WorldWideScience

Sample records for regulatory feedback mechanism

  1. Biodiversity maintenance in food webs with regulatory environmental feedbacks.

    Science.gov (United States)

    Bagdassarian, Carey K; Dunham, Amy E; Brown, Christopher G; Rauscher, Daniel

    2007-04-21

    Although the food web is one of the most fundamental and oldest concepts in ecology, elucidating the strategies and structures by which natural communities of species persist remains a challenge to empirical and theoretical ecologists. We show that simple regulatory feedbacks between autotrophs and their environment when embedded within complex and realistic food-web models enhance biodiversity. The food webs are generated through the niche-model algorithm and coupled with predator-prey dynamics, with and without environmental feedbacks at the autotroph level. With high probability and especially at lower, more realistic connectance levels, regulatory environmental feedbacks result in fewer species extinctions, that is, in increased species persistence. These same feedback couplings, however, also sensitize food webs to environmental stresses leading to abrupt collapses in biodiversity with increased forcing. Feedback interactions between species and their material environments anchor food-web persistence, adding another dimension to biodiversity conservation. We suggest that the regulatory features of two natural systems, deep-sea tubeworms with their microbial consortia and a soil ecosystem manifesting adaptive homeostatic changes, can be embedded within niche-model food-web dynamics.

  2. Dynamic aspects of the tubuloglomerular feedback mechanism

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1992-01-01

    Tubuloglomerular feedback (TGF) is an important intrarenal regulatory mechanism, which acts to stabilize renal blood flow, GFR, and the tubular flow rate. The anatomical basis for this negative feedback system is the Juxtaglomerular Apparatus (JGA). This is located at the point of contact between...... of the TGF, and to use this knowledge in elucidating the role of the TGF system in the autoregulation of renal blood flow. Further, by comparing the dynamic characteristics of TGF between hypertensive and normotensive rats, to identify possible alterations in renal function that could play a role...... in the etiology and pathogenesis of hypertension. Anesthesia and surgery are unavoidable complications in experimental work in animals. It is shown that the anesthetics commonly used in micropuncture experiments in rats have different effects on various aspects of renal function, e.g. GFR, sodium excretion...

  3. How are things going. Obtaining feedback in a regulatory environment

    International Nuclear Information System (INIS)

    McGuire, J.V.; Walsh, M.E.; Boegel, A.J.; Morisseau, D.S.; Persendky, J.J.

    1984-08-01

    This study tested two procedures to gather feedback for a federal agency about its regulatory actions and its licensees' practices. The procedures, a workshop and a mailed survey, targeted a data source new to the agency. Results to date find the feedback workshop useful and the new data source cooperative and valuable. Participation in the workshops is surprising, given their historical backdrop, structure, and psychological literatures. These findings suggest that agencies may be ignoring important data sources for ill-informed reasons. Also, the findings suggest a possible need to restructure existing channels of communication between a regulatory agency and its licensees

  4. Regulatory mechanisms of apoptosis in regularly dividing cells

    Directory of Open Access Journals (Sweden)

    Ribal S Darwish

    2010-08-01

    Full Text Available Ribal S DarwishDepartment of Anesthesiology, Division of Critical Care Medicine, University of Maryland Medical Center, Baltimore, Maryland, USAAbstract: The balance between cell survival and death is essential for normal development and homeostasis of organisms. Apoptosis is a distinct type of cell death with ultrastructural features that are consistent with an active, inherently controlled process. Abnormalities and ­dysregulation of apoptosis contribute to the pathophysiology of multiple disease processes. Apoptosis is strictly regulated by several positive and negative feedback mechanisms that regulate cell death and determine the final outcome after cell exposure to apoptotic stimuli. Mitochondria and caspases are central components of the regulatory mechanisms of ­apoptosis. Recently, noncaspase pathways of apoptosis have been explored through the studies of ­apoptosis-inducing factor and endonuclease G. Multiple difficulties in the apoptosis research relate to apoptosis detection and imaging. This article reviews current understanding of the regulatory mechanisms of apoptosis.Keywords: caspases, apoptosis-inducing factor, apoptosis inhibitory proteins, cytochrome c, mitochondria 

  5. Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks

    Science.gov (United States)

    Wang, Liu-Suo; Li, Ning-Xi; Chen, Jing-Jia; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2018-04-01

    A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks. It is less understood how the transition between the two dynamic modes is modulated by the positive and negative feedback loops. We developed an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When the positive feedback is activated much later than the negative one in response to a strong stimulus, the system exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in determining cellular outcome.

  6. Sea ice-albedo climate feedback mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J.L.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States); Ebert, E.E. [Bureau of Meterology Research Center, Melbourne (Australia)

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  7. An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer.

    Science.gov (United States)

    Weinberger, Leor S; Shenk, Thomas

    2007-01-01

    Animal viruses (e.g., lentiviruses and herpesviruses) use transcriptional positive feedback (i.e., transactivation) to regulate their gene expression. But positive-feedback circuits are inherently unstable when turned off, which presents a particular dilemma for latent viruses that lack transcriptional repressor motifs. Here we show that a dissipative feedback resistor, composed of enzymatic interconversion of the transactivator, converts transactivation circuits into excitable systems that generate transient pulses of expression, which decay to zero. We use HIV-1 as a model system and analyze single-cell expression kinetics to explore whether the HIV-1 transactivator of transcription (Tat) uses a resistor to shut off transactivation. The Tat feedback circuit was found to lack bi-stability and Tat self-cooperativity but exhibited a pulse of activity upon transactivation, all in agreement with the feedback resistor model. Guided by a mathematical model, biochemical and genetic perturbation of the suspected Tat feedback resistor altered the circuit's stability and reduced susceptibility to molecular noise, in agreement with model predictions. We propose that the feedback resistor is a necessary, but possibly not sufficient, condition for turning off noisy transactivation circuits lacking a repressor motif (e.g., HIV-1 Tat). Feedback resistors may be a paradigm for examining other auto-regulatory circuits and may inform upon how viral latency is established, maintained, and broken.

  8. How Attributes of the Feedback Message affect Subsequent Feedback Seeking: The interactive effects of feedback sign and type

    OpenAIRE

    Medvedeff, Megan; Gregory, Jane Brodie; Levy, Paul E

    2008-01-01

    In the current study, we examined the interactive effects of feedback type and sign on feedback-seeking behaviour, as well as the moderating role of regulatory focus. Using a behavioural measure of feedback seeking, we demonstrated a strong interaction between feedback type and sign, such that individuals subsequently sought the most feedback after they were provided with negative process feedback. Additionally, results suggested that an individual's chronic regulatory focus has implications ...

  9. Are Success and Failure Experiences Equally Motivational? An Investigation of Regulatory Focus and Feedback

    Science.gov (United States)

    Shu, Tse-Mei; Lam, Shui-fong

    2011-01-01

    The present study extended regulatory focus theory (Idson & Higgins, 2000) to an educational setting and attempted to identify individuals with high motivation after both success and failure feedback. College students in Hong Kong (N = 180) participated in an experiment with a 2 promotion focus (high vs. low) x 2 prevention focus (high vs.…

  10. 78 FR 13057 - Agency Information Collection Activities; Information Collection; IT Dashboard Feedback Mechanism

    Science.gov (United States)

    2013-02-26

    ... Information Collection Activities; Information Collection; IT Dashboard Feedback Mechanism AGENCY: Office of... previously approved information collection requirement regarding IT Dashboard Feedback Mechanism. DATES... Collection 3090- 0285, IT Dashboard Feedback Mechanism, by any of the following methods: Regulations.gov...

  11. Belgian class II nuclear facilities such as irradiators and accelerators. Regulatory Body attention points and operating experience feedback

    Energy Technology Data Exchange (ETDEWEB)

    Minne, Etienne; Peters, Christelle; Mommaert, Chantal; Kennes, Christian; Cortenbosch, Geert; Schmitz, Frederic; Haesendonck, Michel van [Bel V, Brussels (Belgium); Carlier, Pascal; Schrayen, Virginie; Wertelaers, An [Federal Agency for Nuclear Control, Brussels (Belgium)

    2016-11-15

    The aim of this paper is to present the Regulatory Body attention points and the operating experience feedback from Belgian ''class IIA'' facilities such as industrial and research irradiators, bulk radionuclides producers and conditioners. Reinforcement of the nuclear safety and radiation protection has been promoted by the Federal Agency for Nuclear Control (FANC) since 2009. This paper is clearly a continuation of the former paper [1] presenting the evolution in the regulatory framework relative to the creation of Bel V, the subsidiary of the FANC, and to the new ''class IIA'' covering heavy installations such as those mentioned above. Some lessons learnt are extracted from the operating experience feedback based on the events declared to the authorities. Even though a real willingness to meet the new safety requirements is observed among the ''class IIA'' licensees, promoting the safety culture, the nuclear safety and radiation protection remains an endless challenge for the Regulatory Body.

  12. Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis

    Science.gov (United States)

    2018-01-01

    The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedback coordinating cell wall assembly and expansion is essential to sustain mating projection growth in budding yeast (Saccharomyces cerevisiae). Our theoretical results indicate that the mechanical feedback provided by the Cell Wall Integrity pathway, with cell wall stress sensors Wsc1 and Mid2 increasingly activating membrane-localized cell wall synthases Fks1/2 upon faster cell wall expansion, stabilizes mating projection growth without affecting cell shape. Experimental perturbation of the osmotic pressure and cell wall mechanics, as well as compromising the mechanical feedback through genetic deletion of the stress sensors, leads to cellular phenotypes that support the theoretical predictions. Our results indicate that while the existence of mechanical feedback is essential to stabilize mating projection growth, the shape and size of the cell are insensitive to the feedback. PMID:29346368

  13. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk.

    Science.gov (United States)

    McCraty, Rollin; Shaffer, Fred

    2015-01-01

    Heart rate variability, the change in the time intervals between adjacent heartbeats, is an emergent property of interdependent regulatory systems that operates on different time scales to adapt to environmental and psychological challenges. This article briefly reviews neural regulation of the heart and offers some new perspectives on mechanisms underlying the very low frequency rhythm of heart rate variability. Interpretation of heart rate variability rhythms in the context of health risk and physiological and psychological self-regulatory capacity assessment is discussed. The cardiovascular regulatory centers in the spinal cord and medulla integrate inputs from higher brain centers with afferent cardiovascular system inputs to adjust heart rate and blood pressure via sympathetic and parasympathetic efferent pathways. We also discuss the intrinsic cardiac nervous system and the heart-brain connection pathways, through which afferent information can influence activity in the subcortical, frontocortical, and motor cortex areas. In addition, the use of real-time HRV feedback to increase self-regulatory capacity is reviewed. We conclude that the heart's rhythms are characterized by both complexity and stability over longer time scales that reflect both physiological and psychological functional status of these internal self-regulatory systems.

  14. Distributed force feedback in the spinal cord and the regulation of limb mechanics.

    Science.gov (United States)

    Nichols, T Richard

    2018-03-01

    This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.

  15. Short structured feedback training is equivalent to a mechanical feedback device in two-rescuer BLS: a randomised simulation study.

    Science.gov (United States)

    Pavo, Noemi; Goliasch, Georg; Nierscher, Franz Josef; Stumpf, Dominik; Haugk, Moritz; Breckwoldt, Jan; Ruetzler, Kurt; Greif, Robert; Fischer, Henrik

    2016-05-13

    Resuscitation guidelines encourage the use of cardiopulmonary resuscitation (CPR) feedback devices implying better outcomes after sudden cardiac arrest. Whether effective continuous feedback could also be given verbally by a second rescuer ("human feedback") has not been investigated yet. We, therefore, compared the effect of human feedback to a CPR feedback device. In an open, prospective, randomised, controlled trial, we compared CPR performance of three groups of medical students in a two-rescuer scenario. Group "sCPR" was taught standard BLS without continuous feedback, serving as control. Group "mfCPR" was taught BLS with mechanical audio-visual feedback (HeartStart MRx with Q-CPR-Technology™). Group "hfCPR" was taught standard BLS with human feedback. Afterwards, 326 medical students performed two-rescuer BLS on a manikin for 8 min. CPR quality parameters, such as "effective compression ratio" (ECR: compressions with correct hand position, depth and complete decompression multiplied by flow-time fraction), and other compression, ventilation and time-related parameters were assessed for all groups. ECR was comparable between the hfCPR and the mfCPR group (0.33 vs. 0.35, p = 0.435). The hfCPR group needed less time until starting chest compressions (2 vs. 8 s, p feedback or by using a mechanical audio-visual feedback device was similar. Further studies should investigate whether extended human feedback training could further increase CPR quality at comparable costs for training.

  16. Physical limits of feedback noise-suppression in biological networks

    International Nuclear Information System (INIS)

    Zhang, Jiajun; Yuan, Zhanjiang; Zhou, Tianshou

    2009-01-01

    Feedback is a ubiquitous control mechanism of biological networks, and has also been identified in a variety of regulatory systems and organisms. It has been shown that, for a given gain and with negligible intrinsic noise, negative feedback impairs noise buffering whereas positive feedback enhances noise buffering. We further investigate the influence of negative and positive feedback on noise in output signals by considering both intrinsic and extrinsic noise as well as operator noise. We find that, while maintaining the system sensitivity, either there exists a minimum of the output noise intensity corresponding to a biologically feasible feedback strength, or the output noise intensity is a monotonic function of feedback strength bounded by both biological and dynamical constraints. In both cases, feedback noise-suppression is physically limited. In other words, noise suppressed by negative or positive feedback cannot be reduced without limitation even in the case of slow transcription

  17. Facial Feedback Mechanisms in Autistic Spectrum Disorders

    Science.gov (United States)

    Stel, Marielle; van den Heuvel, Claudia; Smeets, Raymond C.

    2008-01-01

    Facial feedback mechanisms of adolescents with Autistic Spectrum Disorders (ASD) were investigated utilizing three studies. Facial expressions, which became activated via automatic (Studies 1 and 2) or intentional (Study 2) mimicry, or via holding a pen between the teeth (Study 3), influenced corresponding emotions for controls, while individuals…

  18. Asymmetric positive feedback loops reliably control biological responses.

    Science.gov (United States)

    Ratushny, Alexander V; Saleem, Ramsey A; Sitko, Katherine; Ramsey, Stephen A; Aitchison, John D

    2012-04-24

    Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a switch-like manner. Such systems are often characterized by the requisite formation of a heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation (ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRα/RXRα), adipocyte differentiation (PPARγ/RXRα), development and differentiation (RAR/RXR), myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a competitive advantage and allows the system to robustly increase its responsiveness while precisely tuning the response to a consistent level in the presence of varying stimuli. This study reveals evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to pharmacologic intervention and synthetic biology applications.

  19. Movement goals and feedback and feedforward control mechanisms in speech production.

    Science.gov (United States)

    Perkell, Joseph S

    2012-09-01

    Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences.

  20. Contributions of the European Operating Experience Feedback Project to Support Regulatory Bodies

    International Nuclear Information System (INIS)

    Heitsch, M.

    2016-01-01

    Operating Experience Feedback (OEF) is one of the ways of improving the nuclear safety of operating nuclear power plants. The EC-Clearinghouse initiative was set up in 2008 to support nuclear regulatory authorities of EU Member States, but also Technical Support Organizations, international organizations and the broader nuclear community, to enhance nuclear safety. The differing regulatory regimes in the EU member countries and a significant diversity of the nuclear power plant (NPP) designs have been a challenge in the establishment of the European Clearinghouse. The European Clearinghouse is organized as a Network operated by a Central Office located at the Institute for Energy and Transport (IET) which is part of Joint Research Centre (JRC) of the European Commission. It gathers 17 European regulatory authorities and 3 major European Technical Support organizations (TSO). The Clearinghouse aims at providing lessons learned, recommendations and best practices from operational experience of NPPs based on support and commitment from the EU nuclear regulatory authorities. One of the objectives of the European Clearinghouse is to establish European best practices for the assessment of unusual events in NPPs. The paper will present the main activities of the European Clearinghouse. These include: • Topical studies providing in-depth assessment of selected topics important for the safe operation of NPPs. Statistical tools help to identify interesting subjects for these studies; • Quarterly reports on operating experience; • Training courses in the field of root cause analysis and event investigation; • Development, maintenance and population of a database for storage of operating experience related information; • Collaboration with international organizations such as IAEA and OECD/NEA on all aspects of OEF. All activities of the Clearinghouse initiative focus on providing an added value for nuclear regulation. (author)

  1. Push-Pull and Feedback Mechanisms Can Align Signaling System Outputs with Inputs.

    Science.gov (United States)

    Andrews, Steven S; Peria, William J; Yu, Richard C; Colman-Lerner, Alejandro; Brent, Roger

    2016-11-23

    Many cell signaling systems, including the yeast pheromone response system, exhibit "dose-response alignment" (DoRA), in which output of one or more downstream steps closely matches the fraction of occupied receptors. DoRA can improve the fidelity of transmitted dose information. Here, we searched systematically for biochemical network topologies that produced DoRA. Most networks, including many containing feedback and feedforward loops, could not produce DoRA. However, networks including "push-pull" mechanisms, in which the active form of a signaling species stimulates downstream activity and the nominally inactive form reduces downstream activity, enabled perfect DoRA. Networks containing feedbacks enabled DoRA, but only if they also compared feedback to input and adjusted output to match. Our results establish push-pull as a non-feedback mechanism to align output with variable input and maximize information transfer in signaling systems. They also suggest genetic approaches to determine whether particular signaling systems use feedback or push-pull control. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light.

    Science.gov (United States)

    Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I; Bowen, Warwick P; Gehring, Tobias; Andersen, Ulrik L

    2016-11-29

    Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.

  3. Accountability feedback assessments for improving efficiency of nuclear regulatory institutions

    International Nuclear Information System (INIS)

    Lavarenne, Jean; Shwageraus, Eugene; Weightman, Michael

    2016-01-01

    The Fukushima-Daiichi Accident demonstrated the need of assessing and strengthening institutions involved in nuclear safety, including the accountability of regulators. There are a few problems hindering the path towards a greater understanding of accountability systems, the ensemble of mechanisms holding to account the nuclear regulator on behalf of the public. There is no consensus on what it should deliver and no systematic assessment method exists. This article proposes a method of assessing institutions based on defence in depth concepts and inspired from risk-assessment techniques used for nuclear safety. As a first step in testing the proposal, it presents a simple Monte-Carlo simulation, illustrating some of the workings of the method of assessment and demonstrating the kind of results it will be able to supply. This on-going work will assist policy-makers take better informed decisions about the size, structure and organisation of a nuclear regulator and the cost-effective funding of its accountability system. It will assist in striking a balance between efficiency and resilience of regulatory decision-making processes. It will also promote the involvement of stakeholders and allow them to have a more meaningful impact on regulatory decisions, thereby enhancing the robustness of the regulatory system and potentially trust and confidence. - Highlights: •A general introduction to regulatory accountability is given. •A definition of an effective accountability system is proposed. •A method to assess accountability systems is proposed. •A simplified simulation of a regulatory system demonstrates the method’s capabilities.

  4. 78 FR 36190 - Agency Information Collection Activities; Submission for OMB Review; IT Dashboard Feedback Mechanism

    Science.gov (United States)

    2013-06-17

    ... Information Collection Activities; Submission for OMB Review; IT Dashboard Feedback Mechanism AGENCY: Office... to review and approve a previously approved information collection requirement regarding IT Dashboard... identified by Information Collection 3090- 0285, IT Dashboard Feedback Mechanism, by any of the following...

  5. Effects of feedback reliability on feedback-related brain activity: A feedback valuation account.

    Science.gov (United States)

    Ernst, Benjamin; Steinhauser, Marco

    2018-04-06

    Adaptive decision making relies on learning from feedback. Because feedback sometimes can be misleading, optimal learning requires that knowledge about the feedback's reliability be utilized to adjust feedback processing. Although previous research has shown that feedback reliability indeed influences feedback processing, the underlying mechanisms through which this is accomplished remain unclear. Here we propose that feedback processing is adjusted by the adaptive, top-down valuation of feedback. We assume that unreliable feedback is devalued relative to reliable feedback, thus reducing the reward prediction errors that underlie feedback-related brain activity and learning. A crucial prediction of this account is that the effects of feedback reliability are susceptible to contrast effects. That is, the effects of feedback reliability should be enhanced when both reliable and unreliable feedback are experienced within the same context, as compared to when only one level of feedback reliability is experienced. To evaluate this prediction, we measured the event-related potentials elicited by feedback in two experiments in which feedback reliability was varied either within or between blocks. We found that the fronto-central valence effect, a correlate of reward prediction errors during reinforcement learning, was reduced for unreliable feedback. But this result was obtained only when feedback reliability was varied within blocks, thus indicating a contrast effect. This suggests that the adaptive valuation of feedback is one mechanism underlying the effects of feedback reliability on feedback processing.

  6. How short RNAs impact the human ribonuclease Dicer activity: putative regulatory feedback-loops and other RNA-mediated mechanisms controlling microRNA processing.

    Science.gov (United States)

    Koralewska, Natalia; Hoffmann, Weronika; Pokornowska, Maria; Milewski, Marek; Lipinska, Andrea; Bienkowska-Szewczyk, Krystyna; Figlerowicz, Marek; Kurzynska-Kokorniak, Anna

    2016-01-01

    Ribonuclease Dicer plays a pivotal role in RNA interference pathways by processing long double-stranded RNAs and single-stranded hairpin RNA precursors into small interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. While details of Dicer regulation by a variety of proteins are being elucidated, less is known about non-protein factors, e.g. RNA molecules, that may influence this enzyme's activity. Therefore, we decided to investigate the question of whether the RNA molecules can function not only as Dicer substrates but also as its regulators. Our previous in vitro studies indicated that the activity of human Dicer can be influenced by short RNA molecules that either bind to Dicer or interact with its substrates, or both. Those studies were carried out with commercial Dicer preparations. Nevertheless, such preparations are usually not homogeneous enough to carry out more detailed RNA-binding studies. Therefore, we have established our own system for the production of human Dicer in insect cells. In this manuscript, we characterize the RNA-binding and RNA-cleavage properties of the obtained preparation. We demonstrate that Dicer can efficiently bind single-stranded RNAs that are longer than ~20-nucleotides. Consequently, we revisit possible scenarios of Dicer regulation by single-stranded RNA species ranging from ~10- to ~60-nucleotides, in the context of their binding to this enzyme. Finally, we show that siRNA/miRNA-sized RNAs may affect miRNA production either by binding to Dicer or by participating in regulatory feedback-loops. Altogether, our studies suggest a broad regulatory role of short RNAs in Dicer functioning.

  7. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment

    OpenAIRE

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environme...

  8. ASSESSING RADIATION PRESSURE AS A FEEDBACK MECHANISM IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Andrews, Brett H.; Thompson, Todd A.

    2011-01-01

    Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt law, the L IR -L' CO correlation, and the L IR -L' HCN correlation. In particular, the linear L IR -L' HCN correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of 'intermittency' in normal spirals-the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties, namely, the dust-to-gas ratio and the CO-to-H 2 and HCN-to-H 2 conversion factors, that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.

  9. PNRA Process for Utilizing Experience Feedback for Enhancing Nuclear Safety

    International Nuclear Information System (INIS)

    Shah, Z.H.

    2016-01-01

    One of the elements essential for any organization to become a learning organization is to learn from its own and others experience. The importance of utilizing experience feedback for enhancing operational safety is highlighted in nuclear industry again and again and this has resulted in establishment of several national and international forums. In addition, IAEA action plan on nuclear safety issued after Fukushima accident further highlighted the importance of experience sharing among nuclear community to enhance global nuclear safety regime. PNRA utilizes operating experience feedback gathered through different sources in order to improve its regulatory processes. During the review of licensing submissions, special emphasis is given to utilize the lessons learnt from experience feedback relating to nuclear industry within and outside the country. This emphasis has gradually resulted in various safety improvements in the facilities and processes. Accordingly, PNRA has developed a systematic process of evaluation of international operating experience feedback with the aim to create safety conscious approach. This process includes collecting information from different international forums such as IAEA, regulatory bodies of other countries and useful feedback of past accidents followed by its screening, evaluation and suggesting recommendations both for PNRA and its licensees. As a result of this process, several improvements concerning regulatory inspection plans of PNRA as well as in regulatory decision making and operational practices of licensees have been highlighted. This paper will present PNRA approach for utilizing experience feedback in its regulatory processes for enhancing / improving nuclear safety. (author)

  10. Regulatory Coherence and Standardization Mechanisms in the Trans-Pacific Partnership

    Directory of Open Access Journals (Sweden)

    Cai Phoenix X. F.

    2016-12-01

    Full Text Available This article posits a new taxonomy and framework for assessing regulatory coherence in the new generation of mega-regional, cross-cutting free trade agreements. Using the Trans-Pacific Partnership as the primary example, this article situates the rise of regulatory coherence within the current trade landscape, provides clear definitions of regulatory coherence, and argues that the real engine of regulatory coherence lies in the work of international standard setting organizations. This work has been little examined in the current literature. The article provides a detailed examination of the mechanics by which the Trans-Pacific Partnership promotes regulatory standardization and concludes with some normative implications and calls for future research.

  11. Predictable 'meta-mechanisms' emerge from feedbacks between transpiration and plant growth and cannot be simply deduced from short-term mechanisms.

    Science.gov (United States)

    Tardieu, François; Parent, Boris

    2017-06-01

    Growth under water deficit is controlled by short-term mechanisms but, because of numerous feedbacks, the combination of these mechanisms over time often results in outputs that cannot be deduced from the simple inspection of individual mechanisms. It can be analysed with dynamic models in which causal relationships between variables are considered at each time-step, allowing calculation of outputs that are routed back to inputs for the next time-step and that can change the system itself. We first review physiological mechanisms involved in seven feedbacks of transpiration on plant growth, involving changes in tissue hydraulic conductance, stomatal conductance, plant architecture and underlying factors such as hormones or aquaporins. The combination of these mechanisms over time can result in non-straightforward conclusions as shown by examples of simulation outputs: 'over production of abscisic acid (ABA) can cause a lower concentration of ABA in the xylem sap ', 'decreasing root hydraulic conductance when evaporative demand is maximum can improve plant performance' and 'rapid root growth can decrease yield'. Systems of equations simulating feedbacks over numerous time-steps result in logical and reproducible emergent properties that can be viewed as 'meta-mechanisms' at plant level, which have similar roles as mechanisms at cell level. © 2016 John Wiley & Sons Ltd.

  12. On the Feed-back Mechanism of Chinese Stock Markets

    Science.gov (United States)

    Lu, Shu Quan; Ito, Takao; Zhang, Jianbo

    Feed-back models in the stock markets research imply an adjustment process toward investors' expectation for current information and past experiences. Error-correction and cointegration are often used to evaluate the long-run relation. The Efficient Capital Market Hypothesis, which had ignored the effect of the accumulation of information, cannot explain some anomalies such as bubbles and partial predictability in the stock markets. In order to investigate the feed-back mechanism and to determine an effective model, we use daily data of the stock index of two Chinese stock markets with the expectational model, which is one kind of geometric lag models. Tests and estimations of error-correction show that long-run equilibrium seems to be seldom achieved in Chinese stock markets. Our result clearly shows the common coefficient of expectations and fourth-order autoregressive disturbance exist in the two Chinese stock markets. Furthermore, we find the same coefficient of expectations has an autoregressive effect on disturbances in the two Chinese stock markets. Therefore the presence of such feed-back is also supported in Chinese stock markets.

  13. Investigation of Reactivity Feedback Mechanism of Axial and Radial Expansion Effect of Metal-Fueled Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Seong, Seung-Hwan; Choi, Chi-Woong; Jeong, Tae-Kyung; Ha, Gi-Seok

    2015-01-01

    The major inherent reactivity feedback models for a ceramic fuel used in a conventional light water reactor are Doppler feedback and moderator feedback. The metal fuel has these two reactivity feedback mechanisms previously mentioned. In addition, the metal fuel has two more reactivity feedback models related to the thermal expansion phenomena of the metal fuel. Since the metal fuel has a good capability to expand according to the temperature changes of the core, two more feedback mechanisms exist. These additional two feedback mechanism are important to the inherent safety of metal fuel and can make metal-fueled SFR safer than oxide-fueled SFR. These phenomena have already been applied to safety analysis on design extended condition. In this study, the effect of these characteristics on power control capability was examined through a simple load change operation. The axial expansion mechanism is induced from the change of the fuel temperature according to the change of the power level of PGSFR. When the power increases, the fuel temperatures in the metal fuel will increase and then the reactivity will decrease due to the axial elongation of the metal fuel. To evaluate the expansion effect, 2 cases were simulated with the same scenario by using MMS-LMR code developed at KAERI. The first simulation was to analyze the change of the reactor power according to the change of BOP power without the reactivity feedback model of the axial and radial expansion of the core during the power transient event. That is to say, the core had only two reactivity feedback mechanism of Doppler and coolant temperature

  14. How mechanical context and feedback jointly determine the use of mechanical variables in length perception by dynamic touch

    NARCIS (Netherlands)

    Menger, Rudmer; Withagen, Rob

    Earlier studies have revealed that both mechanical context and feedback determine what mechanical invariant is used to perceive length by dynamic touch. In the present article, the authors examined how these two factors jointly constrain the informational variable that is relied upon. Participants

  15. How mechanical context and feedback jointly determine the use of mechanical variables in length perception by dynamic touch

    NARCIS (Netherlands)

    Menger, Rudmer; Withagen, Rob

    2009-01-01

    Earlier studies have revealed that both mechanical context and feedback determine what mechanical invariant is used to perceive length by dynamic touch. In the present article, the authors examined how these two factors jointly constrain the informational variable that is relied upon. Participants

  16. Characteristics of regulatory regimes

    Directory of Open Access Journals (Sweden)

    Noralv Veggeland

    2013-03-01

    Full Text Available The overarching theme of this paper is institutional analysis of basic characteristics of regulatory regimes. The concepts of path dependence and administrative traditions are used throughout. Self-reinforcing or positive feedback processes in political systems represent a basic framework. The empirical point of departure is the EU public procurement directive linked to OECD data concerning use of outsourcing among member states. The question is asked: What has caused the Nordic countries, traditionally not belonging to the Anglo-Saxon market-centred administrative tradition, to be placed so high on the ranking as users of the Market-Type Mechanism (MTM of outsourcing in the public sector vs. in-house provision of services? A thesis is that the reason may be complex, but might be found in an innovative Scandinavian regulatory approach rooted in the Nordic model.

  17. Effects of mechanical feedback on the stability of cardiac scroll waves: A bidomain electro-mechanical simulation study.

    Science.gov (United States)

    Colli Franzone, P; Pavarino, L F; Scacchi, S

    2017-09-01

    In this work, we investigate the influence of cardiac tissue deformation on re-entrant wave dynamics. We have developed a 3D strongly coupled electro-mechanical Bidomain model posed on an ideal monoventricular geometry, including fiber direction anisotropy and stretch-activated currents (SACs). The cardiac mechanical deformation influences the bioelectrical activity with two main mechanical feedback: (a) the geometric feedback (GEF) due to the presence of the deformation gradient in the diffusion coefficients and in a convective term depending on the deformation rate and (b) the mechano-electric feedback (MEF) due to SACs. Here, we investigate the relative contribution of these two factors with respect to scroll wave stability. We extend the previous works [Keldermann et al., Am. J. Physiol. Heart Circ. Physiol. 299, H134-H143 (2010) and Hu et al., PLoS One 8(4), e60287 (2013)] that were based on the Monodomain model and a simple non-selective linear SAC, while here we consider the full Bidomain model and both selective and non-selective components of SACs. Our simulation results show that the stability of cardiac scroll waves is influenced by MEF, which in case of low reversal potential of non-selective SACs might be responsible for the onset of ventricular fibrillation; GEF increases the scroll wave meandering but does not determine the scroll wave stability.

  18. Detection of the dominant direction of information flow and feedback links in densely interconnected regulatory networks

    Directory of Open Access Journals (Sweden)

    Ispolatov Iaroslav

    2008-10-01

    Full Text Available Abstract Background Finding the dominant direction of flow of information in densely interconnected regulatory or signaling networks is required in many applications in computational biology and neuroscience. This is achieved by first identifying and removing links which close up feedback loops in the original network and hierarchically arranging nodes in the remaining network. In mathematical language this corresponds to a problem of making a graph acyclic by removing as few links as possible and thus altering the original graph in the least possible way. The exact solution of this problem requires enumeration of all cycles and combinations of removed links, which, as an NP-hard problem, is computationally prohibitive even for modest-size networks. Results We introduce and compare two approximate numerical algorithms for solving this problem: the probabilistic one based on a simulated annealing of the hierarchical layout of the network which minimizes the number of "backward" links going from lower to higher hierarchical levels, and the deterministic, "greedy" algorithm that sequentially cuts the links that participate in the largest number of feedback cycles. We find that the annealing algorithm outperforms the deterministic one in terms of speed, memory requirement, and the actual number of removed links. To further improve a visual perception of the layout produced by the annealing algorithm, we perform an additional minimization of the length of hierarchical links while keeping the number of anti-hierarchical links at their minimum. The annealing algorithm is then tested on several examples of regulatory and signaling networks/pathways operating in human cells. Conclusion The proposed annealing algorithm is powerful enough to performs often optimal layouts of protein networks in whole organisms, consisting of around ~104 nodes and ~105 links, while the applicability of the greedy algorithm is limited to individual pathways with ~100

  19. DMPD: The interferon regulatory factor family in host defense: mechanism of action. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502370 The interferon regulatory factor family in host defense: mechanism of acti....html) (.csml) Show The interferon regulatory factor family in host defense: mechanism of action. PubmedID 1...7502370 Title The interferon regulatory factor family in host defense: mechanism

  20. Density-dependence as a size-independent regulatory mechanism

    NARCIS (Netherlands)

    De Vladar, H.P.

    2006-01-01

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which

  1. Feedback Conversations: Creating Feedback Dialogues with a New Textual Tool for Industrial Design Student Feedback

    Science.gov (United States)

    Funk, Mathias; van Diggelen, Migchiel

    2017-01-01

    In this paper, the authors describe how a study of a large database of written university teacher feedback in the department of Industrial Design led to the development of a new conceptual framework for feedback and the design of a new feedback tool. This paper focuses on the translation of related work in the area of feedback mechanisms for…

  2. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events.

    Science.gov (United States)

    Liu, Quan; Jia, Xingcan; Quan, Jiannong; Li, Jiayun; Li, Xia; Wu, Yongxue; Chen, Dan; Wang, Zifa; Liu, Yangang

    2018-04-17

    Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. Here, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; the increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.

  3. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    Science.gov (United States)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  4. RADIATIVE AND MOMENTUM-BASED MECHANICAL ACTIVE GALACTIC NUCLEUS FEEDBACK IN A THREE-DIMENSIONAL GALAXY EVOLUTION CODE

    International Nuclear Information System (INIS)

    Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten; Johansson, Peter H.

    2012-01-01

    We study the growth of black holes (BHs) in galaxies using three-dimensional smoothed particle hydrodynamic simulations with new implementations of the momentum mechanical feedback, and restriction of accreted elements to those that are gravitationally bound to the BH. We also include the feedback from the X-ray radiation emitted by the BH, which heats the surrounding gas in the host galaxies, and adds radial momentum to the fluid. We perform simulations of isolated galaxies and merging galaxies and test various feedback models with the new treatment of the Bondi radius criterion. We find that overall the BH growth is similar to what has been obtained by earlier works using the Springel, Di Matteo, and Hernquist algorithms. However, the outflowing wind velocities and mechanical energy emitted by winds are considerably higher (v w ∼ 1000-3000 km s –1 ) compared to the standard thermal feedback model (v w ∼ 50-100 km s –1 ). While the thermal feedback model emits only 0.1% of BH released energy in winds, the momentum feedback model emits more than 30% of the total energy released by the BH in winds. In the momentum feedback model, the degree of fluctuation in both radiant and wind output is considerably larger than in standard treatments. We check that the new model of BH mass accretion agrees with analytic results for the standard Bondi problem.

  5. A closed-loop analysis of the tubuloglomerular feedback mechanism

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1991-01-01

    The tubuloglomerular feedback (TGF) mechanism is of importance in the regulation of glomerular filtration rate (GFR). A second mechanism of potential importance is the change in proximal pressure caused by a change, for example, in the rate of proximal fluid reabsorption. The quantitative contrib...... and the late proximal flow rate, with changes in the proximal pressure of lesser importance. Furthermore, under closed-loop conditions the operating point for the TGF mechanism is at or close to the point of maximal sensitivity....... nl/min in steps of 5 nl/min. The open-loop gain (OLG) was 3.1 (range 1.5-9.9, n = 13) at the unperturbed tubular flow rate, and decreased as the tubular flow rate was either increased or decreased. The proximal pressure increased by 0.21 +/- 0.03 mmHg per unit increase in late proximal flow rate (nl...

  6. Behavioural ratings of self-regulatory mechanisms and driving behaviour after an acquired brain injury.

    Science.gov (United States)

    Rike, Per-Ola; Ulleberg, Pål; Schultheis, Maria T; Lundqvist, Anna; Schanke, Anne-Kristine

    2014-01-01

    To explore whether measurements of self-regulatory mechanisms and cognition predict driving behaviour after an acquired brain injury (ABI). Consecutive follow-up study. At baseline participants included 77 persons with stroke and 32 persons with a traumatic brain injury (TBI), all of whom completed a multidisciplinary driving assessment (MDA). A follow-up cohort of 34 persons that succeeded the MDA was included. Baseline measurements: Neuropsychological tests and measurements of self-regulatory mechanisms (BRIEF-A and UPPS Impulsive Behaviour Scale), driving behaviour (DBQ) and pre-injury driving characteristics (mileage, compensatory driving strategies and accident rates). Follow-up measurements: Post-injury driving characteristics were collected by mailed questionnaires from the participants who succeeded the MDA. A MDA, which included a medical examination, neuropsychological testing and an on-road driving test, was considered in the decision for or against granting a driver's license. Self-regulatory mechanisms and driving behaviour were examined for research purposes only. At baseline, self-regulatory mechanisms were significantly associated to aberrant driving behaviour, but not with neuropsychological data or with the outcome of the on-road driving test. Aspects of self-regulation were associated to driving behaviour at follow-up. It is recommended that self-regulatory measurements should regularly be considered in the driving assessments after ABI.

  7. Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium.

    Science.gov (United States)

    Wu, Dan; Li, Ang; Ma, Fang; Yang, Jixian; Xie, Yutong

    2016-07-01

    Agrobacterium is a genus of gram-negative bacteria that can produce several typical exopolysaccharides with commercial uses in the food and pharmaceutical fields. In particular, succinoglycan and curdlan, due to their good quality in high yield, have been employed on an industrial scale comparatively early. Exopolysaccharide biosynthesis is a multiple-step process controlled by different functional genes, and various environmental factors cause changes in exopolysaccharide biosynthesis through regulatory mechanisms. In this mini-review, we focus on the genetic control and regulatory mechanisms of succinoglycan and curdlan produced by Agrobacterium. Some key functional genes and regulatory mechanisms for exopolysaccharide biosynthesis are described, possessing a high potential for application in metabolic engineering to modify exopolysaccharide production and physicochemical properties. This review may contribute to the understanding of exopolysaccharide biosynthesis and exopolysaccharide modification by metabolic engineering methods in Agrobacterium.

  8. The combination of positive and negative feedback loops confers exquisite flexibility to biochemical switches

    International Nuclear Information System (INIS)

    Pfeuty, Benjamin; Kaneko, Kunihiko

    2009-01-01

    A wide range of cellular processes require molecular regulatory pathways to convert a graded signal into a discrete response. One prevalent switching mechanism relies on the coexistence of two stable states (bistability) caused by positive feedback regulations. Intriguingly, positive feedback is often supplemented with negative feedback, raising the question of whether and how these two types of feedback can cooperate to control discrete cellular responses. To address this issue, we formulate a canonical model of a protein–protein interaction network and analyze the dynamics of a prototypical two-component circuit. The appropriate combination of negative and positive feedback loops can bring a bistable circuit close to the oscillatory regime. Notably, sharply activated negative feedback can give rise to a bistable regime wherein two stable fixed points coexist and may collide pairwise with two saddle points. This specific type of bistability is found to allow for separate and flexible control of switch-on and switch-off events, for example (i) to combine fast and reversible transitions, (ii) to enable transient switching responses and (iii) to display tunable noise-induced transition rates. Finally, we discuss the relevance of such bistable switching behavior, and the circuit topologies considered, to specific biological processes such as adaptive metabolic responses, stochastic fate decisions and cell-cycle transitions. Taken together, our results suggest an efficient mechanism by which positive and negative feedback loops cooperate to drive the flexible and multifaceted switching behaviors arising in biological systems

  9. The Cellular and Molecular Mechanisms of Immuno-suppression by Human Type 1 Regulatory T cells

    Directory of Open Access Journals (Sweden)

    Silvia eGregori

    2012-02-01

    Full Text Available The immuno-regulatory mechanisms of IL-10-producing type 1 regulatory T (Tr1 cells have been widely studied over the years. However, several recent discoveries have shed new light on the cellular and molecular mechanisms that human Tr1 cells use to control immune responses and induce tolerance. In this review we outline the well-known and newly discovered regulatory properties of human Tr1 cells and provide an in-depth comparison of the known suppressor mechanisms of Tr1 cells with FOXP3+ Treg. We also highlight the role that Tr1 cells play in promoting and maintaining tolerance in autoimmunity, allergy, and transplantation.

  10. Regulatory role for the memory B cell as suppressor-inducer of feedback control

    International Nuclear Information System (INIS)

    Kennedy, M.W.; Thomas, D.B.

    1983-01-01

    A regulatory role is proposed for the antigen-responsive B cell, as suppressor-inducer of feedback control during the secondary response in vivo. In a double adoptive transfer of memory cells primed to a thymus-dependent antigen from one irradiated host to another, antigen-specific suppressors are generated after a critical time in the primary recipient, able to entirely ablate a secondary anti-hapten response. Positive cell selection in the fluorescence-activated cell sorter confirmed that suppression was mediated by an Lyt-2+ T cell; however, positively selected B cells were also inhibitory and able to induce suppressors in a carrier-specific manner: B hapten induced suppressors in a carrier-primed population, and B carrier induced suppressors in a hapten-carrier population. At the peak of the antibody response in the primary host, memory B cells and their progeny were unable to differentiate further to plasma cells due to their intrinsic suppressor-inducer activity, but this autoregulatory circuit could be severed by adoptive transfer to carrier-primed, X-irradiated recipients

  11. OncomiR addiction is generated by a miR-155 feedback loop in Theileria-transformed leukocytes.

    Directory of Open Access Journals (Sweden)

    Justine Marsolier

    Full Text Available The intracellular parasite Theileria is the only eukaryote known to transform its mammalian host cells. We investigated the host mechanisms involved in parasite-induced transformation phenotypes. Tumour progression is a multistep process, yet 'oncogene addiction' implies that cancer cell growth and survival can be impaired by inactivating a single gene, offering a rationale for targeted molecular therapies. Furthermore, feedback loops often act as key regulatory hubs in tumorigenesis. We searched for microRNAs involved in addiction to regulatory loops in leukocytes infected with Theileria parasites. We show that Theileria transformation involves induction of the host bovine oncomiR miR-155, via the c-Jun transcription factor and AP-1 activity. We identified a novel miR-155 target, DET1, an evolutionarily-conserved factor involved in c-Jun ubiquitination. We show that miR-155 expression led to repression of DET1 protein, causing stabilization of c-Jun and driving the promoter activity of the BIC transcript containing miR-155. This positive feedback loop is critical to maintain the growth and survival of Theileria-infected leukocytes; transformation is reversed by inhibiting AP-1 activity or miR-155 expression. This is the first demonstration that Theileria parasites induce the expression of host non-coding RNAs and highlights the importance of a novel feedback loop in maintaining the proliferative phenotypes induced upon parasite infection. Hence, parasite infection drives epigenetic rewiring of the regulatory circuitry of host leukocytes, placing miR-155 at the crossroads between infection, regulatory circuits and transformation.

  12. A soil moisture-rainfall feedback mechanism. 1. Theory and observations

    International Nuclear Information System (INIS)

    Eltahir, E.A.B.

    1998-01-01

    This paper presents a hypothesis regarding the fundamental role of soil moisture conditions in land-atmosphere interactions. We propose that wet soil moisture conditions over any large region should be associated with relatively large boundary layer moist static energy, which favors the occurrence of more rainfall. Since soil moisture conditions themselves reflect past occurrence of rainfall, the proposed hypothesis implies a positive feedback mechanism between soil moisture and rainfall. This mechanism is based on considerations of the energy balance at the land-atmosphere boundary, in contrast to similar mechanisms that were proposed in the past and that were based on the concepts of water balance and precipitation recycling. The control of soil moisture on surface albedo and Bowen ratio is the fundamental basis of the proposed soil moisture-rainfall feedback mechanism. The water content in the upper soil layer affects these two important properties of the land surface such that both variables decrease with any increase in the water content of the top soil layer. The direct effect of soil moisture on surface albedo implies that wet soil moisture conditions enhance net solar radiation. The direct effect of soil moisture on Bowen ratio dictates that wet soil moisture conditions would tend to enhance net terrestrial radiation at the surface through cooling of surface temperature, reduction of upwards emissions of terrestrial radiation, and simultaneous increase in atmospheric water vapor content and downwards flux of terrestrial radiation. Thus, under wet soil moisture conditions, both components of net radiation are enhanced, resulting in a larger total flux of heat from the surface into the boundary layer. This total flux represents the sum of the corresponding sensible and latent heat fluxes. Simultaneously, cooling of surface temperature should be associated with a smaller sensible heat flux and a smaller depth of the boundary layer

  13. Transcriptome profiling reveals regulatory mechanisms underlying Corolla Senescence in Petunia

    Science.gov (United States)

    Genetic regulatory mechanisms that govern petal natural senescence in petunia is complicated and unclear. To identify key genes and pathways that regulate the process, we initiated a transcriptome analysis in petunia petals at four developmental time points, including petal opening without anthesis ...

  14. Load speed regulation in compliant mechanical transmission systems using feedback and feedforward control actions.

    Science.gov (United States)

    Raul, P R; Dwivedula, R V; Pagilla, P R

    2016-07-01

    The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth.

    Science.gov (United States)

    Ambrosi, D; Pezzuto, S; Riccobelli, D; Stylianopoulos, T; Ciarletta, P

    2017-12-01

    The experimental evidence that a feedback exists between growth and stress in tumors poses challenging questions. First, the rheological properties (the "constitutive equations") of aggregates of malignant cells are still a matter of debate. Secondly, the feedback law (the "growth law") that relates stress and mitotic-apoptotic rate is far to be identified. We address these questions on the basis of a theoretical analysis of in vitro and in vivo experiments that involve the growth of tumor spheroids. We show that solid tumors exhibit several mechanical features of a poroelastic material, where the cellular component behaves like an elastic solid. When the solid component of the spheroid is loaded at the boundary, the cellular aggregate grows up to an asymptotic volume that depends on the exerted compression. Residual stress shows up when solid tumors are radially cut, highlighting a peculiar tensional pattern. By a novel numerical approach we correlate the measured opening angle and the underlying residual stress in a sphere. The features of the mechanobiological system can be explained in terms of a feedback of mechanics on the cell proliferation rate as modulated by the availability of nutrient, that is radially damped by the balance between diffusion and consumption. The volumetric growth profiles and the pattern of residual stress can be theoretically reproduced assuming a dependence of the target stress on the concentration of nutrient which is specific of the malignant tissue.

  16. Methane Feedback on Atmospheric Chemistry: Methods, Models, and Mechanisms

    Science.gov (United States)

    Holmes, Christopher D.

    2018-04-01

    The atmospheric methane (CH4) chemical feedback is a key process for understanding the behavior of atmospheric CH4 and its environmental impact. This work reviews how the feedback is defined and used, then examines the meteorological, chemical, and emission factors that control the feedback strength. Geographical and temporal variations in the feedback are described and explained by HOx (HOx = OH + HO2) production and partitioning. Different CH4 boundary conditions used by models, however, make no meaningful difference to the feedback calculation. The strength of the CH4 feedback depends on atmospheric composition, particularly the atmospheric CH4 burden, and is therefore not constant. Sensitivity tests show that the feedback depends very weakly on temperature, insolation, water vapor, and emissions of NO. While the feedback strength has likely remained within 10% of its present value over the industrial era and likely will over the twenty-first century, neglecting these changes biases our understanding of CH4 impacts. Most environmental consequences per kg of CH4 emissions, including its global warming potential (GWP), scale with the perturbation time, which may have grown as much as 40% over the industrial era and continues to rise.

  17. Experience feedback of operational events of the control rod assembly and its drive mechanism in nuclear power plants

    International Nuclear Information System (INIS)

    Zhou Hong; Xiao Zhi; Tao Shusheng; Zheng Lixin; Chen Zhaolin

    2013-01-01

    Seventeen operational events of the control rod assembly and its drive mechanism are collected from 1992 to 2012 important nuclear operational events and feedback in referred nuclear power plants. After investigated and classified, several important issues, such as the impact of control rod swell and fuel assembly distortion, control rod drive mechanism leakage, and the control system reliability of control rod, are emphatically analyzed. Some suggestions of experience feedback are proposed. (authors)

  18. Learning from experience. Feedback to design

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Shalaby, B.A.; Keil, H.

    1997-01-01

    AECL has been the designer of 25 commercial scale CANDU reactors now in operation, with more under construction. AECL has taken the evolutionary approach in developing its current designs, the CANDU 6 and CANDU 9 Nuclear Power Plants. An integral part of this approach is to emphasize feedback of experience to the designers, in a continuous improvement process. AECL has implemented a formal process of gathering and responding to feedback from: NPP operation, construction and commissioning; regulatory input; R and D results: as well as paying close attention to market input. A number of recent examples of design improvement via this feedback process are described

  19. Feedback and efficient behavior.

    Directory of Open Access Journals (Sweden)

    Sandro Casal

    Full Text Available Feedback is an effective tool for promoting efficient behavior: it enhances individuals' awareness of choice consequences in complex settings. Our study aims to isolate the mechanisms underlying the effects of feedback on achieving efficient behavior in a controlled environment. We design a laboratory experiment in which individuals are not aware of the consequences of different alternatives and, thus, cannot easily identify the efficient ones. We introduce feedback as a mechanism to enhance the awareness of consequences and to stimulate exploration and search for efficient alternatives. We assess the efficacy of three different types of intervention: provision of social information, manipulation of the frequency, and framing of feedback. We find that feedback is most effective when it is framed in terms of losses, that it reduces efficiency when it includes information about inefficient peers' behavior, and that a lower frequency of feedback does not disrupt efficiency. By quantifying the effect of different types of feedback, our study suggests useful insights for policymakers.

  20. An Artificial Immune System with Feedback Mechanisms for Effective Handling of Population Size

    Science.gov (United States)

    Gao, Shangce; Wang, Rong-Long; Ishii, Masahiro; Tang, Zheng

    This paper represents a feedback artificial immune system (FAIS). Inspired by the feedback mechanisms in the biological immune system, the proposed algorithm effectively manipulates the population size by increasing and decreasing B cells according to the diversity of the current population. Two kinds of assessments are used to evaluate the diversity aiming to capture the characteristics of the problem on hand. Furthermore, the processing of adding and declining the number of population is designed. The validity of the proposed algorithm is tested for several traveling salesman benchmark problems. Simulation results demonstrate the efficiency of the proposed algorithm when compared with the traditional genetic algorithm and an improved clonal selection algorithm.

  1. Negative feedback mechanism for the long-term stabilization of earth's surface temperature

    International Nuclear Information System (INIS)

    Walker, J.C.G.; Hays, P.B.; Kasting, J.F.

    1981-01-01

    We suggest that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, and surface temperature, in turn, depends on carbon dioxide partial pressure through the green effect. Although the quantitative details of this mechanism are speculative, it appears able partially to stabilize earth's surface temperature against the steady increase of solar luminosity believed to have occured since the origin of the solar system

  2. European clearinghouse on nuclear power plants operational experience feedback

    International Nuclear Information System (INIS)

    Ranguelova, Vesselina; Bruynooghe, Christiane; Noel, Marc

    2010-01-01

    Learning from operational experience and applying this knowledge promptly and intelligently is one of the ways to improve the safety of Nuclear Power Plant (NPP). Recent reviews of the effectiveness of Operational Experience Feedback (OEF) systems have pointed to the need for further improvement, with importance being placed on tailoring the information to the needs of the regulators. In 2007, at the request of a number of nuclear safety regulatory authorities in Europe, the Institute for Energy of the European Commission's Joint Research Centre (EC JRC) initiated a project on Nuclear Power Plant operational experience feedback, which adopts an integrated approach to the research needed to strengthen the European capabilities for assessment of NPP operational events and to promote the development of tools and mechanisms for the improved application of the lessons learned. Consequently, a so-called ''European Clearinghouse'' on NPP OEF was established, which includes scientific officers from the EC JRC, a number of European nuclear safety regulatory authorities and some of their Technical Support Organizations (TSOs). The paper discusses the activities implemented in 2008 within the framework of the European Clearinghouse on NPP OEF (hereinafter called the European NPP Clearinghouse) and provides an overview of the main conclusions drawn from the safety studies performed. Outlook of the activities carried out in 2009 are given. (orig.)

  3. Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events.

    Science.gov (United States)

    Araujo, Ana Rita; Gelens, Lendert; Sheriff, Rahuman S M; Santos, Silvia D M

    2016-10-20

    Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling, we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish, variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short, constant, and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle.

    Science.gov (United States)

    Fusi, L; Brunello, E; Yan, Z; Irving, M

    2016-10-31

    Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway.

  5. Constructive feedback as a learning tool to enhance students' self ...

    African Journals Online (AJOL)

    If feedback is provided in a way that can develop students' self-regulatory skills, it could enhance learning and, consequently, lead to improved performance. To improve teaching and learning in higher education (HE), this study sought to determine whether the feedback to first-year students affords them an opportunity to ...

  6. The evolution of different forms of sociality: behavioral mechanisms and eco-evolutionary feedback.

    Directory of Open Access Journals (Sweden)

    Daniel J van der Post

    Full Text Available Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from "leader-follower" societies to "fission-fusion" societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality.

  7. Regulatory Mechanisms in the P4-ATPase Complex

    DEFF Research Database (Denmark)

    Costa, Sara

    . The functionality on the P4-ATPase complex is essential for several cellular processes, such as vesicle-mediated transport. However, the specific role of flippase activity in vesicle biogenesis and the regulatory mechanism behind this process is still poorly understood. In these studies, we identified...... affordable alternative using a microscope-based cytometer. This system can simultaneously provide information on flippase activity and expression levels. Taken together, the findings described in this thesis provide new tools for P4-ATPase characterization and valuable insights into the regulation...

