WorldWideScience

Sample records for regulations safety standard

  1. International Safety Regulation and Standards for Space Travel and Commerce

    Science.gov (United States)

    Pelton, J. N.; Jakhu, R.

    The evolution of air travel has led to the adoption of the 1944 Chicago Convention that created the International Civil Aviation Organization (ICAO), headquartered in Montreal, Canada, and the propagation of aviation safety standards. Today, ICAO standardizes and harmonizes commercial air safety worldwide. Space travel and space safety are still at an early stage of development, and the adoption of international space safety standards and regulation still remains largely at the national level. This paper explores the international treaties and conventions that govern space travel, applications and exploration today and analyzes current efforts to create space safety standards and regulations at the national, regional and global level. Recent efforts to create a commercial space travel industry and to license commercial space ports are foreseen as means to hasten a space safety regulatory process.

  2. Legal status of minister's notices and technology standards of 'Korea institute of nuclear safety'(KINS) to regulate nuclear safety

    International Nuclear Information System (INIS)

    Jung, S. K.; Jung, M. M.; Kim, S. W.; Jang, K. H.; Oh, B. J.

    2003-01-01

    Concerning nuclear safety or technology standards, each of 'notices' issued by minister of science and technology(MOST) empowered by law of its regulation is obviously forceful as a law, if not all. But the standards made by the chief of Korea institute of nuclear safety(KINS) to meet the tasks entrusted to KINS by MOST is only conditionally forceful as a law, that is, on the condition that law or regulation empowered the chief of KINS to make nuclear safety and/or technology standards

  3. Safety first. Status reports on the IAEA's safety standards

    International Nuclear Information System (INIS)

    Webb, G.; Karbassioun, A.; Linsley, G.; Rawl, R.

    1998-01-01

    Documents in the IAEA's Safety Standards Series known as RASS (Radiation Safety Standards) are produced to develop an internally consistent set of regulatory-style publications that reflects an international consensus on the principles of radiation protection and safety and their application through regulation. In this article are briefly presented the Agency's programmes on Nuclear Safety Standards (NUSS), Radioactive Waste Safety Standards (RADWASS), and Safe Transport of Radioactive Materials

  4. Radiation safety standards and regulations

    International Nuclear Information System (INIS)

    Ermolina, E.P.; Ivanov, S.I.

    1993-01-01

    Radiation protection laws of Russia concerning medical application of ionizing radiation are considered. Main concepts of the documents and recommendations are presented. Attention was paid to the ALARA principle, safety standrds for paietients, personnel and population, radiation protection. Specific feature of the standardization of radiation factors is the establishment of two classes of norms: main dose limits and permissible levels. Maximum dose commitment is the main standard. Three groups of critical organs and three categories of the persons exposed to radiation are stated. Main requirements for radiation protection are shown

  5. Development of fusion safety standards

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Petti, D.A.; Dinneen, G.A.; Herring, J.S.; DeLooper, J.; Levine, J.D.; Gouge, M.J.

    1996-01-01

    Two new U.S. Department of Energy (DOE) standards have been prepared to assist in the design and regulation of magnetic fusion facilities. They are DOE-STD-6002-96, 'Safety of Magnetic Fusion Facilities - Requirements,' and DOE-STD-6003-96 'Safety of Magnetic Fusion Facilities - Guidance.' The first standard sets forth requirements, mostly based on the Code of Federal Regulations, deemed necessary for the safe design and operation of fusion facilities and a set of safety principles to use in the design. The second standard provides guidance on how to meet the requirements identified in DOE-STD-6002-96. It is written specifically for a facility such as the International Thermonuclear Experimental Reactor (ITER) in the DOE regulatory environment. As technical standards, they are applicable only to the extent that compliance with these standards is included in the contracts of the developers. 7 refs., 1 fig

  6. Co-operative development of nuclear safety regulations, guides and standards based on NUSS

    International Nuclear Information System (INIS)

    Pachner, J.; Boyd, F.C.; Yaremy, E.M.

    1985-01-01

    A major need of developing Member States building nuclear power plants (NPPs) of foreign origin is to acquire a capability to regulate such nuclear plants independently. Among other things, this requires the development of national nuclear safety regulations, guides and standards to govern the development and use of nuclear technology. Recognizing the importance and complexity of this task, it seems appropriate that the NPP-exporting Member States share their experience and assist the NPP-importing Member States in the development of their national regulations and guides. In 1983, the Atomic Energy Control Board and Atomic Energy of Canada Ltd. conducted a study of a possible joint programme involving Canada, an NPP-importing Member State and the IAEA for the development of the national nuclear safety regulations and guides based on NUSS documents. During the study, a work plan with manpower estimates for the development of design regulations, safety guides and a guide for regulatory evaluation of design was prepared as an investigatory exercise. The work plan suggests that a successful NUSS implementation in developing Member States will require availability of significant resources at the start of the programme. The study showed that such a joint programme could provide an effective mechanism for transfer of nuclear safety know-how to the developing Member States through NUSS implementation. (author)

  7. Safety standards and safety record of nuclear power plants

    International Nuclear Information System (INIS)

    Davis, A.B.

    1984-01-01

    This paper focuses on the use of standards and the measurement and enforcement of these standards to achieve safe operation of nuclear power plants. Since a discussion of the safety standards that the Nuclear Regulatory Commission (NRC) uses to regulate the nuclear power industry can be a rather tedious subject, this discussion will provide you with not only a description of what safety standards are, but some examples of their application, and various indicators that provide an overall perspective on safety. These remarks are confined to the safety standards adopted by the NRC. There are other agencies such as the Environmental Protection Agency, the Occupational Safety and Health Administration, and the state regulatory agencies which impact on a nuclear power plant. The NRC has regulatory authority for the commercial use of the nuclear materials and facilities which are defined in the Atomic Energy Act of 1954 to assure that the public health and safety and national security are protected

  8. The IAEA safety standards

    International Nuclear Information System (INIS)

    Karbassioun, Ahmad

    1995-01-01

    During the development of the NUSS standards, wide consultation was carried out with all the Member States to obtain a consensus and the programme was supervised by a Senior Advisory Group consisting of senior safety experts from 13 countries. This group of senior regulators later became what is now known as the Nuclear Safety Standards Advisory Group (NUSSAG) and comprises of senior regulatory experts from 16 countries. The standards that were developed comprise of four types of documents: safety fundamentals; codes of practice; safety guides; and safety practices. The safety fundamentals set out the basic objectives, concepts and principles for nuclear safety in nuclear power plants. The codes of practice, are of a legislative nature, and establish the general objectives that must be fulfilled to ensure adequate nuclear power plant safety. They cover five areas: governmental organization; siting, design, operation and quality assurance. The safety guides, administrative in character, recommend procedures and acceptable technical solutions to implement the codes and guides by presenting further details gained from Member States, on the application and interpretation of individual concepts in the NUSS codes and guides. In total in the NUSS series there is currently one Fundamentals document, five Codes of Practice and fifty-six Safety Guides

  9. Setting the standard: The IAEA safety standards set the global reference

    International Nuclear Information System (INIS)

    Williams, L.

    2003-01-01

    For the IAEA, setting and promoting standards for nuclear radiation, waste, and transport safety have been priorities from the start, rooted in the Agency's 1957 Statute. Today, a corpus of international standards are in place that national regulators and industries in many countries are applying, and more are being encouraged and assisted to follow them. Considerable work is done to keep safety standards updated and authoritative. They cover five main areas: the safety of nuclear facilities; radiation protection and safety of radiation sources; safe management of radioactive waste; safe transport of radioactive material; and thematic safety areas, such as emergency preparedness or legal infrastructures. Overall, the safety standards reflect an international consensus on what constitutes a high level of safety for protecting people and the environment. All IAEA Member States can nominate experts for the Agency standards committees and provide comments on draft standards. Through this ongoing cycle of review and feedback, the standards are refined, updated, and extended where needed

  10. Standards for radiation protection instrumentation: design of safety standards and testing procedures

    International Nuclear Information System (INIS)

    Meissner, Frank

    2008-01-01

    This paper describes by means of examples the role of safety standards for radiation protection and the testing and qualification procedures. The development and qualification of radiation protection instrumentation is a significant part of the work of TUV NORD SysTec, an independent expert organisation in Germany. The German Nuclear Safety Standards Commission (KTA) establishes regulations in the field of nuclear safety. The examples presented may be of importance for governments and nuclear safety authorities, for nuclear operators and for manufacturers worldwide. They demonstrate the advantage of standards in the design of radiation protection instrumentation for new power plants, in the upgrade of existing instrumentation to nuclear safety standards or in the application of safety standards to newly developed equipment. Furthermore, they show how authorities may proceed when safety standards for radiation protection instrumentation are not yet established or require actualization. (author)

  11. 29 CFR 1925.2 - Safety and health standards.

    Science.gov (United States)

    2010-07-01

    .... Every contractor and subcontractor shall comply with the safety and health standards published in 41 CFR... 29 Labor 7 2010-07-01 2010-07-01 false Safety and health standards. 1925.2 Section 1925.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  12. Food safety regulations in Australia and New Zealand Food Standards.

    Science.gov (United States)

    Ghosh, Dilip

    2014-08-01

    Citizens of Australia and New Zealand recognise that food security is a major global issue. Food security also affects Australia and New Zealand's status as premier food exporting nations and the health and wellbeing of the Australasian population. Australia is uniquely positioned to help build a resilient food value chain and support programs aimed at addressing existing and emerging food security challenges. The Australian food governance system is fragmented and less transparent, being largely in the hands of government and semi-governmental regulatory authorities. The high level of consumer trust in Australian food governance suggests that this may be habitual and taken for granted, arising from a lack of negative experiences of food safety. In New Zealand the Ministry of Primary Industries regulates food safety issues. To improve trade and food safety, New Zealand and Australia work together through Food Standards Australia New Zealand (FSANZ) and other co-operative agreements. Although the potential risks to the food supply are dynamic and constantly changing, the demand, requirement and supply for providing safe food remains firm. The Australasian food industry will need to continually develop its system that supports the food safety program with the help of scientific investigations that underpin the assurance of what is and is not safe. The incorporation of a comprehensive and validated food safety program is one of the total quality management systems that will ensure that all areas of potential problems are being addressed by industry. © 2014 Society of Chemical Industry.

  13. Developments in safety standards and regulation

    International Nuclear Information System (INIS)

    Harbison, S.A.

    1994-01-01

    This paper explains, in broad terms, how regulatory control is exercised over licensed nuclear installations in the UK and how HSE has developed its safety standards to support its regulatory approach. It first sets out the scope of HSE's regulatory responsibilities, which NII exercises on its behalf, and briefly describes the licensing process and compliance monitoring through inspection over the life of a nuclear plant. It also refers to the role of assessment in NII's decision-making processes, and the part played in this by the consideration of costs and safety benefits. It then moves on to consider the challenges that HSE/NII are likely to face from the changing nuclear industry in the second half of the 1990s. (author)

  14. Outlines of revised regulation standards for experimental research reactors

    International Nuclear Information System (INIS)

    Hohara, Shinya

    2015-01-01

    In response to the accident of TEPCO Fukushima Daiichi Nuclear Power Station, the government took actions through the revision of regulatory standards as well as the complete separation of regulation administrative department from promotion administrative department. The Nuclear and Industrial Safety Agency of the Ministry of Economy, Trade and Industry, which has been in charge of the regulations of commercial reactors, and the Office of Nuclear Regulations of the Ministry of Education, Culture, Sports, Science and Technology, which has been in charge of the regulations of reactors for experiment and research, were separated from both ministries, and integrated into the Nuclear Regulation Authority, which was newly established as the affiliated agency of the Ministry of the Environment. As for the revision of regulations and standards, the Nuclear Safety Commission was dismantled, and regulation enacting authority was given to the new Nuclear Regulation Authority, and the regulations that stipulated new regulatory standards were enacted. This paper outlines the contents of regulations related mainly to the reactors for experiment and research, and explains the following: (1) retroactive application of the new regulatory standards to existing reactor facilities, (2) examinations at the Nuclear Regulatory Agency, (3) procedures to confirm the compliance to the new standards, (4) seismic design classification, and (5) importance classification of safety function. (A.O.)

  15. Model Regulations for the Use of Radiation Sources and for the Management of the Associated Radioactive Waste. Supplement to IAEA Safety Standards Series No. GS-G-1.5

    International Nuclear Information System (INIS)

    2015-01-01

    IAEA Safety Standards Series No. GSR Part 1, Governmental, Legal and Regulatory Framework for Safety, requires that governments establish laws and statutes to make provisions for an effective governmental, legal and regulatory framework for safety. The framework for safety includes the establishment of a regulatory body. The regulatory body has the authority and responsibility for promulgating regulations, and for preparing their implementation. This publication provides advice on an appropriate set of regulations covering all aspects of the use of radiation sources and the safe management of the associated radioactive waste. The regulations provide the framework for the regulatory requirements and conditions to be incorporated into individual authorizations for the use of radiation sources in industry, medical facilities, research and education and agriculture. The regulations also establish criteria to be used for assessing compliance. This publication allows States to appraise the adequacy of their existing regulations and regulatory guides, and can be used as a reference for those States developing regulations for the first time. The regulations set out in this publication will need to be adapted to take account of local conditions, technical resources and the scale of facilities and activities in the State. The set of regulations in this publication is based on the requirements established in the IAEA safety standards series, in particular in IAEA Safety Standards Series No. GSR Part 3 (Interim), Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, in IAEA Safety Standards Series No. GSR Part 5, Predisposal Management of Radioactive Waste, and in IAEA Safety Standards Series No. SSR-5, Disposal of Radioactive Waste. They are also derived from the Code of Conduct of the Safety and Security of Radiation Sources and the Guidance on the Import and Export of Radioactive Sources. This publication allows States to appraise the

  16. Model Regulations for the Use of Radiation Sources and for the Management of the Associated Radioactive Waste. Supplement to IAEA Safety Standards Series No. GS-G-1.5

    International Nuclear Information System (INIS)

    2013-12-01

    IAEA Safety Standards Series No. GSR Part 1, Governmental, Legal and Regulatory Framework for Safety, requires that governments establish laws and statutes to make provisions for an effective governmental, legal and regulatory framework for safety. The framework for safety includes the establishment of a regulatory body. The regulatory body has the authority and responsibility for promulgating regulations, and for preparing their implementation. This publication provides advice on an appropriate set of regulations covering all aspects of the use of radiation sources and the safe management of the associated radioactive waste. The regulations provide the framework for the regulatory requirements and conditions to be incorporated into individual authorizations for the use of radiation sources in industry, medical facilities, research and education and agriculture. The regulations also establish criteria to be used for assessing compliance. This publication allows States to appraise the adequacy of their existing regulations and regulatory guides, and can be used as a reference for those States developing regulations for the first time. The regulations set out in this publication will need to be adapted to take account of local conditions, technical resources and the scale of facilities and activities in the State. The set of regulations in this publication is based on the requirements established in the IAEA safety standards series, in particular in IAEA Safety Standards Series No. GSR Part 3 (Interim), Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, in IAEA Safety Standards Series No. GSR Part 5, Predisposal Management of Radioactive Waste, and in IAEA Safety Standards Series No. SSR-5, Disposal of Radioactive Waste. They are also derived from the Code of Conduct of the Safety and Security of Radiation Sources and the Guidance on the Import and Export of Radioactive Sources. This publication allows States to appraise the

  17. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  18. 29 CFR 1926.2 - Variances from safety and health standards.

    Science.gov (United States)

    2010-07-01

    ... from safety and health standards. (a) Variances from standards which are, or may be, published in this... 29 Labor 8 2010-07-01 2010-07-01 false Variances from safety and health standards. 1926.2 Section 1926.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION...

  19. 77 FR 54836 - Federal Motor Vehicle Safety Standards

    Science.gov (United States)

    2012-09-06

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 571 Federal Motor Vehicle Safety Standards CFR Correction 0 In Title 49 of the Code of Federal Regulations... read as follows: Sec. 571.119 Standard No. 119; New pneumatic tires for motor vehicles with a GVWR of...

  20. A German perspective on advances in safety standards and regulations

    International Nuclear Information System (INIS)

    Berg, H.P.; Herttrich, P.M.

    1993-01-01

    At present, different proposals for evolutionary or innovative reactors are under consideration. Therefore, it is necessary that the regulators give guidance on the required safety characteristics of future designs of nuclear power plants. On the one hand, existing regulations have to be updated according to the current state of science and technology. Best available and adequately approved technology has to be used as a yardstick for the acceptability of future basic design features. On the other hand, potential safety features of innovative or revolutionary designs must be considered as serious competitors and potential technical solutions taking the state of maturity of the concepts, the extent of practical experience and the level of effort needed for realization into due account. On this background, recent developments of the Atomic Energy Act, of safety regulations and investigations of requirements for future designs in the Federal Republic of Germany and current projects of international cooperation are presented. (author)

  1. 75 FR 57297 - Petitions for Modification of Existing Mandatory Safety Standards

    Science.gov (United States)

    2010-09-20

    ... safety standards published in Title 30 of the Code of Federal Regulations. DATES: All comments on the... DEPARTMENT OF LABOR Mine Safety and Health Administration Petitions for Modification of Existing Mandatory Safety Standards AGENCY: Mine Safety and Health Administration (MSHA), Labor. ACTION: Notice...

  2. 76 FR 16640 - Petitions for Modification of Existing Mandatory Safety Standards

    Science.gov (United States)

    2011-03-24

    ... safety standards published in Title 30 of the Code of Federal Regulations. DATES: All comments on the... DEPARTMENT OF LABOR Mine Safety and Health Administration Petitions for Modification of Existing Mandatory Safety Standards AGENCY: Mine Safety and Health Administration (MSHA), Labor. ACTION: Notice...

  3. 10 CFR 851.23 - Safety and health standards.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Safety and health standards. 851.23 Section 851.23 Energy DEPARTMENT OF ENERGY WORKER SAFETY AND HEALTH PROGRAM Specific Program Requirements § 851.23 Safety and..., “Marine Terminals.” (6) Title 29 CFR, Part 1918, “Safety and Health Regulations for Longshoring.” (7...

  4. IAEA Safety Standards

    International Nuclear Information System (INIS)

    2016-09-01

    The IAEA Safety Standards Series comprises publications of a regulatory nature covering nuclear safety, radiation protection, radioactive waste management, the transport of radioactive material, the safety of nuclear fuel cycle facilities and management systems. These publications are issued under the terms of Article III of the IAEA’s Statute, which authorizes the IAEA to establish “standards of safety for protection of health and minimization of danger to life and property”. Safety standards are categorized into: • Safety Fundamentals, stating the basic objective, concepts and principles of safety; • Safety Requirements, establishing the requirements that must be fulfilled to ensure safety; and • Safety Guides, recommending measures for complying with these requirements for safety. For numbering purposes, the IAEA Safety Standards Series is subdivided into General Safety Requirements and General Safety Guides (GSR and GSG), which are applicable to all types of facilities and activities, and Specific Safety Requirements and Specific Safety Guides (SSR and SSG), which are for application in particular thematic areas. This booklet lists all current IAEA Safety Standards, including those forthcoming

  5. 16 CFR 1115.8 - Compliance with product safety standards.

    Science.gov (United States)

    2010-01-01

    ... applicable mandatory consumer product safety standards and to report to the Commission any products which do.... 1115.8 Section 1115.8 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SUBSTANTIAL PRODUCT HAZARD REPORTS General Interpretation § 1115.8 Compliance with...

  6. Basic Safety Standards for Radiation Protection

    International Nuclear Information System (INIS)

    1962-01-01

    Pursuant to the provisions of its Statute relevant to the adoption and application of safety standards for protection against radiation, the Agency convened a panel of experts which formulated the Basic Safety Standards set forth in this publication. The panel met under the chairmanship of Professor L. Bugnard, Director of the French Institut National d'Hygiene, and representatives of the United Nations and of several of its specialized agencies participated in its work. The Basic Safety Standards thus represent the result of a most careful assessment of the variety of complex scientific and administrative problems involved. Nevertheless, of course, they will need to be revised from time to time in the light of advances in scientific knowledge, of comments received from Member States and of the work of other competent international organizations. The Agency's Board of Governors in June 1962 approved the Standards as a first edition, subject to later revision as mentioned above, and authorized Director General Sigvard Eklund to apply the Standards in Agency and Agency-assisted operations and to invite Governments of Member States to take them as a basis in formulating national regulations or recommendations on protection against the dangers arising from ionizing radiations. It is mainly for this last purpose that the Basic Safety Standards are now being published in the Safety Series; but it is hoped that this publication will also interest a much wider circle of readers.

  7. Trends in food safety standards and regulation implications for developing countries

    OpenAIRE

    Caswell, Julie A.

    2003-01-01

    "Food safety is affected by the decisions of producers, processors, distributors, food service operators, and consumers, as well as by government regulations. In developed countries, the demand for higher levels of food safety has led to the implementation of regulatory programs that address more types of safety-related attributes (such as bovine spongiform encephalopathy (BSE), microbial pathogens, environmental contaminants, and animal drug and pesticide residues) and impose stricter standa...

  8. Development in France of nuclear safety technical regulations and standards used in the licensing procedure

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1983-04-01

    Initially, the Commissariat a l'Energie Atomique was the overall structure which encompassed all nuclear activities in France, including those connected with radiological protection and nuclear safety. As other partners appeared, the Authorities have laid down national regulations relative to nuclear installations since 1963. These regulations more particularly provide for the addition of prescriptions with which the applicant must comply to obtain the necessary licenses and the establishment of General Technical Regulations pertaining to nuclear safety. The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operation of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridical sense; they are called ''Regles Fondamentales de Surete'' (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation practice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. A RFS, or a letter, can also give the result of the examination of the constructor and operator codes (RCC) by safety authorities

  9. The improvement of nuclear safety regulation : American, European, Japanese, and South Korean experiences

    International Nuclear Information System (INIS)

    Cho, Byung Sun

    2005-01-01

    Key concepts in South Korean nuclear safety regulation are safety and risk. Nuclear regulation in South Korea has required reactor designs and safeguards that reduce the risk of a major accident to less than one in a million reactor-years-a risk supposedly low enough to be acceptable. To data, in South Korean nuclear safety regulation has involved the establishment of many technical standards to enable administration enforcement. In scientific lawsuits in which the legal issue is the validity of specialized technical standards that are used for judge whether a particular nuclear power plant is to be licensed, the concept of uncertainty law is often raised with regard to what extent the examination and judgement by the judicial power affects a discretion made by the administrative office. In other words, the safety standards for nuclear power plants has been adapted as a form of the scientific technical standards widely under the idea of uncertainty law. Thus, the improvement of nuclear safety regulation in South Korea seems to depend on the rational lawmaking and a reasonable, judicial examination of the scientific standards on nuclear safety

  10. Nuclear safety and regulation

    International Nuclear Information System (INIS)

    Kim, Hho Jung

    2000-03-01

    This book contains 12 chapters, which are atom and radiation, nuclear reactor and kinds of nuclear power plant, safeguard actuation system and stability evaluation for rock foundation of nuclear power plant, nuclear safety and principle, safety analysis and classification of incident, probabilistic safety assessment and major incident, nuclear safety regulation, system of nuclear safety regulation, main function and subject of safety regulation in nuclear facilities, regulation of fuel cycle and a nuclear dump site, protection of radiation and, safety supervision and, safety supervision and measurement of environmental radioactivity.

  11. 29 CFR 1960.19 - Other Federal agency standards affecting occupational safety and health.

    Science.gov (United States)

    2010-07-01

    ... safety and health. 1960.19 Section 1960.19 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL... EMPLOYEE OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Standards § 1960.19 Other Federal agency standards affecting occupational safety and health. (a) Where employees of different agencies...

  12. NEA activities in safety and regulation

    International Nuclear Information System (INIS)

    Stadie, K.B.

    1983-01-01

    The NEA programme on Safety and Regulations is briefly reviewed. It encompasses four main areas - nuclear safety technology; nuclear licensing; radiation protection; and waste management - with three principal objectives: to promote exchanges of technical information in order to enlarge the data base for national decision making; to improve co-ordination of national R and D activities with emphasis on international standard problem exercises, and to promote international projects; to develop common technical, administrative and legal approaches to improve compatibility of safety and regulatory practices

  13. Safety Standards Plan for Middlesex County Vocational & Technical High Schools.

    Science.gov (United States)

    Sommer, Cy

    This vocational education safety standards plan outlines rules and regulations adopted by the Board of Education of Middlesex County Vocational and Technical High Schools. The first of eleven chapters presents demographics and a safety organization table for Middlesex County Vocational and Technical Schools. In chapter 2, six safety program…

  14. 76 FR 10246 - Updating Fire Safety Standards

    Science.gov (United States)

    2011-02-24

    ... public noted the importance of requiring facilities to meet up-to-date safety standards. The third... Affairs (VA) regulations concerning community residential care facilities, contract facilities for certain outpatient and residential services, and State home facilities. The final rule will clarify current...

  15. Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Conover, David R.

    2014-08-22

    This report acquaints stakeholders and interested parties involved in the development and/or deployment of energy storage systems (ESS) with the subject of safety-related codes, standards and regulations (CSRs). It is hoped that users of this document gain a more in depth and uniform understanding of safety-related CSR development and deployment that can foster improved communications among all ESS stakeholders and the collaboration needed to realize more timely acceptance and approval of safe ESS technology through appropriate CSR.

  16. Assessing risks and regulating safety standards in the oil and gas industry: the Peruvian experience.

    OpenAIRE

    Arturo Leonardo Vásquez Cordano; Julio Salvador Jácome; Raúl Lizardo García Carpio; Victor Fernández Guzman

    2013-01-01

    Environmental regulation has usually focused on controlling continuous sources of pollution such as CO2 emissions through carbon taxes. However, the 2010 oil spill in the Gulf of Mexico has shown that accidents associated to safety failures can also generate bursts of pollution with serious environmental consequences. Regulating safety conditions to prevent accidents in the oil and gas industry is challenging because public regulators cannot perfectly observe whether firms comply with safety ...

  17. NUSS safety standards: A critical assessment

    International Nuclear Information System (INIS)

    Minogue, R.B.

    1985-01-01

    The NUSS safety standards are based on systematic review of safety criteria of many countries in a process carefully defined to assure completeness of coverage. They represent an international consensus of accepted safety principles and practices for regulation and for the design, construction, and operation of nuclear power plants. They are a codification of principles and practices already in use by some Member States. Thus, they are not standards which describe methodologies at their present state of evolution as a result of more recent experience and improvements in technological understanding. The NUSS standards assume an underlying body of national standards and a defined technological base. Detailed design and industrial practices vary between countries and the implementation of basic safety standards within countries has taken approaches that conform with national industrial practices. Thus, application of the NUSS standards requires reconciliation with the standards of the country where the reactor will be built as well as with the country from which procurement takes place. Experience in making that reconciliation will undoubtedly suggest areas of needed improvement. After the TMI accident a reassessment of the NUSS programme was made and it was concluded that, given the information at that time and the then level of technology, the basic approach was sound; the NUSS programme should be continued to completion, and the standards should be brought into use. It was also recognized, however, that in areas such as probabilistic risk assessment, human factors methodology, and consideration of detailed accident sequences, more advanced technology was emerging. As these technologies develop, and become more amenable to practical application, it is anticipated that the NUSS standards will need revision. Ideally those future revisions will also flow from experience in their use

  18. Standards in reliability and safety engineering

    International Nuclear Information System (INIS)

    O'Connor, Patrick

    1998-01-01

    This article explains how the highest 'world class' levels of reliability and safety are achieved, by adherence to the basic principles of excellence in design, production, support and maintenance, by continuous improvement, and by understanding that excellence and improvement lead to reduced costs. These principles are contrasted with the methods that have been developed and standardised, particularly military standards for reliability, ISO9000, and safety case regulations. The article concludes that the formal, standardised approaches are misleading and counterproductive, and recommends that they be replaced by a philosophy based on the realities of human performance

  19. The industry commitment to global transport safety standards

    International Nuclear Information System (INIS)

    Green, L.

    2004-01-01

    Standards and regulations have no intrinsic practical effect without taking into account those who are the object of such standards and regulations. Standards and regulations do not become operationally effective until they are implemented by the entities which are subject to them. Accordingly, there is a necessary synergy between the regulator and the regulated - the regulators whose task it is to make and enforce the rules for safe, efficient and reliable transport, and those whose job it is to transport within the rules. One has no full meaning without the other. Harmonisation issues which can impede efficient and timely implementation of regulations can occur at any stage of the process, starting with the timely publication of the IAEA Regulations, incorporation by the modal organisations, adoption by national competent authorities and finally, rendered operational by industrial transport organisations. Both, the regulator and the transporter, can be more effective in achieving their purposes when they co-operate in the interest of mutual understanding. PATRAM provides one excellent opportunity for such exchange between the regulator and the regulated - there are other important opportunities within the IAEA and international modal organisations. I suggest, however, that more could be done between the regulators and the regulated collectively to share real-life experiences with actually implementing the regulations and operating within them, and to draw appropriate lessons. In the case of the international transport safety regulatory regime, it is the nuclear transport industry, such as represented by the World Nuclear Transport Institute (WNTI), which is, of course, the object of transport safety standards and regulations. And as such, the nuclear transport industry is a principal stakeholder in the regime. Regulatory compliance is a cornerstone of the nuclear transport industry. The international nature of the fuel cycle mandates transnational movement of

  20. The industry commitment to global transport safety standards

    International Nuclear Information System (INIS)

    Green, L.

    2004-01-01

    Standards and regulations have no intrinsic practical effect without taking into account those who are the object of such standards and regulations. Standards and regulations do not become operationally effective until they are implemented by the entities which are subject to them. Accordingly, there is a necessary synergy between the regulator and the regulated-the regulators whose task it is to make and enforce the rules for safe, efficient and reliable transport, and those whose job it is to transport within the rules. One has no full meaning without the other. Harmonisation issues which can impede efficient and timely implementation of regulations can occur at any stage of the process, starting with the timely publication of the IAEA regulations, incorporation by the modal organisations, adoption by national competent authorities and finally, rendered operational by industrial transport organisations. Both the regulator and the transporter can be more effective in achieving their purposes when they cooperate in the interest of mutual understanding. PATRAM provides one excellent opportunity for such exchange between the regulator and the regulated-there are other important opportunities within the IAEA and international modal organisations. It is suggested, however, that more could be done between the regulators and the regulated collectively to share real-life experiences with actually implementing the regulations and operating within them, and to draw appropriate lessons. In the case of the international transport safety regulatory regime, it is the nuclear transport industry, such as represented by the World Nuclear Transport Institute (WNTI), which is, of course, the object of transport safety standards and regulations. And as such, the nuclear transport industry is a principal stakeholder in the regime. Regulatory compliance is a cornerstone of the nuclear transport industry. The international nature of the fuel cycle mandates transnational movement of

  1. The industry commitment to global transport safety standards

    Energy Technology Data Exchange (ETDEWEB)

    Green, L. [World Nuclear Transport Inst., London (United Kingdom)

    2004-07-01

    Standards and regulations have no intrinsic practical effect without taking into account those who are the object of such standards and regulations. Standards and regulations do not become operationally effective until they are implemented by the entities which are subject to them. Accordingly, there is a necessary synergy between the regulator and the regulated - the regulators whose task it is to make and enforce the rules for safe, efficient and reliable transport, and those whose job it is to transport within the rules. One has no full meaning without the other. Harmonisation issues which can impede efficient and timely implementation of regulations can occur at any stage of the process, starting with the timely publication of the IAEA Regulations, incorporation by the modal organisations, adoption by national competent authorities and finally, rendered operational by industrial transport organisations. Both, the regulator and the transporter, can be more effective in achieving their purposes when they co-operate in the interest of mutual understanding. PATRAM provides one excellent opportunity for such exchange between the regulator and the regulated - there are other important opportunities within the IAEA and international modal organisations. I suggest, however, that more could be done between the regulators and the regulated collectively to share real-life experiences with actually implementing the regulations and operating within them, and to draw appropriate lessons. In the case of the international transport safety regulatory regime, it is the nuclear transport industry, such as represented by the World Nuclear Transport Institute (WNTI), which is, of course, the object of transport safety standards and regulations. And as such, the nuclear transport industry is a principal stakeholder in the regime. Regulatory compliance is a cornerstone of the nuclear transport industry. The international nature of the fuel cycle mandates transnational movement of

  2. Forest management practices and the occupational safety and health administration logging standard

    Science.gov (United States)

    John R. Myers; David Elton Fosbroke

    1995-01-01

    The Occupational Safety and Health Administration (OSHA) has established safety and health regulations for the logging industry. These new regulations move beyond the prior OSHA pulpwood harvesting standard by including sawtimber harvesting operations. Because logging is a major tool used by forest managers to meet silvicultural goals, managers must be aware of what...

  3. The International Atomic Energy Agency (IAEA) standards and recommendations on radioactive waste and transport safety

    International Nuclear Information System (INIS)

    Warnecke, E.; Rawl, R.

    1996-01-01

    The International Atomic Energy Agency (IAEA) publishes standards and recommendations on all aspects of nuclear safety in its Safety Series, which includes radioactive waste management and transport of radioactive materials. Safety Series documents may be adopted by a State into its national legal framework. Most of the States used the IAEA transport regulations (Safety Series No. 6) as a basis for their national regulation. The two highest ranking documents of the Radioactive Waste Safety Standards (RADWASS) programme, the Safety Fundamentals and the Safety Standard on the national waste management system, have been published. Both provide impetus into the waste management safety convention, a legally binding document for signatory states, which is being drafted. The already existing Convention on Nuclear Safety covers the management of radioactive waste at land-based civil nuclear power plants. (author) 1 fig., 18 refs

  4. Safety regulations for radioisotopes, etc. (interim report)

    International Nuclear Information System (INIS)

    1980-01-01

    An (interim) report by an ad hoc expert committee to the Nuclear Safety Commission, on the safety regulations for radioisotopes, etc., was presented. For the utilization of radioisotopes, etc., there is the Law Concerning Prevention of Radiation Injury Due to Radioisotopes, etc. with the advances in this field and the improvement in international standards, the regulations by the law have been examined. After explaining the basic ideas of the regulations, the problems and countermeasures in the current regulations are described: legal system, rationalization in permission procedures and others, inspection on RI management, the system of the persons in charge of radiation handling, RI transport, low-level radioactive wastes, consumer goods, definitions of RIs, radiation and sealed sources, regulations by group partitioning, RI facilities, system of personnel exposure registration, entrusting of inspection, etc. to private firms, and reduction in the works for permission among governmental offices. (author)

  5. Food Safety & Standards

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ An increasing number of people have realized that food safety is an important issue for public health. It not only concerns public health and safety, but also has direct influence on national economic progress and social development. The development and implementation of food safety standards play a vital role in protecting public health, as well as in standardizing and facilitating the sound development of food production and business.

  6. THE CONFORMITY OF MACHINE TOOLS WITH RESPECT TO EUROPEAN SAFETY STANDARDS

    CERN Multimedia

    TIS/TE

    2001-01-01

    European regulations require that all motorized machine tools conform to the latest safety standards by the end of the year 2000. CERN must follow these regulations and has already modified most of its machine tools accordingly. However, there is still a small number of machine tools which have not yet been modified as required. These machines should not be used until they are brought up to the required safety standards, failing which the machines should be discarded. One can recognise which machine tools conform with the latest standards by the indication 'CS' on the identification plate of the machine, see foto below. In cases of doubt about the status of a machine tool you should contact K. Altherr/EST or C. Margaroli/TIS for advice.

  7. THE CONFORMITY OF MACHINE TOOLS WITH RESPECT TO EUROPEAN SAFETY STANDARDS

    CERN Multimedia

    TIS/TE

    2000-01-01

    European regulations require that all motorized machine tools conform to the latest safety standards by the end of the year 2000. CERN must follow these regulations and has already modified most of its machine tools accordingly. However, there is still a small number of machine tools which have not yet been modified as required. These machines should not be used until they are brought up to the required safety standards, failing which the machines should be discarded. One can recognise which machine tools conform with the latest standards by the indication 'CS' on the identification plate of the machine, see foto below. In cases of doubt about the status of a machine tool you should contact K. Altherr/EST or C. Margaroli/TIS for advice.

  8. Research on the management and endorsement of nuclear safety standards in the United States and its revelation for China

    Science.gov (United States)

    Liu, Ting; Tian, Yu; Yang, Lili; Gao, Siyi; Song, Dahu

    2018-01-01

    This paper introduces the American standard system, the Nuclear Regulatory Commission (NRC)’s responsibility, NRC nuclear safety regulations and standards system, studies on NRC’s standards management and endorsement mode, analyzes the characteristics of NRC standards endorsement management, and points out its disadvantages. This paper draws revelation from the standard management and endorsement model of NRC and points suggestion to China’s nuclear and radiation safety standards management.The issue of the “Nuclear Safety Law”plays an important role in China’s nuclear and radiation safety supervision. Nuclear and radiation safety regulations and standards are strong grips on the implementation of “Nuclear Safety Law”. This paper refers on the experience of international advanced countriy, will effectively promote the improvement of the endorsed management of China’s nuclear and radiation safety standards.

  9. Technical standards in the law of technical safety

    International Nuclear Information System (INIS)

    Marburger, P.

    1985-01-01

    Technical standards are of great importance for the closer definition of inexact terms of law, for instance ''generally accepted technical rules'', ''state of the art'', ''state of science and technology'' or similar normative terms, in the law of technical safety. The paper discusses with whom the authority for regulating this sector of law rests, deals with the different ways of how technical standards are used by the law (''anticipated expert opinion'', reference to such standards in law and administration) and points out demands on the procedure of standardization. (orig.) [de

  10. Safety culture in nuclear installations - The role of the regulator

    International Nuclear Information System (INIS)

    Karigi, Alice W.

    2002-01-01

    Safety culture is an amalgamation of values, standards, morals and norms of acceptable behavior by the licensees, Radiation workers and the Regulator. The role played by a Regulator in establishing safety culture in a nuclear installation is that related to Authorization, review, assessment, inspection and enforcement. The regulator is to follow the development of a facility or activity from initial selection of the site through design, construction, commissioning, radioactive waste management through to decommissioning and closure. He is to ensure safety measures are followed through out the operation of the facility by laying down in the license conditions of controlling construction of nuclear installations and ensuring competence of the operators. (author)

  11. Development of standards and investigation of safety examination items for advancement of safety regulation of fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purposes of this study are to prepare the fuel technical standard and the structure and materials standard of fast breeder reactors (FBRs), and to develop the requirements in a reactor establishment permission. The objects of this study are mainly the Monju high performance core and a demonstration FBR. In JFY 2012, the following results were obtained. As for the fuel technical standard, the fuel technical standard adapting the examination of integrity of the FBR fuels was prepared based on the information and data obtained in this study. As for the structure and material standard, the investigation of the revised parts of the standard was carried out. And as for the examination of the safety requirements, safety evaluation items for the future FBR plant and the fission products to be considered in a reactor establishment permission were investigated and examined. (author)

  12. Nuclear safety: economic analysis of American, French and Japanese regulations

    International Nuclear Information System (INIS)

    Leveque, Francois

    2013-05-01

    While discussing and comparing the American, Japanese and French approaches and practices, and identifying the strengths and weaknesses of each of them, the author discusses why self-regulation and civil responsibility cannot guarantee a sufficient nuclear safety level, why the safety regulation authority must be independent from industry and government, whether a figure must be put to the safety objective (for example with a risk threshold), whether it is better to define detailed standards to be applied by manufacturers and operators or to define general performance criteria to be reached

  13. Alternative development and action plan for the atomic safety regulation instruments

    International Nuclear Information System (INIS)

    Kim, J. Y.; Ahn, S. K.; Ham, Y. S.

    2004-01-01

    The goal of this study to provide highly practical model to regulation agency. Since nuclear power safety regulation has different characteristics, compared to general regulation, it is important to have new point of view and approach. But application possibility for regulation that guarantees the 'perfect safety' is very low. Therefore, it is important establish nuclear power safety regulation that is realistic as well as safety securing. In order to establish high quality regulation, evaluation of existing regulation must be done first. Thus in this study, 6 standards to evaluate existing regulation are suggested. They are clearness, efficiency, flexibility, reliability, responsibility and political consideration. Also, strategies to complement the weak points of regulatory governance, regulatory sunset, regulatory map, regulatory negotiation, regulatory benefit cost analysis, etc. These strategies can be applied all in one regulation, and can strategically be selected for application. After analyzing the result if case analysis on nuclear furnace regulation for research study, agreement was made that it is most efficient to consider in the order if clearness reliability, flexibility, confidence, political consideration, administrative efficiency and economic efficiency

  14. Leadership for Safety in Practice: Perspectives from a Nuclear Regulator

    International Nuclear Information System (INIS)

    Tyobeka, B. M.

    2016-01-01

    The principal responsibility for a nuclear regulator is to assure compliance with regulations and safety standards by operators. One of these requirements is demonstration of, and adherence to, nuclear safety culture by the operators. At the same time, the regulators themselves are expected to live the talk and practice what they preach, i.e., demonstrate highest levels of nuclear safety culture within their organizations. Consequently, it is recognised that leadership is important in the creation of a culture that supports and promotes a strong nuclear safety performance of an organization. The leaders of a regulatory body are vital in inspiring employees to a higher level of safety and productivity, which means that they must apply good leadership attributes on a daily basis. This paper will attempt to bring forth and share attributes for strong leadership role in promoting a safety culture within a nuclear regulatory body by surveying world-wide practices and examples in developing and advanced nuclear countries. (author)

  15. A preliminary study on the design in architecture of nuclear and radiation safety standard system

    International Nuclear Information System (INIS)

    Song Dahu; Zhang Chi; Yang Lili; Li Bin; Liu Yingwei; An Hongzhen; Gao Siyi; Liu Ting; Meng De

    2014-01-01

    The connotation and function of nuclear and radiation safety standards are analyzed, and their relationships with the relevant laws and regulations are discussed in the paper. Some suggestions and blue print of overall architecture to build nuclear and radiation safety standard system are proposed, on the basis of researching the application status quo, existing problems and needs for nuclear and radiation safety standards in China. This work is a beneficial exploration and attempt to establish China's nuclear and radiation safety standards. (authors)

  16. Regulatory Body Safety Culture in Non-nuclear HROs: Lessons for Nuclear Regulators

    International Nuclear Information System (INIS)

    Fleming, M.; Bowers, K.

    2016-01-01

    Regulator safety culture is a relatively new area of investigation, even though deficiencies in regulatory oversight have been identified in a number of public inquiries (e.g., Piper Alpha, Deep Water Horizon). More recently the IAEA report into the Fukushima disaster specifically identified the need for regulatory bodies to have a positive safety culture. While there are clear parallels between duty holder safety culture and regulator safety culture there are also likely to be differences. To date they have been no published studies investigating regulator safety culture. In order to develop a framework to understand regulator safety culture we conducted a literature review and interviewed safety culture subject matter experts from a range of HRO domains (e.g., offshore oil and gas). There was general consensus among participants that regulatory safety culture was an important topic that was worthy of further investigation. That there was general agreement that regulatory safety culture was multi-dimensional and that some of the elements of existing safety culture models applied to regulator culture (e.g., learning and leadership). The participants also identified unique dimensions of regulator safety culture including commitment to high standards and ethics, transparency and perceived role of the regulator. In this paper we will present the results of the interviews and present a model of regulator safety culture. This model will be contrasted with models being used in the nuclear industry. Implications for assessing regulatory safety culture will be discussed. (author)

  17. Implementation of the new regulation on radiological safety in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    1997-01-01

    Since its creation in 1975, the Peruvian Institute of Nuclear Energy (IPEN) has enacted three regulations of national importance on the norms of protection against ionizing radiation. The first regulation, which is called regulation of radiological protection (1980) approved by a resolution of IPEN, is the result of the work of a committee constituted by IPEN and the Ministry of Health. Its implementation caused some problems as result of which, in 1989, a new regulation on radiological protection was enacted through a supreme decree. Taking into account the new recommendation of the International Commission on Radiological Protection and the International Basic Safety Standard for Protection against Ionizing Radiation and for the Safety of Radiation Sources, approved in May 1997, the regulation of radiological safety also considers evolving aspects in the Project ARCAL XVII/IAEA. This regulation includes various topics such as exclusions, requirements of protection (medical exposure, occupational exposure, public exposure, chronic exposure), requirements of source safety, interventions and emergencies, control of sources and practices (exemptions, authorizations, inspections) etc. The implementation of this regulation at the national level falls to IPEN, the unique authority commissioned to control nuclear installations, radioactivity and x ray facilities in medicine, industry and research

  18. Catalogue and classification of technical safety standards, rules and regulations for nuclear power reactors and nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Fichtner, N.; Becker, K.; Bashir, M.

    1977-01-01

    The present report is an up-dated version of the report 'Catalogue and Classification of Technical Safety Rules for Light-water Reactors and Reprocessing Plants' edited under code No EUR 5362e, August 1975. Like the first version of the report, it constitutes a catalogue and classification of standards, rules and regulations on land-based nuclear power reactors and fuel cycle facilities. The reasons for the classification system used are given and discussed

  19. Legal principles of regulatory administration and nuclear safety regulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyeong Hui; Cheong, Sang Kee [Hannam Univ., Taejon (Korea, Republic of)

    2000-12-15

    This research presents a critical analysis and evaluation of principles of administrative laws in order to provide framework of structural reform on the nuclear safety regulation system. The focus of this analysis and evaluation is centered around the area of origin of regulatory administrative laws; authorities of regulation; procedures of regulatory actions; regulatory enforcement; and administrative relief system. In chapter 2 the concept of regulatory administration is analysed. Chapter 3 identifies the origin of regulatory administration and the principles of administration laws. It also examines legal nature of the nuclear safety standard. In relation to regulatory authorities. Chapter 4 identifies role and responsibility of administration authorities and institutions. It also examines fundamental principles of delegation of power. Then the chapter discusses the nuclear safety regulation authorities and their roles and responsibilities. Chapter 5 classifies and examines regulatory administration actions. Chapter 6 evaluates enforcement measure for effectiveness of regulation. Finally, chapter 7 discusses the administrative relief system for reviewing unreasonable regulatory acts.

