. Arharova

    2013-01-01

    Full Text Available The role of self-regulatory organizations in audit activities quality control is revealed in this article. Creation of a united audit association is the basis of certain regulating and auditing functions transfer from the government to the public sector.

  1. Standard guide for conducting exfoliation corrosion tests in aluminum alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This guide differs from the usual ASTM standard in that it does not address a specific test. Rather, it is an introductory guide for new users of other standard exfoliation test methods, (see Terminology G 15 for definition of exfoliation). 1.2 This guide covers aspects of specimen preparation, exposure, inspection, and evaluation for conducting exfoliation tests on aluminum alloys in both laboratory accelerated environments and in natural, outdoor atmospheres. The intent is to clarify any gaps in existent test methods. 1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  2. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence

    Science.gov (United States)

    Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya

    2015-01-01

    Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930

  3. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence.

    Directory of Open Access Journals (Sweden)

    Kacy L Gordon

    2015-05-01

    Full Text Available Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2 from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements.

  4. Standard guide for installation of Walk-Through metal detectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 Some facilities require that personnel entering designated areas be screened for concealed weapons and other metallic materials. Also, personnel exiting designated areas are often screened for metallic shielding material and other types of metallic contraband. Walk-through metal detectors are widely used to implement these requirements. This guide describes various elements to be considered when planning to install walk-through metal detectors. 1.2 This guide is not intended to set performance levels, nor is it intended to limit or constrain operational technologies. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. A study on the establishment of the regulatory guide to the characteristics and classification criteria of low and intermediate level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Jae; Paek, Min Hoon; Park, Jong Gil; Han, Byeong Seop; Cheong, Jae Hak; Lee, Hae Chan; Yang, Jin Yeong; Hong, Hei Kwan; Park, Jin Baek [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-01-15

    The objectives of this study are the development of regulatory guidance to the establishment of the necessary technology standard of the characteristics and classification criteria of low and intermediate level radioactive waste for the safe operation of the waste repositories. In followings, the contents of our report will be presented in two parts. Survey of the characteristics of radioactive waste : investigate and analyze the source, types and characteristics of domestic radioactive waste as a basis for this study, radiochemical analysis of radioactive waste based on foreign and domestic data base, determination of the methodology for the application of the characteristic analysis of waste classification technology. Establishment of the classification criteria of the radioactive waste : collection and analysis of foreign and domestic data base on the classification methodology and criteria, development of low and intermediate level waste classification criteria and the set up of the classification methodology through the analysis of waste data, establishment of the systematic classification methodology of the low and intermediate radioactive waste through the careful survey of the current domestic regulation.

  6. Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.

    Science.gov (United States)

    Saller, Maximilian A C; Habershon, Scott

    2017-07-11

    Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.

  7. Design of reactor containment systems for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It is a revision of the Safety Guide on Design of the Reactor Containment Systems in Nuclear Power Plants (Safety Series No. 50-Sg-D1) issued in 1985 and supplements the Safety Requirements publication on Safety of Nuclear Power Plants: Design. The present Safety Guide was prepared on the basis of a systematic review of the relevant publications, including the Safety of Nuclear Power Plants: Design, the Safety fundamentals publication on The Safety of Nuclear Installations, Safety Guides, INSAG Reports, a Technical Report and other publications covering the safety of nuclear power plants. 1.2. The confinement of radioactive material in a nuclear plant, including the control of discharges and the minimization of releases, is a fundamental safety function to be ensured in normal operational modes, for anticipated operational occurrences, in design basis accidents and, to the extent practicable, in selected beyond design basis accidents. In accordance with the concept of defence in depth, this fundamental safety function is achieved by means of several barriers and levels of defence. In most designs, the third and fourth levels of defence are achieved mainly by means of a strong structure enveloping the nuclear reactor. This structure is called the 'containment structure' or simply the 'containment'. This definition also applies to double wall containments. 1.3. The containment structure also protects the reactor against external events and provides radiation shielding in operational states and accident conditions. The containment structure and its associated systems with the functions of isolation, energy management, and control of radionuclides and combustible gases are referred to as the containment systems