  8. The regulatory function of self-esteem: testing the epistemic and acceptance signaling systems.

    Science.gov (United States)

    Stinson, Danu Anthony; Logel, Christine; Holmes, John G; Wood, Joanne V; Forest, Amanda L; Gaucher, Danielle; Fitzsimons, Grainné M; Kath, Jennifer

    2010-12-01

    The authors draw on sociometer theory (e.g., Leary, 2004) and self-verification theory (e.g., Swann, 1997) to propose an expanded model of the regulatory function of self-esteem. The model suggests that people not only possess an acceptance signaling system that indicates whether relational value is high or low but also possess an epistemic signaling system that indicates whether social feedback is consistent or inconsistent with chronic perceived relational value (i.e., global self-esteem). One correlational study and 5 experiments, with diverse operationalizations of social feedback, demonstrated that the epistemic signaling system responds to self-esteem consistent or inconsistent relational-value feedback with increases or deceases in epistemic certainty. Moreover, Studies 3-6 demonstrated that the acceptance and epistemic signaling systems respond uniquely to social feedback. Finally, Studies 5 and 6 provide evidence that the epistemic signaling system is part of a broader self-regulatory system: Self-esteem inconsistent feedback caused cognitive efforts to decrease the discrepancy between self-views and feedback and caused depleted self-regulatory capacity on a subsequent self-control task. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  9. [Regulatory Mechanisms of PD-L1 Expression and Its Role in Immune Evasion].

    Science.gov (United States)

    Kataoka, Keisuke

    2017-11-01

    Immune checkpoint blockade therapy using anti-PD-1 or anti-PD-L1 antibodies can unleash anti-tumor immunity and induce durable remission in a variety ofhuman cancers. However, the regulatory mechanisms of PD-L1 expression mediating immune evasion ofcancer cells have not been fully elucidated, including the genetic alterations causing PD-L1 overexpression. Recently, we have reported a novel genetic mechanism ofimmune evasion associated with structural variations(SVs)disrupting the 3'-untranslated region(UTR)ofthe PD-L1 gene in various malignancies, such as aggressive lymphomas and gastrointestinal cancers. Despite a heterogenous nature ofthese SVs, they are closely associated with a marked upregulation of PD-L1 expression, which augments tumor growth and escape from anti-tumor immunity. Here we present an overview of the regulatory mechanisms of PD-L1 expression in cancer cells, highlighting the genetic mechanisms of PD-L1 constitutive activation, with specific focus on PD-L1 3'-UTR disruption.

  10. Regulatory design for RES-E support mechanisms: Learning curves, market structure, and burden-sharing

    International Nuclear Information System (INIS)

    Batlle, C.; Pérez-Arriaga, I.J.; Zambrano-Barragán, P.

    2012-01-01

    Drawing from relevant experiences in power systems around the world, this paper offers a review of existing policy support mechanisms for RES-E, with a detailed analysis of their regulatory implications. While recent studies provide an account of current RES-E support systems, in this paper we focus on some of the impacts these mechanisms have on the overall energy market structure and its performance. Given the rising importance of RES-E in systems everywhere, these impacts should no longer be overlooked. - Highlights: ► This paper offers a critical review of RES-E support mechanisms and their regulatory implications. ► The discussion focuses on how the different schemes impact the performance of the energy markets. ► We propose to redesign of current RES-E mechanisms to optimize incentives and market performance. ► Our recommendation is also to gradually move from price-based mechanisms to auctions.

  11. Skin barrier homeostasis in atopic dermatitis: feedback regulation of kallikrein activity.

    Directory of Open Access Journals (Sweden)

    Reiko J Tanaka

    Full Text Available Atopic dermatitis (AD is a widely spread cutaneous chronic disease characterised by sensitive reactions (eg. eczema to normally innocuous elements. Although relatively little is understood about its underlying mechanisms due to its complexity, skin barrier dysfunction has been recognised as a key factor in the development of AD. Skin barrier homeostasis requires tight control of the activity of proteases, called kallikreins (KLKs, whose activity is regulated by a complex network of protein interactions that remains poorly understood despite its pathological importance. Characteristic symptoms of AD include the outbreak of inflammation triggered by external (eg. mechanical and chemical stimulus and the persistence and aggravation of inflammation even if the initial stimulus disappears. These characteristic symptoms, together with some experimental data, suggest the presence of positive feedback regulation for KLK activity by inflammatory signals. We developed simple mathematical models for the KLK activation system to study the effects of feedback loops and carried out bifurcation analysis to investigate the model behaviours corresponding to inflammation caused by external stimulus. The model analysis confirmed that the hypothesised core model mechanisms capture the essence of inflammation outbreak by a defective skin barrier. Our models predicted the outbreaks of inflammation at weaker stimulus and its longer persistence in AD patients compared to healthy control. We also proposed a novel quantitative indicator for inflammation level by applying principal component analysis to microarray data. The model analysis reproduced qualitative AD characteristics revealed by this indicator. Our results strongly implicate the presence and importance of feedback mechanisms in KLK activity regulation. We further proposed future experiments that may provide informative data to enhance the system-level understanding on the regulatory mechanisms of skin barrier

  12. Two-component feedback loops and deformed mechanics

    International Nuclear Information System (INIS)

    Tourigny, David S.

    2015-01-01

    It is shown that a general two-component feedback loop can be viewed as a deformed Hamiltonian system. Some of the implications of using ideas from theoretical physics to study biological processes are discussed. - Highlights: • Two-component molecular feedback loops are viewed as q-deformed Hamiltonian systems. • Deformations are reversed using Jackson derivatives to take advantage of working in the Hamiltonian limit. • New results are derived for the particular examples considered. • General deformations are suggested to be associated with a broader class of biological processes

  13. The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems - a review.

    Science.gov (United States)

    Maxwell, Paul S; Eklöf, Johan S; van Katwijk, Marieke M; O'Brien, Katherine R; de la Torre-Castro, Maricela; Boström, Christoffer; Bouma, Tjeerd J; Krause-Jensen, Dorte; Unsworth, Richard K F; van Tussenbroek, Brigitta I; van der Heide, Tjisse

    2017-08-01

    Seagrass meadows are vital ecosystems in coastal zones worldwide, but are also under global threat. One of the major hurdles restricting the success of seagrass conservation and restoration is our limited understanding of ecological feedback mechanisms. In these ecosystems, multiple, self-reinforcing feedbacks can undermine conservation efforts by masking environmental impacts until the decline is precipitous, or alternatively they can inhibit seagrass recovery in spite of restoration efforts. However, no clear framework yet exists for identifying or dealing with feedbacks to improve the management of seagrass ecosystems. Here we review the causes and consequences of multiple feedbacks between seagrass and biotic and/or abiotic processes. We demonstrate how feedbacks have the potential to impose or reinforce regimes of either seagrass dominance or unvegetated substrate, and how the strength and importance of these feedbacks vary across environmental gradients. Although a myriad of feedbacks have now been identified, the co-occurrence and likely interaction among feedbacks has largely been overlooked to date due to difficulties in analysis and detection. Here we take a fundamental step forward by modelling the interactions among two distinct above- and belowground feedbacks to demonstrate that interacting feedbacks are likely to be important for ecosystem resilience. On this basis, we propose a five-step adaptive management plan to address feedback dynamics for effective conservation and restoration strategies. The management plan provides guidance to aid in the identification and prioritisation of likely feedbacks in different seagrass ecosystems. © 2016 Cambridge Philosophical Society.

  14. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle

    OpenAIRE

    Ferrell, James E.

    2013-01-01

    The study of eukaryotic cell cycle regulation over the last several decades has led to a remarkably detailed understanding of the complex regulatory system that drives this fundamental process. This allows us to now look for recurring motifs in the regulatory system. Among these are negative feedback loops, which underpin checkpoints and generate cell cycle oscillations; positive feedback loops, which promote oscillations and make cell cycle transitions switch-like and unidirectional; and rec...

  15. A qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics.

    Science.gov (United States)

    Feng, Lihui; Rutherford, Steven T; Papenfort, Kai; Bagert, John D; van Kessel, Julia C; Tirrell, David A; Wingreen, Ned S; Bassler, Bonnie L

    2015-01-15

    Quorum sensing is a cell-cell communication process that bacteria use to transition between individual and social lifestyles. In vibrios, homologous small RNAs called the Qrr sRNAs function at the center of quorum-sensing pathways. The Qrr sRNAs regulate multiple mRNA targets including those encoding the quorum-sensing regulatory components luxR, luxO, luxM, and aphA. We show that a representative Qrr, Qrr3, uses four distinct mechanisms to control its particular targets: the Qrr3 sRNA represses luxR through catalytic degradation, represses luxM through coupled degradation, represses luxO through sequestration, and activates aphA by revealing the ribosome binding site while the sRNA itself is degraded. Qrr3 forms different base-pairing interactions with each mRNA target, and the particular pairing strategy determines which regulatory mechanism occurs. Combined mathematical modeling and experiments show that the specific Qrr regulatory mechanism employed governs the potency, dynamics, and competition of target mRNA regulation, which in turn, defines the overall quorum-sensing response. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Regulatory Oversight for New Projects - Challenges and Improvement in Regulation

    International Nuclear Information System (INIS)

    Lall, F.

    2016-01-01

    From inception, there has been rise in number of Nuclear Power Plants (NPP) even though very few accidents / events led to intermittent setbacks. However these accidents / events have posed challenges towards enhancement of safety and scope of regulation in all phases of NPP such as siting, design, construction, commissioning and decommissioning. It is essential to ensure compliance to these enhanced safety requirements during all phases of NPP. New and evolutionary reactors are under threshold for regulatory consideration world over. The variety of technologies and genres by themselves pose challenges to regulatory bodies. These challenges are to be addressed through systematic enhancement of the regulation including updating of regulatory documents. The paper touches upon some key elements to be considered towards such enhancement of regulation during all stages of NPP. These being; ensuring quality assurance, regulatory oversight especially over supply chain and contractors, counterfeit material specifically in case of international dealings, emergency handling in case of multi-unit site, feedback and associated enhancements from international events, construction experience database and feedback for safety enhancement, qualification and acceptance of first of a kind systems, regulatory enforcement specifically in case of imported reactors and maintaining interface between safety and security. Regulation in present context has become dynamic and Regulatory bodies need to continue enhancement of its current regulation taking into account the technological developments, feedback from construction, operation and accidents in the current fleet of plants. The paper touches upon some of these elements and highlights the challenges and improvements in regulation. (author)

  17. Exploring associations between self-regulatory mechanisms and neuropsychological functioning and driver behaviour after brain injury.

    Science.gov (United States)

    Rike, Per-Ola; Johansen, Hans J; Ulleberg, Pål; Lundqvist, Anna; Schanke, Anne-Kristine

    2018-04-01

    The objective of this prospective one-year follow-up study was to explore the associations between self-regulatory mechanisms and neuropsychological tests as well as baseline and follow-up ratings of driver behaviour. The participants were a cohort of subjects with stroke and traumatic brain injury (TBI) who were found fit to drive after a multi-disciplinary driver assessment (baseline). Baseline measures included neuropsychological tests and ratings of self-regulatory mechanisms, i.e., executive functions (Behavior Rating Inventory of Executive Function-Adult Version; BRIEF-A) and impulsive personality traits (UPPS Impulsive Behavior Scale). The participants rated pre-injury driving behaviour on the Driver Behaviour Qestionnaire (DBQ) retrospectively at baseline and after one year of post-injury driving (follow-up). Better performance on neuropsychological tests was significantly associated with more post-injury DBQ Violations. The BRIEF-A main indexes were significantly associated with baseline and follow-up ratings of DBQ Mistakes and follow-up DBQ Inattention. UPPS (lack of) Perseverance was significantly associated with baseline DBQ Inattention, whereas UPPS Urgency was significantly associated with baseline DBQ Inexperience and post-injury DBQ Mistakes. There were no significant changes in DBQ ratings from baseline (pre-injury) to follow-up (post-injury). It was concluded that neuropsychological functioning and self-regulatory mechanisms are related to driver behaviour. Some aspects of driver behaviour do not necessarily change after brain injury, reflecting the influence of premorbid driving behaviour or impaired awareness of deficits on post-injury driving behaviour. Further evidence is required to predict the role of self-regulatory mechanisms on driver behaviour and crashes or near misses.

  18. Real-time feedback on knee abduction moment does not improve frontal-plane knee mechanics during jump landings.

    Science.gov (United States)

    Beaulieu, M L; Palmieri-Smith, R M

    2014-08-01

    Excessive knee abduction loading is a contributing factor to anterior cruciate ligament (ACL) injury risk. The purpose of this study was to determine whether a double-leg landing training program with real-time visual feedback improves frontal-plane mechanics during double- and single-leg landings. Knee abduction angles and moments and vertical ground reaction forces (GRF) of 21 recreationally active women were quantified for double- and single-leg landings before and after the training program. This program consisted of two sessions of double-leg jump landings with real-time visual feedback on knee abduction moments for the experimental group and without real-time feedback for the control group. No significant differences were found between training groups. In comparison with pre-training data, peak knee abduction moments decreased 12% post-training for both double- and single-leg landings; whereas peak vertical GRF decreased 8% post-training for double-leg landings only, irrespective of training group. Real-time feedback on knee abduction moments, therefore, did not significantly improve frontal-plane knee mechanics during landings. The effect of the training program on knee abduction moments, however, transferred from the double-leg landings (simple task) to single-leg landings (more complex task). Consequently, ACL injury prevention efforts may not need to focus on complex tasks during which injury occurs. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution

    Directory of Open Access Journals (Sweden)

    Weijiong Wu

    2017-05-01

    Full Text Available Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees’ perceived insider status (PIS, as a kind of employee-organization relationship, could also influence employees’ reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper.

  20. Tunable Coupling to a Mechanical Oscillator Circuit Using a Coherent Feedback Network

    Directory of Open Access Journals (Sweden)

    Joseph Kerckhoff

    2013-06-01

    Full Text Available We demonstrate a fully cryogenic microwave feedback network composed of modular superconducting devices connected by transmission lines and designed to control a mechanical oscillator that is coupled to one of the devices. The network features an electromechanical device and a tunable controller that coherently receives, processes, and feeds back continuous microwave signals that modify the dynamics and readout of the mechanical state. While previous electromechanical systems represent some compromise between efficient control and efficient readout of the mechanical state, as set by the electromagnetic decay rate, the tunable controller produces a closed-loop network that can be dynamically and continuously tuned between both extremes much faster than the mechanical response time. We demonstrate that the microwave decay rate may be modulated by at least a factor of 10 at a rate greater than 10^{4} times the mechanical response rate. The system is easy to build and suggests that some useful functions may arise most naturally at the network level of modular, quantum electromagnetic devices.

  1. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans.

    Science.gov (United States)

    Walker, Amy K; Jacobs, René L; Watts, Jennifer L; Rottiers, Veerle; Jiang, Karen; Finnegan, Deirdre M; Shioda, Toshi; Hansen, Malene; Yang, Fajun; Niebergall, Lorissa J; Vance, Dennis E; Tzoneva, Monika; Hart, Anne C; Näär, Anders M

    2011-11-11

    Sterol regulatory element-binding proteins (SREBPs) activate genes involved in the synthesis and trafficking of cholesterol and other lipids and are critical for maintaining lipid homeostasis. Aberrant SREBP activity, however, can contribute to obesity, fatty liver disease, and insulin resistance, hallmarks of metabolic syndrome. Our studies identify a conserved regulatory circuit in which SREBP-1 controls genes in the one-carbon cycle, which produces the methyl donor S-adenosylmethionine (SAMe). Methylation is critical for the synthesis of phosphatidylcholine (PC), a major membrane component, and we find that blocking SAMe or PC synthesis in C. elegans, mouse liver, and human cells causes elevated SREBP-1-dependent transcription and lipid droplet accumulation. Distinct from negative regulation of SREBP-2 by cholesterol, our data suggest a feedback mechanism whereby maturation of nuclear, transcriptionally active SREBP-1 is controlled by levels of PC. Thus, nutritional or genetic conditions limiting SAMe or PC production may activate SREBP-1, contributing to human metabolic disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in Single Column Models

    Science.gov (United States)

    Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter N.; Austin, Phillip H.; Bacmeister, Julio T.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; DelGenio, Anthony; hide

    2013-01-01

    1] CGILS-the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)-investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the "NESTS" negative cloud feedback and the "SCOPE" positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence-Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations

  3. Investigation of efficiency of electric drive control system of excavator traction mechanism based on feedback on load

    Science.gov (United States)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-05-01

    The article presents the results of a study of the efficiency of the electric drive control system of the traction mechanism of a dragline based on the use of feedback on load in the traction cable. The investigations were carried out using a refined electromechanical model of the traction mechanism, which took into account not only the elastic elements of the gearbox, the backlashes in it and the changes in the kinematic parameters of the mechanism during operation, but also the mechanical characteristics of the electric drive and the features of its control system. By mathematical modeling of the transient processes of the electromechanical system, it is shown that the introduction of feedback on the load in the elastic element allows one to reduce the dynamic loads in the traction mechanism and to limit the elastic oscillations of the actuating mechanism in comparison with the standard control system. Fixed as a general decrease in the dynamic load of the nodes of traction mechanism in the modes of loading and latching of the bucket, and a decrease the operating time of the mechanism at maximum load. At the same time, undesirable phenomena in the operation of the electric drive were also associated with the increase in the recovery time of the steady-state value of the speed of the actuating mechanism under certain operating conditions, which can lead to a decrease in the reliability of the mechanical part and the productivity of the traction mechanism.

  4. Electricity generation: regulatory mechanisms to incentive renewable alternative energy sources in Brazil

    International Nuclear Information System (INIS)

    Cavaliero, Carla Kazue Nakao; Silva, E.P. da

    2005-01-01

    The dissemination of renewable alternative energy sources for electricity generation has always being done through regulatory mechanisms, created and managed by the government of each country. Since these sources are more costly to generate, they have received incentives in response to worldwide environmental concerns, above all with regard to the reduction of CO 2 emissions. In Brazil, the electricity generation from renewable alternative sources is experiencing a new phase of growth. Until a short time ago, environmental appeal was the strongest incentive to these sources in Brazil but it was insufficient to attain its objective. With the electricity crisis and the rationing imposed in 2001, another important factor gained awareness: the need to diversify energy sources. Within this context, this work has the objective of analyzing the regulatory mechanisms recently developed to stimulate electricity generation from renewable alternative energy sources in Brazil by following the experience of other countries such as the United States, United Kingdom and Germany

  5. High-risk medical devices, children and the FDA: regulatory challenges facing pediatric mechanical circulatory support devices.

    Science.gov (United States)

    Almond, Christopher S D; Chen, Eric A; Berman, Michael R; Less, Joanne R; Baldwin, J Timothy; Linde-Feucht, Sarah R; Hoke, Tracey R; Pearson, Gail D; Jenkins, Kathy; Duncan, Brian W; Zuckerman, Bram D

    2007-01-01

    Pediatric mechanical circulatory support is a critical unmet need in the United States. Infant- and child-sized ventricular assist devices are currently being developed largely through federal contracts and grants through the National Heart, Lung, and Blood Institute (NHLBI). Human testing and marketing of high-risk devices for children raises epidemiologic and regulatory issues that will need to be addressed. Leaders from the US Food and Drug Administration (FDA), NHLBI, academic pediatric community, and industry convened in January 2006 for the first FDA Workshop on the Regulatory Process for Pediatric Mechanical Circulatory Support Devices. The purpose was to provide the pediatric community with an overview of the federal regulatory process for high-risk medical devices and to review the challenges specific to the development and regulation of pediatric mechanical circulatory support devices. Pediatric mechanical circulatory support present significant epidemiologic, logistic, and financial challenges to industry, federal regulators, and the pediatric community. Early interactions with the FDA, shared appreciation of challenges, and careful planning will be critical to avoid unnecessary delays in making potentially life-saving devices available for children. Collaborative efforts to address these challenges are warranted.

  6. The CaM Kinase CMK-1 Mediates a Negative Feedback Mechanism Coupling the C. elegans Glutamate Receptor GLR-1 with Its Own Transcription.

    Directory of Open Access Journals (Sweden)

    Benjamin J Moss

    2016-07-01

    Full Text Available Regulation of synaptic AMPA receptor levels is a major mechanism underlying homeostatic synaptic scaling. While in vitro studies have implicated several molecules in synaptic scaling, the in vivo mechanisms linking chronic changes in synaptic activity to alterations in AMPA receptor expression are not well understood. Here we use a genetic approach in C. elegans to dissect a negative feedback pathway coupling levels of the AMPA receptor GLR-1 with its own transcription. GLR-1 trafficking mutants with decreased synaptic receptors in the ventral nerve cord (VNC exhibit compensatory increases in glr-1 mRNA, which can be attributed to increased glr-1 transcription. Glutamatergic transmission mutants lacking presynaptic eat-4/VGLUT or postsynaptic glr-1, exhibit compensatory increases in glr-1 transcription, suggesting that loss of GLR-1 activity is sufficient to trigger the feedback pathway. Direct and specific inhibition of GLR-1-expressing neurons using a chemical genetic silencing approach also results in increased glr-1 transcription. Conversely, expression of a constitutively active version of GLR-1 results in decreased glr-1 transcription, suggesting that bidirectional changes in GLR-1 signaling results in reciprocal alterations in glr-1 transcription. We identify the CMK-1/CaMK signaling axis as a mediator of the glr-1 transcriptional feedback mechanism. Loss-of-function mutations in the upstream kinase ckk-1/CaMKK, the CaM kinase cmk-1/CaMK, or a downstream transcription factor crh-1/CREB, result in increased glr-1 transcription, suggesting that the CMK-1 signaling pathway functions to repress glr-1 transcription. Genetic double mutant analyses suggest that CMK-1 signaling is required for the glr-1 transcriptional feedback pathway. Furthermore, alterations in GLR-1 signaling that trigger the feedback mechanism also regulate the nucleocytoplasmic distribution of CMK-1, and activated, nuclear-localized CMK-1 blocks the feedback pathway. We

  7. Global Stability in Dynamical Systems with Multiple Feedback Mechanisms

    DEFF Research Database (Denmark)

    Andersen, Morten; Vinther, Frank; Ottesen, Johnny T.

    2016-01-01

    A class of n-dimensional ODEs with up to n feedbacks from the n’th variable is analysed. The feedbacks are represented by non-specific, bounded, non-negative C1 functions. The main result is the formulation and proof of an easily applicable criterion for existence of a globally stable fixed point...

  8. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms

    Directory of Open Access Journals (Sweden)

    Deepak A. Deshpande

    2018-01-01

    Full Text Available Asthma is an inflammatory disease in which proinflammatory cytokines have a role in inducing abnormalities of airway smooth muscle function and in the development of airway hyperresponsiveness. Inflammatory cytokines alter calcium (Ca2+ signaling and contractility of airway smooth muscle, which results in nonspecific airway hyperresponsiveness to agonists. In this context, Ca2+ regulatory mechanisms in airway smooth muscle and changes in these regulatory mechanisms encompass a major component of airway hyperresponsiveness. Although dynamic Ca2+ regulation is complex, phospholipase C/inositol tris-phosphate (PLC/IP3 and CD38-cyclic ADP-ribose (CD38/cADPR are two major pathways mediating agonist-induced Ca2+ regulation in airway smooth muscle. Altered CD38 expression or enhanced cyclic ADP-ribosyl cyclase activity associated with CD38 contributes to human pathologies such as asthma, neoplasia, and neuroimmune diseases. This review is focused on investigations on the role of CD38-cyclic ADP-ribose signaling in airway smooth muscle in the context of transcriptional and posttranscriptional regulation of CD38 expression. The specific roles of transcription factors NF-kB and AP-1 in the transcriptional regulation of CD38 expression and of miRNAs miR-140-3p and miR-708 in the posttranscriptional regulation and the underlying mechanisms of such regulation are discussed.

  9. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms

    Science.gov (United States)

    Deshpande, Deepak A.; Guedes, Alonso G. P.; Graeff, Richard; Dogan, Soner; Subramanian, Subbaya; Walseth, Timothy F.

    2018-01-01

    Asthma is an inflammatory disease in which proinflammatory cytokines have a role in inducing abnormalities of airway smooth muscle function and in the development of airway hyperresponsiveness. Inflammatory cytokines alter calcium (Ca2+) signaling and contractility of airway smooth muscle, which results in nonspecific airway hyperresponsiveness to agonists. In this context, Ca2+ regulatory mechanisms in airway smooth muscle and changes in these regulatory mechanisms encompass a major component of airway hyperresponsiveness. Although dynamic Ca2+ regulation is complex, phospholipase C/inositol tris-phosphate (PLC/IP3) and CD38-cyclic ADP-ribose (CD38/cADPR) are two major pathways mediating agonist-induced Ca2+ regulation in airway smooth muscle. Altered CD38 expression or enhanced cyclic ADP-ribosyl cyclase activity associated with CD38 contributes to human pathologies such as asthma, neoplasia, and neuroimmune diseases. This review is focused on investigations on the role of CD38-cyclic ADP-ribose signaling in airway smooth muscle in the context of transcriptional and posttranscriptional regulation of CD38 expression. The specific roles of transcription factors NF-kB and AP-1 in the transcriptional regulation of CD38 expression and of miRNAs miR-140-3p and miR-708 in the posttranscriptional regulation and the underlying mechanisms of such regulation are discussed. PMID:29576747

  10. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds.

    Science.gov (United States)

    Nonogaki, Mariko; Sall, Khadidiatou; Nambara, Eiji; Nonogaki, Hiroyuki

    2014-05-01

    Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA-stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE-binding factor) expression in Arabidopsis Columbia-0 seeds, which caused 9- to 73-fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non-dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre-harvest sprouting during crop production, and therefore contributes to translational biology. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  11. Block backstepping design of nonlinear state feedback control law for underactuated mechanical systems

    CERN Document Server

    Rudra, Shubhobrata; Maitra, Madhubanti

    2017-01-01

    This book presents a novel, generalized approach to the design of nonlinear state feedback control laws for a large class of underactuated mechanical systems based on application of the block backstepping method. The control law proposed here is robust against the effects of model uncertainty in dynamic and steady-state performance and addresses the issue of asymptotic stabilization for the class of underactuated mechanical systems. An underactuated system is defined as one for which the dimension of space spanned by the configuration vector is greater than that of the space spanned by the control variables. Control problems concerning underactuated systems currently represent an active field of research due to their broad range of applications in robotics, aerospace, and marine contexts. The book derives a generalized theory of block backstepping control design for underactuated mechanical systems, and examines several case studies that cover interesting examples of underactuated mechanical systems. The math...

  12. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms.

    Science.gov (United States)

    Tomar, Vandana; Sidhu, Gurpreet Kaur; Nogia, Panchsheela; Mehrotra, Rajesh; Mehrotra, Sandhya

    2017-11-01

    This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO 2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O 2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C 4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO 2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO 2 and HCO 3 - transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO 2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.

  13. [Neuronal and hormonal regulatory mechanisms of tears production and secretion].

    Science.gov (United States)

    Mrugacz, Małgorzata; Zywalewska, Nella; Bakunowicz-Lazarczyk, Alina

    2005-01-01

    The ocular surface, tear film, lacrimal glands act as a functional unit to preserve the quality of the refractive surface of the eye, and to resist injury and protect the eye against bodily and environmental conditions. Homeostasis of this functional unit involves neuronal and hormonal regulatory mechanisms. The eye appears to be a target organ for sex hormones particulary the androgen, as they modulate the immune system and trophic functions of the lacrimal and Meibomian glands.

  14. VEGF selectively induces Down syndrome critical region 1 gene expression in endothelial cells: a mechanism for feedback regulation of angiogenesis?

    International Nuclear Information System (INIS)

    Yao, Y.-G; Duh, Elia J.

    2004-01-01

    The Down syndrome critical region 1 (DSCR1) gene (also known as MCIP1, Adapt78) encodes a regulatory protein that binds to calcineurin catalytic A subunit and acts as a regulator of the calcineurin-mediated signaling pathway. We show in this study that DSCR1 is greatly induced in endothelial cells in response to VEGF, TNF-α, and A23187 treatment, and that this up-regulation is inhibited by inhibitors of the calcineurin-NFAT (nuclear factor of activated T cells) signaling pathway as well as by PKC inhibition and a Ca 2+ chelator. We hypothesized that the up-regulation of DSCR1 gene expression in endothelial cells could act as an endogenous feedback inhibitor for angiogenesis by regulating the calcineurin-NFAT signaling pathway. Our transient transfection analyses confirm that the overexpression of DSCR1 abrogates the up-regulation of reporter gene expression driven by both the cyclooxygenase 2 and DSCR1 promoters in response to stimulators. Our results indicate that DSCR1 up-regulation may represent a potential molecular mechanism underlying the regulation of angiogenic genes activated by the calcineurin-NFAT signaling pathway in endothelial cells

  15. Operating nuclear plant feedback to ASME and French codes

    International Nuclear Information System (INIS)

    Journet, J.; O'Donnell, W.J.

    1996-01-01

    The French have an advantage in nuclear plant operating experience feedback due to the highly centralized nature of their nuclear industry. There is only one utility in charge of design as well as operations (EDF) and only one reactor vendor (Framatome). The ASME Code has played a key role in resolving technical issues in the design and operation of nuclear plants since the inception of nuclear power. The committee structure of the Code brings an ideal combination of senior technical people with both broad and specialized experience to bear on complex how safe is safe enough technical issues. The authors now see an even greater role for the ASME Code in a proposed new regulatory era for the US nuclear industry. The current legalistic confrontational regulatory era has been quite destructive. There now appears to be a real opportunity to begin a new era of technical consensus as the primary means for resolving safety issues. This change can quickly be brought about by having the industry take operating plant problems and regulatory technical issues directly to the ASME Code for timely resolution. Surprisingly, there is no institution in the US nuclear industry with such a mandate. In fact, the industry is organized to feedback through the Nuclear Regulatory Commission issues which could be far better resolved through the ASME Code. Major regulatory benefits can be achieved by closing this loop and providing systematic interaction with the ASME Code. The essential elements of a new regulatory era and ideas for organizing US institutional industry responsibilities, taken from the French experience, are described in this paper

  16. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  17. Robustness and accuracy in sea urchin developmental gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Smadar eBen-Tabou De-Leon

    2016-02-01

    Full Text Available Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change.

  18. Regulatory mechanism of endothelin receptor B in the cerebral arteries after focal cerebral ischemia

    DEFF Research Database (Denmark)

    Grell, Anne-Sofie; Thigarajah, Rushani; Edvinsson, Lars

    2014-01-01

    BACKGROUND AND PURPOSE: Increased expression of endothelin receptor type B (ETBR), a vasoactive receptor, has recently been implied in the reduced cerebral blood flow and exacerbated neuronal damage after ischemia-reperfusion (I/R). The study explores the regulatory mechanisms of ETBR to identify...... drug targets to restore normal cerebral artery contractile function as part of successful neuroprotective therapy. METHODS: We have employed in vitro methods on human and rat cerebral arteries to study the regulatory mechanisms and the efficacy of target selective inhibitor, Mithramycin A (Mit...... the ETBR mRNA and protein levels. It also significantly reduced the ETBR mediated cerebrovascular contractility. Detailed analysis indicated that ERK1/2 mediated phosphorylation of Sp1 might be essential for ETBR transcription. CONCLUSION: Transcription factor Sp1 regulates the ETBR mediated...

  19. Feedback regulation between autophagy and PKA.

    Science.gov (United States)

    Torres-Quiroz, Francisco; Filteau, Marie; Landry, Christian R

    2015-01-01

    Protein kinase A (PKA) controls diverse cellular processes and homeostasis in eukaryotic cells. Many processes and substrates of PKA have been described and among them are direct regulators of autophagy. The mechanisms of PKA regulation and how they relate to autophagy remain to be fully understood. We constructed a reporter of PKA activity in yeast to identify genes affecting PKA regulation. The assay systematically measures relative protein-protein interactions between the regulatory and catalytic subunits of the PKA complex in a systematic set of genetic backgrounds. The candidate PKA regulators we identified span multiple processes and molecular functions (autophagy, methionine biosynthesis, TORC signaling, protein acetylation, and DNA repair), which themselves include processes regulated by PKA. These observations suggest the presence of many feedback loops acting through this key regulator. Many of the candidate regulators include genes involved in autophagy, suggesting that not only does PKA regulate autophagy but that autophagy also sends signals back to PKA.

  20. Constitutive, Institutive and Up-Regulation of Carotenogenesis Regulatory Mechanism via In Vitro Culture Model System and Elicitors

    International Nuclear Information System (INIS)

    Rashidi Othman; Fatimah Azzahra Mohd Zaifuddin; Norazian Mohd Hassan

    2015-01-01

    Phyto hormone abscisic acid (ABA) plays a regulatory role in many physiological processes in plants and is regulated and controlled by specific key factors or genes. Different environmental stress conditions such as water, drought, cold, light, and temperature result in increased amounts of ABA. The action of ABA involves modification of gene expression and analysis of in vitro callus model system cultures revealed several potential of constitutive, institutive and up-regulation acting regulatory mechanisms. Therefore, this study was aimed at establishing in vitro cultures as potential research tools to study the regulatory mechanisms of the carotenoid biosynthesis in selected plant species through a controlled environment. The presence and absence of zeaxanthin and neoxanthin in callus cultures and intact plants could be explained by changes in gene expression in response to stress. Abiotic stress can alter gene expression and trigger cellular metabolism in plants. This study suggested that the key factors which involved in regulatory mechanisms of individual carotenoid biosynthesis in a particular biology system of plants can be either be silenced or activated. Therefore, based on the results in this study environmental stress is made possible for enhancement or enrichment of certain carotenoid of interest in food crops without altering the genes. (author)

  1. Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Torrealdea Javier

    2011-07-01

    Full Text Available Abstract Background The relapsing-remitting dynamics is a hallmark of autoimmune diseases such as Multiple Sclerosis (MS. Although current understanding of both cellular and molecular mechanisms involved in the pathogenesis of autoimmune diseases is significant, how their activity generates this prototypical dynamics is not understood yet. In order to gain insight about the mechanisms that drive these relapsing-remitting dynamics, we developed a computational model using such biological knowledge. We hypothesized that the relapsing dynamics in autoimmunity can arise through the failure in the mechanisms controlling cross-regulation between regulatory and effector T cells with the interplay of stochastic events (e.g. failure in central tolerance, activation by pathogens that are able to trigger the immune system. Results The model represents five concepts: central tolerance (T-cell generation by the thymus, T-cell activation, T-cell memory, cross-regulation (negative feedback between regulatory and effector T-cells and tissue damage. We enriched the model with reversible and irreversible tissue damage, which aims to provide a comprehensible link between autoimmune activity and clinical relapses and active lesions in the magnetic resonances studies in patients with Multiple Sclerosis. Our analysis shows that the weakness in this negative feedback between effector and regulatory T-cells, allows the immune system to generate the characteristic relapsing-remitting dynamics of autoimmune diseases, without the need of additional environmental triggers. The simulations show that the timing at which relapses appear is highly unpredictable. We also introduced targeted perturbations into the model that mimicked immunotherapies that modulate effector and regulatory populations. The effects of such therapies happened to be highly dependent on the timing and/or dose, and on the underlying dynamic of the immune system. Conclusion The relapsing dynamic in MS

  2. Operational safety experience feedback by means of unusual event reports

    International Nuclear Information System (INIS)

    1996-07-01

    Operational experience of nuclear power plants can be used to great advantage to enhance safety performance provided adequate measures are in place to collect and analyse it and to ensure that the conclusions drawn are acted upon. Feedback of operating experience is thus an extremely important tool to ensure high standards of safety in operational nuclear power plants and to improve the capability to prevent serious accidents and to learn from minor deviations and equipment failures - which can serve as early warnings -to prevent even minor events from occurring. Mechanisms also need to be developed to ensure that operating experience is shared both nationally as well as internationally. The operating experience feedback process needs to be fully and effectively established within the nuclear power plant, the utility, the regulatory organization as well as in other institutions such as technical support organizations and designers. The main purpose of this publication is to reflect the international consensus as to the general principles and practices in the operational safety experience feedback process. The examples of national practices for the whole or for particular parts of the process are given in annexes. The publication complements the IAEA Safety Series No.93 ''Systems for Reporting Unusual Events in Nuclear Power Plants'' (1989) and may also give a general guidance for Member States in fulfilling their obligations stipulated in the Nuclear Safety Convention. Figs, tabs

  3. Operational safety experience feedback by means of unusual event reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Operational experience of nuclear power plants can be used to great advantage to enhance safety performance provided adequate measures are in place to collect and analyse it and to ensure that the conclusions drawn are acted upon. Feedback of operating experience is thus an extremely important tool to ensure high standards of safety in operational nuclear power plants and to improve the capability to prevent serious accidents and to learn from minor deviations and equipment failures - which can serve as early warnings -to prevent even minor events from occurring. Mechanisms also need to be developed to ensure that operating experience is shared both nationally as well as internationally. The operating experience feedback process needs to be fully and effectively established within the nuclear power plant, the utility, the regulatory organization as well as in other institutions such as technical support organizations and designers. The main purpose of this publication is to reflect the international consensus as to the general principles and practices in the operational safety experience feedback process. The examples of national practices for the whole or for particular parts of the process are given in annexes. The publication complements the IAEA Safety Series No.93 ``Systems for Reporting Unusual Events in Nuclear Power Plants`` (1989) and may also give a general guidance for Member States in fulfilling their obligations stipulated in the Nuclear Safety Convention. Figs, tabs.

  4. Learning from experience: feedback to CANDU design

    International Nuclear Information System (INIS)

    Allen, P.J.; Hopwood, J.M.; Rousseau, G.P.

    1998-01-01

    AECL's main product line is based on two single unit CANDU nuclear power plant designs; CANDU 6 and CANDU 9, each of which is based on successfully operating CANDU plants. AECL's CANDU development program is based upon evolutionary improvement. The evolutionary design approach ensures the maximum degree of operational provenness. It also allows successful features of today's plants to be retained while incorporating improvements as they develop to the appropriate level of design maturity. A key component of this evolutionary development is a formal process of gathering and responding to feedback from: NPP operation, construction and commissioning; regulatory input; equipment supplier input; R and D results; market input. The progresses for gathering and implementing the experience feedback and a number of recent examples of design improvements from this feedback process are described in the paper. (author)

  5. The bantam microRNA acts through Numb to exert cell growth control and feedback regulation of Notch in tumor-forming stem cells in the Drosophila brain.

    Science.gov (United States)

    Wu, Yen-Chi; Lee, Kyu-Sun; Song, Yan; Gehrke, Stephan; Lu, Bingwei

    2017-05-01

    Notch (N) signaling is central to the self-renewal of neural stem cells (NSCs) and other tissue stem cells. Its deregulation compromises tissue homeostasis and contributes to tumorigenesis and other diseases. How N regulates stem cell behavior in health and disease is not well understood. Here we show that N regulates bantam (ban) microRNA to impact cell growth, a process key to NSC maintenance and particularly relied upon by tumor-forming cancer stem cells. Notch signaling directly regulates ban expression at the transcriptional level, and ban in turn feedback regulates N activity through negative regulation of the Notch inhibitor Numb. This feedback regulatory mechanism helps maintain the robustness of N signaling activity and NSC fate. Moreover, we show that a Numb-Myc axis mediates the effects of ban on nucleolar and cellular growth independently or downstream of N. Our results highlight intricate transcriptional as well as translational control mechanisms and feedback regulation in the N signaling network, with important implications for NSC biology and cancer biology.

  6. Gaze stabilization in chronic vestibular-loss and in cerebellar ataxia: interactions of feedforward and sensory feedback mechanisms.

    Science.gov (United States)

    Sağlam, M; Lehnen, N

    2014-01-01

    During gaze shifts, humans can use visual, vestibular, and proprioceptive feedback, as well as feedforward mechanisms, for stabilization against active and passive head movements. The contributions of feedforward and sensory feedback control, and the role of the cerebellum, are still under debate. To quantify these contributions, we increased the head moment of inertia in three groups (ten healthy, five chronic vestibular-loss and nine cerebellar-ataxia patients) while they performed large gaze shifts to flashed targets in darkness. This induces undesired head oscillations. Consequently, both active (desired) and passive (undesired) head movements had to be compensated for to stabilize gaze. All groups compensated for active and passive head movements, vestibular-loss patients less than the other groups (P feedforward mechanisms substantially contribute to gaze stabilization. Proprioception alone is not sufficient (gain 0.2). Stabilization against active and passive head movements was not impaired in our cerebellar ataxia patients.

  7. False feedback and beliefs influence name recall in younger and older adults.

    Science.gov (United States)

    Strickland-Hughes, Carla M; West, Robin Lea; Smith, Kimberly A; Ebner, Natalie C

    2017-09-01

    Feedback is an important self-regulatory process that affects task effort and subsequent performance. Benefits of positive feedback for list recall have been explored in research on goals and feedback, but the effect of negative feedback on memory has rarely been studied. The current research extends knowledge of memory and feedback effects by investigating face-name association memory and by examining the potential mediation of feedback effects, in younger and older adults, through self-evaluative beliefs. Beliefs were assessed before and after name recognition and name recall testing. Repeated presentation of false positive feedback was compared to false negative feedback and a no feedback condition. Results showed that memory self-efficacy declined over time for participants in the negative and no feedback conditions but was sustained for those receiving positive feedback. Furthermore, participants who received negative feedback felt older after testing than before testing. For name recall, the positive feedback group outperformed the negative feedback and no feedback groups combined, with no age interactions. The observed feedback-related effects on memory were fully mediated by changes in memory self-efficacy. These findings advance our understanding of how beliefs are related to feedback in memory and inform future studies examining the importance of self-regulation in memory.

  8. Regulatory mechanisms for absenteeism in the health sector: a systematic review of strategies and their implementation

    Directory of Open Access Journals (Sweden)

    Kisakye AN

    2016-11-01

    Full Text Available Angela N Kisakye,1 Raymond Tweheyo,1 Freddie Ssengooba,1 George W Pariyo,2 Elizeus Rutebemberwa,1 Suzanne N Kiwanuka1 1Department of Health Policy Planning and Management, Makerere University School of Public Health, Kampala, Uganda; 2Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA Background: A systematic review was undertaken to identify regulatory mechanisms aimed at mitigating health care worker absenteeism, to describe where and how they have been implemented as well as their possible effects. The goal was to propose potential policy options for managing the problem of absenteeism among human resources for health in low- and middle-income countries. Mechanisms described in this review are at the local workplace and broader national policy level. Methods: A comprehensive online search was conducted on EMBASE, CINAHL, PubMed, Google Scholar, Google, and Social Science Citation Index using MEDLINE search terms. Retrieved studies were uploaded onto reference manager and screened by two independent reviewers. Only publications in English were included. Data were extracted and synthesized according to the objectives of the review. Results: Twenty six of the 4,975 published articles retrieved were included. All were from high-income countries and covered all cadres of health workers. The regulatory mechanisms and possible effects include 1 organizational-level mechanisms being reported as effective in curbing absenteeism in low- and middle-income countries (LMICs; 2 prohibition of private sector activities in LMICs offering benefits but presenting a challenge for the government to monitor the health workforce; 3 contractual changes from temporary to fixed posts having been associated with no reduction in absenteeism and not being appropriate for LMICs; 4 multifaceted work interventions being implemented in most settings; 5 the possibility of using financial and incentive regulatory mechanisms

  9. Regulatory Design of Capacity Remuneration Mechanisms in Regional and Low-Carbon Electric Power Markets

    NARCIS (Netherlands)

    Mastropietro, P.

    2016-01-01

    Capacity remuneration mechanisms (CRMs) are “climbing” regulatory agendas in all liberalised power sectors, especially in the European Union. CRMs are introduced to improve system reliability and to minimise power shortages to an economically efficient extent. These schemes will have a central role

  10. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    Science.gov (United States)

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  11. Regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Kalchev, B.; Stefanova, S.

    2006-01-01

    The paper presents an overview of the regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes, which are used for safety assessment of the fuel design and the fuel utilization. Some requirements to the model development, verification and validation of the codes and analysis of code uncertainties are also define. Questions concerning Quality Assurance during development and implementation of the codes as well as preparation of a detailed verification and validation plan are briefly discussed

  12. Corticocortical feedback increases the spatial extent of normalization.

    Science.gov (United States)

    Nassi, Jonathan J; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.

  13. Designing feedback: multimodality and specificity

    NARCIS (Netherlands)

    Ludden, Geke Dina Simone; Sugiyama, Kazuo

    2013-01-01

    Now that many of us carry around devices that are equipped with sensors (e.g., smartphones with accelerometers) we can use these sensors to measure behavior. The data thus captured can be used to give someone feedback about this behavior. These feedback mechanisms are often used in so called smart

  14. Timing Embryo Segmentation: Dynamics and Regulatory Mechanisms of the Vertebrate Segmentation Clock

    Science.gov (United States)

    Resende, Tatiana P.; Andrade, Raquel P.; Palmeirim, Isabel

    2014-01-01

    All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations. PMID:24895605

  15. The targeting of immunosuppressive mechanisms in hematological malignancies

    DEFF Research Database (Denmark)

    Andersen, M H

    2014-01-01

    enzymes such as indoeamine-2,3-dioxygenase (IDO). The possible therapeutic targeting of these pathways is also discussed. Exciting new strategies that might affect future antileukemia immunotherapy include monoclonal antibodies that block inhibitory T-cell pathways (PD-1/PD-L1) and the prevention...... of tryptophan depletion by IDO inhibitors. Furthermore, the clinical effect of several chemotherapeutic drugs may arise from the targeting of immunosuppressive cells. Evidence for a new feedback mechanism to suppress the function of regulatory immune cells was recently provided by the identification...... and characterization of spontaneous cytotoxic T lymphocyte (CTL) responses against regulatory immune cells. Such specific CTLs may be immensely useful in anticancer immunotherapy (for example, by anticancer vaccination). The targeting of one or more immunosuppressive pathways may be especially interesting...

  16. Fast feedback in classroom practice

    NARCIS (Netherlands)

    Emmett, K.M.; Klaassen, K.; Eijkelhof, H.

    2009-01-01

    In this article we describe one application of the fast feedback method (see Berg 2003 Aust. Sci. Teach. J. 28–34) in secondary mechanics education. Two teachers tried out a particular sequence twice, in consecutive years, once with and once without the use of fast feedback. We found the method to

  17. Managing Regulatory Body Competence

    International Nuclear Information System (INIS)

    2013-01-01

    In 2001, the IAEA published TECDOC 1254, which examined the way in which the recognized functions of a regulatory body for nuclear facilities results in competence needs. Using the systematic approach to training (SAT), TECDOC 1254 provided a framework for regulatory bodies for managing training and developing and their maintaining their competence. It has been successfully used by many regulators. The IAEA has also introduced a methodology and an assessment tool - Guidelines for Systematic Assessment of Regulatory Competence Needs (SARCoN) - which provides practical guidance on analysing the training and development needs of a regulatory body and, through a gap analysis, guidance on establishing competence needs and how to meet them. In 2009, the IAEA established a steering committee (supported by a bureau) with the mission to advise the IAEA on how it could best assist Member States to develop suitable competence management systems for their regulatory bodies. The committee recommended the development of a safety report on managing staff competence as an integral part of a regulatory body's management system. This Safety Report was developed in response to this request. It supersedes TECDOC 1254, broadens its application to regulatory bodies for all facilities and activities, and builds upon the experience gained through the application of TECDOC 1254 and SARCoN and the feedback received from Member States. This Safety Report applies to the management of adequate competence as needs change, and as such is equally applicable to the needs of States 'embarking' on a nuclear power programme. It also deals with the special case of building up the competence of regulatory bodies as part of the overall process of establishing an 'embarking' State's regulatory system

  18. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory interactions determine repression or resistance.

    Science.gov (United States)

    Newton, Robert; Shah, Suharsh; Altonsy, Mohammed O; Gerber, Antony N

    2017-04-28

    Inflammatory signals induce feedback and feedforward systems that provide temporal control. Although glucocorticoids can repress inflammatory gene expression, glucocorticoid receptor recruitment increases expression of negative feedback and feedforward regulators, including the phosphatase, DUSP1, the ubiquitin-modifying enzyme, TNFAIP3, or the mRNA-destabilizing protein, ZFP36. Moreover, glucocorticoid receptor cooperativity with factors, including nuclear factor-κB (NF-κB), may enhance regulator expression to promote repression. Conversely, MAPKs, which are inhibited by glucocorticoids, provide feedforward control to limit expression of the transcription factor IRF1, and the chemokine, CXCL10. We propose that modulation of feedback and feedforward control can determine repression or resistance of inflammatory gene expression toglucocorticoid. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Regulatory mechanisms for absenteeism in the health sector: a systematic review of strategies and their implementation

    Science.gov (United States)

    Kisakye, Angela N; Tweheyo, Raymond; Ssengooba, Freddie; Pariyo, George W; Rutebemberwa, Elizeus; Kiwanuka, Suzanne N

    2016-01-01

    Background A systematic review was undertaken to identify regulatory mechanisms aimed at mitigating health care worker absenteeism, to describe where and how they have been implemented as well as their possible effects. The goal was to propose potential policy options for managing the problem of absenteeism among human resources for health in low- and middle-income countries. Mechanisms described in this review are at the local workplace and broader national policy level. Methods A comprehensive online search was conducted on EMBASE, CINAHL, PubMed, Google Scholar, Google, and Social Science Citation Index using MEDLINE search terms. Retrieved studies were uploaded onto reference manager and screened by two independent reviewers. Only publications in English were included. Data were extracted and synthesized according to the objectives of the review. Results Twenty six of the 4,975 published articles retrieved were included. All were from high-income countries and covered all cadres of health workers. The regulatory mechanisms and possible effects include 1) organizational-level mechanisms being reported as effective in curbing absenteeism in low- and middle-income countries (LMICs); 2) prohibition of private sector activities in LMICs offering benefits but presenting a challenge for the government to monitor the health workforce; 3) contractual changes from temporary to fixed posts having been associated with no reduction in absenteeism and not being appropriate for LMICs; 4) multifaceted work interventions being implemented in most settings; 5) the possibility of using financial and incentive regulatory mechanisms in LMICs; 6) health intervention mechanisms reducing absenteeism when integrated with exercise programs; and 7) attendance by legislation during emergencies being criticized for violating human rights in the United States and not being effective in curbing absenteeism. Conclusion Most countries have applied multiple strategies to mitigate health care

  20. Regulatory mechanisms for absenteeism in the health sector: a systematic review of strategies and their implementation.

    Science.gov (United States)

    Kisakye, Angela N; Tweheyo, Raymond; Ssengooba, Freddie; Pariyo, George W; Rutebemberwa, Elizeus; Kiwanuka, Suzanne N

    2016-01-01

    A systematic review was undertaken to identify regulatory mechanisms aimed at mitigating health care worker absenteeism, to describe where and how they have been implemented as well as their possible effects. The goal was to propose potential policy options for managing the problem of absenteeism among human resources for health in low- and middle-income countries. Mechanisms described in this review are at the local workplace and broader national policy level. A comprehensive online search was conducted on EMBASE, CINAHL, PubMed, Google Scholar, Google, and Social Science Citation Index using MEDLINE search terms. Retrieved studies were uploaded onto reference manager and screened by two independent reviewers. Only publications in English were included. Data were extracted and synthesized according to the objectives of the review. Twenty six of the 4,975 published articles retrieved were included. All were from high-income countries and covered all cadres of health workers. The regulatory mechanisms and possible effects include 1) organizational-level mechanisms being reported as effective in curbing absenteeism in low- and middle-income countries (LMICs); 2) prohibition of private sector activities in LMICs offering benefits but presenting a challenge for the government to monitor the health workforce; 3) contractual changes from temporary to fixed posts having been associated with no reduction in absenteeism and not being appropriate for LMICs; 4) multifaceted work interventions being implemented in most settings; 5) the possibility of using financial and incentive regulatory mechanisms in LMICs; 6) health intervention mechanisms reducing absenteeism when integrated with exercise programs; and 7) attendance by legislation during emergencies being criticized for violating human rights in the United States and not being effective in curbing absenteeism. Most countries have applied multiple strategies to mitigate health care worker absenteeism. The success of these

  1. Corticocortical feedback increases the spatial extent of normalization

    Science.gov (United States)

    Nassi, Jonathan J.; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T.

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a “normalization pool.” Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing. PMID:24910596

  2. The actual structure of eBay’s feedback mechanism and early evidence on the effect of recent changes

    NARCIS (Netherlands)

    Klein, T.J.; Lambertz, C.; Spagnalo, G.; Stahl, K.O.

    2009-01-01

    eBay’s feedback mechanism is considered crucial to establishing and maintaining trust on the world’s largest trading platform. Yet, there is confusion among users about its exact institutional details, which changed substantially in May 2007. Most importantly, buyers now have the possibility to

  3. Regulatory Mechanisms of the Ihh/PTHrP Signaling Pathway in Fibrochondrocytes in Entheses of Pig Achilles Tendon

    Directory of Open Access Journals (Sweden)

    Xuesong Han

    2016-01-01

    Full Text Available This study is aimed at exploring the effect of stress stimulation on the proliferation and differentiation of fibrochondrocytes in entheses mediated via the Indian hedgehog (Ihh/parathyroid hormone-related protein (PTHrP signaling pathway. Differential stress stimulation on fibrochondrocytes in entheses was imposed. Gene expression and protein levels of signaling molecules including collagen type I (Col I, Col II, Col X, Ihh, and PTHrP in the cytoplasm of fibrochondrocytes were detected. Ihh signal blocking group was set up using Ihh signaling pathway-specific blocking agent cyclopamine. PTHrP enhancement group was set up using PTHrP reagent. Ihh/PTHrP double intervention group, as well as control group, was included to study the regulatory mechanisms of the Ihh/PTHrP signaling pathway in fibrochondrocytes. Under low cyclic stress tensile (CTS, PTHrP, Col I, and Col II gene expression and protein synthesis increased. Under high CTS, Ihh and Col X gene expression and protein synthesis increased. Blocking Ihh signaling with cyclopamine resulted in reduced PTHrP gene expression and protein synthesis and increased Col X gene expression and protein synthesis. Ihh and PTHrP coregulate fibrochondrocyte proliferation and differentiation in entheses through negative feedback regulation. Fibrochondrocyte is affected by the CTS. This phenomenon is regulated by stress stimulation through the Ihh/PTHrP signaling pathway.

  4. Regulatory Mechanisms of the Ihh/PTHrP Signaling Pathway in Fibrochondrocytes in Entheses of Pig Achilles Tendon.

    Science.gov (United States)

    Han, Xuesong; Zhuang, Yanfeng; Zhang, Zhihong; Guo, Lin; Wang, Wanming

    2016-01-01

    This study is aimed at exploring the effect of stress stimulation on the proliferation and differentiation of fibrochondrocytes in entheses mediated via the Indian hedgehog (Ihh)/parathyroid hormone-related protein (PTHrP) signaling pathway. Differential stress stimulation on fibrochondrocytes in entheses was imposed. Gene expression and protein levels of signaling molecules including collagen type I (Col I), Col II, Col X, Ihh, and PTHrP in the cytoplasm of fibrochondrocytes were detected. Ihh signal blocking group was set up using Ihh signaling pathway-specific blocking agent cyclopamine. PTHrP enhancement group was set up using PTHrP reagent. Ihh/PTHrP double intervention group, as well as control group, was included to study the regulatory mechanisms of the Ihh/PTHrP signaling pathway in fibrochondrocytes. Under low cyclic stress tensile (CTS), PTHrP, Col I, and Col II gene expression and protein synthesis increased. Under high CTS, Ihh and Col X gene expression and protein synthesis increased. Blocking Ihh signaling with cyclopamine resulted in reduced PTHrP gene expression and protein synthesis and increased Col X gene expression and protein synthesis. Ihh and PTHrP coregulate fibrochondrocyte proliferation and differentiation in entheses through negative feedback regulation. Fibrochondrocyte is affected by the CTS. This phenomenon is regulated by stress stimulation through the Ihh/PTHrP signaling pathway.