  20. International standardization of safety requirements for fast reactors

    International Nuclear Information System (INIS)

    2011-06-01

    Japan Atomic Energy Agency (JAEA) is conducting the FaCT (Fast Reactor Cycle Technology Development) project in cooperation with Japan Atomic Power Company (JAPC) and Mitsubishi FBR systems inc. (MFBR), where an advanced loop-type fast reactor named JSFR (Japan Sodium-cooled Fast Reactor) is being developed. It is important to develop software technologies (a safety guideline, safety design criteria, safety design standards etc.) of FBRs as well as hardware ones (a reactor plant itself) in order to address prospective worldwide utilization of FBR technology. Therefore, it is expected to establish a rational safety guideline applicable to the JSFR and harmonized with national nuclear-safety regulations as well, including Japan, the United States and the European Union. This report presents domestic and international status of safety guideline development for sodium-cooled fast reactors (SFRs), results of comparative study for safety requirements provided in existing documents and a proposal for safety requirements of future SFRs with a roadmap for their refinement and worldwide utilization. (author)

  1. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt... standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  2. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt... standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  3. Radon in the Workplace: the Occupational Safety and Health Administration (OSHA) Ionizing Radiation Standard.

    Science.gov (United States)

    Lewis, Robert K

    2016-10-01

    On 29 December 1970, the Occupational Safety and Health Act of 1970 established the Occupational Safety and Health Administration (OSHA). This article on OSHA, Title 29, Part 1910.1096 Ionizing Radiation standard was written to increase awareness of the employer, the workforce, state and federal governments, and those in the radon industry who perform radon testing and radon mitigation of the existence of these regulations, particularly the radon relevant aspect of the regulations. This review paper was also written to try to explain what can sometimes be complicated regulations. As the author works within the Radon Division of the Pennsylvania Department of Environmental Protection, Bureau of Radiation Protection, the exclusive focus of the article is on radon. The 1910.1096 standard obviously covers many other aspects of radiation and radiation safety in the work place.

  4. Nuclear safety regulations

    International Nuclear Information System (INIS)

    1998-01-01

    The Departmental Rules and The Safety Guides were issued by the NNSA in 1998. The NNSA performed the activities of propagation and implementation of nuclear safety regulations at QTNPP in order to improve the nuclear safety culture of operating organization and construct and contract organizations

  5. Performance standards of road safety management

    Directory of Open Access Journals (Sweden)

    Čabarkapa Milenko R.

    2016-01-01

    Full Text Available Road safety management controlling means the process of finding out the information whether the road safety is improving in a measure to achieve the objectives. The process of control consists of three basic elements: definition of performances and standards, measurement of current performances and comparison with the set standards, and improvement of current performances, if they deviate from the set standards. The performance standards of road safety management system are focused on a performances measurement, in terms of their design and characteristics, in order to support the performances improvement of road safety system and thus, ultimately, improve the road safety. Defining the performance standards of road safety management system, except that determines the design of the system for performances measurement, directly sets requirements whose fulfillment will produce a road safety improvement. The road safety management system, based on the performance standards of road safety, with a focus on results, will produce the continuous improvement of road safety, achieving the long-term 'vision zero', the philosophy of road safety, that human life and health take priority over mobility and other traffic objectives of the road traffic.

  6. Consensus standards utilized and implemented for nuclear criticality safety in Japan

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Okuno, Hiroshi; Naito, Yoshitaka

    1996-01-01

    The fundamental framework for the criticality safety of nuclear fuel facilities regulations is, in many advanced countries, generally formulated so that technical standards or handbook data are utilized to support the licensing safety review and to implement its guidelines. In Japan also, adequacy of the safety design of nuclear fuel facilities is checked and reviewed on the basis of licensing safety review guides. These guides are, first, open-quotes The Basic Guides for Licensing Safety Review of Nuclear Fuel Facilities,close quotes and as its subsidiaries, open-quotes The Uranium Fuel Fabrication Facility Licensing Safety Review Guidesclose quotes and open-quotes The Reprocessing Facility Licensing Safety Review Guides.close quotes The open-quotes Nuclear Criticality Safety Handbook close-quote of Japan and the Technical Data Collection are published and utilized to supply related data and information for the licensing safety review, such as for the Rokkasho reprocessing plant. The well-established technical standards and data abroad such as those by the American Nuclear Society and the American National Standards Institute are also utilized to complement the standards in Japan. The basic principles of criticality safety control for nuclear fuel facilities in Japan are duly stipulated in the aforementioned basic guides as follows: 1. Guide 10: Criticality control for a single unit; 2. Guide 11: Criticality control for multiple units; 3. Guide 12: Consideration for a criticality accident

  7. Safety regulations: Implications of the new risk perspectives

    International Nuclear Information System (INIS)

    Aven, T.; Ylönen, M.

    2016-01-01

    The current safety regulations for industrial activities are to a large extent functionally oriented and risk-based (informed), expressing what to achieve rather than the means and solutions needed. They are founded on a probability-based perspective on risk, with the use of risk assessment, risk acceptance criteria and tolerability limits. In recent years several risk researchers have argued for the adoption of some new types of risk perspectives which highlight uncertainties rather than probabilities in the way risk is defined, the point being to better reflect the knowledge, and lack of knowledge, dimension of risk. The Norwegian Petroleum Safety Authority has recently implemented such a perspective. The new ISO standard 31000 is based on a similar thinking. In this paper we discuss the implications of these perspectives on safety regulation, using the oil & gas and nuclear industries as illustrations. Several suggestions for how to develop the current safety regulations in line with the ideas of the new risk perspectives are outlined, including some related to the use of risk acceptance criteria (tolerability limits). We also point to potential obstacles and incentives that the larger societal and institutional setting may impose on industry as regards the adoption of the new risk perspectives. - Highlights: • Some new types of risk perspectives have been promoted. • They have been implemented for example by the Norwegian Petroleum Safety Authority. • The paper studies the implication of these perspectives on the risk regulation. • Suggestions for how to develop the regulations are provided • Obstacles and incentives for the implementation of the perspectives are pointed to.

  8. Principles and standards of nuclear safety and their implementation

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1979-01-01

    Nuclear safety starts with the design of a nuclear facility and is only completed with its decommissioning. In the various phases of a nuclear facility's lifetime, safety evaluations are required. The licensing prerequisites for construction, operation, modification, decommissioning are based on elements of the relevant national legislation and related ordinances as well as on international regulations. They should be expanded by a system of criteria and standards spelling out the proven practice as developed over the last decades in the industrialized countries and by international organizations such IAEA with its safety codes and guides. (NEA) [fr

  9. Safety goals and safety culture opening plenary. 2. Safety Regulation Implemented by Gosatomnadzor of Russia

    International Nuclear Information System (INIS)

    Gutsalov, A.T.; Bukrinsky, A.M.

    2001-01-01

    This paper describes principles and approaches used by Gosatomnadzor of Russia in establishing safety goals. The link between safety goals and safety culture is demonstrated. The paper also contains information on nuclear regulatory activities in Russia. Regulatory documents of Gosatomnadzor of Russia do not provide precise definitions of safety goals as IAEA documents INSAG-3 or INSAG-12 do. However, overall activities of Gosatomnadzor of Russia are directed to the achievement of these safety goals, as Gosatomnadzor of Russia is a federal executive authority responsible for the regulation of nuclear and radiation safety in accordance with the Russian Federal Law 'On the Use of Nuclear Energy'. Thus, in the Statement of the Policy of the Russian Regulatory Authority, enacted in 1992, it was established that the overall activities of Gosatomnadzor of Russia are directed to the achievement of the main goal. This goal is to establish conditions that ensure that personnel, the public, and the environment are protected from unacceptable radiation and nonproliferation of nuclear materials. The practical application of such a method as given by the publication of Statements of Policy of Gosatomnadzor of Russia may be considered as a safety culture element. 'General Provisions of NPP Safety Ensuring' (OPB-88/ 97) is a regulatory document of the highest level in the hierarchy of regulatory documents of Gosatomnadzor of Russia. It establishes quantitative values of safety goals as do the foregoing IAEA documents. Thus, this regulatory document sets up the following: 1. The estimated total probability of severe accidents should not exceed 10 5 /reactor.yr. 2. The estimated probability of the worst possible radioactive release to the environment specified in the standards should not exceed 10 -7 /reactor.yr in the case of severe beyond-design-basis accidents. 3. The probability of a reactor vessel failure should not exceed 10 -7 /reactor.yr. The foregoing values are somehow

  10. Merits and difficulties in adopting codes, standards and nuclear regulations

    International Nuclear Information System (INIS)

    El-Saiedi, A.F.; Morsy, S.; Mariy, A.

    1978-01-01

    Developing countries planning for introducing nuclear power plants as a source of energy have to develop or adopt sound regulatory practices. These are necessary to help governmental authorities to assess the safety of nuclear power plants and to perform inspections needed to confirm the established safe and sound limits. The first requirement is to form an independent regulatory body capable of setting up and enforcing proper safety regulations. The formation of this body is governed by several considerations related to local conditions in the developing countries, which may not always be favourable. It is quite impractical for countries with limited experience in the nuclear power field to develop their own codes, standards and regulations required for the nuclear regulatory body to perform its tasks. A practical way is to adopt codes, standards and regulations of a well-developed country. This has merits as well as drawbacks. The latter are related to problems of personnel, software, equipment and facilities. The difficulties involved in forming a nuclear regulatory body, and the merits and difficulties in adopting foreign codes, standards and regulations required for such body to perform its tasks, are discussed in this paper. Discussions are applicable to many developing countries and particular emphasis is given to the conditions and practices in Egypt. (author)

  11. Status of the IAEA safety standards programme

    International Nuclear Information System (INIS)

    2002-01-01

    This presentation describes the status of the IAEA safety standards program to May 2002. The safety standards program overcome whole main nuclear implementations as General safety, Nuclear safety, Radiation safety, Radioactive waste safety, and Transport safety. Throughout this report the first column provides the list of published IAEA Safety Standards. The second gives the working identification number (DS) of standards being developed or revised. The bold type indicates standard issued under the authority the Board of Governors, others are issued under authority of the Director General. The last column provides the list of Committees, the first Committee listed has the lead in the preparation and review of the particular standard

  12. Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment ('Official Gazette' No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities ('Official Gazette' No. 74/06) and Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety ('Official Gazette' No. 74/06), based on Nuclear Safety Act ('Official Gazette' No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a licence to perform a nuclear activity. The Ordinance also regulates the content of the forms for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear activities. According to the Nuclear Safety Act, nuclear activities are the production, processing, use, storage, disposal, transport, import, export, possession or other handling of nuclear material or specified equipment. The Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, State Office for Nuclear Safety finalized the text of new Ordinance on conditions for nuclear safety and protection with regard to the siting, design, construction, use and decommissioning of a facility in which a nuclear activity is

  13. NASA's Software Safety Standard

    Science.gov (United States)

    Ramsay, Christopher M.

    2007-01-01

    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  14. 75 FR 71648 - Federal Motor Vehicle Safety Standards, Child Restraint Systems; Hybrid III 10-Year-Old Child...

    Science.gov (United States)

    2010-11-24

    ... No. NHTSA-2010-0158 Regulation Identifier No. (RIN) 2127-AJ44 Federal Motor Vehicle Safety Standards, Child Restraint Systems; Hybrid III 10-Year-Old Child Test Dummy AGENCY: National Highway Traffic Safety... (SNPRM). SUMMARY: This document proposes to amend Federal Motor Vehicle Safety Standard (FMVSS) No. 213...

  15. CONFORMITY TO OCCUPATIONAL SAFETY AND HEALTH REGULATIONS IN MALAYSIAN SMALL AND MEDIUM ENTERPRISES

    OpenAIRE

    Baba Md Deros; Ahmad Rasdan Ismail; Jaharah A. Ghani; Mohd Yusri Mohd Yusof

    2014-01-01

    Regulation on occupational safety and health in Malaysia had evolved from the prescriptive factory and machinery act to a self-regulated occupational safety and health act. However, from the authors’ observation the high standards of occupational safety and health culture that surpass the legal requirement were not widely practiced by Small and Medium Enterprises (SMEs). The two main objectives of this study are: First, first, to identify and determine the level of conformity and second...

  16. Proposals for the Radioactive Substances (Basic Safety Standards) (England and Wales) Regulations 2000 and the Radioactive Substances (Basic Safety Standards) (England and Wales) Direction 2000. Consultative document

    International Nuclear Information System (INIS)

    2000-01-01

    This document contains proposals for changes to the Radioactive Substances Act 1993 (RSA 93) and proposals for a Direction to be given to the Environment Agency in order to implement aspects of the European Directive 96/29/Euratom concerned with the control of radioactive waste. The Directive lays down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiation. With the Government pledged to making government more accessible and responsive, an important feature of this approach is effective consultation with all interested organisations. This leads to more realistic and robust proposals, which is particularly important when dealing with proposed legislation. In March this year, the Government published a consultation paper 'The Radioactive Substances Act 1993: Implementing the Revised Basic Safety Standards Directive Euratom 96/29.' This sought comments on the basic principles for change - including the setting of levels of radioactivity below which radioactive material should be considered outside the framework of regulatory control. This document forms the second stage of the consultation process with the aim of gathering views on the proposed legal instruments to implement the Directive. This document: explains the background to the proposed regulations (paragraphs 8-13); summarises the results of the consultation on principles (paragraphs 14-24); describes the proposed changes (paragraphs 25-36); includes draft Regulations (paragraphs 27-29); includes a draft Direction to the Environment Agency (paragraphs 30-36); describes the next steps (paragraphs 37-39); includes a draft Regulatory Impact Assessment (paragraphs 40-41). In general, the devolved administrations in Scotland, Wales and Northern Ireland have assumed responsibility for environmental issues and hence management of radioactive waste policies and legislation affecting their respective countries. However, this

  17. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  18. Benefit using reasonable regulations in USA, how to skill up on professional engineers, apply international code, standard, and regulation

    International Nuclear Information System (INIS)

    Turner, S.L.; Morokuzu, Muneo; Amano, Osamu

    2005-01-01

    The reasonable regulations in USA consist of a graduated approach and a risk informed approach (RIA). RIA rationalizes the regulations on the basis of data of operations etc. PSA (Probabilistic Safety Assessment), a general method of RIA, is explained in detail. The benefits of nuclear power plant using RIA are increase of the rate of operation, visualization of risk, application of design standard and design, cost down of nuclear fuel cycle, waste, production and operation, and safety. RIA is supported by the field data, code, standard, regulation and professional engineers. The effects of introduction of RIA are explained. In order to introduce RIA in Japan, all the parties concerned such as the regulation authorities, the electric power industries, makers, universities, have to understand it and work together. A part of scientific society is stated. (S.Y.)

  19. Developing international safety standards for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Metcalf, P.

    2001-01-01

    In the context of the International Atomic Energy Agency's (IAEA) programme to create a corpus of internationally accepted Radioactive Waste Safety Standards (RADWASS), focus is currently being placed on establishing standards for the 'geological disposal of radioactive waste'. This is a challenging task and to help the standards development process there is a need to stimulate discussion of some of the associated scientific and technical issues. A number of position papers developed in recent years by a subgroup of the Waste Safety Standards Committee (WASSC), the subgroup on Principles and Criteria for Radioactive Waste Disposal, address many of the relevant issues. These include a common safety based framework for radioactive waste disposal, appropriate time frames for safety assessment, different possible indicators of long-term safety, the safety implications of reversibility and retrievability, the assessment of possible human intrusion into the repository, the role and limitations of institutional control, establishing reference critical groups and biospheres for long-term assessment, and what is meant by 'compliance' with the standards. These papers will be discussed at a Specialists Meeting to be held at the IAEA in June 2001 as a means of establishing the extent to which they enjoy the general support of experts. In order to broaden that consensus, the conclusions reached at the Specialists Meeting on the issues listed above will be presented and discussed with participants at a number of international meetings. Later this year, a draft safety standard on the geological disposal of radioactive waste which takes account of the consensus positions reached through the various consultations will be submitted for the consideration of Waste Safety Standards Committee (WASSC), the officially approved body within the IAEA for the review and approval of waste safety standards. The Committee is made up of government appointed radioactive waste regulators

  20. Safety Culture for Regulator Competence Management in Embarking States

    International Nuclear Information System (INIS)

    Kandil, M.

    2016-01-01

    Full text: Safety is based on preventive actions where the ability of a regulatory body to fulfill its responsibilities depends largely on the competence of its staff. Building employees’ skills and knowledge is an investment for each employee and in the future of the organization. This building must be the competence of its staff integration with their safety culture, the essential to ensure competent human resources as required in the IAEA safety standards and other documents, in which the need and importance of ensuring regulatory competence is emphasized. As it involves both operational and management issues, safety culture is a sensitive topic for regulators whose role is to ensure compliance with safety requirements and not to intervene in management decisions. A number of embarking States are aspiring to develop nuclear power generation and this means that, among other things, regulatory bodies have to be established and rapidly expanded. This paper reports major considerations on the integration of safety culture with an adequate competence management system for regulators in embarking states. (author

  1. Development of French technical safety regulations: safety fundamental rules

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1982-09-01

    The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operations of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridical sense; they are called ''Regles Fondamentales de Surete'' (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation pratice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. The RFS program is described. A RFS -or a letter- can also give the result of the examination of the constructor and operator code (RCC) by safety authorities

  2. Development of French technical safety regulations: safety fundamental rules

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1983-01-01

    The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operating of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridicial sense; they are called Regles Fondamentales de Surete (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation practice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. The RFS program is described. A RFS - or a letter - can also give the result of the examination of the constructor and operator codes (RCC) by safety authorities

  3. Safety standards for near surface disposal and the safety case and supporting safety assessment for demonstrating compliance with the standards

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The report presents the safety standards for near surface disposal (ICRP guidance and IAEA standards) and the safety case and supporting safety assessment for demonstrating compliance with the standards. Special attention is paid to the recommendations for disposal of long-lived solid radioactive waste. The requirements are based on the principle for the same level of protection of future individuals as for the current generation. Two types of exposure are considered: human intrusion and natural processes and protection measures are discussed. Safety requirements for near surface disposal are discussed including requirements for protection of human health and environment, requirements or safety assessments, waste acceptance and requirements etc

  4. 77 FR 72998 - Policy Statement on Occupational Safety and Health Standards for Aircraft Cabin Crewmembers

    Science.gov (United States)

    2012-12-07

    ... [Docket No.: FAA-2012-0953] Policy Statement on Occupational Safety and Health Standards for Aircraft... regarding the regulation of some occupational safety and health conditions affecting cabin crewmembers on aircraft by the Occupational Safety and Health Administration (OSHA). This policy statement will enhance...

  5. Technical Standards on the Safety Assessment of a HLW Repository in Other Countries

    International Nuclear Information System (INIS)

    Lee, Sung Ho; Hwang, Yong Soo

    2009-01-01

    The basic function of HLW disposal system is to prevent excessive radio-nuclides being leaked from the repository in a short time. To do this, many technical standards should be developed and established on the components of disposal system. Safety assessment of a repository is considered as one of technical standards, because it produces quantitative results of the future evolution of a repository based on a reasonably simplified model. In this paper, we investigated other countries' regulations related to safely assessment focused on the assessment period, radiation dose limits and uncertainties of the assessment. Especially, in the investigation process of the USA regulations, the USA regulatory bodies' approach to assessment period and peak dose is worth taking into account in case of a conflict between peak dose from safety assessment and limited value in regulation.

  6. The development of international safety standards on geological disposal

    International Nuclear Information System (INIS)

    McCartin, T.

    2005-01-01

    The IAEA is developing a set of safety requirements for geologic disposal to be used by both developers and regulators for planning, designing, operating, and closing a geologic disposal facility. Safety requirements would include quantitative criteria for assessing safety of geologic disposal facilities as well as requirements for development of the facility and the safety strategy including the safety case. Geologic disposal facilities are anticipated to be developed over a period of at least a few decades. Key decisions, e.g., on the disposal concept, siting, design, operational management and closure, are expected to be made in a series of steps. Decisions will be made based on the information available at each step and the confidence that may be placed in that information. A safety strategy is important for ensuring that at each step during the development of the disposal facility, an adequate understanding of the safety implications of the available options is developed such that the ultimate goal of providing an acceptable level of operational and post closure safety will be met. A safety case for a geologic disposal facility would present all the safety relevant aspects of the site, the facility design and the managerial and regulatory controls. The safety case and its supporting assessments illustrates the level of protection provided and shall give reasonable assurance that safety standards will be met. Overall, the safety case provides confidence in the feasibility of implementing the disposal system as designed, convincing estimates of the performance of the disposal system and a reasonable assurance that safety standards will be met. (author)

  7. 77 FR 75600 - Policy Statement on Occupational Safety and Health Standards for Aircraft Cabin Crewmembers...

    Science.gov (United States)

    2012-12-21

    ... [Docket No. FAA-2012-0953] Policy Statement on Occupational Safety and Health Standards for Aircraft Cabin... announced a proposed policy statement regarding the regulation of some occupational safety and health conditions affecting cabin crewmembers on aircraft by the Occupational Safety and Health Administration. The...

  8. Investigation and consideration on the framework of oversight-based safety regulation. U.S. NRC 'Risk-Informed, Performance-Based' Regulation

    International Nuclear Information System (INIS)

    Saji, Gen

    2001-01-01

    Regulation on safety, environment and health in Japan has before today been intended to correspond with an accident at forms of reinforcement of national standards and monitoring, if any. However, as it was thought that such regulation reinforcement was afraid to bring some social rigidity, and to weaken independent responsibility, as a result, because of anxiety of losing peoples' merits inversely, some fundamental directivity such as respect of self-responsibility principle' and 'necessary and least limit of regulation' were selected as a part of political innovation. On the other hand, at a background of wide improvements on various indexing values showing operation results of nuclear power stations in U.S.A., private independent effort on upgrading of safety is told to largely affect at beginning of INPO (Institute of Nuclear Power Operations), without regulation reinforcement of NRC side. This is a proof of concrete effect of transfer to oversight-based safety regulation. Here were introduced on nuclear safety in U.S.A. at a base of some references obtained on entering the 'MIT summer specialist program. Nuclear system safety', on focussing at new safety regulation of NRC and its effect and so on, and adding some considerations based on some knowledge thereafter. (G.K.)

  9. Radiation Safety Analysis In The NFEC For Assessing Possible Implementation Of The ICRP-60 Standard

    International Nuclear Information System (INIS)

    Yowono, I.

    1998-01-01

    Radiation safety analysis of the 3 facilities in the nuclear fuel element center (NFEC) for assessing possible implementation of the ICRP-60 standard has been done. The analysis has covered the radiation dose received by workers, dose rate in the working area, surface contamination level, air contamination level and the level of radioactive gas release to the environment. The analysis has been based on BATAN regulation and ICRP-60 standard. The result of the analysis has showed that the highest radiation dose received has been found to be only around 15% of the set value in the ICRP-60 standard and only 6% of the set value in the BATAN regulation. Thus the ICRP-60 as radiation safety standard could be implemented without changing the laboratory design

  10. Basic safety standards for radiation protection in the Syrian Arab Republic

    International Nuclear Information System (INIS)

    1989-01-01

    The aim of these standards is to insure safety and protection from ionizing radiation in the Syrian Arab Republic. Licensing regulations, dose limits,maximum permissible dose and all kinds of exposure such as occupational, medical and public exposure are presented

  11. Basic safety standards for radiation protection in the Syrian Arab Republic

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    The aim of these standards is to insure safety and protection from ionizing radiation in the Syrian Arab Republic. Licensing regulations, dose limits,maximum permissible dose and all kinds of exposure such as occupational, medical and public exposure are presented.

  12. Nuclear regulation and safety

    International Nuclear Information System (INIS)

    Hendrie, J.M.

    1982-01-01

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed

  13. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  14. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Chinese Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  15. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA's Statute authorizes the Agency to ''establish or adopt standards of safety for protection of health and minimization of danger to life and property'' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  16. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  17. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  18. 78 FR 3843 - Federal Motor Vehicle Safety Standards; New Pneumatic and Certain Specialty Tires

    Science.gov (United States)

    2013-01-17

    ... Approval Handbook for Japanese Certification, Safety Regulations for Road Vehicles, Technical Standards For... Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act... vehicle safety, Motor vehicles, Rubber and rubber products, and Tires. In consideration of the foregoing...

  19. The radiation safety standards programme

    International Nuclear Information System (INIS)

    Bilbao, A.A.

    2000-01-01

    In this lecture the development of radiation safety standards by the IAEA which is a statutory function of the IAEA is presented. The latest editions of the basic safety standards published by the IAEA in cooperation with ICRP, FAO, ILO, NEA/OECD, PAHO and WHO are reviewed

  20. New Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.; Cizmek, A.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities (Official Gazette No. 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (Official Gazette No. 74/06), based on Nuclear Safety Act (Official Gazette No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of announcing the intention to perform nuclear activity, submitting an application for the issue of a license to perform nuclear activity, and the procedure for adoption a decision on issuing a nuclear activity license. The Ordinance also regulates the contents of the application form for the announcement of the intention to perform nuclear activity, as well as of the application for the issue of a nuclear activity license and the method of keeping a nuclear activity register. The Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, SONS finalized the text of new Ordinance on nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance regulates nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance defines facilities in which nuclear activity is

  1. Status and trends in IAEA safety standards

    International Nuclear Information System (INIS)

    Lipar, M.

    2004-01-01

    While safety is a national responsibility, international standards and approaches to safety promote consistency and facilitate international technical co-operation and trade, and help to provide assurance that nuclear and radiation related technologies are used safely. The standards also provide support for States in meeting their international obligations. One general international obligation is that a State must not pursue activities that cause damage in another State. More specific obligations on Contracting States are set out in international safety related conventions. The internationally agreed IAEA safety standards provide the basis for States to demonstrate that they are meeting these obligations. These standards are founded in the IAEA's Statute, which authorizes the Agency to establish standards of safety for nuclear and radiation related facilities and activities and to provide for their application. The safety standards reflect an international consensus on what constitutes a high level of safety for protecting people and the environment. (orig.) [de

  2. DS424: A Roadmap for the Implementation of the IAEA Safety Standards

    International Nuclear Information System (INIS)

    Yllera, Javier

    2010-01-01

    Many countries interested in developing nuclear power programmes for the first time need to have experience in using and regulating radioactive source materials. They need to have experience in building and operating large non-nuclear construction projects. Nuclear power has unique attributes and commitments associated with it that other industries do not. Although undertaken as a national endeavour with many national implications, building and operating a nuclear facility also has global implications (financial, political, safety, etc.). DG’s 2008 General Conference speech: “Every country has the right to introduce nuclear power, as well as the responsibility to do it right.”. The development of IAEA Safety Standards is an statutory function of the IAEA (article III of the IAEA Statute): “The Agency is authorized to establish or adopt… standards of safety for protection of health and minimization of danger to life and property…”. New guide (DS 424) constitutes a “Road-map” to apply the entire suite of IAEA Safety Standards progressively during the early phases of the implementation of a nuclear power programme. IAEA safety review missions based on internationally agreed safety standards are well established and are the best tools to build up confidence on the capacity of a country to develop nuclear energy in a safe way

  3. Cooperative development of nuclear safety regulations, guides and standards based on NUSS

    International Nuclear Information System (INIS)

    Pachner, J.; Boyd, F.C.; Yaremy, E.M.

    1984-10-01

    In 1983, the Atomic Energy Control Board and Atomic Energy of Canada Limited conducted a study of a possible joint program involving Canada, a nuclear power plant importing Member State and the IAEA for the development of the national nuclear safety regulations and guides based on NUSS documents. During the study, a work plan with manpower estimates for the development of design was prepared as an investigatory exercise. The work plan suggests that a successful NUSS implementation in developing Member States will require availability of significant resources at the start of the program. The study showed that such a joint program could provide an effective mechanism for transfer of nuclear safety know-how to the developing Member States through NUSS implementation

  4. Revision of AESJ standard 'the code of implemnetation of periodic safety review of nuclear power plants'

    International Nuclear Information System (INIS)

    Hirano, Masashi; Narumiya, Yoshiyuki

    2010-01-01

    The Periodic Safety Review (PSR) was launched in June 1992, when the Agency for Natural Resources and Energy issued a notification that required licensees to conduct comprehensive review on the safety of each existing nuclear power plant (NPP) once approximately every ten years based on the latest technical findings for the purpose of improving the safety of the NPP. In 2006, the Standard Committee of the Atomic Energy Society of Japan established the first version of 'The Standard of Implementation for Periodic Safety Review of Nuclear Power Plants: 2006'. Taking into account developments in safety regulation of PSR after the issuance of the first version, the Standard Committee has revised the Standard. This paper summarizes background on PSR, such developments are major contents of the Standard as well as the focal points of the revision. (author)

  5. Basic Safety Standards for Radiation Protection - 1967 Edition

    International Nuclear Information System (INIS)

    1967-01-01

    This first revision of the Basic Safety Standards was approved by the IAEA Board of Governors in September 1965. It was prepared with the assistance of a panel of experts chaired by Prof. L. Bugnard, Director of the French Institut National d'Hygiene, and attended by representatives of several international organizations. Comments from Member States were considered and changes were introduced on the basis of recommendations made by the International Commission on Radiological Protection in 1966. The Director General of the IAEA has been authorized by the Board to apply the revised Standards to IAEA and IAEA-assisted operations. It has also been recommended that the national regulations of Member States should conform, as far as is practicable, to the revised Standards. (author)

  6. State of bus safety in the U.S. : summary of federal and state regulations.

    Science.gov (United States)

    2014-06-01

    This report provides a comprehensive overview of transit bus safety regulations and standards developed by all 50 states, as well as : information on how state departments of transportation (DOT) regulate the maintenance or operation of transit/parat...

  7. The international dimensions of nuclear safety standards

    International Nuclear Information System (INIS)

    Reed, J.M.

    1992-01-01

    The paper reviews the activities of the major international organisations in the field of nuclear safety standards; the International Atomic Energy Agency (IAEA), the OECD's Nuclear Energy Agency (NEA) and the Commission of the European Communities. Each organisation encourages the concept of international nuclear safety standards. After Chernobyl, there were calls for some form of binding international nuclear safety standards. Many Member States of IAEA accepted these Codes as a suitable basis for formulating their national safety standards, but the prevailing view was that voluntary compliance with the Codes was the preferred path. With few reactor vendors in a limited international market, the time may be approaching when an internationally licensable nuclear reactor is needed. Commonly accepted safety standards would be a prerequisite. The paper discusses the issues involved and the complexities of standards making in the international arena. (author)

  8. Standard model for the safety analysis report of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    1980-02-01

    This norm establishes the Standard Model for the Safety Analysis Report of Nuclear Fuel Reprocessing Plants, comprehending the presentation format, the detailing level of the minimum information required by the CNEN for evaluation the requests of Construction License or Operation Authorization, in accordance with the legislation in force. This regulation applies to the following basic reports: Preliminary Safety Analysis Report - PSAR, integrating part of the requirement of Construction License; and Final Safety Analysis Report (FSAR) which is the integrating part of the requirement for Operation Authorization

  9. RADWASS update. Radioactive Waste Safety Standards Programme

    International Nuclear Information System (INIS)

    Delattre, D.

    2000-01-01

    By the late 1980s, the issue of radioactive wastes and their management was becoming increasingly politically important. The IAEA responded by establishing a high profile family of safety standards, the Radioactive Waste Safety Standards (RADWASS). By this means, the IAEA intended to draw attention to the fact that well-established procedures for the safe management of radioactive wastes already were in place. The programme was intended to establish an ordered structure for safety documents on waste management and to ensure comprehensive coverage of all relevant subject areas. RADWASS documents are categorized under four subject areas - discharges, predisposal, disposal, and environmental restoration. The programme is overseen through a formalized review and approval mechanism that was established in 1996 for all safety standards activities. The Waste Safety Standards Committee (WASSC) is a standing body of senior regulatory officials with technical expertise in radioactive waste safety. To date, three Safety Requirements and seven Safety Guides have been issued

  10. Present status and improvement approach of atomic energy laws and safety standards

    International Nuclear Information System (INIS)

    Oh, B. J.; An, H. J.; Kim, S. W.; Kim, C. B.; Kang, S. C.; Lee, J. I.

    2000-01-01

    Major revision to the atomic energy act, which is currently undergoing are introduced: increase of members of nuclear safety commission, adoption of standard design certification, periodic safety review, production license system of radioactive isotope facilities, preparation for implementation of IAEA convention. Improvement of the notice of ministry of science and technology are discussed in accordance with the new atomic energy act, enforcement detect, and enforcement regulations, whose revision were completed in May 2000. Allocation of the code number to the notice, development procedures for the safety and regulatory guides are also introduced

  11. Challenges in developing competency-based training curriculum for food safety regulators in India

    Directory of Open Access Journals (Sweden)

    Anitha Thippaiah

    2014-01-01

    Full Text Available Context: The Food Safety and Standards Act have redefined the roles and responsibilities of food regulatory workforce and calls for highly skilled human resources as it involves complex management procedures. Aims: 1 Identify the competencies needed among the food regulatory workforce in India. 2 Develop a competency-based training curriculum for food safety regulators in the country. 3 Develop training materials for use to train the food regulatory workforce. Settings and Design: The Indian Institute of Public Health, Hyderabad, led the development of training curriculum on food safety with technical assistance from the Royal Society for Public Health, UK and the National Institute of Nutrition, India. The exercise was to facilitate the implementation of new Act by undertaking capacity building through a comprehensive training program. Materials and Methods: A competency-based training needs assessment was conducted before undertaking the development of the training materials. Results: The training program for Food Safety Officers was designed to comprise of five modules to include: Food science and technology, Food safety management systems, Food safety legislation, Enforcement of food safety regulations, and Administrative functions. Each module has a facilitator guide for the tutor and a handbook for the participant. Essentials of Food Hygiene-I (Basic level, II and III (Retail/ Catering/ Manufacturing were primarily designed for training of food handlers and are part of essential reading for food safety regulators. Conclusion: The Food Safety and Standards Act calls for highly skilled human resources as it involves complex management procedures. Despite having developed a comprehensive competency-based training curriculum by joint efforts by the local, national, and international agencies, implementation remains a challenge in resource-limited setting.

  12. IAEA Safety Standards on Management Systems and Safety Culture

    International Nuclear Information System (INIS)

    Persson, Kerstin Dahlgren

    2007-01-01

    The IAEA has developed a new set of Safety Standard for applying an integrated Management System for facilities and activities. The objective of the new Safety Standards is to define requirements and provide guidance for establishing, implementing, assessing and continually improving a Management System that integrates safety, health, environmental, security, quality and economic related elements to ensure that safety is properly taken into account in all the activities of an organization. With an integrated approach to management system it is also necessary to include the aspect of culture, where the organizational culture and safety culture is seen as crucial elements of the successful implementation of this management system and the attainment of all the goals and particularly the safety goals of the organization. The IAEA has developed a set of service aimed at assisting it's Member States in establishing. Implementing, assessing and continually improving an integrated management system. (author)

  13. Learning and nuclear safety: New reactors and US regulation

    International Nuclear Information System (INIS)

    Nichols, E.; Wildavsky, A.

    1992-01-01

    Gathering and analyzing data from operating reactors has become part of government and industry programs to improve performance in plants already on line and to inform development of future reactors. In the United States, however, early development and certain other factors combined to encourage a bias in learning. Regulation and learning from operational data intersect in ways that limit participation, data collection, and positive response to findings. Past learning has shown the advantage of simpler more standard designs with passive or inherent safety features. However, even designs incorporating these past lessons are apt to face tough regulatory tests and much criticism as operating experience is gathered. Only the operational success of new standardized reactors is apt to help rationalize regulation. (orig.)

  14. Safety regulation for the design approval of special form radioactive sources

    International Nuclear Information System (INIS)

    Cho, Woon-Kap

    2009-01-01

    Several kinds of special form radioactive sources for industrial, medical applications are being produced in Korea. Special form radioactive sources should meet strict safety requirements specified in the domestic safety regulations and the design of the sources should be certified by the regulatory authority, the Ministry of Education, Science and Technology (MEST). Several safety tests such as impact, percussion, heating, and leak tests are performed on the sources according to the domestic regulations and the international safety standards such as ANSI N542-1977 and ISO 2919-1999(E). As a regulatory expert body, Korea Institute of Nuclear Safety (KINS) assesses various types of application documents, such as safety analysis report, quality assurance program, and other documents evidencing fulfillment of requirements for design approval of the special form radioactive sources, submitted by a legal person who intends to produce special form radioactive sources and then reports the assessment result to MEST. A design approval certificate is issued to the applicant by MEST on the basis of a technical evaluation report presented by KINS.

  15. Safety standards for wind turbines; Sicherheitsnormen fuer Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, K. [Underwriters Laboratories Inc., Northbrook, IL (United States)

    2012-08-15

    As the global wind infrastructure sustains rapid growth, compliance with relevant standards provide validation of design principles and establish due diligence in addressing critical attributes such as safety. The IEC 61400 series of standards provides important information for addressing safety and performance of wind turbine systems. Efforts to address unique issues within the United States market has led to development of two safety standards, UL 6141 for large wind turbines and UL 6142 for small wind turbines. These standards, which are being published as American National Standards, contain key safety requirements for the electrical system, electrical safety and controls system, grid connection, and related safety issues. In the future, collaborative efforts will lead to continued exchange of best practices and opportunities for broader harmonization. Development of these standards, and their use by the manufacturing community in design and development of wind turbine products, supports maximal safety and performance of the burgeoning wind infrastructure. (orig.)

  16. Planning the Unplanned Experiment: Towards Assessing the Efficacy of Standards for Safety-Critical Software

    Science.gov (United States)

    Graydon, Patrick J.; Holloway, C. M.

    2015-01-01

    Safe use of software in safety-critical applications requires well-founded means of determining whether software is fit for such use. While software in industries such as aviation has a good safety record, little is known about whether standards for software in safety-critical applications 'work' (or even what that means). It is often (implicitly) argued that software is fit for safety-critical use because it conforms to an appropriate standard. Without knowing whether a standard works, such reliance is an experiment; without carefully collecting assessment data, that experiment is unplanned. To help plan the experiment, we organized a workshop to develop practical ideas for assessing software safety standards. In this paper, we relate and elaborate on the workshop discussion, which revealed subtle but important study design considerations and practical barriers to collecting appropriate historical data and recruiting appropriate experimental subjects. We discuss assessing standards as written and as applied, several candidate definitions for what it means for a standard to 'work,' and key assessment strategies and study techniques and the pros and cons of each. Finally, we conclude with thoughts about the kinds of research that will be required and how academia, industry, and regulators might collaborate to overcome the noted barriers.

  17. International Nuclear Officials Discuss IAEA Peer Reviews of Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: Senior nuclear regulators today concluded a Workshop on the Lessons Learned from the IAEA Integrated Regulatory Review Service (IRRS) Missions. The U.S. Nuclear Regulatory Commission (NRC) hosted the workshop, in cooperation with the International Atomic Energy Agency, in Washington, DC, from 26 to 28 October 2011. About 60 senior regulators from 22 IAEA Member States took part in this workshop. The IRRS programme is an international peer review service offered by the IAEA to its Member States to provide an objective evaluation of their nuclear safety regulatory framework. The review is based on the internationally recognized IAEA Safety Standards. ''The United States Nuclear Regulatory Commission was pleased to host the IAEA's IRRS meeting this week. The discussions over the past three days have provided an important opportunity for regulators from many countries to come together to strengthen the international peer review process,'' said U.S. NRC Chairman Gregory B. Jaczko. ''Especially after the Fukushima Daiichi accident, the global community recognizes that IRRS missions fill a vital role in strengthening nuclear safety and security programs around the world, and we are proud to be a part of this important effort.'' The IAEA Action Plan on Nuclear Safety includes actions focused towards strengthening the existing IAEA peer reviews, incorporating lessons learned and improving their effectiveness. The workshop provided a platform for the exchange of information, experience and lessons learned from the IRRS missions, as well as expectations for the IRRS programme for the near future. Further improvements in the planning and implementation of the IRRS missions in the longer term were discussed. A strong commitment of all relevant national authorities to the IRRS programme was identified as a key element of an effective regulatory framework. The conclusions of the workshop will be issued in November 2011 and the main results will be reported to the IAEA

  18. Practice specific model regulations: Radiation safety of non-medical irradiation facilities. Interim report for comment

    International Nuclear Information System (INIS)

    2003-08-01

    The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (Standards or BSS) were published as IAEA Safety Series No. 115 in 1996. This publication is the culmination of efforts over the past decades towards harmonization of radiation protection and safety standards internationally, and is jointly sponsored by the Food and Agriculture Organisation of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organisation (PAHO) and the World Health Organisation (WHO). The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation and for the safety of radiation sources that may deliver such exposure (hereinafter called 'radiation safety'). The requirements are based on the principles set out in the Safety Fundamentals, published as IAEA Safety Series Nos 110 and 120. The Standards can be implemented only through an effective radiation safety infrastructure that includes adequate laws and regulations, an efficient regulatory system, supporting experts and services, and a 'safety culture' shared by all those with responsibilities for protection, including both management and workers. IAEA-TECDOC-1067, Organization and Implementation of a National Regulatory Infrastructure Governing Protection against Ionizing Radiation and the Safety of Radiation Sources, provides detailed guidance on how to establish or improve national radiation safety infrastructure in order to implement the requirements of the Standards. The TECDOC covers the elements of a radiation safety infrastructure at the national level needed to apply the Standards to radiation sources such as those used in medicine, agriculture, research, industry and education. It also provides advice on approaches to the organization and operation of

  19. Implementation of the INEEL safety analyst training standard

    International Nuclear Information System (INIS)

    Hochhalter, E. E.

    2000-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) safety analysis units at the Idaho National Engineering and Environmental Laboratory (INEEL) are in the process of implementing the recently issued INEEL Safety Analyst Training Standard (STD-1107). Safety analyst training and qualifications are integral to the development and maintenance of core safety analysis capabilities. The INEEL Safety Analyst Training Standard (STD-1107) was developed directly from EFCOG Training Subgroup draft safety analyst training plan template, but has been adapted to the needs and requirements of the INEEL safety analysis community. The implementation of this Safety Analyst Training Standard is part of the Integrated Safety Management System (ISMS) Phase II Implementation currently underway at the INEEL. The objective of this paper is to discuss (1) the INEEL Safety Analyst Training Standard, (2) the development of the safety analyst individual training plans, (3) the implementation issues encountered during this initial phase of implementation, (4) the solutions developed, and (5) the implementation activities remaining to be completed

  20. Basic safety standards for radiation protection and their application to internal exposures

    International Nuclear Information System (INIS)

    Dousset, M.

    Following a summary of the basic concepts on radiation protection units, the safety standards now in effect in France and those recommended by the International Commission on Radiological Protection (ICRP Publication 9, 1965) to be used as a basis to the next Euratom regulations are developed [fr

  1. Provisional standards of radiation safety of flight personnel and passengers in air transport of the civil aviation

    Science.gov (United States)

    1977-01-01

    Provisional standards for radiation affecting passenger aircraft are considered. Agencies responsible for seeing that the regulations are enforced are designated while radiation sources and types of radiation are defined. Standard levels of permissible radiation are given and conditions for radiation safety are discussed. Dosimetric equipment on board aircraft is delineated and regulation effective dates are given.

  2. Provisional standards of radiation safety of flight personnel and passengers in air transport of the civil aviation

    International Nuclear Information System (INIS)

    Provisional standards for radiation affecting passenger aircraft are considered. Agencies responsible for seeing that the regulations are enforced are designated while radiation sources and types of radiation are defined. Standard levels of permissible radiation are given and conditions for radiation safety are discussed. Dosimetric equipment on board aircraft is delineated and regulation effective dates are given

  3. International laser-safety regulations: a status update

    Science.gov (United States)

    Weiner, Robert M.

    1990-07-01

    There is an increase in international laser safety requirements as part of the emphasis on world-wide standardization of products and regulations. In particular the documents which will evolve from the 1992 consolidation efforts of the European Community (EC) will impact both laser manufacturers and users. This paper provides a discussion of the current status of the various laser radiation standards. NORTH AMERICAN REQUIREMENTS United States Requirements on manufacturers from the Food and Drug Administration (FDA) have been in effect since 1975. The Center for Devices and Radiological Health (CDRH) within that agency ensures that these mandatory requirements [1] are satisfied. The CDRH regulations include the division of products into classes depending on their potential for hazard criteria for power measurement and requirements for product features labels and manuals and records and reports. Manufacturers must test products and certify that they comply with the CDRH requirements. User requirements are found in a standard published by the American National Standards Institute (ANSI) and in requirements from several individual states. Specific ANSI standards have also been published for fiber communications systems [34] and for lasers in medical applications [35]. Please note that the Appendix includes additional information on the standards discussed in this paper including sources for obtaining the documents. Canada In the past Canada has had requirements for two specified product categories (bar code scanners and educational lasers) [26 These will be replaced

  4. Safety and regulation in the use of radiation in medicine: status in India and future perspective

    International Nuclear Information System (INIS)

    Gopalakrishnan, A.; Parthasarathy, K.S.; Ghosh, P.K.

    1996-01-01

    This paper briefly reviews the history of radiation protection, regulatory aspects and the status of radiation safety in radiotherapy, radiodiagnosis and nuclear medicine in India. The revised basic safety standards and the future developments envisaged in the safety and regulation are also mentioned. (author). 24 refs., 8 tabs

  5. Discussion about risk-informed regulations on the nuclear safety

    International Nuclear Information System (INIS)

    Gu Yeyi

    2008-01-01

    The article introduces the background and status quo of regulations on the nuclear safety in China, and points out the inadequacies existing with the current regulations. The author explains the risk-informed safety management concerning its development, status quo, and achievements made, in an attempt to make out the trend of improving regulations on the nuclear safety through risk-informed methods. Combining the U.S. development program of establishing risk-informed regulations on the nuclear safety, the author narrates principles and features of the new regulations system, and provides suggestions for the promotion of risk-informed safety management and establishment of risk-informed regulations on the nuclear safety. (author)

  6. 29 CFR 1926.4 - Rules of practice for administrative adjudications for enforcement of safety and health standards.

    Science.gov (United States)

    2010-07-01

    ... shall be the same as those published in part 6 of this title with respect to safety and health... with the Assistant Secretary of Labor for Occupational Safety and Health who shall publish a notice in... enforcement of safety and health standards. 1926.4 Section 1926.4 Labor Regulations Relating to Labor...

  7. Radiation protection and safety of radiation sources international basic safety standards

    CERN Document Server

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  8. 16 CFR 1030.101 - Cross-references to employee ethical conduct standards and financial disclosure regulations.

    Science.gov (United States)

    2010-01-01

    ... PRODUCT SAFETY COMMISSION GENERAL EMPLOYEE STANDARDS OF CONDUCT General § 1030.101 Cross-references to employee ethical conduct standards and financial disclosure regulations. Employees of the Consumer Product... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Cross-references to employee ethical conduct...

  9. Standards and guidelines should be rules between licensees and regulators

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi

    2014-01-01

    The 2011 off the Pacific coast of Tohoku Pacific Earthquake and the Tsunami gave the serious damage to the Fukushima-Daiichi Nuclear Power Plants (NPPs). The accidents occurred in Unit 1, 2, 3 and 4. It is said that the height of tsunami attacked Fukushima NPP was more than 14m. After 50 minutes from the automatic shut-down, tsunami attacked the NPPs in Fukushima Daiichi NPPs. For example, the Unit 1 lost A/C power caused the loss of water injection function; it made the core meltdown and unusual increase of PCV pressure in the midnight of March 11th to 12th morning. Though the Unit one has the Isolation Condenser Core Cooling system, it was stopped by the operator to keep the cooling rate of 55degC/h. Finally, the isolation signal was transmitted from the control room to the motor driven isolation valves when the control room's battery discharged. It was the initiation of the core meltdown. The lessons from the accidents, we should improve the nuclear safety regulation through the innovation of regulatory rules and safety standards. Standards and guidelines should be rules between licensees and regulators. (author)

  10. NRC - regulator of nuclear safety

    International Nuclear Information System (INIS)

    1997-01-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations

  11. Transports of radioactive materials. Legal regulations, safety and security concepts, experience

    International Nuclear Information System (INIS)

    Schwarz, Guenther

    2012-01-01

    In Germany, approximately 650,000 to 750,000 units containing radioactive materials for scientific, medical and technical applications are shipped annually by surface, air and water transports. Legally speaking, radioactive materials are dangerous goods which can cause hazards to life, health, property and the environment as a result of faulty handling or accidents in transit. For protection against these hazards, their shipment therefore is regulated in extensive national and international rules of protection and safety. The article contains a topical review of the international and national transport regulations and codes pertaining to shipments of radioactive materials, and of the protection concepts underlying these codes so as to ensure an adequate standard of safety and security in shipping radioactive materials in national and international goods traffic. (orig.)

  12. Edible safety requirements and assessment standards for agricultural genetically modified organisms.

    Science.gov (United States)

    Deng, Pingjian; Zhou, Xiangyang; Zhou, Peng; Du, Zhong; Hou, Hongli; Yang, Dongyan; Tan, Jianjun; Wu, Xiaojin; Zhang, Jinzhou; Yang, Yongcun; Liu, Jin; Liu, Guihua; Li, Yonghong; Liu, Jianjun; Yu, Lei; Fang, Shisong; Yang, Xiaoke

    2008-05-01

    This paper describes the background, principles, concepts and methods of framing the technical regulation for edible safety requirement and assessment of agricultural genetically modified organisms (agri-GMOs) for Shenzhen Special Economic Zone in the People's Republic of China. It provides a set of systematic criteria for edible safety requirements and the assessment process for agri-GMOs. First, focusing on the degree of risk and impact of different agri-GMOs, we developed hazard grades for toxicity, allergenicity, anti-nutrition effects, and unintended effects and standards for the impact type of genetic manipulation. Second, for assessing edible safety, we developed indexes and standards for different hazard grades of recipient organisms, for the influence of types of genetic manipulation and hazard grades of agri-GMOs. To evaluate the applicability of these criteria and their congruency with other safety assessment systems for GMOs applied by related organizations all over the world, we selected some agri-GMOs (soybean, maize, potato, capsicum and yeast) as cases to put through our new assessment system, and compared our results with the previous assessments. It turned out that the result of each of the cases was congruent with the original assessment.

  13. 16 CFR 1115.5 - Reporting of failures to comply with a voluntary consumer product safety standard relied upon by...

    Science.gov (United States)

    2010-01-01

    ... voluntary consumer product safety standard relied upon by the Commission under section 9 of the CPSA. 1115.5 Section 1115.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SUBSTANTIAL PRODUCT HAZARD REPORTS General Interpretation § 1115.5 Reporting of failures to comply...

  14. Radiological and nuclear safety- evolution, standards and similarity

    International Nuclear Information System (INIS)

    Soman, S.D.

    1996-01-01

    With the realisation of potential for severe health affects after the discovery of x-rays and radioactivity, the radiation protection aspect became focus of interest for medical users from the beginning of this century. With the activities of International Commission on Radiological Protection (ICRP), the standards evolved during all these years based on epidemiological data and radio-biological research. The current standards are the ICRP recommendations of 1990. Based on these, internationally harmonised standards for protection against ionising radiation and safety of radioactive sources were brought out by IAEA in 1994. The nuclear safety (implies safety of nuclear power plants) came into prominence when large scale units were designed and operated since mid 1950s. The philosophy in nuclear safety has evolved in past 2-3 decades taking into account the lessons learned from accidents, mainly Three Mile Island (1979) and Chernobyl-4 (1986). These current nuclear safety standards are incorporated in INSAG reports, particularly INSAG-3. This paper brings out salient features of these evolutions, current standards and similarity of radiation and nuclear safety standards in their present form. (author). 7 refs., 10 tabs

  15. New requirements on safety of nuclear power plants according to the IAEA safety standards

    International Nuclear Information System (INIS)

    Misak, J.

    2005-01-01

    In this presentation author presents new requirements on safety of nuclear power plants according to the IAEA safety standards. It is concluded that: - New set of IAEA Safety Standards is close to completion: around 40 standards for NPPs; - Different interpretation of IAEA Safety Standards at present: best world practices instead of previous 'minimum common denominator'; - A number of safety improvements required for NPPs; - Requirements related to BDBAs and severe accidents are the most demanding due to degradation of barriers: hardware modifications and accident management; - Large variety between countries in implementation of accident management programmes: from minimum to major hardware modifications; -Distinction between existing and new NPPs is essential from the point of view of the requirements; WWER 440 reactors have potential to reflect IAEA Safety Standards for existing NPPs; relatively low reactor power offers broader possibilities

  16. 77 FR 21311 - Locomotive Safety Standards

    Science.gov (United States)

    2012-04-09

    ... preparedness, alcohol and drug testing, locomotive engineer certification, and workplace safety. In 1980, FRA... Association (ATDA) Amtrak AAR Association of Railway Museums (ARM) Association of State Rail Safety Managers... Administration 49 CFR Parts 229 and 238 Locomotive Safety Standards; Final Rule #0;#0;Federal Register / Vol. 77...

  17. The History of Infant Formula: Quality, Safety, and Standard Methods.

    Science.gov (United States)

    Wargo, Wayne F

    2016-01-01

    Food-related laws and regulations have existed since ancient times. Egyptian scrolls prescribed the labeling needed for certain foods. In ancient Athens, beer and wines were inspected for purity and soundness, and the Romans had a well-organized state food control system to protect consumers from fraud or bad produce. In Europe during the Middle Ages, individual countries passed laws concerning the quality and safety of eggs, sausages, cheese, beer, wine, and bread; some of these laws still exist today. But more modern dietary guidelines and food regulations have their origins in the latter half of the 19th century when the first general food laws were adopted and basic food control systems were implemented to monitor compliance. Around this time, science and food chemistry began to provide the tools to determine "purity" of food based primarily on chemical composition and to determine whether it had been adulterated in any way. Since the key chemical components of mammalian milk were first understood, infant formulas have steadily advanced in complexity as manufacturers attempt to close the compositional gap with human breast milk. To verify these compositional innovations and ensure product quality and safety, infant formula has become one of the most regulated foods in the world. The present paper examines the historical development of nutritional alternatives to breastfeeding, focusing on efforts undertaken to ensure the quality and safety from antiquity to present day. The impact of commercial infant formulas on global regulations is addressed, along with the resulting need for harmonized, fit-for-purpose, voluntary consensus standard methods.

  18. Safety Criteria and Standards for Bearing Capacity of Foundation

    Directory of Open Access Journals (Sweden)

    Yanlong Li

    2017-01-01

    Full Text Available This paper focuses on the evaluation standards of factor of safety for foundation stability analysis. The problem of foundation stability is analyzed via the methods of risk analysis of engineering structures and reliability-based design, and the factor of safety for foundation stability is determined by using bearing capacity safety-factor method (BSFM and strength safety-factor method (SSFM. Based on a typical example, the admissible factors of safety were calibrated with a target reliability index specified in relevant standards. Two safety criteria and their standards of bearing capacity of foundation for these two methods (BSFM and SSFM were established. The universality of the safety criteria and their standards for foundation reliability was verified based on the concept of the ratio of safety margin (RSM.

  19. Safety standards of IAEA for management systems

    International Nuclear Information System (INIS)

    Vincze, P.

    2005-01-01

    IAEA has developed a new series of safety standards which are assigned for constitution of the conditions and which give the instruction for setting up the management systems that integrate the aims of safety, health, life environment and quality. The new standard shall replace IAEA 50-C-Q - Requirements for security of the quality for safety in nuclear power plants and other nuclear facilities as well as 14 related safety instructions mentioned in the Safety series No. 50-C/SG-Q (1996). When developing of this complex, integrated set of requirements for management systems, the IAEA requirements 50-C-Q (1996) were taken into consideration as well as the publications developed within the International organisation for standardization (ISO) ISO 9001:2000 and ISO14001: 1996. The experience of European Union member states during the development, implementation and improvement of the management systems were also taken into consideration

  20. The evolution of the structure and application of U.S. NRC regulations and standards

    International Nuclear Information System (INIS)

    Murley, T.E.; Rosztoczy, Z.R.; McPherson, G.D.

    1991-01-01

    NRC regulations and standards and their implementation have evolved from early adaptations of conventional engineering practices to a mature, cohesive set of regulations that govern NRC regulation of nuclear power plant safety in the United States. From a simple set of rules and design criteria and from the standards of the professional engineering societies, a hierarchy of practices, standards, guides, rules and goals has developed. Resting on a foundation of industrial practices, this hierarchy rises through levels of national standards, regulatory guides and standard review plans, policy statements and NRC regulations. The licensing process is evolving today toward one that permits both site approval and standard design certification before the plant is constructed. At the present time, NRC is reviewing five standard designs for certification for a period of 15 years. NRC focuses its regulation of operating nuclear plants on inspections conducted from five regional offices. Resident inspectors, specialist inspectors, and multi-disciplinary inspection teams examine specific plant situations. The results of all these inspections are used to develop a complete understanding of a plant's physical condition, its operation, maintenance and management. To improve safe operation of nuclear plants in the U.S., a most important program, the Systematic Assessment of Licensee Performance, measures operational performance, using a broad spectrum of functional areas. (orig.)

  1. Assessment of safety regulation using an artificial society

    International Nuclear Information System (INIS)

    Furuta, Kazuo; Nagase, Masaya

    2005-01-01

    This study proposes using an artificial society to assess impacts of safety regulation on the society. The artificial society used in this study is a multi-agent system, which consists of many agents representing companies. The agents cannot survive unless they get profits by producing some products. Safety regulation functions as the business environment, which the agents will evolve to fit to. We modeled this process of survival and adaptation by the genetic algorithm. Using the proposed model, case simulations were performed to compare various regulation styles, and some interesting insights were obtained how regulation style influences behavior of the agents and then productivity and safety level of the industry. In conclusion, an effective method for assessment of safety regulation has been developed, and then several insights were shown in this study

  2. 49 CFR 176.4 - Port security and safety regulations.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Port security and safety regulations. 176.4... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL General § 176.4 Port security and safety regulations. (a) Each carrier, master, agent, and charterer of a...

  3. Safety regulation on high-pressure gas and gas business

    International Nuclear Information System (INIS)

    Kim, Du Yeoung; An, Dae Jun

    1978-09-01

    This book is divided into two parts. The first part introduces safety regulation on high-pressure gas, enforcement ordinance on safety regulation about high-pressure gas and enforcement regulation on safety regulation about high-pressure gas. The second part indicates regulations on gas business such as general rules, gas business gas supplies, using land, supervision, supple mentary rules and penalty. It has two appendixes on expected questions and questions during last years.

  4. Managing for safety and safety culture within the UK nuclear industry. A regulator's perspective

    International Nuclear Information System (INIS)

    Tyrer, M.J.

    2002-01-01

    This paper outlines the basis of the legal system for the regulation of health and safety at work within the United Kingdom (UK), and in particular, the regulation of the nuclear industry. The framework, formulated by the regulator, which has been published as a practical guide for directors, managers, health and safety professionals and employee representatives for the successful management of health and safety is explained. This guidance, however, concentrates, to a large extent, on management systems and only addresses in part the types of issues, such as behaviours, values, attitudes and beliefs which contribute to the safety culture of an organization. The regulator of the UK nuclear industry has considered research, and other work, carried out by several organizations in this area, notably the Advisory Committee on the Safety of Nuclear Installations (ACSNI) and the International Atomic Energy Agency (IAEA), and produced its own framework for managing for safety at nuclear installations. As a regulator, the Health and Safety Executive (HSE), and its inspectorate responsible for regulation of the nuclear industry, HM Nuclear Installations Inspectorate (HMNII), are not the appropriate organization to assess the safety culture of an organization, but positively encourage organizations to both carry out this assessment themselves and to monitor their performance. To this end, HSE has developed, and made available, the Health and Safety Climate Tool which is aimed at providing organizations with information which can be used as part of a continuous improvement process. (author)

  5. Recommendation for an European wind turbine safety standard

    Energy Technology Data Exchange (ETDEWEB)

    Hjuler Jensen, P.; Hauge Madsen, P.; Winther-Jensen, M.; Machielse, L.; Stam, W.; Einsfeld, V.; Woelfel, E.; Elliot, G.; Wilde, L. de

    1988-09-15

    The objective is to establish an European standard for wind safety which should apply for all member countries of the European Communities. The document contains a list of recommended safety requirements in relation to the system, structure, electrical installations, operation and maintenance of wind turbines. The recommended safety standards cover electricity producing wind turbines connected to electricity grids in both single and cluster applications and with a swept area in excess of 25 square meters and/or a rated power of 10kW. The document should be used in combination with The European Standards for Wind Turbine Loads and other relevant European Standards. Environmental condition, with the emphasis of wind conditions and more extreme climatic conditions, are also considered in relation to safety requirements. (AB).

  6. Regulations and standardization relative to the biomass combustion

    International Nuclear Information System (INIS)

    Autret, E.

    2009-01-01

    It does not exist regulations on pollutants emissions on domestic wood burning furnaces, however, these appliances are submitted to the European and french standardization concerning the safety rules, the use rules and the tests methods. Since 2007, these wood burning appliances on the market must have the European Community label. The green flame label was elaborated by the environment and energy control Agency (A.D.E.M.E.), and manufacturers of domestic appliances to promote the use of competitive wood burning appliances. concerning the collective and industrial heating, the installations of more 2 MW are framed by different categories of the installations classified for environment protection (I.C.P.E.) regulation according their fuel and power. The combustion installations of less than 2 MW are a particular case, they are framed by a sanitary department regulation and are controlled by the department directions of sanitary and social affairs. the limit values of emissions are summarized in tables. (N.C.)

  7. The IAEA radioactive waste safety standards programme

    International Nuclear Information System (INIS)

    Tourtellotte, James R.

    1995-01-01

    The IAEA is currently reviewing more than thirty publications in its Safety Series with a view toward consolidating and organizing information pertaining to radioactive waste. the effort is entitled Radioactive Waste Safety Standards programme (RADWASS). RADWASS is a significant undertaking and may have far reaching effects on radioactive waste management both in the international nuclear community and in individual nuclear States. This is because IAEA envisions the development of a consensus on the final document. In this circumstance, the product of RADWASS may ultimately be regarded as an international norm against which future actions of Member States may be measured. This program is organized in five subjects: planning, pre-disposal, disposal, uranium and thorium waste management and decommissioning, which has four levels: safety fundamentals, safety standards, safety guides and safety practices. (author)

  8. General philosophy of safety standards

    International Nuclear Information System (INIS)

    Dunster, H.J.

    1987-01-01

    Safety standards should be related to the form and magnitude of the risk they aim to limit. Because of the lack of direct information at the exposure levels experienced, radiation protection standards have to be based on risk assumptions that, while plausible, are not proven. The pressure for standards has come as much from public perceptions and fears as from the reality of the risk. (author)

  9. Advisory material for the IAEA regulations for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    Since the first edition in 1961, the Regulations for the Safe Transport of Radioactive Material of the IAEA (IAEA Regulations) have served as the basis of safety for the transport of radioactive material worldwide. In the discussions leading to the first edition of the IAEA Regulations, it was realized that there was need for a publication to supplement the Regulations which could give information of individual provisions as to their purpose, their scientific background and how to apply them in practice. In response, the Agency published Safety Series No. 7, entitled, in its first edition in 1961, 'Notes on Certain Aspects of the Regulations'. An additional source of information on the Regulations, providing advice on 'how' the user should comply with them which could be augmented from time to time in the light of latest experience, was provided by the Agency, initially in relation to the 1973 edition of the Regulations. This was entitled 'Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material' and designated Safety Series No. 37. This document is the result of combining the two Safety Series in a single publication. Thus the primary purpose of this publication is to provide guidance to users on proven and acceptable ways of complying with the Regulations. This Advisory Material is not a stand-alone text and it only has significance when used as a companion to the IAEA Safety Standards Series No. ST-1, Regulations for the Safe Transport of Radioactive Material (1996 edition)

  10. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  11. Toward introduction of risk informed safety regulation. Nuclear Safety Commission taskforce's interim report

    International Nuclear Information System (INIS)

    2006-01-01

    Nuclear Safety Commission's taskforce on 'Introduction of Safety Regulation Utilizing Risk Information' completed the interim report on its future subjects and directions in December 2005. Although current safety regulatory activities have been based on deterministic approach, this report shows the risk informed approach is expected to be very useful for making nuclear safety regulation and assurance activities reasonable and also for appropriate allocation of regulatory resources. For introduction of risk informed regulation, it also recommends pileups of experiences with gradual introduction and trial of the risk informed approach, improvement of plant maintenance rules and regulatory requirements utilizing risk information, and establishment of framework to assure quality of risk evaluation. (T. Tanaka)

  12. Radiation sources safety and radioactive materials security regulation in Ukraine

    International Nuclear Information System (INIS)

    Smyshliaiev, A.; Holubiev, V.; Makarovska, O.

    2001-01-01

    Radiation sources are widely used in Ukraine. There are about 2500 users in industry, science, education and about 2800 in medicine. About 80,000 sealed radiation sources with total kerma-equivalent of 450 Gy*M 2 /sec are used in Ukraine. The exact information about the radiation sources and their users will be provided in 2001 after the expected completion of the State inventory of radiation sources in Ukraine. In order to ensure radiation source safety in Ukraine, a State System for regulation of activities dealing with radiation sources has been established. The system includes the following elements: establishment of norms, rules and standards of radiation safety; authorization activity, i.e. issuance of permits (including those in the form of licences) for activities dealing with radiation sources; supervisory activity, i.e. control over observance of norms, rules and standards of radiation safety and fulfilment of conditions of licences for activities dealing with radiation sources, and also enforcement. Comprehensive nuclear legislation was developed and implemented from 1991 to 2000. Radiation source safety is regulated by three main nuclear laws in Ukraine: On the use of nuclear energy and radiation safety (passed on 8 February 1995); On Human Protection from Impact of Ionizing Radiation (passed on 14 January 1998); On permissive activity in the area of nuclear energy utilization (passed on 11 January 2000). The regulatory authorities in Ukraine are the Ministry for Ecology and Natural Resources (Nuclear Regulatory Department) and the Ministry of Health (State sanitary-epidemiology supervision). According to the legislation, activities dealing with radiation sources are forbidden without an officially issued permit in Ukraine. Permitted activities with radiation sources are envisaged: licensing of production, storage and maintenance of radiation sources; licensing of the use of radiation sources; obligatory certification of radiation sources and transport

  13. Standardization of Safety Checklists for Sport Fields in Schools

    Directory of Open Access Journals (Sweden)

    S. Arghami

    2015-01-01

    Full Text Available Introduction: Nowadays in all human societies, sport is considered as a human-training matter, which often occurs in sport fields. Many people, including students in schools, occasionally deal with these fields. Therefore, a standard tool is required to frequently inspection of sport fields. The aim of this study was to standardize checklists for sport fields in schools. .Material and Method: This study is a kind of tool and technique evaluation was done in Zanjan in 2013. The studied population included indoor and outdoor sport fields in governmental boys’ high schools in Zanjan city. The checklists’ items selected based on existing regulations, standards and relevant studies. Standardization of all tools was done applying the face and content validity and reliability tests. .Result: The primary checklist for outdoor sport fields in high schools, which considered by the expert panel, consisted of 75 items. Based on CVI (2 to 3.9 and CVR (.5 to .78, modifications were done and 6 more items were added. And the same process for the primary checklist for outdoor sports fields (85 items was repeated. Based on CVI (2 to 3.9 and CVR (.5 to .78, items increased to 92.  .Conclusion: The safety checklist for sport fields in schools are matched with the properties of them. The safety checklist developed in this study has an acceptable reliability and validity for useful applying in sport field inspections.

  14. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all.

  15. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    International Nuclear Information System (INIS)

    1993-05-01

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all

  16. IAEA safety standards and approach to safety of advanced reactors

    International Nuclear Information System (INIS)

    Gasparini, M.

    2004-01-01

    The paper presents an overview of the IAEA safety standards including their overall structure and purpose. A detailed presentation is devoted to the general approach to safety that is embodied in the current safety requirements for the design of nuclear power plants. A safety approach is proposed for the future. This approach can be used as reference for a safe design, for safety assessment and for the preparation of the safety requirements. The method proposes an integration of deterministic and risk informed concepts in the general frame of a generalized concept of safety goals and defence in depth. This methodology may provide a useful tool for the preparation of safety requirements for the design and operation of any kind of reactor including small and medium sized reactors with innovative safety features.(author)

  17. Standardized safety management of AP1000 nuclear power plant

    International Nuclear Information System (INIS)

    Li Xingwen; Cao Zhiqiang; Cong Jiuyuan

    2011-01-01

    In 2002, China published and implemented the Law of the People's Republic of China on Work Safety and promulgated a series of guidelines and policies, which strengthened the safety management supervision. Standardization of safety, as another important step on safety supervision, comes after safety assesment and safety production licensing system, is also a permanent solution. Standardization of safety is a strategic, long term and fundamental work, which is also the basic access to achieving scientific safety management and increasing the inherent safety of an enterprise. Haiyang AP1000 nuclear power plant, adopting the modularized, 'open-top' and parallel construction means, overturned the traditional construction theory of installation work comes after the civil work and greatly shorten the construction period. At the same time, the notable increase of oversize module transportation and lifting and parallel construction raises higher demands for safety management. This article combines the characteristics and difficulties of safety management for Haiyang AP1000 nuclear power plant, puts forward ideas and methods for standardized safety management, and could also serve as reference to the safety management for other AP1000 projects. (authors)

  18. Appraisal for Japan of the safety of transport of radioactive material. Provision for the application of the IAEA safety standards

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA's Statute authorizes it to provide for the application of its standards at the request of any State. The objective of a TranSAS appraisal is to assist any requesting State to achieve a high level of safety in the transport of radioactive material by reviewing its implementation of the Transport Regulations and by making recommendations for improvement where appropriate.The IAEA discharges this statutory function through a number of mechanisms, including rendering independent peer review appraisal services to determine the status of compliance with its standards. The appraisal for Japan in December 2005 on the safety of the transport of radioactive material is the seventh TranSAS mission since the inception of the service. This report presents its findings. The TranSAS appraisal team completed a comprehensive appraisal of the implementation of the Transport Regulations in Japan. The cooperation of the authorities in Japan, and of all those who participated in the discussions, was excellent and contributed to the success of the appraisal. The comprehensive legal framework, with responsibilities identified in considerable detail and with clear lines of authority to minimize overlap of responsibilities, provides a sound basis for the implementation of the Transport Regulations. Generally, the Transport Regulations are implemented in accordance with IAEA requirements. Some areas for possible improvement have been identified. These areas relate mainly to reduction of regulations, quality management systems, training, compliance assurance and lessening the administrative burden for incorporating amendments to the IMDG Code. The findings include a considerable number of good practices, in particular in the area of maritime transport

  19. Oswer integrated health and safety standard operating practices. Directive

    International Nuclear Information System (INIS)

    1993-02-01

    The directive implements the OSWER (Office of Solid Waste and Emergency Response) Integrated Health and Safety Standards Operating Practices in conjunction with the OSHA (Occupational Safety and Health Act) Worker Protection Standards, replacing the OSWER Integrated Health and Safety Policy

  20. Arianespace Launch Service Operator Policy for Space Safety (Regulations and Standards for Safety)

    Science.gov (United States)

    Jourdainne, Laurent

    2013-09-01

    Since December 10, 2010, the French Space Act has entered into force. This French Law, referenced as LOS N°2008-518 ("Loi relative aux Opérations Spatiales"), is compliant with international rules. This French Space Act (LOS) is now applicable for any French private company whose business is dealing with rocket launch or in orbit satellites operations. Under CNES leadership, Arianespace contributed to the consolidation of technical regulation applicable to launch service operators.Now for each launch operation, the operator Arianespace has to apply for an authorization to proceed to the French ministry in charge of space activities. In the files issued for this purpose, the operator is able to justify a high level of warranties in the management of risks through robust processes in relation with the qualification maintenance, the configuration management, the treatment of technical facts and relevant conclusions and risks reduction implementation when needed.Thanks to the historic success of Ariane launch systems through its more than 30 years of exploitation experience (54 successes in a row for latest Ariane 5 launches), Arianespace as well as European public and industrial partners developed key experiences and knowledge as well as competences in space security and safety. Soyuz-ST and Vega launch systems are now in operation from Guiana Space Center with identical and proved risks management processes. Already existing processes have been slightly adapted to cope with the new roles and responsibilities of each actor contributing to the launch preparation and additional requirements like potential collision avoidance with inhabited space objects.Up to now, more than 12 Ariane 5 launches and 4 Soyuz-ST launches have been authorized under the French Space Act regulations. Ariane 5 and Soyuz- ST generic demonstration of conformity have been issued, including exhaustive danger and impact studies for each launch system.This article will detail how Arianespace

  1. CANDU reactors, their regulation in Canada, and the identification of relevant NRC safety issues

    International Nuclear Information System (INIS)

    Charak, I.; Kier, P.H.

    1995-04-01

    Atomic Energy of Canada, Limited (AECL) and its subsidiary in the US, are considering submitting the CANDU 3 design for standard design certification under 10 CFR Part 52. CANDU reactors are pressurized heavy water power reactors. They have some substantially different safety responses and safety systems than the LWRs that the commercial power reactor licensing regulations of the US Nuclear Regulatory Commission (NRC) have been developed to deal with. In this report, the authors discuss the basic design characteristics of CANDU reactors, specifically of the CANDU 3 where possible, and some safety-related consequences of these characteristics. The authors also discuss the Canadian regulatory provisions, and the CANDU safety systems that have evolved to satisfy the Canadian regulatory requirements as of December 1992. Finally, the authors identify NRC regulations, mainly in 10 CFR Parts 50 and 100, with issues for CANDU 3 reactor designs. In all, eleven such regulatory issues are identified. They are: (1) the ATWS rule (section 50.62); (2) station blackout (section 50.63); (3) conformance with Standard Review Plan (SRP); (4) appropriateness of the source term (section 50.34(f) and section 100.11); (5) applicability of reactor coolant pressure boundary (RCPB) requirements (section 50.55a, etc); (6) ECCS acceptance criteria (section 50.46)(b); (7) combustible gas control (section 50.44, etc); (8) power coefficient of reactivity (GDC 11); (9) seismic design (Part 100); (10) environmental impacts of the fuel cycle (section 51.51); and (11) (standards section 50.55a)

  2. The revision of the safety standards for protection against ionizing radiation

    International Nuclear Information System (INIS)

    Wei Li Chen; Hsiao Ping Wang; Chia Chun Liao; Chin Shiun Yeh

    1994-01-01

    The Chinese Safety Standards for Protection Against Ionizing Radiation was issued on July 29, 1970, and has been used for more than thirteen years. In 1983, the Atomic Energy Council (AEC) decided to revise it accordingly to the recommendations of the International Commission on Radiological Protection and the experiences of regulation enforcement in Taiwan and other countries. The AEC assembled a task group of eight members from academic institutions, licensees, government agency, and senior health physics to be in charge of the revision. In this presentation the major changes of the Safety Standards are summarized. They refer to the adoption of the system of dose limitation recommended by ICRP publication 26 and 30, the use of the units of the International System as the primary units with the old units being noted in parentheses, the adoption of the minimums levels recommended by the International Atomic Energy Agency and the setting up of an executive regulatory system for the implementation of the ALARA concept. 6 refs

  3. Public and Private Food Safety Standards: Facilitating or Frustrating Fresh Produce Growers?

    Directory of Open Access Journals (Sweden)

    Jan Mei Soon

    2013-01-01

    Full Text Available Global private food safety and quality standards have undergone some major overhauls during the past two decades, and these will continue to evolve with the recent emphasis on harmonization. The Global Food Safety Initiative (GFSI attempts to ensure that harmonize retail standards are commendable and elegant in principle, but in practice, retailers continue to demand their own standard, whilst supporting GFSI’s benchmarking program. It is difficult to see such retailers giving up their own standards and the control they currently exert as chain captains. There is also the risk that too much harmonization will result in these standards losing their individuality and uniqueness. Amidst the struggle for private standard dominance, alternative approaches to risk management (e.g., self-assessment of risk, independent audits and risk ranking may be the way forward, similar to how insurance risks are calculated for businesses. Furthermore, this risk-based approach could also lead to the effective implementation of co-regulation, where both public and private sector compliances are addressed together—a win-win situation. This paper considers the implications and future trends of fresh produce farming, and identifies five interventions (i.e., assurance schemes, which include the do-nothing scenario to underpinning one’s brand or label with an existing scheme.

  4. National and international standards and recommendations on fire protection and fire safety assessment

    International Nuclear Information System (INIS)

    Berg, H.P.

    2007-01-01

    Experience feedback from events in nuclear facilities worldwide has shown that fire can represent a safety significant hazard. Thus, the primary objectives of fire protection programmes are to minimize both the probability of occurrence and the consequences of a fire. The regulator body expects that the licensees justify their arrangements for identifying how fires can occur and spread, assess the vulnerability of plant equipment and structures, determine how the safe operation of a plant is affected, and introduce measures to prevent a fire hazard from developing and propagating as well as to mitigate its effects in case the fire cannot be prevented. For that purpose usually a comprehensive regulatory framework for fire protection has been elaborated, based on national industrial regulations, nuclear specific regulations as well as international recommendations or requirements. Examples of such national and international standards and recommendations on fire protection and fire safety assessment as well as ongoing activities in this field are described. (orig.)

  5. Fire safety regulations and licensing

    International Nuclear Information System (INIS)

    Berg, H.P.

    1998-01-01

    Experience of the past tow decades of nuclear power plant operation and results obtained from modern analytical techniques confirm that fires may be a real threat to nuclear safety and should receive adequate attention from the design phase throughout the life of the plant. Fire events, in particular influence significantly plant safety due to the fact that fires have the potential to simultaneously damage components of redundant safety-related equipment. Hence, the importance of fire protection for the overall safety of a nuclear power plant has to be reflected by the fire safety regulations and to be checked during the licensing process of a plant as well as during the continuous supervision of the operating plant

  6. Improving the rationality of nuclear safety regulations

    International Nuclear Information System (INIS)

    Choi, Byung Sun; Choi, Y. G.; Mun, G. H.

    2005-03-01

    This study focuses on human nature and institutions around the risk management in Korean Nuclear Installations. Nuclear safety regulatory system in Korea has had a tendency to overvalue the technical or engineering areas. But just like other risk management system, the knowledge of social science is also required to design more valid safety regulatory system. As a result of analysis, this study suggest that performance regulation need to be introduced to current nuclear safety regulation system. In this advanced regulatory system, each nuclear generation unit have to be evaluated by performance of its own regulatory implementation and would be treated differently by the performance. Additionally, self-regulation could be very effective was to guarantee nuclear safety. Because KHNP could be judged to have an considerable capabilities to manage its own regulatory procedures. To make self-regulatory system established successfully, it is also important to arrange the appropriate incentive and compensate structures

  7. Selecting safety standards for nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    Today, many thousands of documents are available describing the requirements, guidelines, and industrial standards which can be used as bases for a nuclear power plant programme. Many of these documents relate to nuclear safety which is currently the focus of world-wide attention. The multitude of documents available on the subject, and their varying status and emphasis, make the processes of selection and implementation very important. Because nuclear power plants are technically intricate and advanced, particularly in relation to the technological status of many developing countries, these processes are also complicated. These matters were the subject of a seminar held at the Agency's headquarters in Vienna last December. The IAEA Nuclear Safety Standards (NUSS) programme was outlined and explained at the Seminar. The five areas of the NUSS programme for nuclear power plants cover, governmental organization, siting, design; operation; quality assurance. In each area the Agency has issued Codes of Practice and is developing Safety Guides. These provide regulatory agencies with a framework for safety. The Seminar recognized that the NUSS programme should enable developing countries to identify priorities in their work, particularly the implementation of safety standards. The ISO activities in the nuclear field are carried out in the framework of its Technical Committee 85 (ISO/TC85). The work is distributed in sub-committees. Seminar on selection and implementation of safety standards for nuclear power plants, jointly organized by the IAEA and the International Organization for Standardization (ISO), and held in Vienna from 15 to 18 December 1980 concerned with: terminology, definitions, units and symbols (SC-1), radiation protection (SC-2), power reactor technology (SC-3), nuclear fuel technology (SC-5). There was general agreement that the ISO standards are complementary to the NUSS codes and guides. ISO has had close relations with the IAEA for several years

  8. Best Estimate plus Uncertainty (BEPU) Analyses in the IAEA Safety Standards

    International Nuclear Information System (INIS)

    Dusic, Milorad; )

    2013-01-01

    The Safety Standards Series establishes an essential basis for safety and represents the broadest international consensus. Safety Standards Series publications are categorized into: Safety Fundamental (Present the overall objectives, concepts and principles of protection and safety, they are the policy documents of the safety standards), Safety Requirements (Establish requirements that must be met to ensure the protection and safety of people and the environment, both now and in the future), and Safety Guides (Provide guidance, in the form of more detailed actions, conditions or procedures that can be used to comply with the Requirements). The incorporation of more detailed requirements, in accordance with national practice, may still be necessary. There should be only one set of international safety standards. Each safety standard will be reviewed by the relevant committee or by the commission every five years. Best Estimate plus Uncertainty (BEPU) Analyses are approached in the following IAEA Safety Standards: - Safety Requirements SSR 2/1 - Safety of NPPs, Design (Revision of NS-R-1); - General Safety Requirement GSR Part 4: Safety Assessment for Facilities and Activities; - Safety Guide SSG-2 Deterministic Safety Analysis for Nuclear Power Plants. NUSSC suggested that new safety guides should be accompanied by documents like TECDOCs or Safety Reports describing in detail their recommendations where appropriate. Special review is currently underway to identify needs for revision in the light of the Fukushima accident. Revision will concern, first, the Safety Requirements, and then, the Selected Safety Guides

  9. Implementation of ICRP-60, BBS-115 and the patient directives in radiation safety regulations of TAEK

    International Nuclear Information System (INIS)

    Okyar, H.B.; Vural, M.

    2001-01-01

    clearance procedures. The preamble to the Basic Safety Standards states that it is presumed in the Standards that Governments have an adequate national infrastructure in place in order to discharge their responsibilities for radiation protection and safety. In Turkey, the relevant national authority for regulating activities involving radioactive sources is the Turkish Atomic Energy Authority (TAEK). The structure of TAEK and its legislation will be introduced. Radiation Safety Regulation (Official Journal no.: 20983) which was issued in 6 September 1991 was revised and issued in 24 March 2000 (Official Journal no.: 23999). The revised version of the Radiation Safety Regulation based on BSS-115 and EC Directives includes definitions, exemptions, responsibilities, dose limits (significant decrease in the limits follows the recommendations of ICRP-60), redefinition of controlled and supervised areas, import and re-export procedures of radioactive materials, redefinition of licensing procedures, limitations in import radiation generators used in medicine, quality control, guidance levels of dose, dose rate and activity for medical exposures (including diagnostic radiological procedures, diagnostic procedures in nuclear medicine), dose levels in interventions and guidelines for intervention levels and action levels in emergency exposure situations. (author)

  10. New quantitative safety standards: different techniques, different results?

    International Nuclear Information System (INIS)

    Rouvroye, J.L.; Brombacher, A.C.

    1999-01-01

    Safety Instrumented Systems (SIS) are used in the process industry to perform safety functions. Many factors can influence the safety of a SIS like system layout, diagnostics, testing and repair. In standards like the German DIN no quantitative analysis is demanded (DIN V 19250 Grundlegende Sicherheitsbetrachtungen fuer MSR-Schutzeinrichtungen, Berlin, 1994; DIN/VDE 0801 Grundsaetze fuer Rechner in Systemen mit Sicherheitsaufgaben, Berlin, 1990). The analysis according to these standards is based on expert opinion and qualitative analysis techniques. New standards like the IEC 61508 (IEC 61508 Functional safety of electrical/electronic/programmable electronic safety-related systems, IEC, Geneve, 1997) and the ISA-S84.01 (ISA-S84.01.1996 Application of Safety Instrumented Systems for the Process Industries, Instrument Society of America, Research Triangle Park, 1996) require quantitative risk analysis but do not prescribe how to perform the analysis. Earlier publications of the authors (Rouvroye et al., Uncertainty in safety, new techniques for the assessment and optimisation of safety in process industry, D W. Pyatt (ed), SERA-Vol. 4, Safety engineering and risk analysis, ASME, New York 1995; Rouvroye et al., A comparison study of qualitative and quantitative analysis techniques for the assessment of safety in industry, P.C. Cacciabue, I.A. Papazoglou (eds), Proceedings PSAM III conference, Crete, Greece, June 1996) have shown that different analysis techniques cover different aspects of system behaviour. This paper shows by means of a case study, that different (quantitative) analysis techniques may lead to different results. The consequence is that the application of the standards to practical systems will not always lead to unambiguous results. The authors therefore propose a technique to overcome this major disadvantage

  11. 76 FR 34890 - Track Safety Standards; Concrete Crossties

    Science.gov (United States)

    2011-06-15

    ...-0007, Notice No. 3] RIN 2130-AC01 Track Safety Standards; Concrete Crossties AGENCY: Federal Railroad... effective concrete crossties, for rail fastening systems connected to concrete crossties, and for automated inspections of track constructed with concrete crossties. The Track Safety Standards were amended via final...

  12. Radiation safety: New international standards

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    This article highlights an important result of this work for the international harmonization of radiation safety: specifically, it present an overview of the forthcoming International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources - the so-called BSS. They have been jointly developed by six organizations - the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (NEA/OECD), the Pan American Health Organization (PAHO), and the World Health Organization (WHO)

  13. The biological basis of plutonium safety standards

    International Nuclear Information System (INIS)

    Mole, R.H.

    1976-01-01

    Since no radiation injury or cancer in man can, as yet, be directly attributed to Pu, all safety standards for Pu must be determined by reference to other safety standards, development of which is discussed. A system of safety standards must be based on links with real damage, such as the requirement for 226 Ra in bone. The type of biological information required for making standards realistic is considered in relation to Pu and Ra in bone. Also considered are the possible effects of Pu in soft tissue such as bone marrow. Not only dose, but also the number of cells exposed to the dose are important biologically and cellular aspects are examined. Since there is no positive evidence of Pu toxicity relevant information on other α emitters must be examined. The observed effectiveness of Ra, daughters of 222 Ra and 232 Th in causing mutations and cancer, is surveyed. Reference is made to the necessity of improving the ICRP system, currently based on the critical organ concept, by recognising the need for summation of risks in other organs where exposure to Pu is concerned. Improved biological understanding particularly that of hereditary damage, in recent years leads to less pessimistic thinking on the effects of ionizing radiations. The immediate need appears to be for consistency in safety standards. (U.K.)

  14. Elevating standards, improving safety.

    Science.gov (United States)

    Clarke, Richard

    2014-08-01

    In our latest 'technical guidance' article, Richard Clarke, sales and marketing director at one of the UK's leading lift and escalator specialists, Schindler, examines some of the key issues surrounding the specification, maintenance, and operation of lifts in hospitals to help ensure the highest standards of safety and reliability.

  15. Medical devices regulations, standards and practices

    CERN Document Server

    Ramakrishna, Seeram; Wang, Charlene

    2015-01-01

    Medical Devices and Regulations: Standards and Practices will shed light on the importance of regulations and standards among all stakeholders, bioengineering designers, biomaterial scientists and researchers to enable development of future medical devices. Based on the authors' practical experience, this book provides a concise, practical guide on key issues and processes in developing new medical devices to meet international regulatory requirements and standards. Provides readers with a global perspective on medical device regulationsConcise and comprehensive information on how to desig

  16. Economic consideration of nuclear safety and cost benefit analysis in nuclear safety regulation

    International Nuclear Information System (INIS)

    Choi, Y. S.; Choi, K. S.; Choi, K. W.; Song, I. J.; Park, D. K.

    2001-01-01

    For the optimization of nuclear safety regulation, understanding of economic aspects of it becomes increasingly important together with the technical approach used so far to secure nuclear safety. Relevant economic theories on private and public goods were reviewed to re-illuminate nuclear safety from the economic perspective. The characteristics of nuclear safety as a public good was reviewed and discussed in comparison with the car safety as a private safety good. It was shown that the change of social welfare resulted from the policy change induced can be calculated by the summation of compensating variation(CV) of individuals. It was shown that the value of nuclear safety could be determined in monetary term by this approach. The theoretical background and history of cost benefit analysis of nuclear safety regulation were presented and topics for future study were suggested

  17. The role of the Gosatomnadzor of Russia in national regulating of safety of radiation sources and security of radioactive materials

    International Nuclear Information System (INIS)

    Mikhailov, M.V.; Sitnikov, S.A.

    2001-01-01

    As at the end of 1999, the Gosatomnadzor of Russia supervised 6551 radiation sources, including 1285 unsealed sources with individual activity from a minimal level to 1x10 12 Bq and a total activity of 585x10 12 Bq, and also 5266 sealed sources with individual activity from 30 to 1x10 17 Bq and the total activity of more than 11x10 17 Bq. A national infrastructure has been created in the Russian Federation in order to regulate the safety of nuclear energy use. The infrastructure includes the legal system and the regulatory authorities based on and acting according to it. The regulation of radiation safety, including assurance of radiation source safety and radioactive material security (management of disused sources, planning, preparedness and response to abnormal events and emergencies, recovery of control over orphan sources, informing users and others who might be affected by lost source, and education and training in the safety of radiation sources and the security of radioactive materials), is realized within this infrastructure. The legal system includes federal laws ('On the Use of Nuclear Energy' and 'On Public Radiation Safety'), a number of decrees and resolutions of the President and the Government of the Russian Federation, federal standards and rules for nuclear energy use, and also departmental and industrial manuals and rules, State standards, construction standards and rules and other documents. The safety regulation tasks have been defined by these laws, according to which regulatory authorities are entrusted with the development, approval and putting into force of standards and rules in the nuclear energy use, with issuing licenses for carrying out nuclear activities, with safety supervision assurance, with review and inspection implementation, with control over development and realization of protective measures for workers, population and environment in emergencies at nuclear and radiation hazardous facilities. Russian national regulatory

  18. Appraisal for France of the safety of the transport of radioactive material. Provision for the application of the IAEA safety standards

    International Nuclear Information System (INIS)

    2004-01-01

    The IAEA has the specific statutory function within the United Nations system of establishing standards of safety for the protection of health against exposure to ionizing radiation. As part of this mandate, the IAEA has issued Regulations for the Safe Transport of Radioactive Material, and has also established the Transport Safety Appraisal Service (TranSAS) to carry out, at the request of States, appraisals of the implementation of these regulations. The IAEA carried out such an appraisal in France from 27 March to 8 April 2004. The appraisal addressed all relevant transport activities in France, both national and international, for all modes of transport, with special emphasis on the maritime transport and air transport of radioactive material. This report summarizes the findings of the 13 independent experts who participated in the appraisal

  19. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards. Tabs

  20. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards

  1. Radiation Safety (Qualifications) Regulations 1980

    International Nuclear Information System (INIS)

    1980-01-01

    These Regulations, promulgated pursuant to the provisions of the Radiation Safety Act, 1975-1979, require persons engaged in activities involving radiation to pass a radiation safety examination or to possess an approved qualification in radiation. The National Health and Medical Research Council is authorised to exempt persons from compliance with these requirements or, conversely, to impose such requirements on persons other than those designated. (NEA) [fr

  2. Transposition of the basic safety standards. Potential impact on French laws and regulations

    Energy Technology Data Exchange (ETDEWEB)

    Godet, J.L.; Perrin, M.M.; Saad, N.; Bardelay, C. [Autorite de Surete Nucleaire (ASN), Paris (France)

    2013-07-01

    The new proposal for a Council Directive laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation is about to be adopted. Member States shall bring into force the laws, regulations and administrative provisions necessary to comply with this Directive within 4 years after adoption of the final text. As far as France is concerned, these evolutions will mainly impact the labour code (for occupational issues) and the public health code for both legal and regulatory requirements. The most significant improvements of the current version of the project are the introduction of graded approach to regulatory control and the enhancement of requirements for protection against natural radiation sources (in particular exposure to radon and naturally occurring radioactive material). This project also aims at achieving a better harmonisation between Member States for topics such as the organization of radiation protection for workers, the justification of medical devices and non-medical imaging exposure situations. ASN has already identified major issues for the transposition of the Directive concerning both French laws and regulations. Main topics should concern the impact of ICRP terminology (planned exposure situation, existing exposure situation versus lasting exposure situation, reference level versus maximum activity level for exposure to radon..) and the extension of both justification and optimisation principles to new activities involving natural radiation sources, such as industries processing naturally occurring radioactive material. Furthermore, France will have to decide whether it will adjust some positions about the prohibition of nonmedical imaging exposures and the release of materials from regulatory control according to generic values. Indeed, the project mentions the possibility to introduce derogations to those major principles. Finally, and according to the graded approach, the project introduces a new

  3. Environmental Regulation and Food Safety: Studies of Protection ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Environmental Regulation and Food Safety: Studies of Protection and Protectionism. Book cover Environmental Regulation and Food Safety: Studies of Protection and Protectionism. Directeur(s) : Veena Jha. Maison(s) d'édition : Edward Elgar, IDRC. 1 janvier 2006. ISBN : 184542512X. 250 pages. e-ISBN : 155250185X.

  4. 19 CFR 12.80 - Federal motor vehicle safety standards.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Federal motor vehicle safety standards. 12.80...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Motor Vehicles and Motor Vehicle Equipment Manufactured on Or After January 1, 1968 § 12.80 Federal motor vehicle safety standards. (a) Standards...

  5. Emerging standards with application to accelerator safety systems

    International Nuclear Information System (INIS)

    Mahoney, K.L.; Robertson, H.P.

    1997-01-01

    This paper addresses international standards which can be applied to the requirements for accelerator personnel safety systems. Particular emphasis is given to standards which specify requirements for safety interlock systems which employ programmable electronic subsystems. The work draws on methodologies currently under development for the medical, process control, and nuclear industries

  6. 48 CFR 245.7311-2 - Safety, security, and fire regulations.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Safety, security, and fire regulations. 245.7311-2 Section 245.7311-2 Federal Acquisition Regulations System DEFENSE ACQUISITION... Inventory 245.7311-2 Safety, security, and fire regulations. ...

  7. Regulation of chemical safety at fuel cycle facilities by the United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Ramsey, Kevin M.

    2013-01-01

    When the U.S. Nuclear Regulatory Commission (NRC) was established in 1975, its regulations were based on radiation dose limits. Chemical hazards rarely influenced NRC regulations. After the Three Mile Island reactor accident in 1979, the NRC staff was directed to address emergency planning at non-reactor facilities. Several fuel cycle facilities were ordered to submit emergency plans consistent with reactor emergency plans because no other guidance was available. NRC published a notice that it was writing regulations to codify the requirements in the Orders and upgrade the emergency plans to address all hazards, including chemical hazards. The legal authority of NRC to regulate chemical safety was questioned. In 1986, an overfilled uranium hexafluoride cylinder ruptured and killed a worker. The NRC staff was directed to address emergency planning for hazardous chemicals in its regulations. The final rule included a requirement for fuel cycle facilities to certify compliance with legislation requiring local authorities to establish emergency plans for hazardous chemicals. As with emergency planning, NRC's authority to regulate chemical safety during routine operations was limited. NRC established memoranda of understanding (MOUs) with other regulatory agencies to encourage exchange of information between the agencies regarding occupational hazards. In 2000, NRC published new, performance-based, regulations for fuel cycle facilities. The new regulations required an integrated safety analysis (ISA) which used quantitative standards to assess chemical exposures. Some unique chemical exposure cases were addressed while implementing the new regulations. In addition, some gaps remain in the regulation of hazardous chemicals at fuel cycle facilities. The status of ongoing efforts to improve regulation of chemical safety at fuel cycle facilities is discussed. (authors)

  8. Rethinking wood dust safety standards

    OpenAIRE

    Ratnasingam, Jega; Wai, Lim Tau; Ramasamy, Geetha; Ioras, Florin; Tadin, Ishak; Universiti Putra Malaysia; Buckinghamshire New University; Centre for Occupational Safety and Health Singapore

    2015-01-01

    The current universal work safety and health standards pertaining to wood dust in factories lack the localisation required. As a study has shown, there is a urgent need to reevaluate the current guidelines and practices.

  9. Standards: An international framework for nuclear safety

    International Nuclear Information System (INIS)

    Versteeg, J.

    2000-01-01

    The IAEA, uniquely among international organizations concerned with the use of radiation, radioactive materials and nuclear energy, has statutory functions to establish safety standards and to provide for their application in Member States. The IAEA also contributes towards another major element of the 'global safety culture', namely the establishment of legally binding international agreements on safety related issues. (author)

  10. The IAEA safety standards for radiation, waste and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, Abel J.

    1997-01-01

    This paper presents a brief description of the standards for radiation, waste and nuclear safety established by the International Atomic Energy Agency (IAEA). It provides a historical overview of their development and also summarizes the standards' current preparation and review process. The final paragraphs offer an outlook on future developments. (author)

  11. Wireless installation standard

    International Nuclear Information System (INIS)

    Lim, Hwang Bin

    2007-12-01

    This is divided six parts which are radio regulation law on securing of radio resource, use of radio resource, protection of radio resource, radio regulation enforcement ordinance with securing, distribution and assignment of radio regulation, radio regulation enforcement regulation on utility of radio resource and technical qualification examination, a wireless installation regulation of technique standard and safety facility standard, radio regulation such as certification regulation of information communicative machines and regulation of radio station on compliance of signal security, radio equipment in radio station, standard frequency station and emergency communication.

  12. To recognize the use of international standards for making harmonized regulation of medical devices in Asia-pacific.

    Science.gov (United States)

    Anand, K; Saini, Ks; Chopra, Y; Binod, Sk

    2010-07-01

    'Medical Devices' include everything from highly sophisticated, computerized, medical equipment, right down to simple wooden tongue depressors. Regulations embody the public expectations for how buildings and facilities are expected to perform and as such represent public policy. Regulators, who develop and enforce regulations, are empowered to act in the public's interest to set this policy and are ultimately responsible to the public in this regard. Standardization contributes to the basic infrastructure that underpins society including health and environment, while promoting sustainability and good regulatory practice. The international organizations that produce International Standards are the International Electrotechnical Commission (IEC), the International Organization for Standardization (ISO), and the International Telecommunication Union (ITU). With the increasing globalization of markets, International Standards (as opposed to regional or national standards) have become critical to the trading process, ensuring a level playing field for exports, and ensuring that imports meet the internationally recognized levels of performance and safety. The development of standards is done in response to sectors and stakeholders that express a clearly established need for them. An industry sector or other stakeholder group typically communicates its requirement for standards to one of the national members. To be accepted for development, a proposed work item must receive a majority support of the participating members, who verify the global relevance of the proposed item. The regulatory authority (RA) should provide a method for the recognition of international voluntary standards and for public notification of such recognition. The process of recognition may vary from country to country. Recognition may occur by periodic publication of lists of standards that a regulatory authority has found will meet the Essential Principles. In conclusion, International standards

  13. White paper on nuclear safety in 2009

    International Nuclear Information System (INIS)

    2009-06-01

    It deals with a general introduction of nuclear safety like general safety, safety regulation and system law and standard. It indicates of nuclear energy facility safety about general safety, safety regulation of operating nuclear power plant safety regulation under constructing nuclear power plant. It deals with radiation facility safety, monitoring of environmental radiation, radiation protection, radiation control, international cooperating on nuclear energy safety and establishment of safety regulation.

  14. Assessment of Safety Standards for Automotive Electronic Control Systems

    Science.gov (United States)

    2016-06-01

    This report summarizes the results of a study that assessed and compared six industry and government safety standards relevant to the safety and reliability of automotive electronic control systems. These standards include ISO 26262 (Road Vehicles - ...

  15. The politics of nuclear safety regulation

    International Nuclear Information System (INIS)

    Adam, G.

    2002-01-01

    The paper discusses political aspects of decision making about the safety of nuclear power plants especially in Eastern Europe and in connection with the enlargement of the European Union. The problem of the Kozloduy NPP safety is also discussed. Recommendations on the policy and tasks for nuclear regulators are given

  16. Good Practice Standards – a Regulation Tool

    DEFF Research Database (Denmark)

    Sørensen, Marie Jull

    2013-01-01

    The purpose of this article is to identify the considerations weighed in regulation with good practice standards. In this article, potential due process problems with regulation via legal standards are identified and compared to other considerations, which this regulation technique meets....

  17. New Safety rules

    CERN Multimedia

    Safety Commission

    2008-01-01

    The revision of CERN Safety rules is in progress and the following new Safety rules have been issued on 15-04-2008: Safety Procedure SP-R1 Establishing, Updating and Publishing CERN Safety rules: http://cern.ch/safety-rules/SP-R1.htm; Safety Regulation SR-S Smoking at CERN: http://cern.ch/safety-rules/SR-S.htm; Safety Regulation SR-M Mechanical Equipment: http://cern.ch/safety-rules/SR-M.htm; General Safety Instruction GSI-M1 Standard Lifting Equipment: http://cern.ch/safety-rules/GSI-M1.htm; General Safety Instruction GSI-M2 Standard Pressure Equipment: http://cern.ch/safety-rules/GSI-M2.htm; General Safety Instruction GSI-M3 Special Mechanical Equipment: http://cern.ch/safety-rules/GSI-M3.htm. These documents apply to all persons under the Director General’s authority. All Safety rules are available at the web page: http://www.cern.ch/safety-rules The Safety Commission

  18. Multi-domain comparison of safety standards

    International Nuclear Information System (INIS)

    Baufreton, Ph.; Derrien, J.C.; Ricque, B.; Blanquart, J.P.; Boulanger, J.L.; Delseny, H.; Gassino, J.; Ladier, G.; Ledinot, E.; Leeman, M.; Quere, Ph.

    2011-01-01

    This paper presents an analysis of safety standards and their implementation in certification strategies from different domains such as aeronautics, automation, automotive, nuclear, railway and space. This work, performed in the context of the CG2E ('Club des Grandes Entreprises de l'Embarque'), aims at identifying the main similarities and dissimilarities, for potential cross-domain harmonization. We strive to find the most comprehensive 'trans-sectorial' approach, within a large number of industrial domains. Exhibiting the 'true goals' of their numerous applicable standards, related to the safety of system and software, is a first important step towards harmonization, sharing common approaches, methods and tools whenever possible. (authors)

  19. Vehicle track interaction safety standards

    Science.gov (United States)

    2014-04-02

    Vehicle/Track Interaction (VTI) Safety Standards aim to : reduce the risk of derailments and other accidents attributable : to the dynamic interaction between moving vehicles and the : track over which they operate. On March 13, 2013, the Federal : R...

  20. PHITS code improvements by Regulatory Standard and Research Department Secretariat of Nuclear Regulation Authority

    International Nuclear Information System (INIS)

    Goko, Shinji

    2017-01-01

    As for the safety analysis to be carried out when a nuclear power company applies for installation permission of facility or equipment, business license, design approval etc., the Regulatory Standard and Research Department Secretariat of Nuclear Regulation Authority continuously conducts safety research for the introduction of various technologies and their improvement in order to evaluate the adequacy of this safety analysis. In the field of the shielding analysis of nuclear fuel transportation materials, this group improved the code to make PHITS applicable to this field, and has been promoting the improvement as a tool used for regulations since FY2013. This paper introduced the history and progress of this safety research. PHITS 2.88, which is the latest version as of November 2016, was equipped with the automatic generation function of variance reduction parameters [T-WWG] etc., and developed as the tool equipped with many effective functions in practical application to nuclear power regulations. In addition, this group conducted the verification analysis against nuclear fuel packages, which showed a good agreement with the analysis by MCNP, which is extensively used worldwide and abundant in actual results. It also shows a relatively good agreement with the measured values, when considering differences in analysis and measurement. (A.O.)

  1. Drinking Water Contaminants -- Standards and Regulations

    Science.gov (United States)

    ... and Research Centers Contact Us Share Drinking Water Contaminants – Standards and Regulations EPA identifies contaminants to regulate ... other partners to implement these SDWA provisions. Regulated Contaminants National Primary Drinking Water Regulations (NPDWRs) - table of ...

  2. Coal Mine Health and Safety Regulation 2006 under the Coal Mine Health and Safety Act 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-22

    The aim of the Act is to secure the health, safety and welfare of people in connection with coal operations (which include all places of work where coal is mined and certain other places). The Regulation contains provisions about the following matters: (a) places of work to which the Act does not apply, (b) duties relating to health, welfare and safety at coal operations, including the following: (i) the nomination of the operator of a coal operation and the provision of health and safety information for incoming operators, (ii) the contents of health and safety management systems for coal operations, (iii) major hazards and the contents of major hazard management plans for coal operations, (iv) duties relating to contractors, (v) the contents of management structures and emergency management systems for coal operations, escape and rescue plans and fire fighting plans and high risk activities, (c) notifications, including (i) notification of incidents, (ii) inquiries, (iii) notification of other matters to the Chief Inspector), (d) aspects of safety at coal operations, including the following: (i) controlled materials, plants and practices, (ii) coal dust explosion prevention and suppression, (iii) ventilation at coal operations, (iv) escape from coal operations, (v) the operation of transport at coal operations, (vi) surveys and certified plans, (vii) employment at coal operations, (e) the licensing of certain activities, (f) competence standards, (g) the Coal Competence Board, (h) check inspectors, (i) exemptions from provisions of this Regulation, (j) the following miscellaneous matters concerning coal mine health and safety: (i) the keeping of records and reporting, (ii) penalties, the review of decisions by the Administrative Decisions Tribunal, fees and charges, consultation, information and other miscellaneous matters, (k) savings and transitional provisions.

  3. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  4. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  5. Regulation of Aging Power Plants: Ensuring Safety in a Changing Environment

    International Nuclear Information System (INIS)

    Jackson, S.A.

    1999-01-01

    In her keynote address to the Plim and Plex 1997 Conference, Dr. Jackson, President of the US Nuclear Regulatory Commission, dealt with four problem areas: (i) the development and application of safety margins; (ii) aging mechanisms and the use of inspection and testing methods; (iii) the U. S. licence renewal process; and (iv) risk-informed, performance-based regulation. Aging effects can further complicate existing interactions between 'explicit' and 'implicit' safety margins. Attempting to satisfy these combined margins can have a significant technical and financial impact on the plant operator. Aging degradation affects a broad range of plant systems, structures and components. Inspection and testing methods are improved continually, but development of methods for direct measuring of material properties on a more microscopic level together with elaboration of more precise predictive models of aging is still needed. In the U. S., the decision on whether to seek licence renewal rests with the licensee. The NRC task is to establish a reasonable process and clear safety standards. License renewal (extension of a NPP 40-years operating licence for additional 20 years) is explicitly allowed in NRS regulations in 10 CFR Part 54. In the U. S. nuclear power industry, there is considerable interest in licence renewal. A 'risk informed' approach to regulation means that, in the decision-making, the risk information is considered along with other factors. Performance-based regulation is, by definition, results focused; its essential component is the feedback of operating experience into subsequent evaluation. When the results focus is linked to risk analysis and ranking, the result is risk-informed, performance-based regulation. The NRS applies this combined approach in all its activities and, also, in its collaborative programs with the nuclear power industry. At the threshold of the 21st century, the nuclear power industry faces an array of challenges and opportunities

  6. The management of electronic documents generated from compilation and revision processes of nuclear and radiation safety regulations and standards

    International Nuclear Information System (INIS)

    Wang Wenhai; Fan Yun; Shang Zhaorong

    2010-01-01

    As the Secretary Group of Regulations and Standards Review Committee on nuclear and radiation safe needs to deal with a large number of electronic documents in course of the regulation and standard review meetings, the article gives a systematical method including electronic document file naming and management as well as procedures of file transfer, storage and usage. (authors)

  7. Schedules of Provisions of the IAEA Regulations for the Safe Transport of Radioactive Material (2009 Ed.). Safety Guide

    International Nuclear Information System (INIS)

    2014-01-01

    This Safety Guide is issued in support of Regulations for the Safe Transport of Radioactive Material (IAEA Safety Standards Series No. TS-R-1, 2009 Edition). It lists the paragraph numbers of the Transport Regulations that are relevant for specified types of consignment, classified according to their UN numbers. It does not provide additional recommendations. The intended users are consignors and consignees, carriers, shippers, regulators, and end users involved in the transport of radioactive material. A person or organization intending to transport a particular type of consignment of radioactive material must meet requirements in all sections of the Transport Regulations. This Safety Guide aids users by providing a listing of the relevant requirements of the Transport Regulations for each type of radioactive material, package or shipment. Once a consignor has classified the radioactive material to be shipped, the appropriate UN number can be assigned and the paragraph numbers of the requirements that apply for the shipment can be found in the corresponding schedule

  8. Development of NPP safety regulation in Russia

    International Nuclear Information System (INIS)

    Vishnevsky, Y.G.; Gutsalov, A.T.; Bukrinsky, A.M.; Gordon, B.G.

    1999-01-01

    The presentation describes the organisation scheme of Russian safety regulatory bodies, their tasks and responsibilities. Legislative and regulatory basis of NPP safety regulations rely on the federal laws: Law on the Use of Nuclear Energy and Law on Radiation Safety of the Population. Role of international cooperation and Improvement of regulatory activities in Russia are emphasised

  9. Categorization of Radioactive Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  10. The main requirements of the International Basic Safety Standards

    International Nuclear Information System (INIS)

    Webb, G.A.M.

    1998-01-01

    The main requirements of the new international basic safety standards are discussed, including such topics as health effects of ionizing radiations, the revision of basic safety standards, the requirements for radiation protection practices, the requirements for intervention,and the field of regulatory infrastructures. (A.K.)

  11. New quantitative safety standards : Different techniques, different results?

    NARCIS (Netherlands)

    Rouvroye, J.L.; Brombacher, A.C.; Lydersen, S.; Hansen, G.K.; Sandtor, H.

    1998-01-01

    Safety Instrumented Systems (SIS) are used in the process industry to perform safety functions. Many parameters can influence the safety of a SIS like system layout, diagnostics, testing and repair. In standards like the German DIN [DIN19250, DIN0801] no quantitative analysis was demanded. The

  12. OSHA Laboratory Standard: Driving Force for Laboratory Safety!

    Science.gov (United States)

    Roy, Kenneth R.

    2000-01-01

    Discusses the Occupational Safety and Health Administration's (OSHA's) Laboratory Safety Standards as the major driving force in establishing and maintaining a safe working environment for teachers and students. (Author)

  13. Fire safety regulations for nuclear power plants in Germany and the various dimensions of German KTA standardization activities. Is there a benefit today?

    International Nuclear Information System (INIS)

    Wittmann, R.

    1998-01-01

    In Germany the mandate for preparing nuclear safety standards is given to the KTA (Nuclear Safety Standards Commission) which has restrictive procedures to definitely ensure consensus principle. The KTA was up to now not in a position to approve comprehensive fire safety relevant standards, although its corresponding program is now 22 years old. KTA 2101.1 ''Basic Principles of Fire Protection in NPPs'' (12/85) is the only one published as valid safety standard. Drafts for 3 additional standards referring fire protection of structural elements, electrical and mechanical components as well as for rescue routes have been agreed upon in working groups, supervised and accepted by the responsible KTA subcommittee, but have not been approved by the full committee of the KTA up to now. Some of these drafts are already more than 5 years old. From the today's point of view the earliest possibility to have a comprehensive and actual set of fire relevant KTA standards will be in the second half of the year 1999. This would then be 24 years after the first KTA decision to start such a program. (author)

  14. 76 FR 55825 - Federal Motor Vehicle Safety Standards, Child Restraint Systems

    Science.gov (United States)

    2011-09-09

    ... [Docket No. NHTSA-2011-0139] RIN 2127-AJ44 Federal Motor Vehicle Safety Standards, Child Restraint Systems..., amends a provision in Federal Motor Vehicle Safety Standard No. 213, ``Child restraint systems,'' that... provision: When a motor vehicle safety standard is in effect under this chapter, a State or a political...

  15. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (2012 Ed.). Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    This Safety Guide provides recommendations and guidance on achieving and demonstrating compliance with IAEA Safety Standards Series No. SSR-6, Regulations for the Safe Transport of Radioactive Material (2012 Edition), which establishes the requirements to be applied to the national and international transport of radioactive material. Transport is deemed to comprise all operations and conditions associated with and involved in the movement of radioactive material, including the design, fabrication and maintenance of packaging, and the preparation, consigning, handling, carriage, storage in transit and receipt at the final destination of packages. This publication supersedes IAEA Safety Standards Series No. TS-G-1.1 Rev. 1, which was issued in 2008.

  16. Standardized System of Nuclear Safety Information for the Promotion of Transparency and Openness

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gihyung; Kim, Sanghyun; Lee, Gyehwi; Yoon, Yeonhwa; Song, Song Hyerim; Jeong, Jina [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Byun, Jaehyung; Seo, Jonghwan [Dong-A Univ., Busan (Korea, Republic of)

    2013-05-15

    There has been an increasing emphasis on the need for increased disclosure of information through the home page of the Korea Institute of Nuclear Safety (KINS), responsible for nuclear safety regulations, and the Nuclear Safety Information Center (NSIC) to enhance public understanding of nuclear safety. However, due to the dazzled structure of the existing KINS and NSIC home pages, improvements in accessibility and convenience are necessary. At the same time, content standardization is required to increase operational efficiency and provide coherent information. In this study, the Delphi method was used to select the major contents to make available on the home page as well as the main user base definition for the home page layout development. Also, internal and external expert groups were created to conduct AHP (Analytic Hierarchy Process) analysis and develop the comparative analysis items for the U. S. Nuclear Regulatory Commission(NRC)/KINS/NSIC home pages. Afterwards, problems and points of improvements for the home page system, design, and profile were derived using heuristic analysis. The implications arising from the Delphi analysis results were applied to the home page layout. In the nuclear safety information standardized system construction process, the comparative analysis conducted using the AHP and heuristic analyses of the NRC home page resulted in deriving improvements for the Guidance, Organization, and Trustworthy items of the KINS/NSIC home page. Furthermore, through the Delphi analysis, a clear purpose and core values were set for the KINS web site, and the needs of the main user base were identified. By developing the home page layout, user interest and utility were raised to improve the organization method and layout. Through this study, KINS was able to construct a nuclear safety information standardized system and increase transparency and openness by providing feature enhancements in information provision as well as user accessibility and

  17. Standardized System of Nuclear Safety Information for the Promotion of Transparency and Openness

    International Nuclear Information System (INIS)

    Lee, Gihyung; Kim, Sanghyun; Lee, Gyehwi; Yoon, Yeonhwa; Song, Song Hyerim; Jeong, Jina; Byun, Jaehyung; Seo, Jonghwan

    2013-01-01

    There has been an increasing emphasis on the need for increased disclosure of information through the home page of the Korea Institute of Nuclear Safety (KINS), responsible for nuclear safety regulations, and the Nuclear Safety Information Center (NSIC) to enhance public understanding of nuclear safety. However, due to the dazzled structure of the existing KINS and NSIC home pages, improvements in accessibility and convenience are necessary. At the same time, content standardization is required to increase operational efficiency and provide coherent information. In this study, the Delphi method was used to select the major contents to make available on the home page as well as the main user base definition for the home page layout development. Also, internal and external expert groups were created to conduct AHP (Analytic Hierarchy Process) analysis and develop the comparative analysis items for the U. S. Nuclear Regulatory Commission(NRC)/KINS/NSIC home pages. Afterwards, problems and points of improvements for the home page system, design, and profile were derived using heuristic analysis. The implications arising from the Delphi analysis results were applied to the home page layout. In the nuclear safety information standardized system construction process, the comparative analysis conducted using the AHP and heuristic analyses of the NRC home page resulted in deriving improvements for the Guidance, Organization, and Trustworthy items of the KINS/NSIC home page. Furthermore, through the Delphi analysis, a clear purpose and core values were set for the KINS web site, and the needs of the main user base were identified. By developing the home page layout, user interest and utility were raised to improve the organization method and layout. Through this study, KINS was able to construct a nuclear safety information standardized system and increase transparency and openness by providing feature enhancements in information provision as well as user accessibility and

  18. Existing and future international standards for the safety of radioactive waste disposal

    International Nuclear Information System (INIS)

    Linsley, G.

    1999-01-01

    In this paper the essential features of the current international safety standards are summarised and the issues being raised for inclusion in future standards are discussed. The safety standards of the IAEA are used as the basis for the review and discussion. The IAEA has established a process for establishing international standards of safety for radioactive waste management through its Radioactive Waste Safety Standards (RADWASS) programme. The RADWASS documents are approved by a comprehensive process involving regulatory and other experts from all concerned IAEA Member States. A system of committees for approving the IAEAs safety standards has been established. For radioactive waste safety the committee for review and approval is the Waste Safety Standards Advisory Committee (WASSAC). In 1995 the IAEA published 'The Principles of Radioactive Waste Management' as the top level document in the RADWASS programme. The report sets out the basis principles which most experts believe are fundamental to the safe management of radioactive wastes

  19. Legislation for the countermeasures on special issues of nuclear safety regulations

    International Nuclear Information System (INIS)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Hak Man; Oh, Ho Chul

    2003-02-01

    Since the present legal system on nuclear safety regulation has some problems that refer to contents of regulatory provisions, this mid-report has preformed research on the legal basic theory of nuclear safety regulation. And then secondly this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation. In order to interpret easily this report finally took the cases of judicial precedents on nuclear safety regulation in USA, Germany, Japan and Korea

  20. Legislation for the countermeasures on special issues of nuclear safety regulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Hak Man; Oh, Ho Chul [Chongju Univ., Cheongju (Korea, Republic of)

    2003-02-15

    Since the present legal system on nuclear safety regulation has some problems that refer to contents of regulatory provisions, this mid-report has preformed research on the legal basic theory of nuclear safety regulation. And then secondly this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation. In order to interpret easily this report finally took the cases of judicial precedents on nuclear safety regulation in USA, Germany, Japan and Korea.

  1. Investigation on regulatory requirements for radiation safety management

    International Nuclear Information System (INIS)

    Han, Eun Ok; Choi, Yoon Seok; Cho, Dae Hyung

    2013-01-01

    NRC recognizes that efficient management of radiation safety plan is an important factor to achieve radiation safety service. In case of Korea, the contents to perform the actual radiation safety management are legally contained in radiation safety management reports based on the Nuclear Safety Act. It is to prioritize the importance of safety regulations in each sector in accordance with the current situation of radiation and radioactive isotopes-used industry and to provide a basis for deriving safety requirements and safety regulations system maintenance by the priority of radiation safety management regulations. It would be helpful to achieve regulations to conform to reality based on international standards if consistent safety requirements is developed for domestic users, national standards and international standards on the basis of the results of questions answered by radiation safety managers, who lead on-site radiation safety management, about the priority of important factors in radioactive sources use, sales, production, moving user companies, to check whether derived configuration requirements for radiation safety management are suitable for domestic status

  2. DOE standard: Firearms safety

    International Nuclear Information System (INIS)

    1996-02-01

    Information in this document is applicable to all DOE facilities, elements, and contractors engaged in work that requires the use of firearms as provided by law or contract. The standard in this document provides principles and practices for implementing a safe and effective firearms safety program for protective forces and for non-security use of firearms. This document describes acceptable interpretations and methods for meeting Order requirements

  3. DOE standard: Firearms safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Information in this document is applicable to all DOE facilities, elements, and contractors engaged in work that requires the use of firearms as provided by law or contract. The standard in this document provides principles and practices for implementing a safe and effective firearms safety program for protective forces and for non-security use of firearms. This document describes acceptable interpretations and methods for meeting Order requirements.

  4. On the Regulation of Life Safety Risk

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard; Vrouwenvelder, A.C.W.M.

    2015-01-01

    . Starting point is taken in a short outline of what is considered to comprise the present best practice rationale for life safety and health risk regulation. Thereafter, based on selected principal examples from different application areas, inconsistencies in present best practice risk quantification...... absolute level of individual life safety risk subject to assessment of acceptability. It is highlighted that a major cause of inconsistency in risk quantifications and comparisons originates from the fact that present regulations partly address societal activities and partly address applied technologies...

  5. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (French Edition); Reglement de transport des matieres radioactives. Edition de 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    The IAEA's Statute authorizes the Agency to ''establish or adopt standards of safety for protection of health and minimization of danger to life and property'' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  6. Panel 1: Safety design criteria

    International Nuclear Information System (INIS)

    Yllera, Javier

    2013-01-01

    There is general consensus in the nuclear community, and more after the Fukushima accident, that the deployment of nuclear energy has to be done at the highest levels of nuclear safety and that safety cannot be compromised by other factors. It is well understood that reactors that are being licensed and the new generations of reactors that will be constructed in the future will need to reach higher safety levels than the existing ones. Several countries and international organizations or international groups are launching initiatives to harmonise safety goals, safety requirements, safety objectives, regulations, criteria or safety reference levels. There are differences in the meanings of these terms and the working approaches, but the overall purpose is the same: to specify how new plants can be safer. In this context, the IAEA has an statutory function for developing international nuclear safety standards. The IAEA safety standards are per se not mandatory for IAEA Member States. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA’s standards for use in their national regulations in different ways. The IAEA Safety Standards represent international consensus on what must constitute a high level of safety for nuclear installations. In the area of NPP design, IAEA safety standards that are published are intended to apply primarily to new plants. It might not be practicable to apply all the requirements to plants that are already in operation. In addition, the focus is primarily on plants with water cooled reactors

  7. A new standard for multidisciplinary health and safety technicians

    International Nuclear Information System (INIS)

    Trinoskey, P.A.; Fry, L.A.; Egbert, W.F.

    2000-01-01

    Over the last two decades, a significant trend in health and safety has been toward greater specialization. However, compartmentalization of health and safety disciplines often leads to an inequity in resources, especially when appropriations overemphasize one risk to the detriment of others. For example, overemphasis on radiological safety can create an imbalance in overall worker protection. A multidisciplinary technical can help restore the balance and provide for a healthier and safer work environment. The key advantages of a multidisciplinary health and safety technician include: Broad coverage of the work area by one technician, More diverse use of the technician pool, Better coverage for off-shift or nonstandard hours, Balance of risks because all hazards are considered, Integrated emergency response, Ownership, Less time of identify the correct person with the requisite skills. We have developed a new standard that establishes the training and related qualifications for a multidisciplinary health and safety technician. The areas of training and qualification that are addressed include elements of industrial hygiene, industrial safety, fire protection, electrical safety, construction safety, and radiation safety. The initial core training program ensures that individuals are trained to the performance of requirements of the job. Initial training is in five areas: Fundamentals, Hazard recognition, Hazard assessment, Hazards controls, Hazards minimization. Core training is followed by formal qualification on specific tasks, including ventilation surveys, air monitoring, noise assessments, radiological monitoring, area inspections, work-area setups, and work coverage. The new standard addresses not only training topics and requirements, but also guidance to ensure that performance objectives are met. The standard applies to technicians, supervisors, technologists, and six specialty areas, including academic institutions and decontamination and decommissioning

  8. A new standard for multidisciplinary health and safety technicians

    Energy Technology Data Exchange (ETDEWEB)

    Trinoskey, P.A.; Fry, L.A. [Lawrence Livermore National Laboratory, Univ. of California, CA (United States); Egbert, W.F. [Lawrence Livermore National Laboratory, Allied Signal Technical Corporation (United States)

    2000-05-01

    Over the last two decades, a significant trend in health and safety has been toward greater specialization. However, compartmentalization of health and safety disciplines often leads to an inequity in resources, especially when appropriations overemphasize one risk to the detriment of others. For example, overemphasis on radiological safety can create an imbalance in overall worker protection. A multidisciplinary technical can help restore the balance and provide for a healthier and safer work environment. The key advantages of a multidisciplinary health and safety technician include: Broad coverage of the work area by one technician, More diverse use of the technician pool, Better coverage for off-shift or nonstandard hours, Balance of risks because all hazards are considered, Integrated emergency response, Ownership, Less time of identify the correct person with the requisite skills. We have developed a new standard that establishes the training and related qualifications for a multidisciplinary health and safety technician. The areas of training and qualification that are addressed include elements of industrial hygiene, industrial safety, fire protection, electrical safety, construction safety, and radiation safety. The initial core training program ensures that individuals are trained to the performance of requirements of the job. Initial training is in five areas: Fundamentals, Hazard recognition, Hazard assessment, Hazards controls, Hazards minimization. Core training is followed by formal qualification on specific tasks, including ventilation surveys, air monitoring, noise assessments, radiological monitoring, area inspections, work-area setups, and work coverage. The new standard addresses not only training topics and requirements, but also guidance to ensure that performance objectives are met. The standard applies to technicians, supervisors, technologists, and six specialty areas, including academic institutions and decontamination and decommissioning

  9. The Agency's Safety Standards and Measures

    International Nuclear Information System (INIS)

    1976-04-01

    The Agency's Health and Safety Measures were first, approved by the Board of Governors on 31 March 1960 in implementation of Articles III.A.6 and XII of the Statute of the Agency. On the basis of the experience gained from applying those measures to projects carried out by Members under agreements concluded with the Agency, the Agency's Health and Safety Measures were revised in 1975 and approved by the Board of Governors on 25 February 1976. The Agency's Safety Standards and Measures as revised are reproduced in this document for the information of all Members

  10. Comparative study of Malaysian and Philippine regulatory infrastructures on radiation and nuclear safety with international standards

    International Nuclear Information System (INIS)

    Cayabo, Lynette B.

    2013-06-01

    This study presents the results of the critical reviews, analysis, and comparison of the regulatory infrastructures for radiation and nuclear safety of Malaysis and the Philippines usi ng the IAEA safety requirements, GSR Part 1, G overnment, Legal and Regulatory Framework for Safety'' as the main basis and in part, the GSR Part 3, R adiation Protection and Safety of Radiation Sources: International Basic Safety Standards . The scope of the comparison includes the elements of the relevant legislations, the regulatory system and processes including the core functions of the regulatory body (authorization, review and assessment, inspection and enforcement, development of regulations and guides); and the staffing and training of regulatory body. The respective availabe data of the Malaysian and Philippine regulatory infrastructures and current practices were gathered and analyzed. Recommendations to fill the gaps and strengthen the existing regulatory infrastructure of each country was given using as bases relevant IAEA safety guides. Based on the analysis made, the main findings are: the legislations of both countries do not contain al the elements of teh national policy and strategy for safety as well as those of teh framework for safety in GR Part I. Among the provision that need to be included in the legislations are: emergency planning and response; decommissioning of facilities safe management of radioactive wastes and spent fuel; competence for safety; and technical sevices. Provisions on coordination of different authorities with safety responsibilities within the regulatory framework for safety as well as liaison with advisory bodies and support organizations need to be enhanced. The Philippines needs to establish an independent regulatory body, ie. separate from organizations charged with promotion of nuclear technologies and responsible for facilitiesand activities. Graded approach on the system of notification and authorization by registration and

  11. Safety critical systems handbook a straightforward guide to functional safety : IEC 61508 (2010 edition) and related standards

    CERN Document Server

    Smith, David J

    2010-01-01

    Electrical, electronic and programmable electronic systems increasingly carry out safety functions to guard workers and the public against injury or death and the environment against pollution. The international functional safety standard IEC 61508 was revised in 2010, and this is the first comprehensive guide available to the revised standard. As functional safety is applicable to many industries, this book will have a wide readership beyond the chemical and process sector, including oil and gas, power generation, nuclear, aircraft, and automotive industries, plus project, instrumentation, design, and control engineers. * The only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards* Helps readers understand the process required to apply safety critical systems standards* Real-world approach helps users to interpret the standard, with case studies and best practice design examples...

  12. The general technical regulation and the standardization

    International Nuclear Information System (INIS)

    Laverie, Michel; Houze, Christian; Lebouleux, Philippe

    1980-01-01

    Through a certain number of procedures, the thorough appreciation of the safety of a nuclear installation relies more on a specific appreciation taking into account the references as a whole, than on a technical regulation which claims to cover all the problems. Nevertheless, a French technical regulation structure regarding the safety domain must be built up progressively. The authors consider the principles of such a structure, and together they make the inventory of the works, finished, in progress or contemplated. The description of this specifically French approach emphazises the multiple and complementary forms given to statutory implements [fr

  13. International experts conclude IAEA peer review of Iran's safety regulation of Bushehr NPP

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: An international team of nuclear safety experts today completed an IAEA mission to review the effectiveness of Iran's safety regulation of its first nuclear power plant and to identify possible improvements before the plant begins operation. Upon invitation of the Islamic Republic of Iran, the International Atomic Energy Agency (IAEA) assembled a team of senior regulators from seven Member States for an Integrated Regulatory Review Service (IRRS) mission. The scope of the mission was limited to the safety regulation of Bushehr nuclear power plant (BNPP-1). The IRRS review took place from 20 February to 2 March at the INRA offices in Tehran and included a technical visit to the BNPP-1 site. The mission was an objective peer review based on IAEA safety standards, and was neither an inspection, nor an audit. Ms. Olena Mykolaichuk, IRRS Team Leader and Head of the State Nuclear Regulatory Committee of Ukraine, commended her INRA counterparts: 'The regulatory work performed on the Bushehr construction and in preparation for commissioning has demonstrated significant progress of INRA as a nuclear regulatory authority,' she said. Philippe Jamet, Director of the IAEA's Nuclear Installation Safety Division, added: 'Through this IRRS mission, both Iran and the international experts contribute to the enhancement of nuclear safety and worldwide experience sharing.' In the course of its review the IRRS team identified the following strengths: - INRA has a dedicated, conscientious staff, demonstrating clear commitments to further improvements. - INRA clearly recognizes the value of peer reviews and international cooperation regarding nuclear safety. - Despite a shortage of staff, INRA demonstrated strong leadership while performing both review and assessment and inspection tasks during the BNPP-1 construction and pre-commissioning. - INRA has developed an excellent computerized documentation control system. Recommendations and suggestions to improve INRA's regulatory

  14. Decoupling from international food safety standards

    DEFF Research Database (Denmark)

    Mercado, Geovana; Hjortsø, Carsten Nico; Honig, Benson

    2018-01-01

    rural producers who, grounded in culturally-embedded food safety conceptions, face difficulties in complying. We address this gap here through a multiple case study involving four public school feeding programs that source meals from local rural providers in the Bolivian Altiplan. Institutional logics...... in the market. These include: (1) partial adoption of formal rules; (2) selective adoption of convenient rules; and (3) ceremonial adoption to avoid compliance. Decoupling strategies allow local actors to largely disregard the formal food safety regulations while accommodating traditional cultural practices...

  15. Strategy for public understanding and participation in nuclear safety regulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Chung, Yun Hyung

    2004-02-15

    The objective of this study is to help the general public and local residents to better understand and trust nuclear safety regulation. In order to obtain public confidence in nuclear safety regulation, the emotion and demand of public should be first understood and the change in an attitude to meet the present circumstances actively is requisite. Hence it is intended that a genuine communication shall be newly arranged and accomplished on the basis of mutual understanding. To achieve this, a series of public opinion poll have performed periodically and symposium for the public acceptance is held in order to frame a policy based on the understanding of nuclear safety and regulation of the general public and local residents. Besides nuclear safety indicators including safety sentiment indicators are being developed as a means to understand the safety of operating nuclear power plants from the viewpoint of the general public, a plan for the harmonious communication of nuclear safety information is established, and handbooks of nuclear terminologies and report-writing are under development in part. Finally plans for convergence of the public opinions and a wide public involvement in nuclear safety regulation are formulated and their applicability as organization and administration program is now under consideration.

  16. Safety research activities for Japanese regulations of spent fuel interim storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Japan Nuclear Energy Safety Organization (JNES) carries out (a) preparation of technical documents, (b) technical evaluations of standards (prepared by academic societies), etc. and (c) other R and D activities, to support Nuclear Regulation Authority (NRA: which controls the regulations for Spent Fuel Interim Storage Facilities). In 2012 fiscal year, JNES carried out dynamic test of spent fuel to examine the integrity of spent fuel under cask drop accidents, and preparation for PWR spent fuel storage test to prove long term integrity of spent fuel and cask itself. Some of these tests will be also carried out in 2013 fiscal year and after. (author)

  17. Russian seismic standards and demands for equipment and their conformity with international standards

    International Nuclear Information System (INIS)

    Kaznovsky, S.; Ostretsov, I.

    1993-01-01

    The principle regulations of standard documents concerning seismic safety of NPPs and demands for reactor equipment conformity with international standards are presented in this report. General state of NPP safety standards is reviewed, with a special emphasis on the state of seismic design standards for NPP equipment and piping. Russian standards documents on seismic resistance of NPPs and requirements are compared to international ones

  18. European and International Standards on health and safety in welding

    International Nuclear Information System (INIS)

    Howe, A

    2009-01-01

    A number of European and International Standards on health and safety in welding have been published in recent years and work on several more is nearing completion. These standards have been prepared jointly by the International Standards Organization (ISO) and the European Committee for Standardization (CEN). The standards development work has mostly been led by CEN/TC 121/SC 9, with excellent technical input from experts within Europe; but work on the revision of published standards, which has recently gathered pace, is now being carried out by ISO/TC 44/SC 9, with greater international involvement. This paper gives an overview of the various standards that have been published, are being revised or are under development in this field of health and safety in welding, seeking to (i) increase international awareness of published standards, (ii) encourage wider participation in health and safety in welding standards work and (iii) obtain feedback and solicit comments on standards that are currently under development or revision. Such an initiative is particularly timely because work is currently in progress on the revision of one of the more important standards in this field, namely EN ISO 10882:2001 Health and safety in welding and allied processes- Sampling of airborne particles and gases in the operator's breathing zone - Part 1: Sampling of airborne particles.

  19. Upholding science in health, safety and environmental risk assessments and regulations

    International Nuclear Information System (INIS)

    Aschner, Michael; Autrup, Herman N.; Berry, Sir Colin L.; Boobis, Alan R.; Cohen, Samuel M.; Creppy, Edmond E.; Dekant, Wolfgang; Doull, John; Galli, Corrado L.; Goodman, Jay I.; Gori, Gio B.; Greim, Helmut A.; Joudrier, Philippe

    2016-01-01

    A public appeal has been advanced by a large group of scientists, concerned that science has been misused in attempting to quantify and regulate unmeasurable hazards and risks. The appeal recalls that science is unable to evaluate hazards that cannot be measured, and that science in such cases should not be invoked to justify risk assessments in health, safety and environmental regulations. The appeal also notes that most national and international statutes delineating the discretion of regulators are ambiguous about what rules of evidence ought to apply. Those statutes should be revised to ensure that the evidence for regulatory action is grounded on the standards of the scientific method, whenever feasible. When independent scientific evidence is not possible, policies and regulations should be informed by publicly debated trade-offs between socially desirable uses and social perceptions of affordable precaution. This article explores the premises, implications and actions supporting the appeal and its objectives.

  20. Development of Comprehensive Nuclear Safety Regulation Plan for 2007-2011

    International Nuclear Information System (INIS)

    Choi, Young Sung; Kim, Woong Sik; Park, Dong Keuk; Kim, Ho Ki

    2006-01-01

    The Article 8-2 of Atomic Energy Act requires the government to establish Atomic Energy Promotion Plan every five years. It sets out national nuclear energy policies in a systematic and consistent way. The plan presents the goals and basic directions of national nuclear energy policies on the basis of current status and prospects. Both areas of utilization and safety management of nuclear energy are included and various projects and schedules are delineated based on the national policy directions. The safety management area in this plan deals with the overall safety and regulation policy. Its detail projects and schedule should be developed in separate plans by responsible ministries under the mediation of the MOST. As a regulatory authority, MOST is responsible for safety management area and its technical support organization, KINS has developed Comprehensive Nuclear Safety Regulation Plan as an implementation plan of safety area. This paper presents the development process and specific projects contained in the Comprehensive Nuclear Safety Regulation Plan which is under development now

  1. Regulatory practices and safety standards for nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The International Symposium on Regulatory Practices and Safety Standards for Nuclear Power Plants was jointly organized by the International Atomic Energy Agency (IAEA), for Nuclear Energy Agency of the OECD and the Government of the Federal Republic of Germany with the objective of providing an international forum for the exchange of information on regulatory practices and safety standards for nuclear power plants. The Symposium was held in Munich, Federal Republic of Germany, from 7 to 10 November 1988. It was attended by 201 experts from some 32 Member States and 4 international organizations. Fifty-one papers from 19 Member States and 2 international organizations were presented and discussed in 5 technical sessions covering the following subjects: National Regulatory Practices and Safety Standards (14 papers); Implementation of Regulatory Practices - Technical Issues (8 papers); Implementation of Regulatory Practices - Operational Aspects (8 papers); Developments and Trends in Safety Standards and Practices (11 papers); International Aspects (10 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  2. 78 FR 11092 - Safety and Health Regulations for Construction

    Science.gov (United States)

    2013-02-15

    ... LABOR DEPARTMENT Occupational Safety and Health Administration 29 CFR Part 1926 Safety and Health Regulations for Construction CFR Correction In Title 29 of the Code of Federal Regulations, Part 1926, revised as of July 1, 2012, on page 225, in Sec. 1926.152, paragraph (c)(16) is added to read as follows: Sec...

  3. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide provides recommendations on achieving and demonstrating compliance with IAEA Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, 2005 Edition, establishing safety requirements to be applied to the national and international transport of radioactive material. Transport is deemed to comprise all operations and conditions associated with and involved in the movement of radioactive material; these include the design, fabrication and maintenance of packaging, and the preparation, consigning, handling, carriage, storage in transit and receipt at the final destination of packages. This publication supersedes IAEA Safety Series No. TS-G-1.1, 2002 Edition

  4. Safety experts complete second IAEA regulatory review of UK nuclear regulator

    International Nuclear Information System (INIS)

    2009-01-01

    Full text: Nuclear safety experts today concluded a 10-day mission to peer-review the UK Nuclear Regulator: Health and Safety Executive (HSE), Nuclear Directorate (ND). At the request of the UK Government, the International Atomic Energy Agency assembled a team of ten high-level regulatory experts from eight nations to conduct the Integrated Regulatory Review Service (IRRS) mission. The mission was the second of three planned IRRS missions for the United Kingdom. The first was held in March 2006 to begin a process to assess the nation's readiness to regulate and license new reactor designs, considered as a result of the Energy Policy review initiated by the British Prime Minister and the Secretary of State for Trade and Industry (DTI) in 2005. The IRRS team leader Mr. William Borchardt, Executive Director of Operations from the US Nuclear Regulatory Commission, stated, ''The IAEA IRRS serves an important role in both benchmarking against its safety standards and in promoting dialogue between nuclear safety regulators from around the world.'' During the 2nd mission the IRRS the team reviewed HSE/ND progress since the first IRRS mission and recent regulatory developments, the regulation of operating power plants and fuel cycle facilities, the inspection and enforcement programme for nuclear power plants and fuel cycle facilities, and the emergency preparedness and response programme. The IAEA found that HSE/ND has made significant progress toward improving its effectiveness in regulating existing nuclear power plants and in preparing to license new nuclear reactors designs. Many of the findings identified in the 2006 report had been fully addressed and therefore could be considered closed, the others are being addressed in accordance with a comprehensive action plan. IRRS team members visited the Heysham 1 Nuclear Power Plant near Lancaster, the Sellafield site at Cumbria and the Strategic Control Centre at Hutton, and they met senior managers from HSE and a UK

  5. Development of format and contents of safety analysis report for the KNGR standard design

    International Nuclear Information System (INIS)

    Lee, J. H.; Kim, H. S.; Yun, Y. K. and others

    1999-01-01

    Referring to the USNRC Regulatory Guide 1.70 which has been used in the preparation of the SAR for conventional nuclear power plants, the draft guide for format and contents of the SAR for the KNGR standard design was developed based on new regulatory information related to advanced reactors. The draft guide will enable the regulator to make an effective and consistent review on the safety of the KNGR, when this draft guide is used, since the draft guide requires more specific and additional safety information for the standardized NPPs than RG 1.70. In addition, it is expected that the guide for the format and contents of the COL's SAR will be more easily developed using the draft guide suggested in this report. Also, the draft guide can serve as the Korean national guide, with the exception to some industry codes and standards. The experts' review will be performed during the next stage of the project to ensure the objectivity and consistency of the draft guide developed in this study. After reflecting the experts' comments in the guide and revising the contents, it will be utilized in the licensing activities for the KNGR standard design

  6. Review of Policy Documents for Nuclear Safety and Regulation

    International Nuclear Information System (INIS)

    Kim, Woong Sik; Choi, Kwang Sik; Choi, Young Sung; Kim, Hho Jung; Kim, Ho Ki

    2006-01-01

    The goal of regulation is to protect public health and safety as well as environment from radiological hazards that may occur as a result of the use of atomic energy. In September 1994, the Korean government issued the Nuclear Safety Policy Statement (NSPS) to establish policy goals of maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It declares the importance of establishing safety culture in nuclear community and also specifies five nuclear regulatory principles (Independence, Openness, Clarity, Efficiency and Reliability) and provides the eleven regulatory policy directions. In 2001, the Nuclear Safety Charter was declared to make the highest goal of safety in driving nuclear business clearer; to encourage atomic energy- related institutions and workers to keep in mind the mission and responsibility for assuring safety; to guarantee public confidence in related organizations. The Ministry of Science and Technology (MOST) also issues Yearly Regulatory Policy Directions at the beginning of every year. Recently, the third Atomic Energy Promotion Plan (2007-2011) has been established. It becomes necessary for the relevant organizations to prepare the detailed plans on such areas as nuclear development, safety management, regulation, etc. This paper introduces a multi-level structure of nuclear safety and regulation policy documents in Korea and presents some improvements necessary for better application of the policies

  7. Review of Policy Documents for Nuclear Safety and Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong Sik; Choi, Kwang Sik; Choi, Young Sung; Kim, Hho Jung; Kim, Ho Ki [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2006-07-01

    The goal of regulation is to protect public health and safety as well as environment from radiological hazards that may occur as a result of the use of atomic energy. In September 1994, the Korean government issued the Nuclear Safety Policy Statement (NSPS) to establish policy goals of maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It declares the importance of establishing safety culture in nuclear community and also specifies five nuclear regulatory principles (Independence, Openness, Clarity, Efficiency and Reliability) and provides the eleven regulatory policy directions. In 2001, the Nuclear Safety Charter was declared to make the highest goal of safety in driving nuclear business clearer; to encourage atomic energy- related institutions and workers to keep in mind the mission and responsibility for assuring safety; to guarantee public confidence in related organizations. The Ministry of Science and Technology (MOST) also issues Yearly Regulatory Policy Directions at the beginning of every year. Recently, the third Atomic Energy Promotion Plan (2007-2011) has been established. It becomes necessary for the relevant organizations to prepare the detailed plans on such areas as nuclear development, safety management, regulation, etc. This paper introduces a multi-level structure of nuclear safety and regulation policy documents in Korea and presents some improvements necessary for better application of the policies.

  8. Education and Training of Safety Regulation for Nuclear Safety Infrastructure: Its Necessity and Unique Features

    International Nuclear Information System (INIS)

    Choi, Young Sung; Choi, Young Joon; Lee, Jae Cheon

    2009-01-01

    Faced with global warming and electricity demands, countries over the world recognize the comparative advantages of nuclear energy. It is estimated that about 300 nuclear power plants (NPPs) expect to be constructed until 2030 worldwide. In addition, according to the IAEA, approximately 20 new countries might have their first NPP in operation by 2030 in the high projection compared with bout 5 new countries in the low projection. When introducing nuclear power, the implementation of an appropriate infrastructure to address all of the relevant issues is a central concern of international community. In particular, nuclear power program requires, at an earlier stage than when construction starts, the development of a legal and regulatory framework and training of regulators and safety experts whose combined knowledge adequately covers all areas of nuclear safety and regulation applied at a NPP construction and operation. As an essential component of such human resource development, special attention was paid to the provision of education and training to regulators of which countries plan to introduce NPPs. In term of education theory, safety regulation has some unique features in learning and teaching, which are different from those of nuclear engineering or development. This paper overviews nuclear safety infrastructure, explores the roles of exporting countries, and presents features and components in education of nuclear safety regulation

  9. Regulations, guidelines, standards, and policies pertaining to decontamination and decommissioning activities: A literature review. Informal report, Revision 1

    International Nuclear Information System (INIS)

    Cowgill, M.G.

    1994-09-01

    A literature review of the existing rules, regulations, and guidelines pertaining to the decontamination and decommissioning of nuclear facilities has been updated. Included in the survey are US Government documents, national (industrial) standards, international standards and guidelines, and the regulations issued by various national governments, such as the United Kingdom, Canada, and Germany. The Department of Energy (DOE) complex contains within it almost 1,000 nuclear facilities which will require decommissioning in the coming years. This action will entail activities in many different areas, one of which will involve the development of the basic safety principles to be applied to the process as a whole. These principles will be used to guide personnel in the development of safety assessment procedures for decontamination and decommissioning (D and D) activities and in conducting safety assessments of such activities at the facilities themselves. The present report represents an updating of the original report. It retains all the information that appeared in the original report with the new material integrated into the applicable sections. Future revisions will be made as additional information becomes available

  10. Legislation for the countermeasures on special issues of nuclear safety regulations

    International Nuclear Information System (INIS)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Heon Jin; Oh, Ho Chul

    2004-02-01

    Since the present nuclear safety regulation has some legal problems that refer to special issues and contents of regulatory provisions, this report has preformed research on the legal basic theory of nuclear safety regulation to solve the problems. In addition, this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation

  11. Legislation for the countermeasures on special issues of nuclear safety regulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Heon Jin; Oh, Ho Chul [Chongju Univ., Cheongju (Korea, Republic of)

    2004-02-15

    Since the present nuclear safety regulation has some legal problems that refer to special issues and contents of regulatory provisions, this report has preformed research on the legal basic theory of nuclear safety regulation to solve the problems. In addition, this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation.

  12. 24 CFR 51.203 - Safety standards.

    Science.gov (United States)

    2010-04-01

    ... Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.203 Safety standards. The following... facilities or areas shall not exceed 0.5 psi. (c) If a hazardous substance constitutes both a thermal...

  13. A holistic strategy for quality and safety control of traditional Chinese medicines by the "iVarious" standard system.

    Science.gov (United States)

    Chen, Anzhen; Sun, Lei; Yuan, Hang; Wu, Aiying; Lu, Jingguang; Ma, Shuangcheng

    2017-10-01

    An effective quality control system is the key to ensuring the quality, safety and efficacy of traditional Chinese medicines (TCMs). However, the current quality standard research lacks the top-design and systematic design, mostly based on specific technologies or evaluation methods. To resolve the challenges and questions of quality control of TCMs, a brand-new quality standard system, named "iVarious", was proposed. The system comprises eight elements in a modular format. Meaning of every element was specifically illustrated via corresponding research instances. Furthermore, frankincense study was taken as an example for demonstrating standards and research process, based on the "iVarious" system. This system highlighted a holistic strategy for effectiveness, security, integrity and systematization of quality and safety control standards of TCMs. The establishment of "iVarious" integrates multi-disciplinary technologies and progressive methods, basis elements and key points of standard construction. The system provides a novel idea and technological demonstration for regulation establishment of TCMs quality standards.

  14. Mines Safety Control (Radiation Protection) Regulations (Northern Territory) No. 30 of 25 September 1981

    International Nuclear Information System (INIS)

    1981-01-01

    These Regulations, pursuant to the Mines Safety Control Act, are intended to prevent or limit the radiation risk to persons involved in the mining or milling of radioactive ores. The duties and responsibilities imposed by the Regulations on owners, managers and employees of the mines are identical with those set forth in the 1980 Code of Practice on Radiation Protection in the Mining and Milling of Radioactive Ores which establishes radiation standards and exposure limits, requires health surveillance of employees and provides for the management of radioactive wastes. (NEA) [fr

  15. Critical Review of Commercial Secondary Lithium-Ion Battery Safety Standards

    Science.gov (United States)

    Jones, Harry P.; Chapin, Thomas, J.; Tabaddor, Mahmod

    2010-09-01

    The development of Li-ion cells with greater energy density has lead to safety concerns that must be carefully assessed as Li-ion cells power a wide range of products from consumer electronics to electric vehicles to space applications. Documented field failures and product recalls for Li-ion cells, mostly for consumer electronic products, highlight the risk of fire, smoke, and even explosion. These failures have been attributed to the occurrence of internal short circuits and the subsequent thermal runaway that can lead to fire and explosion. As packaging for some applications include a large number of cells, the risk of failure is likely to be magnified. To address concerns about the safety of battery powered products, safety standards have been developed. This paper provides a review of various international safety standards specific to lithium-ion cells. This paper shows that though the standards are harmonized on a host of abuse conditions, most lack a test simulating internal short circuits. This paper describes some efforts to introduce internal short circuit tests into safety standards.

  16. Safety implications of standardized continuous quality improvement programs in community pharmacy.

    Science.gov (United States)

    Boyle, Todd A; Ho, Certina; Mackinnon, Neil J; Mahaffey, Thomas; Taylor, Jeffrey M

    2013-06-01

    Standardized continuous quality improvement (CQI) programs combine Web-based technologies and standardized improvement processes, tools, and expectations to enable quality-related events (QREs) occurring in individual pharmacies to be shared with pharmacies in other jurisdictions. Because standardized CQI programs are still new to community pharmacy, little is known about how they impact medication safety. This research identifies key aspects of medication safety that change as a result of implementing a standardized CQI program. Fifty-three community pharmacies in Nova Scotia, Canada, adopted the SafetyNET-Rx standardized CQI program in April 2010. The Institute for Safe Medication Practices (ISMP) Canada's Medication Safety Self-Assessment (MSSA) survey was administered to these pharmacies before and 1 year into their use of the SafetyNET-Rx program. The nonparametric Wilcoxon signed-rank test was used to explore where changes in patient safety occurred as a result of SafetyNETRx use. Significant improvements occurred with quality processes and risk management, staff competence, and education, and communication of drug orders and other information. Patient education, environmental factors, and the use of devices did not show statistically significant changes. As CQI programs are designed to share learning from QREs, it is reassuring to see that the largest improvements are related to quality processes, risk management, staff competence, and education.

  17. 77 FR 48105 - Federal Motor Vehicle Safety Standards; Motorcycle Helmets

    Science.gov (United States)

    2012-08-13

    ... [Docket No. NHTSA-2012-0112] Federal Motor Vehicle Safety Standards; Motorcycle Helmets AGENCY: National... Vehicle Safety Standard for motorcycle helmets. Specifically, the final rule amended the helmet labeling... compliance test procedures of FMVSS No. 218, Motorcycle helmets, in order to make it more difficult to...

  18. Periodic Safety Review in Interim Storage Facilities - Current Regulation and Experiences in Germany

    International Nuclear Information System (INIS)

    Neles, Julia Mareike; Schmidt, Gerhard

    2014-01-01

    Periodic safety reviews in nuclear power plants in Germany have been performed since the end of the 1980's as an indirect follow-up of the accident in Chernobyl and, in the meantime, are formally required by law. During this process the guidelines governing this review were developed in stages and reached their final form in 1996. Interim storage facilities and other nuclear facilities at that time were not included, so the guidelines were solely focused on the specific safety issues of nuclear power plants. Following IAEA's recommendations, the Western European Nuclear Regulator Association (WENRA) introduced PSRs in its safety reference levels for storage facilities (current version in WGWD report 2.1 as of Feb 2011: SRLs 59 - 61). Based on these formulations, Germany improved its regulation in 2010 with a recommendation of the Nuclear Waste Management Commission (Entsorgungskommission, ESK), an expert advisory commission for the federal regulatory body BMU. The ESK formulated these detailed requirements in the 'ESK recommendation for guides to the performance of periodic safety reviews for interim storage facilities for irradiated fuel elements and heat-generating radioactive waste'. Before finalization of the guideline a test phase was introduced, aimed to test the new regulation in practice and to later include the lessons learned in the final formulation of the guideline. The two-year test phase started in October 2011 in which the performance of a PSR will be tested at two selected interim storage facilities. Currently these recommendations are discussed with interested/concerned institutions. The results of the test phase shall be considered for improvements of the draft and during the final preparation of guidelines. Currently the PSR for the first ISF is in an advanced stage, the second facility just started the process. Preliminary conclusions from the test phase show that the implementation of the draft guideline requires interpretation. The aim of a

  19. 75 FR 22317 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Science.gov (United States)

    2010-04-28

    ... 1300 [Docket No. NHTSA-2010-0054] Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of..., multipurpose passenger vehicles, trucks, buses, trailers, incomplete vehicles, motorcycles, and motor vehicle...

  20. Improving the regulation of safety at DOE nuclear facilities. Final report

    International Nuclear Information System (INIS)

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE's nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation

  1. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements. (Russian Edition); Pravila bezopasnoj perevozki radioaktivnykh materialov. Izdanie 2012 goda. Konkretnye trebovaniya bezopasnosti

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  2. Nuclear safety: risks and regulation

    International Nuclear Information System (INIS)

    Wood, W.C.

    1983-01-01

    Taking a fresh look at nuclear safety regulations, this study finds that the mandate and organization of the Nuclear Regulatory Commission (NRC) militate against its making sound decisions. The author criticizes failures to make hard decisions on societal risk, to clarify responsibility, and to implement cost-effective safety measures. Among his recommendations are reorganization of the NRC under a single authoritative administrator, separation of technical issues from social ones, and reform of the Price-Anderson Act. The author concludes that the worst eventuality would be to continue the current state of indecision. 161 references, 6 figures, 4 tables

  3. Utility regulation-The scope and structure of electrical safety regulation

    International Nuclear Information System (INIS)

    Abbott, Malcolm; Cohen, Bruce

    2011-01-01

    As a consequence of policies in Australia and New Zealand to increase competition in the utilities sector, regulatory agencies have been created in each state to provide independent and authorative advice on matters such as electricity pricing, access to infrastructure, service quality and security of supply. In addition arrangements have been established to maintain safety standards in the industry. The purpose of this paper is to discuss the major issues that have arisen in the creation of regulatory agencies responsible for electrical safety standards in Australia and New Zealand, and how they have impacted on liberalised electricity markets. - Highlights: → Policies in Australia and New Zealand to increase competition have led to the creation of electrical safety agencies. → These agencies have been created in response to perceived market failures. → There is a variance in agencies in terms of their independence and industry coverage. → These agencies have been created at a time of falling fatalities.

  4. Domestic Regulation for Periodic Safety Review of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Daesik; Ahn, Seunghoon; Auh, Geunsun; Lee, Jonghyeok

    2015-01-01

    The so-called Periodic Safety Review (PSR) has been carried out such safety assessment throughout its life, on a periodic basis. In January 2001, the Atomic Energy Act and related regulations were amended to adopt the PSR institutional scheme from IAEA Nuclear Safety Guide 50-SG-O12. At that time the safety assessment was made to review the plant safety on 10 safety factors, such as aging management and emergency planning, where the safety factor indicates the important aspects of safety of an operating NPP to be addressed in the PSR. According to this legislation, the domestic utility, the KHNP has conducted the PSR for the operating NPP of 10 years coming up from operating license date, starting since May 2000. Some revisions in the PSR rule were made to include the additional safety factors last year. This paper introduces the current status of the PSR review and regulation, in particular new safety factors and updated technical regulation. Comprehensive safety assessment for Korea Nuclear Power Plants have performed a reflecting design and procedure changes and considering the latest technology every 10 years. This paper also examined the PSR system changes in Korea. As of July 2015, reviews for PSR of 18 units have been completed, with 229 nuclear safety improvement items. And implementation have been completed for 165 of them. PSR system has been confirmed that it has contributed to improvement of plant safety. In addition, this paper examined the PSR system change in Korea

  5. R and D perspectives on the advanced nuclear safety regulation system

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Ahn, Sang Kyu; Park, Jong Seuk; Chung, Dae Wook; Han, Sang Hoon; Lee, Jung Won

    2009-01-01

    As current licensing process is much desired to be optimized both plant safety and regulatory efficiency, an advanced safety regulation such as risk informed regulation has been come out. Also, there is a need to have a future oriented safety regulation since a lot of new reactors are conceptualized. Keeping pace with these needs, since early 2007, Korean government has launched a new project for preparing an advanced and future oriented nuclear safety regulation system. In order to get practical achievements, the project team sets up such specific research objectives for the development of: implementation program for graded regulation using risk and performance information; multi purpose PSA models for regulatory uses; a technology neutral regulatory framework for future innovative reactors; evaluation procedure of proliferation resistance; and, performance based fire hazard analysis method and evaluation system. This paper introduces major R and D outputs of this project, and provides some perspectives for achieving effectiveness and efficiency of the nuclear regulation system in Korea

  6. R and D perspectives on the advanced nuclear safety regulation system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Ju; Ahn, Sang Kyu; Park, Jong Seuk; Chung, Dae Wook [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Han, Sang Hoon; Lee, Jung Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-04-15

    As current licensing process is much desired to be optimized both plant safety and regulatory efficiency, an advanced safety regulation such as risk informed regulation has been come out. Also, there is a need to have a future oriented safety regulation since a lot of new reactors are conceptualized. Keeping pace with these needs, since early 2007, Korean government has launched a new project for preparing an advanced and future oriented nuclear safety regulation system. In order to get practical achievements, the project team sets up such specific research objectives for the development of: implementation program for graded regulation using risk and performance information; multi purpose PSA models for regulatory uses; a technology neutral regulatory framework for future innovative reactors; evaluation procedure of proliferation resistance; and, performance based fire hazard analysis method and evaluation system. This paper introduces major R and D outputs of this project, and provides some perspectives for achieving effectiveness and efficiency of the nuclear regulation system in Korea.

  7. Department of Energy Construction Safety Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    DOE has adopted the Occupational Safety and Health Administration (OSHA) regulations Title 29 Code of Federal Regulations (CFR) 1926 ``Safety and Health Regulations for Construction,`` and related parts of 29 CFR 1910, ``Occupational Safety and Health Standards.`` This nonmandatory reference guide is based on these OSHA regulations and, where appropriate, incorporates additional standards, codes, directives, and work practices that are recognized and accepted by DOE and the construction industry. It covers excavation, scaffolding, electricity, fire, signs/barricades, cranes/hoists/conveyors, hand and power tools, concrete/masonry, stairways/ladders, welding/cutting, motor vehicles/mechanical equipment, demolition, materials, blasting, steel erection, etc.

  8. 75 FR 76692 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Science.gov (United States)

    2010-12-09

    ..., 510, 511, 512, 520, 523, 525, 526, and 571 [Docket No. NHTSA-2010-0159] Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National Highway Traffic Safety... that specifically relate to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers...

  9. Basic safety standards for radiation protection. 1982 ed

    International Nuclear Information System (INIS)

    1982-01-01

    The International Atomic Energy Agency, the World Health Organization, the International Labour Organisation and the Nuclear Energy Agency of the OECD have undertaken to provide jointly a world-wide basis for harmonized and up-to-date radiation protection standards. The new Basic Safety Standards for Radiation Protection are based upon the latest recommendations by the International Commission on Radiological Protection (ICRP) which are essentially contained in its Publication No.26. These new Basic Safety Standards have been elaborated by an Advisory Group of Experts which met in Vienna from 10-14 October 1977, from 23-27 October 1978 and from 1-12 December 1980 under the joint auspices of the IAEA, ILO, WHO and the Nuclear Energy Agency of the OECD. Comments on the draft Basic Safety Standards received from Member States and relevant organizations were taken into account by the Advisory Group in the process of preparation of the revised Basic Safety Standards for Radiation Protection, which are published by the IAEA on behalf of the four sponsoring organizations. One of the main features of this revision is an increased emphasis on the recommendation to keep all exposures to ionizing radiation as low as reasonably achievable, economic and social factors being taken into account; consequently, radiation protection should not only apply the basic dose limits but also comply with this recommendation. Detailed guidance is given to assist those who have to decide on the implementation of this recommendation in particular cases. Another important feature is the recommendation of a more coherent method for achieving consistency in limiting risks to health, irrespective of whether the risk is of uniform or non-uniform exposure of the body.

  10. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1 of 2: Technical standard

    International Nuclear Information System (INIS)

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities

  11. Radiation Safety of Accelerator Facility with Regard to Regulation

    International Nuclear Information System (INIS)

    Dedi Sunaryadi; Gloria Doloresa

    2003-01-01

    The radiation safety of accelerator facility and the status of the facilities according to licensee in Indonesia as well as lesson learned from the accidents are described. The atomic energy Act No. 10 of 1997 enacted by the Government of Indonesia which is implemented in Radiation Safety Government Regulation No. 63 and 64 as well as practice-specific model regulation for licensing request are discussed. (author)

  12. Safety Signs Perception and Adoption with the ISO and ANSI Standards

    Directory of Open Access Journals (Sweden)

    Amir Hossein Davoudian Talab

    2017-10-01

    Full Text Available Background One way of controlling hazards in the work environment is a use of safety signs. Safety signs are among the safe information group; hence, if these signs are not understood properly it could cause an injury or even death. Objectives The aim of this study is surveying perception of safety signs and adoption with ISO and ANSI standards. Methods This cross-sectional study was conducted during 2013 to 2014 in the 3 provinces of Khuzestan, Fars, and Tehran. The study population included 370 non-monochromatic employees working in the industries. For collecting information, the standard questionnaire of the international organization for standard (ISO 9186-1 and demographic information was used. A total of 13 safety signs were utilized for determination of perception. Stratified - Random sampling method was used, then, the obtained data were utilized using SPSS-16 software and applying descriptive statistics. Results In this study, the overall rate of perception of safety signs was 78.4% with a standard deviation of 15.1%. The lowest percentage of perception was related to the sign “face shield must be worn” (53.5%. In the assessment of safety signs based on ANSI Z5353 and ISO 9186-1 standard, 62.5% and 69.2% of signs can be reached to limit of acceptable perception. Conclusions The perception patterns of safety signs are different. Assessing perception of signs show a moderate level of perception in accordance with ISO standard; however, to reach ANSI standard, implementation of intervention programs (Judgment test is suggested due to perceptual adaptation with target population and redesign of sign with low perception.

  13. The role of the nuclear safety regulator

    International Nuclear Information System (INIS)

    Mellado, I.

    2007-01-01

    The Consejo de Seguridad Nuclear (CSN), or Nuclear Safety Council, is the only Spanish institution qualified in nuclear safety and radiological protection. Created in 1980, the CSN is independent of the Central State Administration, and possesses its own legal standing, estate and resources acquired directly from tax revenues. The CSN proposes regulations and advises the government on subjects within its competence, including the criteria for siting nuclear facilities once the autonomous regions have been informed. The CSN is responsible for issuing mandatory and binding reports to the Ministry of Industry. Tourism and Commerce, and for inspections and evaluation of the facilities included within its realm of competence throughout their phases (construction, start-up, operating and decommissioning). It is also responsible for the radiological control and surveillance of workers, the general public and the environment, as described below. In 1999, a new responsibility was assigned to the CSN to perform studies, assessment and inspections in relation to all phases of radioactive waste and spent fuel management. The CSN reports to the Spanish Parliament and is not subject to the hierarchy or auspices of the Government or the organisations in charge of promoting nuclear energy. The Council itself is an Associative Body comprised of 5 members, appointed by Parliament for a 6 year term (these members cannot be removed). Under this Council is situated an extensive technical body. A General Secretary is seconded by Technical Directors in the area of Nuclear Safety and Radiological Protection. As well there are a R and D Office, an Inspection Office, and a Technical Standards Office. The CSN counts 446 workers, of which 191 are university graduate specialists in nuclear safety or radiological protection. The average age is 45 years. Ongoing training is provided in technical specialties and management. (author)

  14. Offshore regulators focus on incentives for safety

    Energy Technology Data Exchange (ETDEWEB)

    Reid, W.

    2000-11-27

    Strict safety regulations in effect at offshore drilling sites are discussed. The guiding principle in all existing regulation is that while economic or industrial considerations are important, the value and the concern for human life is paramount. Should some tragic event occur at an offshore drilling site that is shown to have been caused by negligence of an operator, there is no question at all that the regulatory authority, in this case the Canada-Newfoundland Offshore Petroleum Board (CNOPB), would take the negligent operator to court. Nevertheless, Canadian authorities remain confident that encouragement of maintaining a safe working environment is likely to be more successful in ensuring workplace safety than threats of punishment. Indeed, Canadian regulators have, in recent times, shown a tendency to move towards performance-based systems, as opposed to the more usual prescriptive or rule-bound regulatory regime. This new approach involves setting targets and giving companies the responsibility to implement measures to reach the targets rather than relying on government instructions. Still, performance-based regulation in Canada is relatively new and some regulations remain prescriptive. Examples are the requirement for two immersion suits and two lifeboat seats for every worker on a drilling unit.

  15. A holistic strategy for quality and safety control of traditional Chinese medicines by the “iVarious” standard system

    Directory of Open Access Journals (Sweden)

    Anzhen Chen

    2017-10-01

    Full Text Available An effective quality control system is the key to ensuring the quality, safety and efficacy of traditional Chinese medicines (TCMs. However, the current quality standard research lacks the top-design and systematic design, mostly based on specific technologies or evaluation methods. To resolve the challenges and questions of quality control of TCMs, a brand-new quality standard system, named “iVarious”, was proposed. The system comprises eight elements in a modular format. Meaning of every element was specifically illustrated via corresponding research instances. Furthermore, frankincense study was taken as an example for demonstrating standards and research process, based on the “iVarious” system. This system highlighted a holistic strategy for effectiveness, security, integrity and systematization of quality and safety control standards of TCMs. The establishment of “iVarious” integrates multi-disciplinary technologies and progressive methods, basis elements and key points of standard construction. The system provides a novel idea and technological demonstration for regulation establishment of TCMs quality standards.

  16. Regulation of occupational health and safety in the semiconductor industry: enforcement problems and solutions.

    Science.gov (United States)

    Watterson, Andrew

    2006-01-01

    Reports of high incidences of occupational illnesses in the semiconductor industry should have triggered global investigations and rigorous inspection of the industry. Yet semiconductor plants remain essentially unregulated. Health and safety standards are inadequate and enforcement is lax. Roles for stakeholders in laying down good practice, monitoring, and regulating are proposed, and obstacles are described. Effective regulation has advantages for the industry as well as workers. Conditions for best practice include education at all levels, protection and support for labor inspectors, government commitment to enforcing laws, recognition of the right of workers to organize, and recognition of their rights.

  17. Safety evaluations required in the safety regulations for Monju and the validity confirmation of safety evaluation methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purposes of this study are to perform the safety evaluations of the fast breeder reactor 'Monju' and to confirm the validity of the safety evaluation methods. In JFY 2012, the following results were obtained. As for the development of safety evaluation methods needed in the safety examination achieved for the reactor establishment permission, development of the analysis codes, such as a core damage analysis code, were carried out according to the plan. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  18. Improved nuclear power plant operations through performance-based safety regulation

    International Nuclear Information System (INIS)

    Golay, M.W.

    1998-01-01

    The US Nuclear Regulatory Commission (NRC) has recently instituted use of Risk-Informed, Performance-Based Regulation (RIPBR) for protecting public safety in the use of nuclear power. This was done most importantly during June 1997 in issuance of revised Regulatory Guides and Standard Review Plan (SRP) guidance to licensees and the NRC staff. The propose of RIPBR is to replace the previously-used system of prescriptive regulation, which focuses upon what licensees must do, to a system which focuses upon what they must achieve. RIPBR is goals-oriented and the previous system is means-oriented. This regulatory change is potentially revolutionary, and offers many opportunities for improving the efficiency of improving both nuclear power operations and safety. However, it must be nurtured carefully if is to be successful. The work reported in this paper is concerned with showing how RIPBR can be implemented successfully, with benefits in both areas being attained. It is also concerned with how several of the practical barriers to establishing a workable new regulatory system can be overcome. This work, sponsored by the US Dept. of Energy, is being performed in collaboration with Northeast Utilities Services Crop. and the Idaho National Engineering Laboratory. In our work we have examined a practical safety-related example at the Millstone 3 nuclear power station for implementation of RIPBR. In this examination we have formulated a set of modifications to the plant's technical specifications, and are in the process of investigating their bases and refining the modifications. (author)

  19. Restructuring of technical standards for regulation of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Takehiko Nakamura; Masahiro Aoki; Kiyoshi Takasaka; Yukio Hirano; Eiji Hiraoka; Mikio Kurihara; Junichi Morita; Zenichi Ogiso; Yoshihiko Nishiwaki

    2005-01-01

    Regulatory requirements for nuclear power plants (NPPs) have been reviewed and restructured in Japan, in order to accommodate recent technical progress in a timely manner. In this new regulatory process, the governmental technical requirements are modified to performance specifications and the consensus codes and standards established by academic and public societies are being used as prescriptive specifications to realize the performance. As a first step, a fitness-rule to evaluate structural integrity of the components having cracks was introduced into the Japanese regulatory rules in Oct. 2003. 'Rules on Fitness-for-Service for Nuclear Power Plants' by the Japan Society of Mechanical Engineers (JSME) was utilized as a prescriptive specification for in-service-inspections and for the integrity evaluation of the components with stress corrosion cracks and fatigue cracks. The process is being extended to other requirements for structural design and construction of mechanical components and concrete containments, as well as requirements for welding. Prescriptive specifications for the requirements by the JSME and other consensus codes have been technically reviewed by a regulatory body, the Nuclear and Industrial Safety Agency, and specified as regulatory standards for the licensing procedure. In the course of the review, consistency and coverage of the requirements were examined against the Safety Design Guidelines by the Nuclear Safety Commission and the safety requirements for design of nuclear power plant by the International Atomic Energy Agency, NS-R-1. Additional requirements against the stress corrosion cracking, hydrogen accumulation, high-cycle thermal fatigue, etc. are being specified in the requirements to prevent troubles experienced in NPPs in Japan and overseas. This paper describes outlines of the on-going activities restructuring the technical standards for regulation of NPPs in Japan. (authors)

  20. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  1. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    International Nuclear Information System (INIS)

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE's nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation

  2. Radiation Safety (General) Regulations 1983 (Western Australia)

    International Nuclear Information System (INIS)

    1983-01-01

    The provisions of the Regulations cover, inter alia, the general precautions and requirements relating to radiation safety of the public and radiation workers and registration of irradiating apparatus or premises on which such apparatus is operated. In addition, the Regulations set forth requirements for the operation of such apparatus and for the premises involved. (NEA) [fr

  3. Impact of Construction Health & Safety Regulations on Project ...

    African Journals Online (AJOL)

    Impact of Construction Health & Safety Regulations on Project Parameters in Nigeria: Consultants and Contractors View. ... The study recommends that better attention is given to health and safety should as a project parameter and that related practice notes and guidelines should be evolved for all project stakeholders.

  4. Connoted hazard and perceived importance of fluorescent, neon, and standard safety colors.

    Science.gov (United States)

    Zielinska, O A; Mayhorn, C B; Wogalter, M S

    2017-11-01

    The perceived hazard and rated importance of standard safety, fluorescent, and neon colors are investigated. Colors are used in warnings to enhance hazard communication. Red has consistently been rated as the highest in perceived hazard. Orange, yellow, and black are the next highest in connoted hazard; however, there is discrepancy in their ordering. Safety standards, such as ANSI Z535.1, also list colors to convey important information, but little research has examined the perceived importance of colors. In addition to standard safety colors, fluorescent colors are more commonly used in warnings. Understanding hazard and importance perceptions of standard safety and fluorescent colors is necessary to create effective warnings. Ninety participants rated and ranked a total of 33 colors on both perceived hazard and perceived importance. Rated highest were the safety red colors from the American National Standard Institute (ANSI), International Organization for Standardization (ISO), and Federal Highway Administration (FHWA) together with three fluorescent colors (orange, yellow, and yellow-green) from 3 M on both dimensions. Rankings were similar to ratings except that fluorescent orange was the highest on perceived hazard, while fluorescent orange and safety red from the ANSI were ranked as the highest in perceived importance. Fluorescent colors convey hazard and importance levels as high as the standard safety red colors. Implications for conveying hazard and importance in warnings through color are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Gap study on technical standards and quality assurance between ITER and Korean regulation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myoung-suk [Kyung Hee University, Yongin-si 446-701, Gyeonggi-do (Korea, Republic of); Lee, Sangil; Lee, Hyoen Gon [National Fusion Research Institute, Daejeon-si 305-333 (Korea, Republic of); Heo, Gyunyoung, E-mail: gheo@khu.ac.kr [Kyung Hee University, Yongin-si 446-701, Gyeonggi-do (Korea, Republic of)

    2016-11-01

    Highlights: • This paper is to secure knowledge and expand domestic specialists for license and regulation of future fusion facilities including K-DEMO. - Abstract: Currently, Korea Domestic Agency (KODA) for the International Thermonuclear Experimental Reactor (ITER) project or the ITER Korea has been conducting follow-up surveys and development researches for the core technologies of its non-procurement items. This eventually aims to secure implicit as well as explicit knowledge and expand domestic specialists for future fusion facilities including K-DEMO. As a part of the project, the comparative analysis and gap study of technical standards and Quality Assurance (QA) system between ITER and Korean nuclear facilities are being performed. The goal of this study is to present a roadmap re-systematizing current safety-related standards for the fission-based facilities into fusion-based facilities in Republic of Korea. The research is considering two different tracks. First one is to secure the state-of-the-art of the fusion technical standards continually updated. For its investigation, we organized the Korean fusion safety advisory group that consists of experts from institutes, industries, and universities. The latest information of technical standards have been gathered and updated from each area of expert in periodic manner. The information is classified into Product Breakdown Structure (PBS) including safety classification, major safety issues, analysis computer codes, etc. This task will be re-organized this year such that the technical standards for procurement as well as non-procurement items can be accumulated in systematic and sustainable manner. Second one, called “Gap Study,” is to compare the requirements for domestic nuclear facilities and the results from the first track on the basis of experts’ opinion from the national and private sectors and to recommend the approaches to overcome technical and administrative barriers. The result is

  6. Gap study on technical standards and quality assurance between ITER and Korean regulation

    International Nuclear Information System (INIS)

    Kang, Myoung-suk; Lee, Sangil; Lee, Hyoen Gon; Heo, Gyunyoung

    2016-01-01

    Highlights: • This paper is to secure knowledge and expand domestic specialists for license and regulation of future fusion facilities including K-DEMO. - Abstract: Currently, Korea Domestic Agency (KODA) for the International Thermonuclear Experimental Reactor (ITER) project or the ITER Korea has been conducting follow-up surveys and development researches for the core technologies of its non-procurement items. This eventually aims to secure implicit as well as explicit knowledge and expand domestic specialists for future fusion facilities including K-DEMO. As a part of the project, the comparative analysis and gap study of technical standards and Quality Assurance (QA) system between ITER and Korean nuclear facilities are being performed. The goal of this study is to present a roadmap re-systematizing current safety-related standards for the fission-based facilities into fusion-based facilities in Republic of Korea. The research is considering two different tracks. First one is to secure the state-of-the-art of the fusion technical standards continually updated. For its investigation, we organized the Korean fusion safety advisory group that consists of experts from institutes, industries, and universities. The latest information of technical standards have been gathered and updated from each area of expert in periodic manner. The information is classified into Product Breakdown Structure (PBS) including safety classification, major safety issues, analysis computer codes, etc. This task will be re-organized this year such that the technical standards for procurement as well as non-procurement items can be accumulated in systematic and sustainable manner. Second one, called “Gap Study,” is to compare the requirements for domestic nuclear facilities and the results from the first track on the basis of experts’ opinion from the national and private sectors and to recommend the approaches to overcome technical and administrative barriers. The result is

  7. The most prominent safety guarantees

    International Nuclear Information System (INIS)

    Lucenet, G.

    1978-01-01

    The Creys-Malville Nuclear Centre has been designed using the safety analysis implemented since the beginning of the developments of breeder reactors in France and the Super Phenix follows almost the same safety regulations as its predecessor the Phenix reactor. These regulations are based on: 'Recommendations for the safety standards of the Super Phenix' drawn up by the French Safety Authorities in July 1973. The prominent points are summarised. (C.F.)

  8. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition); Analisis determinista de seguridad para centrales nucleares. Guia de Seguridad Especifica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  9. Assessment of policy issues in nuclear safety regulation according to circumstantial changes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Lee, Byong Ho; Baek, Won Pil; Lee, Kwang Gu; Huh, Gyun Young; Hahn, Young Tae [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-03-15

    The objective of the work is to assess various issues in nuclear safety regulation in consideration of circumstantial changes. Emphasis is given to the safety of operating NPPs. It is concluded that the Periodic Safety Review (PSR) should be implemented in Korea as soon as possible, in harmonization with the regulation for life extension of NPPs. The IAEA guidelines, including 10 year intervals and 11 safety factors, should be used as the basic guidelines. The approach to improve regulatory effectiveness is also reviewed and a transition to 'knowledge-based regulation' is suggested.

  10. Assessment of policy issues in nuclear safety regulation according to circumstantial changes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Chang, Soon Heung; Lee, Byong Ho; Baek, Won Pil; Roh, Chang Hyun; Lee, Kwang Gu; Kim, Hong Chae; Lee, Yong Ho [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-03-15

    The objective of the work is to assess various issues in nuclear safety regulation in consideration of circumstantial changes. Emphasis is given to the safety of operating NPPs. It is concluded that the Periodic Safety Review (PSR) should be implemented in Korea as soon as possible, in harmonization with the regulation for life extension of NPPs. The IAEA guidelines, including 10 year intervals and 11 safety factors, should be used as the basic guidelines. Efforts are also required to cope with other circumstantial changes such as the establishment of International Nuclear Regulators Association (INRA)

  11. Experience with nuclear safety standards development in non-governmental international organizations

    International Nuclear Information System (INIS)

    Becker, K.

    1985-01-01

    Besides the IAEA as a 'governmental' organization dealing with basic safety recommendations addressed primarily to the national regulatory bodies in developing countries, two closely related non-governmental international standards organizations have gained extensive experience in the field of nuclear standardization. Over more than 25 years since their formation, both (a) the International Organization for Standardization's (ISO) Technical Committee 85 'Nuclear Energy', in particular in its Sub-Committee 3 'Reactor Technology and Safety' and (b) the International Electrotechnical Commission's (IEC) Technical Committee 45 'Nuclear Instrumentation' have published numerous standards. A brief review is given of these, draft standards, and other documents planned to become international standards. Many of them deal with rather specialized topics typical for 'industrial' standards such as standardized procedures, instruments, methods, materials, test methods, terminology, and signs and symbols, but others are directly related to more basic safety issues. In some areas such as quality assurance, seismic aspects of siting and terminology, there has been in the past occasional overlap in the activities of the NUSS programme, IEC and ISO. Letters of Understanding have since 1981 contributed to clarifying the borderlines and to avoiding redundant efforts. Also, some experiences and problems are described arising, for example, from the harmonization of different national safety philosophies and traditions into universally accepted international standards, and the transfer of international standards into national standards systems. Finally, based on a recent comprehensive compilation of some 3300 nuclear standards and standards projects, an attempt is made to present a cost/benefit analysis and an outlook on future developments. (author)

  12. Recent developments in the IAEA safety standards: design and operation of nuclear power plants

    International Nuclear Information System (INIS)

    Saito, Takehiko

    2004-01-01

    The IAEA has been publishing a wide variety of safety standards for nuclear and radiation related facilities and activities since 1978. In 1996, a more rigorously structured approach for the preparation and review of its safety standards was introduced. Currently, based on the approach, revision of most of the standards is in completion or near completion. The latest versions of the Safety Requirements for ''Design'' and ''Operation'' of nuclear power plants were respectively published in 2000. Currently, along with this revision of the Safety Requirements, many Safety Guides have been revised. In order to clarify the complicated revision procedure, an example of the entire revision process for a Safety Guide is provided. Through actual example of the revision process, enormous amount of work involved in the revision work is clearly indicated. The current status of all of the Safety Standards for Design and that for Operation of nuclear power plants are summarized. Summary of other IAEA safety standards currently revised and available related IAEA publications, together with information on the IAEA Web Site from where these documents can be downloaded, is also provided. The standards are reviewed to determine whether revision (or new issue) is necessary in five years following publication. The IAEA safety standards will continue to be updated through comprehensive and structured approach, collaboration of many experts of the world, and reflecting good practices of the world. The IAEA safety standards will serve to provide high level of safety assurance. (author)

  13. Legal bases of safety regulations in electrical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jeiter, W

    1981-12-01

    Apart from the governmental regulations the rule for the prevention of accidents 'Electric plants and equipment' must be observed in order to protect the insurants. Actually, all these regulations do not contain any independent instructions. They rather utilize the VDE regulations and refer to them. The laws of electrical safety engineering are strongly influenced by harmonization efforts particularly within the European Communitties.

  14. Pakistan nuclear safety and radiation protection regulation 1990

    International Nuclear Information System (INIS)

    1990-01-01

    In this act regulations of nuclear safety and radiation protection in Pakistan has been explained. A legal and licensing procedure to handle protection of nuclear materials, processing storage of radioactive products has been described under this regulation. In these regulations full explanation of accidental exposure, delegation of powers and record keeping/waste disposal of radioactive has been given. (A.B.)

  15. Nutrient supply to organic agriculture as governed by EU regulations and standards in six European countries

    DEFF Research Database (Denmark)

    Løes, Anne Kristin; Bünemann, E.K.; Cooper, J.

    2017-01-01

    -farm P sources include conventional animal manure, composted or anaerobically digested organic residues, rock phosphate, and some animal residues such as meat and bone meal. The recent proposed revision of EU regulations for organic production (2014) puts less emphasis on closing nutrient cycles...... as means are taken to ensure the quality and safety of these inputs. Awareness of the need to close nutrient cycles may contribute to adapting regulations and private standards to support recycling of nutrients from society to organic agriculture. A better definition of the term “natural substance...

  16. European standardization activities on safety of liquid helium cryostats

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    This talk gives a general overview on the challenges of designing safety units for liquid helium cryostats with regard to existing industry standards. It reviews the work of a national working group that published the technical guideline DIN SPEC 4683 in April 2015, which is dedicated to the particular conditions in liquid helium cryostats. Based on both this guideline and equivalent documents from e.g. CEA, CERN, a working group is being formed at the European Committee for Standardization, associated to CEN/TC 268, which will work on a European standard on safety of liquid helium cryostats. The actual status and the schedule of this project are presented.

  17. Schedules of Provisions of the IAEA Regulations for the Safe Transport of Radioactive Material (2005 Ed.). Safety Guide (Spanish Edition); Listas de disposiciones del reglamento del OIEA para el transporte seguro de materiales radiactivos (Edicion de 2005 corregida)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  18. Food suppliers' perceptions and practical implementation of food safety regulations in Taiwan

    OpenAIRE

    Ko, Wen-Hwa

    2015-01-01

    The relationships between the perceptions and practical implementation of food safety regulations by food suppliers in Taiwan were evaluated. A questionnaire survey was used to identify individuals who were full-time employees of the food supply industry with at least 3 months of experience. Dimensions of perceptions of food safety regulations were classified using the constructs of attitude of employees and corporate concern attitude for food safety regulation. The behavior dimension was cla...

  19. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2010-03-30

    ... fully develop improved brake systems and also to ensure vehicle control and stability while braking... [Docket No. NHTSA 2009-0175] RIN 2127-AK62 Federal Motor Vehicle Safety Standards; Air Brake Systems... Federal motor vehicle safety standard for air brake systems by requiring substantial improvements in...

  20. 78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2013-02-11

    ... initial speeds, vehicle manufacturers will need to develop unique or complicated braking systems to comply... [Docket No. NHTSA-2013-0011] RIN 2127-AL11 Federal Motor Vehicle Safety Standards; Air Brake Systems... rule that amended the Federal motor vehicle safety standard for air brake systems by requiring...

  1. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  2. New conducted electrical weapons: Electrical safety relative to relevant standards.

    Science.gov (United States)

    Panescu, Dorin; Nerheim, Max; Kroll, Mark W; Brave, Michael A

    2017-07-01

    We have previously published about TASER ® conducted electrical weapons (CEW) compliance with international standards. CEWs deliver electrical pulses that can inhibit a person's neuromuscular control or temporarily incapacitate. An eXperimental Rotating-Field (XRF) waveform CEW and the X2 CEW are new 2-shot electrical weapon models designed to target a precise amount of delivered charge per pulse. They both can deploy 1 or 2 dart pairs, delivered by 2 separate cartridges. Additionally, the XRF controls delivery of incapacitating pulses over 4 field vectors, in a rotating sequence. As in our previous study, we were motivated by the need to understand the cardiac safety profile of these new CEWs. The goal of this paper is to analyze the nominal electrical outputs of TASER XRF and X2 CEWs in reference to provisions of all relevant international standards that specify safety requirements for electrical medical devices and electrical fences. Although these standards do not specifically mention CEWs, they are the closest electrical safety standards and hence give very relevant guidance. The outputs of several TASER XRF and X2 CEWs were measured under normal operating conditions. The measurements were compared against manufacturer specifications. CEWs electrical output parameters were reviewed against relevant safety requirements of UL 69, IEC 60335-2-76 Ed 2.1, IEC 60479-1, IEC 60479-2, AS/NZS 60479.1, AS/NZS 60479.2, IEC 60601-1 and BS EN 60601-1. Our study confirmed that the nominal electrical outputs of TASER XRF and X2 CEWs lie within safety bounds specified by relevant standards.

  3. Nuclear safety regulations in the Republic of Croatia

    International Nuclear Information System (INIS)

    Cizmek, A.; Horvatic, M.; Ilijas, B.; Medakovic, S.

    2009-01-01

    Based on Nuclear Safety Act (Official Gazette No. 173/03) in 2006 State Office for Nuclear Safety (SONS) adopted beside Ordinance on performing nuclear activities (Official Gazette No. 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (Official Gazette No. 74/06) the new Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08) and Ordinance on conditions for nuclear safety and protection with regard to the sitting, design, construction, use and decommissioning of a facility in which a nuclear activity is to be performed (Official Gazette No. 71/08). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a license to perform nuclear activity. The Ordinance also regulates the content of the form for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear conditions, whereas compliance is established by the decision passed by SONS. Ordinance on special conditions (requirements) for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety regulates these mentioned activities Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a licence to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance

  4. 76 FR 57635 - Restrictions on Operators Employing Former Flight Standards Service Aviation Safety Inspectors...

    Science.gov (United States)

    2011-09-16

    ... Standards Service Aviation Safety Inspectors; Correction AGENCY: Federal Aviation Administration (FAA), DOT... ``Restrictions on Operators Employing Former Flight Standards Service Aviation Safety Inspectors'' (76 FR 52231... of, a Flight Standards Service Aviation Safety Inspector, and had direct responsibility to inspect...

  5. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  6. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  7. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  8. Evaluation of the safety of the operating nuclear power plants built to earlier standards

    International Nuclear Information System (INIS)

    Menteseoglu, S.

    2001-01-01

    The objective of this paper is to provide practical assistance on judging the safety of a nuclear power plant, on the basis of a comparison with current safety standards and operational practices. For nuclear power plants built to earlier standards for which there are questions about the adequacy of the maintenance of the plant design and operational practices, a safety review against current standards and practices can be considered a high priority. The objective of reviewing nuclear power plants built to earlier standards against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The safety significance of the issues identified should be judged according to their implications for plant design and operation in terms of basic safety concepts such as defence in depth and safety culture. In addition, this paper provides assistance on the prioritization of corrective measures and their implementation so as to approach an acceptable level of safety

  9. Resolution 12/2004 Guideline for implementation of safety regulations in the practice of industrial radiography

    International Nuclear Information System (INIS)

    2004-01-01

    1. This guide is intended to clarify, in relation to its application in practice Industrial Radiography, the provisions of: a) Joint Resolution CITMA-MINSAP, of December 15, 2002, Regulation: B asic Radiation Safety Standards , hereinafter Regulation NBS; b) Resolution No. 25/98 of CITMA Regulation. A uthorization Practices Associated with the use of ionizing radiation , hereinafter Resolution 25/98; c) Resolution 121/2000 CITMA Regulation: F or the Safe Transport of Radioactive materials , hereinafter Resolution 121/2000; and in d) Joint Resolution CITMA-MINSAP, Regulation: S election, Training and Authorization of personnel performing Employment Practices Associated Radiation Ionizing . 2. For the purposes of applying this Guide considers the practice of Industrial Radiography includes the following techniques: a) Industrial Radiography with use of gamma radiation sources; b) crawler radiography equipment; and c) Industrial Radiography with X-rays

  10. 76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2011-07-27

    ... [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards; Air Brake Systems... final rule that amended the Federal motor vehicle safety standard for air brake systems by requiring... between Bendix Commercial Vehicle Systems and Dana Corporation; and ArvinMeritor. The agency received four...

  11. 45 CFR 2543.84 - Contract Work Hours and Safety Standards Act.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Contract Work Hours and Safety Standards Act. 2543... OTHER NON-PROFIT ORGANIZATIONS Statutory Compliance § 2543.84 Contract Work Hours and Safety Standards Act. Where applicable, all contracts awarded by recipients in excess of $2000 for construction...

  12. Who regulates food? Australians' perceptions of responsibility for food safety.

    Science.gov (United States)

    Henderson, Julie; Coveney, John; Ward, Paul

    2010-01-01

    Food scares have diminished trust in public institutions to guarantee food safety. Food governance after the food scare era is concerned with institutional independence and transparency leading to a hybrid of public and private sector management and to mechanisms for consumer involvement in food governance. This paper explores Australian consumers' perceptions of who is, and should be responsible for food safety. Forty-seven participants were interviewed as part of a larger study on trust in the food system. Participants associate food governance with government, industry, and the individual. While few participants can name the national food regulator, there is a strong belief that the government is responsible for regulating the quality and safety of food. Participants are wary of the role of the food industry in food safety, believing that profit motives will undermine effective food regulation. Personal responsibility for food safety practices was also identified. While there are fewer mechanisms for consumer involvement and transparency built into the food governance system, Australian consumers display considerable trust in government to protect food safety. There is little evidence of the politicisation of food, reflecting a level of trust in the Australian food governance system that may arise from a lack of exposure to major food scares.

  13. Fusion safety regulations in the United States: Progress and trends

    International Nuclear Information System (INIS)

    DeLooper, J.

    1994-01-01

    This paper explores the issue of regulations as they apply to current and future fusion experimental machines. It addresses fusion regulatory issues, current regulations used for fusion, the Tokamak Fusion Test Reactor experience with regulations, and future regulations to achieve fusion's safety and environmental potential

  14. 75 FR 6123 - Federal Motor Vehicle Safety Standards; Occupant Crash Protection

    Science.gov (United States)

    2010-02-08

    ... motor vehicle safety standard is in effect under this chapter, a State or a political subdivision of a... [Docket No. NHTSA-2009-0156] RIN 2127-AK57 Federal Motor Vehicle Safety Standards; Occupant Crash...'s response to petitions for reconsideration of a November 12, 2008 final rule that amended the child...

  15. Establishment and status of the radwaste management standards in China

    International Nuclear Information System (INIS)

    Zhuo Fengguan

    1993-01-01

    In the last 30 years and more, with the development of nuclear industry in China, the government, nuclear industry circles and scientists have paid great attention to the safety management of radwastes. Especially in past 10 years, with the implementation of the nuclear power programmes, the safety management of radwastes has been legalized steadily NEPA (National Environment Protection Agency, China), NNSA (National Nuclear Safety Administration) and the competent authorities concerned have engaged in establishing and promulgating policies, regulations, and a series of technical standards on the safety management of radwaste, and efforts are being made to complete and perfect related regulations and standards. The status and programs of radwaste safety management standards in China are briefly introduced, including principles, organizations and procedure for drafting the standards

  16. A study in improvement of administrative system in the nuclear safety regulation

    International Nuclear Information System (INIS)

    Yook, Dong Il; Kuk, Doe Hyeong; Lee, Seong Min; Kim, Jong Sam; Hwang, Sun Ho

    2001-03-01

    One of the most important tasks to improve nuclear safety regulation system is to separate nuclear regulatory institutes from public agencies which promote the development nuclear power. Moreover, nuclear safety regulation should be not only specialized but optimized to be adapted for new environments such as high-tech information age. Especially, it is necessary to reform the current nuclear safety regulation systems both to be effective under the local self-administration which began to operate in recent years and to be supported by local residents

  17. A study in improvement of administrative system in the nuclear safety regulation

    Energy Technology Data Exchange (ETDEWEB)

    Yook, Dong Il; Kuk, Doe Hyeong; Lee, Seong Min; Kim, Jong Sam; Hwang, Sun Ho [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-03-15

    One of the most important tasks to improve nuclear safety regulation system is to separate nuclear regulatory institutes from public agencies which promote the development nuclear power. Moreover, nuclear safety regulation should be not only specialized but optimized to be adapted for new environments such as high-tech information age. Especially, it is necessary to reform the current nuclear safety regulation systems both to be effective under the local self-administration which began to operate in recent years and to be supported by local residents.

  18. Administrative goals and safety standards for hazard control on forested recreation sites

    Science.gov (United States)

    Lee A. Paine

    1973-01-01

    For efficient control of tree hazard on recreation sites, a specific administrative goal must be selected. A safety standard designed to achieve the selected goal and a uniform hazard-rating procedure will then promote a consistent level of safety at an acceptable cost. Safety standards can be established with the aid of data for past years, and dollar evaluations are...

  19. Barriers to Construction Health and Safety Self-regulation: A Scoping Case of Nigeria

    Directory of Open Access Journals (Sweden)

    Umeokafor Nnedinma

    2017-03-01

    Full Text Available This scoping study builds on the recent uncovering that in terms of health and safety (H&S, the Nigerian construction industry is self-regulated in various forms, not unregulated and that the size of company can further explain H&S self-regulation. Consequently, the barriers identified through literature review were assessed using questionnaires. Analysis of the data collected from construction practitioners in Nigeria shows that ‘economic factors’ mostly explains the barriers to construction H&S self-regulation. This is followed by the ‘ability to self-regulate’ and ‘lack of awareness’. Furthermore, the results show significant differences among small, medium and large construction contractors on seven factors of which include ‘normative case’ factors, ‘H&S is a duty’, ‘H&S is the right thing’ and ‘unfair H&S standards or legislation’. Although a scoping study, the study draws attention to the barriers to construction H&S self-regulation in Nigeria and demonstrates an alternative to state regulation of H&S.

  20. Public opinion poll on safety and regulations of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Park, M. I.; Park, B. I.; Lee, S. M. [Gallup Korea, Seoul (Korea, Republic of)

    2004-02-15

    The purpose of this poll is not only to research understanding on safety and regulations of nuclear energy and to compare the result by time series followed 2003 to 2002 years, also to establish the public relations strategies and to offer information for developing long-term policies. The contents of the study are on the general perception, safety, management of nuclear power station, regulations and surroundings about nuclear energy.

  1. Cryogenic Safety Rules and Guidelines at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    CERN defines and implements a Safety Policy that sets out the general principles governing safety at CERN. As an intergovernmental organisation, CERN further establishes its own Safety Rules as necessary for its proper functioning. In this process, it takes into account the laws and regulation of the Host States (France and Switzerland), EU regulations and directives, as well as international regulations, standards and directives. For the safety of cryogenic equipment, this is primarily covered by the Safety Regulation for Mechanical Equipment and the General Safety Instruction for Cryogenic Equipment. In addition, CERN has also developed Safety Guidelines to support the implementation of these safety rules, covering cryogenic equipment and oxygen deficiency hazard assessment and mitigation. An overview of the cryogenic safety rules and these safety guidelines will be presented.

  2. Planning the Unplanned Experiment: Assessing the Efficacy of Standards for Safety Critical Software

    Science.gov (United States)

    Graydon, Patrick J.; Holloway, C. Michael

    2015-01-01

    We need well-founded means of determining whether software is t for use in safety-critical applications. While software in industries such as aviation has an excellent safety record, the fact that software aws have contributed to deaths illustrates the need for justi ably high con dence in software. It is often argued that software is t for safety-critical use because it conforms to a standard for software in safety-critical systems. But little is known about whether such standards `work.' Reliance upon a standard without knowing whether it works is an experiment; without collecting data to assess the standard, this experiment is unplanned. This paper reports on a workshop intended to explore how standards could practicably be assessed. Planning the Unplanned Experiment: Assessing the Ecacy of Standards for Safety Critical Software (AESSCS) was held on 13 May 2014 in conjunction with the European Dependable Computing Conference (EDCC). We summarize and elaborate on the workshop's discussion of the topic, including both the presented positions and the dialogue that ensued.

  3. Regulator Loss Functions and Hierarchical Modeling for Safety Decision Making.

    Science.gov (United States)

    Hatfield, Laura A; Baugh, Christine M; Azzone, Vanessa; Normand, Sharon-Lise T

    2017-07-01

    Regulators must act to protect the public when evidence indicates safety problems with medical devices. This requires complex tradeoffs among risks and benefits, which conventional safety surveillance methods do not incorporate. To combine explicit regulator loss functions with statistical evidence on medical device safety signals to improve decision making. In the Hospital Cost and Utilization Project National Inpatient Sample, we select pediatric inpatient admissions and identify adverse medical device events (AMDEs). We fit hierarchical Bayesian models to the annual hospital-level AMDE rates, accounting for patient and hospital characteristics. These models produce expected AMDE rates (a safety target), against which we compare the observed rates in a test year to compute a safety signal. We specify a set of loss functions that quantify the costs and benefits of each action as a function of the safety signal. We integrate the loss functions over the posterior distribution of the safety signal to obtain the posterior (Bayes) risk; the preferred action has the smallest Bayes risk. Using simulation and an analysis of AMDE data, we compare our minimum-risk decisions to a conventional Z score approach for classifying safety signals. The 2 rules produced different actions for nearly half of hospitals (45%). In the simulation, decisions that minimize Bayes risk outperform Z score-based decisions, even when the loss functions or hierarchical models are misspecified. Our method is sensitive to the choice of loss functions; eliciting quantitative inputs to the loss functions from regulators is challenging. A decision-theoretic approach to acting on safety signals is potentially promising but requires careful specification of loss functions in consultation with subject matter experts.

  4. The international standard for protection from ionizing radiation and safety of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1995-06-01

    This document is a review in hebrew of the new 1994 international standard of the IAEA. The new standard title is `Basic safety standards for radiation protection and for the safety of radiation sources`, which were published in the ICRP Pub. 9.

  5. R&D for Safety Codes and Standards: Materials and Components Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Somerday, Brian P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); LaFleur, Chris [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Marchi, Chris San [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-08-01

    This project addresses the following technical barriers from the Safety, Codes and Standards section of the 2012 Fuel Cell Technologies Office Multi-Year Research, Development and Demonstration Plan (section 3.8): (A) Safety data and information: limited access and availability (F) Enabling national and international markets requires consistent RCS (G) Insufficient technical data to revise standards.

  6. Safety Regulations for Ionizing Radiations. Vietnam Standard (TCVN 4397-87)

    International Nuclear Information System (INIS)

    1987-01-01

    The regulations were prepared for purpose of providing basic requirements of ionizing radiation protection and giving guide for design criteria of radiation installations in Vietnam. The allowable maximum levels for personnel categories are established. Regulated are methods for handling sealed and unsealed sources of radiation, transfer and transport of radioactive materials. Defined requirements and operating conditions that must be met. Determined are procedures and actions of decontamination. (N.H.A)

  7. Evolution of nuclear safety regulation for BARC Facilities

    International Nuclear Information System (INIS)

    Jayarajan, K.; Taly, Y.K.

    2017-01-01

    Safety programmes in BARC stared during the formative years and grown its stature, as the years passed by. Seventeen years of BSC, with one hundred meetings, have been quite eventful with several achievements. BSC could bring all facilities of BARC under its safety umbrella and could streamline many safety and regulatory activities. BSC aims at incident free operation of all facilities and protection of the workers, the public, the environment from radiation and other hazards. Although, incidents could not be entirely prevented, BSC have taken every event as a lesson and used the experience for improving safety. Safety enhancement is an endless journey, which has to be performed by joining hands of the managers, designers, manufacturers, inspectors and operators, in addition to the regulators

  8. The nuclear safety standards of IAEA (NUSS)

    International Nuclear Information System (INIS)

    Andres, H.

    1980-01-01

    The lecture will give an overview of the Agency's Safety Standards for Nuclear Power Plants: its range and its current state of development. The general contents of the documents will be presented, and the procedures used for their development will be briefly described. (orig.)

  9. Opinions on Fresh Produce Food Safety and Quality Standards by Fresh Produce Supply Chain Experts from the Global South and North.

    Science.gov (United States)

    Jacxsens, Liesbeth; Van Boxstael, Sigrid; Nanyunja, Jessica; Jordaan, Danie; Luning, Pieternel; Uyttendaele, Mieke

    2015-10-01

    This study describes the results of an on-line survey of fresh produce supply chain experts who work with producers from the Global North (n = 41, 20 countries) and the Global South (n = 63, 29 countries). They expressed their opinion using 1 to 5 Likert scales on several items related to four types of food safety and quality standards and legislation: Codex Alimentarius standards, European Union legislation, national legislation, and private standards. The results reflect the different circumstances under which the Southern and Northern producers operate in relation to the local organization, regulation, and support of the sector; but they also indicate similar challenges, in particular, the challenge of private standards, which were perceived to demand a higher implementation effort than the other three types of standards. Private standards were also strongly perceived to exclude Southern and Northern small- and medium-scale producers from high-value markets, whereas European Union legislation was perceived to strongly exclude, in particular, small- and medium-scale Southern producers. The results further highlight concerns about costly control measures and third-party certification that are required by downstream buyers but that are mostly paid for by upstream suppliers. Food standards are seen in their dual role as a catalyst for implementation of structured food safety management systems on the one hand and as a nontariff barrier to trade on the other hand. The results of the survey also pointed up the advantages of enforcing food safety and food quality standards in terms of knowledge spillover to noncertified activities, increased revenues, and improved food safety of delivered produce. Survey results highlight the importance of technical assistance and support of producers by governments and producer cooperatives or trade associations in the implementation and certification of food standards, along with increased awareness of and training of individuals in

  10. 76 FR 29333 - Pipeline Safety: Meetings of the Technical Pipeline Safety Standards Committee and the Technical...

    Science.gov (United States)

    2011-05-20

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Technical Hazardous Liquid Pipeline Safety Standards Committee AGENCY: Pipeline and Hazardous Materials... for natural gas pipelines and for hazardous liquid pipelines. Both committees were established under...

  11. After the Fukushima Daiichi Accident, Extending the Human and Organizational Factors (HOF) Framework to Safety Regulation

    International Nuclear Information System (INIS)

    Chanton, O.; Mangeon, M.; Jeffroy, F.

    2016-01-01

    The accident of Fukushima-Daichi is regarded as a product of multiple failures of the nuclear risks regulation system in Japan and more particularly as a failure of the regulatory system (authorities, regulator and operator) to take into account seismic risks and flood risks caused by tsunamis. This statement conducted the French institute for radiological protection and nuclear safety (IRSN) to develop a research program dedicated to the study of the way the French nuclear regulatory system developed and addresses flood risks. A regulatory system rests upon a number of institutional and organizational devices and upon normative tools, such as technical standards or guidelines. The aim of these normative tools is to guide NPP operators during both stages of risks identification and characterisation and of the design of protections against risks. These instruments have profound and multiple effects on the stakeholders involved. They affect the design of nuclear facilities, significantly influence the safety demonstration of a plant, but also the manner in which the actions implemented by the operator are evaluated and their reality controlled by the regulator.

  12. International laser safety standardization. From the European perspective with an emphasis on materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Schulmeister, K [Div. of Life Sciences, Dept. of Radiation Protection, Oesterreichisches Forschungszentrum Seibersdorf, 2444 Seibersdorf (Austria)

    1997-08-01

    This report reviews international standards relevant to the safety of laser products and laser installations, with an emphasis on the safety of laser materials processing from the European perspective. In the first paragraphs an overview of the international standards organisations, their relative roles and ways of developing new standards is given. In the second part of the report, work currently underway in the respective standards committees is summarised and specific standards dealing with different aspects of laser safety are discussed. An appendix contains a list of standards organised in standards organisations (IEC, ISO and EN). (author)

  13. International laser safety standardization. From the European perspective with an emphasis on materials processing

    International Nuclear Information System (INIS)

    Schulmeister, K.

    1997-08-01

    This report reviews international standards relevant to the safety of laser products and laser installations, with an emphasis on the safety of laser materials processing from the European perspective. In the first paragraphs an overview of the international standards organisations, their relative roles and ways of developing new standards is given. In the second part of the report, work currently underway in the respective standards committees is summarised and specific standards dealing with different aspects of laser safety are discussed. An appendix contains a list of standards organised in standards organisations IEC, ISO and EN). (author)

  14. NASA safety standard for lifting devices and equipment

    Science.gov (United States)

    1990-09-01

    NASA's minimum safety requirements are established for the design, testing, inspection, maintenance, certification, and use of overhead and gantry cranes (including top running monorail, underhung, and jib cranes), mobile cranes, derrick hoists, and special hoist supported personnel lifting devices (these do not include elevators, ground supported personnel lifts, or powered platforms). Minimum requirements are also addressed for the testing, inspection, and use of Hydra-sets, hooks, and slings. Safety standards are thoroughly detailed.

  15. Harrisburg and the ideology of the safety standards

    Energy Technology Data Exchange (ETDEWEB)

    Levidow, L

    1979-07-01

    The events of Three Mile Island are discussed in relation to safety standards. It was seen how the State operated with the contradictions that are inherited in the nuclear industry. The State used scientific categories to manipulate the people, while at the same time the impression was created that the people were being protected against the excesses of industry. The safety measures taken after the accident are critically outlined, particularly the late advice on evacuation.

  16. Occupational safety and health law handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sarvadi, D.G. [ed.; Keller; Heckman

    1999-09-01

    This book reviews the regulations and standards governing the protection of employees in the workplace and provides insight into dealing with pertinent regulations and regulatory authorities. Written for safety professionals, industrial hygienists, human resource professionals, attorneys, and students, this companion to Government Institutes' best-selling ``Environmental Law Handbook'' offers the legal fundamentals behind occupational safety and health laws in one concise and authoritative volume. In 19 chapters, the authoring law firm of Keller and Heckman cover the OSHAct and its development; OSHA, NIOSH, and OSHRC; the roles played by other regulatory agencies; the OSHA rulemaking process; OSHA Standards and the General Duty Clause; record keeping and reporting; employers' and employees' rights; inspections; violations, penalties, and how to contest them; criminal prosecutions; state plans; industry-specific issues; OSHA reform; and international regulations and standards. This book references approximately 400 seminal OSHA legal decisions from the approximately 1,300 cases on record and includes coverage of Canadian and European Community regulations, making it the first comprehensive global overview of occupational safety and health law.

  17. European standards and regulation - CEN/CENELEC

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, J. [AENOR, Madrid (Spain)

    1997-02-27

    An overview is given of the European Standards structure, as well as the general Directives and Regulations related to the Heating, Ventilation and Air Conditioning Sector. The importance of standardisation, both on quality and as a strategic tool for manufacturers, is stressed. Participation in the elaboration of standards makes it possible to reflect a manufacturer`s technology in the standards. Voluntary standardisation can be used as a differentiating element. European standards for the HVAC sector are being elaborated by the European Standardisation Committee (CEN), the European Electrotechnical Standardisation Committee (CENELEC) and by the European Telecommunication Institute (ETSI)

  18. 75 FR 50700 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, and Drawbridge...

    Science.gov (United States)

    2010-08-17

    ...] Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, and Drawbridge Operation... notice lists temporary safety zones, security zones, special local regulations, and drawbridge operation... responsive to the safety and security needs within their jurisdiction; therefore, District Commanders and...

  19. Graphical symbols -- Safety colours and safety signs -- Part 1: Design principles for safety signs in workplaces and public areas

    CERN Document Server

    International Organization for Standardization. Geneva

    2002-01-01

    This International Standard establishes the safety identification colours and design principles for safety signs to be used in workplaces and in public areas for the purpose of accident prevention, fire protection, health hazard information and emergency evacuation. It also establishes the basic principles to be applied when developing standards containing safety signs. This part of ISO 3864 is applicable to workplaces and all locations and all sectors where safety-related questions may be posed. However, it is not applicable to the signalling used for guiding rail, road, river, maritime and air traffic and, generally speaking, to those sectors subject to a regulation which may differ.

  20. Safety-evaluation report related to the license renewal and power increase for the National Bureau of Standards Reactor (Docket No. 50-184)

    International Nuclear Information System (INIS)

    1983-09-01

    This Safety Evaluation Report for the application filed by the National Bureau of Standards (NBS) for an increase in power from 10 MWt to 20 MWt and for a renewal of the Operating License TR-5 to continue to operate the test reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Gaithersburg, Maryland, on the site of the National Bureau of Standards, which is a bureau of the Department of Commerce. The staff concludes that the NBS reactor can operate at the 20 MWt power level without endangering the health and safety of the public

  1. Regulatory Safety Requirements for Operating Nuclear Installations

    International Nuclear Information System (INIS)

    Gubela, W.

    2017-01-01

    The National Nuclear Regulator (NNR) is established in terms of the National Nuclear Regulator Act (Act No 47 of 1999) and its mandate and authority are conferred through sections 5 and 7 of this Act, setting out the NNR's objectives and functions, which include exercising regulatory control over siting, design, construction etc of nuclear installations through the granting of nuclear authorisations. The NNR's responsibilities embrace all those actions aimed at providing the public with confidence and assurance that the risks arising from the production of nuclear energy remain within acceptable safety limits -> Therefore: Set fundamental safety standards, conducting pro-active safety assessments, determining licence conditions and obtaining assurance of compliance. The promotional aspects of nuclear activities in South Africa are legislated by the Nuclear Energy Act (Act No 46 of 1999). The NNR approach to regulations of nuclear safety and security take into consideration, amongst others, the potential hazards associated with the facility or activity, safety related programmes, the importance of the authorisation holder's safety related processes as well as the need to exercise regulatory control over the technical aspects such as of the design and operation of a nuclear facility in ensuring nuclear safety and security. South Africa does not have national nuclear industry codes and standards. The NNR is therefore non-prescriptive as it comes to the use of industry codes and standards. Regulatory framework (current) provide for the protection of persons, property, and environment against nuclear damage, through Licensing Process: Safety standards; Safety assessment; Authorisation and conditions of authorisation; Public participation process; Compliance assurance; Enforcement

  2. Experience with the 1985 UK ionizing radiation regulations: the regulators' viewpoint

    International Nuclear Information System (INIS)

    Bines, W.P.; Beaver, P.F.

    1991-01-01

    The Ionising Radiations Regulations 1985 achieved UK implementation of the Euratom Basic Safety Standards Directive; interim action has taken account of recent revisions of risk estimates and the regulations will not be revised in advance of renegotiation of the Euratom Directive. Wide ranging consultation, central to the development of health and safety legislation in the UK, leads to greater co-operation between regulators and regulated and more acceptable legislation. Examples of co-operation, also of methods of enforcement and the use made of them, are given. The authors conclude that the regulations have stood the test of experience well. (Author)

  3. American National Standards and the DOE - A cooperative effort to promote nuclear criticality safety

    International Nuclear Information System (INIS)

    Rothleder, B.M.

    1996-01-01

    The U.S. Department of Energy's (DOE's) new criticality safety order, DOE Order 420.1 (open-quotes Facility Safety,close quotes October 13, 1995), Sec. 4.3 (open-quotes Nuclear Criticality Safetyclose quotes), invokes, as an integral part, 12 appropriate American National Standards Institute/American Nuclear Society (ANSI/ANS) Series-8 standards for nuclear criticality safety, but with modifications. (The order that 420.1/4.3 replaced also invoked some ANSI/ANS Series-8 standards.) These modifications include DOE operation-specific exceptions to the standards and elaborations on some of the wording in the standards

  4. 76 FR 52231 - Restrictions on Operators Employing Former Flight Standards Service Aviation Safety Inspectors

    Science.gov (United States)

    2011-08-22

    ... its implementation of safety management systems, issued its report titled, ``Managing Risks in Civil... Standards Service Aviation Safety Inspectors AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... responsible for the oversight of, a Flight Standards Service Aviation Safety Inspector, and had direct...

  5. 49 CFR 397.2 - Compliance with Federal motor carrier safety regulations.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Compliance with Federal motor carrier safety...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS TRANSPORTATION OF HAZARDOUS MATERIALS; DRIVING AND PARKING RULES General § 397.2 Compliance with...

  6. Harrisburg and the ideology of the safety standards

    International Nuclear Information System (INIS)

    Levidow, L.

    1979-01-01

    The events of three mile island one discussed in relation to safety standards. It was seen how the State operated with the contradictions that are inherited in the nuclear industry. The State used scientific categories to manipulate the people, while at the same time the impression was created that the people were being protected against the excesses of industry. The safety measures taken after the accident are critically outlined, particularly the late advice on evakuation. (C.F.)

  7. Transports of radioactive materials. Legal regulations, safety and security concepts, experience; Befoerderung radioaktiver Stoffe. Rechtsvorschriften, Sicherheits- und Sicherungskonzept, Erfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Guenther

    2012-07-15

    In Germany, approximately 650,000 to 750,000 units containing radioactive materials for scientific, medical and technical applications are shipped annually by surface, air and water transports. Legally speaking, radioactive materials are dangerous goods which can cause hazards to life, health, property and the environment as a result of faulty handling or accidents in transit. For protection against these hazards, their shipment therefore is regulated in extensive national and international rules of protection and safety. The article contains a topical review of the international and national transport regulations and codes pertaining to shipments of radioactive materials, and of the protection concepts underlying these codes so as to ensure an adequate standard of safety and security in shipping radioactive materials in national and international goods traffic. (orig.)

  8. A study on enforcement effects of radiation safety control regulations for diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    Sung, Mo IL; Park, Myeong Hwan; Kwon, Duk Moon; Lee, Joon IL

    1999-01-01

    The purposes of this study are to analyze the realities after enforcements of safety control regulations for diagnostic X-ray equipment and to suggest means for an improvement of low radiation safety control. A questionnaire survey for medical radiologic technologists was carried out to determine enforcement effects of the safety control regulations. The results of analysis from the survey are as follows. That is, most of he respondents realized the importance of the radiation safety control system, but about a half of them revealed that regulations were not well observed in accordance with their purposes. Only 43.9 percent of the respondents took an active part in quality control of radiation. And responsibility, sex, age, and knowledge for safety control were important indicators for observations of the regulations. Training for the safety control regulations are needed to ensure safety control and proper usage of diagnostic X-ray equipment. And management of organizations using diagnostic X-ray equipment have to understand and stress the importance of radiation safety control system. (author)

  9. The UK nuclear regulator's view of external influences on safety

    International Nuclear Information System (INIS)

    Summers, J.L.

    2001-01-01

    Over the past forty or so years, significant changes have taken place in the UK nuclear industry and the pace of change is continually increasing. As a consequence, the Nuclear Installations Inspectorate (NII), the UK's nuclear regulator, has also had to change. This paper describes some of the challenges to safety that have arisen in recent years and how NII's style of regulation has had to adapt to ensure that safety is maintained and improved. NII's approach has been to: be proactive in its relations with Government and market regulators; adopt new competencies to equip it for the challenges it faces; strive to improve its efficiency and effectiveness; and develop new approaches to regulating changes in licensees' organisations and ways of working. Importantly, NII seeks to anticipate change rather than react to it. (author)

  10. Food safety standards in the fresh produce supply chain: advantages and disadvantages

    NARCIS (Netherlands)

    Uyttendaele, M.; Jacxsens, L.; Boxstael, Van S.; Kirezieva, K.; Luning, P.

    2015-01-01

    Abstract : Food safety standards in the fresh produce supply chain are discussed in view of the outcomes of a European Union Directorates General (EU DG) Research project FP7 Veg-i-Trade ‘Impact of climate change and international trade on the safety of fresh produce’. Various standards are outlined

  11. Rail Safety/Equipment Crashworthiness : Volume 3. Proposed Engineering Standards.

    Science.gov (United States)

    1978-07-01

    The document, the third of four volumes, contains recommended Engineering Standards prepared in the format of the standards published in the Code of Federal Regulations (Title 49, Transportation, Parts 200). The standards proposed provide improved oc...

  12. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  13. Assessment of policy issues in nuclear safety regulation according to circumstantial changes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Lee, Byong Ho; Baek, Woon Pil; Lee, Seong Wook; Choi, Seong Soo; Roh, Chang Hyun; Lee, Kwang Gu [Korea Advanced Institute of Scienc and Technology, Taejon (Korea, Republic of)

    1998-03-15

    The objective of the work is to assess various issues in nuclear safety regulation in consideration of circumstantial changes. Emphasis is given to the safety of operating NPPs. The derivation of an effective regulation system considering 'Rhodic Safety Review (PSR)', 'operating License Renewal (LR)', 'backfitting' and 'maintenance rule' is the main objective of the first two years. It is found that those approaches should be introduced in Korea as soon as possible, with cross lingkage to maximize the effectiveness of regulation. In particular, the approaches for PSR are discussed with consultation of IAEA document and foreign practices.

  14. Safety and Health Topics: Asbestos

    Science.gov (United States)

    ... Safety and Health Program Recommendations It's the Law Poster REGULATIONS Law and Regulations Standard Interpretations Training Requirements ... page requires that javascript be enabled for some elements to function correctly. Please contact the OSHA Directorate ...

  15. 78 FR 15920 - Federal Motor Vehicle Safety Standards; Tire Selection and Rims

    Science.gov (United States)

    2013-03-13

    ... [Docket No. NHTSA-2013-0030] RIN 2127-AL24 Federal Motor Vehicle Safety Standards; Tire Selection and Rims... Safety Standard (FMVSS) No. 110 to make it clear that special trailer (ST) tires are permitted to be... also proposes to exclude these trailers from a vehicle testing requirement that a tire must be retained...

  16. System certification progress in concept recognition in IAEA regulation

    International Nuclear Information System (INIS)

    Luna, R.E.; Pollog, T.

    1995-01-01

    System Certification is a regulatory concept which is intended to expand the scope of radioactive material transport regulations by allowing alternative means for proving compliance with the requisite standards of safety set out in transport regulations. In practice it may allow more stringent requirements in one aspect of the regulations to be substituted for less stringent application in other areas so long as the safety standard provided by regulation is preserved. The concept is widely perceived as the imposition of operational controls in exchange for relaxation of packaging standards, but that is only one possibility in the spectrum of potential actions under a System Certification provision in IAEA or national regulations

  17. Safety Assessment for the Decommissioning of Facilities Using Radioactive Material. Safety Guide (Spanish Edition); Evaluacion de la seguridad para la clausura de instalaciones que utilizan materiales radiactivos. Guia De Seguridad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  18. NRC safety research in support of regulation, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    This report, the fourth in a series of annual reports, was prepared in response to Congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during 1988. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  19. Use of a Graded Approach in the Application of the Safety Requirements for Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt? standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  20. 38 CFR 17.155 - Minimum standards of safety and quality for automotive adaptive equipment.

    Science.gov (United States)

    2010-07-01

    ... safety and quality for automotive adaptive equipment. 17.155 Section 17.155 Pensions, Bonuses, and... Minimum standards of safety and quality for automotive adaptive equipment. (a) The Under Secretary for... officials that it meets implicit standards of safety and quality adopted by the industry or as later...

  1. 77 FR 51499 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2012-08-24

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 [NHTSA 2012-0126] RIN 2127-AK74 Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium... purpose of reducing greenhouse gas (GHG) emissions because the GHG standards fundamentally regulate fuel...

  2. 49 CFR 571.221 - Standard No. 221, School bus body joint strength.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 221, School bus body joint strength. 571.221 Section 571.221 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standard...

  3. 16 CFR 1105.3 - A more satisfactory standard.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false A more satisfactory standard. 1105.3 Section 1105.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS... satisfactory standard. In considering whether a contribution is likely to result in a more satisfactory...

  4. A generic standard for assessing and managing activities with significant risk to health and safety

    International Nuclear Information System (INIS)

    Wilde, T.S.; Sandquist, G.M.

    2005-01-01

    Some operations and activities in industry, business, and government can present an unacceptable risk to health and safety if not performed according to established safety practices and documented procedures. The nuclear industry has extensive experience and commitment to assessing and controlling such risks. This paper provides a generic standard based upon DOE Standard DOE-STD-3007- 93, Nov 1993, Change Notice No. 1, Sep 1998. This generic standard can be used to assess practices and procedures employed by any industrial and government entity to ensure that an acceptable level of safety and control prevail for such operations. When any activity and operation is determined to involve significant risk to health and safety to workers or the public, the organization should adopt and establish an appropriate standard and methodology to ensure that adequate health and safety prevail. This paper uses DOE experience and standards to address activities with recognized potential for impact upon health and safety. Existing and future assessments of health and safety issues can be compared and evaluated against this generic standard for insuring that proper planning, analysis, review, and approval have been made. (authors)

  5. Safety-evaluation report related to the final design of the Standard Nuclear Steam Supply Reference System - CESSAR System 80. Docket No. STN 50-470

    International Nuclear Information System (INIS)

    1983-03-01

    Supplement No. 1 to the Safety Evaluation Report for the application filed by Combustion Engineering, Inc. for a Final Design Approval for the Combustion Engineering Standard Safety Analysis Report (STN 50-470) has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation by providing: (1) the evaluation of additional information submitted by the applicant since the Safety Evaluation Report was issued, (2) the evaluation of the matters the staff had under review when the Safety Evaluation Report was issued, and (3) the response to comments made by the Advisory Committee on Reactor Safeguards

  6. FOOD SAFETY REGULATIONS BASED ON REAL SCIENCE

    Directory of Open Access Journals (Sweden)

    Huub LELIEVELD

    2015-10-01

    Full Text Available Differences in regulations result in needless destruction of safe food and hamper food trade. The differences are not just the result of the history of food safety regulations, often developed in times before global cooperation, but are also built in new regulations. It may be responses to media hypes or for other reasons, but in most cases the differences cannot be justified scientifically. A major difficulty is that, due to the developments in analytical techniques the number of chemicals that are found in food is increasing rapidly and chemicals are always suspected to be a safety risk. By far most chemicals are of natural origin but could not be detected in the past because the methods available in the past were not sensitive enough. Demanding the absence of chemicals because the risk they present is unknown, however, would eventually make all food unacceptable. The general public should be shown that everything they eat is chemical, and all food components will be toxic if the amount is too high. It should also be shown that many of these chemicals will also cause illness and death if there is not enough of it as is the case with vitamins and minerals.

  7. Operational and environmental safety

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The responsibility of the DOE Office of Operational and Environmental Safety is to assure that DOE-controlled activities are conducted in a manner that will minimize risks to the public and employees and will provide protection for property and the environment. The program supports the various energy technologies by identifying and resolving safety problems; developing and issuing safety policies, standards, and criteria; assuring compliance with DOE, Federal, and state safety regulations; and establishing procedures for reporting and investigating accidents in DOE operations. Guidelines for the radiation protection of personnel; radiation monitoring at nuclear facilities; an assessment of criticality accidents by fault tree analysis; and the preparation of environmental, safety, and health standards applicable to geothermal energy development are discussed

  8. IEEE Std 382-1980: IEEE standard for qualification of safety-related valve actuators

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard describes the qualification of all types of power-driven valve actuators, including damper actuators, for safety-related functions in nuclear power generating stations. This standard may also be used to separately qualify actuator components. This standard establishes the minimum requirements for, and guidance regarding, the methods and procedures for qualification of all safety-related functions of power-driven valve actuators

  9. The IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    According to the research reactor database of IAEA (RRDB), 250 reactors are operating worldwide, 248 have been shut down and 170 have been decommissioned. Among the 248 reactors that do not run, some will resume their activities, others will be dismantled and the rest do not face a clear future. The analysis of reported incidents shows that the ageing process is a major cause of failures, more than two thirds of operating reactors are over 30 years old. It also appears that the lack of adequate regulations or safety standards for research reactors is an important issue concerning reactor safety particularly when reactors are facing re-starting or upgrading or modifications. The IAEA has launched a 4-axis program: 1) to set basic safety regulations and standards for research reactors, 2) to provide IAEA members with an efficient help for the application of these safety regulations to their reactors, 3) to foster international exchange of information on research reactor safety, and 4) to provide IAEA members with a help concerning safety issues linked to malicious acts or sabotage on research reactors

  10. Environmental Regulation and Food Safety: Studies of Protection ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2006-01-01

    Jan 1, 2006 ... Book cover Environmental Regulation and Food Safety: Studies of ... are sometimes perceived in developing countries as nontariff barriers to trade. ... In some cases, products that had initially been refused access to a ...

  11. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt... standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  12. Hard Work in Soft Regulation: A Discussion of the Social Mechanisms in OHS Management Standards and Possible Dilemmas in the Regulation of Psychosocial Work Environment

    Directory of Open Access Journals (Sweden)

    Pernille Hohnen

    2014-09-01

    Full Text Available Certified occupational health and safety (OHS management systems have become a global instrument in regulation of the work environment. However, their actual impact on OHS—in particular on softer psychosocial issues in the work environment—has been questioned. The most important standard of OHS management is OHSAS 18001, which has recently been supplemented with a British publically available guideline (PAS 1010 focusing specifically on psychosocial risk management. On the basis of the international literature on management standards, the present paper analyses OHSAS 18001 and PAS 1010 in order to understand the mechanism by which they work. The paper takes a social constructionist approach conceptualizing standards and their expected mechanisms as socially constructed—based on a particular kind of knowledge and logic—although they are presented as objective. Such a constructionist approach also emphasizes how standards transform specific work environment problems into generic procedures that can be audited. In the case of OHS standards, both the work environment in general and the psychosocial risks in particular are transformed into simple monocausal auditable relations whereby the complexity of psychosocial work environment issues seems to disappear. The new PAS 1010 guideline, which is particularly focusing on regulation of the psychosocial work environment, only partly succeeds in solving these shortcomings of OHSAS 18001.

  13. Food suppliers' perceptions and practical implementation of food safety regulations in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Hwa Ko

    2015-12-01

    Full Text Available The relationships between the perceptions and practical implementation of food safety regulations by food suppliers in Taiwan were evaluated. A questionnaire survey was used to identify individuals who were full-time employees of the food supply industry with at least 3 months of experience. Dimensions of perceptions of food safety regulations were classified using the constructs of attitude of employees and corporate concern attitude for food safety regulation. The behavior dimension was classified into employee behavior and corporate practice. Food suppliers with training in food safety were significantly better than those without training with respect to the constructs of perception dimension of employee attitude, and the constructs of employee behavior and corporate practice associated with the behavior dimension. Older employees were superior in perception and practice. Employee attitude, employee behavior, and corporate practice were significantly correlated with each other. Satisfaction with governmental management was not significantly related to corporate practice. The corporate implementation of food safety regulations by suppliers was affected by employees' attitudes and behaviors. Furthermore, employees' attitudes and behaviors explain 35.3% of corporate practice. Employee behavior mediates employees' attitudes and corporate practices. The results of this study may serve as a reference for governmental supervision and provide training guidelines for workers in the food supply industry.

  14. KHNP Safety Culture Framework based on Global Standard, and Lessons learned from Safety Culture Evaluation

    International Nuclear Information System (INIS)

    Kim, Younggab; Hur, Nam Young; Jeong, Hyeon Jong

    2015-01-01

    In order to eliminate the vague fears of the people about the nuclear power and operate continuously NPPs, a strong safety culture of NPPs should be demonstrated. Strong safety culture awareness of workers can overcome social distrust about NPPs. KHNP has been a variety efforts to improve and establish safety culture of NPPs. Safety culture framework applying global standards was set up and safety culture assessment has been carried out periodically to enhance safety culture of workers. In addition, KHNP developed various safety culture contents and they are being used in NPPs by workers. As a result of these efforts, safety culture awareness of workers is changed positively and the safety environment of NPPs is expected to be improved. KHNP makes an effort to solve areas for improvement derived from safety culture assessment. However, there are some areas to take a long time in completing the work. Therefore, these actions are necessary to be carried out consistently and continuously. KHNP also developed recently safety culture enhancement system based on web. All information related to safety culture in KHNP will be shared through this web system and this system will be used to safety culture assessment. In addition to, KHNP plans to develop safety culture indicators for monitoring the symptoms of safety culture weakening

  15. KHNP Safety Culture Framework based on Global Standard, and Lessons learned from Safety Culture Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younggab; Hur, Nam Young; Jeong, Hyeon Jong [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In order to eliminate the vague fears of the people about the nuclear power and operate continuously NPPs, a strong safety culture of NPPs should be demonstrated. Strong safety culture awareness of workers can overcome social distrust about NPPs. KHNP has been a variety efforts to improve and establish safety culture of NPPs. Safety culture framework applying global standards was set up and safety culture assessment has been carried out periodically to enhance safety culture of workers. In addition, KHNP developed various safety culture contents and they are being used in NPPs by workers. As a result of these efforts, safety culture awareness of workers is changed positively and the safety environment of NPPs is expected to be improved. KHNP makes an effort to solve areas for improvement derived from safety culture assessment. However, there are some areas to take a long time in completing the work. Therefore, these actions are necessary to be carried out consistently and continuously. KHNP also developed recently safety culture enhancement system based on web. All information related to safety culture in KHNP will be shared through this web system and this system will be used to safety culture assessment. In addition to, KHNP plans to develop safety culture indicators for monitoring the symptoms of safety culture weakening.

  16. The Competence Promoting by NNSA for Keeping High Level Nuclear Safety: The Corner Stone of the Nuclear Safety Regulation Edifice

    International Nuclear Information System (INIS)

    Hu, L.

    2016-01-01

    Facing the fast development of the nuclear power industry and the application of radioactive sources, The MEP(NNSA) is endeavoured to promoting its competency, including: complementing the law system, training and recruiting staff to keep a capable team, constructing the R&D base to keep the basic capability, promoting safety culture both for the industry and the regulator. After the Fukushima nuclear accident, the MEP(NNSA) planned to construct R&D base, in which the Platform Nuclear Safety Monitoring and Emergency Responding, the Platform of Safety Technology of PWR Testing, the Laboratory of Safety Management Technology of Nuclear Waste Verification, the Laboratory of Environmental Radiation Monitoring and the Center of International Cooperation are included. On the other hand, the MEP(NNSA) issued Chinese nuclear safety culture policy declaration in 2014, and carried out a large scale Specialized Action for Nuclear Safety Promotion to promote the nuclear safety culture both for the industry and herself. For the nuclear regulator, It is essential to conduct the competence promoting by both “hardware” and “software”, the former is the material foundation of regulation authority, which will be effectively functioning under the facilitating of the latter. (author)

  17. 77 FR 76003 - Submission for OMB Review; Comment Request-Safety Standard for Omnidirectional Citizens Band Base...

    Science.gov (United States)

    2012-12-26

    ... Request--Safety Standard for Omnidirectional Citizens Band Base Station Antennas AGENCY: Consumer Product... information associated with the Commission's safety standard for omnidirectional citizens band base station... information required in the Safety Standard for Omnidirectional Citizens Band Base Station (16 CFR Part 1204...

  18. Developing glovebox robotics to meet the national robot safety standard and nuclear safety criteria

    International Nuclear Information System (INIS)

    McMahon, T.T.; Sievers, R.H.

    1991-09-01

    Development of a glove box based robotic system by the Lawrence Livermore National Laboratory (LLNL) is reported. Safety issues addressed include planning to meet the special constraints of operations within a hazardous material glove box and with hostile environments, compliance with the current and draft national robotic system safety standards, and eventual satisfaction of nuclear material handling requirements. Special attention has been required for the revision to the robot and control system models which antedate adoption of the present national safety standard. A robotic test bed, using non-radioactive surrogates is being activated at the Lawrence Livermore National Laboratory to develop the material handling system and the process interfaces for future special nuclear material processing applications. Part of this effort is to define, test, and revise adequate safety controls to ensure success when the system is eventually deployed at a DOE site. The current system is primarily for demonstration and testing, but will evolve into the baseline configuration from which the production system is to be derived. This results in special hazards associated with research activities which may not be present on a production line. Nuclear safety is of paramount importance and has been successfully addressed for 50 years in the DOE weapons production complex. It carries its particular requirements for robot systems and manual operations, as summarized below: Criticality must be avoided (materials cannot consolidate or accumulate to approach a critical mass). Radioactive materials must be confined. The public and workers must be protected from accountable radiation exposure. Nuclear material must be readily retrievable. Nuclear safety must be conclusively demonstrated through hazards analysis. 7 refs

  19. 2016 Updated American Society of Clinical Oncology/Oncology Nursing Society Chemotherapy Administration Safety Standards, Including Standards for Pediatric Oncology.

    Science.gov (United States)

    Neuss, Michael N; Gilmore, Terry R; Belderson, Kristin M; Billett, Amy L; Conti-Kalchik, Tara; Harvey, Brittany E; Hendricks, Carolyn; LeFebvre, Kristine B; Mangu, Pamela B; McNiff, Kristen; Olsen, MiKaela; Schulmeister, Lisa; Von Gehr, Ann; Polovich, Martha

    2016-12-01

    Purpose To update the ASCO/Oncology Nursing Society (ONS) Chemotherapy Administration Safety Standards and to highlight standards for pediatric oncology. Methods The ASCO/ONS Chemotherapy Administration Safety Standards were first published in 2009 and updated in 2011 to include inpatient settings. A subsequent 2013 revision expanded the standards to include the safe administration and management of oral chemotherapy. A joint ASCO/ONS workshop with stakeholder participation, including that of the Association of Pediatric Hematology Oncology Nurses and American Society of Pediatric Hematology/Oncology, was held on May 12, 2015, to review the 2013 standards. An extensive literature search was subsequently conducted, and public comments on the revised draft standards were solicited. Results The updated 2016 standards presented here include clarification and expansion of existing standards to include pediatric oncology and to introduce new standards: most notably, two-person verification of chemotherapy preparation processes, administration of vinca alkaloids via minibags in facilities in which intrathecal medications are administered, and labeling of medications dispensed from the health care setting to be taken by the patient at home. The standards were reordered and renumbered to align with the sequential processes of chemotherapy prescription, preparation, and administration. Several standards were separated into their respective components for clarity and to facilitate measurement of adherence to a standard. Conclusion As oncology practice has changed, so have chemotherapy administration safety standards. Advances in technology, cancer treatment, and education and training have prompted the need for periodic review and revision of the standards. Additional information is available at http://www.asco.org/chemo-standards .

  20. The safety relief valve handbook design and use of process safety valves to ASME and International codes and standards

    CERN Document Server

    Hellemans, Marc

    2009-01-01

    The Safety Valve Handbook is a professional reference for design, process, instrumentation, plant and maintenance engineers who work with fluid flow and transportation systems in the process industries, which covers the chemical, oil and gas, water, paper and pulp, food and bio products and energy sectors. It meets the need of engineers who have responsibilities for specifying, installing, inspecting or maintaining safety valves and flow control systems. It will also be an important reference for process safety and loss prevention engineers, environmental engineers, and plant and process designers who need to understand the operation of safety valves in a wider equipment or plant design context. . No other publication is dedicated to safety valves or to the extensive codes and standards that govern their installation and use. A single source means users save time in searching for specific information about safety valves. . The Safety Valve Handbook contains all of the vital technical and standards informat...

  1. Safety evaluation and regulation of chemicals. 2. Impact of regulations - improvement of methods

    Energy Technology Data Exchange (ETDEWEB)

    Homburger, F [ed.

    1985-01-01

    This volume assesses the impact of new scientific knowledge on the testing and regulation of chemicals, including food additives, drugs, cosmetics, pesticides, and other commercial substances. Apart from describing the newest tests, regulations, and risk assessment strategies, chapters reflect changes forced by both the growing need for cost containment and the mounting pressure to find alternatives to animal testing. Based on an international congress, the book also brings the advantage of diversity in the background and nationality of the authors, thus allowing a view of central problems according to the different interests of academics, industry scientists, government scientists, and regulators. The book opens with coverage of national and international regulations designed to prevent and control damage to human health and the environment. Topics range from basic problems of policy design and enforcement to the specific requirements for chemical regulation in developing countries. The next chapters cover new tests, systems, and assays used in in vivo safety testing. Readers will find a critical assessment of tests used to determine teratogenicity, mutagenicity, carcinogenicity, neurotoxicity and chemical lethality. Other topics include factors operating in the public perception of chemical hazards, guidelines for decision making in the management and regulation of risks, and future trends in the methodology of safety evaluation. The volume concludes with an overview of in vitro methods for testing hepatotoxicity. Several short-term in vitro test models and limited in vivo bioassays are presented and evaluated in terms of their capacity to substitute for long-term animal studies. Expert and thorough in its coverage, the book offers a wealth of technical and practical information for toxicologists, pharmacologists, industrial policy makers, and government regulators. (orig.). With 67 figs., 34 tabs.

  2. 49 CFR 192.357 - Customer meters and regulators: Installation.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Customer meters and regulators: Installation. 192... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Customer Meters, Service Regulators, and Service Lines § 192.357 Customer meters and regulators: Installation. (a...

  3. Safety management systems and their role in achieving high standards of operational safety

    International Nuclear Information System (INIS)

    Coulston, D.J.; Baylis, C.C.

    2000-01-01

    Achieving high standards of operational safety requires a robust management framework that is visible to all personnel with responsibility for its implementation. The structure of the management framework must ensure that all processes used to manage safety interlink in a logical and coherent manner, that is, they form a management system that leads to continuous improvement in safety performance. This Paper describes BNFL's safety management system (SMS). The SMS has management processes grouped within 5 main elements: 1. Policy, 2. Organisation, 3. Planning and Implementation, 4. Measuring and Reviewing Performance, 5. Audit. These elements reflect the overall process of setting safety objective (from Policy), measuring success and reviewing the performance. Effective implementation of the SMS requires senior managers to demonstrate leadership through their commitment and accountability. However, the SMS as a whole reflects that every employee at every level within BNFL is responsible for safety of operations under their control. The SMS therefore promotes a proactive safety culture and safe operations. The system is formally documented in the Company's Environmental, Health and Safety (EHS) Manual. Within in BNFL Group, the Company structures enables the Manual to provide overall SMS guidance and co-ordination to its range of nuclear businesses. Each business develops the SMS to be appropriate at all levels of its organisation, but ensuring that each level is consistent with the higher level. The Paper concludes with a summary of BNFL's safety performance. (author)

  4. 77 FR 15351 - Federal Motor Vehicle Safety Standards; Theft Protection and Rollaway Prevention

    Science.gov (United States)

    2012-03-15

    ... [Docket No. NHTSA-2011-0174] RIN 2127-AK88 Federal Motor Vehicle Safety Standards; Theft Protection and... (NPRM) to amend Federal Motor Vehicle Safety Standard (FMVSS) No. 114, Theft Protection and Rollaway... requesting that certain information, including vehicle owner questionnaires (VOQs) referenced in the NPRM, be...

  5. Knowledge Management for Safety Regulators: Cooperation to Achieve a Much Needed Product

    International Nuclear Information System (INIS)

    Mallick, S.

    2016-01-01

    Full text: Knowledge management (KM) has been identified by a number of IAEA documents as one of the key factors that can contribute to the safe and efficient operation of nuclear facilities in Member States. The IAEA Strategic Approaches to Education and Training in Nuclear and Radiation, Transport and Waste Safety identify and underline KM as an important line of action for effective national and organizational strategies in education and training. The capacity building “umbrella concept”, developed within the Action Plan in Nuclear Safety, also recognizes KM as one of the main four pillars (Education and Training, Human Resource Development, Knowledge Management and Knowledge Networks) of capacity building. Within existing IAEA publications, there is currently no specific practical guidance on how to develop and implement KM programmes for regulators. As such, in 2014, the IAEA Steering Committee on Regulatory Capacity Building and Knowledge Management requested the IAEA to develop a publication providing such practical guidance. The objective of the publication is to provide practical guidance to Member States on how to plan, establish and maintain an effective safety KM programme for regulators of facilities and activities. The report will identify benefits and uses of KM by regulators and will describe how a regulator could use KM in support of its functions. This presentation will provide an overview of the Knowledge Management for Safety Regulators document while highlighting the cross-departmental cooperation (i.e., NS and NE) used in its development. Furthermore, this presentation will provide insight into the challenges currently being faced by safety regulators vis-à-vis KM programmes and present potential paths forward with respect to the definition of efficient and effective KM indicators. (author

  6. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  7. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist

  8. Study on the development of safety regulations for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Wei Fangxin

    2012-01-01

    The development of regulations under Regulations on Safety Management of Radioactive Waste has become necessary as the issuance of it. The regulations related to geological disposal of high-level radioactive waste can promote the progress of research and development on geological disposal of high-level radioactive waste in China. This paper has present suggestions on development of regulations on geological disposal of high-level radioactive waste by analyzing development of safety regulations on geological disposal of high-level radioactive waste in foreign countries and problems occurred in China and discussed important issues related to the development of safety regulations on geological disposal of high-level radioactive waste. (author)

  9. EMPLOYEE PERCEPTIONS OF OCCUPATIONAL HEALTH AND SAFETY STANDARDS IN THE STEEL INDUSTRY

    Directory of Open Access Journals (Sweden)

    J. Mojapelo

    2016-07-01

    Full Text Available The inability to follow occupational health and safety standards typically resultsin accidents that place severe financial burdens on both employees as well asorganisations. The aim of this studyis to explore the perceptionsof employees inthe steel industry towards occupational health and safety standards in the steelindustry in South Africa. A survey was conducted in which a structuredquestionnaire was distributed to a purposive sample of 165 employees employedby a largesteel processing company in Gauteng Province. The collected data wereanalysed using SPSS (Version 22.0. A combination of descriptive statistics andanalysis of mean scores was applied to meet the aim of the study. The resultsreveal that employees in the steel industry perceived that occupational health andsafety standards were satisfactory in all seven occupational health and safetydimensions considered in this study. These are (1 information and training, (2health and safety awareness, (3 employee behaviour (4 role of the supervisor, (5health and safety reporting mechanisms, (6 workplace inspection, and (7workplace environment. Among these dimensions, safety awareness emerged asthe most important dimension to employees. The results may be utilised bymanagers in the steel industry to identify and direct their attention to the keyoccupational health and safety factors in their different contexts.

  10. A comparison of some Mexican/U.S. safety regulations

    Energy Technology Data Exchange (ETDEWEB)

    Bunner, W.R. [Training Associates, Columbus, OH (United States)

    1994-12-31

    In the US, safety and hygiene began to be enforced broadly with the formation of the US Department of Labor`s, Occupational Safety and Health Administration (OSHA) in 1970. In Mexico, the 1917 Constitution required companies to protect their workers against safety and hygiene hazards in the workplace. Additional requirements were added with the Federal Labor Law of 1931. General safety and hygiene regulations were added in 1934. Modern-day federal labor law in Mexico requires the creation of mixed safety and hygiene commissions in all industries. However, only about 114,000 workplaces have registered mixed commissions. In a similar vein, the most favored OSHA reform bill in the US proposes to require safety and health committees in all work places. At this time such committees are common in larger companies but not in smaller ones.

  11. 77 FR 73345 - Safety Standard for Bedside Sleepers

    Science.gov (United States)

    2012-12-10

    ... durable infant or toddler products, in consultation with representatives of consumer groups, juvenile... Commission (Commission or CPSC) to promulgate consumer product safety standards for durable infant or toddler... marking, labeling, and instructional literature of the proposed rule should be directed to the Office of...

  12. 48 CFR 1352.271-82 - Department of Labor occupational safety and health standards for ship repair.

    Science.gov (United States)

    2010-10-01

    ... occupational safety and health standards for ship repair. 1352.271-82 Section 1352.271-82 Federal Acquisition... of Provisions and Clauses 1352.271-82 Department of Labor occupational safety and health standards... Occupational Safety and Health Standards for Ship Repair (APR 2010) The contractor, in performance of all work...

  13. Harmonization of legislation and regulations to achieve food safety: US and Canada perspective.

    Science.gov (United States)

    Keener, Larry; Nicholson-Keener, Sophia M; Koutchma, Tatiana

    2014-08-01

    , for example, have very stable governments, are leaders in trade and commerce and enjoy high standards of public health. It is not by accident or coincidence that these nations are also among the world's wealthiest. Attainment of national priorities, especially those related to promoting trade in foodstuffs and also in preserving public health (food safety), would benefit greatly from international efforts in harmonizing food safety regulations and legislation. © 2013 Society of Chemical Industry.

  14. A survey of costs incurred in U.K. X-ray diffraction research laboratories as a consequence of proposed regulations for radiological safety

    International Nuclear Information System (INIS)

    Blow, D.M.

    1981-01-01

    A small survey of British X-ray diffraction laboratories was undertaken, with the aim of discovering the effects of the Health and Safety at Work Act (1974) and the draft regulations on radiological protection and ionising radiations (1978) on the practice of X-ray crystallography. The responses lead to the conclusion that the average cost incurred in bringing X-ray diffraction equipment to a safety standard compatible with the draft regulations (as judged by the respondents) will exceed Pound2,000 per X-ray generator. The safety costs will represent an overhead charge of at least 15-18% on the purchase of an X-ray generator, requiring additional capital outlay of over Pound5m to maintain the current level of X-ray diffraction activity in the U.K. There seems to be no evidence of a high accident rate with diffraction equipment, and the cost of the safety precautions bears no relation to the risks involved. (author)

  15. Framework for applying probabilistic safety analysis in nuclear regulation

    International Nuclear Information System (INIS)

    Dimitrijevic, V.B.

    1997-01-01

    The traditional regulatory framework has served well to assure the protection of public health and safety. It has been recognized, however, that in a few circumstances, this deterministic framework has lead to an extensive expenditure on matters hat have little to do with the safe and reliable operation of the plant. Developments of plant-specific PSA have offered a new and powerful analytical tool in the evaluation of the safety of the plant. Using PSA insights as an aid to decision making in the regulatory process is now known as 'risk-based' or 'risk-informed' regulation. Numerous activities in the U.S. nuclear industry are focusing on applying this new approach to modify regulatory requirements. In addition, other approaches to regulations are in the developmental phase and are being evaluated. One is based on the performance monitoring and results and it is known as performance-based regulation. The other, called the blended approach, combines traditional deterministic principles with PSA insights and performance results. (author)

  16. Food suppliers' perceptions and practical implementation of food safety regulations in Taiwan.

    Science.gov (United States)

    Ko, Wen-Hwa

    2015-12-01

    The relationships between the perceptions and practical implementation of food safety regulations by food suppliers in Taiwan were evaluated. A questionnaire survey was used to identify individuals who were full-time employees of the food supply industry with at least 3 months of experience. Dimensions of perceptions of food safety regulations were classified using the constructs of attitude of employees and corporate concern attitude for food safety regulation. The behavior dimension was classified into employee behavior and corporate practice. Food suppliers with training in food safety were significantly better than those without training with respect to the constructs of perception dimension of employee attitude, and the constructs of employee behavior and corporate practice associated with the behavior dimension. Older employees were superior in perception and practice. Employee attitude, employee behavior, and corporate practice were significantly correlated with each other. Satisfaction with governmental management was not significantly related to corporate practice. The corporate implementation of food safety regulations by suppliers was affected by employees' attitudes and behaviors. Furthermore, employees' attitudes and behaviors explain 35.3% of corporate practice. Employee behavior mediates employees' attitudes and corporate practices. The results of this study may serve as a reference for governmental supervision and provide training guidelines for workers in the food supply industry. Copyright © 2015. Published by Elsevier B.V.

  17. Impact of New Radiation Safety Standards on Licensing Requirements of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Strohal, P.; Subasic, D.; Valcic, I.

    1996-01-01

    As the outcomes of the newly introduced safety philosophies, new and more strict safety design requirements for nuclear installation are expected to be introduced. New in-depth defence measures should be incorporated into the design and operation procedure for a nuclear installation, to compensate for potential failures in protection or safety measures. The new requirements will also apply to licensing of NPP's operation as well as to licensing of nuclear sites, especially for radioactive waste disposal sites. This paper intends to give an overview of possible impacts of new internationally agreed basic safety standards with respect to NPP and related technologies. Recently issued new basic safety standards for radiation protection are introducing some new safety principles which may have essential impact on future licensing requirements regarding nuclear power plants and radioactive waste installations. These new standards recognize exposures under normal conditions ('practices') and intervention conditions. The term interventions describes the human activities that seek to reduce the existing radiation exposure or existing likelihood of incurring exposure which is not part of a controlled practice. The other new development in safety standards is the introduction of so called potential exposure based on the experience gained from a number of radiation accidents. This exposure is not expected to be delivered with certainty but it may result from an accident at a source or owing to an event or sequence of events of a probabilistic nature, including equipment failures and operating errors. (author)

  18. Implementation in Russia and the European Union of International Safety Standards of Identity Documents with Biometric Data: Legal Regulation and Perspectives

    Directory of Open Access Journals (Sweden)

    Alexander Grigoryevich Volevodz

    2015-01-01

    Full Text Available The article contains the findings of a research into particular aspects of use of identity documents with personal biometric data. It considers the international safety standards of documents with biometric data worked out by the International Civil Aviation Organization (ICAO, pursuant to which those data should be included into machine-readable documents used by their holders for travel to various states. It contains the information on the implementation of these international standards in Russian and European Union law. The author has substantiated a conclusion to the effect that the procedure established in Russia for production and issuance, as well as for use of international, diplomatic and service passports identifying the Russian Federation citizen outside the Russian Federation territory, containing electronic information carriers with personal and biometric personal data, currently conforms to the international safety standards of documents with biometric data. The article surveys the experience of introducing domestic biometric identity documents - electronic passports in various countries of the world, and the problems arising therefrom. It substantiates the advantages and disadvantages of determining a passport of the Russian Federation citizen issued in the form of an identity card with an electronic information carrier, as the main document of the Russian Federation citizen identifying him domestically within the country's territory.

  19. The Role of the Regulator in the Field of Safety Culture to Shun Nuclear Accident

    International Nuclear Information System (INIS)

    Kandil, M.M.

    2016-01-01

    The 2011 accident at the Fukushima Daiichi nuclear power plant in Japan has, as might be expected, led to improvements in equipment at plants around the world that have fortified safety systems and allowed for better protection against rare, extreme natural events. Equally important to the process of improving nuclear safety is the emphasis placed on implementing quality improvements to the human side of nuclear safety, a crucial element that is often not considered by those outside the nuclear sector. Ensuring nuclear reactor safety is not only a question of physical protection against all credible threats, enhancing robustness of important safety systems and increasing redundancy of back-up power and water cooling systems, but also one of making certain that qualified and trained staff are supported by effective procedures. However, these assets are valued only in an organizational culture that places a premium on ensuring high levels of safety, or implementing what is called an effective “nuclear safety culture”. Principles, characteristics and factors for effective safety culture are to great extent similar between licencees and regulatory bodies and can be applied for developing RB’s safety. Safety is the primary purpose of the regulatory body, Regulator plays a significant role in the field of nuclear safety even though the prime responsibility for safety belongs to the operator, and it is the regulator which actually decides what is considered to be safe. In order to effectively implement the international principle of high level of nuclear safety, nuclear safety culture should be clearly named as an objective in international nuclear legal acts and the regulator’s responsibility for promotion of nuclear safety culture should be established. What is more difficult for the regulator is finding the right balance of firmness but fairness in dealing with the operator. In addition to enforcing safety regulations, the regulator should have a positive

  20. 48 CFR 352.223-70 - Safety and health.

    Science.gov (United States)

    2010-10-01

    ... laboratories; and other applicable occupational health and safety standards issued by OSHA and included in 29... Commission Standards and Regulations, pursuant to the Energy Reorganization Act of 1974 (42 U.S.C. 5801 et... health and safety operating procedures and practices for both personnel and facilities: (i) Biosafety in...

  1. 48 CFR 1371.113 - Department of Labor occupational safety and health standards for ship repair.

    Science.gov (United States)

    2010-10-01

    ... occupational safety and health standards for ship repair. 1371.113 Section 1371.113 Federal Acquisition... CONSTRUCTION AND SHIP REPAIR Provisions and Clauses 1371.113 Department of Labor occupational safety and health standards for ship repair. Insert clause 1352.271-82, Department of Labor Occupational Safety and Health...

  2. Compilation of nuclear safety criteria potential application to DOE nonreactor facilities

    International Nuclear Information System (INIS)

    1992-03-01

    This bibliographic document compiles nuclear safety criteria applied to the various areas of nuclear safety addressed in a Safety Analysis Report for a nonreactor nuclear facility (NNF). The criteria listed are derived from federal regulations, Nuclear Regulatory Commission (NRC) guides and publications, DOE and DOE contractor publications, and industry codes and standards. The titles of the chapters and sections of Regulatory Guide 3.26, ''Standard Format and Content of Safety Analysis Reports for Fuel Reprocessing Plants'' were used to format the chapters and sections of this compilation. In each section the criteria are compiled in four groups, namely: (1) Code of Federal Regulations, (2) USNRC Regulatory Guides, (3) Codes and Standards, and (4) Supplementary Information

  3. Investigating the influence on safety of retrofitting Italian motorways with barriers meeting a new EU standard.

    Science.gov (United States)

    Cafiso, Salvatore; D'Agostino, Carmelo; Persaud, Bhagwant

    2017-04-03

    A new European Union (EU) regulation for safety barriers, which is based on performance, has encouraged road agencies to perform an upgrade of old barriers, with the expectation that there will be safety benefits at the retrofitted sites. The new class of barriers was designed and installed in compliance with the 1998 (European Norm) EN 1317 standards for road restraint systems, which lays down common requirements for the testing and certification of road restraint systems in all countries of the European Committee for Standardization (CEN). Both the older and new barriers are made of steel and are installed in such a way as to avoid vehicle intrusion, but the older ones are thought to be only effective at low speeds and large angles of impact. The new standard seeks to remedy this by providing better protection at higher speeds. This article seeks to quantify the effect on the frequency of fatal and injury crashes of retrofitting motorways with barriers meeting the new standards. The estimation of the crash modification was carried out by performing an empirical Bayes before-after analysis based on data from the A18 Messina-Catania motorway in Italy. The methodology has the great advantage to account for the regression to the mean effects. Besides, to account for time trend effects and dispersion of crash data, a modified calibration methodology of safety performance was used. This study, based on data collected on 76 km of motorway in the period 2000-2012, derived Crash Modification Factor point estimates that indicate reductions of 72% for run-off-road fatal and injury crashes and 38% in total fatal and injury crashes that could be expected by upgrading an old safety barrier by complying with new EU 1317 standards. The estimated benefit-cost ratio of 5.57 for total crashes indicates that the treatment is cost effective. The magnitude of this benefit indicates that the retrofits are cost-effective even for total crashes and should continue in any European country

  4. OSHA Standard Time: Worker Safety Rules for Schools.

    Science.gov (United States)

    Smith, Sharon E.; Roy, Kenneth R.

    1994-01-01

    Briefly describes six of the Occupational Safety and Health Administration (OSHA) standards applicable to school districts. Provides a suggested approach for compliance and discusses how one district has begun to meet the challenge. The mandated OSHA programs concern the following: (1) hazard communication; (2) chemical hygiene; (3) bloodborne…

  5. Working group 1A - basis for the standard-safety

    International Nuclear Information System (INIS)

    Whipple, C.

    1993-01-01

    This paper presents a summary of the progress made by working group 1A (Basis for the Safety Standard) during the Electric Power Research Institute's EPRI Workshop on the technical basis of EPA HLW Disposal Criteria, March 1993. This group discussed the semantics of terms within the standard 40 CFR Part 191, the implementation of this standard, the advanced notice of rulemaking, the issue of emitting carbon-14 through a gaseous pathway, the strategy of dealing with standards for contamination of drinking water and groundwater, the 100,000 year time frame, and the analysis of specific comments. The specific comments dealt with the cost effectiveness of the standard, the dose histogram for populations and individuals, groundwater definition and the underlying technology driver for this standard

  6. Technical bases for criticality safety standards

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1980-01-01

    An American National Standard implies a consensus of those substantially concerned with its scope and provisions. The technical basis, or foundation, on which the consensus rests, must in turn, be firmly established and documented for public review. The technical bases are discussed and reviewed of several standards in different stages of completion and acceptance: ANSI/ANS-8.12, 1978, Nuclear Criticality Control and Safety of Homogeneous Plutonium - Uranium Mixtures Outside Reactors (Approved July 17, 1978); ANS-815, Nuclear Criticality Control of Special Actinide Elements (Draft No. 5 of newly proposed standard); ANS-8.14, Use of Solutions of Neutron Absorbers for Criticality Control (Draft No. 4 of newly proposed standard); ANS-8.5 (Revision of N16.4, 1971), Use of Borosilicate-Glass Raschig Rings as a Neutron Absorber in Solutions of Fissile Material (Draft No. 5 as a result of prescribed five-year review and update of old standard). In each of the preceding, the newly proposed (or revised) limits are based on the extension of experimental data via well established calculations, or by means of independent calculations with adequate margins for uncertainties. The four cases serve to illustrate the insight of the work group members in the establishment of the technical bases for the limits and the level of activity required on their part in the preparation of ANSI Standards. A time span of from four up to seven years has not been uncommon for the preparation, review, and acceptance of an ANSI Standard. 8 figures. 7 tables

  7. Role IAEA implementation of ICRP-60 on regulations the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Elshinawy, R.K.M.; Gomaa, M.A.

    1994-01-01

    In november 1990, the (ICRP) adopted its 1990 recommendations (ICRP-60) ( 1). These recommendations will significantly influence not only IAEA's basic safety standards (safety series 9) ( 2), but also the IAEA regulations for the safe transport of radioactive material ( 3) and its supporting documents ( 4-6). IAEA experts are currently engaged in the revision of the transport regulations. This revision process led to the publication of the revised transport regulations of 1966. The transport regulations are developed to ensure safety during movement of radioactive materials, and to provide reasonable assurance that the transport activities comply with the basic safety standards for radiation protection

  8. Status of Recent Developments in the Technical Standards of Japan

    International Nuclear Information System (INIS)

    Ahn, Hyung-Joon; Ahn, Sang-Kyu; Koh, Jae-Dong; Kim, Chang-Bum

    2006-01-01

    Japan has systematically revamped its technical standards for nuclear reactor facilities by formulating various performance regulations. Being part of a trend toward deregulation, such efforts toward social regulation is aimed at effectively operating administrative procedural laws to keep pace with global trends and enhance the benefits of deregulation under the principle of self-responsibility. Based on the collection of public opinions in February and March 2005, the Nuclear and Industrial Safety Agency(NISA) presented its position that it was required to promptly perform a flexible assessment of the technical feasibility of formulated society and association standards. Current, pressing issues are summarized as an early revision of technical standards regarding nuclear facilities for power generation, use of society and association standards, and the overhaul of nuclear safety regulations subject to performance regulations. Subjecting technical standards to performance regulations means stipulating the qualitative aspects of performance and the targets that certain facilities must achieve, which are not specific standards, but general compulsory standards. This study examines the early revision of technical standards on nuclear facilities for power generation and the status of the use of society and association standards, as well as introducing the details of revisions in the concrete containment vessel standards as specific examples

  9. The safety regulation of small-scale coal mines in China: Analysing the interests and influences of stakeholders

    International Nuclear Information System (INIS)

    Song, Xiaoqian; Mu, Xiaoyi

    2013-01-01

    Small scale coal mines (SCMs) have played an important role in China’s energy supply. At the same time, they also suffer from many social, economic, environmental, and safety problems. The Chinese government has made considerable efforts to strengthen the safety regulation of the coal mining industry. Yet, few of these efforts have proven to be very effective. This paper analyzes the interests and influences of key stakeholders in the safety regulation of SCMs, which includes the safety regulator, the local government, the mine owner, and mineworkers. We argue that the effective regulation of coal mine safety must both engage and empower mineworkers. - Highlights: ► Small scale coal mines have played an important role in China's energy supply. ► We analyze the interests and influences of key stakeholders in the safety regulation of small coal mines. ► The mineworkers have the strongest interest but least influence. ► An effective regulation must engage the mineworkers, organize, and empower them.

  10. The IAEA Promotes the Application of Safety Standards and Best Practices for the Management of Radioactive Waste

    International Nuclear Information System (INIS)

    2014-01-01

    The IAEA works to promote a high level of safety as it facilitates peaceful uses of nuclear energy worldwide. The IAEA’s Statute authorizes it to establish or adopt standards of safety for protection of health and minimization of danger to life and property, and to provide for the application of these standards. The Statute also mandates the IAEA to foster the exchange of scientific and technical information to facilitate the peaceful uses of atomic energy. To this end, the IAEA develops safety standards on different topics, including on the safety of radioactive waste management. These standards, issued in the IAEA Safety Standards Series, reflect an international consensus on what constitutes a high level of safety for protecting people from harmful effects of ionizing radiation and protecting the environment

  11. NRC safety research in support of regulation--FY 1989

    International Nuclear Information System (INIS)

    1990-04-01

    This report, the fifth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1989. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  12. NRC safety research in support of regulation, FY 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report, the seventh in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1991. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  13. NRC safety research in support of regulation, FY 1990

    International Nuclear Information System (INIS)

    1991-04-01

    This report, the sixth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1990. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  14. 77 FR 10358 - Acceptance of ASTM F963-11 as a Mandatory Consumer Product Safety Standard

    Science.gov (United States)

    2012-02-22

    ... CONSUMER PRODUCT SAFETY COMMISSION 16 CFR Chapter II Acceptance of ASTM F963-11 as a Mandatory... have accepted the revised ASTM F963-11 standard titled, Standard Consumer Safety Specifications for Toy Safety. Pursuant to section 106 of the Consumer Product Safety Improvement Act of 2008, ASTM F963-11 will...

  15. 77 FR 66638 - The Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office...

    Science.gov (United States)

    2012-11-06

    ... Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office of Management...) approval of the information collection requirements specified in the Standard on Process Safety Management...: The Standard on Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). OMB Number...

  16. A nuclear safety in 21 century

    International Nuclear Information System (INIS)

    Osmachkin, V.S.

    2003-01-01

    In the paper some topics of nuclear safety are discussed, namely current situation in the world energetics and a potential of nuclear energy for sustainable development of the world, Nuclear Safety Standards and modern trends in Safety Regulation, Radiation Protection Standards are rather conservative, are based on disputable approaches and have to be more pragmatic, necessity to overcome the syndromes of awful consequences of nuclear accidents at nuclear plants, residual risks of nuclear accidents have to be covered by clear compulsory insurance actions. It is shown, that now it is worthwhile to consider efficiency of existing methods of nuclear safety regulation. It is possible, that an idea of guaranteed safety [1] could become a new approach to nuclear safety. It is based on practically total elimination of severe accidents and insurance of residual risks of nuclear accidents. The realization of such idea necessitates the consideration of all spectrum of initiating events, human errors and man-made actions, more realistically predicting consequences of accidents and the probable economical detriments. It will be a benefit for gaining public support to nuclear power. (author)

  17. Safety regulation: The lessons of workplace safety rule management for managing the regulatory burden

    OpenAIRE

    Hale, A.R.; Borys, D.; Adams, M.

    2012-01-01

    There is a strong political consensus in a number of countries that occupational safety and health regulation is stifling industrial innovation and development and is feeding a culture of damaging risk aversion and petty bureaucracy. In a number of countries this has led to proposals to repeal regulations and reduce the regulatory burden. The authors were commissioned to prepare a discussion paper on this issue by the Mercatus Center of George Mason University in Arlington, Virginia, aimed pa...

  18. Classification of research reactors and discussion of thinking of safety regulation based on the classification

    International Nuclear Information System (INIS)

    Song Chenxiu; Zhu Lixin

    2013-01-01

    Research reactors have different characteristics in the fields of reactor type, use, power level, design principle, operation model and safety performance, etc, and also have significant discrepancy in the aspect of nuclear safety regulation. This paper introduces classification of research reactors and discusses thinking of safety regulation based on the classification of research reactors. (authors)

  19. Collaborative, cross-national studies on health and safety in seafaring for evidence-based Maritime policy and regulations.

    Science.gov (United States)

    Jensen, Olaf C

    2009-01-01

    Until recently, maritime health and safety policies and regulations were sparsely based on health and safety research, and only a small number of countries contributed to new research. To strengthen maritime health and safety research activities by presenting a study example and discussing the possibilities and needs for more national and cross-national research. In a cross-national epidemiological study example, the seafarers from eleven countries completed small, anonymous questionnaires concerning the working conditions on their latest tours at sea while waiting for their health examinations. Significant disparities were pointed out among the nationalities, e.g., the length of the tours at sea, the proportional distribution of officers and non-officers, the mean age structure, the injury incidence rates, and the differences of occupational safety standards. The analysis of all data together increased the statistical strength of the multivariate analyses and allowed for valid comparisons among the nationalities. The questionnaire data was used successfully in the collaborative study example, but other data sources and methods are useful for health and safety research in seafaring as well. More national and cross-national research on maritime health and safety is warranted.

  20. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  1. IEEE standard requirements for reliability analysis in the design and operation of safety systems for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The purpose of this standard is to provide uniform, minimum acceptable requirements for the performance of reliability analyses for safety-related systems found in nuclear-power generating stations, but not to define the need for an analysis. The need for reliability analysis has been identified in other standards which expand the requirements of regulations (e.g., IEEE Std 379-1972 (ANSI N41.2-1972), ''Guide for the Application of the Single-Failure Criterion to Nuclear Power Generating Station Protection System,'' which describes the application of the single-failure criterion). IEEE Std 352-1975, ''Guide for General Principles of Reliability Analysis of Nuclear Power Generating Station Protection Systems,'' provides guidance in the application and use of reliability techniques referred to in this standard

  2. Safety practice and regulations in different IGORR member countries

    International Nuclear Information System (INIS)

    Hickman, C.; Minguet, J.L.; Arnould, F.

    1999-01-01

    In the suggestions of the 1996 IGORR 5 conference, Technicatome proposed 'Comparing Regulations for Research Reactors in Participating Countries'. The aim was to enhance and facilitate the dissemination of pertinent information amongst potential utilities of operational research reactors. A questionnaire on the following topics was subsequently sent out to IGORR 5 participants : Procedures for Research Reactors and Associated Equipment, Safety Analysis, Safety Related Components, Radiation Protection and Management of Nuclear materials. The objective of the present paper is to identify major trends, similarities and differences in the approaches adopted by different countries. Its scope has been limited to: Licensing and Regulatory approach; Operating and Safety documents; Safety Analysis; Radiological Safety; Management of Nuclear Materials. The investigations carried out indicate that to a large extent international recommendations (IAEA, ICPR,..) are being followed and that there is a general tendency to integrate them into national legislation and regulations. Although Safety Culture varies from one country to another an overall general consensus exists on the basic approach to safety inasmuch as: different countries have their own legally defined Safety Authorities, a Preliminary Safety Report is required before a research reactor can be built, and a final Safety Report before the core can be loaded with nuclear fuel and the reactor made critical; these documents must be accepted by the Safety Authorities concerned; a combination of defense-in-depth strategy (deterministic approach) and probabilistic analysis is applied; three or more safety classes are used to categorize systems and components; the single failure criterion is taken into consideration for systems and components having safety functions; both Operating Basis and Safety Shutdown type earthquakes are considered; the crashing of an aircraft onto a research reactor is taken into consideration

  3. 76 FR 55056 - Toy Safety Standard: Strategic Outreach and Education Plan

    Science.gov (United States)

    2011-09-06

    ... to test and certify to the toy safety standard. We plan to use traditional and social media to... testing and certification requirements for children's toys and toy chests and their compliance with ASTM... manufacturers of children's toys must ensure that covered toys are tested for compliance with the toy safety...

  4. A Response to Proposed Equal Employment Opportunity Commission Regulations on Employer-Sponsored Health, Safety, and Well-Being Initiatives.

    Science.gov (United States)

    2016-03-01

    The aim of this study was to identify areas of consensus in response to proposed Equal Employment Opportunity Commission Americans with Disabilities Act of 1990 and Genetic Information Nondiscrimination Act of 2008 regulations on employer-sponsored health, safety, and well-being initiatives. The consensus process included review of existing and proposed regulations, identification of key areas where consensus is needed, and a methodical consensus-building process. Stakeholders representing employees, employers, consulting organizations, and wellness providers reached consensus around five areas, including adequate privacy notice on how medical data are collected, used, and protected; effective, equitable use of inducements that influence participation in programs; observance of reasonable alternative standards; what constitutes reasonably designed programs; and the need for greater congruence between federal agency regulations. Employee health and well-being initiatives that are in accord with federal regulations are comprehensive, evidence-based, and are construed as voluntary by employees and regulators alike.

  5. Radiation safety of crew and passengers of air transportation in civil aviation. Provisional standards

    Science.gov (United States)

    Aksenov, A. F.; Burnazyan, A. I.

    1985-01-01

    The purpose and application of the provisional standards for radiation safety of crew and passengers in civil aviation are given. The radiation effect of cosmic radiation in flight on civil aviation air transport is described. Standard levels of radiation and conditions of radiation safety are discussed.

  6. Nuclear safety regulation in the People's Republic of China

    International Nuclear Information System (INIS)

    Shi Guangchang

    1987-01-01

    The present report gives a general view of how the problem of nuclear safety is dealt with in China, with particular reference to the nuclear power plants. The most relevant nuclear legal regulations and procedures are reported. Organization of the National Nuclear Safety Administration (NNSA) of China and its working activities are presented. The report gives also the principle and practice with regard to licensing process and regulatory inspection of nuclear power plant in China. (author)

  7. 40 CFR 68.48 - Safety information.

    Science.gov (United States)

    2010-07-01

    ...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 2 Prevention Program § 68.48 Safety information. (a) The... regulated substances, processes, and equipment: (1) Material Safety Data Sheets that meet the requirements...) Equipment specifications; and (5) Codes and standards used to design, build, and operate the process. (b...

  8. Applicability of gassy mine regulations: Engineering study report

    International Nuclear Information System (INIS)

    1987-08-01

    This study reviewed three bodies of current Mine Safety and Health Administration (MSHA) gassy mine regulations, to address whether the Code of Federal Regulations (CFR) Title 30, Part 57 Safety and Health Standards - Metal and Nonmetal Underground Mines, Section 21-Gassy Mines, or Parts 75 Mandatory Safety Standards - Underground Coal Mines, and Part 77 Mandatory Safety Standards - Surface Coal Mines and Surface Work Areas of Underground Coal Mines, are more applicable to a subsurface repository design. Part 57.21 is determined to be most applicable. There are, however, three sections in Parts 75 and 77 which address certain applicable items in greater detail and, therefore, will provide a more conservative design approach in these areas than Part 57.21, and should be incorporated into the basis for design. Study work also revealed that proposed CFR Title 30, Part 58 Mine Safety and Health - Metal and Nonmetal Standards, will have to be considered during design work if and when these have been promulgated. 9 refs., 1 fig., 1 tab

  9. [Problems of safety regulation under radioactive waste management in Russia].

    Science.gov (United States)

    Monastyrskaia, S G; Kochetkov, O A; Barchukov, V G; Kuznetsova, L I

    2012-01-01

    Analysis of the requirements of Federal Law N 190 "About radioactive waste management and incorporation of changes into some legislative acts of the Russian Federation", as well as normative-legislative documents actual and planned to be published related to provision of radiation protection of the workers and the public have been done. Problems of safety regulation raised due to different approaches of Rospotrebnadzor, FMBA of Russia, Rostekhnadzor and Minprirody with respect to classification and categorization of the radioactive wastes, disposal, exemption from regulatory control, etc. have been discussed in the paper. Proposals regarding improvement of the system of safety regulation under radioactive waste management and of cooperation of various regulatory bodies have been formulated.

  10. French PWR Safety Philosophy

    International Nuclear Information System (INIS)

    Conte, M. M.

    1986-01-01

    The first 900 MWe units, built under the American Westinghouse licence and with reference to the U. S. regulation, were followed by 28 standardized units, C P1 and C P2 series. Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. As early as 1976, this experience was taken into account by French Safety organisms to discuss, with Electricite de France, the safety options for the planned 1300 MWe units, P4 and P4 series. In 1983, the new reactor scheduled, Ni4 series 1400 MWe, is a totally French design which satisfies the French regulations and other French standards and codes. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach each of them having possibilities and limits. Increasing knowledge and lessons learned from operating experience have contributed to the French safety philosophy improvement. The methodology now applied to safety evaluation develops a new facet of the in depth defense concept by taking highly unlikely events into consideration, by developing the search of safety consistency of the design, and by completing the deterministic approach by the probabilistic one

  11. 77 FR 27550 - Federal Acquisition Regulation; Revision of Cost Accounting Standards Threshold

    Science.gov (United States)

    2012-05-10

    ...] RIN 9000-AM25 Federal Acquisition Regulation; Revision of Cost Accounting Standards Threshold AGENCY... Federal Acquisition Regulation (FAR) to revise the threshold for applicability of cost accounting standards in order to implement a recent rule of the Cost Accounting Standards Board and statutory...

  12. Nuclear station safety standardization from a risk concept

    International Nuclear Information System (INIS)

    Veksler, L.M.

    1986-01-01

    This paper presents a method of standardizing safety-system reliability on an entirely new basis: all hypothetical accidents are approximated as groups, for each of which one proposes permissible frequencies on the basis of the risk concept. In this risk concept, the ''average person'' is a person living near a nuclear station or working in it, who is of average age, average state of health, and so on. Therefore, the risk can be found by summing the estimated individual risks for a particular group in the population followed by division by the number of people in that group. Basic assumptions in deriving permissible safety-system reliability are presented. Estimated permissible failure probabilities are given to illustrate the proposed method and to refine the initial data. The probabilities may also be used to lay down the reliability requirements for safety systems in particular nuclear stations on the risk basis

  13. Radiation protection aspects of design for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  14. American National Standards Institute ANSI N 43.1 Radiological Safety in the Design and Operation of Particle Accelerators

    International Nuclear Information System (INIS)

    Scott Walker, L.; Liu, J.

    2004-01-01

    The ANSI N43 committee established a writing committee to re-write the ANSI N43.1 accelerator safety standard in 1994. James Liu and Scott Walker were appointed as co-chairman. Compared to the old standard, the new standard is aimed to have a broader application, up-to-date requirements, and recommendations for best practices. The new standard uses a hazard based graded approach to address radiation safety programs for accelerators with various energies, beam currents and applications (excluding medical accelerators which are covered by another standard). Thus, the standard fulfills the goal of the committee to prepare a standard with unlimited application to industrial and research accelerators. The standard is largely complete with chapters as follows: 1) Scope. 2) Definitions. 3) Radiation Safety Program (facility safety program, radiation safety planning, organizational considerations, safety assessment, review and performance evaluation). 4) Radiation Safety System (prompt radiation, safety system features, reliability and fail-safety, tamper resistance, quality control, configuration control, adventitious production of radiation, and induced radioactivity). 5) Personnel Access Control System (including graded approach, postings, barriers, beam inhibiting devices and interlocks). 6) Radiation Control System, (passive shielding, and active systems). 7) Accelerator Operation (including readiness reviews, maintenance and testing, bypasses and deviation from procedure, operating practices, emergencies). 8) Operational Health Physics, and 9) Training. The document also has appendices regarding how to determine the Safety and Operations Envelope, Guidance for Computer Based Access Control Systems, and Radiation Measurements at Accelerators. (Author)

  15. Standard model for the safety analysis report of nuclear fuel reprocessing plants; Modelo padrao para relatorio de analise de seguranca de usinas de reprocessamento de combustiveis nucleares

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-02-15

    This norm establishes the Standard Model for the Safety Analysis Report of Nuclear Fuel Reprocessing Plants, comprehending the presentation format, the detailing level of the minimum information required by the CNEN for evaluation the requests of Construction License or Operation Authorization, in accordance with the legislation in force. This regulation applies to the following basic reports: Preliminary Safety Analysis Report - PSAR, integrating part of the requirement of Construction License; and Final Safety Analysis Report (FSAR) which is the integrating part of the requirement for Operation Authorization.

  16. IEEE standard for design qualification of safety systems equipment used in nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This standard is written to serve as a general standard for qualification of all types of safety systems equipment, mechanical and instrumentation as well as electrical. It also establishes principles and procedures to be followed in preparing specific safety systems equipment standards. Guidance for qualifying specific safety systems equipment may be found in various specific equipment qualification standards that are now available or are being prepared. It is required that safety systems equipment in nuclear power generating stations meet or exceed its performance requirements throughout its installed life. This is accomplished by a disciplined program of design qualification and quality assurance of design, production, installation, maintenance and surveillance. This standard is for the design qualification section of the program only. Design qualification is intended to demonstrate the capability of the equipment design to perform its safety function(s) over the expected range of normal, abnormal, design basis event, post design basis event, and in-service test conditions. Inherent to design qualification is the requirement for demonstration, within limitations afforded by established technical state-of-the-art, that in-service aging throughout the qualified life established for the equipment will not degrade safety systems equipment from its original design condition to the point where it cannot perform its required safety function(s), upon demand. The above requirement reflects the primary role of design qualification to provide reasonable assurance that design- and age-related common failure modes will not occur during performance of safety function(s) under postulated service conditions

  17. Practicing industrial safety - issues involved

    International Nuclear Information System (INIS)

    Gunasekaran, P.

    2016-01-01

    Industrial safety is all about measures or techniques implemented to reduce the risk of injury, loss to persons, property or the environment in any industrial facility. The issue of industrial safety evolved concurrently with industrial development as a shift from compensation to prevention as well. Today, industrial safety is widely regarded as one of the most important factors that any business, large or small, must consider in its operations, as prevention of loss is also a part of profit. Factories Act of Central government and Rules made under it by the state deals with the provisions on industrial safety legislation. There are many other acts related to safety of personnel, property and environment. Occupational health and safety is also of primary concern. The aim is to regulate health and safety conditions for all employers. It includes safety standards and health standards. These acts encourage employers and employees to reduce workplace hazards and to implement new or improve existing safety and health standards; and develop innovative ways to achieve them. Maintain a reporting and record keeping system to monitor job-related injuries and illnesses; establish training programs to increase the number and competence of occupational safety and health personnel

  18. Integrating environmental management into food safety and food packaging in Malaysia: review of the food regulation 1985

    Science.gov (United States)

    Nordin, N. H.; Hara, H.; Kaida, N.

    2017-05-01

    Food safety is an important issue that is related to public safety to prevent the toxicity threats of the food. Management through legal approach has been used in Malaysia as one of the predominant approaches to manage the environment. In this regard, the Food Regulation 1985 has been one of the mechanisms of environmental management through legal approach in controlling the safety of packaged food in food packaging industry in Malaysia. The present study aims to analyse and to explain the implementation of the Food Regulation 1985 in controlling the safety of packaged food in Malaysia and to integrate the concept of environmental management into the food safety issue. Qualitative analysis on the regulation document revealed that there are two main themes, general and specific, while their seven sub themes are included harmful packages, safety packages, reuse packages, polyvinyl chloride (PVC), alcoholic bottle, toys, money and others and iron powder. The implementation of the Food Regulation 1985 in controlling the safety of packaged food should not be regarded solely for regulation purposes but should be further developed for a broader sense of food safety from overcoming the food poisoning.

  19. Cross-index to DOE-prescribed occupational safety codes and standards

    International Nuclear Information System (INIS)

    1982-01-01

    A compilation of detailed information from more than three hundred and fifty DOE-prescribed or OSHA-referenced industrial safety codes and standards is presented. Condensed data from individual code portions are listed according to reference code, section, paragraph and page. A glossary of letter initials/abbreviations for the organizations or documents whose codes or standards are contained in this Cross-Index, is listed

  20. 77 FR 22637 - Federal Motor Vehicle Safety Standards; Accelerator Control Systems

    Science.gov (United States)

    2012-04-16

    ... revise the Federal Motor Vehicle Safety Standard for accelerator control systems (ACS) in two ways. First... Standard (FMVSS) No. 124, Accelerator Control Systems,\\2\\ in two ways. First, we are proposing to update... February 2011 final report ``Technical Assessment of Toyota Electronic Throttle Control Systems,'' the...

  1. Safety standards, legislation and codes of practice for fuel cell manufacture and operation

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, C.P.

    1999-07-01

    This report examines safety standards, legislation and codes of practice for fuel cell manufacture and operation in the UK, Europe and internationally. Management of health and safety in the UK is discussed, and the characteristics of phosphoric acid (PAFC), proton exchange membrane (PEM), molten carbonate (MCFC), solid oxide (SOFC) fuel cells are described. Fuel cell power plant standards and manufacture in the UK, design and operational considerations, end of life disposal, automotive fuel cell system, and fuelling and vehicular concerns are explored, and standards, legislation and codes of practice are explained in the appendix.

  2. Problems encountered in embodying the principles of ICRP-26 and the revised IAEA safety standards into UK national legislation

    International Nuclear Information System (INIS)

    Beaver, P.F.

    1979-01-01

    This paper describes the United Kingdom procedures and format for safety legislation and goes on to show how the necessary legislation for radiological protection will fit into the general framework. The United Kingdom, as a member of the European Community and EURATOM, is bound to implement the Euratom Directive on radiological protection within the next few years. The latest draft of the Directive takes account of the recommendations of ICRP-26 and further, a recent draft of the revised IAEA Basic Safety Standards is a composite of both the Directive and ICRP-26. Thus, the effect of embodying the principles of the Directive is to embody the principles of ICRP-26 and the Basic Safety Standards. Some of the problems which have been met are described and in particular there is discussion of the problems arising from the incorporation of the three ICRP-26 facets of dose control, namely justification, optimization and limitation, into a legislative package. The UK system of evolving safety legislation now requires considerable participation by all the parties affected (or by their representatives). This paper indicates that the involvement of persons affected, coupled with a legislative package which consists of a hierarchy of (a) regulations; (b) codes of practice; and (c) guidance notes, will result in the fundamental principles of ICRP-26 being incorporated into UK legislation in a totally acceptable way. (author)

  3. Developing necessary and sufficient sets of environmental, safety, and health standards at the Department of Energy

    International Nuclear Information System (INIS)

    Nelson, D.B.; Troy, A.W.

    1995-01-01

    The U.S. Department of Energy (DOE) is committed to protect its workers, the public, and the environment. To do this, we must understand our work and its potential hazards and tailor our protection to those hazards. Until now, the DOE has regulated environmental, safety, and health aspects of our work through orders and, more recently, through rules. However, it has become apparent that our current approach suffers from several disadvantages. Most notably, it has been difficult to craft orders that recognize and deal effectively with the wide diversity in our work; this can lead to inappropriate requirements and can even compromise safety. Also, the current approach does not easily incorporate the benefits of experience; our practices can become obsolete or ineffectual. This report describes efforts of DOE towards the development of an integrated standards program as the basis for ensuring the protection of workers, public and the environment

  4. Environmental Regulation and Food Safety: Studies of Protection ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    1 janv. 2006 ... Environmental Regulation and Food Safety intéressera les artisans des politiques et les ONG , les chercheurs et les spécialistes de l'économie ... This funding will help strengthen the Science, Technology and Innovation Policy Research Organization's (STIPRO) role as a credible public policy institution in ...

  5. Safety management and control policy. A study of the safety regulation of offshore oil activity by the Norwegian Petroleum Directorate. Sikkerhetsstyring og reguleringsteknikk. Oljedirektoratets regulering av sikkerheten ved produksjon av petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Graver, H P

    1983-01-01

    The Norwegian Petroleum Directorate (NPD) is the main administrative body with responsibility to regulate and control the safety aspects of drilling for and production of petroleum on the Norwegian Continental Shelf. Its responsibility does not, however, include the aspects of maritime safety, which are regulated by the Norwegian Maritime Directorate. This study is limited to the regulation of safety on fixed installations for production of petroleum. The object has been to describe the methods applied by the NPD to achieve better safety, and to give answers to why these specific methods of approach have developed as they have. A conclusion that may be drawn from this study is that there exists a relationship of close cooperation between the NPD and the oil industry represented by the operating companies. Only this can explain the differences we find in the NPD approach as compared to the approach of other parts of public administration. Such a relationship probably leads to better safety within the scope of technical rationality than would have a more hostile relationship between the Directorate and the industry. This has its price, however. Aspects of the safety question not included within the limits of a purely technical approach are not as easily taken into account. Partly due to this fact, other parties with interests in safety are not represented.

  6. Safety regulation : The lessons of workplace safety rule management for managing the regulatory burden

    NARCIS (Netherlands)

    Hale, A.R.; Borys, D.; Adams, M.

    2012-01-01

    There is a strong political consensus in a number of countries that occupational safety and health regulation is stifling industrial innovation and development and is feeding a culture of damaging risk aversion and petty bureaucracy. In a number of countries this has led to proposals to repeal

  7. Patient safety principles in family medicine residency accreditation standards and curriculum objectives

    Science.gov (United States)

    Kassam, Aliya; Sharma, Nishan; Harvie, Margot; O’Beirne, Maeve; Topps, Maureen

    2016-01-01

    Abstract Objective To conduct a thematic analysis of the College of Family Physicians of Canada’s (CFPC’s) Red Book accreditation standards and the Triple C Competency-based Curriculum objectives with respect to patient safety principles. Design Thematic content analysis of the CFPC’s Red Book accreditation standards and the Triple C curriculum. Setting Canada. Main outcome measures Coding frequency of the patient safety principles (ie, patient engagement; respectful, transparent relationships; complex systems; a just and trusting culture; responsibility and accountability for actions; and continuous learning and improvement) found in the analyzed CFPC documents. Results Within the analyzed CFPC documents, the most commonly found patient safety principle was patient engagement (n = 51 coding references); the least commonly found patient safety principles were a just and trusting culture (n = 5 coding references) and complex systems (n = 5 coding references). Other patient safety principles that were uncommon included responsibility and accountability for actions (n = 7 coding references) and continuous learning and improvement (n = 12 coding references). Conclusion Explicit inclusion of patient safety content such as the use of patient safety principles is needed for residency training programs across Canada to ensure the full spectrum of care is addressed, from community-based care to acute hospital-based care. This will ensure a patient safety culture can be cultivated from residency and sustained into primary care practice. PMID:27965349

  8. EPR meeting international safety standards with margin

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Brauns, J.; Blombach, J.

    2005-01-01

    The EPR provides technology that offers a solution to the market's need for safe, economic power. The EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product capable of international licensing. As such, the EPR is a global product with commercial units currently being built in Finland at the Olkiluoto site, and planned for France, at the Flamanville site. Framatome ANP has recently proposed four EPR units to China in response to a request for vendor bids. In addition, Framatome ANP has announced their intent to pursue design certification with the United States Nuclear Regulatory Commission (NRC). This paper discusses how EPR's innovative safety philosophy ensures compliance with international safety standards for advanced light-water reactors (ALWRs). (author)

  9. EPR meeting international safety standards with margin

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Brauns, J.; Blombach, J.

    2005-01-01

    The EPR provides technology that offers a solution to the market's need for safe, economic power. The EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product capable of international licensing. As such, the EPR is a global product with commercial units currently being built in Finland at the Olkiluoto site, and planned for France, at the Flamanville site. Framatome ANP has recently proposed four EPR units to China in response to a request for vendor bids. In addition, Framatome ANP has announced their intent to pursue design certification in with the United States Nuclear Regulatory Commission (NRC). This paper discusses how EPR's innovative safety philosophy ensures compliance with international safety standards for advanced light-water reactors (ALWRs). (author)

  10. Prevalence and determinants of non-standard motorcycle safety helmets amongst food delivery workers in Selangor and Kuala Lumpur.

    Science.gov (United States)

    Kulanthayan, S; See, Lai Git; Kaviyarasu, Y; Nor Afiah, M Z

    2012-05-01

    Almost half of the global traffic crashes involve vulnerable groups such as pedestrian, cyclists and two-wheeler users. The main objective of this study was to determine the factors that influence standard of the safety helmets used amongst food delivery workers by presence of Standard and Industrial Research Institute of Malaysia (SIRIM) certification label. A cross sectional study was conducted amongst 150 food delivery workers from fast food outlets in the vicinity of Selangor and Kuala Lumpur. During observation, safety helmets were classified as standard safety helmet in the presence of SIRIM label and non-standard in the absence of the label. They were approached for questionnaire participation once consent was obtained and were requested to exchange their safety helmet voluntarily with a new one after the interview. Data analysis was carried out using SPSS. Chi square and logistic regression analysis was applied to determine the significance and odds ratio of the variables studied, respectively (penetration test, age, education level, knowledge, crash history, types of safety helmet, marital status and years of riding experience) against the presence of SIRIM label. The response rate for this study was 85.2%. The prevalence of non-standard helmets use amongst fast food delivery workers was 55.3%. Safety helmets that failed the penetration test had higher odds of being non-standard helmets compared with safety helmets passing the test. Types of safety helmet indicated half-shell safety helmets had higher odds to be non-standard safety helmets compared to full-shell safety helmets. Riders with more years of riding experience were in high odds of wearing non-standard safety helmets compared to riders with less riding experience. Non-standard (non-SIRIM approved) helmets were more likely to be half-shell helmets, were more likely to fail the standards penetration test, and were more likely to be worn by older, more experienced riders. The implications of these

  11. Regulations and guides for nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The purpose of the present Guide is to provide information, guidance and recommendations to assist the regulatory body of a Member State in establishing its own regulations and guides. It discusses the purpose, the method and procedure of establishment, and the content and legal status of these documents, and it explains how to use the Codes of Practice and Safety Guides issued by the IAEA under the Nuclear Safety Standards (NUSS) programme. Certain aspects of how to use other international standards and appropriate regulations and guides from other countries are discussed

  12. Radiation safety standards : an environmentalist's approach

    International Nuclear Information System (INIS)

    Murthy, M.S.S.S.

    1977-01-01

    An integrated approach to the problem of environmental mutagenic hazards leads to the recommendation of a single dose-limit to the exposure of human beings to all man-made mutagenic agents including chemicals and radiation. However, because of lack of : (1) adequate information on chemical mutagens, (2) sufficient data on their risk estimates and (3) universally accepted dose-limites, control of chemical mutagens in the environment has not reached that advanced stage as that of radiation. In this situation, the radiation safety standards currently in use should be retained at their present levels. (M.G.B.)

  13. Regulation on the organizatjon of radiation safety control bodies

    International Nuclear Information System (INIS)

    1975-01-01

    This is a basic document on matters of structure, organization, objectives, rights, and responsibilities of agencies enforcing compliance with radiation safety standards set up in Bulgaria. Under Public Health Law and Ministerial Council Decree No. 117, the organization and management of radiation safety in Bulgaria is entrusted to the Ministry of Public Health (MPH). Within its agency, the State Sanitary Control, authorities specialized in the area of radiation safety are as follows: the Radiation Hygiene Division (RHD) of the MPH Hygiene-and Epidemiology Bureau (HEB); the Specialized Radiation Safety Inspectorate of the Research Institute of Radiobiology and Radiation Hygiene (RIRRH); the Radiation Hygiene Sections of country HEBs; and State sanitary Inspectors assigned to large establishments in the country. (G.G.)

  14. Analysis of Driving Safety Criteria Based on National Regulations for the Suspension Systems of NGVs

    Directory of Open Access Journals (Sweden)

    Ronald Mauricio Martinod

    2015-01-01

    Full Text Available The work analyses the technical evaluation process of the suspension system for vehicles that have been adapted to natural-gas-fuelled engines from power light-duty gasoline, and diesel vehicles; this evaluation is done through a mechanical review established by national regulations. The development of this analysis is focused on establishing the relationship between the natural-gas-fuelled equipment and the dynamic effect caused by the extra-weight, according to two measuring criteria that determine the safety and driving comfort, these are: (i tire-road adhesion index; and (ii tire excitation phase angle. The paper also proposes new elements that can be added to the current national regulations and that are currently applied to assess the suspension of natural gas vehicles, recorded using a test standard benchmark for the evaluation of the suspension.

  15. 77 FR 44174 - Procedures for Safety Investigations

    Science.gov (United States)

    2012-07-27

    ... of safety investigations. The rule is intended to state clearly the Board's policy and procedures for... statutory authority, when appropriate, following standard safety investigation policies, practices, and... has adhered to the regulatory philosophy and the applicable principles of regulation as set forth in...

  16. Preparing Safety Cases for Operating Outside Prescriptive Fatigue Risk Management Regulations.

    Science.gov (United States)

    Gander, Philippa; Mangie, Jim; Wu, Lora; van den Berg, Margo; Signal, Leigh; Phillips, Adrienne

    2017-07-01

    Transport operators seeking to operate outside prescriptive fatigue management regulations are typically required to present a safety case justifying how they will manage the associated risk. This paper details a method for constructing a successful safety case. The method includes four elements: 1) scope (prescriptive rules and operations affected); 2) risk assessment; 3) risk mitigation strategies; and 4) monitoring ongoing risk. A successful safety case illustrates this method. It enables landing pilots in 3-pilot crews to choose the second or third in-flight rest break, rather than the regulatory requirement to take the third break. Scope was defined using a month of scheduled flights that would be covered (N = 4151). These were analyzed in the risk assessment using existing literature on factors affecting fatigue to estimate the maximum time awake at top of descent and sleep opportunities in each break. Additionally, limited data collected before the new regulations showed that pilots flying at landing chose the third break on only 6% of flights. A prospective survey comparing subjective reports (N = 280) of sleep in the second vs. third break and fatigue and sleepiness ratings at top of descent confirmed that the third break is not consistently superior. The safety case also summarized established systems for fatigue monitoring, risk assessment and hazard identification, and multiple fatigue mitigation strategies that are in place. Other successful safety cases have used this method. The evidence required depends on the expected level of risk and should evolve as experience with fatigue risk management systems builds.Gander P, Mangie J, Wu L, van den Berg M, Signal L, Phillips A. Preparing safety cases for operating outside prescriptive fatigue risk management regulations. Aerosp Med Hum Perform. 2017; 88(7):688-696.

  17. Lift truck safety review

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  18. Lift truck safety review

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter's Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given

  19. Inventory of Safety-related Codes and Standards for Energy Storage Systems with some Experiences related to Approval and Acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Conover, David R.

    2014-09-11

    The purpose of this document is to identify laws, rules, model codes, codes, standards, regulations, specifications (CSR) related to safety that could apply to stationary energy storage systems (ESS) and experiences to date securing approval of ESS in relation to CSR. This information is intended to assist in securing approval of ESS under current CSR and to identification of new CRS or revisions to existing CRS and necessary supporting research and documentation that can foster the deployment of safe ESS.

  20. Basic concept on safety regulation for land disposal of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    1985-01-01

    As to the land disposal of low level radioactive solid wastes, to which the countermeasures have become the urgent problem at present, it is considered to be a realistic method to finally store the solid wastes concentratedly outside the sites of nuclear power stations and others, and effort has been exerted by those concerned to realize it. Besides, as for extremely low level radioactive solid wastes, the measures of disposing them corresponding to the radioactivity level are necessary, and the concrete method has been examined. The Committee on Safety Regulation for Radioactive Wastes has discussed the safety regulation for those since April, 1984, and the basic concept on the safety regulation was worked up. It is expected that the safety of the land disposal of low level radioactive solid wastes can be ensured when the safety regulation is carried out in conformity with this basic concept. The present status of the countermeasures to the land disposal of low level radioactive solid wastes is shown. As the concrete method, the disposal in shallow strate has been generally adopted. At present, the plan for the final storage in Aomori Prefecture is considered, and it will be started with the first stage of four-stage control. (Kako, I.)

  1. Radiation protection aspects in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  2. European standards applied by Gas Transmission System Operator

    International Nuclear Information System (INIS)

    Witek, M.; Kuchta, K.; Oleszkiewicz, J.; Teperek, T.

    2005-01-01

    The lecture described actual state of implementation of European standards concerning transmission of natural gas and underlined their importance for proper performance of Transmission System Operator (TSO). European standards implemented to Polish Standards as PN-EN, necessary for TSO, related to design, construction and operation of high pressure gas network were also described. The lecture underlined as well the impact of standards application on preparation process of national regulations. They obligate TSO to create the technical conditions that ensure safety of gas transmission network functioning as well as environmental and surroundings safety. (authors)

  3. American National Standard administrative practices for nuclear criticality safety, ANSI/ANS-8.19

    International Nuclear Information System (INIS)

    Smith, D.R.; Carson, R.W.

    1991-01-01

    American National Standard Administrative Practices for Nuclear Criticality Safety, ANSI/ANS-8.19, provides guidance for the administration of an effective program to control the risk of nuclear criticality in operations with fissile material outside reactors. The several sections of the standard address the responsibilities of management, supervisory personnel, and the criticality safety staff, as well as requirements and suggestions for the content of operating procedures, process evaluations, material control procedures, and emergency procedures

  4. 78 FR 73692 - Revisions to Safety Standards for Infant Bath Seats, Toddler Beds, and Full-Size Baby Cribs

    Science.gov (United States)

    2013-12-09

    ... standard issued under the Danny Keysar Child Product Safety Notification Act was based, the revision... standard. Section 26(c) of the CPSA also provides that states or political subdivisions of states may apply... CONSUMER PRODUCT SAFETY COMMISSION 16 CFR Parts 1215, 1217 and 1219 Revisions to Safety Standards...

  5. 29 CFR 1960.16 - Compliance with OSHA standards.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Compliance with OSHA standards. 1960.16 Section 1960.16 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... PROGRAMS AND RELATED MATTERS Standards § 1960.16 Compliance with OSHA standards. Each agency head shall...

  6. Radiation safety standards

    International Nuclear Information System (INIS)

    1975-01-01

    This is a basic document with which all rules and regulations, etc., concerning protection from ionizing radiations of workers and the general population have to conform. Basic concepts, dimensions, units, and terms used in the area of radiation safety are defined. Radiation exposures are sorted out into three categories: A, to personnel; B, to individual members of the popul;tion; and C, to the general population. Critical organs, furthermore, comprise four groups, the first of them being applicable to the whole-body gonads and bone marrow. Category A maximum permissible dose (MPD) to first group critical organs is 5 rem/year; to second group, 15 rem/year; to thrid group, 3O rem/year; and to fourth group, 75 rem/year. These rate figures include doses from both external and internal radiation exposure. Quality factors needed in computing doses from various types of radiation are provided. Permissible planned exposure levels are specified and guidelines given for accidental exposures. A radiation accident is considered to have occurred if the relevant critical organ dose is 5 times the annual MPD for that organ. For individual members of the population (category B), annual somatic doses to first group critical organs shall not exceed 0,5 rem. Population exposure is controlled in terms of genetically significant dose, which shall not exceed 5 rem/30 years. (G.G.)

  7. JICST Factual DatabaseJICST Chemical Substance Safety Regulation Database

    Science.gov (United States)

    Abe, Atsushi; Sohma, Tohru

    JICST Chemical Substance Safety Regulation Database is based on the Database of Safety Laws for Chemical Compounds constructed by Japan Chemical Industry Ecology-Toxicology & Information Center (JETOC) sponsored by the Sience and Technology Agency in 1987. JICST has modified JETOC database system, added data and started the online service through JOlS-F (JICST Online Information Service-Factual database) in January 1990. JICST database comprises eighty-three laws and fourteen hundred compounds. The authors outline the database, data items, files and search commands. An example of online session is presented.

  8. Safety at work: radon in the workplace

    International Nuclear Information System (INIS)

    Rimington, J.D.

    1992-01-01

    Under the Health and Safety at Work etc. Act, employers have a duty, so far as reasonably practicable, to maintain a safe working environment. To ensure that this occurs, the Health and Safety Commission defines standards and applies stimuli to make sure the standards are observed. The risk from radon ranks as one of the most severe industrial risks to be encountered in a hazardous industry. The Ionising Radiations Regulations specify a radon concentration above which the regulations apply, and various duties fall on the employer. Where an inspector finds radon concentrations above this level, he has the power to require remedial measures to be undertaken. (Author)

  9. 77 FR 6007 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation...

    Science.gov (United States)

    2012-02-07

    ...] Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation... they could be published in the Federal Register. This notice lists temporary safety zones, security... the safety and security needs within their jurisdiction; therefore, District Commanders and COTPs have...

  10. New standard on safety for hydrogen systems in spanish. Keys for understanding and use

    Energy Technology Data Exchange (ETDEWEB)

    Luis Aprea, Jose [CNEA, Argentine Atomic Energy Commission - AAH - IRAM - Comahue University, CC 805 - Neuquen (Argentina)

    2008-07-15

    The present paper approaches all the preliminary, normative and additional elements observed during the work carried out by the Argentine standardization board to count in the country with a normative document that covers the expectations of the local community of users and other Spanish-speaking user, about the integral safety for the hydrogen systems. The antecedents and the process of adoption of an international standard and its adaptation to the local media are analyzed. The result has been the Standard IRAM/ISO 15916 that intends to offer, to all the users and especially to those who are not familiar with the technology, a base to understand the subject of safety, thus enhancing the education of the general public in hydrogen safety matters. (author)

  11. Radioactive materials packaging standards and regulations: Making sense of it all

    International Nuclear Information System (INIS)

    Pope, R.B.; Rawl, R.R.

    1989-01-01

    Numerous regulations and standards, both national and international, apply to the packaging and transportation of radioactive material. These are legal and technical prerequisites to practically every action that a designer or user of a radioactive material transportation package will perform. The identity and applicability of these requirements and the bodies that formulate them are also not readily understood. This paper addresses the roles that various international bodies play in developing and implementing the various regulations and standards. It uses the US regulatory and standards-making bodies to illustrate how international requirements feed the domestic control of packaging and transport. It explains the scope and interactions between domestic and international regulatory and standards agencies and summarizes the status and major standards activities at the international level. The overview provided by this paper will be valuable to designers and users of radioactive material packages for better understanding and use of both standards and regulations, and for complying with regulatory requirements in the radioactive materials transportation field. 11 refs., 2 figs

  12. 33 CFR 165.117 - Regulated Navigation Areas, Safety and Security Zones: Deepwater Ports, First Coast Guard District.

    Science.gov (United States)

    2010-07-01

    ..., Safety and Security Zones: Deepwater Ports, First Coast Guard District. 165.117 Section 165.117... Limited Access Areas First Coast Guard District § 165.117 Regulated Navigation Areas, Safety and Security... section are designated as regulated navigation areas. (2) Safety and security zones. All waters within a...

  13. Strengthening the Global Nuclear Safety Regime. INSAG-21. A report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2014-01-01

    The Global Nuclear Safety Regime is the framework for achieving the worldwide implementation of a high level of safety at nuclear installations. Its core is the activities undertaken by each country to ensure the safety and security of the nuclear installations within its jurisdiction. But national efforts are and should be augmented by the activities of a variety of international enterprises that facilitate nuclear safety - intergovernmental organizations, multinational networks among operators, multinational networks among regulators, the international nuclear industry, multinational networks among scientists, international standards setting organizations and other stakeholders such as the public, news media and non-governmental organizations (NGOs) that are engaged in nuclear safety. All of these efforts should be harnessed to enhance the achievement of safety. The existing Global Nuclear Safety Regime is functioning at an effective level today. But its impact on improving safety could be enhanced by pursuing some measured change. This report recommends action in the following areas: - Enhanced use of the review meetings of the Convention on Nuclear Safety as a vehicle for open and critical peer review and a source for learning about the best safety practices of others; - Enhanced utilization of IAEA Safety Standards for the harmonization of national safety regulations, to the extent feasible; - Enhanced exchange of operating experience for improving operating and regulatory practices; and - Multinational cooperation in the safety review of new nuclear power plant designs. These actions, which are described more fully in this report, should serve to enhance the effectiveness of the Global Nuclear Safety Regime

  14. Safety, codes and standards for hydrogen installations. Metrics development and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Aaron P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Angela Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); San Marchi, Christopher W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-04-01

    Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

  15. GENERAL CONSIDERATIONS ON REGULATIONS AND SAFETY REQUIREMENTS FOR QUADRICYCLES

    Directory of Open Access Journals (Sweden)

    Ana Pavlovic

    2015-12-01

    Full Text Available In recent years, a new class of compact vehicles has been emerging and wide-spreading all around Europe: the quadricycle. These four-wheeled motor vehicles, originally derived from motorcycles, are a small and fuel-efficient mean of transportation used in rural or urban areas as an alternative to motorbikes or city cars. In some countries, they are also endorsed by local authorities and institutions which support small and environmentally-friendly vehicles. In this paper, several general considerations on quadricycles will be provided including the vehicle classification, evolution of regulations (as homologation, driver licence, emissions, etc, technical characteristics, safety requirements, most relevant investigations, and other additional useful information (e.g. references, links. It represents an important and actual topic of investigation for designers and manufacturers considering that the new EU regulation on the approval and market surveillance of quadricycles will soon enter in force providing conclusive requirements for functional safety environmental protection of these promising vehicles.

  16. 78 FR 12254 - Interest in Restructure of Rotorcraft Airworthiness Standards

    Science.gov (United States)

    2013-02-22

    ...: FAA, Rotorcraft Directorate, Regulations and Policy Group (Attn: John Vanhoudt, ASW-111), 2601 Meacham... standards and safety levels, or whether the existing standards philosophy based on weight (currently 7,000...

  17. 76 FR 70342 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation...

    Science.gov (United States)

    2011-11-14

    ...] Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation... published in the Federal Register. This notice lists temporary safety zones, security zones, special local... Commanders and Captains of the Port (COTP) must be immediately responsive to the safety and security needs...

  18. The safety and regulation of natural products used as foods and food ingredients.

    Science.gov (United States)

    Abdel-Rahman, Ali; Anyangwe, Njwen; Carlacci, Louis; Casper, Steve; Danam, Rebecca P; Enongene, Evaristus; Erives, Gladys; Fabricant, Daniel; Gudi, Ramadevi; Hilmas, Corey J; Hines, Fred; Howard, Paul; Levy, Dan; Lin, Ying; Moore, Robert J; Pfeiler, Erika; Thurmond, T Scott; Turujman, Saleh; Walker, Nigel J

    2011-10-01

    The use of botanicals and dietary supplements derived from natural substances as an adjunct to an improved quality of life or for their purported medical benefits has become increasingly common in the United States. This review addresses the safety assessment and regulation of food products containing these substances by the U.S. Food and Drug Administration (FDA). The issue of safety is particularly critical given how little information is available on the toxicity of some of these products. The first section uses case studies for stevia and green tea extracts as examples of how FDA evaluates the safety of botanical and herbal products submitted for consideration as Generally Recognized as Safe under the Federal Food, Drug, and Cosmetics Act. The 1994 Dietary Supplement Health Education Act (DSHEA) created a regulatory framework for dietary supplements. The article also discusses the regulation of this class of dietary supplements under DSHEA and addresses the FDA experience in analyzing the safety of natural ingredients described in pre-market safety submissions. Lastly, we discuss an ongoing interagency collaboration to conduct safety testing of nominated dietary supplements.

  19. Regulating nuclear fuel waste

    International Nuclear Information System (INIS)

    1995-01-01

    When Parliament passed the Atomic Energy Control Act in 1946, it erected the framework for nuclear safety in Canada. Under the Act, the government created the Atomic Energy Control Board and gave it the authority to make and enforce regulations governing every aspect of nuclear power production and use in this country. The Act gives the Control Board the flexibility to amend its regulations to adapt to changes in technology, health and safety standards, co-operative agreements with provincial agencies and policy regarding trade in nuclear materials. This flexibility has allowed the Control Board to successfully regulate the nuclear industry for more than 40 years. Its mission statement 'to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment' concisely states the Control Board's primary objective. The Atomic Energy Control Board regulates all aspects of nuclear energy in Canada to ensure there is no undue risk to health, safety, security or the environment. It does this through a multi-stage licensing process

  20. Safety assessment standards for modern plants in the UK

    International Nuclear Information System (INIS)

    Harbison, S.A.; Hannaford, J.

    1993-01-01

    The NII has revised its safety assessment principles (SAPs). This paper discusses the revised SAPs and their links with international standards. It considers the licensing of foreign designs of plant - a matter under active consideration in the UK -and discusses how the SAPs and the licensing process cater for that possibility. (author)

  1. Safety evaluation report related to the license renewal and power increase for the National Bureau of Standards reactor (Docket No. 50-184)

    International Nuclear Information System (INIS)

    Bernard, H.

    1984-03-01

    Supplement 1 to the Safety Evaluation Report (SER) related to the renewal of the operating license and for a power increase (10 MWt to 20 MWt) for the research reactor at the National Bureau of Standards (NBS) facility has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports on the review of the licensee's emergency plan, which had not been reviewed at the time the Safety Evaluation Report (NUREG-1007) was published, and the review of the NBS application by the Advisory Committee on Reactor Safeguards, which was completed subsequent to the publication of the SER

  2. New Radiation Safety Standards of the Russian Federation

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    2001-01-01

    Full text: The new Radiation Safety Standards of the Russian Federation are a first step in an implementation of the 1990 Recommendations of the ICRP into the existing national system of providing a radiation safety of the public. In new System the radiation source is examined as a source of harm and danger for the public. So the System shall include not only the measures for limitation of actual exposures, but also an assessment of efficiency of radiation protection in the practical activity, based on the analysis of a distribution of doses received and on the assessment of actions initiated to restrict the probability of potential exposures. The occupational and public exposure doses are only the indices of the quality of management of the source. In this System a radiation monitoring is a feedback for assessing the stability of the source and how it is controllable. It is a tool for predicting the levels of potential exposure and the relevant danger associated with the source. It is important to underline that the System of Providing a Radiation Safety is an interrelated system. None of its parts may be individually used. In particular, the mere conformity with dose limits is not yet a sufficient evidence of the successful operation of the safety system, because the normal exposure doses reflect only a source-related harm. The problems of implementation of this System of radiation protection and safety into the contemporary practice in the Russia is discussed. (author)

  3. Sor/88-391, 21 July 1988, uranium mines (Ontario) occupational health and safety regulations, amendment

    International Nuclear Information System (INIS)

    1988-08-01

    These Regulations (SOR/84-435) were made to establish uniformity in the laws governing occupational health and safety in mines in the Province of Ontario. To ensure conformity, the legal references in the Regulations have been amended to accord with the 1987 amendment of the Ontario Occupational Health and Safety Act [fr

  4. 10CFR50.59 safety evaluations

    International Nuclear Information System (INIS)

    Grime, L.; Page, E.

    1987-01-01

    As a plant changes from the design phase to the operational phase, new regulations and standards apply. One such regulation is 10CFR50.59 on safety evaluations. Once an operating license is issued, it is mandatory to submit all applicable changes, tests, and experiments to the safety evaluation process. As preparation for this transition, Detroit Edison had procedures in place and conducted personnel training. Reviews of the safety engineering were conducted by the on-site review board. The off-site board delegated detailed reviews of most safety evaluations to the independent safety evaluation group (ISEG). The on-site group review included presentation of complete design packages by engineers. The ISEG and off-site review group's activity focused on safety evaluation. This paper addresses industry trends that were studied, Detroit Edison's recent actions, and industry issues related to 10CFR50.59 safety evaluations

  5. Review and comparison of quality standards, guidelines and regulations for laboratories

    Directory of Open Access Journals (Sweden)

    Tjeerd A.M. Datema

    2011-12-01

    Full Text Available Background: The variety and number of laboratory quality standards, guidelines and regulations (hereafter: quality documents makes it difficult to choose the most suitable one for establishing and maintaining a laboratory quality management system. Objectives: There is a need to compare the characteristics, suitability and applicability of quality documents in view of the increasing efforts to introduce quality management in laboratories, especially in clinical diagnostic laboratories in low income and middle income countries. This may provide valuable insights for policy makers developing national laboratory policies, and for laboratory managers and quality officers in choosing the most appropriate quality document for upgrading their laboratories. Method: We reviewed the history of quality document development and then selected a subset based on their current use. We analysed these documents following a framework for comparison of quality documents that was adapted from the Clinical Laboratory Standards Institute guideline GP26 Quality management system model for clinical laboratory services. Results: Differences were identified between national and international, and non-clinical and clinical quality documents. The most salient findings were the absence of provisions on occurrence management and customer service in almost all non-clinical quality documents, a low number of safety requirements aimed at protecting laboratory personnel in international quality documents and no requirements regarding ethical behaviour in almost all quality documents. Conclusion: Each laboratory needs to investigate whether national regulatory standards are present. These are preferred as they most closely suit the needs of laboratories in the country. A laboratory should always use both a standard and a guideline: a standard sums up the requirements to a quality management system, a guideline describes how quality management can be integrated in the laboratory

  6. Review of codes, standards, and regulations for natural gas locomotives.

    Science.gov (United States)

    2014-06-01

    This report identified, collected, and summarized relevant international codes, standards, and regulations with potential : applicability to the use of natural gas as a locomotive fuel. Few international or country-specific codes, standards, and regu...

  7. The role of the regulator in promoting and evaluating safety culture. Operating experience feedback programme approach

    International Nuclear Information System (INIS)

    Perez, S.

    2002-01-01

    Promoting and Evaluating Safety Culture (S.C.) in Operating Organizations must be one of the main Nuclear Regulator goals to achieve. This can be possible only if each and every one of the regulatory activities inherently involves S.C. It can be seen throughout attitudes, values, uses and practices in both individuals and the whole regulatory organization. One among all the regulatory tools commonly used by regulators to promote and evaluate the commitment of the licensees with safety culture as a whole involves organizational factors and particular attention is directed to the operating organization. This entailed a wide range of activities, including all those related with management of safety performance. Operating Experience Feedback Programme as a tool to enhance safety operation is particularly useful for regulators in the evaluation of the role of S.C. in operating organization. Safety Culture is recognized as a subset of the wider Organizational Culture. Practices that improve organizational effectiveness can also contribute to enhance safety. An effective event investigation methodology is a specific practice, which contributes to a healthy Safety Culture. (author)

  8. Aging evaluation methodology of periodic safety review in Korea

    International Nuclear Information System (INIS)

    Park, Heung-Bae; Jung, Sung-Gyu; Jin, Tae-Eun; Jeong, Ill-Seok

    2002-01-01

    In Korea plant lifetime management (PLIM) study for Kori Unit 1 has been performed since 1993. Meanwhile, periodic safety review (PSR) for all operating nuclear power plants (NPPs) has been started with Kori Unit 1 since 2000 per IAEA recommendation. The evaluation period is 10 years, and safety (evaluation) factors are 11 per IAEA guidelines as represented in table 1. The relationship between PSR factors and PLIM is also represented. Among these factors evaluation of 'management of aging' is one of the most important and difficult factor. This factor is related to 'actual condition of the NPP', 'use of experience from other nuclear NPPs and of research findings', and 'management of aging'. The object of 'management of aging' is to obtain plant safety through identifying actual condition of system, structure and components (SSCs) and evaluating aging phenomena and residual life of SSCs using operating experience and research findings. The paper describes the scope and procedure of valuation of 'management of aging', such as, screening criteria of SSCs, Code and Standards, evaluation of SSCs and safety issues as represented. Evaluating SSCs are determined using final safety analysis report (FSAR) and power unit maintenance system for Nuclear Ver. III (PUMAS/N-III). The screening criteria of SSCs are safety-related items (quality class Q), safety-impact items (quality class T), backfitting rule items (fire protection (10CFR50.48), environmental qualification (10CFR50.49), pressurized thermal shock (10CFR50.61), anticipated transient without scram (10CFR50.62), and station blackout (10CFR50.63)) and regulating authority requiring items[1∼3]. The purpose of review of Code and Standards is identifying actual condition of the NPP and evaluating aging management using effective Code and Standards corresponding to reactor facilities. Code and Standards is composed of regulating laws, FSAR items, administrative actions, regulating actions, agreement items, and other

  9. Safety of reactors built according to earlier standards (WWER 440/V230 type)

    International Nuclear Information System (INIS)

    Misak, J.; Rohar, S.

    1995-01-01

    The problems of safety of WWER-440/V-230 type reactors are discussed, and the following conclusions are made. (1) The reactors have a very good operational record. (2) The reactors have serious design shortcomings, which should be eliminated by safety upgrading. Core damage frequency should be further reduced. (3) PSA methods constitute an appropriate tool for assessment of plant vulnerability to some initiating events and malfunctions, for prioritization of upgrading measures and for tolerability of deviations from current safety standards. (4) The most important safety merits, such as a large thermal inertia and low rupture probability, should be properly taken into account in the analysis. (5) Extensive safety upgrading is feasible and can lead to a considerable risk reduction. In certain circumstances such upgrading is the least expensive option even though the total cost is much higher than the initial plant construction cost. (6) Properly upgraded, the reactor units may be operable until better power resources are available within the country. (7) The existing gap between the technological and political judgements of nuclear safety should be reduced continuously by information exchange improvements. (8) A unified approach to nuclear safety should be adopted for all nuclear reactors (not just WWERs) built to earlier standards. 5 tabs., 1 fig

  10. The Road to Psychological Safety: Legal, Scientific, and Social Foundations for a Canadian National Standard on Psychological Safety in the Workplace

    Science.gov (United States)

    Shain, Martin; Arnold, Ian; GermAnn, Kathy

    2012-01-01

    In Part 1 of this article, the legal and scientific origins of the concept of psychological safety are examined as background to, and support for, the new Canadian National Standard on Psychological Health and Safety in the Workplace (CSA Z1003/BNQ 9700). It is shown that five factors influencing psychological safety can be identified as being…

  11. Product unconformable in the light of legal regulations and the ISO 9001:2000 standards

    Directory of Open Access Journals (Sweden)

    Justyna Górna

    2009-01-01

    Full Text Available The supervision of unconformable product is a key problem in the era of globalization. In Poland the supervision of safety product has been entrusted to the President of the Office of Competition and Consumer Protection. The agency supporting its activities is the Trade Inspection. Growing popularity of the quality systems conformable with the ISO 9000 standard caused that they have been included in the EU regulations as criteria of assessment of conformability with requirements. The certificate of the quality management system is indispensable for companies for functioning in many market areas. One should remember that quality management system will help the company to supervise unconformable products only when it really functions and is not just on paper. Only then it will function efficiently.

  12. Improvement of standards on functional reliability of electric power systems

    International Nuclear Information System (INIS)

    Barinov, V.A.; Volkov, G.A.; Kalita, V.V.; Kogan, F.L.; Makarov, S.F.; Manevich, A.S.; Mogirev, V.V.; Sin'chugov, F.I.; Skopintsev, V.A.; Khvoshchinskaya, Z.G.

    1993-01-01

    Analysis of the most principal aspects of the existing standards and requirements on assuring safety and stability of electric power systems (EPS) and effective (reliable and economical) power supply of consumers is given. The reliability is determined as ability to accomplish the assigned functions. Basic recommendations on improving the standards regulating the safety and reliability of the NPP functioning are formulated

  13. Harmonization of nuclear and radiation safety regulations for nuclear power plants with reference levels of Western European Nuclear Regulators Association (WENRA)

    International Nuclear Information System (INIS)

    Bojchuk, V.S.; Mikolajchuk, O.A.; Gromov, G.V.; Dibach, O.M.; Godovanyuk, G.M.; Nosovs'kij, A.V.

    2014-01-01

    Self-evaluation of the Ukrainian regulations on nuclear and radiation safety that apply to nuclear power plants for compliance with the reference levels of the Western European Nuclear Regulators Association (WENRA) is presented. Proposals on improvement of the regulations upon self-evaluation are provided

  14. Tank farms criticality safety manual

    International Nuclear Information System (INIS)

    FORT, L.A.

    2003-01-01

    This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR-), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR- 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type

  15. Statistical benchmarking in utility regulation: Role, standards and methods

    International Nuclear Information System (INIS)

    Newton Lowry, Mark; Getachew, Lullit

    2009-01-01

    Statistical benchmarking is being used with increasing frequency around the world in utility rate regulation. We discuss how and where benchmarking is in use for this purpose and the pros and cons of regulatory benchmarking. We then discuss alternative performance standards and benchmarking methods in regulatory applications. We use these to propose guidelines for the appropriate use of benchmarking in the rate setting process. The standards, which we term the competitive market and frontier paradigms, have a bearing on method selection. These along with regulatory experience suggest that benchmarking can either be used for prudence review in regulation or to establish rates or rate setting mechanisms directly

  16. IAEA codes and guides for safety of nuclear power plants

    International Nuclear Information System (INIS)

    Raisic, N.

    1980-01-01

    The objectives and scope of the Agency's programme of nuclear safety standards are described and the role of these documents in regulation of nuclear power im Member States is discussed. For each of the five areas of safety standards development, i.e. siting, design, operation, quality assurance and governmental organization, a set of principles underlying requirements and recommendations contained in the Code of Practice and Safety Guides will be presented. Safety Guides in each of the five areas will be reviewed in respect of the scope and content. A consideration will be given to the future development of the safety standards and to the revision and updating of the published documents. (orig./RW)

  17. 78 FR 21850 - Federal Motor Vehicle Safety Standards; Matters Incorporated by Reference

    Science.gov (United States)

    2013-04-12

    ... to the 1985 Annual Book of ASTM Standards, Vol. 05.04, ``Test Methods for Rating Motor, Diesel... for Rating Motor, Diesel, Aviation Fuels, A2. Reference Materials and Blending Accessories, (``ASTM... [Docket No. NHTSA-2011-0185] RIN 2127-AL25 Federal Motor Vehicle Safety Standards; Matters Incorporated by...

  18. Arrangement between the US Nuclear Regulatory Commission (USNRC) and the Belgian Government for Exchange of Technical Information in Regulatory Matters and in Cooperation in Safety Research and in Standards Development

    International Nuclear Information System (INIS)

    1978-01-01

    This Arrangement was concluded on 6 June 1978 between the United States Nuclear Regulatory Commission and the Belgian Government for exchange of technical information in regulatory matters and in co-operation in safety research and in standards development. Both Parties agree to exchange, as available, technical information related to the regulation of safety and the environmental impact of designated nuclear energy facilities and to safety research of designated types of nuclear facilities. As regards co-operation in safety research, the execution of joint programmes and projects under which activities are divided between the two Parties will be agreed on a case by case basis. The Parties further agree to co-operate in the development of regulatory standards applicable to the designated nuclear facilities. The Arrangement is valid for 5 years and may be extended. (NEA) [fr

  19. Radiation safety

    International Nuclear Information System (INIS)

    Van Riessen, A.

    2002-01-01

    Full text: Experience has shown that modem, fully enclosed, XRF and XRD units are generally safe. This experience may lead to complacency and ultimately a lowering of standards which may lead to accidents. Maintaining awareness of radiation safety issues is thus an important role for all radiation safety officers. With the ongoing progress in technology, a greater number of radiation workers are more likely to use a range of instruments/techniques - eg portable XRF, neutron beam analysis, and synchrotron radiation analysis. The source for each of these types of analyses is different and necessitates an understanding of the associated dangers as well as use of specific radiation badges. The trend of 'suitcase science' is resulting in scientists receiving doses from a range of instruments and facilities with no coordinated approach to obtain an integrated dose reading for an individual. This aspect of radiation safety needs urgent attention. Within Australia a divide is springing up between those who work on Commonwealth property and those who work on State property. For example a university staff member may operate irradiating equipment on a University campus and then go to a CSIRO laboratory to operate similar equipment. While at the University State regulations apply and while at CSIRO Commonwealth regulations apply. Does this individual require two badges? Is there a need to obtain two licences? The application of two sets of regulations causes unnecessary confusion and increases the workload of radiation safety officers. Radiation safety officers need to introduce risk management strategies to ensure that both existing and new procedures result in risk minimisation. A component of this strategy includes ongoing education and revising of regulations. AXAA may choose to contribute to both of these activities as a service to its members as well as raising the level of radiation safety for all radiation workers. Copyright (2002) Australian X-ray Analytical

  20. INFLUENCE OF PLANNING, ORGANIZATIONAL CHARACTERISTICS AND REGULATION ON ROAD TRAFFIC SAFETY OF PEDESTRIANS

    Directory of Open Access Journals (Sweden)

    G. M. Kuharenok

    2011-01-01

    Full Text Available The paper presents results of research on planning, organizational characteristics and regulation modes at  the regulated pedestrian crossings, located out of crossroads in the street and road network of Minsk. Some regularities pertaining to the influence of the investigated characteristics on road traffic safety of pedestrians are revealed in the paper. Practical offers on increase of road traffic safety of pedestrians in the Republic of Belarus have been developed on the basis of the executed investigations and cited in the paper.