  8. Design of reactor containment systems for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It is a revision of the Safety Guide on Design of the Reactor Containment Systems in Nuclear Power Plants (Safety Series No. 50-Sg-D1) issued in 1985 and supplements the Safety Requirements publication on Safety of Nuclear Power Plants: Design. The present Safety Guide was prepared on the basis of a systematic review of the relevant publications, including the Safety of Nuclear Power Plants: Design, the Safety fundamentals publication on The Safety of Nuclear Installations, Safety Guides, INSAG Reports, a Technical Report and other publications covering the safety of nuclear power plants. 1.2. The confinement of radioactive material in a nuclear plant, including the control of discharges and the minimization of releases, is a fundamental safety function to be ensured in normal operational modes, for anticipated operational occurrences, in design basis accidents and, to the extent practicable, in selected beyond design basis accidents. In accordance with the concept of defence in depth, this fundamental safety function is achieved by means of several barriers and levels of defence. In most designs, the third and fourth levels of defence are achieved mainly by means of a strong structure enveloping the nuclear reactor. This structure is called the 'containment structure' or simply the 'containment'. This definition also applies to double wall containments. 1.3. The containment structure also protects the reactor against external events and provides radiation shielding in operational states and accident conditions. The containment structure and its associated systems with the functions of isolation, energy management, and control of radionuclides and combustible gases are referred to as the containment systems

  9. Regulatory activities

    International Nuclear Information System (INIS)

    2001-01-01

    This publication, compiled in 8 chapters, presents the regulatory system developed by the Nuclear Regulatory Authority (NRA) of the Argentine Republic. The following activities and developed topics in this document describe: the evolution of the nuclear regulatory activity in Argentina; the Argentine regulatory system; the nuclear regulatory laws and standards; the inspection and safeguards of nuclear facilities; the emergency systems; the environmental systems; the environmental monitoring; the analysis laboratories on physical and biological dosimetry, prenatal irradiation, internal irradiation, radiation measurements, detection techniques on nuclear testing, medical program on radiation protection; the institutional relations with national and international organization; the training courses and meeting; the technical information

  10. Molecular basis of the functional heterogeneity of the muscarinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Numa, S.; Fukuda, K.; Kubo, T.; Maeda, A.; Akiba, I.; Bujo, H.; Nakai, J.; Mishina, M.; Higashida, H.

    1988-01-01

    The muscarinic acetylcholine receptor (mAChR) mediates a variety of cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides, and modulation of potassium channels, through the action of guanine-nucleotide-binding regulatory proteins (G proteins). The question then arises as to whether multiple mAChR species exist that are responsible for the various biochemical and physiological effects. In fact, pharmacologically distinguishable forms of the mAChR occur in different tissues and have been provisionally classified into M 1 (I), M 2 cardiac (II), and M 2 glandular (III) subtypes on the basis of their difference in apparent affinity for antagonists. Here, the authors have made attempts to understand the molecular basis of the functional heterogeneity of the mAChR, using recombinant DNA technology

  11. Slovak Nuclear Regulatory Body Position in the Transport of Radioactive Waste

    International Nuclear Information System (INIS)

    Homola, J.

    2003-01-01

    This paper describes safety requirements for transport of radioactive waste in Slovakia and the role of regulatory body in the transport licensing and assessment processes. Importance of radioactive waste shipments have been increased since 1999 by starting of NPP A-1 decommissioning and operation of near surface disposal facility. Also some information from history of shipment as well as future activities are given. Legal basis for radioactive waste transport is resulting from IAEA recommendations in this area. Different types of transport equipment were approved by regulatory body for both liquid and solid waste and transportation permits were issued to their shipment. Regulatory body attention during evaluation of transport safety is focused mainly on ability of individual packages to withstand different transport conditions and on safety analyses performed for transport equipment for liquid waste with high frequency of shipments. During past three years no event was occurred in connection with radioactive waste transport in Slovakia