  5. Report of the peer review mission of national operational safety experience feedback process to the Ukraine 11-15 November 1996 Kiev

    International Nuclear Information System (INIS)

    1996-01-01

    At the invitation of the Nuclear Regulatory Administration of Ukraine (NRA), the IAEA carried out a Peer review mission of national operational safety experience feedback process at Kiev from 11 to 15 November 1996. The objective of this mission was to provide the host country, represented by the regulatory body, with independent and comprehensive review of current status of operational safety experience feedback (OSEF) process with respect to the IAEA's recommendations and international practices. The mission concluded that principal arrangements of operational feedback process in Ukraine are, at present, in force and brought positive results since their introduction. The mission also noted several good practices in these activities. 1 tab

  6. Learning from Feedback: Spacing and the Delay-Retention Effect

    Science.gov (United States)

    Smith, Troy A.; Kimball, Daniel R.

    2010-01-01

    Most modern research on the effects of feedback during learning has assumed that feedback is an error correction mechanism. Recent studies of feedback-timing effects have suggested that feedback might also strengthen initially correct responses. In an experiment involving cued recall of trivia facts, we directly tested several theories of…

  7. A conserved regulatory mechanism in bifunctional biotin protein ligases.

    Science.gov (United States)

    Wang, Jingheng; Beckett, Dorothy

    2017-08-01

    Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms. © 2017 The Protein Society.

  8. Computer-Generated Feedback on Student Writing

    Science.gov (United States)

    Ware, Paige

    2011-01-01

    A distinction must be made between "computer-generated scoring" and "computer-generated feedback". Computer-generated scoring refers to the provision of automated scores derived from mathematical models built on organizational, syntactic, and mechanical aspects of writing. In contrast, computer-generated feedback, the focus of this article, refers…

  9. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    Science.gov (United States)

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  10. Activation of counter-regulatory mechanisms in a rat renal acute rejection model

    Directory of Open Access Journals (Sweden)

    Salomon Daniel R

    2008-02-01

    Full Text Available Abstract Background Microarray analysis provides a powerful approach to identify gene expression alterations following transplantation. In patients the heterogeneity of graft specimens, co-morbidity, co-medications and the challenges in sample collection and preparation complicate conclusions regarding the underlying mechanisms of graft injury, rejection and immune regulation. Results We used a rat kidney transplantation model with strict transplant and sample preparation procedures to analyze genome wide changes in gene expression four days after syngeneic and allogeneic transplantation. Both interventions were associated with substantial changes in gene expression. After allogeneic transplantation, genes and pathways related to transport and metabolism were predominantly down-regulated consistent with rejection-mediated graft injury and dysfunction. Up-regulated genes were primarily related to the acute immune response including antigen presentation, T-cell receptor signaling, apoptosis, interferon signaling and complement cascades. We observed a cytokine and chemokine expression profile consistent with activation of a Th1-cell response. A novel finding was up-regulation of several regulatory and protective genes after allogeneic transplantation, specifically IL10, Bcl2a1, C4bpa, Ctla4, HO-1 and the SOCS family. Conclusion Our data indicate that in parallel with the predicted activation of immune response and tissue injury pathways, there is simultaneous activation of pathways for counter regulatory and protective mechanisms that would balance and limit the ongoing inflammatory/immune responses. The pathophysiological mechanisms behind and the clinical consequences of alterations in expression of these gene classes in acute rejection, injury and dysfunction vs. protection and immunoregulation, prompt further analyses and open new aspects for therapeutic approaches.

  11. PKC-theta in regulatory and effector T-cell functions

    Directory of Open Access Journals (Sweden)

    Vedran eBrezar

    2015-10-01

    Full Text Available One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teff or regulatory (Tregs T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ to the immunological synapse is instrumental for the formation of signalling complexes, that ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the immunological synapse where its formation induces altered signalling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance.This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.

  12. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes.

    Science.gov (United States)

    Parker, Brian J; Moltke, Ida; Roth, Adam; Washietl, Stefan; Wen, Jiayu; Kellis, Manolis; Breaker, Ronald; Pedersen, Jakob Skou

    2011-11-01

    Regulatory RNA structures are often members of families with multiple paralogous instances across the genome. Family members share functional and structural properties, which allow them to be studied as a whole, facilitating both bioinformatic and experimental characterization. We have developed a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein-coding regions comprising 725 individual structures, including 48 families with known structural RNA elements. Known families identified include both noncoding RNAs, e.g., miRNAs and the recently identified MALAT1/MEN β lincRNA family; and cis-regulatory structures, e.g., iron-responsive elements. We also identify tens of new families supported by strong evolutionary evidence and other statistical evidence, such as GO term enrichments. For some of these, detailed analysis has led to the formulation of specific functional hypotheses. Examples include two hypothesized auto-regulatory feedback mechanisms: one involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we identify potential new regulatory networks, including large families of short hairpins enriched in immunity-related genes, e.g., TNF, FOS, and CTLA4, which include known transcript destabilizing elements. Our findings exemplify the diversity of post-transcriptional regulation and provide a resource for further characterization of new regulatory mechanisms and families of noncoding RNAs.

  13. Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling

    Science.gov (United States)

    Lebensohn, Andres M; Dubey, Ramin; Neitzel, Leif R; Tacchelly-Benites, Ofelia; Yang, Eungi; Marceau, Caleb D; Davis, Eric M; Patel, Bhaven B; Bahrami-Nejad, Zahra; Travaglini, Kyle J; Ahmed, Yashi; Lee, Ethan; Carette, Jan E; Rohatgi, Rajat

    2016-01-01

    The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001 PMID:27996937

  14. RHIC 10 Hz global orbit feedback system

    International Nuclear Information System (INIS)

    Michnoff, R.; Arnold, L.; Carboni, L.; Cerniglia, P.; Curcio, A.; DeSanto, L.; Folz, C.; Ho, C.; Hoff, L.; Hulsart, R.; Karl, R.; Luo, Y.; Liu, C.; MacKay, W.; Mahler, G.; Meng, W.; Mernick, K.; Minty, M.; Montag, C.; Olsen, R.; Piacentino, J.; Popken, P.; Przybylinski, R.; Ptitsyn, V.; Ritter, J.; Schoenfeld, R.; Thieberger, P.; Tuozzolo, J.; Weston, A.; White, J.; Ziminski, P.; Zimmerman, P.

    2011-01-01

    Vibrations of the cryogenic triplet magnets at the Relativistic Heavy Ion Collider (RHIC) are suspected to be causing the horizontal beam perturbations observed at frequencies around 10 Hz. Several solutions to counteract the effect have been considered in the past, including a local beam feedback system at each of the two experimental areas, reinforcing the magnet base support assembly, and a mechanical servo feedback system. However, the local feedback system was insufficient because perturbation amplitudes outside the experimental areas were still problematic, and the mechanical solutions are very expensive. A global 10 Hz orbit feedback system consisting of 36 beam position monitors (BPMs) and 12 small dedicated dipole corrector magnets in each of the two 3.8 km circumference counter-rotating rings has been developed and commissioned in February 2011. A description of the system architecture and results with beam will be discussed.

  15. Investigation of internal feedback in hearing aids

    DEFF Research Database (Denmark)

    Friis, Lars

    2009-01-01

    with vibroacoustic transmission from the receiver to the microphones often occur during the use of hearing aids. This transmission causes feedback at certain critical gain levels where it produces a loud uncomfortable squealing. Consequently feedback often constitutes the limiting factor for the maximum obtainable...... gain in the hearing aid and it therefore represents a critical design problem. Feedback in hearing aids is usually divided into external and internal feedback. External feedback is caused by the leakage of sound from the ear canal whereas internal feedback is due to transmission of sound and vibrations...... internally in the hearing aid. As a result of reducing the size of hearing aids, manufacturers have experienced an increase in internal feedback problems. The main objective of the present thesis is therefore to examine the vibroacoustic mechanisms responsible for internal feedback in hearing aids...

  16. Dormancy-Associated MADS-Box (DAM) and the Abscisic Acid Pathway Regulate Pear Endodormancy Through a Feedback Mechanism.

    Science.gov (United States)

    Tuan, Pham Anh; Bai, Songling; Saito, Takanori; Ito, Akiko; Moriguchi, Takaya

    2017-08-01

    In the pear 'Kosui' (Pyrus pyrifolia Nakai), the dormancy-associated MADS-box (PpDAM1 = PpMADS13-1) gene has been reported to play an essential role in bud endodormancy. Here, we found that PpDAM1 up-regulated expression of 9-cis-epoxycarotenoid dioxygenase (PpNCED3), which is a rate-limiting gene for ABA biosynthesis. Transient assays with a dual luciferase reporter system (LUC assay) and electrophoretic mobility shift assay (EMSA) showed that PpDAM1 activated PpNCED3 expression by binding to the CArG motif in the PpNCED3 promoter. PpNCED3 expression was increased toward endodormancy release in lateral flower buds of 'Kosui', which is consistent with the induced levels of ABA, its catabolism (ABA 8'-hydroxylase) and signaling genes (type 2C protein phosphatase genes and SNF1-related protein kinase 2 genes). In addition, we found that an ABA response element (ABRE)-binding transcription factor, PpAREB1, exhibiting high expression concomitant with endodormancy release, bound to three ABRE motifs in the promoter region of PpDAM1 and negatively regulated its activity. Taken together, our results suggested a feedback regulation between PpDAM1 and the ABA metabolism and signaling pathway during endodormancy of pear. This first evidence of an interaction between a DAM and ABA biosynthesis in vitro will provide further insights into bud endodormancy regulatory mechanisms of deciduous trees including pear. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing

    DEFF Research Database (Denmark)

    Svenningsen, Sine L; Tu, Kimberly C; Bassler, Bonnie L

    2009-01-01

    the quorum regulatory RNAs 1-4 (Qrr1-4). The four Qrr sRNAs are functionally redundant. That is, expression of any one of them is sufficient for wild-type quorum-sensing behaviour. Here, we show that the combined action of two feedback loops, one involving the sRNA-activator LuxO and one involving the sRNA......Quorum sensing is a mechanism of cell-to-cell communication that allows bacteria to coordinately regulate gene expression in response to changes in cell-population density. At the core of the Vibrio cholerae quorum-sensing signal transduction pathway reside four homologous small RNAs (sRNAs), named......-target HapR, promotes gene dosage compensation between the four qrr genes. Gene dosage compensation adjusts the total Qrr1-4 sRNA pool and provides the molecular mechanism underlying sRNA redundancy. The dosage compensation mechanism is exquisitely sensitive to small perturbations in Qrr levels. Precisely...

  18. A new mechanical stellar wind feedback model for the Rosette Nebula

    Science.gov (United States)

    Wareing, C. J.; Pittard, J. M.; Wright, N. J.; Falle, S. A. E. G.

    2018-04-01

    The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2-6 Myr old codistant and comoving central star cluster NGC 2244. However, with upper age estimates of less than 110 000 yr, the central cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD 46223, from NGC 2244 occurred 1.73 (+0.34, -0.25) Myr (1σ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD 46150, the age is set for the famous ionized region at more than 10 times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40 M⊙ star in a thin sheet-like molecular cloud. We form the 135 000 M⊙ cloud from thermally unstable diffuse interstellar medium (ISM) under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5 Myr, including cavity size, stellar age, magnetic field, and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback.

  19. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    Science.gov (United States)

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Transcription factor trapping by RNA in gene regulatory elements.

    Science.gov (United States)

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  1. ETSON proposal on the European operational experience feedback system

    International Nuclear Information System (INIS)

    Maqua, Michael; Bertrand, Remy; Gelder, Pieter de

    2007-01-01

    The new IAEA Safety Fundamentals states regarding the operating experience feedback: The feedback of operating experience from facilities and activities - and, where relevant, from elsewhere - is a key means of enhancing safety. Processes must be put in place for the feedback and analysis of operating experience, including initiating events, accident precursors, near misses, accidents and unauthorized acts, so that lessons may be learned, shared and acted upon. This presentation deals with the proposal of the ETSON (European TSO Network) to optimize the European operating experiences feedback (OEF). It is generally recognized that the efficiency of nuclear safety supervision by public authorities is based on two key requirements: - the existence of a competent authority at national level, benefiting from an appropriate legislative and regulatory basis, from adequate (quantitatively and qualitatively) human resources, particularly for inspection purposes, - the availability of resources devoted to highly specialised independent technical expertise, in order to provide competent authorities with pertinent technical opinions on: -- the safety files provided by operators, for the purpose of licensing corresponding activities, -- the exploitation for regulatory purposes of the operating experience feed back from licensed nuclear installations. There are two worldwide systems intended to learn lessons from experience: the WANO (World Association of Nuclear Operators) system established by the licensees with access restricted to operating organizations and the IRS system jointly operated by IAEA and OECD/NEA accessible to regulators and to some other users nominated by the regulators in their countries. The IRS itself is dedicated to the analysis of safety significant operating events. NEA/CNRA runs a permanent working group on operating experience (WGOE). WGOE provides among other things also generic reports on safety concerns related to operating experiences and

  2. Systematisation of the use of experience feedback from NPP's in the regulatory field

    International Nuclear Information System (INIS)

    Vandewalle, A.

    2004-01-01

    Operating experience activities are important to maintain and to improve nuclear safety for nuclear power plant installations. Although with somewhat other objectives, the same kind of activities has to be performed by the regulatory organisations to support their functions, responsibilities and missions, without duplications and wastage of resources. International cooperation to share experience gained from events is also essential in this improvement process and each regulatory organisation should participate to this fundamental support to nuclear safety. (orig.)

  3. MicroRNA-7/NF-κB signaling regulatory feedback circuit regulates gastric carcinogenesis

    Science.gov (United States)

    Zhao, Xiao-Di; Lu, Yuan-Yuan; Guo, Hao; Xie, Hua-Hong; He, Li-Jie; Shen, Gao-Fei; Zhou, Jin-Feng; Li, Ting; Hu, Si-Jun; Zhou, Lin; Han, Ya-Nan; Liang, Shu-Li; Wang, Xin; Wu, Kai-Chun; Shi, Yong-Quan; Nie, Yong-Zhan

    2015-01-01

    MicroRNAs play essential roles in gene expression regulation during carcinogenesis. Here, we investigated the role of miR-7 and the mechanism by which it is dysregulated in gastric cancer (GC). We used genome-wide screenings and identified RELA and FOS as novel targets of miR-7. Overexpression of miR-7 repressed RELA and FOS expression and prevented GC cell proliferation and tumorigenesis. These effects were clinically relevant, as low miR-7 expression was correlated with high RELA and FOS expression and poor survival in GC patients. Intriguingly, we found that miR-7 indirectly regulated RELA activation by targeting the IκB kinase IKKε. Furthermore, IKKε and RELA can repress miR-7 transcription, which forms a feedback circuit between miR-7 and nuclear factor κB (NF-κB) signaling. Additionally, we demonstrate that down-regulation of miR-7 may occur as a result of the aberrant activation of NF-κB signaling by Helicobacter pylori infection. These findings suggest that miR-7 may serve as an important regulator in GC development and progression. PMID:26261179

  4. Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development.

    Science.gov (United States)

    van Duijvenvoorde, Anna C K; Zanolie, Kiki; Rombouts, Serge A R B; Raijmakers, Maartje E J; Crone, Eveline A

    2008-09-17

    How children learn from positive and negative performance feedback lies at the foundation of successful learning and is therefore of great importance for educational practice. In this study, we used functional magnetic resonance imaging (fMRI) to examine the neural developmental changes related to feedback-based learning when performing a rule search and application task. Behavioral results from three age groups (8-9, 11-13, and 18-25 years of age) demonstrated that, compared with adults, 8- to 9-year-old children performed disproportionally more inaccurately after receiving negative feedback relative to positive feedback. Additionally, imaging data pointed toward a qualitative difference in how children and adults use performance feedback. That is, dorsolateral prefrontal cortex and superior parietal cortex were more active after negative feedback for adults, but after positive feedback for children (8-9 years of age). For 11- to 13-year-olds, these regions did not show differential feedback sensitivity, suggesting that the transition occurs around this age. Pre-supplementary motor area/anterior cingulate cortex, in contrast, was more active after negative feedback in both 11- to 13-year-olds and adults, but not 8- to 9-year-olds. Together, the current data show that cognitive control areas are differentially engaged during feedback-based learning across development. Adults engage these regions after signals of response adjustment (i.e., negative feedback). Young children engage these regions after signals of response continuation (i.e., positive feedback). The neural activation patterns found in 11- to 13-year-olds indicate a transition around this age toward an increased influence of negative feedback on performance adjustment. This is the first developmental fMRI study to compare qualitative changes in brain activation during feedback learning across distinct stages of development.

  5. "I can be happy even when I lose the game": the influence of chronic regulatory focus and primed self-construal on exergamers' mood.

    Science.gov (United States)

    Jin, Seung-A Annie

    2010-08-01

    This research explored the effects of priming interdependent self-construals (collective self ) versus independent self-construals (private self ) on exergame players' mood in response to negative performance feedback. An experiment was conducted to test the interaction effects of self-construal priming as a situational factor and game players' chronic regulatory focus as an individual difference factor. To this end, the author leveraged a video-game console (Wii) and an exergame (Dance Dance Revolution) in a controlled, randomized 2 x 2 (experimental priming: interdependent self-construal vs. independent self-construal x game players' chronic promotion regulatory focus: low vs. high) between-subjects factorial design experiment (N = 58). The results of a two-way analysis of variance demonstrated the proposed interaction effect between primed self-construal and game players' chronic regulatory focus on the game players' mood in response to negative performance. The theoretical mechanism underlying the two-way interaction is explicated by regulatory focus and the primed self-construals is explicated by regulatory focus theory and two-basket theory. Practical implications for game developers and theoretical contributions to video-game research are discussed.

  6. Dynamical behaviors of Rb-E2F pathway including negative feedback loops involving miR449.

    Science.gov (United States)

    Yan, Fang; Liu, Haihong; Hao, Junjun; Liu, Zengrong

    2012-01-01

    MiRNAs, which are a family of small non-coding RNAs, regulate a broad array of physiological and developmental processes. However, their regulatory roles have remained largely mysterious. E2F is a positive regulator of cell cycle progression and also a potent inducer of apoptosis. Positive feedback loops in the regulation of Rb-E2F pathway are predicted and shown experimentally. Recently, it has been discovered that E2F induce a cluster of miRNAs called miR449. In turn, E2F is inhibited by miR449 through regulating different transcripts, thus forming negative feedback loops in the interaction network. Here, based on the integration of experimental evidence and quantitative data, we studied Rb-E2F pathway coupling the positive feedback loops and negative feedback loops mediated by miR449. Therefore, a mathematical model is constructed based in part on the model proposed in Yao-Lee et al. (2008) and nonlinear dynamical behaviors including the stability and bifurcations of the model are discussed. A comparison is given to reveal the implication of the fundamental differences of Rb-E2F pathway between regulation and deregulation of miR449. Coherent with the experiments it predicts that miR449 plays a critical role in regulating the cell cycle progression and provides a twofold safety mechanism to avoid excessive E2F-induced proliferation by cell cycle arrest and apoptosis. Moreover, numerical simulation and bifurcation analysis shows that the mechanisms of the negative regulation of miR449 to three different transcripts are quite distinctive which needs to be verified experimentally. This study may help us to analyze the whole cell cycle process mediated by other miRNAs more easily. A better knowledge of the dynamical behaviors of miRNAs mediated networks is also of interest for bio-engineering and artificial control.

  7. Gender Inequality and Reflexive Law: The Potential of different regulatory Mechanisms for making Employment Rights effective

    OpenAIRE

    Deakin, S.; McLaughlin, C.; Chai, D.H.

    2011-01-01

    We review the different regulatory mechanisms which have been used in the UK context to promote gender equality in employment over the past decade, including legal enforcement based on claimant-led litigation, collective bargaining, pay audits, and shareholder pressure. Evidence is drawn from case studies examining the effects of these different mechanisms on organisations in the public and private sectors, and from econometric analysis of the impact of stock market pressures on firms' human ...

  8. Collective irrationality and positive feedback.

    Science.gov (United States)

    Nicolis, Stamatios C; Zabzina, Natalia; Latty, Tanya; Sumpter, David J T

    2011-04-26

    Recent experiments on ants and slime moulds have assessed the degree to which they make rational decisions when presented with a number of alternative food sources or shelter. Ants and slime moulds are just two examples of a wide range of species and biological processes that use positive feedback mechanisms to reach decisions. Here we use a generic, experimentally validated model of positive feedback between group members to show that the probability of taking the best of options depends crucially on the strength of feedback. We show how the probability of choosing the best option can be maximized by applying an optimal feedback strength. Importantly, this optimal value depends on the number of options, so that when we change the number of options the preference of the group changes, producing apparent "irrationalities". We thus reinterpret the idea that collectives show "rational" or "irrational" preferences as being a necessary consequence of the use of positive feedback. We argue that positive feedback is a heuristic which often produces fast and accurate group decision-making, but is always susceptible to apparent irrationality when studied under particular experimental conditions.

  9. Collective irrationality and positive feedback.

    Directory of Open Access Journals (Sweden)

    Stamatios C Nicolis

    Full Text Available Recent experiments on ants and slime moulds have assessed the degree to which they make rational decisions when presented with a number of alternative food sources or shelter. Ants and slime moulds are just two examples of a wide range of species and biological processes that use positive feedback mechanisms to reach decisions. Here we use a generic, experimentally validated model of positive feedback between group members to show that the probability of taking the best of options depends crucially on the strength of feedback. We show how the probability of choosing the best option can be maximized by applying an optimal feedback strength. Importantly, this optimal value depends on the number of options, so that when we change the number of options the preference of the group changes, producing apparent "irrationalities". We thus reinterpret the idea that collectives show "rational" or "irrational" preferences as being a necessary consequence of the use of positive feedback. We argue that positive feedback is a heuristic which often produces fast and accurate group decision-making, but is always susceptible to apparent irrationality when studied under particular experimental conditions.

  10. The regulatory mechanism in the U.S. lessons learned

    International Nuclear Information System (INIS)

    Roberts, T.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission is responsible for the regulation of the commercial uses of nuclear power in the United States in order to protect the public health and safety. The NRC has undertaken a number of initiatives to incorporate the experience gained from the over 25 years of commercial nuclear power plant operation. These initiatives are aimed at improving the regulatory structure currently in place by providing for a more predictable and stable regulatory environment and by more efficiently and effectively focusing the activities of utilities on the safe operation of their facilities. (author)

  11. Downregulation of IL-12 and a novel negative feedback system mediated by CD25+CD4+ T cells

    International Nuclear Information System (INIS)

    Sato, Kojiro; Tateishi, Shoko; Kubo, Kanae; Mimura, Toshihide; Yamamoto, Kazuhiko; Kanda, Hiroko

    2005-01-01

    CD25 + CD4 + regulatory T cells suppress immune responses and are believed to play roles in preventing autoimmune diseases. However, the mechanism(s) underlying the suppression and the regulation of their homeostasis remain to be elucidated. Here we show that these regulatory T cells downregulated CD25 - CD4 + T-cell-mediated production of IL-12 from antigen-presenting cells, which can act as a growth factor for CD25 - CD4 + T cells. We further found that CD25 + CD4 + T cells, despite their well-documented 'anergic' nature, proliferate significantly in vitro only when CD25 - CD4 + T cells are present. Notably, this proliferation was strongly dependent on IL-2 and relatively independent of IL-12. Thus, CD25 + CD4 + T cells suppress CD25 - CD4 + T-cell responses, at least in part, by inhibiting IL-12 production while they themselves can undergo proliferation with the mediation of CD25 - CD4 + T cells in vitro. These results offer a novel negative feedback system involving a tripartite interaction among CD25 + CD4 + and CD25 - CD4 + T cells, and APCs that may contribute to the termination of immune responses

  12. Studies on leptin and its feedback system for weight regulation

    International Nuclear Information System (INIS)

    Lei Chengzhi

    2002-01-01

    Recently the hormone leptin has been regarded as hormonal signal linking adipose tissue status with a number of key central nervous system circuits. The role of leptin and its feedback system in man is partly revealed. Hypothalamic centers appear to control appetite, metabolic rate and activity level in a co-ordinate manner. Within the hypothalamus, known weight regulatory molecules include leptin, neuropeptide Y and POMC. The authors integrated new information into a revised model for understanding this important regulatory process. The model of energy homeostasis propose that the interaction of leptin with various neuroendocrine pathway in the brain and in the periphery to affect food-take

  13. Multiple post-transcriptional regulatory mechanisms in ferritin gene expression

    International Nuclear Information System (INIS)

    Mattia, E.; Den Blaauwen, J.; Van Renswoude, J.; Ashwell, G.

    1989-01-01

    The authors have investigated the mechanisms involved in the regulation of ferritin biosynthesis in K562 human erythroleukemia cells during prolonged exposure to iron. They show that, upon addition of hemin (an efficient iron donor) to the cell culture, the rate of ferritin biosynthesis reaches a maximum after a few hours and then decreases. During a 24-hr incubation with the iron donor the concentrations of total ferritin heavy (H) and light (L) subunit mRNAs rise 2- to 5-fold and 2- to 3-fold, respectively, over the control values, while the amount of the protein increases 10- to 30-fold. The hemin-induced increment in ferritin subunit mRNA is not prevented by deferoxamine, suggesting that it is not directly mediated by chelatable iron. In vitro nuclear transcription analyses performed on nuclei isolated from control cells and cells grown in the presence of hemin indicate that the rates of synthesis of H- and L-subunit mRNAs remain constant. They conclude that iron-induced ferritin biosynthesis is governed by multiple post-transcriptional regulatory mechanisms. They propose that exposure of cells to iron leads to stabilization of ferritin mRNAs, in addition to activation and translation of stored H-and L-subunit mRNAs

  14. Retrievability of high-level nuclear waste from geologic repositories - Regulatory and rock mechanics/design considerations

    International Nuclear Information System (INIS)

    Tanious, N.S.; Nataraja, M.S.; Daemen, J.J.K.

    1987-01-01

    Retrievability of nuclear waste from high-level geologic repositories is one of the performance objectives identified in 10CFR60 (Code of Federal Regulations, 1985). 10CFR60.111 states that the geologic repository operations area shall be designed to preserve the option of waste retrieval. In designing the repository operations area, rock mechanics considerations play a major role especially in evaluating the feasibility of retrieval operations. This paper discusses generic considerations affecting retrievability as they relate to repository design, construction, and operation, with emphasis on regulatory and rock mechanics aspects

  15. Feedback and starbursts

    International Nuclear Information System (INIS)

    Wiklind, T.

    1987-01-01

    A simple phenomenological model of the regulatory coupling between the star formation rate and the molecular gas fraction is presented. The model can in a qualitative way explain both the constant star formation rate observed in most galaxies and the starbursting behaviour seen in some systems. Formation of massive stars are thought to have both a positive and a negative feedback on further stellar formation. A sudden increase in the gas available for star formation will cause a strong increase in the star formation rate lasting for ∼ 3.10 7 yrs. Both the star formation rate and the molecular gas friction will then perform damped oscillations over a period of a few x 10 8 yrs. This general behaviour is valid for a large range of parameter values

  16. Negative soil moisture-precipitation feedback in dry and wet regions.

    Science.gov (United States)

    Yang, Lingbin; Sun, Guoqing; Zhi, Lu; Zhao, Jianjun

    2018-03-05

    Soil moisture-precipitation (SM-P) feedback significantly influences the terrestrial water and energy cycles. However, the sign of the feedback and the associated physical mechanism have been debated, leaving a research gap regarding global water and climate changes. Based on Koster's framework, we estimate SM-P feedback using satellite remote sensing and ground observation data sets. Methodologically, the sign of the feedback is identified by the correlation between monthly soil moisture and next-month precipitation. The physical mechanism is investigated through coupling precipitation and soil moisture (P-SM), soil moisture ad evapotranspiration (SM-E) and evapotranspiration and precipitation (E-P) correlations. Our results demonstrate that although positive SM-P feedback is predominant over land, non-negligible negative feedback occurs in dry and wet regions. Specifically, 43.75% and 40.16% of the negative feedback occurs in the arid and humid climate zones. Physically, negative SM-P feedback depends on the SM-E correlation. In dry regions, evapotranspiration change is soil moisture limited. In wet regions, evapotranspiration change is energy limited. We conclude that the complex SM-E correlation results in negative SM-P feedback in dry and wet regions, and the cause varies based on the environmental and climatic conditions.

  17. Osteoclasts and CD8 T cells form a negative feedback loop that contributes to homeostasis of both the skeletal and immune systems.

    Science.gov (United States)

    Buchwald, Zachary S; Aurora, Rajeev

    2013-01-01

    There are a number of dynamic regulatory loops that maintain homeostasis of the immune and skeletal systems. In this review, we highlight a number of these regulatory interactions that contribute to maintaining homeostasis. In addition, we review data on a negative regulatory feedback loop between osteoclasts and CD8 T cells that contributes to homeostasis of both the skeletal and immune systems.

  18. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young; Park, Myoung Ryoul; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Mauleon, Ramil; Wijaya, Edward; Bajic, Vladimir B.; Bruskiewich, Richard; de los Reyes, Benildo G

    2010-01-01

    -plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress

  19. Application of ASSET methodology and operational experience feedback of NPPs in China

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ziyong [The National Nuclear Safety Administration, Beijing (China)

    1997-10-01

    The introductive presentation of ASSET methodology to China started in March 1992, 3 experts from the IAEA held the ASSET Seminar in Wuhan, China. Three years later, an IAEA seminar on ASSET Method and Operational Experience Feedback proceeded in Beijing on 20-24 March 1995. Another ASSET seminar on Self-Assessment and Operational Experience Feedback was held at Guangdong NPP site on 2-6 December 1996, The NNSA and the GNPP hosted the seminar, 2 IAEA experts, 55 participants from the NPPs, research institutes, the regulatory body (NNSA) and its regional offices attended the seminar. 3 figs, 5 tabs.

  20. Application of ASSET methodology and operational experience feedback of NPPs in China

    International Nuclear Information System (INIS)

    Ziyong Lan

    1997-01-01

    The introductive presentation of ASSET methodology to China started in March 1992, 3 experts from the IAEA held the ASSET Seminar in Wuhan, China. Three years later, an IAEA seminar on ASSET Method and Operational Experience Feedback proceeded in Beijing on 20-24 March 1995. Another ASSET seminar on Self-Assessment and Operational Experience Feedback was held at Guangdong NPP site on 2-6 December 1996, The NNSA and the GNPP hosted the seminar, 2 IAEA experts, 55 participants from the NPPs, research institutes, the regulatory body (NNSA) and its regional offices attended the seminar. 3 figs, 5 tabs

  1. Feedback Specificity, Information Processing, and Transfer of Training

    Science.gov (United States)

    Goodman, Jodi S.; Wood, Robert E.; Chen, Zheng

    2011-01-01

    This study examines the effects of feedback specificity on transfer of training and the mechanisms through which feedback can enhance or inhibit transfer. We used concurrent verbal protocol methodology to elicit and operationalize the explicit information processing activities used by 48 trainees performing the Furniture Factory computer…

  2. A modular positive feedback-based gene amplifier

    Directory of Open Access Journals (Sweden)

    Bhalerao Kaustubh D

    2010-02-01

    Full Text Available Abstract Background Positive feedback is a common mechanism used in the regulation of many gene circuits as it can amplify the response to inducers and also generate binary outputs and hysteresis. In the context of electrical circuit design, positive feedback is often considered in the design of amplifiers. Similar approaches, therefore, may be used for the design of amplifiers in synthetic gene circuits with applications, for example, in cell-based sensors. Results We developed a modular positive feedback circuit that can function as a genetic signal amplifier, heightening the sensitivity to inducer signals as well as increasing maximum expression levels without the need for an external cofactor. The design utilizes a constitutively active, autoinducer-independent variant of the quorum-sensing regulator LuxR. We experimentally tested the ability of the positive feedback module to separately amplify the output of a one-component tetracycline sensor and a two-component aspartate sensor. In each case, the positive feedback module amplified the response to the respective inducers, both with regards to the dynamic range and sensitivity. Conclusions The advantage of our design is that the actual feedback mechanism depends only on a single gene and does not require any other modulation. Furthermore, this circuit can amplify any transcriptional signal, not just one encoded within the circuit or tuned by an external inducer. As our design is modular, it can potentially be used as a component in the design of more complex synthetic gene circuits.

  3. Underlying Mechanisms of Cooperativity, Input Specificity, and Associativity of Long-Term Potentiation Through a Positive Feedback of Local Protein Synthesis

    Directory of Open Access Journals (Sweden)

    Lijie Hao

    2018-05-01

    Full Text Available Long-term potentiation (LTP is a specific form of activity-dependent synaptic plasticity that is a leading mechanism of learning and memory in mammals. The properties of cooperativity, input specificity, and associativity are essential for LTP; however, the underlying mechanisms are unclear. Here, based on experimentally observed phenomena, we introduce a computational model of synaptic plasticity in a pyramidal cell to explore the mechanisms responsible for the cooperativity, input specificity, and associativity of LTP. The model is based on molecular processes involved in synaptic plasticity and integrates gene expression involved in the regulation of neuronal activity. In the model, we introduce a local positive feedback loop of protein synthesis at each synapse, which is essential for bimodal response and synapse specificity. Bifurcation analysis of the local positive feedback loop of brain-derived neurotrophic factor (BDNF signaling illustrates the existence of bistability, which is the basis of LTP induction. The local bifurcation diagram provides guidance for the realization of LTP, and the projection of whole system trajectories onto the two-parameter bifurcation diagram confirms the predictions obtained from bifurcation analysis. Moreover, model analysis shows that pre- and postsynaptic components are required to achieve the three properties of LTP. This study provides insights into the mechanisms underlying the cooperativity, input specificity, and associativity of LTP, and the further construction of neural networks for learning and memory.

  4. MYCN-driven regulatory mechanisms controlling LIN28B in neuroblastoma

    Science.gov (United States)

    Beckers, Anneleen; Van Peer, Gert; Carter, Daniel R.; Gartlgruber, Moritz; Herrmann, Carl; Agarwal, Saurabh; Helsmoortel, Hetty H.; Althoff, Kristina; Molenaar, Jan J.; Cheung, Belamy B.; Schulte, Johannes H.; Benoit, Yves; Shohet, Jason M.; Westermann, Frank; Marshall, Glenn M.; Vandesompele, Jo; De Preter, Katleen; Speleman, Frank

    2016-01-01

    LIN28B has been identified as an oncogene in various tumor entities, including neuroblastoma, a childhood cancer that originates from neural crest-derived cells, and is characterized by amplification of the MYCN oncogene. Recently, elevated LIN28B expression levels were shown to contribute to neuroblastoma tumorigenesis via let-7 dependent de-repression of MYCN. However, additional insight in the regulation of LIN28B in neuroblastoma is lacking. Therefore, we have performed a comprehensive analysis of the regulation of LIN28B in neuroblastoma, with a specific focus on the contribution of miRNAs. We show that MYCN regulates LIN28B expression in neuroblastoma tumors via two distinct parallel mechanisms. First, through an unbiased LIN28B-3′UTR reporter screen, we found that miR-26a-5p and miR-26b-5p regulate LIN28B expression. Next, we demonstrated that MYCN indirectly affects the expression of miR-26a-5p, and hence regulates LIN28B, therefor establishing a MYCN-miR-26a-5p-LIN28B regulatory axis. Second, we provide evidence that MYCN regulates LIN28B expression via interaction with the LIN28B promotor, establishing a direct MYCN-LIN28B regulatory axis. We believe that these findings mark LIN28B as an important effector of the MYCN oncogenic phenotype and underlines the importance of MYCN-regulated miRNAs in establishing the MYCN-driven oncogenic process. PMID:26123663

  5. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.

    Science.gov (United States)

    Suzuki, Masashi; Yamazaki, Chiaki; Mitsui, Marie; Kakei, Yusuke; Mitani, Yuka; Nakamura, Ayako; Ishii, Takahiro; Soeno, Kazuo; Shimada, Yukihisa

    2015-08-01

    The IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels. The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined by biosynthesis, conjugation, and polar transport. Unlike conjugation and polar transport, little is known regarding the regulatory mechanism of auxin biosynthesis. We discovered that expression of genes encoding indole-3-pyruvic acid (IPyA) pathway enzymes is regulated by elevated or reduced active auxin levels. Expression levels of TAR2, YUC1, YUC2, YUC4, and YUC6 were downregulated in response to synthetic auxins [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] exogenously applied to Arabidopsis thaliana L. seedlings. Concomitantly, reduced levels of endogenous indole-3-acetic acid (IAA) were observed. Alternatively, expression of these YUCCA genes was upregulated by the auxin biosynthetic inhibitor kynurenine in Arabidopsis seedlings, accompanied by reduced IAA levels. These results indicate that expression of YUCCA genes is regulated by active auxin levels. Similar results were also observed in auxin-overproduction and auxin-deficient mutants. Exogenous application of IPyA to Arabidopsis seedlings preincubated with kynurenine increased endogenous IAA levels, while preincubation with 2,4-D reduced endogenous IAA levels compared to seedlings exposed only to IPyA. These results suggest that in vivo conversion of IPyA to IAA was enhanced under reduced auxin levels, while IPyA to IAA conversion was depressed in the presence of excess auxin. Based on these results, we propose that the IPyA pathway is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels.

  6. Analysis of the Auditory Feedback and Phonation in Normal Voices.

    Science.gov (United States)

    Arbeiter, Mareike; Petermann, Simon; Hoppe, Ulrich; Bohr, Christopher; Doellinger, Michael; Ziethe, Anke

    2018-02-01

    The aim of this study was to investigate the auditory feedback mechanisms and voice quality during phonation in response to a spontaneous pitch change in the auditory feedback. Does the pitch shift reflex (PSR) change voice pitch and voice quality? Quantitative and qualitative voice characteristics were analyzed during the PSR. Twenty-eight healthy subjects underwent transnasal high-speed video endoscopy (HSV) at 8000 fps during sustained phonation [a]. While phonating, the subjects heard their sound pitched up for 700 cents (interval of a fifth), lasting 300 milliseconds in their auditory feedback. The electroencephalography (EEG), acoustic voice signal, electroglottography (EGG), and high-speed-videoendoscopy (HSV) were analyzed to compare feedback mechanisms for the pitched and unpitched condition of the phonation paradigm statistically. Furthermore, quantitative and qualitative voice characteristics were analyzed. The PSR was successfully detected within all signals of the experimental tools (EEG, EGG, acoustic voice signal, HSV). A significant increase of the perturbation measures and an increase of the values of the acoustic parameters during the PSR were observed, especially for the audio signal. The auditory feedback mechanism seems not only to control for voice pitch but also for voice quality aspects.

  7. Cloud CCN feedback

    International Nuclear Information System (INIS)

    Hudson, J.G.

    1992-01-01

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result

  8. Regulatory mechanisms of metabolic flexibility in the dark-eyed junco (Junco hyemalis).

    Science.gov (United States)

    Stager, Maria; Swanson, David L; Cheviron, Zachary A

    2015-03-01

    Small temperate birds reversibly modify their aerobic performance to maintain thermoregulatory homeostasis under seasonally changing environmental conditions and these physiological adjustments may be attributable to changes in the expression of genes in the underlying regulatory networks. Here, we report the results of an experimental procedure designed to gain insight into the fundamental mechanisms of metabolic flexibility in the dark-eyed junco (Junco hyemalis). We combined genomic transcriptional profiles with measures of metabolic enzyme activities and whole-animal thermogenic performance from juncos exposed to four 6-week acclimation treatments that varied in temperature (cold, 3°C; warm, 24°C) and photoperiod (short day, 8 h light:16 h dark; long day, 16 h light:8 h dark). Cold-acclimated birds increased thermogenic capacity compared with warm-acclimated birds, and this enhanced performance was associated with upregulation of genes involved in muscle hypertrophy, angiogenesis, and lipid transport and oxidation, as well as with catabolic enzyme activities. These physiological changes occurred over ecologically relevant timescales, suggesting that birds make regulatory adjustments to interacting, hierarchical pathways in order to seasonally enhance thermogenic capacity. © 2015. Published by The Company of Biologists Ltd.

  9. Cortical electrophysiological network dynamics of feedback learning

    NARCIS (Netherlands)

    Cohen, M.X.; Wilmes, K.A.; van de Vijver, I.

    2011-01-01

    Understanding the neurophysiological mechanisms of learning is important for both fundamental and clinical neuroscience. We present a neurophysiologically inspired framework for understanding cortical mechanisms of feedback-guided learning. This framework is based on dynamic changes in systems-level

  10. The Unexplored Mechanisms and Regulatory Functions of Ribosomal Translocation

    Science.gov (United States)

    Alejo, Jose Luis

    In every cell, protein synthesis is carried out by the ribosome, a complex macromolecular RNA-protein assembly. Decades of structural and kinetic studies have increased our understanding of ribosome initiation, decoding, translocation and termination. Yet, the underlying mechanism of these fundamental processes has yet to be fully delineated. Hence, the molecular basis of regulation remains obscure. Here, single-molecule fluorescence methods are applied to decipher the mechanism and regulatory roles of the multi-step process of directional substrate translocation on the ribosome that accompanies every round of protein synthesis. In Chapter 1, single-molecule fluorescence resonance energy transfer (smFRET) is introduced as a tool for studying bacterial ribosome translocation. Chapter 2 details the experimental methods. In Chapter 3, the elongation factor G(EF-G)-catalyzed movement of substrates through the ribosome is examined from several perspectives or signals reporting on various degrees of freedom of ribosome dynamics. Two ribosomal states interconvert in the presence of EF-G(GDP), displaying novel head domain motions, until relocking takes place. In Chapter 4, in order to test if the mentioned fluctuations leading to relocking are correlated to the engagement of the P-site by the peptidyl-tRNA, the translocation of miscoded tRNAs is studied. Severe defects in the relocking stages of translocation reveal the correlation between this new stage of translocation and P-site tRNA engagement.

  11. Multistructure index in revealing complexity of regulatory mechanisms of human cardiovascular system at rest and orthostatic stress in healthy humans

    Science.gov (United States)

    Makowiec, Danuta; Graff, Beata; Struzik, Zbigniew R.

    2017-02-01

    Biological regulation is sufficiently complex to pose an enduring challenge for characterization of both its equilibrium and transient non-equilibrium dynamics. Two univariate but coupled observables, heart rate and systolic blood pressure, are commonly characterized in the benchmark example of the human cardiovascular regulatory system. Asymmetric distributions of accelerations and decelerations of heart rate, as well as rises and falls in systolic blood pressure, recorded in humans during a head-up tilt test provide insights into the dynamics of cardiovascular response to a rapid, controlled deregulation of the system's homeostasis. The baroreflex feedback loop is assumed to be the fundamental physiological mechanism for ensuring homeostatic blood supply to distant organs at rest and during orthostatic stress, captured in a classical beat-to-beat autoregressive model of baroreflex by de Boer et al. (1987). For model corroboration, a multistructure index statistic is proposed, seamlessly evaluating the size spectrum of magnitudes of neural reflexes such as baroreflex, responsible for maintaining the homeostatic dynamics. The multistructure index exposes a distinctly different dynamics of multiscale asymmetry between results obtained from real-life signals recorded from healthy subjects and those simulated using both the classical and perturbed versions of the model. Nonlinear effects observed suggest the pronounced presence of complex mechanisms resulting from baroreflex regulation when a human is at rest, which is aggravated in the system's response to orthostatic stress. Using our methodology of multistructure index, we therefore show a marked difference between model and real-life scenarios, which we attribute to multiscale asymmetry of non-linear origin in real-life signals, which we are not reproducible by the classical model.

  12. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism.

    Science.gov (United States)

    Dai, Mingqiu; Zhao, Yu; Ma, Qian; Hu, Yongfeng; Hedden, Peter; Zhang, Qifa; Zhou, Dao-Xiu

    2007-05-01

    Gibberellin (GA) biosynthesis is regulated by feedback control providing a mechanism for GA homeostasis in plants. However, regulatory elements involved in the feedback control are not known. In this report, we show that a rice (Oryza sativa) YABBY1 (YAB1) gene had a similar expression pattern as key rice GA biosynthetic genes GA3ox2 and GA20ox2. Overexpression of YAB1 in transgenic rice resulted in a semidwarf phenotype that could be fully rescued by applied GA. Quantification of the endogenous GA content revealed increases of GA(20) and decreases of GA(1) levels in the overexpression plants, in which the transcripts of the biosynthetic gene GA3ox2 were decreased. Cosuppression of YAB1 in transgenic plants induced expression of GA3ox2. The repression of GA3ox2 could be obtained upon treatment by dexamethasone of transgenic plants expressing a YAB1-glucocorticoid receptor fusion. Importantly, we show that YAB1 bound to a GA-responsive element within the GA3ox2 promoter. In addition, the expression of YAB1 was deregulated in GA biosynthesis and signaling mutants and could be either transiently induced by GA or repressed by a GA inhibitor. Finally, either overexpression or cosuppression of YAB1 impaired GA-mediated repression of GA3ox2. These data together suggest that YAB1 is involved in the feedback regulation of GA biosynthesis in rice.

  13. Feedbacks in human-landscape systems

    Science.gov (United States)

    Chin, Anne

    2015-04-01

    As human interactions with Earth systems intensify in the "Anthropocene", understanding the complex relationships among human activity, landscape change, and societal responses to those changes is increasingly important. Interdisciplinary research centered on the theme of "feedbacks" in human-landscape systems serves as a promising focus for unraveling these interactions. Deciphering interacting human-landscape feedbacks extends our traditional approach of considering humans as unidirectional drivers of change. Enormous challenges exist, however, in quantifying impact-feedback loops in landscapes with significant human alterations. This paper illustrates an example of human-landscape interactions following a wildfire in Colorado (USA) that elicited feedback responses. After the 2012 Waldo Canyon Fire, concerns for heightened flood potential and debris flows associated with post-fire hydrologic changes prompted local landowners to construct tall fences at the base of a burned watershed. These actions changed the sediment transport regime and promoted further landscape change and human responses in a positive feedback cycle. The interactions ultimately increase flood and sediment hazards, rather than dampening the effects of fire. A simple agent-based model, capable of integrating social and hydro-geomorphological data, demonstrates how such interacting impacts and feedbacks could be simulated. Challenges for fully capturing human-landscape feedback interactions include the identification of diffuse and subtle feedbacks at a range of scales, the availability of data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, and the varied metrics and data needed to represent both the physical and human systems. By collaborating with social scientists with expertise in the human causes of landscape change, as well as the human responses to those changes, geoscientists could more fully recognize and anticipate the coupled

  14. Task-dependent vestibular feedback responses in reaching.

    Science.gov (United States)

    Keyser, Johannes; Medendorp, W Pieter; Selen, Luc P J

    2017-07-01

    When reaching for an earth-fixed object during self-rotation, the motor system should appropriately integrate vestibular signals and sensory predictions to compensate for the intervening motion and its induced inertial forces. While it is well established that this integration occurs rapidly, it is unknown whether vestibular feedback is specifically processed dependent on the behavioral goal. Here, we studied whether vestibular signals evoke fixed responses with the aim to preserve the hand trajectory in space or are processed more flexibly, correcting trajectories only in task-relevant spatial dimensions. We used galvanic vestibular stimulation to perturb reaching movements toward a narrow or a wide target. Results show that the same vestibular stimulation led to smaller trajectory corrections to the wide than the narrow target. We interpret this reduced compensation as a task-dependent modulation of vestibular feedback responses, tuned to minimally intervene with the task-irrelevant dimension of the reach. These task-dependent vestibular feedback corrections are in accordance with a central prediction of optimal feedback control theory and mirror the sophistication seen in feedback responses to mechanical and visual perturbations of the upper limb. NEW & NOTEWORTHY Correcting limb movements for external perturbations is a hallmark of flexible sensorimotor behavior. While visual and mechanical perturbations are corrected in a task-dependent manner, it is unclear whether a vestibular perturbation, naturally arising when the body moves, is selectively processed in reach control. We show, using galvanic vestibular stimulation, that reach corrections to vestibular perturbations are task dependent, consistent with a prediction of optimal feedback control theory. Copyright © 2017 the American Physiological Society.

  15. Electrophysiological brain indices of risk behavior modification induced by contingent feedback.

    Science.gov (United States)

    Megías, Alberto; Torres, Miguel Angel; Catena, Andrés; Cándido, Antonio; Maldonado, Antonio

    2018-02-01

    The main aim of this research was to study the effects of response feedback on risk behavior and the neural and cognitive mechanisms involved, as a function of the feedback contingency. Sixty drivers were randomly assigned to one of three feedback groups: contingent, non-contingent and no feedback. The participants' task consisted of braking or not when confronted with a set of risky driving situations, while their electroencephalographic activity was continuously recorded. We observed that contingent feedback, as opposed to non-contingent feedback, promoted changes in the response bias towards safer decisions. This behavioral modification implied a higher demand on cognitive control, reflected in a larger amplitude of the N400 component. Moreover, the contingent feedback, being predictable and entailing more informative value, gave rise to smaller SPN and larger FRN scores when compared with non-contingent feedback. Taken together, these findings provide a new and complex insight into the neurophysiological basis of the influence of feedback contingency on the processing of decision-making under risk. We suggest that response feedback, when contingent upon the risky behavior, appears to improve the functionality of the brain mechanisms involved in decision-making and can be a powerful tool for reducing the tendency to choose risky options in risk-prone individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A feedback model of visual attention.

    Science.gov (United States)

    Spratling, M W; Johnson, M H

    2004-03-01

    Feedback connections are a prominent feature of cortical anatomy and are likely to have a significant functional role in neural information processing. We present a neural network model of cortical feedback that successfully simulates neurophysiological data associated with attention. In this domain, our model can be considered a more detailed, and biologically plausible, implementation of the biased competition model of attention. However, our model is more general as it can also explain a variety of other top-down processes in vision, such as figure/ground segmentation and contextual cueing. This model thus suggests that a common mechanism, involving cortical feedback pathways, is responsible for a range of phenomena and provides a unified account of currently disparate areas of research.

  17. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Webb, M.J.; Senior, C.A.; Sexton, D.M.H.; Ingram, W.J.; Williams, K.D.; Ringer, M.A. [Hadley Centre for Climate Prediction and Research, Met Office, Exeter (United Kingdom); McAvaney, B.J.; Colman, R. [Bureau of Meteorology Research Centre (BMRC), Melbourne (Australia); Soden, B.J. [University of Miami, Rosenstiel School for Marine and Atmospheric Science, Miami, FL (United States); Gudgel, R.; Knutson, T. [Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ (United States); Emori, S.; Ogura, T. [National Institute for Environmental Studies (NIES), Tsukuba (Japan); Tsushima, Y. [Japan Agency for Marine-Earth Science and Technology, Frontier Research Center for Global Change (FRCGC), Kanagawa (Japan); Andronova, N. [University of Michigan, Department of Atmospheric, Oceanic and Space Sciences, Ann Arbor, MI (United States); Li, B. [University of Illinois at Urbana-Champaign (UIUC), Department of Atmospheric Sciences, Urbana, IL (United States); Musat, I.; Bony, S. [Institut Pierre Simon Laplace (IPSL), Paris (France); Taylor, K.E. [Program for Climate Model Diagnosis and Intercomparison (PCMDI), Livermore, CA (United States)

    2006-07-15

    Global and local feedback analysis techniques have been applied to two ensembles of mixed layer equilibrium CO{sub 2} doubling climate change experiments, from the CFMIP (Cloud Feedback Model Intercomparison Project) and QUMP (Quantifying Uncertainty in Model Predictions) projects. Neither of these new ensembles shows evidence of a statistically significant change in the ensemble mean or variance in global mean climate sensitivity when compared with the results from the mixed layer models quoted in the Third Assessment Report of the IPCC. Global mean feedback analysis of these two ensembles confirms the large contribution made by inter-model differences in cloud feedbacks to those in climate sensitivity in earlier studies; net cloud feedbacks are responsible for 66% of the inter-model variance in the total feedback in the CFMIP ensemble and 85% in the QUMP ensemble. The ensemble mean global feedback components are all statistically indistinguishable between the two ensembles, except for the clear-sky shortwave feedback which is stronger in the CFMIP ensemble. While ensemble variances of the shortwave cloud feedback and both clear-sky feedback terms are larger in CFMIP, there is considerable overlap in the cloud feedback ranges; QUMP spans 80% or more of the CFMIP ranges in longwave and shortwave cloud feedback. We introduce a local cloud feedback classification system which distinguishes different types of cloud feedbacks on the basis of the relative strengths of their longwave and shortwave components, and interpret these in terms of responses of different cloud types diagnosed by the International Satellite Cloud Climatology Project simulator. In the CFMIP ensemble, areas where low-top cloud changes constitute the largest cloud response are responsible for 59% of the contribution from cloud feedback to the variance in the total feedback. A similar figure is found for the QUMP ensemble. Areas of positive low cloud feedback (associated with reductions in low level

  18. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    Science.gov (United States)

    Leving, Marika T; Vegter, Riemer J K; Hartog, Johanneke; Lamoth, Claudine J C; de Groot, Sonja; van der Woude, Lucas H V

    2015-01-01

    It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear

  19. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    Directory of Open Access Journals (Sweden)

    Marika T Leving

    Full Text Available It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process.17 Participants received visual feedback-based practice (feedback group and 15 participants received regular practice (natural learning group. Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block and optimize it in the prescribed direction (2nd 4-min block. To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability.The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group.These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not

  20. Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae.

    Science.gov (United States)

    Rosinski-Chupin, Isabelle; Sauvage, Elisabeth; Sismeiro, Odile; Villain, Adrien; Da Cunha, Violette; Caliot, Marie-Elise; Dillies, Marie-Agnès; Trieu-Cuot, Patrick; Bouloc, Philippe; Lartigue, Marie-Frédérique; Glaser, Philippe

    2015-05-30

    Streptococcus agalactiae, or Group B Streptococcus, is a leading cause of neonatal infections and an increasing cause of infections in adults with underlying diseases. In an effort to reconstruct the transcriptional networks involved in S. agalactiae physiology and pathogenesis, we performed an extensive and robust characterization of its transcriptome through a combination of differential RNA-sequencing in eight different growth conditions or genetic backgrounds and strand-specific RNA-sequencing. Our study identified 1,210 transcription start sites (TSSs) and 655 transcript ends as well as 39 riboswitches and cis-regulatory regions, 39 cis-antisense non-coding RNAs and 47 small RNAs potentially acting in trans. Among these putative regulatory RNAs, ten were differentially expressed in response to an acid stress and two riboswitches sensed directly or indirectly the pH modification. Strikingly, 15% of the TSSs identified were associated with the incorporation of pseudo-templated nucleotides, showing that reiterative transcription is a pervasive process in S. agalactiae. In particular, 40% of the TSSs upstream genes involved in nucleotide metabolism show reiterative transcription potentially regulating gene expression, as exemplified for pyrG and thyA encoding the CTP synthase and the thymidylate synthase respectively. This comprehensive map of the transcriptome at the single nucleotide resolution led to the discovery of new regulatory mechanisms in S. agalactiae. It also provides the basis for in depth analyses of transcriptional networks in S. agalactiae and of the regulatory role of reiterative transcription following variations of intra-cellular nucleotide pools.