  12. Urban Stormwater Runoff. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Simko, Robert A.

    Urban stormwater runoff collects pollutants from many parts of a city and is an important consideration in water quality planning. Presented is an instructor's guide for a learning session covering various aspects of urban runoff including pollutant sources, management practices, and regulatory programs. Intended for citizen advisory groups, this…

  13. Cultural Differences in Values as Self-Guides.

    Science.gov (United States)

    Cheung, Wing-Yee; Maio, Gregory R; Rees, Kerry J; Kamble, Shanmukh; Mane, Sangeetha

    2016-06-01

    Three studies tested whether individualism-collectivism moderates the extent to which values are endorsed as ideal self-guides and ought self-guides, and the consequences for regulatory focus and emotion. Across Studies 1 and 2, individualists endorsed values that are relatively central to the self as stronger ideals than oughts, whereas collectivists endorsed them as ideals and oughts to a similar degree. Study 2 found that individualists justified central values using reasons that were more promotion focused than prevention focused, whereas collectivists used similar amount of prevention-focused and promotion-focused reasons. In Study 3, individualists felt more dejected after violating a central (vs. peripheral) value and more agitated after violating a peripheral (vs. central) value. Collectivists felt a similar amount of dejection regardless of values centrality and more agitation after violating central (vs. peripheral) values. Overall, culture has important implications for how we regulate values that are central or peripheral to our self-concept. © 2016 by the Society for Personality and Social Psychology, Inc.

  14. Standard guide for sampling radioactive tank waste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. Arrangement between the US Nuclear Regulatory Commission (USNRC) and the Belgian Government for Exchange of Technical Information in Regulatory Matters and in Cooperation in Safety Research and in Standards Development

    International Nuclear Information System (INIS)

    1978-01-01

    This Arrangement was concluded on 6 June 1978 between the United States Nuclear Regulatory Commission and the Belgian Government for exchange of technical information in regulatory matters and in co-operation in safety research and in standards development. Both Parties agree to exchange, as available, technical information related to the regulation of safety and the environmental impact of designated nuclear energy facilities and to safety research of designated types of nuclear facilities. As regards co-operation in safety research, the execution of joint programmes and projects under which activities are divided between the two Parties will be agreed on a case by case basis. The Parties further agree to co-operate in the development of regulatory standards applicable to the designated nuclear facilities. The Arrangement is valid for 5 years and may be extended. (NEA) [fr

  16. Upgrading nuclear regulatory infrastructure in Armenia

    International Nuclear Information System (INIS)

    Martirosyan, A.; Amirjanyan, A.; Kacenelenbogen, S.

    2010-01-01

    Armenia is contemplating an upgrade to its national power generation capacity to meet replacement and future energy needs. Unit 2 of ANPP is scheduled for shutdown after replacement power generation capacities are in place. A recent alternative energy study indicates viability of the nuclear option to replace this capacity. Some technology-specific proposals are being considered by the Ministry of Energy of Armenia. It is likely that the reactor technology decision will be made in the not too distant future. The existing reactor continues to be operated in the regulatory framework developed in the Soviet Union and adopted in Armenia. Given the interest in the new reactor, Armenia launched a project to review the existing system of regulation and to bring it into harmony with modern practice in preparation for the new reactor project development. The new regulatory framework will be needed as a basis for any potential tendering process. The US NRC and ANRA have agreed to perform a review and update nuclear legislation and the system of regulation in this area. The first step in this process was to develop an action plan for such program. The action plan describes the overall strategy of ANRA to modify existing or develop new processes and requirements, identifies the major Laws that need to be reviewed given practical legal considerations to construct and operate the reactor and Armenia's international obligations under various conventions. This work included review of existing models of regulation in different countries with 'small' nuclear program, including IAEA recommendations as well as existing legislation in Armenia in this area and development of a strategy for the regulatory model development. In addition, the plan to develop requirements for ANRA staffing and training needs to meet its regulatory obligations under the new reactor development process was developed

  17. Information to Improve Public Perceptions of the Food and Drug Administration (FDA’s Tobacco Regulatory Role

    Directory of Open Access Journals (Sweden)

    Amira Osman

    2018-04-01

    Full Text Available While the Food and Drug Administration (FDA has had regulatory authority over tobacco products since 2009, public awareness of this authority remains limited. This research examines several broad types of information about FDA tobacco regulatory mission that may improve the perceptions of FDA as a tobacco regulator. Using Amazon Mechanical Turk, 1766 adults, smokers and non-smokers, were randomly assigned to view a statement about FDA regulatory authority that varied three information types in a 2 × 2 × 2 between subjects experimental design: (1 FDA’s roles in regulating tobacco (yes/no; (2 The scientific basis of regulations (yes/no; and (3 A potential protective function of regulations (yes/no. Using factorial ANOVA, we estimated the main and interactive effects of all three types of information and of smoking status on the perceptions of FDA. Participants that were exposed to information on FDA roles reported higher FDA credibility and a greater perceived knowledge of FDA than those who did not. Exposure to information about the scientific basis of regulations led to more negative views of the tobacco industry. Participants who learned of the FDA’s commitment to protecting the public reported higher FDA credibility and more positive attitudes toward regulations than those who did not learn of this commitment. We observed no significant interaction effects. The findings suggest that providing information about the regulatory roles and protective characterization of the FDA’s tobacco regulatory mission positively influence public perceptions of FDA and tobacco regulations.

  18. Pediatric disaster response in developed countries: ten guiding principles.

    Science.gov (United States)

    Brandenburg, Mark A; Arneson, Wendy L

    2007-01-01

    Mass casualty incidents and large-scale disasters involving children are likely to overwhelm a regional disaster response system. Children have unique vulnerabilities that require special considerations when developing pediatric response systems. Although medical and trauma strategies exist for the evaluation and treatment of children on a daily basis, the application of these strategies under conditions of resource-constrained triage and treatment have rarely been evaluated. A recent report, however, by the Institute of Medicine did conclude that on a day-to-day basis the U.S. healthcare system does not adequately provide emergency medical services for children. The variability, scale, and uncertainty of disasters call for a set of guiding principles rather than rigid protocols when developing pediatric response plans. The authors propose the following guiding principles in addressing the well-recognized, unique vulnerabilities of children: (1) terrorism prevention and preparedness, (2) all-hazards preparedness, (3) postdisaster disease and injury prevention, (4) nutrition and hydration, (5) equipment and supplies, (6) pharmacology, (7) mental health, (8) identification and reunification of displaced children, (9) day care and school, and (10) perinatology. It is hoped that the 10 guiding principles discussed in this article will serve as a basic framework for developing pediatric response plans and teams in developed countries.

  19. Resource Endowments and Responses to Regulatory Pressure: Publications of Economics, Management, and Political Science Departments of Turkish Universities in Indexed Journals, 2000-2008

    Science.gov (United States)

    Onder, Cetin; Kasapoglu-Onder, Rana

    2011-01-01

    This paper investigates how differences in resource endowments of universities shape variation in their response to regulatory pressures. Earlier research on higher education institutions tends to conceive regulatory rules as the primary basis of action and does not attend to differences in the salient characteristics of universities. This paper…

  20. On the new ISO guide on risk management terminology

    International Nuclear Information System (INIS)

    Aven, Terje

    2011-01-01

    A new ISO guide on risk management terminology has recently been issued. The guide provides basic vocabulary for developing a common understanding of risk assessment and risk management concepts and terms among organisations and functions, and across different application areas. It provides the foundation of, for example, the ISO 31000 standard on risk management. The guide strongly influences the risk assessment and risk management field, and its quality is thus of utmost importance. In this paper a critical review of the guide is conducted. We argue that the guide fails in several ways in producing consistent and meaningful definitions of many of the key concepts covered. A main focus is placed on the risk concept, which is defined as the effect of uncertainty on objectives, but also many other definitions are looked into, including probability, vulnerability, hazard, risk identification and risk description. Examples are used to illustrate the problems and show how they can be rectified. Although the focus is on the ISO guide, the discussion is to a large extent general. The overall aim of the paper is to contribute to the further development of the area of risk assessment and risk management by strengthening its conceptual basis.