  1. Perspectives on Regulatory T Cell Therapies.

    Science.gov (United States)

    Probst-Kepper, Michael; Kröger, Andrea; Garritsen, Henk S P; Buer, Jan

    2009-01-01

    Adoptive transfer in animal models clearly indicate an essential role of CD4+ CD25+ FOXP3+ regulatory T (T(reg)) cells in prevention and treatment of autoimmune and graft-versus-host disease. Thus, T(reg) cell therapies and development of drugs that specifically enhance T(reg) cell function and development represent promising tools to establish dominant tolerance. So far, lack of specific markers to differentiate human T(reg) cells from activated CD4+ CD25+ effector T cells, which also express FOXP3 at different levels, hampered such an approach. Recent identification of the orphan receptor glycoprotein-A repetitions predominant (GARP or LRRC32) as T(reg) cell-specific key molecule that dominantly controls FOXP3 via a positive feedback loop opens up new perspectives for molecular and cellular therapies. This brief review focuses on the role of GARP as a safeguard of a complex regulatory network of human T(reg) cells and its implications for regulatory T cell therapies in autoimmunity and graft-versus-host disease.

  2. Quantifying the ice-albedo feedback through decoupling

    Science.gov (United States)

    Kravitz, B.; Rasch, P. J.

    2017-12-01

    The ice-albedo feedback involves numerous individual components, whereby warming induces sea ice melt, inducing reduced surface albedo, inducing increased surface shortwave absorption, causing further warming. Here we attempt to quantify the sea ice albedo feedback using an analogue of the "partial radiative perturbation" method, but where the governing mechanisms are directly decoupled in a climate model. As an example, we can isolate the insulating effects of sea ice on surface energy and moisture fluxes by allowing sea ice thickness to change but fixing Arctic surface albedo, or vice versa. Here we present results from such idealized simulations using the Community Earth System Model in which individual components are successively fixed, effectively decoupling the ice-albedo feedback loop. We isolate the different components of this feedback, including temperature change, sea ice extent/thickness, and air-sea exchange of heat and moisture. We explore the interactions between these different components, as well as the strengths of the total feedback in the decoupled feedback loop, to quantify contributions from individual pieces. We also quantify the non-additivity of the effects of the components as a means of investigating the dominant sources of nonlinearity in the ice-albedo feedback.

  3. Regulatory capital requirements and bail in mechanisms

    NARCIS (Netherlands)

    Joosen, B.P.M.; Haentjens, M.; Wessels, B.

    2015-01-01

    With the introduction of the Capital Requirements Regulation (CRR) in the European Union, the qualitative requirements for bank regulatory capital have changed. These changes aim at implementing in Europe the Basel III principles for better bank capital that is able to absorb losses of banks,

  4. Muscle involvement during intermittent contraction patterns with different target force feedback modes

    DEFF Research Database (Denmark)

    Sjøgaard, G; Jørgensen, L V; Ekner, D

    2000-01-01

    and following 30 min of intermittent contractions showed larger fatigue development with proprioceptive feedback than visual feedback. Also rating of perceived exertion increased more during proprioceptive feedback than visual feedback. This may in part be explained by small differences in the mechanics during......: Feedback mode significantly effects the muscle involvement and fatigue during intermittent contractions. RelevanceIntermittent contractions are common in many work places and various feedback modes are being given regarding work requirements. The choice of feedback may significantly affect the muscle load...... and consequently the development muscle fatigue and disorders....

  5. Elucidating the biosynthetic and regulatory mechanisms of flavonoid-derived bioactive components in Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun eHuang

    2015-09-01

    Full Text Available Herba epimedii (Epimedium, a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. In Epimedium, flavonoids have been demonstrated to be the main bioactive components (BCs. However, the molecular biosynthetic and regulatory mechanisms of flavonoid-derived BCs remain obscure. In this study, we isolated twelve structural genes and two putative transcription factors (TFs in the flavonoid pathway. Phytochemical analysis showed that the total content of four representative BCs (epimedin A, B, C and icariin decreased slightly or dramatically in two lines of E. sagittatum during leaf development. Transcriptional analysis revealed that two R2R3-MYB TFs (EsMYBA1 and EsMYBF1, together with a bHLH TF (EsGL3 and WD40 protein (EsTTG1, were supposed to coordinately regulate the anthocyanin and flavonol-derived BCs biosynthesis in leaves. Overexpression of EsFLS (flavonol synthase in tobacco resulted in increased flavonols content and decreased anthocyanins content in flowers. Moreover, EsMYB12 negatively correlated with the accumulation of the four BCs, and might act as a transcriptional repressor in the flavonoid pathway. Therefore, the anthocyanin pathway may coordinate with the flavonol-derived BCs pathway in Epimedium leaves. A better understanding of the flavonoid biosynthetic and regulatory mechanisms in E. sagittatum will facilitate functional characterization, metabolic engineering and molecular breeding studies of Epimedium species.

  6. Role of measurement in feedback-controlled quantum engines

    Science.gov (United States)

    Yi, Juyeon; Kim, Yong Woon

    2018-01-01

    In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.

  7. A reduced feedback proportional fair multiuser scheduling scheme

    KAUST Repository

    Shaqfeh, Mohammad

    2011-12-01

    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed and ordered scheduling mechanism. A slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we propose a novel proportional fair multiuser switched-diversity scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the per-user feedback thresholds. We demonstrate by numerical examples that our reduced feedback proportional fair scheduler operates within 0.3 bits/sec/Hz from the achievable rates by the conventional full feedback proportional fair scheduler in Rayleigh fading conditions. © 2011 IEEE.

  8. Evaluating advanced LMR [liquid metal reactor] reactivity feedbacks using SSC

    International Nuclear Information System (INIS)

    Slovik, G.C.; Van Tuyle, G.J.; Kennett, R.J.; Cheng, H.S.

    1988-01-01

    Analyses of the PRISM and SAFR Liquid Metal Reactors with SSC are discussed from a safety and licensing perspective. The PRISM and SAFR reactors with metal fuel are designed for inherent shutdown responses to loss-of-flow and loss-of-heat-sink events. The demonstration of this technology was performed by EBR-II during experiments in April 1986 by ANL (Planchon, et al.). Response to postulated TOPs (control rod withdrawal) are made acceptable largely by reducing reactivity swings, and therefore minimizing the size of possible ractivity insertions. Analyses by DOE and the contractors GE, RI, and ANL take credit for several reactivity feedback mechanisms during transient calculations. These feedbacks include Doppler, sodium density, and thermal expansion of the grid plates, the load pads, the fuel (axial) and the control rod which are now factored into the BNL SSC analyses. The bowing feedback mechanism is not presently modeled in the SSC due to its complexity and subsequent large uncertainty. The analysis is conservative by not taking credit for this negative feedback mechanism. Comparisons of BNL predictions with DOE contractors are provided

  9. Tunable organic distributed feedback dye laser device excited through Förster mechanism

    Science.gov (United States)

    Tsutsumi, Naoto; Hinode, Taiki

    2017-03-01

    Tunable organic distributed feedback (DFB) dye laser performances are re-investigated and characterized. The slab-type waveguide DFB device consists of air/active layer/glass substrate. Active layer consisted of tris(8-quinolinolato)aluminum (Alq3), 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye, and polystyrene (PS) matrix. Effective energy transfer from Alq3 to DCM through Förster mechanism enhances the laser emission. Slope efficiency in the range of 4.9 and 10% is observed at pump energy region higher than 0.10-0.15 mJ cm-2 (lower threshold), which is due to the amplified spontaneous emission (ASE) and lasing. Typical slope efficiency for lasing in the range of 2.0 and 3.0% is observed at pump energy region higher than 0.25-0.30 mJ cm-2 (higher threshold). The tuning wavelength for the laser emission is ranged from 620 to 645 nm depending on the ASE region.

  10. Integration of Bacterial Small RNAs in Regulatory Networks.

    Science.gov (United States)

    Nitzan, Mor; Rehani, Rotem; Margalit, Hanah

    2017-05-22

    Small RNAs (sRNAs) are central regulators of gene expression in bacteria, controlling target genes posttranscriptionally by base pairing with their mRNAs. sRNAs are involved in many cellular processes and have unique regulatory characteristics. In this review, we discuss the properties of regulation by sRNAs and how it differs from and combines with transcriptional regulation. We describe the global characteristics of the sRNA-target networks in bacteria using graph-theoretic approaches and review the local integration of sRNAs in mixed regulatory circuits, including feed-forward loops and their combinations, feedback loops, and circuits made of an sRNA and another regulator, both derived from the same transcript. Finally, we discuss the competition effects in posttranscriptional regulatory networks that may arise over shared targets, shared regulators, and shared resources and how they may lead to signal propagation across the network.

  11. Interaction between Allee effects caused by organism-environment feedback and by other ecological mechanisms.

    Directory of Open Access Journals (Sweden)

    Lijuan Qin

    Full Text Available Understanding Allee effect has crucial importance for ecological conservation and management because it is strongly related to population extinction. Due to various ecological mechanisms accounting for Allee effect, it is necessary to study the influence of multiple Allee effects on the dynamics and persistence of population. We here focus on organism-environment feedback which can incur strong, weak, and fatal Allee effect (AE-by-OEF, and further examine their interaction with the Allee effects caused by other ecological mechanisms (AE-by-OM. The results show that multiple Allee effects largely increase the extinction risk of population either due to the enlargement of Allee threshold or the change of inherent characteristic of Allee effect, and such an increase will be enhanced dramatically with increasing the strength of individual Allee effects. Our simulations explicitly considering spatial structure also demonstrate that local interaction among habitat patches can greatly mitigate such superimposed Allee effects as well as individual Allee effect. This implies that spatially structurized habitat could play an important role in ecological conservation and management.

  12. Interaction between Allee effects caused by organism-environment feedback and by other ecological mechanisms.

    Science.gov (United States)

    Qin, Lijuan; Zhang, Feng; Wang, Wanxiong; Song, Weixin

    2017-01-01

    Understanding Allee effect has crucial importance for ecological conservation and management because it is strongly related to population extinction. Due to various ecological mechanisms accounting for Allee effect, it is necessary to study the influence of multiple Allee effects on the dynamics and persistence of population. We here focus on organism-environment feedback which can incur strong, weak, and fatal Allee effect (AE-by-OEF), and further examine their interaction with the Allee effects caused by other ecological mechanisms (AE-by-OM). The results show that multiple Allee effects largely increase the extinction risk of population either due to the enlargement of Allee threshold or the change of inherent characteristic of Allee effect, and such an increase will be enhanced dramatically with increasing the strength of individual Allee effects. Our simulations explicitly considering spatial structure also demonstrate that local interaction among habitat patches can greatly mitigate such superimposed Allee effects as well as individual Allee effect. This implies that spatially structurized habitat could play an important role in ecological conservation and management.

  13. Dynamical behaviors of Rb-E2F pathway including negative feedback loops involving miR449.

    Directory of Open Access Journals (Sweden)

    Fang Yan

    Full Text Available MiRNAs, which are a family of small non-coding RNAs, regulate a broad array of physiological and developmental processes. However, their regulatory roles have remained largely mysterious. E2F is a positive regulator of cell cycle progression and also a potent inducer of apoptosis. Positive feedback loops in the regulation of Rb-E2F pathway are predicted and shown experimentally. Recently, it has been discovered that E2F induce a cluster of miRNAs called miR449. In turn, E2F is inhibited by miR449 through regulating different transcripts, thus forming negative feedback loops in the interaction network. Here, based on the integration of experimental evidence and quantitative data, we studied Rb-E2F pathway coupling the positive feedback loops and negative feedback loops mediated by miR449. Therefore, a mathematical model is constructed based in part on the model proposed in Yao-Lee et al. (2008 and nonlinear dynamical behaviors including the stability and bifurcations of the model are discussed. A comparison is given to reveal the implication of the fundamental differences of Rb-E2F pathway between regulation and deregulation of miR449. Coherent with the experiments it predicts that miR449 plays a critical role in regulating the cell cycle progression and provides a twofold safety mechanism to avoid excessive E2F-induced proliferation by cell cycle arrest and apoptosis. Moreover, numerical simulation and bifurcation analysis shows that the mechanisms of the negative regulation of miR449 to three different transcripts are quite distinctive which needs to be verified experimentally. This study may help us to analyze the whole cell cycle process mediated by other miRNAs more easily. A better knowledge of the dynamical behaviors of miRNAs mediated networks is also of interest for bio-engineering and artificial control.

  14. SAFCM: A Security-Aware Feedback Control Mechanism for Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Ma, Yue; Jiang, Wei; Sang, Nan

    2012-01-01

    Distributed Real-time Embedded (DRE) systems are facing great challenges in networked, unpredictable and especially unsecured environments. In such systems, there is a strong need to enforce security on distributed computing nodes in order to guard against potential threats, while satisfying......-time systems, a multi-input multi-output feedback loop is designed and a model predictive controller is deployed based on an equation model that describes the dynamic behavior of the DRE systems. This control loop uses security level scaling to globally control the CPU utilization and security performance...... for the whole system. We propose a "security level" metric based on an evolution of cryptography algorithms used in embedded systems. Experimental results demonstrate that SAFCM not only has the excellent adaptivity compared to open-loop mechanism, but also has a better overall performance than PID control...

  15. Inflammation triggers emergency granulopoiesis through a density-dependent feedback mechanism.

    Directory of Open Access Journals (Sweden)

    Derek W Cain

    Full Text Available Normally, neutrophil pools are maintained by homeostatic mechanisms that require the transcription factor C/EBPα. Inflammation, however, induces neutrophilia through a distinct pathway of "emergency" granulopoiesis that is dependent on C/EBPβ. Here, we show in mice that alum triggers emergency granulopoiesis through the IL-1RI-dependent induction of G-CSF. G-CSF/G-CSF-R neutralization impairs proliferative responses of hematopoietic stem and progenitor cells (HSPC to alum, but also abrogates the acute mobilization of BM neutrophils, raising the possibility that HSPC responses to inflammation are an indirect result of the exhaustion of BM neutrophil stores. The induction of neutropenia, via depletion with Gr-1 mAb or myeloid-specific ablation of Mcl-1, elicits G-CSF via an IL-1RI-independent pathway, stimulating granulopoietic responses indistinguishable from those induced by adjuvant. Notably, C/EBPβ, thought to be necessary for enhanced generative capacity of BM, is dispensable for increased proliferation of HSPC to alum or neutropenia, but plays a role in terminal neutrophil differentiation during granulopoietic recovery. We conclude that alum elicits a transient increase in G-CSF production via IL-1RI for the mobilization of BM neutrophils, but density-dependent feedback sustains G-CSF for accelerated granulopoiesis.

  16. A model for improving microbial biofuel production using a synthetic feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  17. Research of three-dimensional transient reactivity feedback in fast reactor

    International Nuclear Information System (INIS)

    Xu Li; Shi Gong; Ma Dayuan; Yu Hong

    2013-01-01

    To solve the three-dimensional time-spatial kinetics feedback problems in fast reactor, a mathematical model of the direct reactivity feedback was proposed. Based on the NAS code for fast reactor and the reactivity feedback mechanism, a feedback model which combined the direct reactivity feedback and feedback reflected by the cross section variation was provided for the transient calculation. Furthermore, the fast reactor group collapsing system was added to the code, thus the real time group collapsing calculation could be realized. The isothermal elevated temperature test of CEFR was simulated by using the code. By comparing the calculation result with the test result of the temperature reactivity coefficient, the validity of the model and the code is verified. (authors)

  18. Tyrosine hydroxylase regulatory domain as indicator of enzyme sensitivity to irradiation

    International Nuclear Information System (INIS)

    Mustafayeva, N.N.; Alieva, I.N.; Aliev, Ds.I.

    2002-01-01

    Full text: At the present time contra dictionary and variously kind opinions concern to effect of different level of irradiation on the structure and functional activity of the tyrosine hydroxylase (TH), the key a rate-limiting enzyme in the biosynthesis of catecholamines are discussed in this study. To date, the effect of the irradiation on the both catalytic and N-terminal regulatory domains of TH localized in the different parts of the brain has been established. Th is responsible for dopamine, noradrenaline and adrenaline catecholamines neuro mediators biosynthesis, so a number of pathological changes in an organism has been induced by the structural reorganization different parts of the TH domains under pathological effect of environment. The available conformational states of the human TH type 1 (hTH1) regulatory domain, the activity of which is regulated by the feedback inhibition of the catecholamine products including dopamine has been established by the method of molecular mechanics. It is shown that N-terminal sequence Met30-Ser40 of hTH1 located between the two a-helices (residues 16-29 and residues 41-59) has a number of low-energy conformational states. The most available structures consists of b-turn type II on the pentapeptide fragment of hTH1. This fragment distortion under pathological factors effect, i.e. irradiation may lead to global reorganization in enzyme structure as well as at the enzyme catalytic and regulatory functions

  19. Structural learning in feedforward and feedback control.

    Science.gov (United States)

    Yousif, Nada; Diedrichsen, Jörn

    2012-11-01

    For smooth and efficient motor control, the brain needs to make fast corrections during the movement to resist possible perturbations. It also needs to adapt subsequent movements to improve future performance. It is important that both feedback corrections and feedforward adaptation need to be made based on noisy and often ambiguous sensory data. Therefore, the initial response of the motor system, both for online corrections and adaptive responses, is guided by prior assumptions about the likely structure of perturbations. In the context of correcting and adapting movements perturbed by a force field, we asked whether these priors are hard wired or whether they can be modified through repeated exposure to differently shaped force fields. We found that both feedback corrections to unexpected perturbations and feedforward adaptation to a new force field changed, such that they were appropriate to counteract the type of force field that participants had experienced previously. We then investigated whether these changes were driven by a common mechanism or by two separate mechanisms. Participants experienced force fields that were either temporally consistent, causing sustained adaptation, or temporally inconsistent, causing little overall adaptation. We found that the consistent force fields modified both feedback and feedforward responses. In contrast, the inconsistent force field modified the temporal shape of feedback corrections but not of the feedforward adaptive response. These results indicate that responses to force perturbations can be modified in a structural manner and that these modifications are at least partly dissociable for feedback and feedforward control.

  20. Perceiving haptic feedback in virtual reality simulators.

    Science.gov (United States)

    Våpenstad, Cecilie; Hofstad, Erlend Fagertun; Langø, Thomas; Mårvik, Ronald; Chmarra, Magdalena Karolina

    2013-07-01

    To improve patient safety, training of psychomotor laparoscopic skills is often done on virtual reality (VR) simulators outside the operating room. Haptic sensations have been found to influence psychomotor performance in laparoscopy. The emulation of haptic feedback is thus an important aspect of VR simulation. Some VR simulators try to simulate these sensations with handles equipped with haptic feedback. We conducted a survey on how laparoscopic surgeons perceive handles with and without haptic feedback. Surgeons with different levels of experience in laparoscopy were asked to test two handles: Xitact IHP with haptic feedback and Xitact ITP without haptic feedback (Mentice AB, Gothenburg, Sweden), connected to the LapSim (Surgical Science AB, Sweden) VR simulator. They performed two tasks on the simulator before answering 12 questions regarding the two handles. The surgeons were not informed about the differences in the handles. A total of 85 % of the 20 surgeons who participated in the survey claimed that it is important that handles with haptic feedback feel realistic. Ninety percent of the surgeons preferred the handles without haptic feedback. The friction in the handles with haptic feedback was perceived to be as in reality (5 %) or too high (95 %). Regarding the handles without haptic feedback, the friction was perceived as in reality (45 %), too low (50 %), or too high (5 %). A total of 85 % of the surgeons thought that the handle with haptic feedback attempts to simulate the resistance offered by tissue to deformation. Ten percent thought that the handle succeeds in doing so. The surveyed surgeons believe that haptic feedback is an important feature on VR simulators; however, they preferred the handles without haptic feedback because they perceived the handles with haptic feedback to add additional friction, making them unrealistic and not mechanically transparent.

  1. Optimal integral force feedback for active vibration control

    Science.gov (United States)

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  2. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  3. Analysis of deterministic cyclic gene regulatory network models with delays

    CERN Document Server

    Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian

    2015-01-01

    This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.

  4. Object discrimination using electrotactile feedback.

    Science.gov (United States)

    Arakeri, Tapas J; Hasse, Brady A; Fuglevand, Andrew J

    2018-04-09

    A variety of bioengineering systems are being developed to restore tactile sensations in individuals who have lost somatosensory feedback because of spinal cord injury, stroke, or amputation. These systems typically detect tactile force with sensors placed on an insensate hand (or prosthetic hand in the case of amputees) and deliver touch information by electrically or mechanically stimulating sensate skin above the site of injury. Successful object manipulation, however, also requires proprioceptive feedback representing the configuration and movements of the hand and digits. Therefore, we developed a simple system that simultaneously provides information about tactile grip force and hand aperture using current amplitude-modulated electrotactile feedback. We evaluated the utility of this system by testing the ability of eight healthy human subjects to distinguish among 27 objects of varying sizes, weights, and compliances based entirely on electrotactile feedback. The feedback was modulated by grip-force and hand-aperture sensors placed on the hand of an experimenter (not visible to the subject) grasping and lifting the test objects. We were also interested to determine the degree to which subjects could learn to use such feedback when tested over five consecutive sessions. The average percentage correct identifications on day 1 (28.5%  ±  8.2% correct) was well above chance (3.7%) and increased significantly with training to 49.2%  ±  10.6% on day 5. Furthermore, this training transferred reasonably well to a set of novel objects. These results suggest that simple, non-invasive methods can provide useful multisensory feedback that might prove beneficial in improving the control over prosthetic limbs.

  5. Feedback linearizing control of a MIMO power system

    Science.gov (United States)

    Ilyes, Laszlo

    Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.

  6. Regulatory control of nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this book is to support IAEA training courses and workshops in the field of regulatory control of nuclear power plants as well as to support the regulatory bodies of Member States in their own training activities. The target group is the professional staff members of nuclear safety regulatory bodies supervising nuclear power plants and having duties and responsibilities in the following regulatory fields: regulatory framework; regulatory organization; regulatory guidance; licensing and licensing documents; assessment of safety; and regulatory inspection and enforcement. Important topics such as regulatory competence and quality of regulatory work as well as emergency preparedness and public communication are also covered. The book also presents the key issues of nuclear safety such as 'defence-in-depth' and safety culture and explains how these should be taken into account in regulatory work, e.g. during safety assessment and regulatory inspection. The book also reflects how nuclear safety has been developed during the years on the basis of operating experience feedback and results of safety research by giving topical examples. The examples cover development of operating procedures and accident management to cope with complicated incidents and severe accidents to stress the importance of regulatory role in nuclear safety research. The main target group is new staff members of regulatory bodies, but the book also offers good examples for more experienced inspectors to be used as comparison and discussion basis in internal workshops organized by the regulatory bodies for refreshing and continuing training. The book was originally compiled on the basis of presentations provided during the two regulatory control training courses in 1997 and 1998. The textbook was reviewed at the beginning of the years 2000 and 2002 by IAEA staff members and consistency with the latest revisions of safety standards have been ensured. The textbook was completed in the

  7. LncRNA FIRRE/NF-kB feedback loop contributes to OGD/R injury of cerebral microglial cells.

    Science.gov (United States)

    Zang, Yunhua; Zhou, Xiyan; Wang, Qun; Li, Xia; Huang, Hailiang

    2018-04-28

    Stroke is one of the leading causes for serious long-term neurological disability. LncRNAs have been investigated to be dysregulated in ischemic stroke. However, the underlying mechanisms of some specific lncRNAs have not been clearly clarified. To determine lncRNA-mediated regulatory mechanism in ischemic stroke, we constructed OGD/R injury model of cerebral microglial cells. Microarray analysis was carried out and analyzed that lncRNA functional intergenic repeating RNA element (FIRRE) was associated with OGD/R injury. Based on the molecular biotechnology, we demonstrated that FIRRE could activate NF-kB signal pathway. Meanwhile, the activated NF-kB promoted FIRRE expression in OGD/R-treated cerebral microglial cells. Therefore, FIRRE and NF-kB formed a positive feedback loop to promote the transcription of NLRP3 inflammasome, thus contributed to the OGD/R injury of cerebral microglial cells. All findings in this study may help to explore novel and specific therapeutic target for ischemic stroke. Copyright © 2018. Published by Elsevier Inc.

  8. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms.

    Science.gov (United States)

    Marei, Hadir; Malliri, Angeliki

    2017-07-03

    Abnormal Rac1 signaling is linked to a number of debilitating human diseases, including cancer, cardiovascular diseases and neurodegenerative disorders. As such, Rac1 represents an attractive therapeutic target, yet the search for effective Rac1 inhibitors is still underway. Given the adverse effects associated with Rac1 signaling perturbation, cells have evolved several mechanisms to ensure the tight regulation of Rac1 signaling. Thus, characterizing these mechanisms can provide invaluable information regarding major cellular events that lead to aberrant Rac1 signaling. Importantly, this information can be utilized to further facilitate the development of effective pharmacological modulators that can restore normal Rac1 signaling. In this review, we focus on the pathological role of Rac1 signaling, highlighting the benefits and potential drawbacks of targeting Rac1 in a clinical setting. Additionally, we provide an overview of available compounds that target key Rac1 regulatory mechanisms and discuss future therapeutic avenues arising from our understanding of these mechanisms.

  9. Medical student perspective: working toward specific and actionable clinical clerkship feedback.

    Science.gov (United States)

    Moss, Haley A; Derman, Peter B; Clement, R Carter

    2012-01-01

    Feedback on the wards is an important component of medical student education. Medical schools have incorporated formalized feedback mechanisms such as clinical encounter cards and standardized patient encounters into clinical curricula. However, the system could be further improved as medical students frequently feel uncomfortable requesting feedback, and are often dissatisfied with the quality of the feedback they receive. This article explores the shortcomings of the existing medical student feedback system and examines the relevant literature in an effort to shed light on areas in which the system can be enhanced. The discussion focuses on resident-provided feedback but is broadly applicable to delivering feedback in general. A review of the organizational psychology and business administration literature on fostering effective feedback was performed. These insights were then applied to the setting of medical education. Providing effective feedback requires training and forethought. Feedback itself should be specific and actionable. Utilizing these strategies will help medical students and educators get the most out of existing feedback systems.

  10. Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability.

    Science.gov (United States)

    Zhang, Genyi; Hasek, Like Y; Lee, Byung-Hoo; Hamaker, Bruce R

    2015-04-01

    Glycemic carbohydrates in foods are an important macronutrient providing the biological fuel of glucose for a variety of physiological processes. A classification of glycemic carbohydrates into rapidly digestible carbohydrate (RDC) and slowly digestible carbohydrate (SDC) has been used to specify their nutritional quality related to glucose homeostasis that is essential to normal functioning of the brain and critical to life. Although there have been many studies and reviews on slowly digestible starch (SDS) and SDC, the mechanisms of their slow digestion and absorption were mostly investigated from the material side without considering the physiological processes of their in vivo digestion, absorption, and most importantly interactions with other food components and the gastrointestinal tract. In this article, the physiological processes modulating the bioavailability of carbohydrates, specifically the rate and extent of their digestion and absorption as well as the related locations, in a whole food context, will be discussed by focusing on the activities of the gastrointestinal tract including glycolytic enzymes and glucose release, sugar sensing, gut hormones, and neurohormonal negative feedback mechanisms. It is hoped that a deep understanding of these physiological processes will facilitate the development of innovative dietary approaches to achieve desired carbohydrate or glucose bioavailability for improved health.

  11. Dynamical control of chaos by slave-master feedback

    International Nuclear Information System (INIS)

    Behnia, S.; Akhshani, A.

    2009-01-01

    Techniques for stabilizing unstable state in nonlinear dynamical systems using small perturbations fall into three general categories: feedback, non-feedback schemes, and a combination of feedback and non-feedback. However, the general problem of finding conditions for creation or suppression of chaos still remains open. We describe a method for dynamical control of chaos. This method is based on a definition of the hierarchy of solvable chaotic maps with dynamical parameter as a control parameter. In order to study the new mechanism of control of chaotic process, Kolmogorov-Sinai entropy of the chaotic map with dynamical parameter based on discussion the properties of invariant measure have been calculated and confirmed by calculation of Lyapunov exponents. The introduced chaotic maps can be used as dynamical control.

  12. Learning feedback and feedforward control in a mirror-reversed visual environment.

    Science.gov (United States)

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn

    2015-10-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.

  13. An overview of neural function and feedback control in human communication.

    Science.gov (United States)

    Hood, L J

    1998-01-01

    The speech and hearing mechanisms depend on accurate sensory information and intact feedback mechanisms to facilitate communication. This article provides a brief overview of some components of the nervous system important for human communication and some electrophysiological methods used to measure cortical function in humans. An overview of automatic control and feedback mechanisms in general and as they pertain to the speech motor system and control of the hearing periphery is also presented, along with a discussion of how the speech and auditory systems interact.

  14. Emotion: The Self-regulatory Sense.

    Science.gov (United States)

    Peil, Katherine T

    2014-03-01

    While emotion is a central component of human health and well-being, traditional approaches to understanding its biological function have been wanting. A dynamic systems model, however, broadly redefines and recasts emotion as a primary sensory system-perhaps the first sensory system to have emerged, serving the ancient autopoietic function of "self-regulation." Drawing upon molecular biology and revelations from the field of epigenetics, the model suggests that human emotional perceptions provide an ongoing stream of "self-relevant" sensory information concerning optimally adaptive states between the organism and its immediate environment, along with coupled behavioral corrections that honor a universal self-regulatory logic, one still encoded within cellular signaling and immune functions. Exemplified by the fundamental molecular circuitry of sensorimotor control in the E coli bacterium, the model suggests that the hedonic (affective) categories emerge directly from positive and negative feedback processes, their good/bad binary appraisals relating to dual self-regulatory behavioral regimes-evolutionary purposes, through which organisms actively participate in natural selection, and through which humans can interpret optimal or deficit states of balanced being and becoming. The self-regulatory sensory paradigm transcends anthropomorphism, unites divergent theoretical perspectives and isolated bodies of literature, while challenging time-honored assumptions. While suppressive regulatory strategies abound, it suggests that emotions are better understood as regulating us, providing a service crucial to all semantic language, learning systems, evaluative decision-making, and fundamental to optimal physical, mental, and social health.

  15. Emotion: The Self-regulatory Sense

    Science.gov (United States)

    2014-01-01

    While emotion is a central component of human health and well-being, traditional approaches to understanding its biological function have been wanting. A dynamic systems model, however, broadly redefines and recasts emotion as a primary sensory system—perhaps the first sensory system to have emerged, serving the ancient autopoietic function of “self-regulation.” Drawing upon molecular biology and revelations from the field of epigenetics, the model suggests that human emotional perceptions provide an ongoing stream of “self-relevant” sensory information concerning optimally adaptive states between the organism and its immediate environment, along with coupled behavioral corrections that honor a universal self-regulatory logic, one still encoded within cellular signaling and immune functions. Exemplified by the fundamental molecular circuitry of sensorimotor control in the E coli bacterium, the model suggests that the hedonic (affective) categories emerge directly from positive and negative feedback processes, their good/bad binary appraisals relating to dual self-regulatory behavioral regimes—evolutionary purposes, through which organisms actively participate in natural selection, and through which humans can interpret optimal or deficit states of balanced being and becoming. The self-regulatory sensory paradigm transcends anthropomorphism, unites divergent theoretical perspectives and isolated bodies of literature, while challenging time-honored assumptions. While suppressive regulatory strategies abound, it suggests that emotions are better understood as regulating us, providing a service crucial to all semantic language, learning systems, evaluative decision-making, and fundamental to optimal physical, mental, and social health. PMID:24808986

  16. Structure and mechanisms of Escherichia coli aspartate transcarbamoylase.

    Science.gov (United States)

    Lipscomb, William N; Kantrowitz, Evan R

    2012-03-20

    Enzymes catalyze a particular reaction in cells, but only a few control the rate of this reaction and the metabolic pathway that follows. One specific mechanism for such enzymatic control of a metabolic pathway involves molecular feedback, whereby a metabolite further down the pathway acts at a unique site on the control enzyme to alter its activity allosterically. This regulation may be positive or negative (or both), depending upon the particular system. Another method of enzymatic control involves the cooperative binding of the substrate, which allows a large change in enzyme activity to emanate from only a small change in substrate concentration. Allosteric regulation and homotropic cooperativity are often known to involve significant conformational changes in the structure of the protein. Escherichia coli aspartate transcarbamoylase (ATCase) is the textbook example of an enzyme that regulates a metabolic pathway, namely, pyrimidine nucleotide biosynthesis, by feedback control and by the cooperative binding of the substrate, L-aspartate. The catalytic and regulatory mechanisms of this enzyme have been extensively studied. A series of X-ray crystal structures of the enzyme in the presence and absence of substrates, products, and analogues have provided details, at the molecular level, of the conformational changes that the enzyme undergoes as it shifts between its low-activity, low-affinity form (T state) to its high-activity, high-affinity form (R state). These structural data provide insights into not only how this enzyme catalyzes the reaction between l-aspartate and carbamoyl phosphate to form N-carbamoyl-L-aspartate and inorganic phosphate, but also how the allosteric effectors modulate this activity. In this Account, we summarize studies on the structure of the enzyme and describe how these structural data provide insights into the catalytic and regulatory mechanisms of the enzyme. The ATCase-catalyzed reaction is regulated by nucleotide binding some 60

  17. Thermal-chemical-mechanical feedback during fluid-rock interactions: Implications for chemical transport and scales of equilibria in the crust

    International Nuclear Information System (INIS)

    Dutrow, Barbara

    2008-01-01

    Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and

  18. Investigation of a delayed feedback controller of MEMS resonators

    KAUST Repository

    Masri, Karim M.; Younis, Mohammad I.; Shao, Shuai

    2013-01-01

    Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller

  19. Critical protein GAPDH and its regulatory mechanisms in cancer cells

    International Nuclear Information System (INIS)

    Zhang, Jin-Ying; Zhang, Fan; Hong, Chao-Qun; Giuliano, Armando E.; Cui, Xiao-Jiang; Zhou, Guang-Ji; Zhang, Guo-Jun; Cui, Yu-Kun

    2015-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described

  20. The Impact of Observed Vegetation Changes on Land–Atmosphere Feedbacks During Drought

    KAUST Repository

    Meng, X. H.; Evans, J. P.; McCabe, Matthew

    2014-01-01

    Simulated feedbacks between vegetation fraction, soil moisture, and drought over southeast Australia were also investigated. Results indicate that vegetation fraction changes lag precipitation reductions by 6–8 months in nonarid regions. With the onset of the 2002 drought, a potential fast physical mechanism was found to play a positive role in the soil moisture–precipitation feedback, while a slow biological mechanism provides a negative feedback in the soil moisture–precipitation interaction on a longer time scale. That is, in the short term, a reduction in soil moisture leads to a reduction in the convective potential and, hence, precipitation, further reducing the soil moisture. If low levels of soil moisture persist long enough, reductions in vegetation cover and vigor occur, reducing the evapotranspiration and thus reducing the soil moisture decreases and dampening the fast physical feedback. Importantly, it was observed that these feedbacks are both space and time dependent.

  1. Finding Positive Feedback Loops in Environmental Models: A Mathematical Investigation

    Science.gov (United States)

    Sheikholeslami, R.; Razavi, S.

    2016-12-01

    Dynamics of most earth and environmental systems are generally governed by interactions between several hydrological (e.g., soil moisture and precipitation), geological (e.g., and erosion), geochemical (e.g., nutrient loading), and atmospheric (e.g., temperature) processes which operate on a range of spatio-temporal scales. These interactions create numerous feedback mechanisms with complex behaviours, and their understanding and representation can vary depending on the scale in space and/or time at which the system is analyzed. One of the most crucial characteristics of such complex systems is the existence of positive feedback loops. The presence of positive feedbacks may increase complexity, accelerate change, or trigger multiple stable states in the underlying dynamical system. Furthermore, because of the inherent non-linearity, it is often very difficult to obtain a general idea of their complex dynamics. Feedback loops in environmental systems have been well recognized and qualitatively discussed. With a quantitative/mathematical view, in this presentation, we address the question of how the positive feedback loops can be identified/implemented in environmental models. We investigate the nature of different feedback mechanisms and dynamics of simple example case studies that underlie fundamental processes such as vegetation, precipitation and soil moisture. To do this, we apply the concept of "interaction graph" from mathematics which is built from the Jacobian matrix of the dynamical system. The Jacobian matrix contains information on how variations of one state variable depends on variations of other variables, and thus can be used to understand the dynamical possibilities of feedback mechanisms in the underlying system. Moreover, this study highlights that there are some situations where the existence of positive feedback loops can cause multiple stable states, and thereby regime shifts in environmental systems. Systems with multiple stable states are

  2. Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks

    Science.gov (United States)

    Somerville, Richard C. J.; Iacobellis, Sam

    1987-01-01

    The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.

  3. MiR-192-Mediated Positive Feedback Loop Controls the Robustness of Stress-Induced p53 Oscillations in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Richard Moore

    2015-12-01

    Full Text Available The p53 tumor suppressor protein plays a critical role in cellular stress and cancer prevention. A number of post-transcriptional regulators, termed microRNAs, are closely connected with the p53-mediated cellular networks. While the molecular interactions among p53 and microRNAs have emerged, a systems-level understanding of the regulatory mechanism and the role of microRNAs-forming feedback loops with the p53 core remains elusive. Here we have identified from literature that there exist three classes of microRNA-mediated feedback loops revolving around p53, all with the nature of positive feedback coincidentally. To explore the relationship between the cellular performance of p53 with the microRNA feedback pathways, we developed a mathematical model of the core p53-MDM2 module coupled with three microRNA-mediated positive feedback loops involving miR-192, miR-34a, and miR-29a. Simulations and bifurcation analysis in relationship to extrinsic noise reproduce the oscillatory behavior of p53 under DNA damage in single cells, and notably show that specific microRNA abrogation can disrupt the wild-type cellular phenotype when the ubiquitous cell-to-cell variability is taken into account. To assess these in silico results we conducted microRNA-perturbation experiments in MCF7 breast cancer cells. Time-lapse microscopy of cell-population behavior in response to DNA double-strand breaks, together with image classification of single-cell phenotypes across a population, confirmed that the cellular p53 oscillations are compromised after miR-192 perturbations, matching well with the model predictions. Our study via modeling in combination with quantitative experiments provides new evidence on the role of microRNA-mediated positive feedback loops in conferring robustness to the system performance of stress-induced response of p53.

  4. Identification of neural structures involved in stuttering using vibrotactile feedback.

    Science.gov (United States)

    Cheadle, Oliver; Sorger, Clarissa; Howell, Peter

    Feedback delivered over auditory and vibratory afferent pathways has different effects on the fluency of people who stutter (PWS). These features were exploited to investigate the neural structures involved in stuttering. The speech signal vibrated locations on the body (vibrotactile feedback, VTF). Eleven PWS read passages under VTF and control (no-VTF) conditions. All combinations of vibration amplitude, synchronous or delayed VTF and vibrator position (hand, sternum or forehead) were presented. Control conditions were performed at the beginning, middle and end of test sessions. Stuttering rate, but not speaking rate, differed between the control and VTF conditions. Notably, speaking rate did not change between when VTF was delayed versus when it was synchronous in contrast with what happens with auditory feedback. This showed that cerebellar mechanisms, which are affected when auditory feedback is delayed, were not implicated in the fluency-enhancing effects of VTF, suggesting that there is a second fluency-enhancing mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  6. Lyapunov-based Stability of Feedback Interconnections of Negative Imaginary Systems

    KAUST Repository

    Ghallab, Ahmed G.

    2017-10-19

    Feedback control systems using sensors and actuators such as piezoelectric sensors and actuators, micro-electro-mechanical systems (MEMS) sensors and opto-mechanical sensors, are allowing new advances in designing such high precision technologies. The negative imaginary control systems framework allows for robust control design for such high precision systems in the face of uncertainties due to unmodelled dynamics. The stability of the feedback interconnection of negative imaginary systems has been well established in the literature. However, the proofs of stability feedback interconnection which are used in some previous papers have a shortcoming due to a matrix inevitability issue. In this paper, we provide a new and correct Lyapunov-based proof of one such result and show that the result is still true.

  7. Lyapunov-based Stability of Feedback Interconnections of Negative Imaginary Systems

    KAUST Repository

    Ghallab, Ahmed G.; Mabrok, Mohamed; Petersen, Ian R.

    2017-01-01

    Feedback control systems using sensors and actuators such as piezoelectric sensors and actuators, micro-electro-mechanical systems (MEMS) sensors and opto-mechanical sensors, are allowing new advances in designing such high precision technologies. The negative imaginary control systems framework allows for robust control design for such high precision systems in the face of uncertainties due to unmodelled dynamics. The stability of the feedback interconnection of negative imaginary systems has been well established in the literature. However, the proofs of stability feedback interconnection which are used in some previous papers have a shortcoming due to a matrix inevitability issue. In this paper, we provide a new and correct Lyapunov-based proof of one such result and show that the result is still true.

  8. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  9. A computational model clarifies the roles of positive and negative feedback loops in the Drosophila circadian clock

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junwei, E-mail: wangjunweilj@yahoo.com.c [Cisco School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006 (China); Zhou Tianshou [School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-06-14

    Previous studies showed that a single negative feedback structure should be sufficient for robust circadian oscillations. It is thus pertinent to ask why current cellular clock models almost universally have interlocked negative feedback loop (NFL) and positive feedback loop (PFL). Here, we propose a molecular model that reflects the essential features of the Drosophila circadian clock to clarify the different roles of negative and positive feedback loops. In agreement with experimental observations, the model can simulate circadian oscillations in constant darkness, entrainment by light-dark cycles, as well as phenotypes of per{sup 01} and clk{sup Jrk} mutants. Moreover, sustained oscillations persist when the PFL is removed, implying the crucial role of NFL for rhythm generation. Through parameter sensitivity analysis, it is revealed that incorporation of PFL increases the robustness of the system to regulatory processes in PFL itself. Such reduced models can aid understanding of the design principles of circadian clocks in Drosophila and other organisms with complex transcriptional feedback structures.

  10. A computational model clarifies the roles of positive and negative feedback loops in the Drosophila circadian clock

    International Nuclear Information System (INIS)

    Wang Junwei; Zhou Tianshou

    2010-01-01

    Previous studies showed that a single negative feedback structure should be sufficient for robust circadian oscillations. It is thus pertinent to ask why current cellular clock models almost universally have interlocked negative feedback loop (NFL) and positive feedback loop (PFL). Here, we propose a molecular model that reflects the essential features of the Drosophila circadian clock to clarify the different roles of negative and positive feedback loops. In agreement with experimental observations, the model can simulate circadian oscillations in constant darkness, entrainment by light-dark cycles, as well as phenotypes of per 01 and clk Jrk mutants. Moreover, sustained oscillations persist when the PFL is removed, implying the crucial role of NFL for rhythm generation. Through parameter sensitivity analysis, it is revealed that incorporation of PFL increases the robustness of the system to regulatory processes in PFL itself. Such reduced models can aid understanding of the design principles of circadian clocks in Drosophila and other organisms with complex transcriptional feedback structures.

  11. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53.

    Directory of Open Access Journals (Sweden)

    Kristina Kirschner

    2015-03-01

    Full Text Available The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage and chronically activated (in senescent or pro-apoptotic conditions p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.

  12. Take it of leave it : Mechanisms underlying bacterial bistable regulatory networks

    NARCIS (Netherlands)

    Siebring, Jeroen; Sorg, Robin; Herber, Martijn; Kuipers, Oscar; Filloux, Alain A.M.

    2012-01-01

    Bistable switches occur in regulatory networks that can exist in two distinct stable states. Such networks allow distinct switching of individual cells. In bacteria these switches coexist with regulatory networks that respond gradually to environmental input. Bistable switches play key roles in high

  13. 360 Degree Feedback: An Integrative Framework for Learning and Assessment

    Science.gov (United States)

    Tee, Ding Ding; Ahmed, Pervaiz K.

    2014-01-01

    Feedback is widely acknowledged as the crux of a learning process. Multiplicities of research studies have been advanced to address the common "cri de coeur" of teachers and students for a constructive and effective feedback mechanism in the current higher educational settings. Nevertheless, existing pedagogical approaches in feedback…

  14. On the evolution of the regulatory guidance for seismic qualification of electric and active mechanical equipment for nuclear power plants

    International Nuclear Information System (INIS)

    Ng, Ching Hang; Chen, Pei-Ying

    2009-01-01

    All electric and active mechanical equipment important to safety for nuclear power plants must be seismically qualified by testing, analysis, or combined analysis and testing. The general requirements for seismic qualification of electric and active mechanical equipment in nuclear power plants are delineated in Appendix S, 'Earthquake Engineering Criteria for Nuclear Power Plants,' to Title 10, Part 50, 'Domestic Licensing of Production and Utilization Facilities,' of the Code of Federal Regulations (10 CFR Part 50), item 52.47(20) of 10 CFR 52.47, 'Contents of Applications; Technical Information,' and Appendix A, 'Seismic and Geologic Siting Criteria for Nuclear Power Plants,' to 10 CFR Part 100, 'Reactor Site Criteria.' The United States Nuclear Regulatory Commission (NRC) issued Revision 2 of Regulatory Guide (RG) 1.100, 'Seismic Qualification of Electric and Mechanical for Nuclear Power Plants' in 1988, which endorsed, with restrictions, exceptions, and clarifications, Institute of Electrical and Electronics Engineers (IEEE) Standard 344-1987 'IEEE Recommended Practice for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations,' for use in seismic qualification of both electric and mechanical equipment. In 2008, the staff at the NRC drafted Revision 3 of RG 1.100 to endorse, with restrictions, exceptions, and clarifications, the IEEE Std 344-2004 and the American Society of Mechanical Engineers (ASME) QME-1-2007 'Qualification of Active Mechanical Equipment Used in Nuclear Power Plants.' IEEE Std 344-2004 was an update of Std 344-1987 and ASME QME-1-2007 was an update of QME-1-2002. The major changes in IEEE Std 344-2004 and ASME QME-1-2007 include the update and expansion of criteria and procedures describing the use of experience data as a method for seismic qualification of Class 1E electric equipment (including I and C components) as well as active mechanical equipment. In this paper, the staff will compare the draft Revision 3 to

  15. Audio Feedback to Physiotherapy Students for Viva Voce: How Effective Is "The Living Voice"?

    Science.gov (United States)

    Munro, Wendy; Hollingworth, Linda

    2014-01-01

    Assessment and feedback remains one of the categories that students are least satisfied with within the United Kingdom National Student Survey. The Student Charter promotes the use of various formats of feedback to enhance student learning. This study evaluates the use of audio MP3 as an alternative feedback mechanism to written feedback for…

  16. CGILS : Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models

    NARCIS (Netherlands)

    Zhang, M.; Bretherton, C.S.; Blossey, P.N.; Austin, P.H.; Bacmeister, J.T.; Bony, S.; Brient, F.; Cheedela, S.K.; Cheng, A.; Del Genio, A.D.; De Roode, S.R.; Endo, S.; Franklin, C.N.; Golaz, J.C.; Hannay, C.; Heus, T.; Isotta, F.A.; Dufresne, J.L.; Kang, I.S.; Kawai, H.; Köhler, M.; Larson, V.E.; Liu, Y.; Lock, A.P.; Lohmann, U.; Khairoutdinov, M.F.; Molod, A.M.; Neggers, R.A.J.; Rasch, P.; Sandu, I.; Senkbeil, R.; Siebesma, A.P.; Siegenthaler-Le Drian, C.; Stevens, B.; Suarez, M.J.; Xu, K.M.; Von Salzen, K.; Webb, M.J.; Wolf, A.; Zhao, M.

    2013-01-01

    CGILS—the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)—investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over

  17. Fast Flux Test Facility (FFTF) feedback reactivity components

    International Nuclear Information System (INIS)

    Nguyen, D.H.

    1988-04-01

    The static tests conducted during Cycle 8A (1986) of the FFTF have allowed, for the first time, the experimental determination of each of the feedback reactivities caused by the following mechanisms: fuel axial expansion, control rod repositioning, core radial expansion, and subassembly bowing. A semiempirical equation was obtained to describe each of these feedback components that depended only on the relevant reactor temperature (bowing was presented in a tabular form). The Doppler and sodium density reactivities were calculated using existing mechanistic methods. Although they could also be fitted with closed-form equations depending only on temperatures, these equations are not needed in transient analyses using whole core safety computer codes, which use mechanistic methods. The static feedback reactivity model was extended to obtain a dynamic model via the concept of ''time constants.'' Besides being used for transient analyses in the FFTF, these feedback equations constitute a database for the validation and/or calibration of mechanistic feedback reactivity models. 2 refs., 6 tabs

  18. Delayed feedback control of fractional-order chaotic systems

    International Nuclear Information System (INIS)

    Gjurchinovski, A; Urumov, V; Sandev, T

    2010-01-01

    We study the possibility to stabilize unstable steady states and unstable periodic orbits in chaotic fractional-order dynamical systems by the time-delayed feedback method. By performing a linear stability analysis, we establish the parameter ranges for successful stabilization of unstable equilibria in the plane parameterized by the feedback gain and the time delay. An insight into the control mechanism is gained by analyzing the characteristic equation of the controlled system, showing that the control scheme fails to control unstable equilibria having an odd number of positive real eigenvalues. We demonstrate that the method can also stabilize unstable periodic orbits for a suitable choice of the feedback gain, providing that the time delay is chosen to coincide with the period of the target orbit. In addition, it is shown numerically that delayed feedback control with a sinusoidally modulated time delay significantly enlarges the stability region of steady states in comparison to the classical time-delayed feedback scheme with a constant delay.

  19. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Soker, Noam, E-mail: soker@physics.technion.ac.il [Department of Physics, Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-04-10

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E {sub NS-spin}/ E {sub exp}) ≈ E {sub exp}/10{sup 52} erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  20. The Interplay between Feedback and Buffering in Cellular Homeostasis.

    Science.gov (United States)

    Hancock, Edward J; Ang, Jordan; Papachristodoulou, Antonis; Stan, Guy-Bart

    2017-11-22

    Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Regulatory framework and development perspectives of the mechanism of public participation in the management of Russia’s forests

    Directory of Open Access Journals (Sweden)

    Nikolay Mikhaylovich Shmatkov

    2014-03-01

    Full Text Available The article dwells on the current state of the regulatory framework of the Russian Federation and the mechanism of public participation in forest management. The examples of addressing the problems of public participation in forest management in individual regions are disclosed. The article deals with the issues concerning the provision of in-interests of the local population through the voluntary forest certification system under the FSC scheme. Recommendations on improving the mechanism of public participation in solving the forest management issues are suggested

  2. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    Science.gov (United States)

    Namkoong, Eun; Shin, Yong-Hwan; Bae, Jun-Seok; Choi, Seulki; Kim, Minkyoung; Kim, Nahyun; Hwang, Sung-Min; Park, Kyungpyo

    2015-01-01

    Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  3. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    Directory of Open Access Journals (Sweden)

    Eun Namkoong

    Full Text Available Sodium bicarbonate cotransporters (NBCs are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1 and electrogenic NBC (NBCe1, with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs and HSG cells. Intracellular pH (pHi was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  4. Indirect adaptive output feedback control of a biorobotic AUV using pectoral-like mechanical fins

    International Nuclear Information System (INIS)

    Naik, Mugdha S; Singh, Sahjendra N; Mittal, Rajat

    2009-01-01

    This paper treats the question of servoregulation of autonomous underwater vehicles (AUVs) in the yaw plane using pectoral-like mechanical fins. The fins attached to the vehicle have oscillatory swaying and yawing motion. The bias angle of the angular motion of the fin is used for the purpose of control. Of course, the design approach considered here is applicable to AUVs for other choices of oscillation patterns of the fins, which produce periodic forces and moments. It is assumed that the vehicle parameters, hydrodynamic coefficients, as well the fin forces and moments are unknown. For the trajectory control of the yaw angle, a sampled-data indirect adaptive control system using output (yaw angle) feedback is derived. The control system has a modular structure, which includes a parameter identifier and a stabilizer. For the control law derivation, an internal model of the exosignals (reference signal (constant or ramp) and constant disturbance) is included. Unlike the direct adaptive control scheme, the derived control law is applicable to minimum as well as nonminimum phase biorobotic AUVs (BAUVs). This is important, because for most of the fin locations on the vehicle, the model is a nonminimum phase. In the closed-loop system, the yaw angle trajectory tracking error converges to zero and the remaining state variables remain bounded. Simulation results are presented which show that the derived modular control system accomplishes precise set point yaw angle control and turning maneuvers in spite of the uncertainties in the system parameters using only yaw angle feedback

  5. How Quasar Feedback May Shape the Co-evolutionary Paths

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Wako, E-mail: wako.ishibashi@physik.uzh.ch [Physik-Institut, University of Zurich, Zürich (Switzerland)

    2017-10-17

    Observations point toward some form of “co-evolutionary sequence,” from dust-enshrouded starbursts to luminous unobscured quasars. Active galactic nucleus (AGN) feedback is generally invoked to expel the obscuring dusty gas in a blow-out event, eventually revealing the hidden central quasar. However, the physical mechanism driving AGN feedback, either due to winds or radiation, remains uncertain and is still a source of much debate. We consider quasar feedback, based on radiation pressure on dust, which directly acts on the obscuring dusty gas. We show that AGN radiative feedback is capable of efficiently removing the obscuring cocoon, and driving powerful outflows on galactic scales, consistent with recent observations. I will discuss how such quasar feedback may provide a natural physical interpretation of the observed evolutionary path, and the physical implications in the broader context of black hole-host galaxy co-evolution.

  6. Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times

    International Nuclear Information System (INIS)

    Tiwari, Abhinav; Igoshin, Oleg A

    2012-01-01

    Biochemical regulatory networks governing diverse cellular processes such as stress-response, differentiation and cell cycle often contain coupled feedback loops. We aim at understanding how features of feedback architecture, such as the number of loops, the sign of the loops and the type of their coupling, affect network dynamical performance. Specifically, we investigate how bistability range, maximum open-loop gain and switching times of a network with transcriptional positive feedback are affected by additive or multiplicative coupling with another positive- or negative-feedback loop. We show that a network's bistability range is positively correlated with its maximum open-loop gain and that both quantities depend on the sign of the feedback loops and the type of feedback coupling. Moreover, we find that the addition of positive feedback could decrease the bistability range if we control the basal level in the signal-response curves of the two systems. Furthermore, the addition of negative feedback has the capacity to increase the bistability range if its dissociation constant is much lower than that of the positive feedback. We also find that the addition of a positive feedback to a bistable network increases the robustness of its bistability range, whereas the addition of a negative feedback decreases it. Finally, we show that the switching time for a transition from a high to a low steady state increases with the effective fold change in gene regulation. In summary, we show that the effect of coupled feedback loops on the bistability range and switching times depends on the underlying mechanistic details. (paper)

  7. Feedback on Feedback: Eliciting Learners' Responses to Written Feedback through Student-Generated Screencasts

    Science.gov (United States)

    Fernández-Toro, María; Furnborough, Concha

    2014-01-01

    Despite the potential benefits of assignment feedback, learners often fail to use it effectively. This study examines the ways in which adult distance learners engage with written feedback on one of their assignments. Participants were 10 undergraduates studying Spanish at the Open University, UK. Their responses to feedback were elicited by means…

  8. Density-dependence as a size-independent regulatory mechanism.

    Science.gov (United States)

    de Vladar, Harold P

    2006-01-21

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class of regulatory functions is the theta-logistic, which generalizes the logistic equation. Using this model as a motivation, this paper introduces a simple dynamical reformulation that generalizes many growth functions. The reformulation consists of two equations, one for population size, and one for the growth rate. Furthermore, the model shows that although population is density-dependent, the dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually, the growth equation is uncoupled from the population size equation, and the model has only two parameters, a Malthusian parameter rho and a competition coefficient theta. Distinct sign combinations of these parameters reproduce not only the family of theta-logistics, but also the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown that, except for two critical points, there is a general size-scaling relation that includes those appearing in the most important allometric theories, including the recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest are discussed such as the growth of animal population, extinctions, cell growth and allometry, and the effect of environment over a population.

  9. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review

    Science.gov (United States)

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    2017-11-01

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using

  10. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review

    Science.gov (United States)

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using

  11. Regulatory T Cells: Potential Target in Anticancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Chi-Mou Juang

    2007-09-01

    Full Text Available The concept of regulatory T cells was first described in the early 1970s, and regulatory T cells were called suppressive T cells at that time. Studies that followed have demonstrated that these suppressive T cells negatively regulated tumor immunity and contributed to tumor growth in mice. Despite the importance of these studies, there was extensive skepticism about the existence of these cells, and the concept of suppressive T cells left the center stage of immunologic research for decades. Interleukin-2 receptor α-chain, CD25, was first demonstrated in 1995 to serve as a phenotypic marker for CD4+ regulatory cells. Henceforth, research of regulatory T cells boomed. Regulatory T cells are involved in the pathogenesis of cancer, autoimmune disease, transplantation immunology, and immune tolerance in pregnancy. Recent evidence has demonstrated that regulatory T cellmediated immunosuppression is one of the crucial tumor immune evasion mechanisms and the main obstacle of successful cancer immunotherapy. The mechanism and the potential clinical application of regulatory T cells in cancer immunotherapy are discussed.

  12. The Effect of Visual Feedback on Writing Size in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Adriaan R. E. Potgieser

    2015-01-01

    Full Text Available Parkinson’s disease (PD leads to impairment in multiple cognitive domains. Micrographia is a relatively early PD sign of visuomotor dysfunction, characterized by a global reduction in writing size and a decrement in size during writing. Here we aimed to investigate the effect of withdrawal of visual feedback on writing size in patients with PD. Twenty-five patients with non-tremor-dominant PD without cognitive dysfunction and twenty-five age-matched controls had to write a standard sentence with and without visual feedback. We assessed the effect of withdrawal of visual feedback by measuring vertical word size (i, horizontal length of the sentence (ii, and the summed horizontal word length without interspacing (iii, comparing patients with controls. In both patients and controls, writing was significantly larger without visual feedback. This enlargement did not significantly differ between the groups. Smaller handwriting significantly correlated with increased disease severity. Contrary to previous observations that withdrawal of visual feedback caused increased writing size in specifically PD, we did not find differences between patients and controls. Both groups wrote larger without visual feedback, which adds insight in general neuronal mechanisms underlying the balance between feed-forward and feedback in visuomotor control, mechanisms that also hold for grasping movements.

  13. About Politeness, Face, and Feedback: Exploring Resident and Faculty Perceptions of How Institutional Feedback Culture Influences Feedback Practices.

    Science.gov (United States)

    Ramani, Subha; Könings, Karen D; Mann, Karen V; Pisarski, Emily E; van der Vleuten, Cees P M

    2018-03-06

    To explore resident and faculty perspectives on what constitutes feedback culture, their perceptions of how institutional feedback culture (including politeness concepts) might influence the quality and impact of feedback, feedback seeking, receptivity, and readiness to engage in bidirectional feedback. Using a constructivist grounded theory approach, five focus group discussions with internal medicine residents, three focus group discussions with general medicine faculty, and eight individual interviews with subspecialist faculty were conducted at Brigham and Women's Hospital between April and December 2016. Discussions and interviews were audiotaped and transcribed verbatim; concurrent data collection and analysis were performed using the constant comparative approach. Analysis was considered through the lens of politeness theory and organizational culture. Twenty-nine residents and twenty-two general medicine faculty participated in focus group discussions, and eight subspecialty faculty participated in interviews. The institutional feedback culture was described by participants as: (1) a culture of politeness, in which language potentially damaging to residents' self-esteem was discouraged, and (2) a culture of excellence, in which the institution's outstanding reputation and pedigree of trainees inhibited constructive feedback. Three key themes situated within this broader cultural context were discovered: normalizing constructive feedback to promote a culture of growth, overcoming the mental block to feedback seeking, and hierarchical culture impeding bidirectional feedback. An institutional feedback culture of excellence and politeness may impede honest, meaningful feedback and may impact feedback seeking, receptivity, and bidirectional feedback exchanges. It is essential to understand the institutional feedback culture before it can be successfully changed.

  14. Feedback mechanism for smart nozzles and nebulizers

    Science.gov (United States)

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  15. Cultivating Engagement and Enjoyment in Exergames Using Feedback, Challenge, and Rewards.

    Science.gov (United States)

    Lyons, Elizabeth J

    2015-02-01

    This article reviews theoretical and empirical evidence related to three mechanisms for encouraging enjoyment during exergame play: Feedback, challenge, and rewards. A literature search and narrative review were conducted. Feedback is found in nearly all exergames, and richer, more in-depth feedback is associated with increased activity. Challenge is a vital component of any videogame, and exergames include physical as well as cognitive challenges. Flow states have traditionally been conceptualized as occurring when an optimal match between player skills and game challenge occurs. However, failure and retrial are necessary for feelings of overall satisfaction and fun, despite not necessarily being ideally fun or satisfying themselves. Rewards are a more complicated issue, with significant theoretical and empirical evidence suggesting positive and negative effects of reward systems. How rewards are integrated into the mechanics and storyline of the game likely impacts how they are perceived and, thus, their effectiveness. Finally, integration of these mechanisms into exergames requires specific attention to both cognitive and physical implementations. Movements that are not themselves enjoyable or engaging may lead to cheating and lower energy expenditure. Feedback, challenge, and rewards are promising mechanisms by which exergames could become more enjoyable. How these concepts are operationalized can affect physical and psychological reactions to exergames. Attention to these concepts in future exergame development and implementation would benefit theory, research, and practice.

  16. Integrative Genetic and Epigenetic Analysis Uncovers Regulatory Mechanisms of Autoimmune Disease.

    Science.gov (United States)

    Shooshtari, Parisa; Huang, Hailiang; Cotsapas, Chris

    2017-07-06

    Genome-wide association studies in autoimmune and inflammatory diseases (AID) have uncovered hundreds of loci mediating risk. These associations are preferentially located in non-coding DNA regions and in particular in tissue-specific DNase I hypersensitivity sites (DHSs). While these analyses clearly demonstrate the overall enrichment of disease risk alleles on gene regulatory regions, they are not designed to identify individual regulatory regions mediating risk or the genes under their control, and thus uncover the specific molecular events driving disease risk. To do so we have departed from standard practice by identifying regulatory regions which replicate across samples and connect them to the genes they control through robust re-analysis of public data. We find significant evidence of regulatory potential in 78/301 (26%) risk loci across nine autoimmune and inflammatory diseases, and we find that individual genes are targeted by these effects in 53/78 (68%) of these. Thus, we are able to generate testable mechanistic hypotheses of the molecular changes that drive disease risk. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder.

    Science.gov (United States)

    Wittenborn, A K; Rahmandad, H; Rick, J; Hosseinichimeh, N

    2016-02-01

    Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention.

  18. Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root?

    Science.gov (United States)

    De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T S

    2014-10-01

    In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a 'Uniform Longitudinal Strain Rule' (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of

  19. Feedback of mechanical effectiveness induces adaptations in motor modules during cycling

    Science.gov (United States)

    De Marchis, Cristiano; Schmid, Maurizio; Bibbo, Daniele; Castronovo, Anna Margherita; D'Alessio, Tommaso; Conforto, Silvia

    2013-01-01

    Recent studies have reported evidence that the motor system may rely on a modular organization, even if this behavior has yet to be confirmed during motor adaptation. The aim of the present study is to investigate the modular motor control mechanisms underlying the execution of pedaling by untrained subjects in different biomechanical conditions. We use the muscle synergies framework to characterize the muscle coordination of 11 subjects pedaling under two different conditions. The first one consists of a pedaling exercise with a strategy freely chosen by the subjects (Preferred Pedaling Technique, PPT), while the second condition constrains the gesture by means of a real time visual feedback of mechanical effectiveness (Effective Pedaling Technique, EPT). Pedal forces, recorded using a pair of instrumented pedals, were used to calculate the Index of Effectiveness (IE). EMG signals were recorded from eight muscles of the dominant leg and Non-negative Matrix Factorization (NMF) was applied for the extraction of muscle synergies. All the synergy vectors, extracted cycle by cycle for each subject, were pooled across subjects and conditions and underwent a 2-dimensional Sammon's non-linear mapping. Seven representative clusters were identified on the Sammon's projection, and the corresponding eight-dimensional synergy vectors were used to reconstruct the repertoire of muscle activation for all subjects and all pedaling conditions (VAF > 0.8 for each individual muscle pattern). Only 5 out of the 7 identified modules were used by the subjects during the PPT pedaling condition, while 2 additional modules were found specific for the pedaling condition EPT. The temporal recruitment of three identified modules was highly correlated with IE. The structure of the identified modules was found similar to that extracted in other studies of human walking, partly confirming the existence of shared and task specific muscle synergies, and providing further evidence on the modularity

  20. Nuclear Regulatory Infrastructure in the Philippines

    International Nuclear Information System (INIS)

    Leonin, Teofilo V. Jr.

    2015-01-01

    Regulating the use of radioactive materials in the Philippines involves the adherence to legislation, regulations, standards and regulatory guides. It is based on a detailed review and assessment of the radiation safety program of owners and users of these materials and associated equipment against safety requirements and on additional verification of the operating practices and procedures. Republic Acts 5207 and 2067, both as amended, are implemented through the regulations which are titled Code of PNRI Regulations or CPRs are developed and issued together with supporting regulatory guides, Bulletins and other documents detailing the safety requirements. These issuance adhere to internationally accepted requirements on radiation protection, and nuclear safety and security, as well as safeguards. Design documents and technical Specifications of important radioactive materials, equipment and components are required to be submitted and reviewed by the PNRI before the issuance of an authorization in the form of a license Verification of adherence to regulations and safety requirements are periodically checked through the implementation of an inspection and enforcement program. The ISO certified regulatory management system of PNRI is documented in a QMS manual that provides guidance on all work processes. It involves systematic planning and evaluation of activities, multiple means of getting feedback on the work processes, and continuous efforts to improve its effectiveness. Efforts are implemented in order to strengthen the transparency openness, independence, technical competence and effectiveness of the regulatory body. (author)

  1. Croatian energy regulatory council - independent Croatian regulatory body

    International Nuclear Information System (INIS)

    Klepo, M.

    2002-01-01

    By means of approving five energy laws, the Republic of Croatia established an appropriate legislative framework for energy sector regulation. A series of sub-law acts is presently being elaborated as well as some additional documents in order to bring about transparent and non-discriminatory provisions for the establishment of electric energy, gas, oil/oil derivatives and thermal energy markets, i.e. for the introduction and management of market activities and public services. A considerable share of these activities relates to the definition of transparent regulatory mechanisms that would guarantee the implementation of regulation rules based on the law, and be carried out by the independent regulatory body - Croatian Energy Regulatory Council. The Council's rights and obligations include firm executive functions, which present obligations to every energy entity. A dissatisfied party may set in motion a settlement of dispute, if it maintains that the decisions are not based on the law or reveal a flaw in the procedure. Therefore, it is the Council's priority to always make careful and law-abiding decisions. This paper gives insight into the regulatory framework elements based on the laws including the Council's organisational structure and non-profit entities that will prepare act proposals for the Council and perform other professional activities. (author)

  2. Interplay of cis- and trans-regulatory mechanisms in the spliceosomal RNA helicase Brr2.

    Science.gov (United States)

    Absmeier, Eva; Becke, Christian; Wollenhaupt, Jan; Santos, Karine F; Wahl, Markus C

    2017-01-02

    RNA helicase Brr2 is implicated in multiple phases of pre-mRNA splicing and thus requires tight regulation. Brr2 can be auto-inhibited via a large N-terminal region folding back onto its helicase core and auto-activated by a catalytically inactive C-terminal helicase cassette. Furthermore, it can be regulated in trans by the Jab1 domain of the Prp8 protein, which can inhibit Brr2 by intermittently inserting a C-terminal tail in the enzyme's RNA-binding tunnel or activate the helicase after removal of this tail. Presently it is unclear, whether these regulatory mechanisms functionally interact and to which extent they are evolutionarily conserved. Here, we report crystal structures of Saccharomyces cerevisiae and Chaetomium thermophilum Brr2-Jab1 complexes, demonstrating that Jab1-based inhibition of Brr2 presumably takes effect in all eukaryotes but is implemented via organism-specific molecular contacts. Moreover, the structures show that Brr2 auto-inhibition can act in concert with Jab1-mediated inhibition, and suggest that the N-terminal region influences how the Jab1 C-terminal tail interacts at the RNA-binding tunnel. Systematic RNA binding and unwinding studies revealed that the N-terminal region and the Jab1 C-terminal tail specifically interfere with accommodation of double-stranded and single-stranded regions of an RNA substrate, respectively, mutually reinforcing each other. Additionally, such analyses show that regulation based on the N-terminal region requires the presence of the inactive C-terminal helicase cassette. Together, our results outline an intricate system of regulatory mechanisms, which control Brr2 activities during snRNP assembly and splicing.

  3. Research on the strong optical feedback effects based on spectral analysis method

    Science.gov (United States)

    Zeng, Zhaoli; Qu, XueMin; Li, Weina; Zhang, Min; Wang, Hao; Li, Tuo

    2018-01-01

    The strong optical feedback has the advantage of generating high resolution fringes. However, these feedback fringes usually seem like the noise signal when the feedback level is high. This defect severely limits its practical application. In this paper, the generation mechanism of noise fringes with strong optical feedback is studied by using spectral analysis method. The spectral analysis results show that, in most cases, the noise-like fringes are observed owing to the strong multiple high-order feedback. However, at certain feedback cavity condition, there may be only one high-order feedback beam goes back to the laser cavity, the noise-like fringes can change to the cosine-like fringes. And the resolution of this fringe is dozens times than that of the weak optical feedback. This research provides a method to obtain high resolution cosine-like fringes rather than noise signal in the strong optical feedback, which makes it possible to be used in nanoscale displacement measurements.

  4. Feedback and Incentives

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire

    2009-01-01

    This paper experimentally investigates the impact of different pay schemes and relative performance feedback policies on employee effort. We explore three feedback rules: no feedback on relative performance, feedback given halfway through the production period, and continuously updated feedback. ...... behind, and front runners do not slack off. But in both pay schemes relative performance feedback reduces the quality of the low performers' work; we refer to this as a "negative quality peer effect"....

  5. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis.

    Science.gov (United States)

    Slayden, Richard A; Dawson, Clinton C; Cummings, Jason E

    2018-06-01

    There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.

  6. Deliberations on nuclear safety regulatory system in a changing industrial environment

    International Nuclear Information System (INIS)

    Kim, H.J.

    2001-01-01

    Nuclear safety concern, which may accompany such external environmental factors as privatization and restructuring of the electric power industry, is emerging as an international issue. In order to cope with the concern about nuclear safety, it is important to feedback valuable experiences of advanced countries that restructured their electric power industries earlier and further to reflect the current safety issues, which are raised internationally, fully into the nuclear safety regulatory system. This paper is to review the safety issues that might take place in the process of increasing competition in the nuclear power industry, and further to present a basic direction and effective measures for ensuring nuclear safety in response thereto from the viewpoint of safety regulation. It includes a political direction for a regulatory body's efforts to rationalize and enforce efficiently its regulation. It proposes to ensure that regulatory specialty and regulatory cost are stably secured. Also, this paper proposes maintaining a sound nuclear safety regulatory system to monitor thoroughly the safety management activities of the industry, which might be neglected as a result of focusing on reduction of the cost for producing electric power. (author)

  7. Feedbacks stablizing wetland geometry on a pattened landscape

    Science.gov (United States)

    Dong, X.; Heffernan, J. B.; Murray, A. B.

    2017-12-01

    Karst morphology is highly varied across different climatic and geologic regions of the world. Big Cypress National Preserve in SW Florida, features regularly distributed wetland depressions, located on exposed limestone bedrock. In this study, we explored the development of wetland depressions over the past 10kyrs of landscape formation. Specifically, we are interested in (1) whether the wetland depressions on the landscape have reached equilibrium size, and (2) if so, what are feedback mechanisms that contributed to stabilizing these depressions. We hypothesized three stabilizing feedback mechanisms. HYP1: increased size of depressions reduces landscape hydrological connectivity, which resulted in reduced landscape capacity to export dissolution products, hence lower weathering rate. HYP2: expansion of depression area increases tree biomass within the depression, which increased average evapotranspiration (ET) within the dome. The greater difference of ET rate between depression and upland leads to a lower water table in the depression. As a result, more subsurface water, carrying dissolved calcium, flows from catchment to depression. With lower export capacity and more calcium moving into the depression zones, rate of calcite precipitation increases, which lowers net weathering rate. HYP3: increasingly thicker sediment cover in the wetland depression over time decreases chemical transport capacity. This lowers both transport of CO2 from shallower soil to bedrock and transport of dissolution products from bedrock to surface. Both of these processes reduce bedrock-weathering rate. We built a 3-D numerical simulation model that partitioned the relative importance of different mechanisms. Preliminary results show that (1) there is an equilibrium size for wetland depressions for both radius and depth dimension; (2) current depressions are formed by coalescence of several nearby small depressions during development; (3) the soil cover feedback (HYP3) is the major

  8. Investigation of control system of traction electric drive with feedbacks on load

    Science.gov (United States)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-03-01

    In the article, by the example of a walking excavator, the results of a study of a control system of traction electric drive with a rigid and flexible feedback on the load are mentioned. Based on the analysis of known works, the calculation scheme has been chosen; the equations of motion of the electromechanical system have been obtained, taking into account the elasticity of the rope and feedbacks on the load in the elastic element. A simulation model of this system has been developed and mathematical modeling of the transient processes to evaluate the influence of feedback on the dynamic characteristics of the mechanism and its efficiency of work was carried out. It is shown that the use of rigid and flexible feedbacks makes it possible to reduce dynamic loads in the traction mechanism and to limit the elastic oscillation of the executive mechanism in transient operating modes in comparison with the standard control system; however, there is some decrease in productivity. It has been also established that the sign-variable of the loading of the electric drive, connected with the opening of the backlashes in the gearbox due to the action of feedbacks on the load in the elastic element, under certain conditions, can lead to undesirable phenomena in the operation of the drive and a decrease in the reliability of its operation.

  9. Mechanistic Basis for Plant Responses to Drought Stress : Regulatory Mechanism of Abscisic Acid Signaling

    Science.gov (United States)

    Miyakawa, Takuya; Tanokura, Masaru

    The phytohormone abscisic acid (ABA) plays a key role in the rapid adaptation of plants to environmental stresses such as drought and high salinity. Accumulated ABA in plant cells promotes stomatal closure in guard cells and transcription of stress-tolerant genes. Our understanding of ABA responses dramatically improved by the discovery of both PYR/PYL/RCAR as a soluble ABA receptor and inhibitory complex of a protein phospatase PP2C and a protein kinase SnRK2. Moreover, several structural analyses of PYR/PYL/RCAR revealed the mechanistic basis for the regulatory mechanism of ABA signaling, which provides a rational framework for the design of alternative agonists in future.

  10. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    International Nuclear Information System (INIS)

    Soker, Noam

    2017-01-01

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E _N_S_-_s_p_i_n/ E _e_x_p) ≈ E _e_x_p/10"5"2 erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  11. Engaging students as partners in developing online learning and feedback activities for first-year fluid mechanics

    Science.gov (United States)

    Brown, Alan

    2018-01-01

    Much learning takes place outside of formal class settings, yet students starting in higher education are not always well equipped with independent learning skills, appropriate self-knowledge or the required levels of intrinsic motivation This project used students as partners to develop resources that could be used by first-year undergraduates in fluid mechanics, using activities and receiving feedback through the virtual learning environment (VLE), in order to build these three attributes of independent learners. While there were significant benefits to the students who developed the resources, the target students saw much lower benefits as a result of poorer than expected engagement. The challenge this research presents is to develop activities that maximise engagement in large classes, as well as develop appropriate independent learning skills.

  12. Social closeness and feedback modulate susceptibility to the framing effect

    Science.gov (United States)

    Sip, Kamila E.; Smith, David V.; Porcelli, Anthony J.; Kar, Kohitij; Delgado, Mauricio R.

    2014-01-01

    Although, we often seek social feedback from others to help us make decisions, little is known about how social feedback affects decisions under risk, particularly from a close peer. We conducted two experiments using an established framing task to probe how decision making is modulated by social feedback valence (positive, negative) and the level of closeness with feedback provider (friend, confederate). Participants faced mathematically equivalent decisions framed as either an opportunity to keep (gain frame) or lose (loss frame) part of an initial endowment. Periodically, participants were provided with positive (e.g., “Nice!”) or negative (e.g., “Lame!”) feedback about their choices. Such feedback was provided by either a confederate (Experiment 1), or a gender-matched close friend (Experiment 2). As expected, the framing effect was observed in both experiments. Critically, an individual’s susceptibility to the framing effect was modulated by the valence of the social feedback, but only when the feedback provider was a close friend. This effect was reflected in the activation patterns of ventromedial prefrontal cortex and posterior cingulate cortex, regions involved in complex decision making. Taken together, these results highlight social closeness as an important factor in understanding the impact of social feedback on neural mechanisms of decision making. PMID:25074501

  13. Reliability in mechanics: the application of experience feedback

    International Nuclear Information System (INIS)

    Coudray, R.

    1994-01-01

    After a short overview of the available methods for statistical multi-dimensional studies, an application of these methods is described using the experience feedback of French nuclear reactors. The material studied is the RCV (chemical and volumetric control system) pump of the 900 MW PWR type reactors for which data used in the study are explained. The aim of the study is to show the pertinency of the rate of failures as an indicator of the material aging. This aging is illustrated by the most significant characteristics with an indication of their significance level. The method used combines the results from a mixed classification and those from a multiple correspondences analysis in several steps or evolutions. (J.S.). 8 refs., 6 figs., 3 tabs

  14. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder.

    Science.gov (United States)

    Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K; Cook, Edwin H; Vaillancourt, David E; Sweeney, John A

    2015-02-04

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. Copyright © 2015 the authors 0270-6474/15/352015-11$15.00/0.

  15. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms

    International Nuclear Information System (INIS)

    Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.

    2010-01-01

    We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delay time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.

  16. Differential effects of visual feedback on subjective visual vertical accuracy and precision.

    Directory of Open Access Journals (Sweden)

    Daniel Bjasch

    Full Text Available The brain constructs an internal estimate of the gravitational vertical by integrating multiple sensory signals. In darkness, systematic head-roll dependent errors in verticality estimates, as measured by the subjective visual vertical (SVV, occur. We hypothesized that visual feedback after each trial results in increased accuracy, as physiological adjustment errors (A-/E-effect are likely based on central computational mechanisms and investigated whether such improvements were related to adaptational shifts of perceived vertical or to a higher cognitive strategy. We asked 12 healthy human subjects to adjust a luminous arrow to vertical in various head-roll positions (0 to 120deg right-ear down, 15deg steps. After each adjustment visual feedback was provided (lights on, display of previous adjustment and of an earth-vertical cross. Control trials consisted of SVV adjustments without feedback. At head-roll angles with the largest A-effect (90, 105, and 120deg, errors were reduced significantly (p0.05 influenced. In seven subjects an additional session with two consecutive blocks (first with, then without visual feedback was completed at 90, 105 and 120deg head-roll. In these positions the error-reduction by the previous visual feedback block remained significant over the consecutive 18-24 min (post-feedback block, i.e., was still significantly (p<0.002 different from the control trials. Eleven out of 12 subjects reported having consciously added a bias to their perceived vertical based on visual feedback in order to minimize errors. We conclude that improvements of SVV accuracy by visual feedback, which remained effective after removal of feedback for ≥18 min, rather resulted from a cognitive strategy than by adapting the internal estimate of the gravitational vertical. The mechanisms behind the SVV therefore, remained stable, which is also supported by the fact that SVV precision - depending mostly on otolith input - was not affected by visual

  17. Sensory Processing: Advances in Understanding Structure and Function of Pitch-Shifted Auditory Feedback in Voice Control

    OpenAIRE

    Charles R Larson; Donald A Robin

    2016-01-01

    The pitch-shift paradigm has become a widely used method for studying the role of voice pitch auditory feedback in voice control. This paradigm introduces small, brief pitch shifts in voice auditory feedback to vocalizing subjects. The perturbations trigger a reflexive mechanism that counteracts the change in pitch. The underlying mechanisms of the vocal responses are thought to reflect a negative feedback control system that is similar to constructs developed to explain other forms of motor ...

  18. Feedback from incident reporting: information and action to improve patient safety.

    Science.gov (United States)

    Benn, J; Koutantji, M; Wallace, L; Spurgeon, P; Rejman, M; Healey, A; Vincent, C

    2009-02-01

    Effective feedback from incident reporting systems in healthcare is essential if organisations are to learn from failures in the delivery of care. Despite the wide-scale development and implementation of incident reporting in healthcare, studies in the UK suggest that information concerning system vulnerabilities could be better applied to improve operational safety within organisations. In this article, the findings and implications of research to identify forms of effective feedback from incident reporting are discussed, to promote best practices in this area. The research comprised a mixed methods review to investigate mechanisms of effective feedback for healthcare, drawing upon experience within established reporting programmes in high-risk industry and transport domains. Systematic searches of published literature were undertaken, and 23 case studies describing incident reporting programmes with feedback were identified for analysis from the international healthcare literature. Semistructured interviews were undertaken with 19 subject matter experts across a range of domains, including: civil aviation, maritime, energy, rail, offshore production and healthcare. In analysis, qualitative information from several sources was synthesised into practical requirements for developing effective feedback in healthcare. Both action and information feedback mechanisms were identified, serving safety awareness, improvement and motivational functions. The provision of actionable feedback that visibly improved systems was highlighted as important in promoting future reporting. Fifteen requirements for the design of effective feedback systems were identified, concerning: the role of leadership, the credibility and content of information, effective dissemination channels, the capacity for rapid action and the need for feedback at all levels of the organisation, among others. Above all, the safety-feedback cycle must be closed by ensuring that reporting, analysis and

  19. Feedback on Feedback--Does It Work?

    Science.gov (United States)

    Speicher, Oranna; Stollhans, Sascha

    2015-01-01

    It is well documented that providing assessment feedback through the medium of screencasts is favourably received by students and encourages deeper engagement with the feedback given by the language teacher (inter alia Abdous & Yoshimura, 2010; Brick & Holmes, 2008; Cann, 2007; Stannard, 2007). In this short paper we will report the…

  20. Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster

    Science.gov (United States)

    Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.

    2015-03-01

    During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.

  1. Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function.

    Science.gov (United States)

    Spencer, William C; Deneris, Evan S

    2017-01-01

    The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling

  2. Optimizing Combinations of Flavonoids Deriving from Astragali Radix in Activating the Regulatory Element of Erythropoietin by a Feedback System Control Scheme

    Directory of Open Access Journals (Sweden)

    Hui Yu

    2013-01-01

    Full Text Available Identifying potent drug combination from a herbal mixture is usually quite challenging, due to a large number of possible trials. Using an engineering approach of the feedback system control (FSC scheme, we identified the potential best combinations of four flavonoids, including formononetin, ononin, calycosin, and calycosin-7-O-β-D-glucoside deriving from Astragali Radix (AR; Huangqi, which provided the best biological action at minimal doses. Out of more than one thousand possible combinations, only tens of trials were required to optimize the flavonoid combinations that stimulated a maximal transcriptional activity of hypoxia response element (HRE, a critical regulator for erythropoietin (EPO transcription, in cultured human embryonic kidney fibroblast (HEK293T. By using FSC scheme, 90% of the work and time can be saved, and the optimized flavonoid combinations increased the HRE mediated transcriptional activity by ~3-fold as compared with individual flavonoid, while the amount of flavonoids was reduced by ~10-fold. Our study suggests that the optimized combination of flavonoids may have strong effect in activating the regulatory element of erythropoietin at very low dosage, which may be used as new source of natural hematopoietic agent. The present work also indicates that the FSC scheme is able to serve as an efficient and model-free approach to optimize the drug combination of different ingredients within a herbal decoction.

  3. Feedback mechanisms of change: How problem alerts reported by youth clients and their caregivers impact clinician-reported session content

    Science.gov (United States)

    Douglas, Susan R.; Jonghyuk, Bae; de Andrade, Ana Regina Vides; Tomlinson, M. Michele; Hargraves, Ryan Pamela; Bickman, Leonard

    2015-01-01

    Objective This study explored how clinician-reported content addressed in treatment sessions was predicted by clinician feedback group and multi-informant cumulative problem alerts that appeared in computerized feedback reports for 299 clients aged 11 to 18 years receiving home-based community mental health treatment. Method Measures included a clinician-report of content addressed in sessions and additional measures of treatment progress and process (e.g., therapeutic alliance) completed by clinicians, clients, and their caregivers. Item responses in the top 25th percentile in severity from these measures appeared as ‘problem alerts’ on corresponding computerized feedback reports. Clinicians randomized to the feedback group received feedback weekly while the control group did not. Analyses were conducted using the Cox proportional hazards regression for recurrent events. Results For all content domains, the results of the survival analyses indicated a robust effect of the feedback group on addressing specific content in sessions, with feedback associated with shorter duration to first occurrence and increased likelihood of addressing or focusing on a topic compared to the non-feedback group. Conclusion There appears to be an important relationship between feedback and cumulative problem alerts reported by multiple informants as they influence session content. PMID:26337327

  4. Prediction of regulatory elements

    DEFF Research Database (Denmark)

    Sandelin, Albin

    2008-01-01

    Finding the regulatory mechanisms responsible for gene expression remains one of the most important challenges for biomedical research. A major focus in cellular biology is to find functional transcription factor binding sites (TFBS) responsible for the regulation of a downstream gene. As wet......-lab methods are time consuming and expensive, it is not realistic to identify TFBS for all uncharacterized genes in the genome by purely experimental means. Computational methods aimed at predicting potential regulatory regions can increase the efficiency of wet-lab experiments significantly. Here, methods...

  5. Dose response relationship in anti-stress gene regulatory networks.

    Science.gov (United States)

    Zhang, Qiang; Andersen, Melvin E

    2007-03-02

    To maintain a stable intracellular environment, cells utilize complex and specialized defense systems against a variety of external perturbations, such as electrophilic stress, heat shock, and hypoxia, etc. Irrespective of the type of stress, many adaptive mechanisms contributing to cellular homeostasis appear to operate through gene regulatory networks that are organized into negative feedback loops. In general, the degree of deviation of the controlled variables, such as electrophiles, misfolded proteins, and O2, is first detected by specialized sensor molecules, then the signal is transduced to specific transcription factors. Transcription factors can regulate the expression of a suite of anti-stress genes, many of which encode enzymes functioning to counteract the perturbed variables. The objective of this study was to explore, using control theory and computational approaches, the theoretical basis that underlies the steady-state dose response relationship between cellular stressors and intracellular biochemical species (controlled variables, transcription factors, and gene products) in these gene regulatory networks. Our work indicated that the shape of dose response curves (linear, superlinear, or sublinear) depends on changes in the specific values of local response coefficients (gains) distributed in the feedback loop. Multimerization of anti-stress enzymes and transcription factors into homodimers, homotrimers, or even higher-order multimers, play a significant role in maintaining robust homeostasis. Moreover, our simulation noted that dose response curves for the controlled variables can transition sequentially through four distinct phases as stressor level increases: initial superlinear with lesser control, superlinear more highly controlled, linear uncontrolled, and sublinear catastrophic. Each phase relies on specific gain-changing events that come into play as stressor level increases. The low-dose region is intrinsically nonlinear, and depending on

  6. Dose response relationship in anti-stress gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2007-03-01

    Full Text Available To maintain a stable intracellular environment, cells utilize complex and specialized defense systems against a variety of external perturbations, such as electrophilic stress, heat shock, and hypoxia, etc. Irrespective of the type of stress, many adaptive mechanisms contributing to cellular homeostasis appear to operate through gene regulatory networks that are organized into negative feedback loops. In general, the degree of deviation of the controlled variables, such as electrophiles, misfolded proteins, and O2, is first detected by specialized sensor molecules, then the signal is transduced to specific transcription factors. Transcription factors can regulate the expression of a suite of anti-stress genes, many of which encode enzymes functioning to counteract the perturbed variables. The objective of this study was to explore, using control theory and computational approaches, the theoretical basis that underlies the steady-state dose response relationship between cellular stressors and intracellular biochemical species (controlled variables, transcription factors, and gene products in these gene regulatory networks. Our work indicated that the shape of dose response curves (linear, superlinear, or sublinear depends on changes in the specific values of local response coefficients (gains distributed in the feedback loop. Multimerization of anti-stress enzymes and transcription factors into homodimers, homotrimers, or even higher-order multimers, play a significant role in maintaining robust homeostasis. Moreover, our simulation noted that dose response curves for the controlled variables can transition sequentially through four distinct phases as stressor level increases: initial superlinear with lesser control, superlinear more highly controlled, linear uncontrolled, and sublinear catastrophic. Each phase relies on specific gain-changing events that come into play as stressor level increases. The low-dose region is intrinsically nonlinear

  7. Information feedback and mass media effects in cultural dynamics

    OpenAIRE

    Gonzalez-Avella, J. C.; Cosenza, M. G.; Klemm, K.; Eguiluz, V. M.; Miguel, M. San

    2007-01-01

    We study the effects of different forms of information feedback associated with mass media on an agent-agent based model of the dynamics of cultural dissemination. In addition to some processes previously considered, we also examine a model of local mass media influence in cultural dynamics. Two mechanisms of information feedback are investigated: (i) direct mass media influence, where local or global mass media act as an additional element in the network of interactions of each agent, and (i...

  8. Stock price dynamics and option valuations under volatility feedback effect

    Science.gov (United States)

    Kanniainen, Juho; Piché, Robert

    2013-02-01

    According to the volatility feedback effect, an unexpected increase in squared volatility leads to an immediate decline in the price-dividend ratio. In this paper, we consider the properties of stock price dynamics and option valuations under the volatility feedback effect by modeling the joint dynamics of stock price, dividends, and volatility in continuous time. Most importantly, our model predicts the negative effect of an increase in squared return volatility on the value of deep-in-the-money call options and, furthermore, attempts to explain the volatility puzzle. We theoretically demonstrate a mechanism by which the market price of diffusion return risk, or an equity risk-premium, affects option prices and empirically illustrate how to identify that mechanism using forward-looking information on option contracts. Our theoretical and empirical results support the relevance of the volatility feedback effect. Overall, the results indicate that the prevailing practice of ignoring the time-varying dividend yield in option pricing can lead to oversimplification of the stock market dynamics.

  9. Strategies in probabilistic feedback learning in Parkinson patients OFF medication.

    Science.gov (United States)

    Bellebaum, C; Kobza, S; Ferrea, S; Schnitzler, A; Pollok, B; Südmeyer, M

    2016-04-21

    Studies on classification learning suggested that altered dopamine function in Parkinson's Disease (PD) specifically affects learning from feedback. In patients OFF medication, enhanced learning from negative feedback has been described. This learning bias was not seen in observational learning from feedback, indicating different neural mechanisms for this type of learning. The present study aimed to compare the acquisition of stimulus-response-outcome associations in PD patients OFF medication and healthy control subjects in active and observational learning. 16 PD patients OFF medication and 16 controls were examined with three parallel learning tasks each, two feedback-based (active and observational) and one non-feedback-based paired associates task. No acquisition deficit was seen in the patients for any of the tasks. More detailed analyses on the learning strategies did, however, reveal that the patients showed more lose-shift responses during active feedback learning than controls, and that lose-shift and win-stay responses more strongly determined performance accuracy in patients than controls. For observational feedback learning, the performance of both groups correlated similarly with the performance in non-feedback-based paired associates learning and with the accuracy of observed performance. Also, patients and controls showed comparable evidence of feedback processing in observational learning. In active feedback learning, PD patients use alternative learning strategies than healthy controls. Analyses on observational learning did not yield differences between patients and controls, adding to recent evidence of a differential role of the human striatum in active and observational learning from feedback. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Understanding the differing governance of EU emissions trading and renewable: feedback mechanisms and policy entrepreneurs

    Energy Technology Data Exchange (ETDEWEB)

    Boasson, Elin Lerum; Wettestad, Joergen

    2010-04-15

    This paper presents a comparative study of two central EU climate policies: the revised Emissions Trading System (ETS), and the revised Renewable Energy Directive (RES). Both were originally developed in the early 2000s and revised policies were adopted in December 2008. While the ETS from 2013 on will have a quite centralized and market-streamlined design, the revised RES stands forward as a more decentralized and technology-focused policy. Differing institutional feed-back mechanisms and related roles of policy entrepreneurs can shed considerable light on these policy differences. Due to member states' cautiousness and contrary to the preferences of the Commission, the initial ETS was designed as a rather decentralized and 'politicized' market system, creating a malfunctioning institutional dynamic. In the revision process, the Commission skillfully highlighted this ineffective dynamic to win support for a much more centralized and market-streamlined approach. In the case of RES, national technology-specific support schemes and the strong links between the renewable industry and member states promoted the converse outcome: decentralization and technology development. Members of the European Parliament utilized these mechanisms through policy networking, while the Commission successfully used developments within the global climate regime to induce some degree of centralization. (Author)

  11. Social is special: A normative framework for teaching with and learning from evaluative feedback.

    Science.gov (United States)

    Ho, Mark K; MacGlashan, James; Littman, Michael L; Cushman, Fiery

    2017-10-01

    Humans often attempt to influence one another's behavior using rewards and punishments. How does this work? Psychologists have often assumed that "evaluative feedback" influences behavior via standard learning mechanisms that learn from environmental contingencies. On this view, teaching with evaluative feedback involves leveraging learning systems designed to maximize an organism's positive outcomes. Yet, despite its parsimony, programs of research predicated on this assumption, such as ones in developmental psychology, animal behavior, and human-robot interaction, have had limited success. We offer an explanation by analyzing the logic of evaluative feedback and show that specialized learning mechanisms are uniquely favored in the case of evaluative feedback from a social partner. Specifically, evaluative feedback works best when it is treated as communicating information about the value of an action rather than as a form of reward to be maximized. This account suggests that human learning from evaluative feedback depends on inferences about communicative intent, goals and other mental states-much like learning from other sources, such as demonstration, observation and instruction. Because these abilities are especially developed in humans, the present account also explains why evaluative feedback is far more widespread in humans than non-human animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hemichannel-mediated and pH-based feedback from horizontal cells to cones in the vertebrate retina.

    Directory of Open Access Journals (Sweden)

    Iris Fahrenfort

    2009-06-01

    Full Text Available Recent studies designed to identify the mechanism by which retinal horizontal cells communicate with cones have implicated two processes. According to one account, horizontal cell hyperpolarization induces an increase in pH within the synaptic cleft that activates the calcium current (Ca(2+-current in cones, enhancing transmitter release. An alternative account suggests that horizontal cell hyperpolarization increases the Ca(2+-current to promote transmitter release through a hemichannel-mediated ephaptic mechanism.To distinguish between these mechanisms, we interfered with the pH regulating systems in the retina and studied the effects on the feedback responses of cones and horizontal cells. We found that the pH buffers HEPES and Tris partially inhibit feedback responses in cones and horizontal cells and lead to intracellular acidification of neurons. Application of 25 mM acetate, which does not change the extracellular pH buffer capacity, does lead to both intracellular acidification and inhibition of feedback. Because intracellular acidification is known to inhibit hemichannels, the key experiment used to test the pH hypothesis, i.e. increasing the extracellular pH buffer capacity, does not discriminate between a pH-based feedback system and a hemichannel-mediated feedback system. To test the pH hypothesis in a manner independent of artificial pH-buffer systems, we studied the effect of interfering with the endogenous pH buffer, the bicarbonate/carbonic anhydrase system. Inhibition of carbonic anhydrase allowed for large changes in pH in the synaptic cleft of bipolar cell terminals and cone terminals, but the predicted enhancement of the cone feedback responses, according to the pH-hypothesis, was not observed. These experiments thus failed to support a proton mediated feedback mechanism. The alternative hypothesis, the hemichannel-mediated ephaptic feedback mechanism, was therefore studied experimentally, and its feasibility was buttressed

  13. Cross-cohort analysis identifies a TEAD4 ↔ MYCN positive-feedback loop as the core regulatory element of high-risk neuroblastoma. | Office of Cancer Genomics

    Science.gov (United States)

    High-risk neuroblastomas show a paucity of recurrent somatic mutations at diagnosis. As a result, the molecular basis for this aggressive phenotype remains elusive. Recent progress in regulatory network analysis helped us elucidate disease-driving mechanisms downstream of genomic alterations, including recurrent chromosomal alterations. Our analysis identified three molecular subtypes of high-risk neuroblastomas, consistent with chromosomal alterations, and identified subtype-specific master regulator (MR) proteins that were conserved across independent cohorts.

  14. Bayesian feedback versus Markovian feedback in a two-level atom

    International Nuclear Information System (INIS)

    Wiseman, H.M.; Mancini, Stefano; Wang Jin

    2002-01-01

    We compare two different approaches to the control of the dynamics of a continuously monitored open quantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)]. The second is feedback based on an estimate of the system state, developed recently by Doherty and Jacobs [Phys. Rev. A 60, 2700 (1999)]. Here we choose to call it, for brevity, Bayesian feedback. For systems with nonlinear dynamics, we expect these two methods of feedback control to give markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of inefficient detection and other forms of decoherence. Our results (obtained without recourse to stochastic simulations) prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback. However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in the face of inevitable experimental imperfections

  15. Making the Grade: Using Instructional Feedback and Evaluation to Inspire Evidence-Based Teaching

    Science.gov (United States)

    Brickman, Peggy; Gormally, Cara; Martella, Amedee Marchand

    2016-01-01

    Typically, faculty receive feedback about teaching via two mechanisms: end-of-semester student evaluations and peer observation. However, instructors require more sustained encouragement and constructive feedback when implementing evidence-based teaching practices. Our study goal was to characterize the landscape of current instructional-feedback…

  16. A dynamic model of the tubuloglomerular feedback mechanism

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1990-01-01

    We have reported oscillations in proximal tubular pressure and flow and in distal tubular pressure and chloride concentration in halothane-anesthetized Sprague-Dawley rats. These variables oscillated at the same frequency in each animal, approximately 35 mHz, but were out of phase with each other....... We suggested that the oscillation arises within the tubuloglomerular feedback (TGF) system. As a test of this hypothesis, we have now developed a dynamic model to determine whether it can simulate the measured frequency and phase relationships with a realistic set of parameters. The model includes...... of mass. For a realistic set of parameter values the model accurately predicted oscillations with the same frequency and phase relationships among the oscillating variables as was found experimentally. Moreover, tubular NaCl handling significantly influenced the dynamic properties of the TGF system. Thus...

  17. Interpreting Feedback: A Discourse Analysis of Teacher Feedback and Student Identity

    Science.gov (United States)

    Torres, J. T.; Anguiano, Carlos J.

    2016-01-01

    Feedback has typically been studied as a means of improving academic performance. Few studies inquire into the processes by which feedback shapes student identity. The authors carry out a discourse analysis of written comments to explore how feedback is discursively constructed by both teachers and students. Analysis of written feedback,…

  18. FOXP3: required but not sufficient. the role of GARP (LRRC32) as a safeguard of the regulatory phenotype.

    Science.gov (United States)

    Probst-Kepper, M; Balling, R; Buer, J

    2010-08-01

    FOXP3 is essential for the development and function of regulatory CD4(+)CD25(hi) T (T(reg)) cells. However, recent evidence suggests that FOXP3 alone is not sufficient to completely explain the regulatory phenotype of these key players in autoimmunity and inflammation: after being activated, conventional human CD4(+) T cells transiently up-regulate FOXP3 without acquiring a regulatory function. Researchers have recently found that glycoprotein A repetitions predominant (GARP, or LRRC32) is a T(reg)-specific receptor that binds latent TGF-beta and dominantly controls FOXP3 and the regulatory phenotype via a positive feedback loop. This finding provides a missing link in our molecular understanding of FOXP3 in T(reg) cells. This viewpoint focuses on GARP as safeguard of FOXP3 and the regulatory phenotype.

  19. Global desertification: Drivers and feedbacks

    Science.gov (United States)

    D'Odorico, Paolo; Bhattachan, Abinash; Davis, Kyle F.; Ravi, Sujith; Runyan, Christiane W.

    2013-01-01

    Desertification is a change in soil properties, vegetation or climate, which results in a persistent loss of ecosystem services that are fundamental to sustaining life. Desertification affects large dryland areas around the world and is a major cause of stress in human societies. Here we review recent research on the drivers, feedbacks, and impacts of desertification. A multidisciplinary approach to understanding the drivers and feedbacks of global desertification is motivated by our increasing need to improve global food production and to sustainably manage ecosystems in the context of climate change. Classic desertification theories look at this process as a transition between stable states in bistable ecosystem dynamics. Climate change (i.e., aridification) and land use dynamics are the major drivers of an ecosystem shift to a “desertified” (or “degraded”) state. This shift is typically sustained by positive feedbacks, which stabilize the system in the new state. Desertification feedbacks may involve land degradation processes (e.g., nutrient loss or salinization), changes in rainfall regime resulting from land-atmosphere interactions (e.g., precipitation recycling, dust emissions), or changes in plant community composition (e.g., shrub encroachment, decrease in vegetation cover). We analyze each of these feedback mechanisms and discuss their possible enhancement by interactions with socio-economic drivers. Large scale effects of desertification include the emigration of “environmental refugees” displaced from degraded areas, climatic changes, and the alteration of global biogeochemical cycles resulting from the emission and long-range transport of fine mineral dust. Recent research has identified some possible early warning signs of desertification, which can be used as indicators of resilience loss and imminent shift to desert-like conditions. We conclude with a brief discussion on some desertification control strategies implemented in different

  20. Stellar feedback in galaxies and the origin of galaxy-scale winds

    Science.gov (United States)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological

  1. Regulatory agencies and regulatory risk

    OpenAIRE

    Knieps, Günter; Weiß, Hans-Jörg

    2008-01-01

    The aim of this paper is to show that regulatory risk is due to the discretionary behaviour of regulatory agencies, caused by a too extensive regulatory mandate provided by the legislator. The normative point of reference and a behavioural model of regulatory agencies based on the positive theory of regulation are presented. Regulatory risk with regard to the future behaviour of regulatory agencies is modelled as the consequence of the ex ante uncertainty about the relative influence of inter...

  2. Regulatory dendritic cells in autoimmunity: A comprehensive review.

    Science.gov (United States)

    Liu, Juan; Cao, Xuetao

    2015-09-01

    Dendritic cells (DCs) are professional antigen-presenting cells (APC) with significant phenotypic heterogeneity and functional plasticity. DCs play crucial roles in initiating effective adaptive immune responses for elimination of invading pathogens and also in inducing immune tolerance toward harmless components to maintain immune homeostasis. The regulatory capacity of DCs depends on their immature state and distinct subsets, yet not restricted to the immature state and one specialized subset. The tolerogenicity of DC is controlled by a complex network of environmental signals and cellular intrinsic mechanisms. Regulatory DCs play an important role in the maintenance of immunological tolerance via the induction of T cell unresponsiveness or apoptosis, and generation of regulatory T cells. DCs play essential roles in driving autoimmunity via promoting the activation of effector T cells such as T helper 1 and T helper 17 cells, and/or suppressing the generation of regulatory T cells. Besides, a breakdown of DCs-mediated tolerance due to abnormal environmental signals or breakdown of intrinsic regulatory mechanisms is closely linked with the pathogenesis of autoimmune diseases. Novel immunotherapy taking advantage of the tolerogenic potential of regulatory DCs is being developed for treatment of autoimmune diseases. In this review, we will describe the current understanding on the generation of regulatory DC and the role of regulatory DCs in promoting tolerogenic immune responses and suppressing autoimmune responses. The emerging roles of DCs dysfunction in the pathogenesis of autoimmune diseases and the potential application of regulatory DCs in the treatment of autoimmune diseases will also be discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Investigating the Role of Auditory Feedback in a Multimodal Biking Experience

    DEFF Research Database (Denmark)

    Bruun-Pedersen, Jon Ram; Grani, Francesco; Serafin, Stefania

    2017-01-01

    In this paper, we investigate the role of auditory feedback in affecting perception of effort while biking in a virtual environment. Subjects were biking on a stationary chair bike, while exposed to 3D renditions of a recumbent bike inside a virtual environment (VE). The VE simulated a park...... and was created in the Unity5 engine. While biking, subjects were exposed to 9 kinds of auditory feedback (3 amplitude levels with three different filters) which were continuously triggered corresponding to pedal speed, representing the sound of the wheels and bike/chain mechanics. Subjects were asked to rate...... the perception of exertion using the Borg RPE scale. Results of the experiment showed that most subjects perceived a difference in mechanical resistance from the bike between conditions, but did not consciously notice the variations of the auditory feedback, although these were significantly varied. This points...

  4. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    Directory of Open Access Journals (Sweden)

    Wijaya Edward

    2010-01-01

    Full Text Available Abstract Background The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10°C, an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach. Results Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10°C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters. Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2 spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters. Conclusion Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries.

  5. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young

    2010-01-25

    Background: The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach.Results: Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters.Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters.Conclusion: Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries. 2010 Yun et al; licensee BioMed Central Ltd.

  6. Computational aspects of feedback in neural circuits.

    Directory of Open Access Journals (Sweden)

    Wolfgang Maass

    2007-01-01

    throw new light on the computational role of feedback in other complex biological dynamical systems, such as, for example, genetic regulatory networks.

  7. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    Science.gov (United States)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  8. Feedback på arbejdspladser

    DEFF Research Database (Denmark)

    Holdt Christensen, Peter

    Feedback på arbejdspladser er vigtig. Men feedback er også et populært begreb mange taler med om uden dog at vide sig helt sikker på hvad det er. Formålet med denne bog er at bidrage til en bedre forståelse af hvad feedback er, hvordan det fungerer og dermed hvordan arbejdspladser bedst muligt bør...... understøtte feedback. Med udgangspunkt i forskningen identificeres centrale udfordringer ved feedback, bl.a. hvorfor det kan være svært at give præcis feedback, hvordan forholdet mellem lederen og den ansatte påvirker den feedback der gives, og hvad der kendetegner en feedback kultur. Bogen er skrevet til...... undervisere og studerende på videregående uddannelser samt praktikere der ønsker en systematisk og forskningsbaseret forståelse af feedback på arbejdspladser. Bogen er således ikke en kogebog til bedre feedback, men en analyse og diskussion af hvad forskningen ved om feedback, og bidrager med inspiration og...

  9. Research of a New 6-Dof Force Feedback Hand Controller System

    Directory of Open Access Journals (Sweden)

    Xin Gao

    2014-01-01

    Full Text Available The field of teleoperation with force telepresence has expanded its scope to include manipulation at different scales and in virtual worlds, and the key component of which is force feedback hand controller. This paper presents a novel force feedback hand controller system, including a 3-dof translational and 3-dof rotational hand controllers, respectively, to implement position and posture teleoperation of the robot end effector. The 3-dof translational hand controller adopts innovative three-axes decoupling structure based on the linear motor; the 3-dof rotational hand controller adopts serial mechanism based on three-axes intersecting at one point, improving its overall stiffness. Based on the kinematics, statics, and dynamics analyses for two platforms separately, the system applies big closed-loop force control method based on the zero force/torque, improving the feedback force/torque accuracy effectively. Experimental results show that self-developed 6-dof force feedback hand controller has good mechanical properties. The translational hand controller has the following advantages: simple kinematics solver, fast dynamic response, and better than 0.05 mm accuracy of three-axis end positioning, while the advantages of the rotational hand controller are wide turning space, larger than 1 Nm feedback, greater than 180 degrees of operating space of three axes, respectively, and high operation precision.

  10. Using Feedback to Promote Physical Activity: The Role of the Feedback Sign.

    Science.gov (United States)

    Kramer, Jan-Niklas; Kowatsch, Tobias

    2017-06-02

    Providing feedback is a technique to promote health behavior that is emphasized by behavior change theories. However, these theories make contradicting predictions regarding the effect of the feedback sign-that is, whether the feedback signals success or failure. Thus, it is unclear whether positive or negative feedback leads to more favorable behavior change in a health behavior intervention. The aim of this study was to examine the effect of the feedback sign in a health behavior change intervention. Data from participants (N=1623) of a 6-month physical activity intervention was used. Participants received a feedback email at the beginning of each month. Feedback was either positive or negative depending on the participants' physical activity in the previous month. In an exploratory analysis, change in monthly step count averages was used to evaluate the feedback effect. The feedback sign did not predict the change in monthly step count averages over the course of the intervention (b=-84.28, P=.28). Descriptive differences between positive and negative feedback can be explained by regression to the mean. The feedback sign might not influence the effect of monthly feedback emails sent out to participants of a large-scale physical activity intervention. However, randomized studies are needed to further support this conclusion. Limitations as well as opportunities for future research are discussed. ©Jan-Niklas Kramer, Tobias Kowatsch. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 02.06.2017.

  11. Effect of overall feedback inhibition in unbranched biosynthetic pathways.

    Science.gov (United States)

    Alves, R; Savageau, M A

    2000-11-01

    We have determined the effects of control by overall feedback inhibition on the systemic behavior of unbranched metabolic pathways with an arbitrary pattern of other feedback inhibitions by using a recently developed numerical generalization of Mathematically Controlled Comparisons, a method for comparing the function of alternative molecular designs. This method allows the rigorous determination of the changes in systemic properties that can be exclusively attributed to overall feedback inhibition. Analytical results show that the unbranched pathway can achieve the same steady-state flux, concentrations, and logarithmic gains with respect to changes in substrate, with or without overall feedback inhibition. The analytical approach also shows that control by overall feedback inhibition amplifies the regulation of flux by the demand for end product while attenuating the sensitivity of the concentrations to the same demand. This approach does not provide a clear answer regarding the effect of overall feedback inhibition on the robustness, stability, and transient time of the pathway. However, the generalized numerical method we have used does clarify the answers to these questions. On average, an unbranched pathway with control by overall feedback inhibition is less sensitive to perturbations in the values of the parameters that define the system. The difference in robustness can range from a few percent to fifty percent or more, depending on the length of the pathway and on the metabolite one considers. On average, overall feedback inhibition decreases the stability margins by a minimal amount (typically less than 5%). Finally, and again on average, stable systems with overall feedback inhibition respond faster to fluctuations in the metabolite concentrations. Taken together, these results show that control by overall feedback inhibition confers several functional advantages upon unbranched pathways. These advantages provide a rationale for the prevalence of this

  12. Neural dynamics of feedforward and feedback processing in figure-ground segregation.

    Science.gov (United States)

    Layton, Oliver W; Mingolla, Ennio; Yazdanbakhsh, Arash

    2014-01-01

    Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation.

  13. Neural Dynamics of Feedforward and Feedback Processing in Figure-Ground Segregation

    Directory of Open Access Journals (Sweden)

    Oliver W. Layton

    2014-09-01

    Full Text Available Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure’s interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells, and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells. Neurons (convex cells that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation.

  14. Neural dynamics of feedforward and feedback processing in figure-ground segregation

    Science.gov (United States)

    Layton, Oliver W.; Mingolla, Ennio; Yazdanbakhsh, Arash

    2014-01-01

    Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation. PMID:25346703

  15. Pathogenesis and pharmacologic treatment of obesity: the role of energy regulatory mechanism.

    Science.gov (United States)

    Manulu, Mangatas S M; Sutanegara, I N Dwi

    2006-01-01

    Obesity has become a worldwide public health problem affecting millions of people. This is a chronic, stigmatized, and costly disease, rarely curable and is increasing in prevalence to a point today where we define obesity as an epidemic disease that not only in developed but also on developing countries. The pathogenesis of obesity is largely unknown, especially about energy regulatory mechanism that involved wide area of neuroendocrinology that is very interesting but very complex and makes internists "refuse" to learn. Obesity occurs through a longstanding imbalance between energy intake and energy expenditure, influenced by a complex biologic system that regulates appetite and adiposity. Obesity influences the pathogenesis of hypertension, type 2 diabetes, dyslipidemia, kidney, heart, and cerebrovascular disease. It is very wise for every internist to learn the pathogenesis and treatment of this worldwide diseases. Until now, the available treatments, including drugs, are palliative and are effective only while the treatment is being actively used; and besides so many side effects reported.

  16. Cost-benefit and regulatory decision making

    International Nuclear Information System (INIS)

    Harvie, J.

    1996-01-01

    The Atomic Energy Control Board is investigating the feasibility of developing methods for factoring cost-benefit considerations into its regulatory decision-making. This initiative results, in part, from the federal government policy requiring cost-benefit considerations to be taken into account in regulatory processes, and from the recommendations of an Advisory Panel on Regulatory Review in 1993, submitted to the Minister of Natural Resources Canada. One of these recommendations stated: 'that mechanisms be developed to examine cost benefit issues and work towards some consensus of opinion among stake holders: a task force on the subject could be an appropriate starting point'. (author)

  17. A novel controller for bipedal locomotion integrating feed-forward and feedback mechanisms

    NARCIS (Netherlands)

    Xiong, Xiaofeng; Sartori, Massimo; Dosen, Strahinja; González-Vargas, José; Wörgötter, Florentin; Farina, Dario; Ibanez, J.; González-Vargas, J.; Azorin, J.M.; Akay, M.; Pons, J.L.

    2017-01-01

    It has been recognized that bipedal locomotion is controlled using feed-forward (e.g., patterned) and feedback (e.g., reflex) control schemes. However, most current controllers fail to integrate the two schemes to simplify speed control of bipedal locomotion. To solve this problem, we here propose a

  18. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    Science.gov (United States)

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  19. A Wearable-Based and Markerless Human-Manipulator Interface with Feedback Mechanism and Kalman Filters

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2015-11-01

    Full Text Available The objective of this paper is to develop a novel human-manipulator interface which incorporates wearable-based and markerless tracking to interact with the continuous movements of a human operator's hand. Unlike traditional approaches, which usually include contacting devices or physical markers to track the human-limb movements, this interface enables registration of natural movement through a wireless wearable watch and a leap motion sensor. Due to sensor error and tracking failure, the measurements are not made with sufficient accuracy. Two Kalman filters are employed to compensate the noisy and incomplete measurements in real time. Furthermore, due to perceptive limitations and abnormal state signals, the operator is unable to achieve high precision and efficiency in robot manipulation; an adaptive multispace transformation method (AMT is therefore introduced, which serves as a secondary treatment. In addition, in order to allow two-way human-robot interaction, the proposed method provides a vibration feedback mechanism triggered by the wearable watch to call the operator's attention to robot collision incidents or moments where the operator's hand is in a transboundary state. This improves teleoperation.

  20. Factors influencing responsiveness to feedback: on the interplay between fear, confidence, and reasoning processes.

    Science.gov (United States)

    Eva, Kevin W; Armson, Heather; Holmboe, Eric; Lockyer, Jocelyn; Loney, Elaine; Mann, Karen; Sargeant, Joan

    2012-03-01

    Self-appraisal has repeatedly been shown to be inadequate as a mechanism for performance improvement. This has placed greater emphasis on understanding the processes through which self-perception and external feedback interact to influence professional development. As feedback is inevitably interpreted through the lens of one's self-perceptions it is important to understand how learners interpret, accept, and use feedback (or not) and the factors that influence those interpretations. 134 participants from 8 health professional training/continuing competence programs were recruited to participate in focus groups. Analyses were designed to (a) elicit understandings of the processes used by learners and physicians to interpret, accept and use (or not) data to inform their perceptions of their clinical performance, and (b) further understand the factors (internal and external) believed to influence interpretation of feedback. Multiple influences appear to impact upon the interpretation and uptake of feedback. These include confidence, experience, and fear of not appearing knowledgeable. Importantly, however, each could have a paradoxical effect of both increasing and decreasing receptivity. Less prevalent but nonetheless important themes suggested mechanisms through which cognitive reasoning processes might impede growth from formative feedback. Many studies have examined the effectiveness of feedback through variable interventions focused on feedback delivery. This study suggests that it is equally important to consider feedback from the perspective of how it is received. The interplay observed between fear, confidence, and reasoning processes reinforces the notion that there is no simple recipe for the delivery of effective feedback. These factors should be taken into account when trying to understand (a) why self-appraisal can be flawed, (b) why appropriate external feedback is vital (yet can be ineffective), and (c) why we may need to disentangle the goals of

  1. Precipitation Dynamics and Feedback mechanisms of the Arabian Desert

    Science.gov (United States)

    Burger, Roelof; Kucera, Paul; Piketh, Stuart; Axisa, Duncan; Chapman, Michael; Krauss, Terry; Ghulam, Ayman

    2010-05-01

    , radar and satellite data are used to explore these dynamics and the associated feedback mechanisms of precipitation over the Arabian desert.

  2. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs).

    Science.gov (United States)

    Wang, Huizheng; Zhang, Kai; Zhu, Jie; Song, Weiwei; Zhao, Li; Zhang, Xiuguo

    2013-01-01

    Polyhydroxyalkanoates (PHAs) have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC), which belongs to (R)-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R)-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic. We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R)-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC. The data in our study reveal the regulatory mechanism of an (R)-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  3. Effects of Informative and Confirmatory Feedback on Brain Activation During Negative Feedback Processing

    Directory of Open Access Journals (Sweden)

    Yeon-Kyoung eWoo

    2015-06-01

    Full Text Available The current study compared the effects of informative and confirmatory feedback on brain activation during negative feedback processing. For confirmatory feedback trials, participants were informed that they had failed the task, whereas informative feedback trials presented task relevant information along with the notification of their failure. Fourteen male undergraduates performed a series of spatial-perceptual tasks and received feedback while their brain activity was recorded. During confirmatory feedback trials, greater activations in the amygdala, dorsal anterior cingulate cortex, and the thalamus (including the habenular were observed in response to incorrect responses. These results suggest that confirmatory feedback induces negative emotional reactions to failure. In contrast, informative feedback trials elicited greater activity in the dorsolateral prefrontal cortex (DLPFC when participants experienced failure. Further psychophysiological interaction (PPI analysis revealed a negative coupling between the DLPFC and the amygdala during informative feedback relative to confirmatory feedback trials. These findings suggest that providing task-relevant information could facilitate implicit down-regulation of negative emotions following failure.

  4. Intraspecific plant-soil feedback as a mechanism underlying invasiveness of neophytes of the Czech Republic

    OpenAIRE

    Knobová, Pavlína

    2017-01-01

    Intraspecific plant-soil feedback is a relationship in which plant affects the composition of the soil and such modified soil affects growth of the same plant species. This relationship and its intensity may be linked with plant dominance and invasiveness. Dominant species can alter the composition of the soil in their favor and thus show positive intraspecific plant-soil feedback. As the invasive species are commonly being dominant in their new environment, it can be expected that intraspeci...

  5. Clustering and negative feedback by endocytosis in planar cell polarity signaling is modulated by ubiquitinylation of prickle.

    Directory of Open Access Journals (Sweden)

    Bomsoo Cho

    2015-05-01

    Full Text Available The core components of the planar cell polarity (PCP signaling system, including both transmembrane and peripheral membrane associated proteins, form asymmetric complexes that bridge apical intercellular junctions. While these can assemble in either orientation, coordinated cell polarization requires the enrichment of complexes of a given orientation at specific junctions. This might occur by both positive and negative feedback between oppositely oriented complexes, and requires the peripheral membrane associated PCP components. However, the molecular mechanisms underlying feedback are not understood. We find that the E3 ubiquitin ligase complex Cullin1(Cul1/SkpA/Supernumerary limbs(Slimb regulates the stability of one of the peripheral membrane components, Prickle (Pk. Excess Pk disrupts PCP feedback and prevents asymmetry. We show that Pk participates in negative feedback by mediating internalization of PCP complexes containing the transmembrane components Van Gogh (Vang and Flamingo (Fmi, and that internalization is activated by oppositely oriented complexes within clusters. Pk also participates in positive feedback through an unknown mechanism promoting clustering. Our results therefore identify a molecular mechanism underlying generation of asymmetry in PCP signaling.

  6. Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage.

    Science.gov (United States)

    Freyre-González, Julio A; Tauch, Andreas

    2017-09-10

    Corynebacterium glutamicum is a Gram-positive, anaerobic, rod-shaped soil bacterium able to grow on a diversity of carbon sources like sugars and organic acids. It is a biotechnological relevant organism because of its highly efficient ability to biosynthesize amino acids, such as l-glutamic acid and l-lysine. Here, we reconstructed the most complete C. glutamicum regulatory network to date and comprehensively analyzed its global organizational properties, systems-level features and functional architecture. Our analyses show the tremendous power of Abasy Atlas to study the functional organization of regulatory networks. We created two models of the C. glutamicum regulatory network: all-evidences (containing both weak and strong supported interactions, genomic coverage=73%) and strongly-supported (only accounting for strongly supported evidences, genomic coverage=71%). Using state-of-the-art methodologies, we prove that power-law behaviors truly govern the connectivity and clustering coefficient distributions. We found a non-previously reported circuit motif that we named complex feed-forward motif. We highlighted the importance of feedback loops for the functional architecture, beyond whether they are statistically over-represented or not in the network. We show that the previously reported top-down approach is inadequate to infer the hierarchy governing a regulatory network because feedback bridges different hierarchical layers, and the top-down approach disregards the presence of intermodular genes shaping the integration layer. Our findings all together further support a diamond-shaped, three-layered hierarchy exhibiting some feedback between processing and coordination layers, which is shaped by four classes of systems-level elements: global regulators, locally autonomous modules, basal machinery and intermodular genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Instability and breakdown of the coral-algae symbiosis upon exceedence of the interglacial pCO2 threshold (>260 ppmv): the "missing" Earth-System feedback mechanism

    Science.gov (United States)

    Wooldridge, Scott A.

    2017-12-01

    Changes in the atmospheric partial pressure of CO2 ( pCO2) leads to predictable impacts on the surface ocean carbonate system. Here, the importance of atmospheric pCO2 <260 ppmv is established for the optimum performance (and stability) of the algal endosymbiosis employed by a key suite of tropical reef-building coral species. Violation of this symbiotic threshold is revealed as a prerequisite for major historical reef extinction events, glacial-interglacial feedback climate cycles, and the modern decline of coral reef ecosystems. Indeed, it is concluded that this symbiotic threshold enacts a fundamental feedback mechanism needed to explain the characteristic dynamics (and drivers) of the coupled land-ocean-atmosphere carbon cycle of the Earth System since the mid-Miocene, some 25 million yr ago.

  8. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study

    Directory of Open Access Journals (Sweden)

    Soha Saleh

    2017-01-01

    Full Text Available Mirror visual feedback (MVF is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical or opposite (mirror hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with

  9. Rateless feedback codes

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip

    2012-01-01

    This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....

  10. Closing the Loop on Student Feedback: The Case of Australian and Scottish Universities

    Science.gov (United States)

    Shah, Mahsood; Cheng, Ming; Fitzgerald, Robert

    2017-01-01

    Universities have a long history of collecting student feedback using surveys and other mechanisms. The last decade has witnessed a significant shift in how student feedback is systematically collected, analysed, reported, and used by governments and institutions. This shift is due to a number of factors, including changes in government policy…

  11. Dissecting Solidago canadensis-soil feedback in its real invasion.

    Science.gov (United States)

    Dong, Li-Jia; Yang, Jian-Xia; Yu, Hong-Wei; He, Wei-Ming

    2017-04-01

    The importance of plant-soil feedback (PSF) has long been recognized, but the current knowledge on PSF patterns and the related mechanisms mainly stems from laboratory experiments. We aimed at addressing PSF effects on community performance and their determinants using an invasive forb Solidago canadensis . To do so, we surveyed 81 pairs of invaded versus uninvaded plots, collected soil samples from these pairwise plots, and performed an experiment with microcosm plant communities. The magnitudes of conditioning soil abiotic properties and soil biotic properties by S. canadensis were similar, but the direction was opposite; altered abiotic and biotic properties influenced the production of subsequent S. canadensis communities and its abundance similarly. These processes shaped neutral S. canadensis -soil feedback effects at the community level. Additionally, the relative dominance of S. canadensis increased with its ability of competitive suppression in the absence and presence of S. canadensis -soil feedbacks, and S. canadensis -induced decreases in native plant species did not alter soil properties directly. These findings provide a basis for understanding PSF effects and the related mechanisms in the field conditions and also highlight the importance of considering PSFs holistically.

  12. EXACT SOLUTION TO FINITE TEMPERATURE SFDM: NATURAL CORES WITHOUT FEEDBACK

    International Nuclear Information System (INIS)

    Robles, Victor H.; Matos, T.

    2013-01-01

    Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. However, the standard cold dark matter model simulations predict a more cuspy behavior. One mechanism used to reconcile the simulations with the observed data is the feedback from star formation. While this mechanism may be successful in isolated dwarf galaxies, its success in LSB galaxies remains unclear. Additionally, the inclusion of too much feedback in the simulations is a double-edged sword—in order to obtain a cored DM distribution from an initially cuspy one, the feedback recipes usually require one to remove a large quantity of baryons from the center of the galaxies; however, some feedback recipes produce twice the number of satellite galaxies of a given luminosity and with much smaller mass-to-light ratios from those that are observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark matter model. Here, we consider that DM is an auto-interacting real scalar field in a thermal bath at temperature T with an initial Z 2 symmetric potential. As the universe expands, the temperature drops so that the Z 2 symmetry is spontaneously broken and the field rolls down to a new minimum. We give an exact analytic solution to the Newtonian limit of this system, showing that it can satisfy the two desired requirements and that the rotation curve profile is no longer universal.

  13. Entanglement-assisted quantum feedback control

    Science.gov (United States)

    Yamamoto, Naoki; Mikami, Tomoaki

    2017-07-01

    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  14. Mechanical characteristics of ultra-long horizontal nanocantilevers grown by real-time feedback control on focused-ion-beam chemical vapour deposition

    International Nuclear Information System (INIS)

    Guo, Dengji; Warisawa, Shin’ichi; Ishihara, Sunao; Kometani, Reo

    2015-01-01

    Focused-ion-beam chemical vapour deposition (FIB-CVD) has been repeatedly proved to be a useful tool for the growth of three-dimensional (3D) micro- and nano-structures. The strategy of real-time feedback control on FIB-CVD was previously proposed and experimentally demonstrated to be effective for growing ultra-long horizontal nanocantilevers. To fabricate various nanoelectromechanical systems that consist of such types of nanocantilever structures, the mechanical characteristics of ultra-long horizontal nanocantilevers should be investigated. In this study, nanocantilevers with an overhang length of up to 35 μm were grown by using a 30 kV Ga + FIB, a beam current of 0.50 pA and phenanthrene (C 14 H 10 ) as the gas source to deposit a diamond-like carbon structure. The Young’s modulus of each nanocantilever was measured by bending the nanocantilever with a nanopillar whose Young’s modulus was known. The average density of each nanocantilever was calculated from the Young’s modulus and the measured resonant frequency. We found that the mechanical characteristics of each nanocantilever depended on the length of the nanocantilever if the strategy of real-time feedback control was applied in fabrication. The Young’s moduli and the averaged densities of the nanocantilevers with a length of 11 to 34 μm were found to be 86 to 254 GPa and 1950 to 5750 kg m −3 , respectively. With the increase of the overhang length, the Young’s modulus and the average density were found to gradually increase. (paper)

  15. Requirements for active resistive wall mode (RWM) feedback control

    International Nuclear Information System (INIS)

    In, Y; Kim, J S; Chu, M S; Jackson, G L; La Haye, R J; Strait, E J; Liu, Y Q; Marrelli, L; Okabayashi, M; Reimerdes, H

    2010-01-01

    The requirements for active resistive wall mode (RWM) feedback control have been systematically investigated and established using highly reproducible current-driven RWMs in ohmic discharges in DIII-D. The unambiguous evaluation of active RWM feedback control was not possible in previous RWM studies primarily due to the variability of the onset of the pressure-driven RWMs; the stability of the pressure-driven RWM is thought to be sensitive to various passive stabilization mechanisms. Both feedback control specifications and physics requirements for RWM stabilization have been clarified using the current-driven RWMs in ohmic discharges, when little or no passive stabilization effects are present. The use of derivative gain on top of proportional gain is found to be advantageous. An effective feedback control system should be equipped with a power supply with bandwidth greater than the RWM growth rate. It is beneficial to apply a feedback field that is toroidally phase-shifted from the measured RWM phase in the same direction as the plasma current. The efficacy of the RWM feedback control will ultimately be determined by the plasma fluctuations on internal diagnostics, as well as on external magnetics. The proximity of the feedback coils to the plasma appears to be an important factor in determining the effectiveness of the RWM feedback coils. It is desirable that an RWM feedback control system simultaneously handles error field correction at a low frequency, along with direct RWM feedback at a high frequency. There is an indication of the influence of a second least stable RWM, which had been theoretically predicted but never identified in experiments. A preliminary investigation based on active MHD spectroscopic measurement showed a strong plasma response around 400 Hz where the typical plasma response associated with the first least stable RWM was expected to be negligible. Present active feedback control requirements are based on a single mode assumption, so the

  16. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition.

    Science.gov (United States)

    Saunders, Lindsay R; McClay, David R

    2014-04-01

    Epithelial-mesenchymal transition (EMT) is a fundamental cell state change that transforms epithelial to mesenchymal cells during embryonic development, adult tissue repair and cancer metastasis. EMT includes a complex series of intermediate cell state changes including remodeling of the basement membrane, apical constriction, epithelial de-adhesion, directed motility, loss of apical-basal polarity, and acquisition of mesenchymal adhesion and polarity. Transcriptional regulatory state changes must ultimately coordinate the timing and execution of these cell biological processes. A well-characterized gene regulatory network (GRN) in the sea urchin embryo was used to identify the transcription factors that control five distinct cell changes during EMT. Single transcription factors were perturbed and the consequences followed with in vivo time-lapse imaging or immunostaining assays. The data show that five different sub-circuits of the GRN control five distinct cell biological activities, each part of the complex EMT process. Thirteen transcription factors (TFs) expressed specifically in pre-EMT cells were required for EMT. Three TFs highest in the GRN specified and activated EMT (alx1, ets1, tbr) and the 10 TFs downstream of those (tel, erg, hex, tgif, snail, twist, foxn2/3, dri, foxb, foxo) were also required for EMT. No single TF functioned in all five sub-circuits, indicating that there is no EMT master regulator. Instead, the resulting sub-circuit topologies suggest EMT requires multiple simultaneous regulatory mechanisms: forward cascades, parallel inputs and positive-feedback lock downs. The interconnected and overlapping nature of the sub-circuits provides one explanation for the seamless orchestration by the embryo of cell state changes leading to successful EMT.

  17. Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

    Science.gov (United States)

    Liu, Ningyu; Dwyer, Joseph R.

    2013-05-01

    This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However

  18. Electrotactile EMG feedback improves the control of prosthesis grasping force

    Science.gov (United States)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario

    2016-10-01

    Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for

  19. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  20. Sequence-based model of gap gene regulatory network.

    Science.gov (United States)

    Kozlov, Konstantin; Gursky, Vitaly; Kulakovskiy, Ivan; Samsonova, Maria

    2014-01-01

    The detailed analysis of transcriptional regulation is crucially important for understanding biological processes. The gap gene network in Drosophila attracts large interest among researches studying mechanisms of transcriptional regulation. It implements the most upstream regulatory layer of the segmentation gene network. The knowledge of molecular mechanisms involved in gap gene regulation is far less complete than that of genetics of the system. Mathematical modeling goes beyond insights gained by genetics and molecular approaches. It allows us to reconstruct wild-type gene expression patterns in silico, infer underlying regulatory mechanism and prove its sufficiency. We developed a new model that provides a dynamical description of gap gene regulatory systems, using detailed DNA-based information, as well as spatial transcription factor concentration data at varying time points. We showed that this model correctly reproduces gap gene expression patterns in wild type embryos and is able to predict gap expression patterns in Kr mutants and four reporter constructs. We used four-fold cross validation test and fitting to random dataset to validate the model and proof its sufficiency in data description. The identifiability analysis showed that most model parameters are well identifiable. We reconstructed the gap gene network topology and studied the impact of individual transcription factor binding sites on the model output. We measured this impact by calculating the site regulatory weight as a normalized difference between the residual sum of squares error for the set of all annotated sites and for the set with the site of interest excluded. The reconstructed topology of the gap gene network is in agreement with previous modeling results and data from literature. We showed that 1) the regulatory weights of transcription factor binding sites show very weak correlation with their PWM score; 2) sites with low regulatory weight are important for the model output; 3

  1. A Proposed Conceptual Framework and Investigation of Upward Feedback Receptivity in Medical Education.

    Science.gov (United States)

    Kost, Amanda; Combs, Heidi; Smith, Sherilyn; Klein, Eileen; Kritek, Patricia; Robins, Lynne; Cianciolo, Anna T; Butani, Lavjay; Gigante, Joseph; Ramani, Subha

    2015-01-01

    WGEA 2015 CONFERENCE ABSTRACT (EDITED). Faculty Perceptions of Receiving Feedback From Third-Year Clerkship Students. Amanda Kost, Heidi Combs, Sherilyn Smith, Eileen Klein, Patricia Kritek, and Lynne Robins. PHENOMENON: In addition to giving feedback to 3rd-year clerkship students, some clerkship instructors receive feedback, requested or spontaneous, from students prior to the clerkship's end. The concept of bidirectional feedback is appealing as a means of fostering a culture of respectful communication and improvement. However, little is known about how teachers perceive this feedback in practice or how it impacts the learning environment. We performed 24 semistructured 30-minute interviews with 3 to 7 attending physician faculty members each in Pediatrics, Internal Medicine, Family Medicine, Surgery, Psychiatry, and Obstetrics and Gynecology who taught in 3rd-year required clerkships during the 2012-2013 academic year. Questions probed teachers' experience with and attitudes toward receiving student feedback. Prompts were used to elicit stories and obtain participant demographics. Interviews were audio-recorded, transcribed, and entered into Dedoose for qualitative analysis. Researchers read transcripts holistically for meaning, designed a coding template, and then independently coded each transcript. A constant comparative approach and regular meetings were used to ensure consistent coding between research team members. Participants ranged in age from 37 to 74, with 5 to 35 years of teaching experience. Seventy-one percent were male, and 83% identified as White. In our preliminary analysis, our informants reported a range of experience in receiving student feedback prior to the end of a clerkship, varying from no experience to having developed mechanisms to regularly request specific feedback about their programs. Most expressed openness to actively soliciting and receiving student feedback on their teaching during the clerkship although many questioned

  2. Terrestrial Feedbacks Incorporated in Global Vegetation Models through Observed Trait-Environment Responses

    Science.gov (United States)

    Bodegom, P. V.

    2015-12-01

    Most global vegetation models used to evaluate climate change impacts rely on plant functional types to describe vegetation responses to environmental stresses. In a traditional set-up in which vegetation characteristics are considered constant within a vegetation type, the possibility to implement and infer feedback mechanisms are limited as feedback mechanisms will likely involve a changing expression of community trait values. Based on community assembly concepts, we implemented functional trait-environment relationships into a global dynamic vegetation model to quantitatively assess this feature. For the current climate, a different global vegetation distribution was calculated with and without the inclusion of trait variation, emphasizing the importance of feedbacks -in interaction with competitive processes- for the prevailing global patterns. These trait-environmental responses do, however, not necessarily imply adaptive responses of vegetation to changing conditions and may locally lead to a faster turnover in vegetation upon climate change. Indeed, when running climate projections, simulations with trait variation did not yield a more stable or resilient vegetation than those without. Through the different feedback expressions, global and regional carbon and water fluxes were -however- strongly altered. At a global scale, model projections suggest an increased productivity and hence an increased carbon sink in the next decades to come, when including trait variation. However, by the end of the century, a reduced carbon sink is projected. This effect is due to a downregulation of photosynthesis rates, particularly in the tropical regions, even when accounting for CO2-fertilization effects. Altogether, the various global model simulations suggest the critical importance of including vegetation functional responses to changing environmental conditions to grasp terrestrial feedback mechanisms at global scales in the light of climate change.

  3. Real-time system for studies of the effects of acoustic feedback on animal vocalizations.

    Directory of Open Access Journals (Sweden)

    Mike eSkocik

    2013-01-01

    Full Text Available Studies of behavioral and neural responses to distorted auditory feedback can help shed light on the neural mechanisms of animal vocalizations. We describe an apparatus for generating real-time acoustic feedback. The system can very rapidly detect acoustic features in a song and output acoustic signals if the detected features match the desired acoustic template. The system uses spectrogram-based detection of acoustic elements. It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation. We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds’ songs.

  4. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  5. Radiation and the regulatory landscape of neo2-Darwinism

    International Nuclear Information System (INIS)

    Rollo, C. David

    2006-01-01

    Several recently revealed features of eukaryotic genomes were not predicted by earlier evolutionary paradigms, including the relatively small number of genes, the very large amounts of non-functional code and its quarantine in heterochromatin, the remarkable conservation of many functionally important genes across relatively enormous phylogenetic distances, and the prevalence of extra-genomic information associated with chromatin structure and histone proteins. All of these emphasize a paramount role for regulatory evolution, which is further reinforced by recent perspectives highlighting even higher-order regulation governing epigenetics and development (EVO-DEVO). Modern neo 2 -Darwinism, with its emphasis on regulatory mechanisms and regulatory evolution provides new vision for understanding radiation biology, particularly because free radicals and redox states are central to many regulatory mechanisms and free radicals generated by radiation mimic and amplify endogenous signalling. This paper explores some of these aspects and their implications for low-dose radiation biology

  6. Radiation and the regulatory landscape of neo2-Darwinism.

    Science.gov (United States)

    Rollo, C David

    2006-05-11

    Several recently revealed features of eukaryotic genomes were not predicted by earlier evolutionary paradigms, including the relatively small number of genes, the very large amounts of non-functional code and its quarantine in heterochromatin, the remarkable conservation of many functionally important genes across relatively enormous phylogenetic distances, and the prevalence of extra-genomic information associated with chromatin structure and histone proteins. All of these emphasize a paramount role for regulatory evolution, which is further reinforced by recent perspectives highlighting even higher-order regulation governing epigenetics and development (EVO-DEVO). Modern neo2-Darwinism, with its emphasis on regulatory mechanisms and regulatory evolution provides new vision for understanding radiation biology, particularly because free radicals and redox states are central to many regulatory mechanisms and free radicals generated by radiation mimic and amplify endogenous signalling. This paper explores some of these aspects and their implications for low-dose radiation biology.

  7. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK–NF-κB signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan; He, Yin-Yan; Lu, Wen; Liao, Yun [Department of Obstetrics and Gynecology, Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai (China); Gu, Wei, E-mail: krisgu70@163.com [Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai (China); Wan, Xiao-Ping, E-mail: wanxp@sjtu.edu.cn [Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to Tong Ji University, Shanghai (China)

    2014-03-28

    Highlights: • IL-6 could promote endometrial cancer cells proliferation. • IL-6 promotes its own production through an autocrine feedback loop. • ERK and NF-κB pathway inhibitors inhibit IL-6 production and tumor growth. • IL-6 secretion relies on the activation of ERK–NF-κB pathway axis. • An orthotopic nude endometrial carcinoma model confirms the effect of IL-6. - Abstract: Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In this study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-κB) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-κB pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK–NF-κB pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma.

  8. A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate.

    Science.gov (United States)

    Del Vecchio, Domitilla; Abdallah, Hussein; Qian, Yili; Collins, James J

    2017-01-25

    To artificially reprogram cell fate, experimentalists manipulate the gene regulatory networks (GRNs) that maintain a cell's phenotype. In practice, reprogramming is often performed by constant overexpression of specific transcription factors (TFs). This process can be unreliable and inefficient. Here, we address this problem by introducing a new approach to reprogramming based on mathematical analysis. We demonstrate that reprogramming GRNs using constant overexpression may not succeed in general. Instead, we propose an alternative reprogramming strategy: a synthetic genetic feedback controller that dynamically steers the concentration of a GRN's key TFs to any desired value. The controller works by adjusting TF expression based on the discrepancy between desired and actual TF concentrations. Theory predicts that this reprogramming strategy is guaranteed to succeed, and its performance is independent of the GRN's structure and parameters, provided that feedback gain is sufficiently high. As a case study, we apply the controller to a model of induced pluripotency in stem cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. A study on the improvement of the load pressure feedback mechanism of the proportional pressure control valve

    International Nuclear Information System (INIS)

    Oh, In Ho; Jang, Ji Seong; Lee, Ill Yeong; Chung, Dai Jong; Cho, Sung Hyun

    1999-01-01

    The proportional pressure control valve having versatile functions and higher performance is an essential component in the open loop controlled rear wheel steering gear of the four wheel steering system on a passenger car. In this study, the authors suggest a new type of load pressure feedback mechanism which can make it easy change the control range of load pressure without changing the capacity of solenoid. The concept of the suggested mechanism, composed of the pressure chamber with throttles in series, was described. The mathematical model was derived from the rear wheel steering gear system consisting of a valve and a cylinder for the purpose of analyzing the valve characteristics. And the programme for computing the characteristic of the valve was developed. Experiments were carried out to confirm the performance of the valve and computations were performed to ascertain the usefulness of the developed programme. The results from the computations fairly coincide with those from the experiments. The results from the experiments and computations show that the performance of new valve is as good as that of the already developed one and the new valve has an advantage in the easiness in varying the control range of load pressure

  10. Perceptions of regulatory approaches

    International Nuclear Information System (INIS)

    Halin, Magnus; Leinonen, Ruusaliisa

    2012-01-01

    Ms. Ruusaliisa Leinonen and Mr. Magnus Halin from Fortum gave a joint presentation on industry perceptions of regulatory oversight of LMfS/SC. It was concluded that an open culture of discussion exists between the regulator (STUK) and the licensee, based on the common goal of nuclear safety. An example was provided of on how regulatory interventions helped foster improvements to individual and collective dose rate trends, which had remained static. Regulatory interventions included discussions on the ALARA concept to reinforce the requirement to continuously strive for improvements in safety performance. Safety culture has also been built into regulatory inspections in recent years. Training days have also been organised by the regulatory body to help develop a shared understanding of safety culture between licensee and regulatory personnel. Fortum has also developed their own training for managers and supervisors. Training and ongoing discussion on LMfS/SC safety culture is considered particularly important because both Fortum and the regulatory body are experiencing an influx of new staff due to the demographic profile of their organisations. It was noted that further work is needed to reach a common understanding of safety culture on a practical level (e.g., for a mechanic setting to work), and in relation to the inspection criteria used by the regulator. The challenges associated with companies with a mix of energy types were also discussed. This can make it more difficult to understand responsibilities and decision making processes, including the role of the parent body organisation. It also makes communication more challenging due to increased complexity and a larger number of stakeholders

  11. Evidence of fast non-linear feedback in EBR-II rod-drop measurements

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1987-06-01

    Feedback reactivities determine the time dependence of a reactor during and after a transient initiating event. Recent analysis of control-rod drops in the Experimental Breeder Reactor II (EBR-II) Reactor has indicated that some relatively fast feedback may exist which cannot be accounted for by the linear feedback mechanisms. The linear and deduced non-linear feedback reactivities from a control-rod drop in EBR-II run 93A using detailed temperature coefficients of reactivity in the EROS kinetics code have been reported. The transient analyses have now been examined in more detail for times close to the drop to ascertain if additional positive reactivity is being built-in early in the drop which could be gradually released later in the drop

  12. Feedback-related brain activity predicts learning from feedback in multiple-choice testing.

    Science.gov (United States)

    Ernst, Benjamin; Steinhauser, Marco

    2012-06-01

    Different event-related potentials (ERPs) have been shown to correlate with learning from feedback in decision-making tasks and with learning in explicit memory tasks. In the present study, we investigated which ERPs predict learning from corrective feedback in a multiple-choice test, which combines elements from both paradigms. Participants worked through sets of multiple-choice items of a Swahili-German vocabulary task. Whereas the initial presentation of an item required the participants to guess the answer, corrective feedback could be used to learn the correct response. Initial analyses revealed that corrective feedback elicited components related to reinforcement learning (FRN), as well as to explicit memory processing (P300) and attention (early frontal positivity). However, only the P300 and early frontal positivity were positively correlated with successful learning from corrective feedback, whereas the FRN was even larger when learning failed. These results suggest that learning from corrective feedback crucially relies on explicit memory processing and attentional orienting to corrective feedback, rather than on reinforcement learning.

  13. Feedback-enhanced sensitivity in optomechanics

    DEFF Research Database (Denmark)

    Harris, Glen I.; Andersen, Ulrik L.; Knittel, Joachim

    2012-01-01

    The intracavity power, and hence sensitivity, of optomechanical sensors is commonly limited by parametric instability. Here we characterize the degradation of sensitivity induced by parametric instability in a micron-scale cavity optomechanical system. Feedback via optomechanical transduction...... and electrical gradient force actuation is applied to suppress the parametric instability. As a result a 5.4-fold increase in mechanical motion transduction sensitivity is achieved to a final value of 1.9×10-18 mHz-1/2....

  14. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs.

    Directory of Open Access Journals (Sweden)

    Huizheng Wang

    Full Text Available Polyhydroxyalkanoates (PHAs have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC, which belongs to (R-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic.We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC.The data in our study reveal the regulatory mechanism of an (R-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  15. Smith-Purcell Distributed Feedback Laser

    CERN Document Server

    Kipnis, D; Gover, A

    2005-01-01

    Smith-Purcell radiation is the emission of electromagnetic radiation by an electron beam passing next to an optical grating. Recently measurement of relatively intense power of such radiation was observed in the THz-regime [1]. To explain the high intensity and the super-linear dependence on current beyond a threshold it was suggested that the radiating device operated in the high gain regime, amplifying spontaneous emission (ASE) [1,2]. We contest this interpretation and suggest an alternative mechanism. According to our interpretation the device operates as a distributed feedback (DFB) laser oscillator, in which a forward going surface wave, excited by the beam on the grating surface, is coupled to a backward going surface wave by a second order Bragg reflection process. This feedback process produces a saturated oscillator. We present theoretical analysis of the proposed process, which fits the reported experimental results, and enables better design of the radiation device, operating as a Smith-Purcell DF...

  16. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Science.gov (United States)

    Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934

  17. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Directory of Open Access Journals (Sweden)

    Jinxiang Dong

    2008-07-01

    Full Text Available There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting crosslayer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An eventdriven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.

  18. Neuroticism and responsiveness to error feedback: adaptive self-regulation versus affective reactivity.

    Science.gov (United States)

    Robinson, Michael D; Moeller, Sara K; Fetterman, Adam K

    2010-10-01

    Responsiveness to negative feedback has been seen as functional by those who emphasize the value of reflecting on such feedback in self-regulating problematic behaviors. On the other hand, the very same responsiveness has been viewed as dysfunctional by its link to punishment sensitivity and reactivity. The present 4 studies, involving 203 undergraduate participants, sought to reconcile such discrepant views in the context of the trait of neuroticism. In cognitive tasks, individuals were given error feedback when they made mistakes. It was found that greater tendencies to slow down following error feedback were associated with higher levels of accuracy at low levels of neuroticism but lower levels of accuracy at high levels of neuroticism. Individual differences in neuroticism thus appear crucial in understanding whether behavioral alterations following negative feedback reflect proactive versus reactive mechanisms and processes. Implications for understanding the processing basis of neuroticism and adaptive self-regulation are discussed.

  19. Practice of knowledge management for institutes--take the construction of experience feedback system as the example

    International Nuclear Information System (INIS)

    Wu Kaiping

    2014-01-01

    The construction of experience feedback system is an important part and breakthrough point of institutes' knowledge management. It is significant for institutes' design, management, development and innovation. This article introduces the concept of experience feedback for institutes. It also goes details of the content of experience feedback system construction for institutes, including the founding of experience feedback organizational mechanism, the development of experience feedback system, construction of knowledge database system, the construction of knowledge resources, and the appraisal of experience feedback's performance. Furthermore, the recognition and support of leaders, understanding and cooperation of relative departments, and corporation's culture of encouraging knowledge sharing, also are the important guarantees for the good effects of institutes' experience feedback work. (author)

  20. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6.

    Science.gov (United States)

    Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Helene; Douville, Herve; Good, Peter; Kay, Jennifer E.; hide

    2017-01-01

    The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions 'How does the Earth system respond to forcing?' and 'What are the origins and consequences of systematic model biases?' and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation

  1. Observational Signatures Of Agn Feedback Across Cosmic Time

    Science.gov (United States)

    Wylezalek, Dominika

    2017-06-01

    While many compelling models of AGN feedback exist, there is no clear data-driven picture of how winds are launched, how they propagate through the galaxy and what impact they have on the galactic gas. Recent work suggests that AGN luminosity plays an important role. The following described projects focus on understanding the power, reach and impact of feedback processes exerted by AGN of different power. I first describe recent efforts in our group of relating feedback signatures in powerful quasars to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history. Feedback signatures seem to be best observable in gas-rich galaxies where the coupling of the AGN-driven wind to the gas is strongest, in agreement with recent simulations. But how and where does this quenching happen? Is it accomplished through the mechanical action of jets or through nuclear winds driven by radiation pressure? Finally, I show that AGN signatures and AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of a galaxy hosting a low/intermediate-luminosity AGN. Using data from the new SDSS-IV MaNGA survey, we have developed a new AGN selection algorithm tailored to IFU data and we are uncovering a much more nuanced picture of AGN activity allowing us to discover AGN signatures at large distances from the galaxy center. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and feedback signatures related to them. Outflows and feedback from low- and intermediate-luminosity AGN might have been underestimated in the past but can potentially significantly contribute to the AGN/host-galaxy self-regulation.

  2. A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Michèle Moes

    Full Text Available BACKGROUND: The majority of human cancer deaths are caused by metastasis. The metastatic dissemination is initiated by the breakdown of epithelial cell homeostasis. During this phenomenon, referred to as epithelial to mesenchymal transition (EMT, cells change their genetic and trancriptomic program leading to phenotypic and functional alterations. The challenge of understanding this dynamic process resides in unraveling regulatory networks involving master transcription factors (e.g. SNAI1/2, ZEB1/2 and TWIST1 and microRNAs. Here we investigated microRNAs regulated by SNAI1 and their potential role in the regulatory networks underlying epithelial plasticity. RESULTS: By a large-scale analysis on epithelial plasticity, we highlighted miR-203 and its molecular link with SNAI1 and the miR-200 family, key regulators of epithelial homeostasis. During SNAI1-induced EMT in MCF7 breast cancer cells, miR-203 and miR-200 family members were repressed in a timely correlated manner. Importantly, miR-203 repressed endogenous SNAI1, forming a double negative miR203/SNAI1 feedback loop. We integrated this novel miR203/SNAI1 with the known miR200/ZEB feedback loops to construct an a priori EMT core network. Dynamic simulations revealed stable epithelial and mesenchymal states, and underscored the crucial role of the miR203/SNAI1 feedback loop in state transitions underlying epithelial plasticity. CONCLUSION: By combining computational biology and experimental approaches, we propose a novel EMT core network integrating two fundamental negative feedback loops, miR203/SNAI1 and miR200/ZEB. Altogether our analysis implies that this novel EMT core network could function as a switch controlling epithelial cell plasticity during differentiation and cancer progression.

  3. Reliability of performance velocity for jump squats under feedback and nonfeedback conditions.

    Science.gov (United States)

    Randell, Aaron D; Cronin, John B; Keogh, Justin Wl; Gill, Nicholas D; Pedersen, Murray C

    2011-12-01

    Randell, AD, Cronin, JB, Keogh, JWL, Gill, ND, and Pedersen, MC. Reliability of performance velocity for jump squats under feedback and nonfeedback conditions. J Strength Cond Res 25(12): 3514-3518, 2011-Advancements in the monitoring of kinematic and kinetic variables during resistance training have resulted in the ability to continuously monitor performance and provide feedback during training. If equipment and software can provide reliable instantaneous feedback related to the variable of interest during training, it is thought that this may result in goal-oriented movement tasks that increase the likelihood of transference to on-field performance or at the very least improve the mechanical variable of interest. The purpose of this study was to determine the reliability of performance velocity for jump squats under feedback and nonfeedback conditions over 3 consecutive training sessions. Twenty subjects were randomly allocated to a feedback or nonfeedback group, and each group performed a total of 3 "jump squat" training sessions with the velocity of each repetition measured using a linear position transducer. There was less change in mean velocities between sessions 1-2 and sessions 2-3 (0.07 and 0.02 vs. 0.13 and -0.04 m·s), less random variation (TE = 0.06 and 0.06 vs. 0.10 and 0.07 m·s) and greater consistency (intraclass correlation coefficient = 0.83 and 0.87 vs. 0.53 and 0.74) between sessions for the feedback condition as compared to the nonfeedback condition. It was concluded that there is approximately a 50-50 probability that the provision of feedback was beneficial to the performance in the squat jump over multiple sessions. It is suggested that this has the potential for increasing transference to on-field performance or at the very least improving the mechanical variable of interest.

  4. Posttraumatic Stress Disorder Disturbs Coronary Tone and Its Regulatory Mechanisms.

    Science.gov (United States)

    Lazuko, Svetlana S; Kuzhel, Olga P; Belyaeva, Lyudmila E; Manukhina, Eugenia B; Fred Downey, H; Tseilikman, Olga B; Komelkova, Maria V; Tseilikman, Vadim E

    2018-01-01

    Posttraumatic stress disorder (PTSD) is associated with myocardial injury, but changes in coronary regulatory mechanisms in PTSD have not been investigated. This study evaluated the effect of PTSD-inducing stress on coronary tone and its regulation by nitric oxide (NO) and voltage-gated K + channels. PTSD was induced by exposing rats to predator stress, 15 min daily for 10 days, followed by 14 stress-free days. Presence of PTSD was confirmed by the elevated plus-maze test. Coronary tone was evaluated from changes in coronary perfusion pressure of Langendorff isolated hearts. Predator stress induced significant decreases in coronary tone of isolated hearts and in blood pressure of intact rats. L-NAME, a non-selective NO synthase (NOS) inhibitor, but not S-MT, a selective iNOS inhibitor, and increased coronary tone of control rats. In PTSD rats, both L-NAME and S-MT increased coronary tone. Therefore, the stress-induced coronary vasodilation resulted from NO overproduction by both iNOS and eNOS. NOS induction was apparently due to systemic inflammation as evidenced by increased serum interleukin-1β and C-reactive protein in PTSD rats. Decreased corticosterone in PTSD rats may have contributed to inflammation and its effect on coronary tone. PTSD was also associated with voltage-gated K + channel dysfunction, which would have also reduced coronary tone.

  5. Student Engagement with Feedback

    Science.gov (United States)

    Scott, Jon; Shields, Cathy; Gardner, James; Hancock, Alysoun; Nutt, Alex

    2011-01-01

    This report considers Biological Sciences students' perceptions of feedback, compared with those of the University as a whole, this includes what forms of feedback were considered most useful and how feedback used. Compared with data from previous studies, Biological Sciences students gave much greater recognition to oral feedback, placing it on a…

  6. Biogeomorphic feedbacks in the Southwestern USA: exploring the mechanisms of geomorphic change and the effectiveness of mitigation measures

    Science.gov (United States)

    Dean, D. J.; Diehl, R. M.; Topping, D. J.

    2017-12-01

    Water development and the proliferation of riparian plants have resulted in extensive geomorphic change to rivers worldwide. In many dryland rivers of the Southwestern U.S., these phenomena have contributed to conditions of sediment accumulation leading to channel narrowing, floodplain aggradation, and loss of fluvial habitat. Using a series of field and laboratory measurements, we demonstrate how biogeomorphic feedbacks have promoted channel contraction. Experimental evidence shows that vegetation can have a substantial effect on local hydraulics and sediment-transport fields, depending on plant morphology, but that the impact of plants on physical processes is mediated by flow and sediment supply. In the Little Colorado River in Arizona, water management practices, variations in climate/hydrology, and the resultant expansion of riparian vegetation have resulted in channel narrowing, increases in sinuosity and drag, and decreases in channel slope. These changes have created a biogeomorphic feedback by disrupting downstream flood conveyance; flood travel time has increased resulting in flow attenuation, declines in peak discharge, and continued sediment accumulation at large scales. In the Rio Grande in Big Bend National Park, channel narrowing and floodplain aggradation has led to the loss of channel capacity and an increase in overbank flooding even though discharges have declined. Vegetation expansion into channel environments has exacerbated this condition by reducing channel-margin flow velocities, increasing sediment deposition, and reducing bank erosion thereby creating a biogeomorphic feedback leading to additional narrowing. An understanding of the mechanisms that have driven geomorphic changes in river channels may help to formulate effective mitigation measures. Vegetation removal can have local and reach-scale effects on channel morphology; however, the effectiveness of these actions is dependent upon many variables including the flow regime and

  7. Regulatory Flexibility: An Individual Differences Perspective on Coping and Emotion Regulation.

    Science.gov (United States)

    Bonanno, George A; Burton, Charles L

    2013-11-01

    People respond to stressful events in different ways, depending on the event and on the regulatory strategies they choose. Coping and emotion regulation theorists have proposed dynamic models in which these two factors, the person and the situation, interact over time to inform adaptation. In practice, however, researchers have tended to assume that particular regulatory strategies are consistently beneficial or maladaptive. We label this assumption the fallacy of uniform efficacy and contrast it with findings from a number of related literatures that have suggested the emergence of a broader but as yet poorly defined construct that we refer to as regulatory flexibility. In this review, we articulate this broader construct and define both its features and limitations. Specifically, we propose a heuristic individual differences framework and review research on three sequential components of flexibility for which propensities and abilities vary: sensitivity to context, availability of a diverse repertoire of regulatory strategies, and responsiveness to feedback. We consider the methodological limitations of research on each component, review questions that future research on flexibility might address, and consider how the components might relate to each other and to broader conceptualizations about stability and change across persons and situations. © The Author(s) 2013.

  8. Cost-benefit considerations in regulatory decision-making

    International Nuclear Information System (INIS)

    Harvie, J.D.

    1996-01-01

    The Atomic Energy Control Board is investigating the feasibility of developing methods for factoring cost-benefit considerations into its regulatory decision-making. This initiative results, in part, from the federal government policy requiring cost-benefit considerations to be taken into account in regulatory processes, and from the recommendations of an Advisory Panel on Regulatory Review in 1993, submitted to the Minister of Natural Resources Canada. One of these recommendations stated: 'that mechanisms be developed to examine cost-benefit issues and work towards some consensus of opinion among stakeholders; a task force on the subject could be an appropriate starting point'. (author)

  9. MicroRNA miR-308 regulates dMyc through a negative feedback loop in Drosophila

    Directory of Open Access Journals (Sweden)

    Kaveh Daneshvar

    2012-10-01

    The abundance of Myc protein must be exquisitely controlled to avoid growth abnormalities caused by too much or too little Myc. An intriguing mode of regulation exists in which Myc protein itself leads to reduction in its abundance. We show here that dMyc binds to the miR-308 locus and increases its expression. Using our gain-of-function approach, we show that an increase in miR-308 causes a destabilization of dMyc mRNA and reduced dMyc protein levels. In vivo knockdown of miR-308 confirmed the regulation of dMyc levels in embryos. This regulatory loop is crucial for maintaining appropriate dMyc levels and normal development. Perturbation of the loop, either by elevated miR-308 or elevated dMyc, caused lethality. Combining elevated levels of both, therefore restoring balance between miR-308 and dMyc levels, resulted in lower apoptotic activity and suppression of lethality. These results reveal a sensitive feedback mechanism that is crucial to prevent the pathologies caused by abnormal levels of dMyc.

  10. Theoretical modeling of the feedback stabilization of external MHD modes of toroidal geometry

    International Nuclear Information System (INIS)

    Chance, M.S.; Chu, M.S.; Okabayashi, M.

    2001-01-01

    A theoretical framework for understanding the feedback mechanism against external MHD modes has been formulated. Efficient computational tools - the GATO stability code coupled with a substantially modified VACUUM code - have been developed to effectively design viable feedback systems against these modes. The analysis assumed a thin resistive shell and a feedback coil structure accurately modeled in θ, with only a single harmonic variation in φ. An optimized configuration and placement of the feedback and sensor coils as well as the time constants and induced currents in the enclosing resistive shell have been computed for the DIII-D device. Up to 90% of the effectiveness of an ideal wall can be achieved. (author)

  11. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    Science.gov (United States)

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  12. Transgenic Analysis of the Leishmania MAP Kinase MPK10 Reveals an Auto-inhibitory Mechanism Crucial for Stage-Regulated Activity and Parasite Viability

    DEFF Research Database (Denmark)

    Cayla, M.; Rachidi, N.; Leclercq, O.

    2014-01-01

    Protozoan pathogens of the genus Leishmania have evolved unique signaling mechanisms that can sense changes in the host environment and trigger adaptive stage differentiation essential for host cell infection. The signaling mechanisms underlying parasite development remain largely elusive even...... though Leishmania mitogen-activated protein kinases (MAPKs) have been linked previously to environmentally induced differentiation and virulence. Here, we unravel highly unusual regulatory mechanisms for Leishmania MAP kinase 10 (MPK10). Using a transgenic approach, we demonstrate that MPK10 is stage...... at position 395 that could be implicated in kinase regulation. Finally, we uncovered a feedback loop that limits MPK10 activity through dephosphorylation of the tyrosine residue of the TxY motif. Together our data reveal novel aspects of protein kinase regulation in Leishmania, and propose MPK10...

  13. Assessment of the quality of service provided by a national regulatory institution

    Directory of Open Access Journals (Sweden)

    Adetunji, O.

    2013-05-01

    Full Text Available Government institutions need to assess how well they meet the needs of their customers, and what their customers think about the quality of the services they provide. This is aligned with the Batho Pele principle of the South African government. The SERVQUAL scale, augmented with a qualitative survey, was used to determine how the National Home Builders Registration Council (NHBRC is perceived by its clients, which key factors drive such perceptions, and whether the perceptions are consistent across the different client groups of this regulatory institution. The complementary role of qualitative data in illuminating issues driving quantitative results is highlighted. Service quality scores are computed for the NHBRC. The convergence of opinions of different customer groups was studied using correlation analysis. The significance of service quality perception gaps was tested using the multivariate analysis of variance, and the reliability of the SERVQUAL scale was examined using exploratory factor analysis. It was observed that by improving the feedback mechanism of the NHBRC, their clients customer service quality perceptions could be enhanced.

  14. On the Dependence of Cloud Feedbacks on Physical Parameterizations in WRF Aquaplanet Simulations

    Science.gov (United States)

    Cesana, Grégory; Suselj, Kay; Brient, Florent

    2017-10-01

    We investigate the effects of physical parameterizations on cloud feedback uncertainty in response to climate change. For this purpose, we construct an ensemble of eight aquaplanet simulations using the Weather Research and Forecasting (WRF) model. In each WRF-derived simulation, we replace only one parameterization at a time while all other parameters remain identical. By doing so, we aim to (i) reproduce cloud feedback uncertainty from state-of-the-art climate models and (ii) understand how parametrizations impact cloud feedbacks. Our results demonstrate that this ensemble of WRF simulations, which differ only in physical parameterizations, replicates the range of cloud feedback uncertainty found in state-of-the-art climate models. We show that microphysics and convective parameterizations govern the magnitude and sign of cloud feedbacks, mostly due to tropical low-level clouds in subsidence regimes. Finally, this study highlights the advantages of using WRF to analyze cloud feedback mechanisms owing to its plug-and-play parameterization capability.

  15. Feedback stabilized tandem Fabry-Perot interferometer

    International Nuclear Information System (INIS)

    Fukushima, Hiroyuki; Ito, Mikio; Shirasu, Hiroshi.

    1986-01-01

    A new system for measuring the isotopic ratio of uranium, in which two plane-type Fabry-Perot interferometers (tandem FP) are connected in series. The parallelism between the two FPs is achieved automatically by a feedback control mechanism based on laser interference fringe monitoring. The structure of the tandem FP, feedback control system, automatic parallelism adjustment mechanism and wavelength synchronization mechanism are described in detail. For experiments, a hollow cathode discharge tube of a pulse discharge type is employed. Measurements are made to determine the effects of pulse width on the 238 U peak height of 502.7 nm line, recorder traces of 235 U and 238 U lines, half width for 238 U component of the 502.7 nm line, SN ratio, reproducibility of the 235 U/ 238 U peak height ratio and 235 U/ 238 U intensity ratio. Considerations are made on the spectral line width, contrast, transmission factor, and stability of automatic parallelism control and wavelength synchronization. Results obtained indicates that a single-type interferometer would serve adequately for measuring the 235 U/ 238 U ratio if the automatic parallelism control developed here is used. The ultimate object of the tandem system is to make measurement of 236 U. Satisfactory results have not obtained as yet, but most likely the present system would make it possible if a light source of a higher intensity and advanced photometric techniques are developed. (Nogami, K.)

  16. Feedback i matematik

    DEFF Research Database (Denmark)

    Sortkær, Bent

    2017-01-01

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hartberg, Dobson, & Gran, 2012; Hattie & Timperley, 2007; Wiliam, 2015). Dette på trods af, at flere forskere påpeger, at feedback ikke altid er læringsfremmende...... (Hattie & Gan, 2011), og nogle endda viser, at feedback kan have en negativ virkning i forhold til præstationer (Kluger & DeNisi, 1996). Artiklen vil undersøge disse tilsyneladende modstridende resultater ved at stille spørgsmålet: Under hvilke forudsætninger virker feedback i matematik læringsfremmende......? Dette gøres ved at dykke ned i forskningslitteraturen omhandlende feedback ud fra en række temaer for på den måde at besvare ovenstående spørgsmål....

  17. Single-temperature quantum engine without feedback control.

    Science.gov (United States)

    Yi, Juyeon; Talkner, Peter; Kim, Yong Woon

    2017-08-01

    A cyclically working quantum-mechanical engine that operates at a single temperature is proposed. Its energy input is delivered by a quantum measurement. The functioning of the engine does not require any feedback control. We analyze work, heat, and the efficiency of the engine for the case of a working substance that is governed by the laws of quantum mechanics and that can be adiabatically compressed and expanded. The obtained general expressions are exemplified for a spin in an adiabatically changing magnetic field and a particle moving in a potential with slowly changing shape.

  18. Feedback for Simulation-Based Procedural Skills Training: A Meta-Analysis and Critical Narrative Synthesis

    Science.gov (United States)

    Hatala, Rose; Cook, David A.; Zendejas, Benjamin; Hamstra, Stanley J.; Brydges, Ryan

    2014-01-01

    Although feedback has been identified as a key instructional feature in simulation based medical education (SBME), we remain uncertain as to the magnitude of its effectiveness and the mechanisms by which it may be effective. We employed a meta-analysis and critical narrative synthesis to examine the effectiveness of feedback for SBME procedural…

  19. Trainees' Perceptions of Feedback: Validity Evidence for Two FEEDME (Feedback in Medical Education) Instruments.

    Science.gov (United States)

    Bing-You, Robert; Ramesh, Saradha; Hayes, Victoria; Varaklis, Kalli; Ward, Denham; Blanco, Maria

    2018-01-01

    Construct: Medical educators consider feedback a core component of the educational process. Effective feedback allows learners to acquire new skills, knowledge, and attitudes. Learners' perceptions of feedback are an important aspect to assess with valid methods in order to improve the feedback skills of educators and the feedback culture. Although guidelines for delivering effective feedback have existed for several decades, medical students and residents often indicate that they receive little feedback. A recent scoping review on feedback in medical education did not reveal any validity evidence on instruments to assess learner's perceptions of feedback. The purpose of our study was to gather validity evidence on two novel FEEDME (Feedback in Medical Education) instruments to assess medical students' and residents' perceptions of the feedback that they receive. After the authors developed an initial instrument with 54 items, cognitive interviews with medical students and residents suggested that 2 separate instruments were needed, one focused on the feedback culture (FEEDME-Culture) and the other on the provider of feedback (FEEDME-Provider). A Delphi study with 17 medical education experts and faculty members assessed content validity. The response process was explored involving 31 medical students and residents at 2 academic institutions. Exploratory factor analysis and reliability analyses were performed on completed instruments. Two Delphi consultation rounds refined the wording of items and eliminated several items. Learners found both instruments easy and quick to answer; it took them less than 5 minutes to complete. Learners preferred an electronic format of the instruments over paper. Factor analysis revealed a two- and three-factor solution for the FEEDME-Culture and FEEDME-Provider instruments, respectively. Cronbach's alpha was greater than 0.80 for all factors. Items on both instruments were moderately to highly correlated (range, r = .3-.7). Our

  20. The Impact of Feedback on the Different Time Courses of Multisensory Temporal Recalibration

    Directory of Open Access Journals (Sweden)

    Matthew A. De Niear

    2017-01-01

    Full Text Available The capacity to rapidly adjust perceptual representations confers a fundamental advantage when confronted with a constantly changing world. Unexplored is how feedback regarding sensory judgments (top-down factors interacts with sensory statistics (bottom-up factors to drive long- and short-term recalibration of multisensory perceptual representations. Here, we examined the time course of both cumulative and rapid temporal perceptual recalibration for individuals completing an audiovisual simultaneity judgment task in which they were provided with varying degrees of feedback. We find that in the presence of feedback (as opposed to simple sensory exposure temporal recalibration is more robust. Additionally, differential time courses are seen for cumulative and rapid recalibration dependent upon the nature of the feedback provided. Whereas cumulative recalibration effects relied more heavily on feedback that informs (i.e., negative feedback rather than confirms (i.e., positive feedback the judgment, rapid recalibration shows the opposite tendency. Furthermore, differential effects on rapid and cumulative recalibration were seen when the reliability of feedback was altered. Collectively, our findings illustrate that feedback signals promote and sustain audiovisual recalibration over the course of cumulative learning and enhance rapid trial-to-trial learning. Furthermore, given the differential effects seen for cumulative and rapid recalibration, these processes may function via distinct mechanisms.

  1. α -Actinin TvACTN3 of Trichomonas vaginalis is an RNA-binding protein that could participate in its posttranscriptional iron regulatory mechanism.

    Science.gov (United States)

    Calla-Choque, Jaeson Santos; Figueroa-Angulo, Elisa Elvira; Ávila-González, Leticia; Arroyo, Rossana

    2014-01-01

    Trichomonas vaginalis is a sexually transmitted flagellated protist parasite responsible for trichomoniasis. This parasite is dependent on high levels of iron, favoring its growth and multiplication. Iron also differentially regulates some trichomonad virulence properties by unknown mechanisms. However, there is evidence to support the existence of gene regulatory mechanisms at the transcriptional and posttranscriptional levels that are mediated by iron concentration in T. vaginalis. Thus, the goal of this study was to identify an RNA-binding protein in T. vaginalis that interacts with the tvcp4 RNA stem-loop structure, which may participate in a posttranscriptional iron regulatory mechanism mediated by RNA-protein interactions. We performed RNA electrophoretic mobility shift assay (REMSA) and supershift, UV cross-linking, Northwestern blot, and western blot (WB) assays using cytoplasmic protein extracts from T. vaginalis with the tvcp4 RNA hairpin structure as a probe. We identified a 135-kDa protein isolated by the UV cross-linking assays as α-actinin 3 (TvACTN3) by MALDI-TOF-MS that was confirmed by LS-MS/MS and de novo sequencing. TvACTN3 is a cytoplasmic protein that specifically binds to hairpin RNA structures from trichomonads and humans when the parasites are grown under iron-depleted conditions. Thus, TvACTN3 could participate in the regulation of gene expression by iron in T. vaginalis through a parallel posttranscriptional mechanism similar to that of the IRE/IRP system.

  2. Skriftlig feedback i engelskundervisningen

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher

    2017-01-01

    The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools.......The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools....

  3. Flexible Multi-Bit Feedback Design for HARQ Operation of Large-Size Data Packets in 5G

    DEFF Research Database (Denmark)

    Khosravirad, Saeed; Mudolo, Luke; Pedersen, Klaus I.

    2017-01-01

    large-size data packet thanks to which the transmitter node can reduce the retransmission size to only include the initially failed segments of the packet. We study the effect of feedback size on retransmission efficiency through extensive link-level simulations over realistic channel models. Numerical......A reliable feedback channel is vital to report decoding acknowledgments in retransmission mechanisms such as the hybrid automatic repeat request (HARQ). While the feedback bits are known to be costly for the wireless link, a feedback message more informative than the conventional single......-bit feedback can increase resource utilization efficiency. Considering the practical limitations for increasing feedback message size, this paper proposes a framework for the design of flexible-content multi-bit feedback. The proposed design is capable of efficiently indicating the faulty segments of a failed...

  4. Enhancement of vegetation-rainfall feedbacks on the Australian summer monsoon by the Madden-Julian Oscillation

    Science.gov (United States)

    Notaro, Michael

    2018-01-01

    A regional climate modeling analysis of the Australian monsoon system reveals a substantial modulation of vegetation-rainfall feedbacks by the Madden Julian Oscillation (MJO), both of which operate at similar sub-seasonal time scales, as evidence that the intensity of land-atmosphere interactions is sensitive to the background atmospheric state. Based on ensemble experiments with imposed modification of northern Australian leaf area index (LAI), the atmospheric responses to LAI anomalies are composited for negative and positive modes of the propagating MJO. In the regional climate model (RCM), northern Australian vegetation feedbacks are characterized by evapotranspiration (ET)-driven rainfall responses, with the moisture feedback mechanism dominating over albedo and roughness feedback mechanisms. During November-April, both Tropical Rainfall Measuring Mission and RCM data reveal MJO's pronounced influence on rainfall patterns across northern Australia, tropical Indian Ocean, Timor Sea, Arafura Sea, and Gulf of Carpentaria, with the MJO dominating over vegetation feedbacks in terms of regulating monsoon rainfall variability. Convectively-active MJO phases support an enhancement of positive vegetation feedbacks on monsoon rainfall. While the MJO imposes minimal regulation of ET responses to LAI anomalies, the vegetation feedback-induced responses in precipitable water, cloud water, and rainfall are greatly enhanced during convectively-active MJO phases over northern Australia, which are characterized by intense low-level convergence and efficient precipitable water conversion. The sub-seasonal response of vegetation-rainfall feedback intensity to the MJO is complex, with significant enhancement of rainfall responses to LAI anomalies in February during convectively-active MJO phases compared to minimal modulation by the MJO during prior and subsequent calendar months.

  5. Feedback - fra et elevperspektiv

    DEFF Research Database (Denmark)

    Petersen, Benedikte Vilslev; Pedersen, Bent Sortkær

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hattie og Timperley, 2007). Andre studier er dog inde på at feedback ikke altid er læringsfremmende og nogle viser endda at feedback kan have en negativ virkning i...... forhold til præstationer (Kluger & DeNisi, 1996). I forsøget på at forklare hvordan og hvorfor feedback virker (forskelligt), er der undersøgt flere dimensioner og forhold omkring feedback (se bl.a. Black og Wiliam, 1998; Hattie og Timperley, 2007; Shute, 2008). Dog er der få studier der undersøger...... hvordan feedback opleves fra et elevperspektiv (Ruiz-Primo og Li, 2013). Samtidig er der i feedbacklitteraturen en mangel på kvalitative studier, der kommer tæt på fænomenet feedback, som det viser sig i klasserummet (Ruiz-Primo og Li, 2013) i naturlige omgivelser (Black og Wiliam, 1998), og hvordan...

  6. Eye movements in interception with delayed visual feedback.

    Science.gov (United States)

    Cámara, Clara; de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli

    2018-04-19

    The increased reliance on electronic devices such as smartphones in our everyday life exposes us to various delays between our actions and their consequences. Whereas it is known that people can adapt to such delays, the mechanisms underlying such adaptation remain unclear. To better understand these mechanisms, the current study explored the role of eye movements in interception with delayed visual feedback. In two experiments, eye movements were recorded as participants tried to intercept a moving target with their unseen finger while receiving delayed visual feedback about their own movement. In Experiment 1, the target randomly moved in one of two different directions at one of two different velocities. The delay between the participant's finger movement and movement of the cursor that provided feedback about the finger movements was gradually increased. Despite the delay, participants followed the target with their gaze. They were quite successful at hitting the target with the cursor. Thus, they moved their finger to a position that was ahead of where they were looking. Removing the feedback showed that participants had adapted to the delay. In Experiment 2, the target always moved in the same direction and at the same velocity, while the cursor's delay varied across trials. Participants still always directed their gaze at the target. They adjusted their movement to the delay on each trial, often succeeding to intercept the target with the cursor. Since their gaze was always directed at the target, and they could not know the delay until the cursor started moving, participants must have been using peripheral vision of the delayed cursor to guide it to the target. Thus, people deal with delays by directing their gaze at the target and using both experience from previous trials (Experiment 1) and peripheral visual information (Experiment 2) to guide their finger in a way that will make the cursor hit the target.

  7. Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.

    Science.gov (United States)

    Gibson, Alison; Artemiadis, Panagiotis

    2014-01-01

    As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.

  8. Feedback reliability calculation for an iterative block decision feedback equalizer

    OpenAIRE

    Huang, G; Nix, AR; Armour, SMD

    2009-01-01

    A new class of iterative block decision feedback equalizer (IB-DFE) was pioneered by Chan and Benvenuto. Unlike the conventional DFE, the IB-DFE is optimized according to the reliability of the feedback (FB) symbols. Since the use of the training sequence (TS) for feedback reliability (FBR) estimation lowers the bandwidth efficiency, FBR estimation without the need for additional TS is of considerable interest. However, prior FBR estimation is limited in the literature to uncoded M-ary phases...

  9. Dissociation between active and observational learning from positive and negative feedback in Parkinsonism.

    Science.gov (United States)

    Kobza, Stefan; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina; Südmeyer, Martin; Bellebaum, Christian

    2012-01-01

    Feedback to both actively performed and observed behaviour allows adaptation of future actions. Positive feedback leads to increased activity of dopamine neurons in the substantia nigra, whereas dopamine neuron activity is decreased following negative feedback. Dopamine level reduction in unmedicated Parkinson's Disease patients has been shown to lead to a negative learning bias, i.e. enhanced learning from negative feedback. Recent findings suggest that the neural mechanisms of active and observational learning from feedback might differ, with the striatum playing a less prominent role in observational learning. Therefore, it was hypothesized that unmedicated Parkinson's Disease patients would show a negative learning bias only in active but not in observational learning. In a between-group design, 19 Parkinson's Disease patients and 40 healthy controls engaged in either an active or an observational probabilistic feedback-learning task. For both tasks, transfer phases aimed to assess the bias to learn better from positive or negative feedback. As expected, actively learning patients showed a negative learning bias, whereas controls learned better from positive feedback. In contrast, no difference between patients and controls emerged for observational learning, with both groups showing better learning from positive feedback. These findings add to neural models of reinforcement-learning by suggesting that dopamine-modulated input to the striatum plays a minor role in observational learning from feedback. Future research will have to elucidate the specific neural underpinnings of observational learning.

  10. Feedback stabilization initiative

    International Nuclear Information System (INIS)

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes

  11. Feedback stabilization initiative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.

  12. Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kim Man-Sun

    2012-05-01

    Full Text Available Abstract Background Network motifs provided a “conceptual tool” for understanding the functional principles of biological networks, but such motifs have primarily been used to consider static network structures. Static networks, however, cannot be used to reveal time- and region-specific traits of biological systems. To overcome this limitation, we proposed the concept of a “spatiotemporal network motif,” a spatiotemporal sequence of network motifs of sub-networks which are active only at specific time points and body parts. Results On the basis of this concept, we analyzed the developmental gene regulatory network of the Drosophila melanogaster embryo. We identified spatiotemporal network motifs and investigated their distribution pattern in time and space. As a result, we found how key developmental processes are temporally and spatially regulated by the gene network. In particular, we found that nested feedback loops appeared frequently throughout the entire developmental process. From mathematical simulations, we found that mutual inhibition in the nested feedback loops contributes to the formation of spatial expression patterns. Conclusions Taken together, the proposed concept and the simulations can be used to unravel the design principle of developmental gene regulatory networks.

  13. Feedback matters current feedback practices in the EFL classroom

    CERN Document Server

    Reitbauer, Margit; Mercer, Sarah; Schumm-Fauster, Jennifer

    2013-01-01

    This varied collection of papers is concerned with feedback in the language learning context. With its blend of theoretical overviews, action research-based empirical studies and practical implications, this will be a valuable resource for all academics and practitioners concerned with generating feedback that matters.

  14. Epigenetic Regulatory Mechanisms Induced by Resveratrol

    Directory of Open Access Journals (Sweden)

    Guilherme Felipe Santos Fernandes

    2017-11-01

    Full Text Available Resveratrol (RVT is one of the main natural compounds studied worldwide due to its potential therapeutic use in the treatment of many diseases, including cancer, diabetes, cardiovascular diseases, neurodegenerative diseases and metabolic disorders. Nevertheless, the mechanism of action of RVT in all of these conditions is not completely understood, as it can modify not only biochemical pathways but also epigenetic mechanisms. In this paper, we analyze the biological activities exhibited by RVT with a focus on the epigenetic mechanisms, especially those related to DNA methyltransferase (DNMT, histone deacetylase (HDAC and lysine-specific demethylase-1 (LSD1.

  15. Regulatory dendritic cell therapy: from rodents to clinical application

    OpenAIRE

    Raïch-Regué, Dalia; Glancy, Megan; Thomson, Angus W.

    2013-01-01

    Dendritic cells (DC) are highly-specialized, bone marrow-derived antigen-presenting cells that induce or regulate innate and adaptive immunity. Regulatory or “tolerogenic” DC play a crucial role in maintaining self tolerance in the healthy steady-state. These regulatory innate immune cells subvert naïve or memory T cell responses by various mechanisms. Regulatory DC (DCreg) also exhibit the ability to induce or restore T cell tolerance in many animal models of autoimmune disease or transplant...

  16. AGN Feedback Compared: Jets versus Radiation

    Science.gov (United States)

    Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

    2018-03-01

    Feedback by Active Galactic Nuclei is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGN of 1043 and 1046 erg/s, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarifies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20% in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01 - 0.1 M⊙/yr, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGN modulate their own duty cycle in a feedback/feeding cycle.

  17. Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation.

    Science.gov (United States)

    Klink, P Christiaan; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R

    2017-07-05

    The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Formativ Feedback

    DEFF Research Database (Denmark)

    Hyldahl, Kirsten Kofod

    Denne bog undersøger, hvordan lærere kan anvende feedback til at forbedre undervisningen i klasselokalet. I denne sammenhæng har John Hattie, professor ved Melbourne Universitet, udviklet en model for feedback, hvilken er baseret på synteser af meta-analyser. I 2009 udgav han bogen "Visible...

  19. Feedback Loop Gains and Feedback Behavior (1996)

    DEFF Research Database (Denmark)

    Kampmann, Christian Erik

    2012-01-01

    Linking feedback loops and system behavior is part of the foundation of system dynamics, yet the lack of formal tools has so far prevented a systematic application of the concept, except for very simple systems. Having such tools at their disposal would be a great help to analysts in understanding...... large, complicated simulation models. The paper applies tools from graph theory formally linking individual feedback loop strengths to the system eigenvalues. The significance of a link or a loop gain and an eigenvalue can be expressed in the eigenvalue elasticity, i.e., the relative change...... of an eigenvalue resulting from a relative change in the gain. The elasticities of individual links and loops may be found through simple matrix operations on the linearized system. Even though the number of feedback loops can grow rapidly with system size, reaching astronomical proportions even for modest systems...

  20. Adaptive all the way down: building responsive materials from hierarchies of chemomechanical feedback.

    Science.gov (United States)

    Grinthal, Alison; Aizenberg, Joanna

    2013-09-07

    A living organism is a bundle of dynamic, integrated adaptive processes: not only does it continuously respond to constant changes in temperature, sunlight, nutrients, and other features of its environment, but it does so by coordinating hierarchies of feedback among cells, tissues, organs, and networks all continuously adapting to each other. At the root of it all is one of the most fundamental adaptive processes: the constant tug of war between chemistry and mechanics that interweaves chemical signals with endless reconfigurations of macromolecules, fibers, meshworks, and membranes. In this tutorial we explore how such chemomechanical feedback - as an inherently dynamic, iterative process connecting size and time scales - can and has been similarly evoked in synthetic materials to produce a fascinating diversity of complex multiscale responsive behaviors. We discuss how chemical kinetics and architecture can be designed to generate stimulus-induced 3D spatiotemporal waves and topographic patterns within a single bulk material, and how feedback between interior dynamics and surface-wide instabilities can further generate higher order buckling and wrinkling patterns. Building on these phenomena, we show how yet higher levels of feedback and spatiotemporal complexity can be programmed into hybrid materials, and how these mechanisms allow hybrid materials to be further integrated into multicompartmental systems capable of hierarchical chemo-mechano-chemical feedback responses. These responses no doubt represent only a small sample of the chemomechanical feedback behaviors waiting to be discovered in synthetic materials, and enable us to envision nearly limitless possibilities for designing multiresponsive, multifunctional, self-adapting materials and systems.

  1. Radiation and the regulatory landscape of neo{sup 2}-Darwinism

    Energy Technology Data Exchange (ETDEWEB)

    Rollo, C. David [Department of Biology, Life Sciences Building, 1280 Main St. West, Hamilton, Ont., Canada L8S 4K1 (Canada)]. E-mail: rollocd@mcmaster.ca

    2006-05-11

    Several recently revealed features of eukaryotic genomes were not predicted by earlier evolutionary paradigms, including the relatively small number of genes, the very large amounts of non-functional code and its quarantine in heterochromatin, the remarkable conservation of many functionally important genes across relatively enormous phylogenetic distances, and the prevalence of extra-genomic information associated with chromatin structure and histone proteins. All of these emphasize a paramount role for regulatory evolution, which is further reinforced by recent perspectives highlighting even higher-order regulation governing epigenetics and development (EVO-DEVO). Modern neo{sup 2}-Darwinism, with its emphasis on regulatory mechanisms and regulatory evolution provides new vision for understanding radiation biology, particularly because free radicals and redox states are central to many regulatory mechanisms and free radicals generated by radiation mimic and amplify endogenous signalling. This paper explores some of these aspects and their implications for low-dose radiation biology.

  2. Quantitative inference of dynamic regulatory pathways via microarray data

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2005-03-01

    Full Text Available Abstract Background The cellular signaling pathway (network is one of the main topics of organismic investigations. The intracellular interactions between genes in a signaling pathway are considered as the foundation of functional genomics. Thus, what genes and how much they influence each other through transcriptional binding or physical interactions are essential problems. Under the synchronous measures of gene expression via a microarray chip, an amount of dynamic information is embedded and remains to be discovered. Using a systematically dynamic modeling approach, we explore the causal relationship among genes in cellular signaling pathways from the system biology approach. Results In this study, a second-order dynamic model is developed to describe the regulatory mechanism of a target gene from the upstream causality point of view. From the expression profile and dynamic model of a target gene, we can estimate its upstream regulatory function. According to this upstream regulatory function, we would deduce the upstream regulatory genes with their regulatory abilities and activation delays, and then link up a regulatory pathway. Iteratively, these regulatory genes are considered as target genes to trace back their upstream regulatory genes. Then we could construct the regulatory pathway (or network to the genome wide. In short, we can infer the genetic regulatory pathways from gene-expression profiles quantitatively, which can confirm some doubted paths or seek some unknown paths in a regulatory pathway (network. Finally, the proposed approach is validated by randomly reshuffling the time order of microarray data. Conclusion We focus our algorithm on the inference of regulatory abilities of the identified causal genes, and how much delay before they regulate the downstream genes. With this information, a regulatory pathway would be built up using microarray data. In the present study, two signaling pathways, i.e. circadian regulatory

  3. Small RNA-Controlled Gene Regulatory Networks in Pseudomonas putida

    DEFF Research Database (Denmark)

    Bojanovic, Klara

    evolved numerous mechanisms to controlgene expression in response to specific environmental signals. In addition to two-component systems, small regulatory RNAs (sRNAs) have emerged as major regulators of gene expression. The majority of sRNAs bind to mRNA and regulate their expression. They often have...... multiple targets and are incorporated into large regulatory networks and the RNA chaper one Hfq in many cases facilitates interactions between sRNAs and their targets. Some sRNAs also act by binding to protein targets and sequestering their function. In this PhD thesis we investigated the transcriptional....... Detailed insights into the mechanisms through which P. putida responds to different stress conditions and increased understanding of bacterial adaptation in natural and industrial settings were gained. Additionally, we identified genome-wide transcription start sites, andmany regulatory RNA elements...

  4. Technologies for learner-centered feedback

    Directory of Open Access Journals (Sweden)

    Jane Costello

    2013-09-01

    Full Text Available As the number, type, and use of technologies to support learning increases, so do the opportunities for using these technologies for feedback. Learner-centered feedback is a core to the teaching-learning process. It is related to assessment in describing how learners perform in their learning, their gain in knowledge, skills, and attitudes. Feedback, types of feedback, guidelines for effective learner-centered feedback, and feedback’s relationship to assessment are presented. Methods of providing feedback, for example, automated, audio scribe pens, digital audio, etc., and the related technologies are described. Technologies that allow instructors to make informed decisions about the use of various methods for feedback are discussed.

  5. Regulatory immune cells and functions in autoimmunity and transplantation immunology.

    Science.gov (United States)

    Papp, Gabor; Boros, Peter; Nakken, Britt; Szodoray, Peter; Zeher, Margit

    2017-05-01

    In physiological circumstances, various tolerogenic mechanisms support the protection of self-structures during immune responses. However, quantitative and/or qualitative changes in regulatory immune cells and mediators can evoke auto-reactive immune responses, and upon susceptible genetic background, along with the presence of other concomitant etiological factors, autoimmune disease may develop. In transplant immunology, tolerogenic mechanisms are also critical, since the balance between of alloantigen-reactive effector cells and the regulatory immune cells will ultimately determine whether a graft is accepted or rejected. Better understanding of the immunological tolerance and the potential modulations of immune regulatory processes are crucial for developing effective therapies in autoimmune diseases as well as in organ transplantation. In this review, we focus on the novel insights regarding the impaired immune regulation and other relevant factors contributing to the development of auto-reactive and graft-reactive immune responses in autoimmune diseases and transplant rejection, respectively. We also address some promising approaches for modification of immune-regulatory processes and tolerogenic mechanisms in autoimmunity and solid organ transplantation, which may be beneficial in future therapeutic strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dual Nature of Translational Control by Regulatory BC RNAs ▿

    Science.gov (United States)

    Eom, Taesun; Berardi, Valerio; Zhong, Jun; Risuleo, Gianfranco; Tiedge, Henri

    2011-01-01

    In higher eukaryotes, increasing evidence suggests, gene expression is to a large degree controlled by RNA. Regulatory RNAs have been implicated in the management of neuronal function and plasticity in mammalian brains. However, much of the molecular-mechanistic framework that enables neuronal regulatory RNAs to control gene expression remains poorly understood. Here, we establish molecular mechanisms that underlie the regulatory capacity of neuronal BC RNAs in the translational control of gene expression. We report that regulatory BC RNAs employ a two-pronged approach in translational control. One of two distinct repression mechanisms is mediated by C-loop motifs in BC RNA 3′ stem-loop domains. These C-loops bind to eIF4B and prevent the factor's interaction with 18S rRNA of the small ribosomal subunit. In the second mechanism, the central A-rich domains of BC RNAs target eIF4A, specifically inhibiting its RNA helicase activity. Thus, BC RNAs repress translation initiation in a bimodal mechanistic approach. As BC RNA functionality has evolved independently in rodent and primate lineages, our data suggest that BC RNA translational control was necessitated and implemented during mammalian phylogenetic development of complex neural systems. PMID:21930783

  7. Corrective feedback, learner uptake, and feedback perception in a Chinese as a foreign language classroom

    Directory of Open Access Journals (Sweden)

    Tingfeng Fu

    2016-03-01

    Full Text Available The role of corrective feedback in second language classrooms has received considerable research attention in the past few decades. However, most of this research has been conducted in English-teaching settings, either ESL or EFL. This study examined teacher feedback, learner uptake as well as learner and teacher perception of feedback in an adult Chinese as a foreign language classroom. Ten hours of classroom interactions were videotaped, transcribed and coded for analysis. Lyster and Ranta’s (1997 coding system involving six types of feedback was initially used to identify feedback frequency and learner uptake. However, the teacher was found to use a number of additional feedback types. Altogether, 12 types of feedback were identified: recasts, delayed recasts, clarification requests, translation, metalinguistic feedback, elicitation, explicit correction, asking a direct question, repetition, directing question to other students, re-asks, and using L1-English. Differences were noted in the frequency of some of the feedback types as well as learner uptake compared to what had been reported in some previous ESL and EFL studies. With respect to the new feedback types, some led to noticeable uptake. As for the students’ and teacher’s perceptions, they did not match and both the teacher and the students were generally not accurate in perceiving the frequency of each feedback type. The findings are discussed in terms of the role of context in affecting the provision and effectiveness of feedback and its relationship to student and teacher perception of feedback.

  8. Multi-bunch Feedback Systems

    International Nuclear Information System (INIS)

    Lonza, M; Schmickler, H

    2014-01-01

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. We first introduce coupled-bunch instabilities, analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedback systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback systems. The main components of a feedback system and the related issues will also be analysed. Finally, we shall focus on digital feedback systems, their characteristics, and features, as well as on how they can be concretely exploited for both the optimization of feedback performance and for beam dynamics studies

  9. Behavioural feedback to risk variation ensues from unsatisfied appetency.

    Science.gov (United States)

    Dussault, C

    1996-07-01

    For a long time, but particularly since the last two decades, the phenomenon of behavioural feedback to risk variation, especially to highway safety measures, has been the subject of numerous papers and debates. It has been advanced that human behaviour ensues from the interaction between two motivational systems: (1) appetency, governed by a homeostasic mechanism, wherein the individual seeks to satisfy needs, and (2) aversion, guided by the principle of zero aversion, whereby the individual seeks to avoid aversive stimuli. When an individual considers the possibility of undertaking an action, he weighs the advantages (appetency) and the disavantages (aversion). If the appetency proves to be stronger than the aversion, the action is completed and ipso facto, the individual accepts the risk associated with it. In this article, it is suggested that the behavioural feedback following a variation in the risk (aversion) ensues from unsatisfied appetency. If the unsatisfied appetency is nil (the individual is already satisfied), a drop in the aversive constraint (e.g. lowered risk of an accident) will not cause any behavioural feedback. On the other hand, if there is an unsatisfied appetency (the individual is not fully satisfied), a drop in the aversive constraint will bring about behavioural feedback in proportion to the level of unsatisfied appetency. Cases in which behavioural feedback is likely to arise and the implications for public policy-making are briefly discussed.

  10. Synergy of feedback mechanisms in gene regulation systems with promoter and repressor transcription factors

    Czech Academy of Sciences Publication Activity Database

    Šrobár, Fedor

    2008-01-01

    Roč. 6, č. 1 (2008), s. 38-44 ISSN 1895-1082 Institutional research plan: CEZ:AV0Z20670512 Keywords : biophysics * feedback * signal flow graphs Subject RIV: BO - Biophysics Impact factor: 0.448, year: 2008

  11. Giving Feedback: Development of Scales for the Mum Effect, Discomfort Giving Feedback, and Feedback Medium Preference

    Science.gov (United States)

    Cox, Susie S.; Marler, Laura E.; Simmering, Marcia J.; Totten, Jeff W.

    2011-01-01

    Research in organizational behavior and human resources promotes the view that it is critical for managers to provide accurate feedback to employees, yet little research addresses rater tendencies (i.e., the "mum effect") and attitudes that influence how performance feedback is given. Because technology has changed the nature of…

  12. Effects of positive electrical feedback in the oscillating Belousov-Zhabotinsky reaction: Experiments and simulations

    International Nuclear Information System (INIS)

    Sriram, K.

    2006-01-01

    This paper describes both the experimental and numerical investigations on the effect of positive electrical feedback in the oscillating Belovsou-Zhabotinsky (BZ) reaction under batch conditions. Positive electrical feedback causes an increase in the amplitude and period of the oscillations with the corresponding increase of the feedback strength. Oregonator model with a positive feedback term suitably incorporated in one of the dynamical variables is used to account for these experimental observations. Further, the effect of positive feedback on the Hopf points are investigated numerically by constructing the bifurcation diagrams. In the absence of feedback, for a particular stoichiometric parameter, the model exhibits both supercritical and subcritical Hopf bifurcations with canard existing near the former Hopf point. In the presence of positive feedback it is observed that (i) both the Hopf points advances, (ii) the distance between the two Hopf points decreases linearly, while the period increases exponentially with the increase of feedback strength near the Hopf points, (iii) only supercritical Hopf point without canard survives for a very strong positive feedback strength and (iv) moderate feedback strength takes the system away from limit cycle to the canard regime. These observations are explained in terms of Field-Koeroes-Noyes mechanism of the Belousov-Zhabotinsky reaction. This may be the first instance where the advancement of Hopf points due to positive feedback is clearly shown

  13. Protein tyrosine phosphatases: regulatory mechanisms.

    NARCIS (Netherlands)

    den Hertog, J.; Ostman, A.; Bohmer, F.D.

    2008-01-01

    Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and

  14. Electrical stimulation of the substantia nigra reticulata : Detection of neuronal extracellular GABA in the ventromedial thalamus and its regulatory mechanism using microdialysis in awake rats

    NARCIS (Netherlands)

    Timmerman, W; Westerink, B.H.C.

    A combination of electrical stimulation and microdialysis was used to study the nigrothalamic gamma aminobutyric acid (GABA)ergic system and its regulatory mechanisms in awake rats. Extracellular GABA levels in the ventromedial nucleus of the thalamus were detected in S-min fractions collected

  15. The Role of Arctic Soils in the Permafrost – Climate Feedback

    International Nuclear Information System (INIS)

    Richter, A.

    2016-01-01

    The total organic carbon pool in arctic and boreal permafrost soils has been estimated to be about 1,760 Petagram (10"1"5 g) C, more than twice today’s atmospheric C pool and about half of the global soil carbon. A significant proportion of this C pool may be vulnerable to climate warming through permafrost thawing and subsequent decomposition by microorganisms. Thus, it has been suggested that permafrost soils may become a future source of CO_2 and CH_4 to the atmosphere and lead to a strong positive feedback to global warming (up to + 0.5 °C until 2200). I will present results from several projects that aimed at understanding the mechanisms behind the permafrost-climate feedback, by identifying the major soil organic matter (SOM) stabilization mechanisms of permafrost SOM. I will address a range of different mechanisms by which SOM can be protected from decomposition, such as unfavourable temperature and moisture regimes, physical protection by formation of organo-mineral associations and chemical recalcitrance of SOM. I will focus, however, on energy and nutrient constraints of heterotrophic microbial communities and their role in SOM decomposition. I will then show that the physiology of the tiniest organisms on Earth will ultimately determine the vulnerability of the global permafrost carbon pool and thus the global permafrost-climate feedback. (author)

  16. What higher education students do with teacher feedback: Feedback ...

    African Journals Online (AJOL)

    Writing pedagogy research has constantly maintained that feedback is 'an essential component of virtually every model of the writing process' (Hall, 1990: 43) as it motivates writers to improve their next draft. Feedback during the writing process improves not only student attitude to writing but writing performance if students ...

  17. Remembering Multiple Passwords by Way of Minimal-Feedback Hints

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2004-01-01

    Passwords are a prominent mechanism for user authentication but entail a conflict between ease of use and security in that passwords must be both easy to remember for the password holder and difficult to guess for everybody else. To support users in remembering their passwords minimal-feedback...

  18. The Clearing House on Operating Experience Feedback (CH-OEF)

    International Nuclear Information System (INIS)

    Tanarro Colodron, J.

    2016-01-01

    Full text: The Clearing House on Operating Experience Feedback (CH-OEF) is an online information system that contains three technical databases available only to registered users: 1) Operating Experience Feedback (OEF) records, containing information about events occurred at Nuclear Power Plants; 2) Nuclear Power Plant (NPP) records, containing technical details about NPPs; 3) Documents about operating experience, such as the Topical Operating Experience Reports (TOERs) and the quarterly reports on nuclear power plant events. The main objective of the information system is to develop communication, cooperation and sharing of operating experience amongst the national nuclear regulatory authorities participating in EU Clearinghouse network. The CH-OEF is essential for the preparation and dissemination of the quarterly reports on NPP events. These reports are published every three months and are intended to be complementary to other international reporting systems, containing mainly recent information publicly available. Only events that are considered to be likely to have lessons applicable to EU NPPs or with a real or potential impact on nuclear safety are addressed in the reports. The CH-OEF is a fundamental tool for their preparation, providing specific features for a more efficient sharing of information as well as for facilitating the related discussion and decision making. (author

  19. Positivity effect in healthy aging in observational but not active feedback-learning.

    Science.gov (United States)

    Bellebaum, Christian; Rustemeier, Martina; Daum, Irene

    2012-01-01

    The present study investigated the impact of healthy aging on the bias to learn from positive or negative performance feedback in observational and active feedback learning. In active learning, a previous study had already shown a negative learning bias in healthy seniors older than 75 years, while no bias was found for younger seniors. However, healthy aging is accompanied by a 'positivity effect', a tendency to primarily attend to stimuli with positive valence. Based on recent findings of dissociable neural mechanisms in active and observational feedback learning, the positivity effect was hypothesized to influence older participants' observational feedback learning in particular. In two separate experiments, groups of young (mean age 27) and older participants (mean age 60 years) completed an observational or active learning task designed to differentially assess positive and negative learning. Older but not younger observational learners showed a significant bias to learn better from positive than negative feedback. In accordance with previous findings, no bias was found for active learning. This pattern of results is discussed in terms of differences in the neural underpinnings of active and observational learning from performance feedback.

  20. Edge turbulence control on the KT-5C tokamak by feedback using electrostatic probes

    International Nuclear Information System (INIS)

    Zhai Kan; Wang Cheng; Wen Yizi; Yu Changxuan; Wan Shude; Liu Wandong; Xu Zhizhan

    1998-01-01

    Experiments on edge turbulence control have been performed on the KT-5C tokamak by feedback using two sets of electrostatic probes as the driving probe and detective probe. The results indicate that the feedback can enhance or reduce the turbulence amplitude depending upon the phase shift and gain of the feedback network. When the feedback with 90 degree phase shift and with certain loop gain is applied, the spectrum component of turbulence is reduced obviously and the fluctuation amplitude of the electron density and electron temperature become lower by about 25%. consistently the particle flux across the magnetic field induced by the electrostatic fluctuation also decreases by about 25%. On the other hand, the feedback with 0 degree or 180 degree or -90 degree phase shift can enhance the amplitude of the edge turbulence. These results indicate a nonlinear mechanism of the influence of feedback on the edge turbulence, which to some extent also reflect a specific nonlinear characteristic of the edge turbulence

  1. Age differences in feedback reactions: The roles of employee feedback orientation on social awareness and utility.

    Science.gov (United States)

    Wang, Mo; Burlacu, Gabriela; Truxillo, Donald; James, Keith; Yao, Xiang

    2015-07-01

    Organizations worldwide are currently experiencing shifts in the age composition of their workforces. The workforce is aging and becoming increasingly age-diverse, suggesting that organizational researchers and practitioners need to better understand how age differences may manifest in the workplace and the implications for human resource practice. Integrating socioemotional selectivity theory with the performance feedback literature and using a time-lagged design, the current study examined age differences in moderating the relationships between the characteristics of performance feedback and employee reactions to the feedback event. The results suggest that older workers had higher levels of feedback orientation on social awareness, but lower levels of feedback orientation on utility than younger workers. Furthermore, the positive associations between favorability of feedback and feedback delivery and feedback reactions were stronger for older workers than for younger workers, whereas the positive association between feedback quality and feedback reactions was stronger for younger workers than for older workers. Finally, the current study revealed that age-related differences in employee feedback orientation could explain the different patterns of relationships between feedback characteristics and feedback reactions across older and younger workers. These findings have both theoretical and practical implications for building theory about workplace aging and improving ways that performance feedback is managed across employees from diverse age groups. (c) 2015 APA, all rights reserved).

  2. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma.

    Science.gov (United States)

    Halwani, Rabih; Sultana, Asma; Vazquez-Tello, Alejandro; Jamhawi, Amer; Al-Masri, Abeer A; Al-Muhsen, Saleh

    2017-11-01

    In a subset of severe asthma patients, chronic airway inflammation is associated with infiltration of neutrophils, Th-17 cells and elevated expression of Th-17-derived cytokines (e.g., interleukin [IL]-17, IL-21, IL-22). Peripheral neutrophils from allergic asthmatics are known to express higher IL-17 cytokine levels than those from healthy subjects, but the regulatory mechanisms involved are not well understood. We hypothesize that Th-17 regulatory cytokines could modulate IL-17 expression in neutrophils. Peripheral blood neutrophils isolated from asthmatics were stimulated with IL-21, IL-23, and IL-6 cytokines and their ability to produce IL-17A and IL-17F was determined relative to healthy controls. Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels were measured in stimulated neutrophil using flow cytometry. The requirement for STAT3 phosphorylation was determined by blocking its activation using a specific chemical inhibitor. Stimulating asthmatic neutrophils with IL-21, 23, and 6 enhanced the production of IL-17A and IL-17F at significantly higher levels comparatively to healthy controls. Stimulating neutrophils with IL-21, IL-23, and IL-6 cytokines enhanced STAT3 phosphorylation, in all cases. Interestingly, inhibiting STAT3 phosphorylation using a specific chemical inhibitor dramatically blocked the ability of neutrophils to produce IL-17, demonstrating that STAT3 activation is the major factor mediating IL-17 gene expression. These findings suggest that neutrophil infiltration in lungs of severe asthmatics may represent an important source of pro-inflammatory IL-17A and -F cytokines, a production enhanced by Th-17 regulatory cytokines, and thus providing a feedback mechanism that sustains inflammation. Our results suggest that STAT3 pathway could be a potential target for regulating neutrophilic inflammation during severe asthma.

  3. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.

    Science.gov (United States)

    Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter

    2015-03-01

    Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation.

  4. Feedback in Clinical Education, Part I: Characteristics of Feedback Provided by Approved Clinical Instructors

    Science.gov (United States)

    Nottingham, Sara; Henning, Jolene

    2014-01-01

    Context Providing students with feedback is an important component of athletic training clinical education; however, little information is known about the feedback that Approved Clinical Instructors (ACIs; now known as preceptors) currently provide to athletic training students (ATSs). Objective To characterize the feedback provided by ACIs to ATSs during clinical education experiences. Design Qualitative study. Setting One National Collegiate Athletic Association Division I athletic training facility and 1 outpatient rehabilitation clinic that were clinical sites for 1 entry-level master's degree program accredited by the Commission on Accreditation of Athletic Training Education. Patients or Other Participants A total of 4 ACIs with various experience levels and 4 second-year ATSs. Data Collection and Analysis Extensive field observations were audio recorded, transcribed, and integrated with field notes for analysis. The constant comparative approach of open, axial, and selective coding was used to inductively analyze data and develop codes and categories. Member checking, triangulation, and peer debriefing were used to promote trustworthiness of the study. Results The ACIs gave 88 feedback statements in 45 hours and 10 minutes of observation. Characteristics of feedback categories included purpose, timing, specificity, content, form, and privacy. Conclusions Feedback that ACIs provided included several components that made each feedback exchange unique. The ACIs in our study provided feedback that is supported by the literature, suggesting that ACIs are using current recommendations for providing feedback. Feedback needs to be investigated across multiple athletic training education programs to gain more understanding of certain areas of feedback, including frequency, privacy, and form. PMID:24143902

  5. Driver feedback mobile APP

    Energy Technology Data Exchange (ETDEWEB)

    Soriguera Marti, F.; Miralles Miquel, E.

    2016-07-01

    This paper faces the human factor in driving and its consequences for road safety. It presents the concepts behind the development of a smartphone app capable of evaluating drivers’ performance. The app provides feedback to the driver in terms of a grade (between 0 and 10) depending on the aggressiveness and risks taken while driving. These are computed from the cumulative probability distribution function of the jerks (i.e. the time derivative of acceleration), which are measured using the smartphones’ accelerometer. Different driving contexts (e.g. urban, freeway, congestion, etc.) are identified applying cluster analysis to the measurements, and treated independently. Using regression analysis, the aggressiveness indicator is related to the drivers' safety records and to the probability of having an accident, through the standard DBQ - Driving Behavior Questionnaire. Results from a very limited pilot test show a strong correlation between the 99th percentile of the jerk measurements and the DBQ results. A linear model is fitted. This allows quantifying the safe driving behavior only from smartphone measurements. Finally, this indicator is translated into a normalized grade and feedback to the driver. This feedback will challenge the driver to train and to improve his performance. The phone will be blocked while driving and will incorporate mechanisms to prevent bad practices, like competition in aggressive driving. The app is intended to contribute to the improvement of road safety, one of the major public health problems, by tackling the human factor which is the trigger of the vast majority of traffic accidents. Making explicit and quantifying risky behaviors is the first step towards a safer driving. (Author)

  6. Social closeness and feedback modulate susceptibility to the framing effect.

    Science.gov (United States)

    Sip, Kamila E; Smith, David V; Porcelli, Anthony J; Kar, Kohitij; Delgado, Mauricio R

    2015-01-01

    Although we often seek social feedback (SFB) from others to help us make decisions, little is known about how SFB affects decisions under risk, particularly from a close peer. We conducted two experiments using an established framing task to probe how decision-making is modulated by SFB valence (positive, negative) and the level of closeness with feedback provider (friend, confederate). Participants faced mathematically equivalent decisions framed as either an opportunity to keep (gain frame) or lose (loss frame) part of an initial endowment. Periodically, participants were provided with positive (e.g., "Nice!") or negative (e.g., "Lame!") feedback about their choices. Such feedback was provided by either a confederate (Experiment 1) or a gender-matched close friend (Experiment 2). As expected, the framing effect was observed in both experiments. Critically, an individual's susceptibility to the framing effect was modulated by the valence of the SFB, but only when the feedback provider was a close friend. This effect was reflected in the activation patterns of ventromedial prefrontal cortex and posterior cingulate cortex, regions involved in complex decision-making. Taken together, these results highlight social closeness as an important factor in understanding the impact of SFB on neural mechanisms of decision-making.

  7. Pilot acute study of feedback-controlled retrograde peristalsis invoked by neural gastric electrical stimulation

    International Nuclear Information System (INIS)

    Aelen, P; Jurkov, A; Aulanier, A; Mintchev, M P

    2009-01-01

    Neural gastric electrical stimulation (NGES) is a new method for invoking gastric contractions under microprocessor control. However, optimization of this technique using feedback mechanisms to minimize power consumption and maximize effectiveness has been lacking. The present pilot study proposes a prototype feedback-controlled neural gastric electric stimulator for the treatment of obesity. Both force-based and inter-electrode impedance-based feedback neurostimulators were implemented and tested. Four mongrel dogs (2 M, 2 F, weight 14.9 ± 2.3 kg) underwent subserosal implantation of two-channel, 1 cm, bipolar electrode leads and two force transducers in the distal antrum. Two of the dogs were stimulated with a force feedback system utilizing the force transducers, and the other two animals were stimulated utilizing an inter-electrode impedance-based feedback system utilizing the proximal electrode leads. Both feedback systems were able to recognize erythromycin-driven contractions of the stomach and were capable of overriding them with NGES-invoked retrograde contractions which exceeded the magnitudes of the erythromycin-driven contractions by an average of 100.6 ± 33.5% in all animals. The NGES-invoked contractions blocked the erythromycin-driven contractions past the proximal electrode pair and induced temporary gastroparesis in the vicinity of the distal force transducer despite the continuing erythromycin infusion. The amplitudes of the erythromycin-invoked contractions in the vicinity of the proximal force transducer decreased abruptly by an average of 47.9 ± 6.3% in all four dogs after triggering-invoked retrograde contractions, regardless of the specific feedback-controlled mechanism. The proposed technique could be helpful for retaining food longer in the stomach, thus inducing early satiety and diminishing food intake

  8. [Integrative parent-infant psychotherapy for early regulatory and relationship disorders].

    Science.gov (United States)

    Papousek, Mechthild; de Chuquisengo, Ruth Wollwerth

    2006-01-01

    The author introduces both the concept and practice of Integrative Parent-Infant Psychotherapy (IPI-P), a treatment specifically designed for the most frequent developmental problems and psychological needs of infants and their parents. Based on growing knowledge from interdisciplinary infancy research, both basic and clinical, IPI-P has been developed and practised in the "Munich Interdisciplinary Research and Intervention Program" for early regulatory and relationship disorders since the early nineties. Preverbal parent-infant communication represents both the port of entry into the system and the main focus of diagnostics, developmental counselling, interaction guidance, or psychodynamic psychotherapy of distorted communication and distressed/disordered relationships. The method of videomicroanalysis during video-feedback with the parent has proven particularly efficient--while observing, reliving and working through brief episodes of recorded parent-infant interaction. The author illustrates the diagnostic and therapeutic procedures with excerpts from psychotherapy of a toddler with an age-specific regulatory disorder in the context of severely distressed primary relationships.

  9. Feedback and Incentives:

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie-Claire

    This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback about relative performance, feedback given halfway through the production period, and continuously updated feedba...... of positive peer effects since the underdogs almost never quit the competition even when lagging significantly behind, and frontrunners do not slack off. Moreover, in both pay schemes information feedback reduces the quality of the low performers' work....

  10. Brugbar peer feedback

    DEFF Research Database (Denmark)

    Hvass, Helle; Heger, Stine

    Studerende kan være medskabere af undervisning i akademisk skrivning, når de modtager og giver feedback til hinandens ufærdige akademiske tekster. Det ser vi i et udviklingsprojekt, hvor vi afprøver kollektive vejledningsformater. Vi har dog erfaret: 1. at studerende mangler træning i at give og ...... modtage feedback 2. at den manglende træning kan stå i vejen for realiseringen af læringspotentialet ved peer feedback....

  11. Regulatory focus affects physician risk tolerance.

    Science.gov (United States)

    Veazie, Peter J; McIntosh, Scott; Chapman, Benjamin P; Dolan, James G

    2014-01-01

    Risk tolerance is a source of variation in physician decision-making. This variation, if independent of clinical concerns, can result in mistaken utilization of health services. To address such problems, it will be helpful to identify nonclinical factors of risk tolerance, particularly those amendable to intervention-regulatory focus theory suggests such a factor. This study tested whether regulatory focus affects risk tolerance among primary care physicians. Twenty-seven primary care physicians were assigned to promotion-focused or prevention-focused manipulations and compared on the Risk Taking Attitudes in Medical Decision Making scale using a randomization test. Results provide evidence that physicians assigned to the promotion-focus manipulation adopted an attitude of greater risk tolerance than the physicians assigned to the prevention-focused manipulation (p = 0.01). The Cohen's d statistic was conventionally large at 0.92. Results imply that situational regulatory focus in primary care physicians affects risk tolerance and may thereby be a nonclinical source of practice variation. Results also provide marginal evidence that chronic regulatory focus is associated with risk tolerance (p = 0.05), but the mechanism remains unclear. Research and intervention targeting physician risk tolerance may benefit by considering situational regulatory focus as an explanatory factor.

  12. Global climate feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  13. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma

    Science.gov (United States)

    Drier, Yotam; Cotton, Matthew J.; Williamson, Kaylyn E.; Gillespie, Shawn M.; Ryan, Russell J.H.; Kluk, Michael J.; Carey, Christopher D.; Rodig, Scott J.; Sholl, Lynette M; Afrogheh, Amir H.; Faquin, William C.; Queimado, Lurdes; Qi, Jun; Wick, Michael J.; El-Naggar, Adel K.; Bradner, James E.; Moskaluk, Christopher A.; Aster, Jon C.; Knoechel, Birgit; Bernstein, Bradley E.

    2016-01-01

    Translocation events are frequent in cancer and may create chimeric fusions or ‘regulatory rearrangements’ that drive oncogene overexpression. Here we identify super-enhancer translocations that drive overexpression of the oncogenic transcription factor MYB as a recurrent theme in adenoid cystic carcinoma (ACC). Whole-genome sequencing data and chromatin maps reveal distinct chromosomal rearrangements that juxtapose super-enhancers to the MYB locus. Chromosome conformation capture confirms that the translocated enhancers interact with the MYB promoter. Remarkably, MYB protein binds to the translocated enhancers, creating a positive feedback loop that sustains its expression. MYB also binds enhancers that drive different regulatory programs in alternate cell lineages in ACC, cooperating with TP63 in myoepithelial cells and a Notch program in luminal epithelial cells. Bromodomain inhibitors slow tumor growth in ACC primagraft models in vivo. Thus, our study identifies super-enhancer translocations that drive MYB expression and provides insight into downstream MYB functions in the alternate ACC lineages. PMID:26829750

  14. Smart building temperature control using occupant feedback

    Science.gov (United States)

    Gupta, Santosh K.

    feedback signals, we propose a distributed solution, which ensures that a consensus is attained among all occupants upon convergence, irrespective of their temperature preferences being in coherence or conflicting. Occupants are only assumed to be rational, in that they choose their own temperature set-points so as to minimize their individual energy cost plus discomfort. We use Alternating Direction Method of Multipliers ( ADMM) to solve our consensus problem. We further establish the convergence of the proposed algorithm to the optimal thermal set point values that minimize the sum of the energy cost and the aggregate discomfort of all occupants in a multi-zone building. For simulating our consensus algorithm we use realistic building parameters based on the Watervliet test facility. The simulation study based on real world building parameters establish the validity of our theoretical model and provide insights on the dynamics of the system with a mobile user population. In the third part we present a game-theoretic (auction) mechanism, that requires occupants to "purchase" their individualized comfort levels beyond what is provided by default by the building operator. The comfort pricing policy, derived as an extension of Vickrey-Clarke-Groves (VCG) pricing, ensures incentive-compatibility of the mechanism, i.e., an occupant acting in self-interest cannot benefit from declaring their comfort function untruthfully, irrespective of the choices made by other occupants. The declared (or estimated) occupant comfort ranges (functions) are then utilized by the building operator---along with the energy cost information---to set the environment controls to optimally balance the aggregate discomfort of the occupants and the energy cost of the building operator. We use realistic building model and parameters based on our test facility to demonstrate the convergence of the actual temperatures in different zones to the desired temperatures, and provide insight to the pricing

  15. Building hospital capacity planning mechanisms in Poland: The impact of 2016/2017 regulatory changes.

    Science.gov (United States)

    Dubas-Jakóbczyk, Katarzyna; Sowada, Christoph; Domagała, Alicja; Więckowska, Barbara

    2018-02-07

    Capacity planning is a crucial component of modern health care governance. The aim of this paper is to analyze the requirements that need to be met to build effective hospital capacity planning mechanisms in Poland. In this context, the recent regulatory changes strongly influencing hospital sector functioning, including introduction of health care needs maps, capital investment assessment, and hospital network regulations, are analyzed. Some possible ways forward, based on review of international experiences in hospital capacity planning, are discussed. Applied methods include literature review and analysis of statistical data as well as desk analysis of key national regulations related to hospital sector. Results indicate that at the system level, the process of capacity planning involves 4 elements: capital investment in facilities, equipment, and technology; service delivery; allocation of staff; and financial resources. For hospital capacity planning to be effective, the strategic decision at the macrolevel must be complemented by appropriate management of individual hospitals. The major challenge of building hospital capacity planning mechanism in Poland is imbedding it into the overall health system strategy. Because of the lack of such a strategy, the practical implementation of the ad hoc changes, which have been introduced, shows some inconsistencies. The regulations implemented between 2016 and 2017 provided a basis for hospital capacity planning, yet still need evaluation and adjustments. Also, including a mechanism for human resources planning is of crucial importance. The regulations should provide incentives for reducing oversized hospital infrastructure with simultaneous development of the long-term and coordinated care models. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Hvad siger forskningen om feedback?

    DEFF Research Database (Denmark)

    Holdt Christensen, Peter

    2016-01-01

    Feedback skal serveres ligesom en gammeldags sandwich. Først lidt brød, så det lidt sejere kød og til sidst igen til lidt brød”. Sådan nogenlunde lyder en pragmatisk løsning på udfordringerne ved at give feedback. Når medarbejdere skal have negativ feedback, skal denne altså pakkes ind, så...... feedbacken indledes med let fordøjeligt positiv feedback, derefter kommer den negative – og noget sværere fordøjelige – feedback, og til sidst afrundes feedbacken med en god udgangsreplik, nemlig den positive feedback....

  17. Theory of feedback controlled brain stimulations for Parkinson's disease

    Science.gov (United States)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  18. A Regulatory RNA Inducing Transgenerationally Inherited Phenotypes

    DEFF Research Database (Denmark)

    Jensen, Lea Møller

    . The variation in Arabidopsis enables different regulatory networks and mechanisms to shape the phenotypic characteristics. The thesis describes the identification of regulatory RNA encoded by an enzyme encoding gene. The RNA regulates by inducing transgenerationally inherited phenotypes. The function of the RNA...... is dependent on the genetic background illustrating that polymorphisms are found in either interactors or target genes of the RNA. Furthermore, the RNA provides a mechanistic link between accumulation of glucosinolate and onset of flowering....

  19. Influence of feedback characteristics on perceived learning value of feedback in clerkships: does culture matter?

    Science.gov (United States)

    Suhoyo, Yoyo; Van Hell, Elisabeth A; Kerdijk, Wouter; Emilia, Ova; Schönrock-Adema, Johanna; Kuks, Jan B M; Cohen-Schotanus, Janke

    2017-04-05

    Various feedback characteristics have been suggested to positively influence student learning. It is not clear how these feedback characteristics contribute to students' perceived learning value of feedback in cultures classified low on the cultural dimension of individualism and high on power distance. This study was conducted to validate the influence of five feedback characteristics on students' perceived learning value of feedback in an Indonesian clerkship context. We asked clerks in Neurology (n = 169) and Internal Medicine (n = 132) to assess on a 5-point Likert scale the learning value of the feedback they received. We asked them to record whether the feedback provider (1) informed the student what went well, (2) mentioned which aspects of performance needed improvement, (3) compared the student's performance to a standard, (4) further explained or demonstrated the correct performance, and (5) prepared an action plan with the student to improve performance. Data were analyzed using multilevel regression. A total of 250 students participated in this study, 131 from Internal Medicine (response rate 99%) and 119 from Neurology (response rate 70%). Of these participants, 225 respondents (44% males, 56% females) completed the form and reported 889 feedback moments. Students perceived feedback as more valuable when the feedback provider mentioned their weaknesses (β = 0.153, p learning value of feedback. No gender differences were found for perceived learning value. In Indonesia, we could validate four out of the five characteristics for effective feedback. We argue that our findings relate to culture, in particular to the levels of individualism and power distance. The recognized characteristics of what constitutes effective feedback should be validated across cultures.

  20. Develop feedback system for intelligent dynamic resource allocation to improve application performance.

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, Ann C.; Brandt, James M.; Tucker, Thomas (Open Grid Computing, Inc., Austin, TX); Thompson, David

    2011-09-01

    This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the face of the ever increasing size and complexity of HPC systems.

  1. Development of the Teacher Feedback Observation Scheme: evaluating the quality of feedback in peer groups

    NARCIS (Netherlands)

    Thurlings, Marieke; Vermeulen, Marjan; Kreijns, Karel; Bastiaens, Theo; Stijnen, Sjef

    2018-01-01

    Research suggests that feedback is an essential element in learning. This study focuses on feedback that teachers provide in reciprocal peer groups to improve their performance in the classroom. The Teacher Feedback Observation Scheme (TFOS) was developed to identify feedback patterns, which

  2. Feedback System Theory

    Science.gov (United States)

    1978-11-01

    R 2. GOVT A $ SION NO. 3 RIEqLPýIVT’S.;TALOG NUMBER r/ 4. TITLE (and wbiFflT, -L M4 1 , FEEDBACK SYSTEM THEORY ~r Inter in- 6. PERFORMING ORG. REPORT...ANNUAL REPORT FEEDBACK SYSTEM THEORY AFOSR GRANT NO. 76-2946B Air Force Office of Scientific Research for year ending October 31, 1978 79 02 08 L|I...re less stringent than in other synthesis techniques which cannot handle significant parameter uncertainty. _I FEEDBACK SYSTEM THEORY 1. Introduction

  3. Regulatory governance of telecommunications liberalisation in Taiwan

    International Nuclear Information System (INIS)

    Cheng, Kuo-Tai; Hebenton, Bill

    2008-01-01

    This paper examines the changing role of government and market in regulating the telecommunications sector from since 1996 in Taiwan. It contextualises the theoretical aspects of regulatory governance for institutional design and practices, and reviews the concepts and mechanisms for appraising privatisation and regulatory systems. Using a conceptual framework for researching privatisation and regulation, it describes the process and issues pertinent to telecommunications liberalisation and privatisation in Taiwan, supported by a brief presentation of theoretical points of view as well as practitioners' views. The paper presents results concerning criteria for appraising privatisation and regulatory governance and considers policy lessons that can be learned from the experiences of the Taiwanese telecommunications sector's liberalisation. (author)

  4. Regulatory governance of telecommunications liberalisation in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kuo-Tai [Department of Regional Studies in Humanity and Social Sciences, National Hsin-Chu University of Education, No. 521 Nan-Da Road, Hsin-Chu 300 (China); Hebenton, Bill [School of Law, University of Manchester, M13 9PP (United Kingdom)

    2008-12-15

    This paper examines the changing role of government and market in regulating the telecommunications sector from since 1996 in Taiwan. It contextualises the theoretical aspects of regulatory governance for institutional design and practices, and reviews the concepts and mechanisms for appraising privatisation and regulatory systems. Using a conceptual framework for researching privatisation and regulation, it describes the process and issues pertinent to telecommunications liberalisation and privatisation in Taiwan, supported by a brief presentation of theoretical points of view as well as practitioners' views. The paper presents results concerning criteria for appraising privatisation and regulatory governance and considers policy lessons that can be learned from the experiences of the Taiwanese telecommunications sector's liberalisation. (author)

  5. The role of the regulator in promoting and evaluating safety culture. Operating experience feedback programme approach

    International Nuclear Information System (INIS)

    Perez, S.

    2002-01-01

    Promoting and Evaluating Safety Culture (S.C.) in Operating Organizations must be one of the main Nuclear Regulator goals to achieve. This can be possible only if each and every one of the regulatory activities inherently involves S.C. It can be seen throughout attitudes, values, uses and practices in both individuals and the whole regulatory organization. One among all the regulatory tools commonly used by regulators to promote and evaluate the commitment of the licensees with safety culture as a whole involves organizational factors and particular attention is directed to the operating organization. This entailed a wide range of activities, including all those related with management of safety performance. Operating Experience Feedback Programme as a tool to enhance safety operation is particularly useful for regulators in the evaluation of the role of S.C. in operating organization. Safety Culture is recognized as a subset of the wider Organizational Culture. Practices that improve organizational effectiveness can also contribute to enhance safety. An effective event investigation methodology is a specific practice, which contributes to a healthy Safety Culture. (author)

  6. Construction and modelling of an inducible positive feedback loop stably integrated in a mammalian cell-line.

    Directory of Open Access Journals (Sweden)

    Velia Siciliano

    2011-06-01

    Full Text Available Understanding the relationship between topology and dynamics of transcriptional regulatory networks in mammalian cells is essential to elucidate the biology of complex regulatory and signaling pathways. Here, we characterised, via a synthetic biology approach, a transcriptional positive feedback loop (PFL by generating a clonal population of mammalian cells (CHO carrying a stable integration of the construct. The PFL network consists of the Tetracycline-controlled transactivator (tTA, whose expression is regulated by a tTA responsive promoter (CMV-TET, thus giving rise to a positive feedback. The same CMV-TET promoter drives also the expression of a destabilised yellow fluorescent protein (d2EYFP, thus the dynamic behaviour can be followed by time-lapse microscopy. The PFL network was compared to an engineered version of the network lacking the positive feedback loop (NOPFL, by expressing the tTA mRNA from a constitutive promoter. Doxycycline was used to repress tTA activation (switch off, and the resulting changes in fluorescence intensity for both the PFL and NOPFL networks were followed for up to 43 h. We observed a striking difference in the dynamics of the PFL and NOPFL networks. Using non-linear dynamical models, able to recapitulate experimental observations, we demonstrated a link between network topology and network dynamics. Namely, transcriptional positive autoregulation can significantly slow down the "switch off" times, as compared to the non-autoregulated system. Doxycycline concentration can modulate the response times of the PFL, whereas the NOPFL always switches off with the same dynamics. Moreover, the PFL can exhibit bistability for a range of Doxycycline concentrations. Since the PFL motif is often found in naturally occurring transcriptional and signaling pathways, we believe our work can be instrumental to characterise their behaviour.

  7. Construction and modelling of an inducible positive feedback loop stably integrated in a mammalian cell-line.

    Science.gov (United States)

    Siciliano, Velia; Menolascina, Filippo; Marucci, Lucia; Fracassi, Chiara; Garzilli, Immacolata; Moretti, Maria Nicoletta; di Bernardo, Diego

    2011-06-01

    Understanding the relationship between topology and dynamics of transcriptional regulatory networks in mammalian cells is essential to elucidate the biology of complex regulatory and signaling pathways. Here, we characterised, via a synthetic biology approach, a transcriptional positive feedback loop (PFL) by generating a clonal population of mammalian cells (CHO) carrying a stable integration of the construct. The PFL network consists of the Tetracycline-controlled transactivator (tTA), whose expression is regulated by a tTA responsive promoter (CMV-TET), thus giving rise to a positive feedback. The same CMV-TET promoter drives also the expression of a destabilised yellow fluorescent protein (d2EYFP), thus the dynamic behaviour can be followed by time-lapse microscopy. The PFL network was compared to an engineered version of the network lacking the positive feedback loop (NOPFL), by expressing the tTA mRNA from a constitutive promoter. Doxycycline was used to repress tTA activation (switch off), and the resulting changes in fluorescence intensity for both the PFL and NOPFL networks were followed for up to 43 h. We observed a striking difference in the dynamics of the PFL and NOPFL networks. Using non-linear dynamical models, able to recapitulate experimental observations, we demonstrated a link between network topology and network dynamics. Namely, transcriptional positive autoregulation can significantly slow down the "switch off" times, as compared to the non-autoregulated system. Doxycycline concentration can modulate the response times of the PFL, whereas the NOPFL always switches off with the same dynamics. Moreover, the PFL can exhibit bistability for a range of Doxycycline concentrations. Since the PFL motif is often found in naturally occurring transcriptional and signaling pathways, we believe our work can be instrumental to characterise their behaviour.

  8. THEORETICAL MODELING OF THE FEEDBACK STABILIZATION OF EXTERNAL MHD MODES IN TOROIDAL GEOMETRY

    International Nuclear Information System (INIS)

    CHANCE, M.S.; CHU, M.S.; OKABAYASHI, M.; TURNBULL, A.D.

    2001-02-01

    OAK-B135 A theoretical framework for understanding the feedback mechanism against external MHD modes has been formulated. Efficient computational tools--the GATO stability code coupled with a substantially modified VACUUM code--have been developed to effectively design viable feedback systems against these modes. The analysis assumed a thin resistive shell and a feedback coil structure accurately modeled in θ, with only a single harmonic variation in φ. Time constants and induced currents in the enclosing resistive shell are calculated. An optimized configuration based on an idealized model have been computed for the DIII-D device. Up to 90% of the effectiveness of an ideal wall can be achieved

  9. AGN feedback compared: jets versus radiation

    Science.gov (United States)

    Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

    2018-06-01

    Feedback by active galactic nuclei (AGNs) is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM (interstellar medium) interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGNs of 1043 and 1046 erg s-1, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarefies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20 {per cent} in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01-0.1 M⊙ yr-1, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGNs modulate their own duty cycle in a feedback/feeding cycle.

  10. As to achieve regulatory action, regulatory approaches

    International Nuclear Information System (INIS)

    Cid, R.; Encinas, D.

    2014-01-01

    The achievement of the effectiveness in the performance of a nuclear regulatory body has been a permanent challenge in the recent history of nuclear regulation. In the post-Fukushima era this challenge is even more important. This article addresses the subject from two complementary points of view: the characteristics of an effective regulatory body and the regulatory approaches. This work is based on the most recent studies carried out by the Committee on Nuclear Regulatory Activities, CNRA (OECD/NEA), as well as on the experience of the Consejo de Seguridad Nuclear, CSN, the Spanish regulatory body. Rafael Cid is the representative of CSN in these project: Diego Encinas has participated in the study on regulatory approaches. (Author)

  11. The Mythology of Feedback

    Science.gov (United States)

    Adcroft, Andy

    2011-01-01

    Much of the general education and discipline-specific literature on feedback suggests that it is a central and important element of student learning. This paper examines feedback from a social process perspective and suggests that feedback is best understood through an analysis of the interactions between academics and students. The paper argues…

  12. From Static Output Feedback to Structured Robust Static Output Feedback: A Survey

    OpenAIRE

    Sadabadi , Mahdieh ,; Peaucelle , Dimitri

    2016-01-01

    This paper reviews the vast literature on static output feedback design for linear time-invariant systems including classical results and recent developments. In particular, we focus on static output feedback synthesis with performance specifications, structured static output feedback, and robustness. The paper provides a comprehensive review on existing design approaches including iterative linear matrix inequalities heuristics, linear matrix inequalities with rank constraints, methods with ...

  13. Feedback as Real-Time Constructions

    Science.gov (United States)

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  14. Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior.

    Science.gov (United States)

    Tops, Sanne; Habel, Ute; Radke, Sina

    2018-03-12

    Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles. Copyright © 2018. Published by Elsevier Inc.

  15. Ambulatory Feedback System

    Science.gov (United States)

    Finger, Herbert; Weeks, Bill

    1985-01-01

    This presentation discusses instrumentation that will be used for a specific event, which we hope will carry on to future events within the Space Shuttle program. The experiment is the Autogenic Feedback Training Experiment (AFTE) scheduled for Spacelab 3, currently scheduled to be launched in November, 1984. The objectives of the AFTE are to determine the effectiveness of autogenic feedback in preventing or reducing space adaptation syndrome (SAS), to monitor and record in-flight data from the crew, to determine if prediction criteria for SAS can be established, and, finally, to develop an ambulatory instrument package to mount the crew throughout the mission. The purpose of the Ambulatory Feedback System (AFS) is to record the responses of the subject during a provocative event in space and provide a real-time feedback display to reinforce the training.

  16. Feedback på tekst i grupper

    DEFF Research Database (Denmark)

    Hvass, Helle; Heger, Stine

    2017-01-01

    med temaet Feedback på tekst i grupper er via aktiviteter at gøre de studerende bevidste om, at feedback er noget, de skal lære, og noget, de skal øve sig på. De forskellige aktiviteter sætter de studerende i gang med at skabe rammer for feedback, at træne feedback og at give og modtage feedback på...... hinandens tekster. Temaet er bygget op omkring 2 forskellige elementer: 1) forberedelse af feedback og 2) udførelse af feedback....

  17. Understanding feedback: A learning theory perspective

    NARCIS (Netherlands)

    Thurlings, Marieke; Vermeulen, Marjan; Bastiaens, Theo; Stijnen, Sjef

    2018-01-01

    This article aims to review literature on feedback to teachers. Because research has hardly focused on feedback among teachers, the review’s scope also includes feedback in class- rooms. The review proposes that the effectiveness of feedback and feedback processes depend on the learning theory

  18. The basis for cosmic ray feedback: Written on the wind

    Science.gov (United States)

    Zweibel, Ellen G.

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  19. Styrket feedback gennem studerendes selvevaluering

    DEFF Research Database (Denmark)

    Andersen, Lars Bo

    2016-01-01

    Studerende er ofte utilfredse med såvel kvaliteten som kvantiteten af feedback på skriftligt arbejde. Ligeledes kan det som underviser være svært at afgive feedback, der tager udgangspunkt i de studerendes respektive læringssituationer, hvis man ikke har andet afsæt end opgavetekster. Denne artikel...... beskriver derfor to eksperimenter med brug af selvevaluering som kvalificerende mellemled i ekstern feedback på skriveøvelser. Eksperimenternes formål er at styrke den formative læring ved skriftligt arbejde. I det første eksperiment bestod feedbacken af underviser-feedback, mens det andet eksperiment...... indebar peer-feedback og fælles feedback. I begge tilfælde blev selvevalueringen foretaget med udgangspunkt i en kriteriebaseret retteguide. Eksperimenterne medførte, at den eksterne feedback blev målrettet og kvalificeret i forhold til den enkelte studerende, mens selve skriveprocessen mod forventning...

  20. Feedbacks between air pollution and weather, part 2: Effects on chemistry

    Science.gov (United States)

    Makar, P. A.; Gong, W.; Hogrefe, C.; Zhang, Y.; Curci, G.; Žabkar, R.; Milbrandt, J.; Im, U.; Balzarini, A.; Baró, R.; Bianconi, R.; Cheung, P.; Forkel, R.; Gravel, S.; Hirtl, M.; Honzak, L.; Hou, A.; Jiménez-Guerrero, P.; Langer, M.; Moran, M. D.; Pabla, B.; Pérez, J. L.; Pirovano, G.; San José, R.; Tuccella, P.; Werhahn, J.; Zhang, J.; Galmarini, S.

    2015-08-01

    were shown to be strongly impacted by the presence or absence of feedback mechanisms in the model simulations. Summertime model performance for ozone and other gases was improved through the inclusion of indirect effect feedbacks, while performance for particulate matter was degraded, suggesting that current parameterizations for in- and below cloud processes, once the cloud locations become more directly influenced by aerosols, may over- or under-predict the strength of these processes. Process parameterization-level comparisons of fully coupled feedback models are therefore recommended for future work, as well as further studies using these models for the simulations of large scale urban/industrial and/or forest fire plumes.

  1. Operating experience feedback report: Progress in scram reduction: Commercial power reactors

    International Nuclear Information System (INIS)

    Bell, L.G.; O'Reilly, P.D.

    1989-03-01

    This report documents the results of a trends and patterns analysis of unplanned reactor scrams at commercial US nuclear power reactors from January 1, 1984 to January 1, 1988. Major objectives of this report prepared by the Nuclear Regulatory Commission's (NRC's) Office for Analysis and Evaluation of Operational Data (AEOD) are to: (1) provide feedback of operational experience regarding reactor scram trends in support of the Commission's Strategic Goals, (2) examine the causes of unplanned scrams, and (3) examine the relationship between the causes of unplanned scrams and industry initiatives undertaken to reduce the frequency of unplanned scrams, especially with a view to the potential for future scram rate reduction. 31 refs., 14 figs., 49 tabs

  2. The Effect of Combination of Video Feedback and Audience Feedback on Social Anxiety: Preliminary Findings.

    Science.gov (United States)

    Chen, Junwen; Mak, Rebecca; Fujita, Satoko

    2015-09-01

    Although video feedback (VF) is shown to improve appraisals of social performance in socially anxious individuals, its impact on state anxiety during a social situation is mixed. The current study investigated the effect of combined video feedback and audience feedback (AF) on self-perceptions of performance and bodily sensations as well as state anxiety pertaining to a speech task. Forty-one socially anxious students were randomly allocated to combined video feedback with audience feedback (VF + AF), video feedback only (VF), audience feedback only (AF), or a control condition. Following a 3-min speech, participants in the VF + AF, VF, and AF conditions watched the videotape of their speech with cognitive preparation in the presence of three confederates who served as audience, and/or received feedback from the confederates, while the control group watched their videotaped speech without cognitive preparation. Both VF + AF and AF conditions improved distorted appraisal of performance and bodily sensations as well as state anxiety. The clinical implications of these findings are discussed. © The Author(s) 2015.

  3. Transient feedback from fuel motion in metal IFR [Integral Fast Reactor] fuel

    International Nuclear Information System (INIS)

    Rhodes, E.A.; Stanford, G.S.; Regis, J.P.; Bauer, T.H.; Dickerman, C.E.

    1990-01-01

    Results from hodoscope data analyses are presented for TREAT transient-overpower tests M5 through M7 with emphasis on transient feedback mechanisms, including prefailure expansion at the tops of the fuel pins, subsequent dispersive axial fuel motion, and losses in relative worth of the fuel pins during the tests. Tests M5 and M6 were the first TOP tests of margin to cladding branch and prefailure elongation of D9-clad ternary (U-Pu-Zr) IFR-type fuel. Test M7 extended these results to high-burnup fuel and also initiated transient testing of HT9-clad binary (U-Zr) FFTF-driver fuel. Results show significant prefailure negative reactivity feedback and strongly negative feedback from fuel driven to failure. 4 refs., 6 figs

  4. LHC beam stability and feedback control

    International Nuclear Information System (INIS)

    Steinhagen, Ralph

    2007-01-01

    -integral (PI) controller that is extended by an internal Smith-Predictor and so called anti-windup mechanism in order to compensate the deteriorating effects of non-linearities due to the current rate limiter and inevitable dead times in the system. The predictor logic has been derived using Youla's affine parameterisation enables to adjust the effective feedback bandwidth through a single parameter. A real-time 'testbed' complementary to the feedback controller has been developed to test part of the controller logic and its components prior to LHC commissioning. (orig.)

  5. The Impact of Observed Vegetation Changes on Land–Atmosphere Feedbacks During Drought

    KAUST Repository

    Meng, X. H.

    2014-04-01

    Moderate Resolution Imaging Spectroradiometer (MODIS)-derived vegetation fraction data were used to update the boundary conditions of the advanced research Weather Research and Forecasting (WRF) Model to assess the influence of realistic vegetation cover on climate simulations in southeast Australia for the period 2000–08. Results show that modeled air temperature was improved when MODIS data were incorporated, while precipitation changes little with only a small decrease in the bias. Air temperature changes in different seasons reflect the variability of vegetation cover well, while precipitation changes have a more complicated relationship to changes in vegetation fraction. Both MODIS and climatology-based simulation experiments capture the overall precipitation changes, indicating that precipitation is dominated by the large-scale circulation, with local vegetation changes contributing variations around these. Simulated feedbacks between vegetation fraction, soil moisture, and drought over southeast Australia were also investigated. Results indicate that vegetation fraction changes lag precipitation reductions by 6–8 months in nonarid regions. With the onset of the 2002 drought, a potential fast physical mechanism was found to play a positive role in the soil moisture–precipitation feedback, while a slow biological mechanism provides a negative feedback in the soil moisture–precipitation interaction on a longer time scale. That is, in the short term, a reduction in soil moisture leads to a reduction in the convective potential and, hence, precipitation, further reducing the soil moisture. If low levels of soil moisture persist long enough, reductions in vegetation cover and vigor occur, reducing the evapotranspiration and thus reducing the soil moisture decreases and dampening the fast physical feedback. Importantly, it was observed that these feedbacks are both space and time dependent.

  6. Soft pneumatic actuator skin with piezoelectric sensors for vibrotactile feedback

    Directory of Open Access Journals (Sweden)

    Harshal Arun Sonar

    2016-01-01

    Full Text Available The latest wearable technologies demand more intuitive and sophisticated interfaces for communication, sensing, and feedback closer to the body. Evidently, such interfaces require flexibility and conformity without losing their functionality even on rigid surfaces. Although there has been various research efforts in creating tactile feedback to improve various haptic interfaces and master-slave manipulators, we are yet to see a comprehensive device that can both supply vibratory actuation and tactile sensing. This paper describes a soft pneumatic actuator (SPA based, SPA-skin prototype that allows bidirectional tactile information transfer to facilitate simpler and responsive wearable interface. We describe the design and fabrication of a 1.4 mm-thick vibratory SPA - skin that is integrated with piezoelectric sensors. We examine in detail the mechanical performance compared to the SPA model and the sensitivity of the sensors for the application in vibrotactile feedback. Experimental findings show that this ultra-thin SPA and the unique integration process of the discrete lead zirconate titanate (PZT based piezoelectric sensors achieve high resolution of soft contact sensing as well as accurate control on vibrotactile feedback by closing the control loop.

  7. Modular arrangement of regulatory RNA elements.

    Science.gov (United States)

    Roßmanith, Johanna; Narberhaus, Franz

    2017-03-04

    Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed.

  8. Local orbit feedback

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Critically aligned experiments are sensitive to small changes in the electron beam orbit. At the NSLS storage rings, the electron beam and photon beam motions have been monitored over the past several years. In the survey conducted in 1986 by the NSLS Users Executive Committee, experimenters requested the vertical beam position variation and the vertical angle variation, within a given fill, remain within 10 μm and 10 μr, respectively. This requires improvement in the beam stability by about one order of magnitude. At the NSLS and SSRL storage rings, the beam that is originally centered on the position monitor by a dc orbit correction is observed to have two kinds of motion: a dc drift over a storage period of several hours and a beam bounce about its nominal position. These motions are a result of the equilibrium orbit not being held perfectly stable due to time-varying errors introduced into the magnetic guide field by power supplies, mechanical vibration of the magnets, cooling water temperature variations, etc. The approach to orbit stabilization includes (1) identifying and suppressing as many noise sources on the machine as possible, (2) correcting the beam position globally (see Section 6) by controlling a number of correctors around the circumference of the machine, and (3) correcting the beam position and angle at a given source location by position feedback using local detectors and local orbit bumps. The third approach, called Local Orbit Feedback will be discussed in this section

  9. Feedback is good or bad? Medical residents’ points of view on feedback in clinical education

    Directory of Open Access Journals (Sweden)

    LEILA BAZRAFKAN

    2013-04-01

    Full Text Available Introduction: Feedback is very important in education and can help quality in the training process and orient the trainees in clinical contexts. This study aimed to assess the residents’ points of view about feedback in clinical education at Shiraz University of Medical Sciences. Methods: The sample of this study included 170 medical residents attending medical workshops in Shiraz University of Medical Sciences. The residents filled a valid and reliable questionnaire containing 21 items on their perceptions of the feedback they got throughout the workshops. The data were analyzed using SPSS version 14. Results: The study revealed that residents, generally, have a positive perception of feedback in their training. The highest score belonged to the items such as “feedback was applicable to future work”, “feedback corrected my behavior”, “feedback worked as a motivation for education” and “feedback was specific in one subject”. Residents who had a negative feedback experience also increased their efforts to learn. The Surgery residents acquired the highest scores while radiology residents got the lowest. The difference between these groups was statistically significant (P = 0.000. Conclusion: The highest mean score belonged to internal medicine residents. This shows that residents believe that obstetrics & gynecology ward is a ward in which the formative assessment is much more powerful in comparison to the other three major wards. The surgery ward received the lowest score for formative assessment and this shows that the feedback in surgery ward is very low.

  10. Synthesis of human-nature feedbacks

    Directory of Open Access Journals (Sweden)

    Vanessa Hull

    2015-09-01

    Full Text Available In today's globalized world, humans and nature are inextricably linked. The coupled human and natural systems (CHANS framework provides a lens with which to understand such complex interactions. One of the central components of the CHANS framework involves examining feedbacks among human and natural systems, which form when effects from one system on another system feed back to affect the first system. Despite developments in understanding feedbacks in single disciplines, interdisciplinary research on CHANS feedbacks to date is scant and often site-specific, a shortcoming that prevents complex coupled systems from being fully understood. The special feature "Exploring Feedbacks in Coupled Human and Natural Systems (CHANS" makes strides to fill this critical gap. Here, as an introduction to the special feature, we provide an overview of CHANS feedbacks. In addition, we synthesize key CHANS feedbacks that emerged in the papers of this special feature across agricultural, forest, and urban landscapes. We also examine emerging themes explored across the papers, including multilevel feedbacks, time lags, and surprises as a result of feedbacks. We conclude with recommendations for future research that can build upon the foundation provided in the special feature.

  11. Feedback For Helpers

    Science.gov (United States)

    Stromer, Walter F.

    1975-01-01

    The author offers some feedback to those in the helping professions in three areas: (1) forms and letters; (2) jumping to conclusions; and (3) blaming and belittling, in hopes of stimulating more feedback as well as more positive ways of performing their services. (HMV)

  12. A high precision dual feedback discrete control system designed for satellite trajectory simulator

    Science.gov (United States)

    Liu, Ximin; Liu, Liren; Sun, Jianfeng; Xu, Nan

    2005-08-01

    Cooperating with the free-space laser communication terminals, the satellite trajectory simulator is used to test the acquisition, pointing, tracking and communicating performances of the terminals. So the satellite trajectory simulator plays an important role in terminal ground test and verification. Using the double-prism, Sun etc in our group designed a satellite trajectory simulator. In this paper, a high precision dual feedback discrete control system designed for the simulator is given and a digital fabrication of the simulator is made correspondingly. In the dual feedback discrete control system, Proportional- Integral controller is used in velocity feedback loop and Proportional- Integral- Derivative controller is used in position feedback loop. In the controller design, simplex method is introduced and an improvement to the method is made. According to the transfer function of the control system in Z domain, the digital fabrication of the simulator is given when it is exposed to mechanism error and moment disturbance. Typically, when the mechanism error is 100urad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.49urad, 6.12urad, 4.56urad, 4.09urad respectively. When the moment disturbance is 0.1rad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.26urad, 0.22urad, 0.16urad, 0.15urad respectively. The digital fabrication results demonstrate that the dual feedback discrete control system designed for the simulator can achieve the anticipated high precision performance.

  13. Training effectiveness feedback

    International Nuclear Information System (INIS)

    Wiggin, N.A.

    1987-01-01

    A formal method of getting feedback about the job performance of employees is a necessary part of all the authors training programs. The formal process may prove to be inadequate if it is the only process in use. There are many ways and many opportunities to get good feedback about employee performance. It is important to document these methods and specific instances to supplement the more formalized process. The key is to identify them, encourage them, use them, and document the training actions that result from them. This paper describes one plant's method of getting feedback about performance of technicians in the field

  14. Prolactin and Male Fertility: The Long and Short Feedback Regulation

    Directory of Open Access Journals (Sweden)

    M. K. Gill-Sharma

    2009-01-01

    Full Text Available In the last 20 years, a pituitary-hypothalamus tissue culture system with intact neural and portal connections has been developed in our lab and used to understand the feedback mechanisms that regulate the secretions of adenohypophyseal hormones and fertility of male rats. In the last decade, several in vivo rat models have also been developed in our lab with a view to substantiate the in vitro findings, in order to delineate the role of pituitary hormones in the regulation of fertility of male rats. These studies have relied on both surgical and pharmacological interventions to modulate the secretions of gonadotropins and testosterone. The interrelationship between the circadian release of reproductive hormones has also been ascertained in normal men. Our studies suggest that testosterone regulates the secretion of prolactin through a long feedback mechanism, which appears to have been conserved from rats to humans. These studies have filled in a major lacuna pertaining to the role of prolactin in male reproductive physiology by demonstrating the interdependence between testosterone and prolactin. Systemic levels of prolactin play a deterministic role in the mechanism of chromatin condensation during spermiogenesis.

  15. Teacher feedback in the classroom. Analyzing and developing teachers' feedback behavior in secondary education

    NARCIS (Netherlands)

    Voerman, A.

    2014-01-01

    Providing feedback is one of the most influential means of teachers to enhance student learning. In this dissertation, we first focused on what is known from research about effective (i.e. learning-enhancing) feedback. Effective feedback, mostly studied from a cognitive psychologist point of view,

  16. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    International Nuclear Information System (INIS)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain; Nickerson, Sarah; Rosdahl, Joakim; Van Loo, Sven

    2017-01-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H 2 -dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H 2 -dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  17. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Teyssier, Romain; Nickerson, Sarah [Institute for Computational Science, University of Zurich, 8049 Zurich (Switzerland); Rosdahl, Joakim [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  18. Investigation of a delayed feedback controller of MEMS resonators

    KAUST Repository

    Masri, Karim M.

    2013-08-04

    Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller on stabilizing MEMS resonators. A delayed feedback velocity controller is implemented through modifying the parallel plate electrostatic force used to excite the resonator into motion. A nonlinear single degree of freedom model is used to simulate the resonator response. Long time integration is used first. Then, a finite deference technique to capture periodic motion combined with the Floquet theory is used to capture the stable and unstable periodic responses. We show that applying a suitable positive gain can stabilize the MEMS resonator near or inside the instability dynamic pull in band. We also study the stability of the resonator by tracking its basins of attraction while sweeping the controller gain and the frequency of excitations. For positive delayed gains, we notice significant enhancement in the safe area of the basins of attraction. Copyright © 2013 by ASME.

  19. Feedback Networks

    OpenAIRE

    Zamir, Amir R.; Wu, Te-Lin; Sun, Lin; Shen, William; Malik, Jitendra; Savarese, Silvio

    2016-01-01

    Currently, the most successful learning models in computer vision are based on learning successive representations followed by a decision layer. This is usually actualized through feedforward multilayer neural networks, e.g. ConvNets, where each layer forms one of such successive representations. However, an alternative that can achieve the same goal is a feedback based approach in which the representation is formed in an iterative manner based on a feedback received from previous iteration's...

  20. Malaysian Tertiary Level ESL Students’ Perceptions toward Teacher Feedback, Peer Feedback and Self-assessment in their Writing

    Directory of Open Access Journals (Sweden)

    Kayatri Vasu

    2016-09-01

    Full Text Available In Malaysia, teacher feedback is highly preferred by students, who often believe that teachers know best. Teacher feedback shows them their teacher’s idea of an ideal writing. However, excessive dependence on teachers adds to their workload. Therefore, teachers are increasingly promoting two other alternative methods that are gradually gaining importance. These methods are peer feedback and self-assessment. This study investigates ESL students’ perceptions toward teacher feedback, peer feedback and self-assessment in students’ writing process. Questionnaires, adapted from the instruments in the literature, were administered to 107 randomly selected students in a private local university in Malaysia. Students found feedback given to the content and organization of their writing more useful than feedback provided for their vocabulary and grammar. It was also found that students perceived feedback from teacher, peers and self-assessment all as highly useful. Additionally the results indicated while there was no significant difference (p > .05 between the students’ perceptions toward teacher feedback and self-assessment, they were both perceived as significantly more useful (p < .001 than peer feedback. The students also perceived explicit feedback as significantly more useful (p < .001 than implicit feedback. The results of this study have implications for English language learning-teaching practitioners and researchers. They shed light on the options preferred by students in revising their writing in ESL writing classrooms. Future research on the effects of teacher feedback, peer feedback and self-assessment on students’ writing performance will provide better insight on the preferred methods in ESL writing classrooms in similar settings.

  1. Impedance modulation and feedback corrections in tracking targets of variable size and frequency.

    Science.gov (United States)

    Selen, Luc P J; van Dieën, Jaap H; Beek, Peter J

    2006-11-01

    Humans are able to adjust the accuracy of their movements to the demands posed by the task at hand. The variability in task execution caused by the inherent noisiness of the neuromuscular system can be tuned to task demands by both feedforward (e.g., impedance modulation) and feedback mechanisms. In this experiment, we studied both mechanisms, using mechanical perturbations to estimate stiffness and damping as indices of impedance modulation and submovement scaling as an index of feedback driven corrections. Eight subjects tracked three differently sized targets (0.0135, 0.0270, and 0.0405 rad) moving at three different frequencies (0.20, 0.25, and 0.33 Hz). Movement variability decreased with both decreasing target size and movement frequency, whereas stiffness and damping increased with decreasing target size, independent of movement frequency. These results are consistent with the theory that mechanical impedance acts as a filter of noisy neuromuscular signals but challenge stochastic theories of motor control that do not account for impedance modulation and only partially for feedback control. Submovements during unperturbed cycles were quantified in terms of their gain, i.e., the slope between their duration and amplitude in the speed profile. Submovement gain decreased with decreasing movement frequency and increasing target size. The results were interpreted to imply that submovement gain is related to observed tracking errors and that those tracking errors are expressed in units of target size. We conclude that impedance and submovement gain modulation contribute additively to tracking accuracy.

  2. GIVING AND RECEIVING CONSTRUCTIVE FEEDBACK

    Directory of Open Access Journals (Sweden)

    Ірина Олійник

    2015-05-01

    Full Text Available The article scrutinizes the notion of feedback applicable in classrooms where team teaching is provided. The experience of giving and receiving feedback has been a good practice in cooperation between a U.S. Peace Corps volunteer and a Ukrainian counterpart. Giving and receiving feedback is an effective means of classroom observation that provides better insight into the process of teaching a foreign language. The article discusses the stages of feedback and explicates the notion of sharing experience between two teachers working simultaneously in the same classroom. The guidelines for giving and receiving feedback have been provided as well as the most commonly used vocabulary items have been listed. It has been proved that mutual feedback leads to improving teaching methods and using various teaching styles and techniques.

  3. Moving Feedback Forward: Theory to Practice

    Science.gov (United States)

    Orsmond, Paul; Maw, Stephen J.; Park, Julian R.; Gomez, Stephen; Crook, Anne C.

    2013-01-01

    There is substantial research interest in tutor feedback and students' perception and use of such feedback. This paper considers some of the major issues raised in relation to tutor feedback and student learning. We explore some of the current feedback drivers, most notably the need for feedback to move away from simply a monologue from a tutor to…

  4. Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem

    Science.gov (United States)

    Govind, Ajit; Chen, Jing Ming; Ju, Weimin

    2009-06-01

    Ecosystem models that simulate biogeochemical processes usually ignore hydrological controls that govern them. It is quite possible that topographically driven water fluxes significantly influence the spatial distribution of C sources and sinks because of their large contribution to the local water balance. To investigate this, we simulated biogeochemical processes along with the associated feedback mechanisms in a boreal ecosystem using a spatially explicit hydroecological model, boreal ecosystem productivity simulator (BEPS)-TerrainLab V2.0, that has a tight coupling of ecophysiological, hydrological, and biogeochemical processes. First, the simulated dynamics of snowpack, soil temperature, net ecosystem productivity (NEP), and total ecosystem respiration (TER) were validated with high-frequency measurements for 2 years. The model was able to explain 80% of the variability in NEP and 84% of the variability in TER. Further, we investigated the influence of topographically driven subsurface base flow on soil C and N cycling and on the spatiotemporal patterns of C sources and sinks using three hydrological modeling scenarios that differed in hydrological conceptualizations. In general, the scenarios that had nonexplicit hydrological representation overestimated NEP, as opposed to the scenario that had an explicit (realistic) representation. The key processes controlling the NEP differences were attributed to the combined effects of variations in photosynthesis (due to changes in stomatal conductance and nitrogen (N) availability), heterotrophic respiration, and autotrophic respiration, all of which occur simultaneously affecting NEP. Feedback relationships were also found to exacerbate the differences. We identified six types of NEP differences (biases), of which the most commonly found was due to an underestimation of the existing C sources, highlighting the vulnerability of regional-scale ecosystem models that ignore hydrological processes.

  5. Enhanced Feedback-Related Negativity in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Shuhei Yamaguchi

    2017-04-01

    Full Text Available Alzheimer’s disease (AD, the most common cause of dementia in the elderly, results in the impairment of executive function, including that of performance monitoring. Feedback-related negativity (FRN is an electrophysiological measure reflecting the activity of this monitoring system via feedback signals, and is generated from the anterior cingulate cortex. However, there have been no reports on FRN in AD. Based on prior aging studies, we hypothesized that FRN would decrease in AD patients. To assess this, FRN was measured in healthy individuals and those with AD during a simple gambling task involving positive and negative feedback stimuli. Contrary to our hypothesis, FRN amplitude increased in AD patients, compared with the healthy elderly. We speculate that this may reflect the existence of a compensatory mechanism against the decline in executive function. Also, there was a significant association between FRN amplitude and depression scores in AD, and the FRN amplitude tended to increase insomuch as the Self-rating Depression Scale (SDS was higher. This result suggests the existence of a negative bias in the affective state in AD. Thus, the impaired functioning monitoring system in AD is a more complex phenomenon than we thought.

  6. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  7. European Clearinghouse for Nuclear Power Plants Operational Experience Feedback

    International Nuclear Information System (INIS)

    Martin Ramos, M.; Noel, M.

    2010-01-01

    In the European Union, in order to support the Community activities on operational experience, a centralized regional network on nuclear power plants operational experience feedback (European Clearinghouse on Operational Experience Feedback for Nuclear Power Plants) was established in 2008 at the EC JRC-IE, Petten (The Netherlands) on request of nuclear Safety Authorities of several Member States. Its main goal is to improve the communication and information sharing on OEF, to promote regional collaboration on analyses of operational experience and dissemination of the lessons learned. The enlarged EU Clearinghouse was launched in April 2010, and it is currently gathering the Regulatory Authorities of Finland, Hungary, Lithuania, the Netherlands, Romania, Slovenia, Switzerland, Bulgaria, Czec Republic, France, Germany, Slovak Republic, and Spain (these last six countries as observers). The OECD Nuclear Energy Agency, the IAEA, the EC Directorates General of the JRC and ENER are also part of the network. Recently, collaboration between some European Technical Support Organizations (such IRSN and GRS) and the EU Clearinghouse has been initiated. This paper explains in detail the objectives and organization of the EU Clearinghouse, as well as the most relevant activities carried out, like research work in trend analysis of events ocurred in NPP, topical reports on particular events, dissemination of the results, quarterly reports on events reported publicly and operational experience support to the members of the EU Clearinghouse. (Author)

  8. In silico discovery of transcription regulatory elements in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Le Roch Karine G

    2008-02-01

    Full Text Available Abstract Background With the sequence of the Plasmodium falciparum genome and several global mRNA and protein life cycle expression profiling projects now completed, elucidating the underlying networks of transcriptional control important for the progression of the parasite life cycle is highly pertinent to the development of new anti-malarials. To date, relatively little is known regarding the specific mechanisms the parasite employs to regulate gene expression at the mRNA level, with studies of the P. falciparum genome sequence having revealed few cis-regulatory elements and associated transcription factors. Although it is possible the parasite may evoke mechanisms of transcriptional control drastically different from those used by other eukaryotic organisms, the extreme AT-rich nature of P. falciparum intergenic regions (~90% AT presents significant challenges to in silico cis-regulatory element discovery. Results We have developed an algorithm called Gene Enrichment Motif Searching (GEMS that uses a hypergeometric-based scoring function and a position-weight matrix optimization routine to identify with high-confidence regulatory elements in the nucleotide-biased and repeat sequence-rich P. falciparum genome. When applied to promoter regions of genes contained within 21 co-expression gene clusters generated from P. falciparum life cycle microarray data using the semi-supervised clustering algorithm Ontology-based Pattern Identification, GEMS identified 34 putative cis-regulatory elements associated with a variety of parasite processes including sexual development, cell invasion, antigenic variation and protein biosynthesis. Among these candidates were novel motifs, as well as many of the elements for which biological experimental evidence already exists in the Plasmodium literature. To provide evidence for the biological relevance of a cell invasion-related element predicted by GEMS, reporter gene and electrophoretic mobility shift assays

  9. Meta-analysis reveals host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia

    KAUST Repository

    Cui, Guoxin

    2018-02-22

    The metabolic symbiosis with photosynthetic algae of the genus Symbiodinium allows corals to thrive in the oligotrophic environments of tropical seas. Many aspects of this relationship have been investigated using transcriptomic analyses in the emerging model organism Aiptasia. However, previous studies identified thousands of putatively symbiosis-related genes, making it difficult to disentangle symbiosis-induced responses from undesired experimental parameters. Using a meta-analysis approach, we identified a core set of 731 high-confidence symbiosis-associated genes that reveal host-dependent recycling of waste ammonium and amino acid synthesis as central processes in this relationship. Combining transcriptomic and metabolomic analyses, we show that symbiont-derived carbon enables host recycling of ammonium into nonessential amino acids. We propose that this provides a regulatory mechanism to control symbiont growth through a carbon-dependent negative feedback of nitrogen availability to the symbiont. The dependence of this mechanism on symbiont-derived carbon highlights the susceptibility of this symbiosis to changes in carbon translocation, as imposed by environmental stress.

  10. Altered Sensory Feedbacks in Pianist's Dystonia: the altered auditory feedback paradigm and the glove effect

    Directory of Open Access Journals (Sweden)

    Felicia Pei-Hsin Cheng

    2013-12-01

    Full Text Available Background: This study investigates the effect of altered auditory feedback (AAF in musician's dystonia (MD and discusses whether altered auditory feedback can be considered as a sensory trick in MD. Furthermore, the effect of AAF is compared with altered tactile feedback, which can serve as a sensory trick in several other forms of focal dystonia. Methods: The method is based on scale analysis (Jabusch et al. 2004. Experiment 1 employs synchronization paradigm: 12 MD patients and 25 healthy pianists had to repeatedly play C-major scales in synchrony with a metronome on a MIDI-piano with 3 auditory feedback conditions: 1. normal feedback; 2. no feedback; 3. constant delayed feedback. Experiment 2 employs synchronization-continuation paradigm: 12 MD patients and 12 healthy pianists had to repeatedly play C-major scales in two phases: first in synchrony with a metronome, secondly continue the established tempo without the metronome. There are 4 experimental conditions, among them 3 are the same altered auditory feedback as in Experiment 1 and 1 is related to altered tactile sensory input. The coefficient of variation of inter-onset intervals of the key depressions was calculated to evaluate fine motor control. Results: In both experiments, the healthy controls and the patients behaved very similarly. There is no difference in the regularity of playing between the two groups under any condition, and neither did AAF nor did altered tactile feedback have a beneficial effect on patients’ fine motor control. Conclusions: The results of the two experiments suggest that in the context of our experimental designs, AAF and altered tactile feedback play a minor role in motor coordination in patients with musicians' dystonia. We propose that altered auditory and tactile feedback do not serve as effective sensory tricks and may not temporarily reduce the symptoms of patients suffering from MD in this experimental context.

  11. Stabilising falling liquid film flows using feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Alice B., E-mail: alice.thompson1@imperial.ac.uk; Gomes, Susana N.; Pavliotis, Grigorios A.; Papageorgiou, Demetrios T. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-01-15

    Falling liquid films become unstable due to inertial effects when the fluid layer is sufficiently thick or the slope sufficiently steep. This free surface flow of a single fluid layer has industrial applications including coating and heat transfer, which benefit from smooth and wavy interfaces, respectively. Here, we discuss how the dynamics of the system are altered by feedback controls based on observations of the interface height, and supplied to the system via the perpendicular injection and suction of fluid through the wall. In this study, we model the system using both Benney and weighted-residual models that account for the fluid injection through the wall. We find that feedback using injection and suction is a remarkably effective control mechanism: the controls can be used to drive the system towards arbitrary steady states and travelling waves, and the qualitative effects are independent of the details of the flow modelling. Furthermore, we show that the system can still be successfully controlled when the feedback is applied via a set of localised actuators and only a small number of system observations are available, and that this is possible using both static (where the controls are based on only the most recent set of observations) and dynamic (where the controls are based on an approximation of the system which evolves over time) control schemes. This study thus provides a solid theoretical foundation for future experimental realisations of the active feedback control of falling liquid films.

  12. Who wants feedback? An investigation of the variables influencing residents' feedback-seeking behavior in relation to night shifts.

    Science.gov (United States)

    Teunissen, Pim W; Stapel, Diederik A; van der Vleuten, Cees; Scherpbier, Albert; Boor, Klarke; Scheele, Fedde

    2009-07-01

    The literature on feedback in clinical medical education has predominantly treated trainees as passive recipients. Past research has focused on how clinical supervisors can use feedback to improve a trainee's performance. On the basis of research in social and organizational psychology, the authors reconceptualized residents as active seekers of feedback. They investigated what individual and situational variables influence residents' feedback-seeking behavior on night shifts. Early in 2008, the authors sent obstetrics-gynecology residents in the Netherlands--both those in their first two years of graduate training and those gaining experience between undergraduate and graduate training--a questionnaire that assessed four predictor variables (learning and performance goal orientation, and instrumental and supportive leadership), two mediator variables (perceived feedback benefits and costs), and two outcome variables (frequency of feedback inquiry and monitoring). They used structural equation modeling software to test a hypothesized model of relationships between variables. The response rate was 76.5%. Results showed that residents who perceive more feedback benefits report a higher frequency of feedback inquiry and monitoring. More perceived feedback costs result mainly in more feedback monitoring. Residents with a higher learning goal orientation perceive more feedback benefits and fewer costs. Residents with a higher performance goal orientation perceive more feedback costs. Supportive physicians lead residents to perceive more feedback benefits and fewer costs. This study showed that some residents actively seek feedback. Residents' feedback-seeking behavior partially depends on attending physicians' supervisory style. Residents' goal orientations influence their perceptions of the benefits and costs of feedback-seeking.

  13. Reducing Risky Security Behaviours: Utilising Affective Feedback to Educate Users

    Directory of Open Access Journals (Sweden)

    Lynsay A. Shepherd

    2014-11-01

    Full Text Available Despite the number of tools created to help end-users reduce risky security behaviours, users are still falling victim to online attacks. This paper proposes a browser extension utilising affective feedback to provide warnings on detection of risky behaviour. The paper provides an overview of behaviour considered to be risky, explaining potential threats users may face online. Existing tools developed to reduce risky security behaviours in end-users have been compared, discussing the success rates of various methodologies. Ongoing research is described which attempts to educate users regarding the risks and consequences of poor security behaviour by providing the appropriate feedback on the automatic recognition of risky behaviour. The paper concludes that a solution utilising a browser extension is a suitable method of monitoring potentially risky security behaviour. Ultimately, future work seeks to implement an affective feedback mechanism within the browser extension with the aim of improving security awareness.

  14. Functional characteristics of a double positive feedback loop coupled with autorepression

    International Nuclear Information System (INIS)

    Banerjee, Subhasis; Bose, Indrani

    2008-01-01

    We study the functional characteristics of a two-gene motif consisting of a double positive feedback loop and an autoregulatory negative feedback loop. The motif appears in the gene regulatory network controlling the functional activity of pancreatic β-cells. The model exhibits bistability and hysteresis in appropriate parameter regions. The two stable steady states correspond to low (OFF state) and high (ON state) protein levels, respectively. Using a deterministic approach, we show that the region of bistability increases in extent when the copy number of one of the genes is reduced from 2 to 1. The negative feedback loop has the effect of reducing the size of the bistable region. Loss of a gene copy, brought about by mutations, hampers the normal functioning of the β-cells giving rise to the genetic disorder, maturity-onset diabetes of the young (MODY). The diabetic phenotype makes its appearance when a sizable fraction of the β-cells is in the OFF state. Using stochastic simulation techniques we show that, on reduction of the gene copy number, there is a transition from the monostable ON to the ON state in the bistable region of the parameter space. Fluctuations in the protein levels, arising due to the stochastic nature of gene expression, can give rise to transitions between the ON and OFF states. We show that as the strength of autorepression increases, the ON → OFF state transitions become less probable whereas the reverse transitions are more probable. The implications of the results in the context of the occurrence of MODY are pointed out

  15. Functional characteristics of a double positive feedback loop coupled with autorepression

    Science.gov (United States)

    Banerjee, Subhasis; Bose, Indrani

    2008-12-01

    We study the functional characteristics of a two-gene motif consisting of a double positive feedback loop and an autoregulatory negative feedback loop. The motif appears in the gene regulatory network controlling the functional activity of pancreatic β-cells. The model exhibits bistability and hysteresis in appropriate parameter regions. The two stable steady states correspond to low (OFF state) and high (ON state) protein levels, respectively. Using a deterministic approach, we show that the region of bistability increases in extent when the copy number of one of the genes is reduced from 2 to 1. The negative feedback loop has the effect of reducing the size of the bistable region. Loss of a gene copy, brought about by mutations, hampers the normal functioning of the β-cells giving rise to the genetic disorder, maturity-onset diabetes of the young (MODY). The diabetic phenotype makes its appearance when a sizable fraction of the β-cells is in the OFF state. Using stochastic simulation techniques we show that, on reduction of the gene copy number, there is a transition from the monostable ON to the ON state in the bistable region of the parameter space. Fluctuations in the protein levels, arising due to the stochastic nature of gene expression, can give rise to transitions between the ON and OFF states. We show that as the strength of autorepression increases, the ON → OFF state transitions become less probable whereas the reverse transitions are more probable. The implications of the results in the context of the occurrence of MODY are pointed out.

  16. Low-frequency fluctuation in multimode semiconductor laser subject to optical feedback

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Huiying Ye; Zhaoxin Song

    2008-01-01

    Dynamics of a semiconductor laser subject to moderate optical feedback operating in the low-frequency fluctuation regime is numerically investigated.Multimode Lang-Kobayashi(LK)equations show that the low-frequency intensity dropout including the total intensity and sub-modes intensity is accompanied by sudden dropout simultaneously,which is in good agreement with experimental observation.The power fluctuation is quite annoying in practical applications,therefore it becomes important to study the mechanism of power fluctuation.It is also shown that many factors,such as spontaneous emission noise and feedback parameter,may influence power fluctuation larger than previously expected.

  17. Development of a longitudinal feedback cavity for the beam feedback system

    International Nuclear Information System (INIS)

    Huang Gang; Chen Huaibi; Huang Wenhui; Tong Dechun; Lin Yuzheng; Zhao Zhentang

    2003-01-01

    Longitudinal beam feedback system is widely used to damp coupling bunch instability. Kicker is one of the key components of the longitudinal feedback system. A prototype cavity of longitudinal feedback kicker is developed according to the parameter of BEPC II. The usage of nose cone in the kicker design increased the shunt impedance. In order to avoid the extra tapper in the storage ring, the racetrack shape beam pipe is applied in the kicker. The impedance and the bandwidth of the kicker is measured by the coaxial line impedance measurement platform and the result achieved the design goals

  18. Detecting vegetation-precipitation feedbacks in mid-Holocene North Africa from two climate models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Notaro, Michael; Liu, Zhengyu; Gallimore, Robert; Levis, Samuel; Kutzbach, John E.

    2008-03-31

    Using two climate-vegetation model simulations from the Fast Ocean Atmosphere Model (FOAM) and the Community Climate System Model (CCSM, version 2), we investigate vegetation-precipitation feedbacks across North Africa during the mid-Holocene. From mid-Holocene snapshot runs of FOAM and CCSM2, we detect a negative feedback at the annual timescale with our statistical analysis. Using the Monte- Carlo bootstrap method, the annual negative feedback is further confirmed to be significant in both simulations. Additional analysis shows that this negative interaction is partially caused by the competition between evaporation and transpiration in North African grasslands. Furthermore, we find the feedbacks decrease with increasing timescales, and change signs from positive to negative at increasing timescales in FOAM. The proposed mechanism for this sign switch is associated with the different persistent timescales of upper and lower soil water contents, and their interactions with vegetation and atmospheric precipitation.

  19. Optimal allocation of reviewers for peer feedback

    DEFF Research Database (Denmark)

    Wind, David Kofoed; Jensen, Ulf Aslak; Jørgensen, Rasmus Malthe

    2017-01-01

    feedback to be effective students should give and receive useful feedback. A key challenge in peer feedback is allocating the feedback givers in a good way. It is important that reviewers are allocated to submissions such that the feedback distribution is fair - meaning that all students receive good......Peer feedback is the act of letting students give feedback to each other on submitted work. There are multiple reasons to use peer feedback, including students getting more feedback, time saving for teachers and increased learning by letting students reflect on work by others. In order for peer...... indicated the quality of the feedback. Using this model together with historical data we calculate the feedback-giving skill of each student and uses that as input to an allocation algorithm that assigns submissions to reviewers, in order to optimize the feedback quality for all students. We test...

  20. Feedback Systems for Linear Colliders

    International Nuclear Information System (INIS)

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies