WorldWideScience

Sample records for regulating tomato flower

  1. Flowering and fruiting intensity of small - sized tomato, due to the regulation of the quantity of light reaching the plant top

    Directory of Open Access Journals (Sweden)

    Renata Dobromilska

    2012-12-01

    Full Text Available The experiments were carried out in 2001-2003 in a high unheated plastic tunnel. The influence of reduction of leaves and application of reflection matter on flowering and fruiting of small-sized tomato was studied. The experiment focused on the following factors: methods of increasing the amount of light in plant tops (reflection matter, cutting leaves, reflection matter + cutting leaves and cultivars of small sized tomato ('Conchita F1', 'Picolino F1'. The cutting of leaves and reflection matter mulching resulted in the increase of the intensity of radiation reaching plant tops and the reflected radiation. The above measures increasing the light access to plant tops significantly increased the number of flowers, germs and fruits. The reflection matter mulching along with cutting leaves resulted in the substantial growth of early yield of small-sized tomato. The 'Conchita F1' cultivar set a relatively greater number of flowers and fruits on a plant and in cluster than 'Picolino F1'.

  2. Epigenetic regulation of photoperiodic flowering

    OpenAIRE

    Takeno, Kiyotoshi

    2010-01-01

    The cytidine analogue 5-azacytidine, which causes DNA demethylation, induced flowering in the non-vernalization-requiring plants Perilla frutescens var. crispa, Silene armeria and Pharbitis nil (synonym Ipomoea nil) under non-inductive photoperiodic conditions, suggesting that the expression of photoperiodic flowering-related genes is regulated epigenetically by DNA methylation. The flowering state induced by DNA demethylation was not heritable. Changes in the genome-wide methylation state we...

  3. Manipulation of flowering time and branching by overexpression of the tomato transcription factor SlZFP2.

    Science.gov (United States)

    Weng, Lin; Bai, Xiaodong; Zhao, Fangfang; Li, Rong; Xiao, Han

    2016-12-01

    Flowering of higher plants is orchestrated by complex regulatory networks through integration of various environmental signals such as photoperiod, temperature, light quality and developmental cues. In Arabidopsis, transcription of the flowering integrator gene FLOWERING LOCUS T (FT) that several flowering pathways converge to is directly regulated by more than ten transcription factors. However, very little is known about the transcriptional regulation of the FT homolog SINGLE FLOWER TRUESS (SFT) in the day-neutral plant tomato (Solanum lycopersicum). Previously, we showed that the zinc finger transcription factor SlZFP2 plays important roles in regulation of seed germination and fruit ripening in tomato and also found that overexpression of SlZFP2 impacted flowering and branching. Here, we characterized in detail the early flowering and high branching phenotypes by overexpression of this transcription factor. Our data showed that overexpression of SlZFP2 accelerated flowering in an SFT-dependent manner as demonstrated by elevated SFT expression in the leaves and the transcription factor's binding ability to SFT promoter in vitro and in vivo. Furthermore, overexpression of the SlZFP2 gene in the sft plants failed to rescue the mutant's late flowering. Through analysis of grafting phenotype, growth response of branches to auxin application and transcriptome profiling by RNA sequencing, we also showed that overexpression of SlZFP2 affected shoot apical dominance through multiple regulatory pathways. Our results suggest that the transcription factor SlZFP2 has potential applications in genetic modification of plant architecture and flowering time for tomato production and other crops as well. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Regulation of tomato (Lycopersicon esculentum Mill.) fruit setting ...

    African Journals Online (AJOL)

    Dandena

    2012-06-26

    dichlorophenoxyacetic acid (2,4-D) ... disease and insect pest complex, heat stress) are solved ... among which light, temperature, nutrition, hormonal .... Interaction effects of variety and 2, 4-D on number of fruits per flower cluster of tomato plants.

  5. Heterosis for flower and fruit traits in tomato (Lycopersicon ...

    African Journals Online (AJOL)

    ONOS

    2010-07-05

    Jul 5, 2010 ... heterosis; LSD, least significant difference; CV, co-variance. ... The North West Frontier Province of the country .... Mean squares for flowers per cluster, fruits per cluster, fruit length, fruit width, fruit weight and yield per plant.

  6. The behaviour of Bombus impatiens (Apidae, Bombini on tomato (Lycopersicon esculentum Mill., Solanaceae flowers: pollination and reward perception

    Directory of Open Access Journals (Sweden)

    Peter Kevan

    2013-10-01

    Full Text Available The foraging behaviour of pollinators can influence their efficiency in pollinating certain plant species. Improving our understanding of this behaviour can contribute to an improvement of management techniques to avoid pollination deficits. We investigated the relationship between the number of visits of bumble bees (Bombus impatiensto tomato flowers (Lycopersicon esculentum and two variables related to the quality of the resulting fruits (weight, number of seeds, as well as the relationship between foragers’ thoracic weights, physical characteristics of thoracic vibrations (main frequency, velocity amplitude, amount of pollen removed from flowers, and the quality-related variables. In addition, we studied the capability of foragers to assess the availability of pollen in flowers. Tomato weight and seed number did not increase with the number of bee visits, neither were they correlated with the foragers’ thorax weight. Thorax weight also did not correlate with the amount of pollen removed from the flowers nor with the physical characteristics of vibration. Vibration characteristics did not change in response to the amount of pollen available on tomato flowers. Instead, foragers adjusted the time spent visiting the flowers, spending fewer time on flowers from which some pollen had already been removed on previous visits. The quantity and the production-related variables of tomatoes are not dependent on the number of bee visits (usually one visit suffices for full pollination; bigger foragers are not more efficient in pollinating tomato flowers than smaller ones; and B. impatiens foragers are capable of evaluating the amount of pollen on a flower while foraging and during pollination.

  7. Cultivation of Tomato Tissues Capable of Forming Flowers and Fruits in Vitro

    Science.gov (United States)

    Galston, Arthur W.

    1998-01-01

    The final phase of this research project was designed to develop a practical method for producing a steady supply of fresh cherry tomato fruits over a period of several months, for possible use as a fresh vegetable supplement to a standard diet of astronauts on extended missions. This effort was successful. We were able to excise immature flowers from Pixie tomato plants grown in a controlled condition room, implant them on artificial media under aseptic conditions, and get them to develop into edible fruits in a little over a month. The medium (Murashige-Skoog) was purchased from Sigma, supplemented with sugar plus a synthetic analog of the plant hormone cytokinin, and adjusted to pH 5.8. A temperature of at least 25 C and visible light helped to produce ripe red fruits within 7 weeks. To ensure a steady supply of such tomatoes, we found it possible to store the explanted flower buds in MS medium at 5 C for at least 6 weeks without significant loss of ability to develop into fruits. This means that many containers could be prepared before launch and put into a refrigerator; a convenient number could then be removed periodically to guarantee a succession of harvests during the life of an extended mission. Details are found in the attached reprints. Subsequent applications for funds for flight or continued research were denied, and the project was terminated.

  8. Effect of Shoot Pruning and Flower Thinning on Quality and Quantity of Semi-Determinate Tomato (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Abdolali HESAMI

    2012-02-01

    Full Text Available There are many constraints of space, light and availability of fruits to harvest in tomatoes greenhouse. Therefore, two experiments were carried out to determine the effect of shoot pruning and flower thinning on quality and quantity of fruits of semi-determinate tomato in a greenhouse of the Faculty of Agriculture and Natural Resources, Persian Gulf University of Bushehr. Experimental design was randomized complete block designs in which the effect of shoot pruning (single branch pruning, double branch pruning, pyramidal pruning and control or flower thinning (Cluster with 4 and 5 remained flowers and control were studied separately. Results showed that, leaf area and plants yield were higher in treatments which were pruned than control. Yields from pyramidal pruning and cluster thinning with 5 remaining flowers were significantly higher than other treatments. On the other hand, qualitative study identified that pyramidal pruning increases vitamin C in fruits, but had no significant effect on total soluble solids.

  9. The regulation of seasonal flowering in the Rosaceae.

    Science.gov (United States)

    Kurokura, Takeshi; Mimida, Naozumi; Battey, Nicholas H; Hytönen, Timo

    2013-11-01

    Molecular mechanisms regulating the flowering process have been extensively studied in model annual plants; in perennials, however, understanding of the molecular mechanisms controlling flowering has just started to emerge. Here we review the current state of flowering research in perennial plants of the rose family (Rosaceae), which is one of the most economically important families of horticultural plants. Strawberry (Fragaria spp.), raspberry (Rubus spp.), rose (Rosa spp.), and apple (Malus spp.) are used to illustrate how photoperiod and temperature control seasonal flowering in rosaceous crops. We highlight recent molecular studies which have revealed homologues of terminal flower1 (TFL1) to be major regulators of both the juvenile to adult, and the vegetative to reproductive transitions in various rosaceous species. Additionally, recent advances in understanding of the regulation of TFL1 are discussed.

  10. 77 FR 22467 - Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop Provisions

    Science.gov (United States)

    2012-04-16

    ...-0006] RIN 0563-AC32 Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop... Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Fresh Market Tomato (Dollar... Common Crop Insurance Regulations (7 CFR part 457), Fresh Market Tomato (Dollar Plan) Crop Provisions...

  11. Endogenous auxin regulates the sensitivity of Dendrobium (cv. Miss Teen) flower pedicel abscission to ethylene

    NARCIS (Netherlands)

    Rungruchkanont, K.; Ketsa, S.; Chatchawankanphanich, O.; Doorn, van W.G.

    2007-01-01

    Dendrobium flower buds and flowers have an abscission zone at the base of the pedicel (flower stalk). Ethylene treatment of cv. Miss Teen inflorescences induced high rates of abscission in flower buds but did not affect abscission once the flowers had opened. It is not known if auxin is a regulator

  12. The Tomato Hybrid Proline-Rich Protein regulates the abcission zone competence to respond to ethylene signals

    Science.gov (United States)

    The Tomato Hybrid Proline-Rich Protein (THyPRP) gene was specifically expressed in the tomato (Solanum lycopersicum) flower abscission zone (FAZ), and its stable antisense silencing under the control of an abscission zone (AZ)-specific promoter, Tomato Abscission Polygalacturonase4,significantly inh...

  13. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli.

    Science.gov (United States)

    Blume, B; Grierson, D

    1997-10-01

    The enzyme ACC oxidase, catalysing the last step in the biosynthesis of the plant hormone ethylene, is encoded by a small multigene family in tomato, comprising three members, LEACO1, LEACO2 and LEACO3. LEACO1 is the major gene expressed during ripening, leaf senescence, and wounding (Barry et al., 1996). To investigate the transcriptional regulation of ACC oxidase gene expression, chimeric fusions between the beta-glucuronidase reporter gene and 97 bp of 5' UTR plus 124, 396 and 1825 bp, respectively, of 5' untranscribed LEACO1 sequence were constructed and introduced into Lycopersicon esculentum (Mill cv. Ailsa Craig) and Nicotiana plumbaginifolia. Analysis of transgenic tomatoes indicated that the region containing nucleotides -124 to +97 of the LEACO1 gene is sufficient to confer a marked increase in GUS activity during fruit ripening, albeit at very low levels. Fusion of 396 and 1825 bp of LEACO1 upstream sequence resulted in strong and specific induction of GUS expression in situations known to be accompanied by enhanced ethylene production. Reporter gene expression was similar to that of the endogenous LEACO1 gene, with major increases especially during fruit ripening, senescence and abscission of leaves and, to a lesser extent, of flowers. Analysis of transgenic N. plumbaginifolia plants confirmed the pattern of LEACO1 promoter activity detected in tomato leaves and flowers. Reporter gene expression was also induced following wounding, treatment with ethylene, and pathogen infection. Histochemical analysis illustrated localized GUS activity in the pericarp of ripening fruit, abscission zones of senescent petioles and unfertilized flowers, and at wound sites. These results demonstrate that ACC oxidase is regulated at the transcriptional level in a wide range of cell types at different developmental stages and in response to several external stimuli.

  14. Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability 

    KAUST Repository

    Kong, Xiangxiong; Luo, Xi; Qu, Gao Ping; Liu, Peng; Jin, Jing Bo

    2016-01-01

    The initiation of flowering is tightly regulated by the endogenous and environment signals, which is crucial for the reproductive success of flowering plants. It is well known that autonomous and vernalization pathways repress transcription of FLOWERING LOCUS C (FLC), a focal floral repressor, but how its protein stability is regulated remains largely unknown. Here, we found that mutations in a novel Arabidopsis SUMO protease 1 (ASP1) resulted in a strong late-flowering phenotype under long-days, but to a lesser extent under short-days. ASP1 localizes in the nucleus and exhibited a SUMO protease activity in vitro and in vivo. The conserved Cys-577 in ASP1 is critical for its enzymatic activity, as well as its physiological function in the regulation of flowering time. Genetic and gene expression analyses demonstrated that ASP1 promotes transcription of positive regulators of flowering, such as FT, SOC1 and FD, and may function in both CO-dependent photoperiod pathway and FLC-dependent pathways. Although the transcription level of FLC was not affected in the loss-of-function asp1 mutant, the protein stability of FLC was increased in the asp1 mutant. Taken together, this study identified a novel bona fide SUMO protease, ASP1, which positively regulates transition to flowering at least partly by repressing FLC protein stability.

  15. Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability 

    KAUST Repository

    Kong, Xiangxiong

    2016-12-07

    The initiation of flowering is tightly regulated by the endogenous and environment signals, which is crucial for the reproductive success of flowering plants. It is well known that autonomous and vernalization pathways repress transcription of FLOWERING LOCUS C (FLC), a focal floral repressor, but how its protein stability is regulated remains largely unknown. Here, we found that mutations in a novel Arabidopsis SUMO protease 1 (ASP1) resulted in a strong late-flowering phenotype under long-days, but to a lesser extent under short-days. ASP1 localizes in the nucleus and exhibited a SUMO protease activity in vitro and in vivo. The conserved Cys-577 in ASP1 is critical for its enzymatic activity, as well as its physiological function in the regulation of flowering time. Genetic and gene expression analyses demonstrated that ASP1 promotes transcription of positive regulators of flowering, such as FT, SOC1 and FD, and may function in both CO-dependent photoperiod pathway and FLC-dependent pathways. Although the transcription level of FLC was not affected in the loss-of-function asp1 mutant, the protein stability of FLC was increased in the asp1 mutant. Taken together, this study identified a novel bona fide SUMO protease, ASP1, which positively regulates transition to flowering at least partly by repressing FLC protein stability.

  16. Coordination of flower development by homeotic master regulators.

    Science.gov (United States)

    Ito, Toshiro

    2011-02-01

    Floral homeotic genes encode transcription factors and act as master regulators of flower development. The homeotic protein complex is expressed in a specific whorl of the floral primordium and determines floral organ identity by the combinatorial action. Homeotic proteins continue to be expressed until late in flower development to coordinate growth and organogenesis. Recent genomic studies have shown that homeotic proteins bind thousands of target sites in the genome and regulate the expression of transcription factors, chromatin components and various proteins involved in hormone biosynthesis and signaling and other physiological activities. Further, homeotic proteins program chromatin to direct the developmental coordination of stem cell maintenance and differentiation in shaping floral organs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. ODORANT1 Regulates Fragrance Biosynthesis in Petunia FlowersW⃞

    Science.gov (United States)

    Verdonk, Julian C.; Haring, Michel A.; van Tunen, Arjen J.; Schuurink, Robert C.

    2005-01-01

    Floral scent is important to plant reproduction because it attracts pollinators to the sexual organs. Therefore, volatile emission is usually tuned to the foraging activity of the pollinators. In Petunia hybrida, volatile benzenoids determine the floral aroma. Although the pathways for benzenoid biosynthesis have been characterized, the enzymes involved are less well understood. How production and emission are regulated is unknown. By targeted transcriptome analyses, we identified ODORANT1 (ODO1), a member of the R2R3-type MYB family, as a candidate for the regulation of volatile benzenoids in Petunia hybrida cv W115 (Mitchell) flowers. These flowers are only fragrant in the evening and at night. Transcript levels of ODO1 increased before the onset of volatile emission and decreased when volatile emission declined. Downregulation of ODO1 in transgenic P. hybrida Mitchell plants strongly reduced volatile benzenoid levels through decreased synthesis of precursors from the shikimate pathway. The transcript levels of several genes in this pathway were reduced by suppression of ODO1 expression. Moreover, ODO1 could activate the promoter of the 5-enol-pyruvylshikimate-3-phosphate synthase gene. Flower pigmentation, which is furnished from the same shikimate precursors, was not influenced because color and scent biosynthesis occur at different developmental stages. Our studies identify ODO1 as a key regulator of floral scent biosynthesis. PMID:15805488

  18. In vitro food production for isolated closed environments: formation of ripe tomato fruits from excised flower buds.

    Science.gov (United States)

    Applewhite, P B; K-Sawhney, R; Galston, A W

    1997-01-01

    Excised preanthesis flower buds of young Pixie Hybrid tomato plants develop into red ripe fruits in aseptic culture on a modified Murashige-Skoog medium with 3% sucrose at pH 5.8. The addition of certain synthetic auxins (IAA, NAA, IBA), auxin precursors (ISA), or cytokinins (KIN, IPA, ZEA, BAP) to the medium improved the percentage of buds developing into fruits, the weight of the ripe fruits, or both. The best results were obtained by an auxin-cytokinin combination of 10 microM IBA with 1 microM BAP. Storage of the excised buds at low temperature (6 degrees C) for up to 4 weeks before transfer to 27 degrees C caused only minimal deterioration in size and number of the fruit crop. Extension of low-temperature storage to 8 weeks produced smaller fruits that took longer to develop. This system could produce fresh, ripe small tomatoes on a sustained basis for up to 2 months for an isolated environment such as a space vehicle or submarine.

  19. Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis

    Directory of Open Access Journals (Sweden)

    Ishida Betty K

    2003-08-01

    Full Text Available Abstract Background Red ripe tomatoes are the result of numerous physiological changes controlled by hormonal and developmental signals, causing maturation or differentiation of various fruit tissues simultaneously. These physiological changes affect visual, textural, flavor, and aroma characteristics, making the fruit more appealing to potential consumers for seed dispersal. Developmental regulation of tomato fruit ripening has, until recently, been lacking in rigorous investigation. We previously indicated the presence of up-regulated transcription factors in ripening tomato fruit by data mining in TIGR Tomato Gene Index. In our in-vitro system, green tomato sepals cultured at 16 to 22°C turn red and swell like ripening tomato fruit while those at 28°C remain green. Results Here, we have further examined regulation of putative developmental genes possibly involved in tomato fruit ripening and development. Using molecular biological methods, we have determined the relative abundance of various transcripts of genes during in vitro sepal ripening and in tomato fruit pericarp at three stages of development. A number of transcripts show similar expression in fruits to RIN and PSY1, ripening-associated genes, and others show quite different expression. Conclusions Our investigation has resulted in confirmation of some of our previous database mining results and has revealed differences in gene expression that may be important for tomato cultivar variation. We present new and intriguing information on genes that should now be studied in a more focused fashion.

  20. Hormonal regulation of seed development and germination in tomato : studies on abscisic acid- and gibberellin-deficient mutants

    NARCIS (Netherlands)

    Groot, S.P.C.

    1987-01-01

    The role of endogenous gibberellins (GAs) and abscisic acid (ABA) in seed development and germination of tomato, was studied with the use of GA- and/or ABA-deficient mutants.

    GAs are indispensable for the development of fertile flowers. Fertility of GA-deficient flowers is restored

  1. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.

    Science.gov (United States)

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-11-21

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.

  2. LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants

    Science.gov (United States)

    2014-01-01

    Background Arabidopsis ZBF1/MYC2bHLH transcription factor is a repressor of photomorphogenesis, and acts as a point of cross talk in light, abscisic acid (ABA) and jasmonic acid (JA) signaling pathways. MYC2 also functions as a positive regulator of lateral root development and flowering time under long day conditions. However, the function of MYC2 in growth and development remains unknown in crop plants. Results Here, we report the functional analyses of LeMYC2 in tomato (Lycopersicon esculentum). The amino acid sequence of LeMYC2 showed extensive homology with Arabidopsis MYC2, containing the conserved bHLH domain. To study the function of LeMYC2 in tomato, overexpression and RNA interference (RNAi) LeMYC2 tomato transgenic plants were generated. Examination of seedling morphology, physiological responses and light regulated gene expression has revealed that LeMYC2 works as a negative regulator of blue light mediated photomorphogenesis. Furthermore, LeMYC2 specifically binds to the G-box of LeRBCS-3A promoter. Overexpression of LeMYC2 has led to increased root length with more number of lateral roots. The tomato plants overexpressing LeMYC2 have reduced internode distance with more branches, and display the opposite morphology to RNAi transgenic lines. Furthermore, this study shows that LeMYC2 promotes ABA and JA responsiveness. Conclusions Collectively, this study highlights that working in light, ABA and JA signaling pathways LeMYC2 works as an important regulator for growth and development in tomato plants. PMID:24483714

  3. Cloning and characterisation of two CTR1-like genes in Cucurbita pepo: regulation of their expression during male and female flower development.

    Science.gov (United States)

    Manzano, Susana; Martínez, Cecilia; Gómez, Pedro; Garrido, Dolores; Jamilena, Manuel

    2010-12-01

    Ethylene is an essential regulator of flower development in Cucurbita pepo, controlling the sexual expression, and the differentiation and maturation of floral organs. To study the action mechanism of ethylene during the male and female flower development, we have identified two CTR1 homologues from C. pepo, CpCTR1 and CpCTR2, and analysed their expressions during female and male flower development and in response to external treatments with ethylene. CpCTR1 and CpCTR2 share a high homology with plant CTR1-like kinases, but differ from other related kinases such as the Arabidopsis EDR1 and the tomato LeCTR2. The C-terminal ends of both CpCTR1 and CpCTR2 have all the conserved motifs of Ser/Thr kinase domains, including the ATP-binding signature and the protein kinase active site consensus sequence, which suggests that CpCTR1 and CpCTR2 could have the same function as CTR1 in ethylene signalling. The transcripts of both genes were detected in different organs of the plant, including roots, leaves and shoots, but were mostly accumulated in mature flowers. During the development of male and female flowers, CpCTR1 and CpCTR2 expressions were concomitant with ethylene production, which indicates that both genes could be upregulated by ethylene, at least in flowers. Moreover, external treatments with ethylene, although did not alter the expression of these two genes in seedlings and leaves, were able to upregulate their expression in flowers. In the earlier stages of flower development, when ethylene production is very low, the expression of CpCTR1 and CpCTR2 is higher in male floral organs, which agrees with the role of these genes as negative regulators of ethylene signalling, and explain the lower ethylene sensitivity of male flowers in comparison with female flowers. The function of the upregulation of these two genes in later stages of female flower development, when the production of ethylene is also increased, is discussed.

  4. Anisotropic cell growth-regulated surface micropatterns in flower petals

    Directory of Open Access Journals (Sweden)

    Xiao Huang

    2017-05-01

    Full Text Available Flower petals have not only diverse macroscopic morphologies but are rich in microscopic surface patterns, which are crucial to their biological functions. Both experimental measurements and theoretical analysis are conducted to reveal the physical mechanisms underlying the formation of minute wrinkles on flower petals. Three representative flowers, daisy, kalanchoe blossfeldiana, and Eustoma grandiflorum, are investigated as examples. A surface wrinkling model, incorporating the measured mechanical properties and growth ratio, is used to elucidate the difference in their surface morphologies. The mismatch between the anisotropic epidermal cell growth and the isotropic secretion of surficial wax is found to dictate the surface patterns.

  5. Flowering time regulation in crops—what did we learn from Arabidopsis?

    Science.gov (United States)

    Blümel, Martina; Dally, Nadine; Jung, Christian

    2015-04-01

    The change from vegetative to reproductive growth is a key developmental switch in flowering plants. In agriculture, flowering is a prerequisite for crop production whenever seeds or fruits are harvested. An intricate network with various (epi-) genetic regulators responding to environmental and endogenous triggers controls the timely onset of flowering. Changes in the expression of a single flowering time (FTi) regulator can suffice to drastically alter FTi. FTi regulation is of utmost importance for genetic improvement of crops. We summarize recent discoveries on FTi regulators in crop species emphasizing crop-specific genes lacking homologs in Arabidopsis thaliana. We highlight pleiotropic effects on agronomically important characters, impact on adaptation to new geographical/climate conditions and future perspectives for crop improvement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Regulation of the growth and photosynthesis of cherry tomato ...

    African Journals Online (AJOL)

    The growth and photosynthetic characteristics of cherry tomato seedlings were investigated under seven light irradiations such as dysprosium lamps (white light; control, C), red light emitting diodes (LEDs) (R), blue LEDs (B), orange LEDs (O), green LEDs (G), red and blue LEDs (RB) and red, blue and green LEDs (RBG) ...

  7. Tomato thymidine kinase is subject to inefficient TTP feedback regulation

    DEFF Research Database (Denmark)

    Larsen, Nicolai Balle; Munch-Petersen, Birgitte; Piskur, Jure

    2014-01-01

    A promising suicide gene therapy system to treat gliomas has been reported: the thymidine kinase 1 from tomato (toTK1) combined with the nucleoside analog pro-drug zidovudine (azidothymidine, AZT), which is known to penetrate the blood–brain barrier. Transduction with toTK1 has been found to effi...

  8. Medicago truncatula SOC1 Genes Are Up-regulated by Environmental Cues That Promote Flowering

    Directory of Open Access Journals (Sweden)

    Jared B. Fudge

    2018-04-01

    Full Text Available Like Arabidopsis thaliana, the flowering of the legume Medicago truncatula is promoted by long day (LD photoperiod and vernalization. However, there are differences in the molecular mechanisms involved, with orthologs of two key Arabidopsis thaliana regulators, FLOWERING LOCUS C (FLC and CONSTANS (CO, being absent or not having a role in flowering time function in Medicago. In Arabidopsis, the MADS-box transcription factor gene, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (AtSOC1, plays a key role in integrating the photoperiodic and vernalization pathways. In this study, we set out to investigate whether the Medicago SOC1 genes play a role in regulating flowering time. Three Medicago SOC1 genes were identified and characterized (MtSOC1a–MtSOC1c. All three MtSOC1 genes, when heterologously expressed, were able to promote earlier flowering of the late-flowering Arabidopsis soc1-2 mutant. The three MtSOC1 genes have different patterns of expression. However, consistent with a potential role in flowering time regulation, all three MtSOC1 genes are expressed in the shoot apex and are up-regulated in the shoot apex of plants in response to LD photoperiods and vernalization. The up-regulation of MtSOC1 genes was reduced in Medicago fta1-1 mutants, indicating that they are downstream of MtFTa1. Insertion mutant alleles of Medicago soc1b do not flower late, suggestive of functional redundancy among Medicago SOC1 genes in promoting flowering.

  9. Fenología de la floración en tomate cultivado y especies silvestres relacionadas Flowering phenology in cultivated tomato and related wild species

    Directory of Open Access Journals (Sweden)

    Edwin Fernando Restrepo Salazar

    2008-06-01

    Full Text Available En un diseño experimental de bloques completos al azar se comparó la fenología de la floración de doce accesiones silvestres de Solanum sección Lycopersicum con la del tomate cultivado tipo “chonto”. Los tratamientos se repitieron tres veces. Se evaluó la aparición de las 12 primeras inflorescencias y el tipo de inflorescencia. Las fenologías de las accesiones de la variedad glabratum de S. habrochaites (PI 134417, PI134418 y PI126449, las accesiones LA1624, LA2092 de la variedad typicum de S. habrochaites y la accesión LA 444-1 de S. peruvianum coincidieron con la del tomate “chonto”. No se presentaron diferencias significativas en la variable días a inicio de floración entre las accesiones de la variedad glabratum y el tomate cultivado. Las accesiones de la variedad glabratum de S. habrochaites y el tomate cultivado presentaron inflorescencias simples; mientras que las accesiones de la variedad typicum de S. habrochaites y de la especie S. peruvianum presentaron inflorescencias bifurcadas.The flowering phenology of twelve wild accesions of Solanum section Lycopersicum were compared with those of the cultivated tomato type of “chonto” by using the randomized complete block design. The treatments were repeated three times. The appearance initiate of the first twelve inflorescences and kind of inflorescence were evaluated. The phenologies of the accesions of the glabratum variety from S. habrochaites (PI 134417, PI134418 y PI126449, LA1624 y LA2092 of the typicum variety from S. habrochaites and LA 444-1 from S. peruvianum coincided with those of the “chonto” tomato. There were no significant differences between the glabratum variety accessions and cultivated tomato in the starting days of flowering variable. The accesions of the glabratum variety from S. habrochaites and the cultivated tomato presented simple inflorescences; while the accesions of the typicum variety from S. habrochaites and S. peruvianum specie showed

  10. Carotenoid content of husk tomato under the influence of growth regulators and gamma rays

    International Nuclear Information System (INIS)

    Raghava, R.P.; Raghava, Nisha

    1990-01-01

    The present studies were conducted to study the effect of growth regulators and gamma rays on carotenoid content in husk tomato (Physalis peruviana L. and P. angulata L.). Results indicated that carotenoid content (in fruits) increased in all the treatments (except 200 and 500 ppm coumarin in case of P. peruviana and 100, 200 and 500 ppm coumarin in case of P. angulata). It is concluded that low doses of gamma rays may show stimulatory effect on carotenoid content in fruits of husk tomato. (author). 10 refs., 1 tab

  11. Molecular mechanisms regulating flowering time in sweet cherry (Prunus avium L.)

    DEFF Research Database (Denmark)

    Ionescu, Irina Alexandra

    The timing of flowering is a well-researched but at the same time incredibly complex process in angiosperms. Although we are in possession of detailed knowledge on the genetic level of flowering time regulation in the model plant Arabidopsis thaliana, it is often difficult to transfer this knowle......The timing of flowering is a well-researched but at the same time incredibly complex process in angiosperms. Although we are in possession of detailed knowledge on the genetic level of flowering time regulation in the model plant Arabidopsis thaliana, it is often difficult to transfer...... as a result of hydrogen cyanamide treatment: the jasmonate pathway, the hydrogen cyanide pathway and the cytokinin pathway. We further analyzed the levels of cyanogenic glucosides and their derivatives during endodormancy and its release in sweet cherry and almond (Prunus dulcis (Mill.) D. A. Webb). Prunasin...... and its amide coincided with flowering time in both species. Taken together, these results contribute to elucidating parts of the complex network regulating flowering time in perennial plants....

  12. Comprehensive RNA-Seq Analysis on the Regulation of Tomato Ripening by Exogenous Auxin.

    Directory of Open Access Journals (Sweden)

    Jiayin Li

    Full Text Available Auxin has been shown to modulate the fruit ripening process. However, the molecular mechanisms underlying auxin regulation of fruit ripening are still not clear. Illumina RNA sequencing was performed on mature green cherry tomato fruit 1 and 7 days after auxin treatment, with untreated fruit as a control. The results showed that exogenous auxin maintained system 1 ethylene synthesis and delayed the onset of system 2 ethylene synthesis and the ripening process. At the molecular level, genes associated with stress resistance were significantly up-regulated, but genes related to carotenoid metabolism, cell degradation and energy metabolism were strongly down-regulated by exogenous auxin. Furthermore, genes encoding DNA demethylases were inhibited by auxin, whereas genes encoding cytosine-5 DNA methyltransferases were induced, which contributed to the maintenance of high methylation levels in the nucleus and thus inhibited the ripening process. Additionally, exogenous auxin altered the expression patterns of ethylene and auxin signaling-related genes that were induced or repressed in the normal ripening process, suggesting significant crosstalk between these two hormones during tomato ripening. The present work is the first comprehensive transcriptome analysis of auxin-treated tomato fruit during ripening. Our results provide comprehensive insights into the effects of auxin on the tomato ripening process and the mechanism of crosstalk between auxin and ethylene.

  13. The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation

    Directory of Open Access Journals (Sweden)

    Jian-Zhi Huang

    2016-05-01

    Full Text Available The Phalaenopsis orchid is an important potted flower of high economic value around the world. We report the 3.1 Gb draft genome assembly of an important winter flowering Phalaenopsis ‘KHM190’ cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-seq reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families. We also generated a draft genome for Phalaenopsis pulcherrima ‘B8802,’ a summer flowering species, via resequencing. Comparison of genome data between the two Phalaenopsis cultivars allowed the identification of 691,532 single-nucleotide polymorphisms. In this study, we reveal that the key role of PhAGL6b in the regulation of labellum organ development involves alternative splicing in the big lip mutant. Petal or sepal overexpressing PhAGL6b leads to the conversion into a lip-like structure. We also discovered that the gibberellin pathway that regulates the expression of flowering time genes during the reproductive phase change is induced by cool temperature. Our work thus depicted a valuable resource for the flowering control, flower architecture development, and breeding of the Phalaenopsis orchids.

  14. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering.

    Directory of Open Access Journals (Sweden)

    Andrew Chen

    Full Text Available Most of the natural variation in wheat vernalization response is determined by allelic differences in the MADS-box transcription factor VERNALIZATION1 (VRN1. Extended exposures to low temperatures during the winter (vernalization induce VRN1 expression and promote the transition of the apical meristem to the reproductive phase. In contrast to its Arabidopsis homolog (APETALA1, which is mainly expressed in the apical meristem, VRN1 is also expressed at high levels in the leaves, but its function in this tissue is not well understood. Using tetraploid wheat lines with truncation mutations in the two homoeologous copies of VRN1 (henceforth vrn1-null mutants, we demonstrate that a central role of VRN1 in the leaves is to maintain low transcript levels of the VRN2 flowering repressor after vernalization. Transcript levels of VRN2 were gradually down-regulated during vernalization in both mutant and wild-type genotypes, but were up-regulated after vernalization only in the vrn1-null mutants. The up-regulation of VRN2 delayed flowering by repressing the transcription of FT, a flowering-integrator gene that encodes a mobile protein that is transported from the leaves to the apical meristem to induce flowering. The role of VRN2 in the delayed flowering of the vrn1-null mutant was confirmed using double vrn1-vrn2-null mutants, which flowered two months earlier than the vrn1-null mutants. Both mutants produced normal flowers and seeds demonstrating that VRN1 is not essential for wheat flowering, which contradicts current flowering models. This result does not diminish the importance of VRN1 in the seasonal regulation of wheat flowering. The up-regulation of VRN1 during winter is required to maintain low transcript levels of VRN2, accelerate the induction of FT in the leaves, and regulate a timely flowering in the spring. Our results also demonstrate the existence of redundant wheat flowering genes that may provide new targets for engineering wheat

  15. Induction of multiple shoots from leaf segments, in vitro-flowering and fruiting of a dwarf tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Rao, Kokkirala Venugopal; Kiranmayee, Kasula; Pavan, Umate; Sree, Telakalapalli Jaya; Rao, Alleni V; Sadanandam, Abbagani

    2005-08-01

    Multiple shoots were induced from leaf explants of Lycopersicon esculentum cultivar MicroTom, within 20-25d, on MS medium supplemented with 8.9 microM benzylaminopurine (BAP)+1.14 microM indole-3-acetic acid (IAA). For rooting, elongated microshoots were excised and transferred onto MS medium supplemented with 4.9 microM indole-3-butyric acid (IBA). Well-developed roots and flower raceme were obtained on d 7 and 13, respectively, upon transfer of the microshoots onto rooting medium. The flowers self-fertilized in vitro and produced mature fruits in additional 15-17d of culture.

  16. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    Science.gov (United States)

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Effect of growth regulators on growth, flowering and rhizome yield of ...

    African Journals Online (AJOL)

    Field experiments were conducted in 2001 and 2002, to study the effect of foliar application of growth regulators on growth; flowering and rhizome yield of ginger (Zingiber officinale Rosc.). Treatments consisted of gibberellic acid (GA3) at 0,150 and 300 ppm; ethrel at 0,100 and 200 ppm and cycocel (CCC) at 0,250 ppm ...

  18. The Oryza sativa Regulator HDR1 Associates with the Kinase OsK4 to Control Photoperiodic Flowering.

    Directory of Open Access Journals (Sweden)

    Xuehui Sun

    2016-03-01

    Full Text Available Rice is a facultative short-day plant (SDP, and the regulatory pathways for flowering time are conserved, but functionally modified, in Arabidopsis and rice. Heading date 1 (Hd1, an ortholog of Arabidopsis CONSTANS (CO, is a key regulator that suppresses flowering under long-day conditions (LDs, but promotes flowering under short-day conditions (SDs by influencing the expression of the florigen gene Heading date 3a (Hd3a. Another key regulator, Early heading date 1 (Ehd1, is an evolutionarily unique gene with no orthologs in Arabidopsis, which acts as a flowering activator under both SD and LD by promoting the rice florigen genes Hd3a and RICE FLOWERING LOCUST 1 (RFT1. Here, we report the isolation and characterization of the flowering regulator Heading Date Repressor1 (HDR1 in rice. The hdr1 mutant exhibits an early flowering phenotype under natural LD in a paddy field in Beijing, China (39°54'N, 116°23'E, as well as under LD but not SD in a growth chamber, indicating that HDR1 may functionally regulate flowering time via the photoperiod-dependent pathway. HDR1 encodes a nuclear protein that is most active in leaves and floral organs and exhibits a typical diurnal expression pattern. We determined that HDR1 is a novel suppressor of flowering that upregulates Hd1 and downregulates Ehd1, leading to the downregulation of Hd3a and RFT1 under LDs. We have further identified an HDR1-interacting kinase, OsK4, another suppressor of rice flowering under LDs. OsK4 acts similarly to HDR1, suppressing flowering by upregulating Hd1 and downregulating Ehd1 under LDs, and OsK4 can phosphorylate HD1 with HDR1 presents. These results collectively reveal the transcriptional regulators of Hd1 for the day-length-dependent control of flowering time in rice.

  19. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice.

    Directory of Open Access Journals (Sweden)

    He Gao

    Full Text Available Land plants have evolved increasingly complex regulatory modes of their flowering time (or heading date in crops. Rice (Oryza sativa L. is a short-day plant that flowers more rapidly in short-day but delays under long-day conditions. Previous studies have shown that the CO-FT module initially identified in long-day plants (Arabidopsis is evolutionary conserved in short-day plants (Hd1-Hd3a in rice. However, in rice, there is a unique Ehd1-dependent flowering pathway that is Hd1-independent. Here, we report isolation and characterization of a positive regulator of Ehd1, Early heading date 4 (Ehd4. ehd4 mutants showed a never flowering phenotype under natural long-day conditions. Map-based cloning revealed that Ehd4 encodes a novel CCCH-type zinc finger protein, which is localized to the nucleus and is able to bind to nucleic acids in vitro and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional regulator. Ehd4 expression is most active in young leaves with a diurnal expression pattern similar to that of Ehd1 under both short-day and long-day conditions. We show that Ehd4 up-regulates the expression of the "florigen" genes Hd3a and RFT1 through Ehd1, but it acts independently of other known Ehd1 regulators. Strikingly, Ehd4 is highly conserved in the Oryza genus including wild and cultivated rice, but has no homologs in other species, suggesting that Ehd4 is originated along with the diversification of the Oryza genus from the grass family during evolution. We conclude that Ehd4 is a novel Oryza-genus-specific regulator of Ehd1, and it plays an essential role in photoperiodic control of flowering time in rice.

  20. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers.

    Science.gov (United States)

    Liu, Fei; Xiao, Zhina; Yang, Li; Chen, Qian; Shao, Lu; Liu, Juanxu; Yu, Yixun

    2017-09-01

    In petunia, the production of volatile benzenoids/phenylpropanoids determines floral aroma, highly regulated by development, rhythm and ethylene. Previous studies identified several R2R3-type MYB trans-factors as positive regulators of scent biosynthesis in petunia flowers. Ethylene response factors (ERFs) have been shown to take part in the signal transduction of hormones, and regulation of metabolism and development processes in various plant species. Using virus-induced gene silencing technology, a negative regulator of volatile benzenoid biosynthesis, PhERF6, was identified by a screen for regulators of the expression of genes related to scent production. PhERF6 expression was temporally and spatially connected with scent production and was upregulated by exogenous ethylene. Up-/downregulation of the mRNA level of PhERF6 affected the expression of ODO1 and several floral scent-related genes. PhERF6 silencing led to a significant increase in the concentrations of volatiles emitted by flowers. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicated that PhERF6 interacted with the N-terminus of EOBI, which includes two DNA binding domains. Our results show that PhERF6 negatively regulates volatile production in petunia flowers by competing for the binding of the c-myb domains of the EOBI protein with the promoters of genes related to floral scent. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Pathogen-induced ERF68 regulates hypersensitive cell death in tomato.

    Science.gov (United States)

    Liu, An-Chi; Cheng, Chiu-Ping

    2017-10-01

    Ethylene response factors (ERFs) are a large plant-specific transcription factor family and play diverse important roles in various plant functions. However, most tomato ERFs have not been characterized. In this study, we showed that the expression of an uncharacterized member of the tomato ERF-IX subgroup, ERF68, was significantly induced by treatments with different bacterial pathogens, ethylene (ET) and salicylic acid (SA), but only slightly induced by bacterial mutants defective in the type III secretion system (T3SS) or non-host pathogens. The ERF68-green fluorescent protein (ERF68-GFP) fusion protein was localized in the nucleus. Transactivation and electrophoretic mobility shift assays (EMSAs) further showed that ERF68 was a functional transcriptional activator and was bound to the GCC-box. Moreover, transient overexpression of ERF68 led to spontaneous lesions in tomato and tobacco leaves and enhanced the expression of genes involved in ET, SA, jasmonic acid (JA) and hypersensitive response (HR) pathways, whereas silencing of ERF68 increased tomato susceptibility to two incompatible Xanthomonas spp. These results reveal the involvement of ERF68 in the effector-triggered immunity (ETI) pathway. To identify ERF68 target genes, chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq) was performed. Amongst the confirmed target genes, a few genes involved in cell death or disease defence were differentially regulated by ERF68. Our study demonstrates the function of ERF68 in the positive regulation of hypersensitive cell death and disease defence by modulation of multiple signalling pathways, and provides important new information on the complex regulatory function of ERFs. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  2. Increasing Hermaphrodite Flowers using Plant Growth Regulators in Andromonoecious Jatropha curcas

    Directory of Open Access Journals (Sweden)

    DASUMIATI

    2014-09-01

    Full Text Available Jatropha curcas (JC is a crop with potential for use in biodiesel. Production of biodiesel requires plant seed as raw material, so the viability of JC for use in biodiesel will dependent greatly on the plant's production of flowers. Generally, this plant is monoecious, meaning it has both male and female flowers. However, very rarely JC plants may be andromonoecious. Andromonoecious specimens of JC produce hermaphrodite and male flowers in the same plant. The number of hermaphrodite flowers per inflorescence is generally low compared to the number of male flowers. The aim of this study was to increase the proportion of hermaphrodite flowers by using plant growth regulators (PGRs in andromonoecious JC. Our experiment was conducted in Randomized Block Design (RBD with 9 treatments, namely kinetin, GA3, and IAA with concentrations of 0 ppm as a control, 50 and 100 ppm of each PGRs. The treatments were applied to stem cuttings from each plant and repeated 4 times. PGRs were applied by spraying the leaves within the buds of each plant. Applications took place weekly beginning when the plants entered flower initiating phase, until inflorescence produced. Observations were conducted during the treatment period (10 weeks. Results showed that plants treated with IAA, GA3, and kinetin at 50 and 100 ppm produced increased inflorescence per plant. The increases measured were 155.4 and 92.9% of (IAA, 120.4 and 151% (GA3, 96.6 and 51.7% (kinetin respectively. In addition, we found that application and GA3 at concentrations of 50 and 100 ppm, and kinetin at 50 ppm, increased the number of hermaphrodite flowers per inflorescence by 50%, and increased the number of hermaphrodite flowers per plant by 275.6 and 183.1% (IAA, 219.5 and 254.1% (GA3, 162.9 and 103.1% (kinetin respectively. As would be expected, the number of fruit per plant increased in those specimens treated with IAA, GA3, and kinetin at 50 and 100 ppm. The increases measured were 301.7 and 167

  3. A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation.

    Science.gov (United States)

    Liu, Zhenhua; Boachon, Benoît; Lugan, Raphaël; Tavares, Raquel; Erhardt, Mathieu; Mutterer, Jérôme; Demais, Valérie; Pateyron, Stéphanie; Brunaud, Véronique; Ohnishi, Toshiyuki; Pencik, Ales; Achard, Patrick; Gong, Fan; Hedden, Peter; Werck-Reichhart, Danièle; Renault, Hugues

    2015-12-07

    Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  4. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport.

    Science.gov (United States)

    Mathews, Helena; Clendennen, Stephanie K; Caldwell, Colby G; Liu, Xing Liang; Connors, Karin; Matheis, Nikolaus; Schuster, Debra K; Menasco, D J; Wagoner, Wendy; Lightner, Jonathan; Wagner, D Ry

    2003-08-01

    We have developed a high-throughput T-DNA insertional mutagenesis program in tomato using activation tagging to identify genes that regulate metabolic pathways. One of the activation-tagged insertion lines (ant1) showed intense purple pigmentation from the very early stage of shoot formation in culture, reflecting activation of the biosynthetic pathway leading to anthocyanin accumulation. The purple coloration resulted from the overexpression of a gene that encodes a MYB transcription factor. Vegetative tissues of ant1 plants displayed intense purple color, and the fruit showed purple spotting on the epidermis and pericarp. The gene-to-trait relationship of ant1 was confirmed by the overexpression of ANT1 in transgenic tomato and in tobacco under the control of a constitutive promoter. Suppression subtractive hybridization and RNA hybridization analysis of the purple tomato plants indicated that the overexpression of ANT1 caused the upregulation of genes that encode proteins in both the early and later steps of anthocyanidin biosynthesis as well as genes involved in the glycosylation and transport of anthocyanins into the vacuole.

  5. The effect of plant growth regulators on callus induction somatic embryogenesis of hybird tomato

    International Nuclear Information System (INIS)

    Jan, S. A.; Shah, S. H.; Ali, S.; Ali, G. H.

    2015-01-01

    Efficient tissue culture system is important for transformation of important genes in hybrid tomato cultivars. The present study was undertaken to develop an efficient tissue culture system for hybrid tomato cultivar Peto-86. The young primary leaves and stems were inoculated into five different MS media having different concentrations of plant growth regulators in different combinations for callus induction, somatic embryogenesis and for both direct and indirect regeneration. Maximum callus induction frequency 90 percentage was achieved with MS media containing 2,4-D 4 mg L-1 and BAP 0.5 mg L-1. The direct somatic embryogenesis was found highest on MS media supplemented with 2,4-D 4 mg L-1 and BAP 0.5 mg L-1. Maximum indirect regeneration frequency 87 percentage was achieved from primary leaves explants with MS media containing IAA 0.5 mg L-1 and BAP 3 mg L-1 and highest direct regeneration frequency 77% was obtained from primary leaves explants with MS media containing NAA 1 mg L-1 and BAP 3 mg L-1. The high concentration of 2,4-D increased callus induction and somatic embryogenesis frequencies while the high concentration of BAP increased regeneration frequency. An improved tissue culture system of hybrid tomato cultivar Peto-86 was established and it may be recommended for further transformation experiments. (author)

  6. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.).

    Science.gov (United States)

    Xing, Libo; Zhang, Dong; Zhao, Caiping; Li, Youmei; Ma, Juanjuan; An, Na; Han, Mingyu

    2016-02-01

    Flower induction in apple (Malus domestica Borkh.) trees plays an important life cycle role, but young trees produce fewer and inferior quality flower buds. Therefore, shoot bending has become an important cultural practice, significantly promoting the capacity to develop more flower buds during the growing seasons. Additionally, microRNAs (miRNAs) play essential roles in plant growth, flower induction and stress responses. In this study, we identified miRNAs potentially involved in the regulation of bud growth, and flower induction and development, as well as in the response to shoot bending. Of the 195 miRNAs identified, 137 were novel miRNAs. The miRNA expression profiles revealed that the expression levels of 68 and 27 known miRNAs were down-regulated and up-regulated, respectively, in response to shoot bending, and that the 31 differentially expressed novel miRNAs between them formed five major clusters. Additionally, a complex regulatory network associated with auxin, cytokinin, abscisic acid (ABA) and gibberellic acid (GA) plays important roles in cell division, bud growth and flower induction, in which related miRNAs and targets mediated regulation. Among them, miR396, 160, 393, and their targets associated with AUX, miR159, 319, 164, and their targets associated with ABA and GA, and flowering-related miRNAs and genes, regulate bud growth and flower bud formation in response to shoot bending. Meanwhile, the flowering genes had significantly higher expression levels during shoot bending, suggesting that they are involved in this regulatory process. This study provides a framework for the future analysis of miRNAs associated with multiple hormones and their roles in the regulation of bud growth, and flower induction and formation in response to shoot bending in apple trees. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Chromatin-associated regulation of sorbitol synthesis in flower buds of peach.

    Science.gov (United States)

    Lloret, Alba; Martínez-Fuentes, Amparo; Agustí, Manuel; Badenes, María Luisa; Ríos, Gabino

    2017-11-01

    PpeS6PDH gene is postulated to mediate sorbitol synthesis in flower buds of peach concomitantly with specific chromatin modifications. Perennial plants have evolved an adaptive mechanism involving protection of meristems within specialized structures named buds in order to survive low temperatures and water deprivation during winter. A seasonal period of dormancy further improves tolerance of buds to environmental stresses through specific mechanisms poorly known at the molecular level. We have shown that peach PpeS6PDH gene is down-regulated in flower buds after dormancy release, concomitantly with changes in the methylation level at specific lysine residues of histone H3 (H3K27 and H3K4) in the chromatin around the translation start site of the gene. PpeS6PDH encodes a NADPH-dependent sorbitol-6-phosphate dehydrogenase, the key enzyme for biosynthesis of sorbitol. Consistently, sorbitol accumulates in dormant buds showing higher PpeS6PDH expression. Moreover, PpeS6PDH gene expression is affected by cold and water deficit stress. Particularly, its expression is up-regulated by low temperature in buds and leaves, whereas desiccation treatment induces PpeS6PDH in buds and represses the gene in leaves. These data reveal the concurrent participation of chromatin modification mechanisms, transcriptional regulation of PpeS6PDH and sorbitol accumulation in flower buds of peach. In addition to its role as a major translocatable photosynthate in Rosaceae species, sorbitol is a widespread compatible solute and cryoprotectant, which suggests its participation in tolerance to environmental stresses in flower buds of peach.

  8. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum cultivar in response to infection by tomato yellow leaf curl virus.

    Directory of Open Access Journals (Sweden)

    Tianzi Chen

    Full Text Available Tomato yellow leaf curl virus (TYLCV threatens tomato production worldwide by causing leaf yellowing, leaf curling, plant stunting and flower abscission. The current understanding of the host plant defense response to this virus is very limited. Using whole transcriptome sequencing, we analyzed the differential gene expression in response to TYLCV infection in the TYLCV-resistant tomato breeding line CLN2777A (R and TYLCV-susceptible tomato breeding line TMXA48-4-0 (S. The mixed inoculated samples from 3, 5 and 7 day post inoculation (dpi were compared to non-inoculated samples at 0 dpi. Of the total of 34831 mapped transcripts, 209 and 809 genes were differentially expressed in the R and S tomato line, respectively. The proportion of up-regulated differentially expressed genes (DEGs in the R tomato line (58.37% was higher than that in the S line (9.17%. Gene ontology (GO analyses revealed that similar GO terms existed in both DEGs of R and S lines; however, some sets of defense related genes and their expression levels were not similar between the two tomato lines. Genes encoding for WRKY transcriptional factors, R genes, protein kinases and receptor (-like kinases which were identified as down-regulated DEGs in the S line were up-regulated or not differentially expressed in the R line. The up-regulated DEGs in the R tomato line revealed the defense response of tomato to TYLCV infection was characterized by the induction and regulation of a series of genes involved in cell wall reorganization, transcriptional regulation, defense response, ubiquitination, metabolite synthesis and so on. The present study provides insights into various reactions underlining the successful establishment of resistance to TYLCV in the R tomato line, and helps in the identification of important defense-related genes in tomato for TYLCV disease management.

  9. The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering[W

    Science.gov (United States)

    Lazaro, Ana; Valverde, Federico; Piñeiro, Manuel; Jarillo, Jose A.

    2012-01-01

    The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) locus, which encodes a RING finger–containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased FLOWERING LOCUS C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of FLOWERING LOCUS T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with CONSTITUTIVE PHOTOMORPHOGENIC1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis. PMID:22408073

  10. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato.

    Science.gov (United States)

    Meng, Xia; Wang, Jie-Ru; Wang, Guo-Dong; Liang, Xiao-Qing; Li, Xiao-Dong; Meng, Qing-Wei

    2015-03-01

    LeAN2 is an anthocyanin-associated R2R3-MYB transcription factor, but little is known about its function in imparting thermo-tolerance to higher plants. To examine the function of LeAN2 in the regulation of heat stress in tomato, LeAN2 was isolated and transgenic tomato plants were obtained. Overexpression of LeAN2 under the control of the CaMV35S promoter in tomato induced the up-regulation of several structural genes in the anthocyanin biosynthetic pathway as well as anthocyanin accumulation in transgenic tomato plants. Transgenic tomato plants showed enhanced tolerance to heat stress by maintaining higher fresh weight (FW), net photosynthetic rate (Pn) and maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with wild-type (WT) plants. Furthermore, transgenic plants showed higher non-enzymatic antioxidant activity, lower levels of reactive oxygen species (ROS), and higher contents of D1 protein than that in WT plants under heat stress. These results indicate that LeAN2 had an important function in heat stress resistance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Glomus etunicatum root inoculation and foliar application of acetyl salicylic acid induced nacl tolerance by regulation of nacl and lenhx1 gene expression and improved photosynthetic performance in tomato seedlings

    International Nuclear Information System (INIS)

    Ghazanfar, B.; Chihui, C.; Liu, H.; Ahmad, I.; Khan, A.R.

    2016-01-01

    Salinity stress hampers plant growth and cause significant yield losses thus induction of salinity stress tolerance in crop plants is one of major goals of agriculture research. Arbuscular mycorhizae fungi Glomus etunicatum and acetyl salicylic acid were tested for induction of NaCl stress tolerance in tomato seedlings, cultivar No. 4. The seedlings were inoculated with Glomus etunicatum and exogenously sprayed with acetyl salicylic acid (0.30 mM) followed by salinity stress (150 mM). It was observed that both Glomus etunicatum and acetyl salicylic acid (singly or in combination) were significantly effective to minimize the injurious effects of salinity by improving root morphological parameters (length, diameter, surface area, volume and number of tips, nodes, bifurcations and connections), photosynthetic parameters (net photosynthesis Pn, stomatal conductance Gs) and chlorophyll contents compared to sole salinity treatment. The bio-inoculant Glomus etunicatum and chemical ameliorator acetyl salicylic acid also notably improved vegetative (fresh and dry weights) and reproductive growth (percent seedlings with flower buds and opened flowers, number of flower buds and opened flowers per seedling) of the plants as compared to the sole salinity treatment. The studied salt responsive genes (LeNHX1 and NaCl) were also regulated to different extents in seedling roots and leaves which was consistent with enhanced salinity stress tolerance. From these observations it is suggested that the individual or synergetic use of the AMF (Glomus etunicatum) and acetyl salicylic acid can be useful for tomato cultivation in the marginally salinity effected soils and warrants further investigations. (author)

  12. SlBIR3 Negatively Regulates PAMP Responses and Cell Death in Tomato

    Directory of Open Access Journals (Sweden)

    Shuhua Huang

    2017-09-01

    Full Text Available Bri1-associated kinase 1 (BAK1-interacting receptor-like kinase (BIR proteins have been shown to play important roles in regulating growth and development, pathogen associated molecular pattern (PAMP-triggered immunity (PTI responses, and cell death in the model plant, Arabidopsis thaliana. We identified four BIR family members in tomato (Solanum lycopersicum, including SlBIR3, an ortholog of AtBIR3 from A. thaliana. SlBIR3 is predicted to encode a membrane localized non-arginine-aspartate (non-RD kinase that, based on protein sequence, does not have autophosphorylation activity but that can be phosphorylated in vivo. We established that SlBIR3 interacts with SlBAK1 and AtBAK1 using yeast two-hybrid assays and co-immunoprecipitation and maltose-binding protein pull down assays. We observed that SlBIR3 overexpression in tomato (cv. micro-tom and A. thaliana has weak effect on growth and development through brassinosteroid (BR signaling. SlBIR3 overexpression in A. thaliana suppressed flg22-induced defense responses, but did not affect infection with the bacterial pathogen Pseudomonas syringae (PstDC3000. This result was confirmed using virus-induced gene silencing (VIGS in tomato in conjunction with PstDC3000 infection. Overexpression of SlBIR3 in tomato (cv. micro-tom and A. thaliana resulted in enhanced susceptibility to the necrotrophic fungus Botrytis cinerea. In addition, co-silencing SlBIR3 with SlSERK3A or SlSERK3B using VIGS and the tobacco rattle virus (TRV-RNA2 vector containing fragments of both the SlSERK3 and SlBIR3 genes induced spontaneous cell death, indicating a cooperation between the two proteins in this process. In conclusion, our study revealed that SlBIR3 is the ortholog of AtBIR3 and that it participates in BR, PTI, and cell death signaling pathways.

  13. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    Science.gov (United States)

    Qiu, Zhengkun; Wang, Xiaoxuan; Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  14. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    Directory of Open Access Journals (Sweden)

    Zhengkun Qiu

    Full Text Available Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF gene, which corresponds to the ah (Hoffman's anthocyaninless locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  15. The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures

    Science.gov (United States)

    Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses. PMID:26943362

  16. GmGBP1, a homolog of human ski interacting protein in soybean, regulates flowering and stress tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhang Yanwei

    2013-02-01

    Full Text Available Abstract Background SKIP is a transcription cofactor in many eukaryotes. It can regulate plant stress tolerance in rice and Arabidopsis. But the homolog of SKIP protein in soybean has been not reported up to now. Results In this study, the expression patterns of soybean GAMYB binding protein gene (GmGBP1 encoding a homolog of SKIP protein were analyzed in soybean under abiotic stresses and different day lengths. The expression of GmGBP1 was induced by polyethyleneglycol 6000, NaCl, gibberellin, abscisic acid and heat stress. GmGBP1 had transcriptional activity in C-terminal. GmGBP1 could interact with R2R3 domain of GmGAMYB1 in SKIP domain to take part in gibberellin flowering pathway. In long-day (16 h-light condition, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 exhibited earlier flowering and less number of rosette leaves; Suppression of AtSKIP in Arabidopsis resulted in growth arrest, flowering delay and down-regulation of many flowering-related genes (CONSTANS, FLOWERING LOCUS T, LEAFY; Arabidopsis myb33 mutant plants with ectopic overexpression of GmGBP1 showed the same flowering phenotype with wild type. In short-day (8 h-light condition, transgenic Arabidopsis plants with GmGBP1 flowered later and showed a higher level of FLOWERING LOCUS C compared with wild type. When treated with abiotic stresses, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 enhanced the tolerances to heat and drought stresses but reduced the tolerance to high salinity, and affected the expressions of several stress-related genes. Conclusions In Arabidopsis, GmGBP1 might positively regulate the flowering time by affecting CONSTANS, FLOWERING LOCUS T, LEAFY and GAMYB directly or indirectly in photoperiodic and gibberellin pathways in LDs, but GmGBP1 might represse flowering by affecting FLOWERING LOCUS C and SHORT VEGETATIVE PHASE in autonomous pathway in SDs. GmGBP1 might regulate the activity of ROS-eliminating to improve the

  17. Tobacco TTG2 and ARF8 function concomitantly to control flower colouring by regulating anthocyanin synthesis genes.

    Science.gov (United States)

    Li, P; Chen, X; Sun, F; Dong, H

    2017-07-01

    Recently we elucidated that tobacco TTG2 cooperates with ARF8 to regulate the vegetative growth and seed production. Here we show that TTG2 and ARF8 control flower colouring by regulating expression of ANS and DFR genes, which function in anthocyanin biosynthesis. Genetic modifications that substantially altered expression levels of the TTG2 gene and production quantities of TTG2 protein were correlated with flower development and colouring. Degrees of flower colour were increased by TTG2 overexpression but decreased through TTG2 silencing, in coincidence with high and low concentrations of anthocyanins in flowers. Of five genes involved in the anthocyanin biosynthesis pathway, only ANS and DFR were TTG2-regulated and displayed enhancement and diminution of expression with TTG2 overexpression and silencing, respectively. The floral expression of ANS and DFR also needed a functional ARF8 gene, as ANS and DFR expression were attenuated by ARF8 silencing, which concomitantly diminished the role of TTG2 in anthocyanin production. While ARF8 required TTG2 to be expressed by itself and to regulate ANS and DFR expression, the concurrent presence of normally functional TTG2 and ARF8 was critical for floral production of anthocyanins and also for flower colouration. Our data suggest that TTG2 functions concomitantly with ARF8 to control degrees of flower colour by regulating expression of ANS and DFR, which are involved in the anthocyanin biosynthesis pathway. ARF8 depends on TTG2 to regulate floral expression of ANS and DFR with positive effects on anthocyanin production and flower colour. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Jasmonate ZIM-domain (JAZ protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishiga

    Full Text Available The nonhost-specific phytotoxin coronatine (COR produced by several pathovars of Pseudomonas syringae functions as a jasmonic acid-isoleucine (JA-Ile mimic and contributes to disease development by suppressing plant defense responses and inducing reactive oxygen species in chloroplast. It has been shown that the F-box protein CORONATINE INSENSITIVE 1 (COI1 is the receptor for COR and JA-Ile. JASMONATE ZIM DOMAIN (JAZ proteins act as negative regulators for JA signaling in Arabidopsis. However, the physiological significance of JAZ proteins in P. syringae disease development and nonhost pathogen-induced hypersensitive response (HR cell death is not completely understood. In this study, we identified JAZ genes from tomato, a host plant for P. syringae pv. tomato DC3000 (Pst DC3000, and examined their expression profiles in response to COR and pathogens. Most JAZ genes were induced by COR treatment or inoculation with COR-producing Pst DC3000, but not by the COR-defective mutant DB29. Tomato SlJAZ2, SlJAZ6 and SlJAZ7 interacted with SlCOI1 in a COR-dependent manner. Using virus-induced gene silencing (VIGS, we demonstrated that SlJAZ2, SlJAZ6 and SlJAZ7 have no effect on COR-induced chlorosis in tomato and Nicotiana benthamiana. However, SlJAZ2-, SlJAZ6- and SlJAZ7-silenced tomato plants showed enhanced disease-associated cell death to Pst DC3000. Furthermore, we found delayed HR cell death in response to the nonhost pathogen Pst T1 or a pathogen-associated molecular pattern (PAMP, INF1, in SlJAZ2- and SlJAZ6-silenced N. benthamiana. These results suggest that tomato JAZ proteins regulate the progression of cell death during host and nonhost interactions.

  19. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    DEFF Research Database (Denmark)

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.

    2014-01-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive...... structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors...... sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT...

  20. Vascular development of the grapevine (Vitis vinifera L.) inflorescence rachis in response to flower number, plant growth regulators and defoliation.

    Science.gov (United States)

    Gourieroux, Aude M; Holzapfel, Bruno P; McCully, Margaret E; Scollary, Geoffrey R; Rogiers, Suzy Y

    2017-09-01

    The grapevine inflorescence is a determinate panicle and as buds emerge, shoot, flower and rachis development occur simultaneously. The growth and architecture of the rachis is determined by genetic and environmental factors but here we examined the role of flower and leaf number as well as hormones on its elongation and vascular development. The consequences of rachis morphology and vascular area on berry size and composition were also assessed. One week prior to anthesis, Merlot and Cabernet Sauvignon field vines were exposed to manual flower removal, exogenous plant growth regulators or pre-bloom leaf removal. Manual removal of half the flowers along the vertical axis of the inflorescence resulted in a shorter rachis in both cultivars. Conversely, inflorescences treated with gibberellic acid (GA 3 ) and the synthetic cytokinin, 6-benzylaminopurine (BAP) resulted in a longer rachis while pre-bloom removal of all leaves on the inflorescence-bearing shoot did not alter rachis length relative to untreated inflorescences. Across the treatments, the cross-sectional areas of the conducting xylem and phloem in the rachis were positively correlated to rachis girth, flower number at anthesis, bunch berry number, bunch berry fresh mass and bunch sugar content at harvest. Conversely, average berry size and sugar content were not linked to rachis vascular area. These data indicate that the morphological and vascular development of the rachis was more responsive to flower number and plant growth regulators than to leaf removal.

  1. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes

    Directory of Open Access Journals (Sweden)

    Eriston V. Gomes

    2017-05-01

    Full Text Available Several Trichoderma spp. are well known for their ability to: (i act as important biocontrol agents against phytopathogenic fungi; (ii function as biofertilizers; (iii increase the tolerance of plants to biotic and abiotic stresses; and (iv induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum strains with: (a the phytopathogen Botrytis cinerea and (b with tomato plants, on short (24 h hydroponic cultures and long periods (4-weeks old plants after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis (BcBOT genes, during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

  2. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes.

    Science.gov (United States)

    Gomes, Eriston V; Ulhoa, Cirano J; Cardoza, Rosa E; Silva, Roberto N; Gutiérrez, Santiago

    2017-01-01

    Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δ epl-1 or wild-type T. harzianum strains with: (a) the phytopathogen Botrytis cinerea and (b) with tomato plants, on short (24 h hydroponic cultures) and long periods (4-weeks old plants) after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis ( BcBOT genes), during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

  3. The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo

    KAUST Repository

    Latrasse, David

    2017-05-08

    BackgroundMelon (Cucumis melo) is an important vegetable crop from the Cucurbitaceae family and a reference model specie for sex determination, fruit ripening and vascular fluxes studies. Nevertheless, the nature and role of its epigenome in gene expression regulation and more specifically in sex determination remains largely unknown.ResultsWe have investigated genome wide H3K27me3 and H3K9ac histone modifications and gene expression dynamics, in five melon organs. H3K9ac and H3K27me3 were mainly distributed along gene-rich regions and constrained to gene bodies. H3K9ac was preferentially located at the TSS, whereas H3K27me3 distributed uniformly from TSS to TES. As observed in other species, H3K9ac and H3K27me3 correlated with high and low gene expression levels, respectively. Comparative analyses of unisexual flowers pointed out sex-specific epigenetic states of TFs involved in ethylene response and flower development. Chip-qPCR analysis of laser dissected carpel and stamina primordia, revealed sex-specific histone modification of MADS-box genes. Using sex transition mutants, we demonstrated that the female promoting gene, CmACS11, represses the expression of the male promoting gene CmWIP1 via deposition of H3K27me3.ConclusionsOur findings reveal the organ-specific landscapes of H3K9ac and H3K27me3 in melon. Our results also provide evidence that the sex determination genes recruit histone modifiers to orchestrate unisexual flower development in monoecious species.

  4. The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo

    KAUST Repository

    Latrasse, David; Rodriguez-Granados, Natalia Y.; Veluchamy, Alaguraj; Mariappan, Kiruthiga Gayathri; Bevilacqua, Claudia; Crapart, Nicolas; Camps, Celine; Sommard, Vivien; Raynaud, Cé cile; Dogimont, Catherine; Boualem, Adnane; Benhamed, Moussa; Bendahmane, Abdelhafid

    2017-01-01

    BackgroundMelon (Cucumis melo) is an important vegetable crop from the Cucurbitaceae family and a reference model specie for sex determination, fruit ripening and vascular fluxes studies. Nevertheless, the nature and role of its epigenome in gene expression regulation and more specifically in sex determination remains largely unknown.ResultsWe have investigated genome wide H3K27me3 and H3K9ac histone modifications and gene expression dynamics, in five melon organs. H3K9ac and H3K27me3 were mainly distributed along gene-rich regions and constrained to gene bodies. H3K9ac was preferentially located at the TSS, whereas H3K27me3 distributed uniformly from TSS to TES. As observed in other species, H3K9ac and H3K27me3 correlated with high and low gene expression levels, respectively. Comparative analyses of unisexual flowers pointed out sex-specific epigenetic states of TFs involved in ethylene response and flower development. Chip-qPCR analysis of laser dissected carpel and stamina primordia, revealed sex-specific histone modification of MADS-box genes. Using sex transition mutants, we demonstrated that the female promoting gene, CmACS11, represses the expression of the male promoting gene CmWIP1 via deposition of H3K27me3.ConclusionsOur findings reveal the organ-specific landscapes of H3K9ac and H3K27me3 in melon. Our results also provide evidence that the sex determination genes recruit histone modifiers to orchestrate unisexual flower development in monoecious species.

  5. Nectar minerals as regulators of flower visitation in stingless bees and nectar hoarding wasps.

    Science.gov (United States)

    Afik, Ohad; Delaplane, Keith S; Shafir, Sharoni; Moo-Valle, Humberto; Quezada-Euán, J Javier G

    2014-05-01

    Various nectar components have a repellent effect on flower visitors, and their adaptive advantages for the plant are not well understood. Persea americana (avocado) is an example of a plant that secretes nectar with repellent components. It was demonstrated that the mineral constituents of this nectar, mainly potassium and phosphate, are concentrated enough to repel honey bees, Apis mellifera, a pollinator often used for commercial avocado pollination. Honey bees, however, are not the natural pollinator of P. americana, a plant native to Central America. In order to understand the role of nectar minerals in plant-pollinator relationships, it is important to focus on the plant's interactions with its natural pollinators. Two species of stingless bees and one species of social wasp, all native to the Yucatan Peninsula, Mexico, part of the natural range of P. americana, were tested for their sensitivity to sugar solutions enriched with potassium and phosphate, and compared with the sensitivity of honey bees. In choice tests between control and mineral-enriched solutions, all three native species were indifferent for mineral concentrations lower than those naturally occurring in P. americana nectar. Repellence was expressed at concentrations near or exceeding natural concentrations. The threshold point at which native pollinators showed repellence to increasing levels of minerals was higher than that detected for honey bees. The results do not support the hypothesis that high mineral content is attractive for native Hymenopteran pollinators; nevertheless, nectar mineral composition may still have a role in regulating flower visitors through different levels of repellency.

  6. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation

    Directory of Open Access Journals (Sweden)

    Nakano Toshitsugu

    2011-01-01

    Full Text Available Abstract Background During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Results Using immunoprecipitated (IPed DNA fragments recovered by chromatin immunoprecipitation (ChIP with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. Conclusions The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes

  7. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation.

    Science.gov (United States)

    Fujisawa, Masaki; Nakano, Toshitsugu; Ito, Yasuhiro

    2011-01-30

    During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Using immunoprecipitated (IPed) DNA fragments recovered by chromatin immunoprecipitation (ChIP) with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites) in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes during ripening. Moreover, the binding of RIN to its own

  8. Transcriptional regulation of male-sterility in 7B-1 male-sterile tomato mutant.

    Directory of Open Access Journals (Sweden)

    Vahid Omidvar

    Full Text Available The 7B-1 tomato (Solanum lycopersicum L. cv Rutgers is a male-sterile mutant with enhanced tolerance to abiotic stress, which makes it a potential candidate for hybrid seed breeding and stress engineering. To underline the molecular mechanism regulating the male-sterility in 7B-1, transcriptomic profiles of the 7B-1 male-sterile and wild type (WT anthers were studied using mRNA sequencing (RNA-Seq. In total, 768 differentially expressed genes (DEGs were identified, including 132 up-regulated and 636 down-regulated transcripts. Gene ontology (GO enrichment analysis of DEGs suggested a general impact of the 7B-1 mutation on metabolic processes, such as proteolysis and carbohydrate catabolic process. Sixteen candidates with key roles in regulation of anther development were subjected to further analysis using qRT-PCR and in situ hybridization. Cytological studies showed several defects associated with anther development in the 7B-1 mutant, including unsynchronized anther maturation, dysfunctional meiosis, arrested microspores, defect in callose degradation and abnormal tapetum development. TUNEL assay showed a defect in programmed cell death (PCD of tapetal cells in 7B-1 anthers. The present study provides insights into the transcriptome of the 7B-1 mutant. We identified several genes with altered expression level in 7B-1 (including beta-1,3 glucanase, GA2oxs, cystatin, cysteine protease, pectinesterase, TA29, and actin that could potentially regulate anther developmental processes, such as meiosis, tapetum development, and cell-wall formation/degradation.

  9. Light Signaling-Dependent Regulation of Photoinhibition and Photoprotection in Tomato.

    Science.gov (United States)

    Wang, Feng; Wu, Nan; Zhang, Luyue; Ahammed, Golam Jalal; Chen, Xiaoxiao; Xiang, Xun; Zhou, Jie; Xia, Xiaojian; Shi, Kai; Yu, Jingquan; Foyer, Christine H; Zhou, Yanhong

    2018-02-01

    Photoreceptor-mediated light signaling plays a critical role in plant growth, development, and stress responses but its contribution to the spatial regulation of photoinhibition and photoprotection within the canopy remains unclear. Here, we show that low-red/far-red ( L - R / FR ) ratio light conditions significantly alleviate PSII and PSI photoinhibition in the shade leaves of tomato ( Solanum lycopersicum ) plants. This protection is accompanied by a phytochrome A-dependent induction of LONG HYPOCOTYL5 (HY5). HY5 binds to the promoter of ABA INSENSITIVE 5 ( ABI5 ), triggering RESPIRATORY BURST OXIDASE HOMOLOG1 ( RBOH1 )-dependent H 2 O 2 production in the apoplast. Decreased levels of HY5 , ABI5 , and RBOH1 transcripts increased cold-induced photoinhibition and abolished L - R / FR -induced alleviation of photoinhibition. L - R / FR illumination induced nonphotochemical quenching (NPQ) of chlorophyll a fluorescence and increased the activities of Foyer-Halliwell-Asada cycle enzymes and cyclic electron flux (CEF) around PSI. In contrast, decreased HY5 , ABI5 , and RBOH1 transcript levels abolished the positive effect of L - R / FR on photoprotection. Loss of PROTON GRADIENT REGULATION5 -dependent CEF led to increased photoinhibition and attenuated L - R / FR -dependent NPQ. These data demonstrate that HY5 is an important hub in the cross talk between light and cold response pathways, integrating ABA and reactive oxygen species signaling, leading to the attenuation of photoinhibition by enhanced induction of photoprotection in shade leaves. © 2018 American Society of Plant Biologists. All Rights Reserved.

  10. Evaluation of a Biostimulant (Pepton Based in Enzymatic Hydrolyzed Animal Protein in Comparison to Seaweed Extracts on Root Development, Vegetative Growth, Flowering, and Yield of Gold Cherry Tomatoes Grown under Low Stress Ambient Field Conditions

    Directory of Open Access Journals (Sweden)

    Javier Polo

    2018-01-01

    Full Text Available The objectives of this experiment were to determine the effects of different application rates of an enzyme hydrolyzed animal protein biostimulant (Pepton compared to a standard application rate of a biostimulant derived from seaweed extract (Acadian on plant growth parameters and yield of gold cherry tomatoes (Solanum lycopersicum L.. Biostimulant treatments were applied starting at 15 days after transplant and every 2 weeks thereafter for a total of 5 applications. One treatment group received no biostimulant (Control. Three treatment groups (Pepton-2, Pepton-3, Pepton-4 received Pepton at different application rates equivalent to 2, 3, or 4 kg/ha applied by foliar (first 2 applications and by irrigation (last 3 applications. Another treatment group (Acadian received Acadian at 1.5 L/ha by irrigation for all five applications. All groups received the regular fertilizer application for this crop at transplantation, flowering, and fruiting periods. There were four plots per treatment group. Each plot had a surface area of 21 m2 that consisted of two rows that were 7 m long and 1.5 m wide. Plant height, stem diameter, distance from head to bouquet flowering, fruit set distance between the entire cluster and cluster flowering fruit set, leaf length, and number of leaves per plant was recorded for 20 plants (5 plants per plot at 56 and 61 days after the first application. Root length and diameter of cherry tomatoes were determined at harvest from 20 randomly selected plants. Harvesting yield per plot was registered and production per hectare was calculated. Both biostimulants improved (P < 0.05 all vegetative parameters compared with the control group. There was a positive linear (P < 0.001 effect of Pepton application rate for all parameters. The calculated yield was 7.8 and 1 Ton/ha greater that represent 27 and 2.9% higher production for Pepton applied at 4 kg/ha compared to the control and to Acadian, respectively. In conclusion, Pepton was

  11. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2017-11-01

    The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.

  12. A pollen-specific RALF from tomato that regulates pollen tube elongation.

    Science.gov (United States)

    Covey, Paul A; Subbaiah, Chalivendra C; Parsons, Ronald L; Pearce, Gregory; Lay, Fung T; Anderson, Marilyn A; Ryan, Clarence A; Bedinger, Patricia A

    2010-06-01

    Rapid Alkalinization Factors (RALFs) are plant peptides that rapidly increase the pH of plant suspension cell culture medium and inhibit root growth. A pollen-specific tomato (Solanum lycopersicum) RALF (SlPRALF) has been identified. The SlPRALF gene encodes a preproprotein that appears to be processed and released from the pollen tube as an active peptide. A synthetic SlPRALF peptide based on the putative active peptide did not affect pollen hydration or viability but inhibited the elongation of normal pollen tubes in an in vitro growth system. Inhibitory effects of SlPRALF were detectable at concentrations as low as 10 nm, and complete inhibition was observed at 1 mum peptide. At least 10-fold higher levels of alkSlPRALF, which lacks disulfide bonds, were required to see similar effects. A greater effect of peptide was observed in low-pH-buffered medium. Inhibition of pollen tube elongation was reversible if peptide was removed within 15 min of exposure. Addition of 100 nm SlPRALF to actively growing pollen tubes inhibited further elongation until tubes were 40 to 60 mum in length, after which pollen tubes became resistant to the peptide. The onset of resistance correlated with the timing of the exit of the male germ unit from the pollen grain into the tube. Thus, exogenous SlPRALF acts as a negative regulator of pollen tube elongation within a specific developmental window.

  13. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    Czech Academy of Sciences Publication Activity Database

    Albacete, A.; Cantero-Navarro, E.; Balibrea, M. E.; Grosskinsky, D. K.; de la Cruz Gonzalez, M.; Martínez-Andújar, C.; Smigocki, A. C.; Roitsch, Thomas; Pérez-Alfocea, F.

    2014-01-01

    Roč. 65, č. 20 (2014), s. 6081-6095 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Cell wall invertase * cytokinins * fruit * salinity * sink activity * tomato Subject RIV: EF - Botanics Impact factor: 5.526, year: 2014

  14. Coffee harvest management by manipulation of coffee flowering with plant growth regulators

    Science.gov (United States)

    The breaking of coffee flower bud dormancy is known to be associated with one or more significant rainfall events following an extended period of dryness. In Hawaii, lack of a distinct wet-dry season poses serious problems for coffee growers because flowering is spread over several months. Multiple...

  15. Exogenous spermidine is enhancing tomato tolerance to salinity-alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism.

    Science.gov (United States)

    Li, Jianming; Hu, Lipan; Zhang, Li; Pan, Xiongbo; Hu, Xiaohui

    2015-12-29

    capacities for responding to salinity-alkalinity stress. Exogenous spermidine triggers effective protection against damage induced by salinity-alkalinity stress in tomato seedlings, probably by maintaining chloroplast structural integrity and alleviating salinity-alkalinity-induced oxidative damage, most likely through regulation of chlorophyll metabolism and the enzymatic and non-enzymatic antioxidant systems in chloroplast. Exogenous spermidine also exerts positive effects at the transcription level, such as down-regulation of the expression of the chlorophyllase gene and up-regulation of the expression of the porphobilinogen deaminase gene.

  16. Temporal and spatial regulation of anthocyanin biosynthesis provide diverse flower colour intensities and patterning in Cymbidium orchid.

    Science.gov (United States)

    Wang, Lei; Albert, Nick W; Zhang, Huaibi; Arathoon, Steve; Boase, Murray R; Ngo, Hanh; Schwinn, Kathy E; Davies, Kevin M; Lewis, David H

    2014-11-01

    This study confirmed pigment profiles in different colour groups, isolated key anthocyanin biosynthetic genes and established a basis to examine the regulation of colour patterning in flowers of Cymbidium orchid. Cymbidium orchid (Cymbidium hybrida) has a range of flower colours, often classified into four colour groups; pink, white, yellow and green. In this study, the biochemical and molecular basis for the different colour types was investigated, and genes involved in flavonoid/anthocyanin synthesis were identified and characterised. Pigment analysis across selected cultivars confirmed cyanidin 3-O-rutinoside and peonidin 3-O-rutinoside as the major anthocyanins detected; the flavonols quercetin and kaempferol rutinoside and robinoside were also present in petal tissue. β-carotene was the major carotenoid in the yellow cultivars, whilst pheophytins were the major chlorophyll pigments in the green cultivars. Anthocyanin pigments were important across all eight cultivars because anthocyanin accumulated in the flower labellum, even if not in the other petals/sepals. Genes encoding the flavonoid biosynthetic pathway enzymes chalcone synthase, flavonol synthase, flavonoid 3' hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) were isolated from petal tissue of a Cymbidium cultivar. Expression of these flavonoid genes was monitored across flower bud development in each cultivar, confirming that DFR and ANS were only expressed in tissues where anthocyanin accumulated. Phylogenetic analysis suggested a cytochrome P450 sequence as that of the Cymbidium F3'H, consistent with the accumulation of di-hydroxylated anthocyanins and flavonols in flower tissue. A separate polyketide synthase, identified as a bibenzyl synthase, was isolated from petal tissue but was not associated with pigment accumulation. Our analyses show the diversity in flower colour of Cymbidium orchid derives not from different individual pigments but from subtle

  17. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling.

    Science.gov (United States)

    Dai, Cheng; Xue, Hong-Wei

    2010-06-02

    The plant hormone gibberellin (GA) is crucial for multiple aspects of plant growth and development. To study the relevant regulatory mechanisms, we isolated a rice mutant earlier flowering1, el1, which is deficient in a casein kinase I that has critical roles in both plants and animals. el1 had an enhanced GA response, consistent with the suppression of EL1 expression by exogenous GA(3). Biochemical characterization showed that EL1 specifically phosphorylates the rice DELLA protein SLR1, proving a direct evidence for SLR1 phosphorylation. Overexpression of SLR1 in wild-type plants caused a severe dwarf phenotype, which was significantly suppressed by EL1 deficiency, indicating the negative effect of SLR1 on GA signalling requires the EL1 function. Further studies showed that the phosphorylation of SLR1 is important for maintaining its activity and stability, and mutation of the candidate phosphorylation site of SLR1 results in the altered GA signalling. This study shows EL1 a novel and key regulator of the GA response and provided important clues on casein kinase I activities in GA signalling and plant development.

  18. Flowering pathway is regulated by bulb size in Lilium longiflorum (Easter lily).

    Science.gov (United States)

    Lazare, S; Zaccai, M

    2016-07-01

    Lilium longiflorum (Easter lily) vegetative propagation occurs through production of underground bulbs containing apical and axillary meristems. In addition, sexual reproduction is achieved by flowering of elongated shoots above the bulb. It is generally accepted that L. longiflorum has an obligatory requirement for vernalisation and that long day (LD) regime hastens flowering. However, the effect of bulb size and origin, with respect to axillary or apical meristems on flowering, as well as the interactions between these meristems are largely unknown. The aim of this study was to explore the effect of bulb size, vernalisation and photoperiod on L. longiflorum flowering. To this end, we applied vernalisation and photoperiod treatments to the different bulb sizes and used a system of constant ambient temperature of 25 °C, above vernalisation spectrum, to avoid cold-dependent floral induction during plant growth. Vernalisation and LD hasten flowering in all bulbs. Large, non-vernalised bulbs invariably remained at a vegetative stage. However, small non-vernalised bulbs flowered under LD conditions. These results demonstrate for the first time that cold exposure is not an obligatory prerequisite for L. longiflorum flowering, and that an alternative flowering pathway can bypass vernalisation in small bulbs. We suggest that apical dominance interactions determine the distinct flowering pathways of the apical and axillary meristems. Similar floral induction is achieved in propagated bulblets from scaling. These innovative findings in the field of geophyte floral induction represent valuable applicative knowledge for lily production. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1. SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  20. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development.

    Science.gov (United States)

    Vimolmangkang, Sornkanok; Han, Yuepeng; Wei, Guochao; Korban, Schuyler S

    2013-11-07

    Red coloration of fruit is an important trait in apple, and it is mainly attributed to the accumulation of anthocyanins, a class of plant flavonoid metabolites. Anthocyanin biosynthesis is genetically determined by structural and regulatory genes. Plant tissue pigmentation patterns are mainly controlled by expression profiles of regulatory genes. Among these regulatory genes are MYB transcription factors (TFs), wherein the class of two-repeats (R2R3) is deemed the largest, and these are associated with the anthocyanin biosynthesis pathway. Although three MdMYB genes, almost identical in nucleotide sequences, have been identified in apple, it is likely that there are other R2R3 MYB TFs that are present in the apple genome that are also involved in the regulation of coloration of red color pigmentation of the skin of apple fruits. In this study, a novel R2R3 MYB gene has been isolated and characterized in apple. This MYB gene is closely related to the Arabidopsis thaliana AtMYB3, and has been designated as MdMYB3. This TF belongs to the subgroup 4 R2R3 family of plant MYB transcription factors. This apple MdMYB3 gene is mapped onto linkage group 15 of the integrated apple genetic map. Transcripts of MdMYB3 are detected in all analyzed tissues including leaves, flowers, and fruits. However, transcripts of MdMYB3 are higher in excocarp of red-skinned apple cultivars than that in yellowish-green skinned apple cultivars. When this gene is ectopically expressed in Nicotiana tabacum cv. Petite Havana SR1, flowers of transgenic tobacco lines carrying MdMYB3 have exhibited increased pigmentation and accumulate higher levels of anthocyanins and flavonols than wild-type flowers. Overexpression of MdMYB3 has resulted in transcriptional activation of several flavonoid pathway genes, including CHS, CHI, UFGT, and FLS. Moreover, peduncles of flowers and styles of pistils of transgenic plants overexpressing MdMYB3 are longer than those of wild-type plants, thus suggesting that this

  1. Responses of wild husk tomato, Physalis angulata L. to growth regulators and gamma rays on chlorophyll content and fruit yield

    International Nuclear Information System (INIS)

    Raghava, R.P.; Raghava, Nisha

    1994-01-01

    Effect of different growth regulators and gamma rays on the total chlorophyll content and fruit yield were studied in wild species of husk tomato and concluded that indole-3-acetic acid (IAA) 200 and kinetin (KIN) 10 ppm showed remarkable enhancement in both total chlorophyll content and fruit yield, while maleic hydrazide (MH) 100, 200 ppm and coumarin (COU) in all the treatments enhanced total chlorophyll content. Gamma ray treatments significantly enhanced both the parameters. Amongst all the treatments maximum fruit yield was in 20 kR of gamma rays. (author). 31 refs., 1 tab

  2. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L..

    Directory of Open Access Journals (Sweden)

    Fiammetta Alagna

    Full Text Available The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia, included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.

  3. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.).

    Science.gov (United States)

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.

  4. BEL1-LIKE HOMEODOMAIN 11 regulated chloroplast development and chlorophyll synthesis in tomato fruit

    Science.gov (United States)

    Chloroplast development and chlorophyll content and metabolism in unripe tomato contribute to the growth and development of the fruit, and also the ripe fruit quality, but the mechanism is poorly understood. In this work, seven homeobox-containing transcription factors (TFs) with specific ripening-a...

  5. 76 FR 71271 - Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop Provisions

    Science.gov (United States)

    2011-11-17

    ... to add ``strawberries'' in section 9(b)(3) to the list of crops that require soil fumigation before planting fresh market tomatoes. Strawberries are susceptible to nematode damage and pose the same risk of... sections 9(b)(1) and (2)), peppers, eggplants, strawberries or tobacco have been grown and the soil was not...

  6. Wrinkled1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qing eLi

    2015-11-01

    Full Text Available Wrinkled1 (WRI1 belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid synthesis and lipid assembly. The overexpression (OE of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, fatty acid synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipid monogalactosyldiacylglycerol (MGDG, digalactosyldiacylglycerol (DGDG, and phosphatidylcholine (PC in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide (PE, and oil (triacylglycerol, TAG in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  7. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit.

    Science.gov (United States)

    Yang, Tianbao; Peng, Hui; Whitaker, Bruce D; Jurick, Wayne M

    2013-07-01

    Calcium has been shown to enhance stress tolerance, maintain firmness and reduce decay in fruits. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also responsive to ethylene. To study their expressions in response to stresses encountered during postharvest handling, tomato fruit at the mature-green stage was subjected to chilling and wounding injuries, infected with Botrytis cinerea and treated with salicylic acid or methyl jasmonate. Gene expression studies revealed that the seven SlSRs differentially respond to different stress signals. SlSR2 was the only gene upregulated by all the treatments. SlSR4 acted as a late pathogen-induced gene; it was upregulated by salicylic acid and methyl jasmonate, but downregulated by cold treatment. SlSR3L was cold- and wound-responsive and was also induced by salicylic acid. SlSR1 and SlSR1L were repressed by cold, wounding and pathogen infection, but were upregulated by salicylic acid and methyl jasmonate. Overall, results of these expression studies indicate that individual SlSRs have distinct roles in responses to the specific stress signals, and SlSRs may act as a coordinator(s) connecting calcium-mediated signaling with other stress signal transduction pathways during fruit ripening and storage. © 2013 Scandinavian Plant Physiology Society.

  8. A jasmonate ZIM-domain protein NaJAZd regulates floral jasmonic acid levels and counteracts flower abscission in Nicotiana attenuata plants.

    Directory of Open Access Journals (Sweden)

    Youngjoo Oh

    Full Text Available Jasmonic acid is an important regulator of plant growth, development and defense. The jasmonate-ZIM domain (JAZ proteins are key regulators in jasmonate signaling ubiquitously present in flowering plants but their functional annotation remains largely incomplete. Recently, we identified 12 putative JAZ proteins in native tobacco, Nicotiana attenuata, and initiated systematic functional characterization of these proteins by reverse genetic approaches. In this report, Nicotiana attenuata plants silenced in the expression of NaJAZd (irJAZd by RNA interference were used to characterize NaJAZd function. Although NaJAZd transcripts were strongly and transiently up-regulated in the rosette leaves by simulated herbivory treatment, we did not observe strong defense-related phenotypes, such as altered herbivore performance or the constitutive accumulation of defense-related secondary metabolites in irJAZd plants compared to wild type plants, both in the glasshouse and the native habitat of Nicotiana attenuata in the Great Basin Desert, Utah, USA. Interestingly, irJAZd plants produced fewer seed capsules than did wild type plants as a result of increased flower abscission in later stages of flower development. The early- and mid-developmental stages of irJAZd flowers had reduced levels of jasmonic acid and jasmonoyl-L-isoleucine, while fully open flowers had normal levels, but these were impaired in NaMYB305 transcript accumulations. Previously, NaMYB305-silenced plants were shown to have strong flower abscission phenotypes and contained lower NECTARIN 1 transcript levels, phenotypes which are copied in irJAZd plants. We propose that the NaJAZd protein is required to counteract flower abscission, possibly by regulating jasmonic acid and jasmonoyl-L-isoleucine levels and/or expression of NaMYB305 gene in Nicotiana attenuata flowers. This novel insight into the function of JAZ proteins in flower and seed development highlights the diversity of functions

  9. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.

    Science.gov (United States)

    Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui

    2016-10-01

    Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis.

    Science.gov (United States)

    Deng, Weiwei; Ying, Hua; Helliwell, Chris A; Taylor, Jennifer M; Peacock, W James; Dennis, Elizabeth S

    2011-04-19

    FLOWERING LOCUS C (FLC) has a key role in the timing of the initiation of flowering in Arabidopsis. FLC binds and represses two genes that promote flowering, FT and SOC1. We show that FLC binds to many other genes, indicating that it has regulatory roles other than the repression of flowering. We identified 505 FLC binding sites, mostly located in the promoter regions of genes and containing at least one CArG box, the motif known to be associated with MADS-box proteins such as FLC. We examined 40 of the target genes, and 20 showed increased transcript levels in an flc mutant compared with the wild type. Five genes showed decreased expression in the mutant, indicating that FLC binding can result in either transcriptional repression or activation. The genes we identified as FLC targets are involved in developmental pathways throughout the life history of the plant, many of which are associated with reproductive development. FLC is also involved in vegetative development, as evidenced by its binding to SPL15, delaying the progression from juvenile to adult phase. Some of the FLC target genes are also bound by two other MADS-box proteins, AP1 and SEP3, suggesting that MADS-box genes may operate in a network of control at different stages of the life cycle, many ultimately contributing to the development of the reproductive phase of the plant.

  11. An ethylene-induced regulatory module delays rose flower senescence by regulating cytokinin content

    Science.gov (United States)

    In many plant species, including rose (Rosa hybrida), flower senescence is promoted by the gaseous hormone, ethylene, and inhibited by cytokinin (CTK) class of hormones. However, the molecular mechanisms underlying these antagonistic effects are not well understood. In this current study, we charact...

  12. A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation

    Czech Academy of Sciences Publication Activity Database

    Liu, Z.; Boachon, B.; Lugan, R.; Tavares, R.; Erhardt, M.; Mutterer, J.; Demais, V.; Pateyron, S.; Brunaud, V.; Ohnishi, T.; Pěnčík, Aleš; Achard, P.; Gong, F.; Hedden, P.; Werck-Reichhart, D.; Renault, H.

    2015-01-01

    Roč. 8, č. 12 (2015), s. 1751-1765 ISSN 1674-2052 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : flower development * phylogenomics * negative selection Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.142, year: 2015

  13. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor.

    Science.gov (United States)

    Bastías, Adriana; López-Climent, María; Valcárcel, Mercedes; Rosello, Salvador; Gómez-Cadenas, Aurelio; Casaretto, José A

    2011-03-01

    Growing evidence suggests that the phytohormone abscisic acid (ABA) plays a role in fruit development. ABA signaling components of developmental programs and responses to stress conditions include the group of basic leucine zipper transcriptional activators known as ABA-response element binding factors (AREBs/ABFs). AREB transcription factors mediate ABA-regulated gene expression involved in desiccation tolerance and are expressed mainly in seeds and in vegetative tissues under stress; however, they are also expressed in some fruits such as tomato. In order to get an insight into the role of ABA signaling in fruit development, the expression of two AREB-like factors were investigated during different developmental stages. In addition, tomato transgenic lines that overexpress and downregulate one AREB-like transcription factor, SlAREB1, were used to determine its effect on the levels of some metabolites determining fruit quality. Higher levels of citric acid, malic acid, glutamic acid, glucose and fructose were observed in SlAREB1-overexpressing lines compared with those in antisense suppression lines in red mature fruit pericarp. The higher hexose concentration correlated with increased expression of genes encoding a vacuolar invertase (EC 3.2.1.26) and a sucrose synthase (EC 2.4.1.13). No significant changes were found in ethylene content which agrees with the normal ripening phenotype observed in transgenic fruits. These results suggest that an AREB-mediated ABA signal affects the metabolism of these compounds during the fruit developmental program. Copyright © Physiologia Plantarum 2010.

  14. AtPDS over-expression in tomato: exposing unique patterns of carotenoid self-regulation and an alternative strategy for the enhancement of fruit carotenoid content

    Science.gov (United States)

    The regulation of plant carotenogenesis is an active research area for both biological discovery and practical implementation. In tomato, we demonstrate additional bottlenecks exist in the poly-cis-transformation of phytoene to lycopene in the context of ripening-induced PSY1 expression and activity...

  15. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.

    Directory of Open Access Journals (Sweden)

    Shan-Shan Sun

    2016-09-01

    Full Text Available The lotus (Nelumbonaceae: Nelumbo Adans. is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten. with red flowers and the American lotus (N. lutea Willd. with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1 were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus.

  16. Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2016-10-01

    Full Text Available Anthocyanin accumulation is responsible for flower coloration in peach. Here, we report the identification and functional characterization of eight flavonoid-related R2R3-MYB transcription factors, designated PpMYB10.2, PpMYB9, PpMYBPA1, Peace, PpMYB17, PpMYB18, PpMYB19 and PpMYB20, respectively, in peach flower transcriptome. PpMYB10.2 and PpMYB9 are able to activate transcription of anthocyanin biosynthetic genes, whilst PpMYBPA1 and Peace have a strong activation on the promoters of proanthocyanin (PA biosynthetic genes. PpMYB17-20 show a strong repressive effect on transcription of flavonoid pathway genes such as DFR. These results indicate that anthocyanin accumulation in peach flower is coordinately regulated by a set of R2R3-MYB genes. In addition, PpMYB9 and PpMYB10.2 are closely related but separated into two groups, designated MYB9 and MYB10, respectively. PpMYB9 shows a strong activation on the PpUGT78A2 promoter, but with no effect on the promoter of PpUGT78B (commonly called PpUFGT in previous studies. In contrast, PpMYB10.2 is able to activate the PpUFGT promoter, but not for the PpUGT78A2 promoter. Unlike the MYB10 gene that is universally present in plants, the MYB9 gene is lost in most dicot species. Therefore, the PpMYB9 gene represents a novel group of anthocyanin-related MYB activators, which may have diverged in function from the MYB10 genes. Our study will aid in understanding the complex mechanism regulating floral pigmentation in peach and functional divergence of the R2R3-MYB gene family in plants.

  17. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan

    2017-01-01

    Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.

  18. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Yunzhou Li

    Full Text Available Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3 in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L. infected with tomato yellow leaf curl virus (TYLCV. There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA and jasmonic acid (JA defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD, peroxidase (POD, catalase (CAT, and ascorbate peroxidase (APX activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.

  19. Morphogenetic Potential of Tomato (Lycopersicon esculentum cv. ‘Arka Ahuti’ to Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    Kanakapura K. NAMITHA

    2013-05-01

    Full Text Available A highly reproducible in vitro regeneration method for tomato (Lycopersicon esculentum Mill. cultivar ‘Arka Ahuti’ was established by using hypocotyl, leaf and cotyledon explants from in vitro raised seedlings on Murashige and Skoog medium supplemented with different concentrations and combinations of hormones 6-Benzylamino purine (2 to 4 mg/L and Indole-3-acetic acid (0.1 to 1 mg/L. The medium supplemented with 2 mg/L 6-benzylamino purine and 0.1 mg/L indole-3-acetic acid was found to be the best for inducing direct shoot regeneration and multiple shoots per explant from hypocotyl explants. Callus induction was observed in all the explants and regeneration of shoots was also promoted by all these combinations. Shoots were transferred to the elongation medium which also induced 100% rooting. After hardening, plants were transferred to soil. Thus, a tissue culture base line was established for ‘Arka Ahuti’ cultivar of tomato for obtaining direct regeneration using hypocotyl, leaf and cotyledon as explants.

  20. Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia.

    Science.gov (United States)

    Souer, Erik; Rebocho, Alexandra B; Bliek, Mattijs; Kusters, Elske; de Bruin, Robert A M; Koes, Ronald

    2008-08-01

    Angiosperms display a wide variety of inflorescence architectures differing in the positions where flowers or branches arise. The expression of floral meristem identity (FMI) genes determines when and where flowers are formed. In Arabidopsis thaliana, this is regulated via transcription of LEAFY (LFY), which encodes a transcription factor that promotes FMI. We found that this is regulated in petunia (Petunia hybrida) via transcription of a distinct gene, DOUBLE TOP (DOT), a homolog of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Mutation of DOT or its tomato (Solanum lycopersicum) homolog ANANTHA abolishes FMI. Ubiquitous expression of DOT or UFO in petunia causes very early flowering and transforms the inflorescence into a solitary flower and leaves into petals. Ectopic expression of DOT or UFO together with LFY or its homolog ABERRANT LEAF AND FLOWER (ALF) in petunia seedlings activates genes required for identity or outgrowth of organ primordia. DOT interacts physically with ALF, suggesting that it activates ALF by a posttranslational mechanism. Our findings suggest a wider role than previously thought for DOT and UFO in the patterning of flowers and indicate that the different roles of LFY and UFO homologs in the spatiotemporal control of floral identity in distinct species result from their divergent expression patterns.

  1. Flowering T Flowering Trees

    Indian Academy of Sciences (India)

    Adansonia digitata L. ( The Baobab Tree) of Bombacaceae is a tree with swollen trunk that attains a dia. of 10m. Leaves are digitately compound with leaflets up to 18cm. long. Flowers are large, solitary, waxy white, and open at dusk. They open in 30 seconds and are bat pollinated. Stamens are many. Fruit is about 30 cm ...

  2. Proteomics of red and white corolla limbs in petunia reveals a novel function of the anthocyanin regulator ANTHOCYANIN1 in determining flower longevity.

    Science.gov (United States)

    Prinsi, Bhakti; Negri, Alfredo S; Quattrocchio, Francesca M; Koes, Ronald E; Espen, Luca

    2016-01-10

    The Petunia hybrida ANTHOCYANIN1 (AN1) gene encodes a transcription factor that regulates both the expression of genes involved in anthocyanin synthesis and the acidification of the vacuolar lumen in corolla epidermal cells. In this work, the comparison between the red flowers of the R27 line with the white flowers of the isogenic an1 mutant line W225 showed that the AN1 gene has further pleiotropic effects on flavonoid biosynthesis as well as on distant physiological traits. The proteomic profiling showed that the an1 mutation was associated to changes in accumulation of several proteins, affecting both anthocyanin synthesis and primary metabolism. The flavonoid composition study confirmed that the an1 mutation provoked a broad attenuation of the entire flavonoid pathway, probably by indirect biochemical events. Moreover, proteomic changes and variation of biochemical parameters revealed that the an1 mutation induced a delay in the onset of flower senescence in W225, as supported by the enhanced longevity of the W225 flowers in planta and the loss of sensitivity of cut flowers to sugar. This study suggests that AN1 is possibly involved in the perception and/or transduction of ethylene signal during flower senescence. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The pineapple AcMADS1 promoter confers high level expression in tomato and arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant

    Science.gov (United States)

    A previous EST study identified a MADS box transcription factor coding sequence, AcMADS1, that is strongly induced during non-climacteric pineapple fruit ripening. Phylogenetic analyses place the AcMADS1 protein in the same superclade as LeMADS-RIN, a master regulator of fruit ripening upstream of e...

  4. Proteomics of red and white corolla limbs in petunia reveals a novel function of the anthocyanin regulator ANTHOCYANIN1 in determining flower longevity

    NARCIS (Netherlands)

    Prinsi, B.; Negri, A.S.; Quattrocchio, F.; Koes, R.E.; Espen, L.

    2016-01-01

    The Petunia hybrida ANTHOCYANIN1 (AN1) gene encodes a transcription factor that regulates both the expression of genes involved in anthocyanin synthesis and the acidification of the vacuolar lumen in corolla epidermal cells. In this work, the comparison between the red flowers of the R27 line with

  5. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia

    Science.gov (United States)

    The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during...

  6. The Influence of the Plant Growth Regulator Maleic Hydrazide on Egyptian Broomrape Early Developmental Stages and Its Control Efficacy in Tomato under Greenhouse and Field Conditions

    Directory of Open Access Journals (Sweden)

    Ariel Venezian

    2017-05-01

    Full Text Available Broomrapes (Phelipanche spp. and Orobanche spp. are holoparasitic plants that cause tremendous losses of agricultural crops worldwide. Broomrape control is extremely difficult and only amino acid biosynthesis-inhibiting herbicides present an acceptable control level. It is expected that broomrape resistance to these herbicides is not long in coming. Our objective was to develop a broomrape control system in tomato (Solanum lycopersicum L. based on the plant growth regulator maleic hydrazide (MH. Petri-dish and polyethylene-bag system experiments revealed that MH has a slight inhibitory effect on Phelipanche aegyptiaca seed germination but is a potent inhibitor of the first stages of parasitism, namely attachment and the tubercle stage. MH phytotoxicity toward tomato and its P. aegyptiaca-control efficacy were tested in greenhouse experiments. MH was applied at 25, 50, 75, 150, 300, and 600 g a.i. ha-1 to tomato foliage grown in P. aegyptiaca-infested soil at 200 growing degree days (GDD and again at 400 GDD. The treatments had no influence on tomato foliage or root dry weight. The total number of P. aegyptiaca attachments counted on the roots of the treated plants was significantly lower at 75 g a.i. ha-1 and also at higher MH rates. Phelipanche aegyptiaca biomass was close to zero at rates of 150, 300, and 600 g a.i. ha-1 MH. Field experiments were conducted to optimize the rate, timing and number of MH applications. Two application sequences gave superior results, both with five split applications applied at 100, 200, 400, 700, and 1000 GDD: (a constant rate of 400 g a.i. ha-1; (b first two applications at 270 g a.i. ha-1 and the next three applications at 540 g a.i. ha-1. Based on the results of this study, MH was registered for use in Israel in 2013 with the specified protocol and today, it is widely used by most Israeli tomato growers.

  7. Blob Flowers.

    Science.gov (United States)

    Canfield, Elaine

    2003-01-01

    Describes an art project called blob flowers in which fifth-grade students created pictures of flowers using watercolor and markers. Explains that the lesson incorporates ideas from art and science. Discusses in detail how the students created their flowers. (CMK)

  8. Flowering Trees

    Indian Academy of Sciences (India)

    IAS Admin

    Flowering Trees. Ailanthus excelsa Roxb. (INDIAN TREE OF. HEAVEN) of Simaroubaceae is a lofty tree with large pinnately compound alternate leaves, which are ... inflorescences, unisexual and greenish-yellow. Fruits are winged, wings many-nerved. Wood is used in making match sticks. 1. Male flower; 2. Female flower.

  9. Flowering Trees

    Indian Academy of Sciences (India)

    user

    Flowering Trees. Gliricidia sepium(Jacq.) Kunta ex Walp. (Quickstick) of Fabaceae is a small deciduous tree with. Pinnately compound leaves. Flower are prroduced in large number in early summer on terminal racemes. They are attractive, pinkish-white and typically like bean flowers. Fruit is a few-seeded flat pod.

  10. Flowering Trees

    Indian Academy of Sciences (India)

    More Details Fulltext PDF. Volume 8 Issue 8 August 2003 pp 112-112 Flowering Trees. Zizyphus jujuba Lam. of Rhamnaceae · More Details Fulltext PDF. Volume 8 Issue 9 September 2003 pp 97-97 Flowering Trees. Moringa oleifera · More Details Fulltext PDF. Volume 8 Issue 10 October 2003 pp 100-100 Flowering Trees.

  11. Arabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Huijuan eZhang

    2015-09-01

    Full Text Available Upon pathogen infection, activation of immune response requires effective transcriptional reprogramming that regulates inducible expression of a large set of defense genes. A number of ethylene-responsive factor transcription factors have been shown to play critical roles in regulating immune responses in plants. In the present study, we explored the functions of Arabidopsis AtERF15 in immune responses against Pseudomonas syringae pv. tomato (Pst DC3000, a (hemibiotrophic bacterial pathogen, and Botrytis cinerea, a necrotrophic fungal pathogen. Expression of AtERF15 was induced by infection of Pst DC3000 and B. cinerea and by treatments with salicylic acid (SA and methyl jasmonate. Biochemical assays demonstrated that AtERF15 is a nucleus-localized transcription activator. The AtERF15-overexpressing (AtERF15-OE plants displayed enhanced resistance while the AtERF15-RNAi plants exhibited decreased resistance against Pst DC3000 and B. cinerea. Meanwhile, Pst DC3000- or B. cinerea-induced expression of defense genes was upregulated in AtERF15-OE plants but downregulated in AtERF15-RNAi plants, as compared to the expression in wild type plants. In response to infection with B. cinerea, the AtERF15-OE plants accumulated less reactive oxygen species (ROS while the AtERF15-RNAi plants accumulated more ROS. The flg22- and chitin-induced oxidative burst was abolished and expression levels of the pattern-triggered immunity-responsive genes AtFRK1 and AtWRKY53 were suppressed in AtER15-RNAi plants upon treatment with flg22 or chitin. Furthermore, SA-induced defense response was also partially impaired in the AtERF15-RNAi plants. These data demonstrate that AtERF15 is a positive regulator of multiple layers of the immune responses in Arabidopsis.

  12. Action threshold for applying insect growth regulators to tomato for management of irregular ripening caused by Bemisia argentifolii (Homoptera: Aleyrodidae).

    Science.gov (United States)

    Schuster, D J

    2002-04-01

    The whitefly Bemisia argentifolii Bellows & Perring is a major pest of tomatoes, causing an irregular ripening disorder characterized externally by incomplete or inhibited reddening of fruit, especially in longitudinal sections, and internally by an increase in the amount of white tissue. Experiments were undertaken during the spring and fall of 1997 and 1998 and the spring of 1999 to develop an action threshold for applying the insect growth regulators (IGRs) buprofezin and pyriproxyfen to manage B. argentifolii and irregular ripening. The IGRs were applied when predetermined thresholds were reached and were compared with a high rate of the systemic insecticide imidacloprid, which was applied at transplanting and provided season-long whitefly control. Only plots treated when the numbers of sessile nymphs (second through fourth instars) reached five per 10 leaflets consistently had both external and internal irregular ripening severity ratings similar to the imidacloprid standard. Results were similar for buprofezin and pyriproxyfen even though the modes of action differ. The five nymphs per 10 leaflets threshold lends itself to field scouting because nymphal counts completed in the field using the unaided eye supplemented with a 10x hand lens were linearly and significantly related to counts completed in the laboratory with a dissecting microscope.

  13. High species richness of native pollinators in Brazilian tomato crops

    Directory of Open Access Journals (Sweden)

    C. M. Silva-Neto

    Full Text Available Abstract Pollinators provide an essential service to natural ecosystems and agriculture. In tomatoes flowers, anthers are poricidal, pollen may drop from their pore when flowers are shaken by the wind. However, bees that vibrate these anthers increase pollen load on the stigma and in fruit production. The present study aimed to identify the pollinator richness of tomato flowers and investigate their morphological and functional traits related to the plant-pollinator interaction in plantations of Central Brazil. The time of anthesis, flower duration, and the number and viability of pollen grains and ovules were recorded. Floral visitors were observed and collected. Flower buds opened around 6h30 and closed around 18h00. They reopened on the following day at the same time in the morning, lasting on average 48 hours. The highest pollen availability occurred during the first hours of anthesis. Afterwards, the number of pollen grains declined, especially between 10h00 to 12h00, which is consistent with the pollinator visitation pattern. Forty bee species were found in the tomato fields, 30 of which were considered pollinators. We found that during the flowering period, plants offered an enormous amount of pollen to their visitors. These may explain the high richness and amount of bees that visit the tomato flowers in the study areas. The period of pollen availability and depletion throughout the day overlapped with the bees foraging period, suggesting that bees are highly effective in removing pollen grains from anthers. Many of these grains probably land on the stigma of the same flower, leading to self-pollination and subsequent fruit development. Native bees (Exomalopsis spp. are effective pollinators of tomato flowers and are likely to contribute to increasing crop productivity. On the other hand, here tomato flowers offer large amounts of pollen resource to a high richness and amount of bees, showing a strong plant-pollinator interaction in the

  14. High species richness of native pollinators in Brazilian tomato crops.

    Science.gov (United States)

    Silva-Neto, C M; Bergamini, L L; Elias, M A S; Moreira, G L; Morais, J M; Bergamini, B A R; Franceschinelli, E V

    2017-01-01

    Pollinators provide an essential service to natural ecosystems and agriculture. In tomatoes flowers, anthers are poricidal, pollen may drop from their pore when flowers are shaken by the wind. However, bees that vibrate these anthers increase pollen load on the stigma and in fruit production. The present study aimed to identify the pollinator richness of tomato flowers and investigate their morphological and functional traits related to the plant-pollinator interaction in plantations of Central Brazil. The time of anthesis, flower duration, and the number and viability of pollen grains and ovules were recorded. Floral visitors were observed and collected. Flower buds opened around 6h30 and closed around 18h00. They reopened on the following day at the same time in the morning, lasting on average 48 hours. The highest pollen availability occurred during the first hours of anthesis. Afterwards, the number of pollen grains declined, especially between 10h00 to 12h00, which is consistent with the pollinator visitation pattern. Forty bee species were found in the tomato fields, 30 of which were considered pollinators. We found that during the flowering period, plants offered an enormous amount of pollen to their visitors. These may explain the high richness and amount of bees that visit the tomato flowers in the study areas. The period of pollen availability and depletion throughout the day overlapped with the bees foraging period, suggesting that bees are highly effective in removing pollen grains from anthers. Many of these grains probably land on the stigma of the same flower, leading to self-pollination and subsequent fruit development. Native bees (Exomalopsis spp.) are effective pollinators of tomato flowers and are likely to contribute to increasing crop productivity. On the other hand, here tomato flowers offer large amounts of pollen resource to a high richness and amount of bees, showing a strong plant-pollinator interaction in the study agroecosystem.

  15. Tomato Preserves.

    Science.gov (United States)

    Stevens, Wendy Tessman

    1996-01-01

    Describes a project in which students selected seeds from two heirloom varieties of tomatoes, sowed the seeds, harvested the tomatoes, and fermented the seeds. Details are provided for each step of the project and the school address is included so that other students can begin similar projects. (DDR)

  16. Preplanting irradiation of tomato seeds

    International Nuclear Information System (INIS)

    Maltseva, S.

    1976-01-01

    Seeds of the tomato varieties Pioneer-2, Drouzhba and Ace were treated prior to planting with Co 60 gamma rays in optimal doses of 2000 R and the varieties No 10 x Bison, Triumph and Extase with 1500 R. This treatment raised the germination energy and the plants started flowering and ripening earlier. The index of earliness was enhanced but the overall yield was equal to that of the control plants. (author)

  17. Flexible tools for gene expression and silencing in tomato.

    Science.gov (United States)

    Fernandez, Ana I; Viron, Nicolas; Alhagdow, Moftah; Karimi, Mansour; Jones, Matthew; Amsellem, Ziva; Sicard, Adrien; Czerednik, Anna; Angenent, Gerco; Grierson, Donald; May, Sean; Seymour, Graham; Eshed, Yuval; Lemaire-Chamley, Martine; Rothan, Christophe; Hilson, Pierre

    2009-12-01

    As a genetic platform, tomato (Solanum lycopersicum) benefits from rich germplasm collections and ease of cultivation and transformation that enable the analysis of biological processes impossible to investigate in other model species. To facilitate the assembly of an open genetic toolbox designed to study Solanaceae, we initiated a joint collection of publicly available gene manipulation tools. We focused on the characterization of promoters expressed at defined time windows during fruit development, for the regulated expression or silencing of genes of interest. Five promoter sequences were captured as entry clones compatible with the versatile MultiSite Gateway format: PPC2, PG, TPRP, and IMA from tomato and CRC from Arabidopsis (Arabidopsis thaliana). Corresponding transcriptional fusions were made with the GUS gene, a nuclear-localized GUS-GFP reporter, and the chimeric LhG4 transcription factor. The activity of the promoters during fruit development and in fruit tissues was confirmed in transgenic tomato lines. Novel Gateway destination vectors were generated for the transcription of artificial microRNA (amiRNA) precursors and hairpin RNAs under the control of these promoters, with schemes only involving Gateway BP and LR Clonase reactions. Efficient silencing of the endogenous phytoene desaturase gene was demonstrated in transgenic tomato lines producing a matching amiRNA under the cauliflower mosaic virus 35S or PPC2 promoter. Lastly, taking advantage of the pOP/LhG4 two-component system, we found that well-characterized flower-specific Arabidopsis promoters drive the expression of reporters in patterns generally compatible with heterologous expression. Tomato lines and plasmids will be distributed through a new Nottingham Arabidopsis Stock Centre service unit dedicated to Solanaceae resources.

  18. Chemical control of flowering time

    DEFF Research Database (Denmark)

    Ionescu, Irina Alexandra; Møller, Birger Lindberg; Sánchez Pérez, Raquel

    2017-01-01

    Flowering at the right time is of great importance; it secures seed production and therefore species survival and crop yield. In addition to the genetic network controlling flowering time, there are a number of much less studied metabolites and exogenously applied chemicals that may influence...... on the genetic aspects of flowering time regulation in annuals, but less so in perennials. An alternative to plant breeding approaches is to engineer flowering time chemically via the external application of flower-inducing compounds. This review discusses a variety of exogenously applied compounds used in fruit...

  19. The effect of flowering on adventitious root-formation

    NARCIS (Netherlands)

    Selim, H.H.A.

    1956-01-01

    The rooting of cuttings from day-neutral tomato was not influenced by flower development, nor by SD or LD treatments of them or of the mother plants. In cuttings of the SD plant Perilla crispa flower initiation and development severely inhibited rooting. Leaves produced about 61 %

  20. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines.

    Science.gov (United States)

    Kiseleva, Antonina A; Potokina, Elena K; Salina, Elena A

    2017-11-14

    Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number. In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, "Ppd-m" and "Ppd-w" with Ppd-B1a introgressed from Sonora, we investigated the putative factors that influence Ppd-B1a expression. By analyzing the Ppd-B1a three distinct copies, we identified an indel and the two SNPs, which distinguished the investigated allele from other alleles with a copy number variation. We studied the expression of the Ppd-A1, Ppd-B1a, and Ppd-D1 genes along with genes that are involved in light perception (PhyA, PhyB, PhyC) and the flowering initiation (Vrn-1, TaFT1) and discussed their interactions. Expression of Ppd-B1a in the "Ppd-m" line, which flowered four days earlier than "Ppd-w", was significantly higher. We found PhyC to be up-regulated in lines with Ppd-B1a alleles. Expression of PhyC was higher in "Ppd-m". Microsatellite genotyping demonstrated that in the line "Ppd-m", there is an introgression in the pericentromeric region of chromosome 5B from the early flowering parental Sonora, while the "Ppd-w" does not have this introgression. FHY3/FAR1 is known to be located in this region. Expression of the transcription factor FHY3/FAR1 was higher in the "Ppd-m" line than in "Ppd-w", suggesting that FHY3/FAR1 is important for the wheat flowering time and may cause earlier flowering of "Ppd-m" as compared to "Ppd-w". We propose that there is a positive bidirectional regulation of Ppd-B1a and PhyC with an FHY3/FAR1 contribution. The bidirectional regulation can be proposed for Ppd-A1a and Ppd-D1a. Using in silico analysis, we demonstrated that the specificity of the Ppd-B1 regulation compared to that of homoeologous genes involves not only a

  1. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season.

    Directory of Open Access Journals (Sweden)

    Dalong Zhang

    Full Text Available The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L. productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1 without environment control and (2 with a micro-fog system operating when the air vapor pressure deficit (VPD of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR, and to a lesser extent caused by leaf area ratio (LAR. Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season.

  2. SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, Is a Negative Regulator of Drought and Salt Stress Tolerance

    Science.gov (United States)

    Pan, Yanglu; Hu, Xin; Li, Chunyan; Xu, Xing; Su, Chenggang; Li, Jinhua; Song, Hongyuan; Zhang, Xingguo; Pan, Yu

    2017-01-01

    The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling. PMID:29261143

  3. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season.

    Science.gov (United States)

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season.

  4. Functional characterization of PhGR and PhGRL1 during flower senescence in the petunia.

    Science.gov (United States)

    Yang, Weiyuan; Liu, Juanxu; Tan, Yinyan; Zhong, Shan; Tang, Na; Chen, Guoju; Yu, Yixun

    2015-09-01

    Petunia PhGRL1 suppression accelerated flower senescence and increased the expression of the genes downstream of ethylene signaling, whereas PhGR suppression did not. Ethylene plays an important role in flowers senescence. Homologous proteins Green-Ripe and Reversion to Ethylene sensitivity1 are positive regulators of ethylene responses in tomato and Arabidopsis, respectively. The petunia flower has served as a model for the study of ethylene response during senescence. In this study, petunia PhGR and PhGRL1 expression was analyzed in different organs, throughout floral senescence, and after exogenous ethylene treatment; and the roles of PhGR and PhGRL1 during petunia flower senescence were investigated. PhGRL1 suppression mediated by virus-induced gene silencing accelerated flower senescence and increased ethylene production; however, the suppression of PhGR did not. Taken together, these data suggest that PhGRL1 is involved in negative regulation of flower senescence, possibly via ethylene production inhibition and consequently reduced ethylene signaling activation.

  5. Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure.

    Science.gov (United States)

    Iordachescu, Mihaela; Verlinden, Sven

    2005-08-01

    Using a combination of approaches, three EIN3-like (EIL) genes DC-EIL1/2 (AY728191), DC-EIL3 (AY728192), and DC-EIL4 (AY728193) were isolated from carnation (Dianthus caryophyllus) petals. DC-EIL1/2 deduced amino acid sequence shares 98% identity with the previously cloned and characterized carnation DC-EIL1 (AF261654), 62% identity with DC-EIL3, and 60% identity with DC-EIL4. DC-EIL3 deduced amino acid sequence shares 100% identity with a previously cloned carnation gene fragment, Dc106 (CF259543), 61% identity with Dianthus caryophyllus DC-EIL1 (AF261654), and 59% identity with DC-EIL4. DC-EIL4 shared 60% identity with DC-EIL1 (AF261654). Expression analyses performed on vegetative and flower tissues (petals, ovaries, and styles) during growth and development and senescence (natural and ethylene-induced) indicated that the mRNA accumulation of the DC-EIL family of genes in carnation is regulated developmentally and by ethylene. DC-EIL3 mRNA showed significant accumulation upon ethylene exposure, during flower development, and upon pollination in petals and styles. Interestingly, decreasing levels of DC-EIL3 mRNA were found in wounded leaves and ovaries of senescing flowers whenever ethylene levels increased. Flowers treated with sucrose showed a 2 d delay in the accumulation of DC-EIL3 transcripts when compared with control flowers. These observations suggest an important role for DC-EIL3 during growth and development. Changes in DC-EIL1/2 and DC-EIL4 mRNA levels during flower development, and upon ethylene exposure and pollination were very similar. mRNA levels of the DC-EILs in styles of pollinated flowers showed a positive correlation with ethylene production after pollination. The cloning and characterization of the EIN3-like genes in the present study showed their transcriptional regulation not previously observed for EILs.

  6. Flowering Trees

    Indian Academy of Sciences (India)

    Canthium parviflorum Lam. of Rubiaceae is a large shrub that often grows into a small tree with conspicuous spines. Leaves are simple, in pairs at each node and are shiny. Inflorescence is an axillary few-flowered cymose fascicle. Flowers are small (less than 1 cm across), 4-merous and greenish-white. Fruit is ellipsoid ...

  7. Flowering Trees

    Indian Academy of Sciences (India)

    mid-sized slow-growing evergreen tree with spreading branches that form a dense crown. The bark is smooth, thick, dark and flakes off in large shreds. Leaves are thick, oblong, leathery and bright red when young. The female flowers are drooping and are larger than male flowers. Fruit is large, red in color and velvety.

  8. Flowering Trees

    Indian Academy of Sciences (India)

    narrow towards base. Flowers are large and attrac- tive, but emit unpleasant foetid smell. They appear in small numbers on erect terminal clusters and open at night. Stamens are numerous, pink or white. Style is slender and long, terminating in a small stigma. Fruit is green, ovoid and indistinctly lobed. Flowering Trees.

  9. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Gyrocarpus americanus Jacq. (Helicopter Tree) of Hernandiaceae is a moderate size deciduous tree that grows to about 12 m in height with a smooth, shining, greenish-white bark. The leaves are ovate, rarely irregularly ... flowers which are unpleasant smelling. Fruit is a woody nut with two long thin wings.

  10. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Acrocarpus fraxinifolius Wight & Arn. (PINK CEDAR, AUSTRALIAN ASH) of. Caesalpiniaceae is a lofty unarmed deciduous native tree that attains a height of 30–60m with buttresses. Bark is thin and light grey. Leaves are compound and bright red when young. Flowers in dense, erect, axillary racemes.

  11. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme

    Directory of Open Access Journals (Sweden)

    Karla Ramirez-Estrada

    2017-06-01

    Full Text Available Sterol glycosyltransferases (SGTs catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic

  12. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato

    NARCIS (Netherlands)

    Ament, K.; Kant, M.R.; Sabelis, M.W.; Haring, M.A.; Schuurink, R.C.

    2004-01-01

    The tomato (Lycopersicon esculentum) mutant def-1, which is deficient in induced jasmonic acid (JA) accumulation upon wounding or herbivory, was used to study the role of JA in the direct and indirect defense responses to phytophagous mites (Tetranychus urticae). In contrast to earlier reports,

  13. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants.

    Science.gov (United States)

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-02-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

  14. Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

    Science.gov (United States)

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-01-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways. PMID:24598995

  15. ECONOMIC EFFICIENCY IN TOMATOES PRODUCTION IN GREENHOUSES

    Directory of Open Access Journals (Sweden)

    A POPESCU

    2003-07-01

    Full Text Available This study aimed to appreciate the evolution of economic efficiency in tomatoes production in greenhouses within a private firm situated next to the capital. The firm owns 4 ha greenhouses and the weight of tomatoes crop in the cultivated area is just 38.75 %. In fact, during the last three years, the tomatoes cultivated surface has been diminished in favour of flowers production which, like tomatoes production is an important income source for any producer. The reduction of the tomatoes cultivated area was compensated by the increase of intensification grade using new high performance hybrids and modern technologies. Thus, the scientific production management has been looking for maintaining the total production at the same level from a year to another by an increased average tomatoes yield by 53.33 % . The continuous increase of farm input price has doubled the cost per surface unit and increased the cost per tomatoes kilogram by 33 %. The increase of tomatoes demand and of market price by 31 % have had a positive influence on the farm incomes which has doubled during the last three years. In the year 2000, the company has obtained USD 41,818 income/ha of which subtracting the related production cost we can easily get USD 4,815 profit/ha. The average profit rate recorded by the firm is 13 % in the period 2000-2002, when the study was made. As a conclusion, tomatoes production in greenhouses is a good deal. To keep a high economic efficiency, under the diminishing of the cultivated area, the producers have to increase average tomatoes production by using high performance technology based on high economic value hybrids.

  16. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants

    Directory of Open Access Journals (Sweden)

    Colasanti Joseph

    2006-06-01

    Full Text Available Abstract Background The maize INDETERMINATE1 gene, ID1, is a key regulator of the transition to flowering and the founding member of a transcription factor gene family that encodes a protein with a distinct arrangement of zinc finger motifs. The zinc fingers and surrounding sequence make up the signature ID domain (IDD, which appears to be found in all higher plant genomes. The presence of zinc finger domains and previous biochemical studies showing that ID1 binds to DNA suggests that members of this gene family are involved in transcriptional regulation. Results Comparison of IDD genes identified in Arabidopsis and rice genomes, and all IDD genes discovered in maize EST and genomic databases, suggest that ID1 is a unique member of this gene family. High levels of sequence similarity amongst all IDD genes from maize, rice and Arabidopsis suggest that they are derived from a common ancestor. Several unique features of ID1 suggest that it is a divergent member of the maize IDD family. Although no clear ID1 ortholog was identified in the Arabidopsis genome, highly similar genes that encode proteins with identity extending beyond the ID domain were isolated from rice and sorghum. Phylogenetic comparisons show that these putative orthologs, along with maize ID1, form a group separate from other IDD genes. In contrast to ID1 mRNA, which is detected exclusively in immature leaves, several maize IDD genes showed a broad range of expression in various tissues. Further, Western analysis with an antibody that cross-reacts with ID1 protein and potential orthologs from rice and sorghum shows that all three proteins are detected in immature leaves only. Conclusion Comparative genomic analysis shows that the IDD zinc finger family is highly conserved among both monocots and dicots. The leaf-specific ID1 expression pattern distinguishes it from other maize IDD genes examined. A similar leaf-specific localization pattern was observed for the putative ID1 protein

  17. Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway.

    Science.gov (United States)

    Ebrahimi, Mortaza; Abdullah, Siti Nor Akmar; Abdul Aziz, Maheran; Namasivayam, Parameswari

    2016-09-01

    CBF/DREB1 is a group of transcription factors that are mainly involved in abiotic stress tolerance in plants. They belong to the AP2/ERF superfamily of plant-specific transcription factors. A gene encoding a new member of this group was isolated from ripening oil palm fruit and designated as EgCBF3. The oil palm fruit demonstrates the characteristics of a climacteric fruit like tomato, in which ethylene has a major impact on the ripening process. A transgenic approach was used for functional characterization of the EgCBF3, using tomato as the model plant. The effects of ectopic expression of EgCBF3 were analyzed based on expression profiling of the ethylene biosynthesis-related genes, anti-freeze proteins (AFPs), abiotic stress tolerance and plant growth and development. The EgCBF3 tomatoes demonstrated altered phenotypes compared to the wild type tomatoes. Delayed leaf senescence and flowering, increased chlorophyll content and abnormal flowering were the consequences of overexpression of EgCBF3 in the transgenic tomatoes. The EgCBF3 tomatoes demonstrated enhanced abiotic stress tolerance under in vitro conditions. Further, transcript levels of ethylene biosynthesis-related genes, including three SlACSs and two SlACOs, were altered in the transgenic plants' leaves and roots compared to that in the wild type tomato plant. Among the eight AFPs studied in the wounded leaves of the EgCBF3 tomato plants, transcript levels of SlOSM-L, SlNP24, SlPR5L and SlTSRF1 decreased, while expression of the other four, SlCHI3, SlPR1, SlPR-P2 and SlLAP2, were up-regulated. These findings indicate the possible functions of EgCBF3 in plant growth and development as a regulator of ethylene biosynthesis-related and AFP genes, and as a stimulator of abiotic stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Regulation of Expression of the prb-1b / ACC Deaminase gene by UV-B in Transgenic tomatoes

    International Nuclear Information System (INIS)

    Tamot, B.K.; Pauls, K.P.; Glick, R.

    2003-01-01

    Transgenic tomato plants with 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase gene from Enterobacter cloacae UWA4 under the control of a pathogenesis-related promoter (prb-1b) from tobacco were challenged by abiotic stresses to determine the expression patterns of the transgene. No ACC deaminase RNA or protein was detected bu RT-PCR and in western blots prepared from leaf proteins of transgenic plants after wounding or treatment with alpha-amino butyric acid, xylanase, ethephon, salicylic acid, jasmonic acid , ethylene, or ethylene plus jasmonic acid. However, expression of the ACC deaminase transgene was observed in leaves and roots of transformed tomato lines exposed to UV light. The UV response required a minimum of 48 h of exposure and was specific to UV-B light

  19. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    Science.gov (United States)

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Effect of regulated deficit irrigation on growth, flowering and physiological responses of potted Syringa meyeri ‘Palibin’

    Directory of Open Access Journals (Sweden)

    Michał Koniarski

    2014-01-01

    Full Text Available The aim of this study was to analyze the physiological and morphological response of Syringa meyeri ‘Palibin’ to different levels of irrigation and to evaluate regulated deficit irrigation (RDI as a possible technique for saving water in nursery production and promoting of flowering. Plants were grown in 3 liter containers in an unheated greenhouse and were subjected to six irrigation treatments for 18 weeks from the be- ginning of June to mid-October 2011. A drip irrigation system was used. Irrigation treatments were established on the basis of evapotranspiration (ETp. Three constant irrigation treatments were used: 1 1 ETp; 2 0.75 ETp; 3 0.5 ETp, while the other three with irrigation varying between phases were as follows: 4 1–0.5–1; 5 1–0.25–1; and 6 0.5–1–0.5 ETp. The 0.75 ETp and 0.5 ETp irrigation regimes adversely affected the growth and visual quality index of plants as well as they resulted in reduced leaf conductance, transpiration, maximum quantum efficiency of photosystem II (Fv/Fm and CCI (chlorophyll content index. Plants grown under the 1–0.5–1 ETp regime had the same morphological parameters as plants grown under the 0.5 ETp treatment. A further reduction of water quantity supplied to plants in the 1–0.25–1 ETp regime resulted in further deterioration of the visual quality index of plants. In this study, the quality index of plants exposed to 0.5–1–0.5 ETp was similar to control plants (1 ETp. These plants were lower, more compact, and had smaller leaves than control plants. The irrigation regimes imposed in this study had no significant effect on the number of floral buds formed in relation to the control regime, except for 1–0.25–1 ETp where this number decreased.

  1. Effects of the moisture of gamma irradiated tomato-seeds on the plant growth sensitivity

    International Nuclear Information System (INIS)

    Kumala Dewi.

    1977-01-01

    The investigation of 2 Krad gamma irradiated dry seeds fruit and tomato seedlings has been carried out. The effect was observed on the time of flowering and fruit bearing, fruits number, fruits weight and time of harvesting. (author)

  2. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation.

    Science.gov (United States)

    Zhu, Mingku; Chen, Guoping; Zhou, Shuang; Tu, Yun; Wang, Yi; Dong, Tingting; Hu, Zongli

    2014-01-01

    Fruit ripening in tomato (Solanum lycopersicum) is a complicated development process affected by both endogenous hormonal and genetic regulators and external signals. Although the role of NOR, a member of the NAC domain family, in mediating tomato fruit ripening has been established, its underlying molecular mechanisms remain unclear. To explore further the role of NAC transcription factors in fruit ripening, we characterized a new tomato NAC domain protein, named SlNAC4, which shows high accumulation in sepal and at the onset of fruit ripening. Various stress treatments including wounding, NaCl, dehydration and low temperature significantly increased the expression of SlNAC4. Reduced expression of SlNAC4 by RNA interference (RNAi) in tomato resulted in delayed fruit ripening, suppressed Chl breakdown and decreased ethylene synthesis mediated mainly through reduced expression of ethylene biosynthesis genes of system-2, and reduced carotenoids by alteration of the carotenoid pathway flux. Transgenic tomato fruits also displayed significant down-regulation of multiple ripening-associated genes, indicating that SlNAC4 functions as a positive regulator of fruit ripening by affecting ethylene synthesis and carotenoid accumulation. Moreover, we also noted that SlNAC4 could not be induced by ethylene and may function upstream of the ripening regulator RIN and positively regulate its expression. Yeast two-hybrid assay further revealed that SlNAC4 could interact with both RIN and NOR protein. These results suggested that ethylene-dependent and -independent processes are regulated by SlNAC4 in the fruit ripening regulatory network.

  3. Arabidopsis KHZ1 and KHZ2, two novel non-tandem CCCH zinc-finger and K-homolog domain proteins, have redundant roles in the regulation of flowering and senescence.

    Science.gov (United States)

    Yan, Zongyun; Jia, Jianheng; Yan, Xiaoyuan; Shi, Huiying; Han, Yuzhen

    2017-12-01

    The two novel CCCH zinc-finger and K-homolog (KH) proteins, KHZ1 and KHZ2, play important roles in regulating flowering and senescence redundantly in Arabidopsis. The CCCH zinc-finger proteins and K-homolog (KH) proteins play important roles in plant development and stress responses. However, the biological functions of many CCCH zinc-finger proteins and KH proteins remain uncharacterized. In Arabidopsis, KHZ1 and KHZ2 are characterized as two novel CCCH zinc-finger and KH domain proteins which belong to subfamily VII in CCCH family. We obtained khz1, khz2 mutants and khz1 khz2 double mutants, as well as overexpression (OE) lines of KHZ1 and KHZ2. Compared with the wild type (WT), the khz2 mutants displayed no defects in growth and development, and the khz1 mutants were slightly late flowering, whereas the khz1 khz2 double mutants showed a pronounced late flowering phenotype. In contrast, artificially overexpressing KHZ1 and KHZ2 led to the early flowering. Consistent with the late flowering phenotype, the expression of flowering repressor gene FLC was up-regulated, while the expression of flowering integrator and floral meristem identity (FMI) genes were down-regulated significantly in khz1 khz2. In addition, we also observed that the OE plants of KHZ1 and KHZ2 showed early leaf senescence significantly, whereas the khz1 khz2 double mutants showed delayed senescence of leaf and the whole plant. Both KHZ1 and KHZ2 were ubiquitously expressed throughout the tissues of Arabidopsis. KHZ1 and KHZ2 were localized to the nucleus, and possessed both transactivation activities and RNA-binding abilities. Taken together, we conclude that KHZ1 and KHZ2 have redundant roles in the regulation of flowering and senescence in Arabidopsis.

  4. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development.

    Science.gov (United States)

    Zhu, Changfu; Yamamura, Saburo; Nishihara, Masashiro; Koiwa, Hiroyuki; Sandmann, Gerhard

    2003-02-20

    cDNAs encoding lycopene epsilon -cyclase, lycopene beta-cyclase, beta-carotene hydroxylase and zeaxanthin epoxidase were isolated from a Gentiana lutea petal cDNA library. The function of all cDNAs was analyzed by complementation in Escherichia coli. Transcript levels during different stages of flower development of G. lutea were determined and compared to the carotenoid composition. Expression of all genes increased by a factor of up to 2, with the exception of the lycopene epsilon -cyclase gene. The transcript amount of the latter was strongly decreased. These results indicate that during flower development, carotenoid formation is enhanced. Moreover, metabolites are shifted away from the biosynthetic branch to lutein and are channeled into beta-carotene and derivatives.

  5. TRL1 gene expression in tomato (Solanum lycopersicum) floral organs after γ-irradiation

    International Nuclear Information System (INIS)

    Bondarenco, V.S.; Barbacar, N.I.

    2009-01-01

    The article describes the expression patterns of a novel RAD16-like TRL1 (tomato RAD16-like 1) gene in the floral organs of tomato during anther meiosis and mature flower stages. The data on the induction of the TRL1 expression as a result of γ-irradiation is discussed. (authors)

  6. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time

    KAUST Repository

    Hwang, Yoon-Hyung; Kim, SoonKap; Lee, Keh Chien; Chung, Young Soo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2016-01-01

    Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein–protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  7. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time

    KAUST Repository

    Hwang, Yoon-Hyung

    2016-01-11

    Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein–protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  8. The tomato Fni3 lysine-63-specific ubiquitin-conjugating enzyme and suv ubiquitin E2 variant positively regulate plant immunity.

    Science.gov (United States)

    Mural, Ravi V; Liu, Yao; Rosebrock, Tracy R; Brady, Jennifer J; Hamera, Sadia; Connor, Richard A; Martin, Gregory B; Zeng, Lirong

    2013-09-01

    The activation of an immune response in tomato (Solanum lycopersicum) against Pseudomonas syringae relies on the recognition of E3 ligase-deficient forms of AvrPtoB by the host protein kinase, Fen. To investigate the mechanisms by which Fen-mediated immunity is regulated, we characterize in this study a Fen-interacting protein, Fni3, and its cofactor, S. lycoperiscum Uev (Suv). Fni3 encodes a homolog of the Ubc13-type ubiquitin-conjugating enzyme that catalyzes exclusively Lys-63-linked ubiquitination, whereas Suv is a ubiquitin-conjugating enzyme variant. The C-terminal region of Fen was necessary for interaction with Fni3, and this interaction was required for cell death triggered by overexpression of Fen in Nicotiana benthamiana leaves. Fni3 was shown to be an active E2 enzyme, but Suv displayed no ubiquitin-conjugating activity; Fni3 and Suv together directed Lys-63-linked ubiquitination. Decreased expression of Fni3, another tomato Ubc13 homolog, Sl-Ubc13-2, or Suv in N. benthamiana leaves diminished cell death associated with Fen-mediated immunity and cell death elicited by several other resistance (R) proteins and their cognate effectors. We also discovered that coexpression of Fen and other R proteins/effectors with a Fni3 mutant that is compromised for ubiquitin-conjugating activity diminished the cell death. These results suggest that Fni3/Sl-Ubc13-2 and Suv regulate the immune response mediated by Fen and other R proteins through Lys-63-linked ubiquitination.

  9. The Tomato Fni3 Lysine-63–Specific Ubiquitin-Conjugating Enzyme and Suv Ubiquitin E2 Variant Positively Regulate Plant Immunity[C][W

    Science.gov (United States)

    Mural, Ravi V.; Liu, Yao; Rosebrock, Tracy R.; Brady, Jennifer J.; Hamera, Sadia; Connor, Richard A.; Martin, Gregory B.; Zeng, Lirong

    2013-01-01

    The activation of an immune response in tomato (Solanum lycopersicum) against Pseudomonas syringae relies on the recognition of E3 ligase–deficient forms of AvrPtoB by the host protein kinase, Fen. To investigate the mechanisms by which Fen-mediated immunity is regulated, we characterize in this study a Fen-interacting protein, Fni3, and its cofactor, S. lycoperiscum Uev (Suv). Fni3 encodes a homolog of the Ubc13-type ubiquitin-conjugating enzyme that catalyzes exclusively Lys-63–linked ubiquitination, whereas Suv is a ubiquitin-conjugating enzyme variant. The C-terminal region of Fen was necessary for interaction with Fni3, and this interaction was required for cell death triggered by overexpression of Fen in Nicotiana benthamiana leaves. Fni3 was shown to be an active E2 enzyme, but Suv displayed no ubiquitin-conjugating activity; Fni3 and Suv together directed Lys-63–linked ubiquitination. Decreased expression of Fni3, another tomato Ubc13 homolog, Sl-Ubc13-2, or Suv in N. benthamiana leaves diminished cell death associated with Fen-mediated immunity and cell death elicited by several other resistance (R) proteins and their cognate effectors. We also discovered that coexpression of Fen and other R proteins/effectors with a Fni3 mutant that is compromised for ubiquitin-conjugating activity diminished the cell death. These results suggest that Fni3/Sl-Ubc13-2 and Suv regulate the immune response mediated by Fen and other R proteins through Lys-63–linked ubiquitination. PMID:24076975

  10. Flowering Trees

    Indian Academy of Sciences (India)

    deciduous tree with irregularly-shaped trunk, greyish-white scaly bark and milky latex. Leaves in opposite pairs are simple, oblong and whitish beneath. Flowers that occur in branched inflorescence are white, 2–. 3cm across and fragrant. Calyx is glandular inside. Petals bear numerous linear white scales, the corollary.

  11. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Boswellia serrata Roxb. ex Colebr. (Indian Frankincense tree) of Burseraceae is a large-sized deciduous tree that is native to India. Bark is thin, greenish-ash-coloured that exfoliates into smooth papery flakes. Stem exudes pinkish resin ... Fruit is a three-valved capsule. A green gum-resin exudes from the ...

  12. Flowering Trees

    Indian Academy of Sciences (India)

    Berrya cordifolia (Willd.) Burret (Syn. B. ammonilla Roxb.) – Trincomali Wood of Tiliaceae is a tall evergreen tree with straight trunk, smooth brownish-grey bark and simple broad leaves. Inflorescence is much branched with white flowers. Stamens are many with golden yellow anthers. Fruit is a capsule with six spreading ...

  13. Flowering Trees

    Indian Academy of Sciences (India)

    sriranga

    Hook.f. ex Brandis (Yellow. Cadamba) of Rubiaceae is a large and handsome deciduous tree. Leaves are simple, large, orbicular, and drawn abruptly at the apex. Flowers are small, yellowish and aggregate into small spherical heads. The corolla is funnel-shaped with five stamens inserted at its mouth. Fruit is a capsule.

  14. Flowering Trees

    Indian Academy of Sciences (India)

    Celtis tetrandra Roxb. of Ulmaceae is a moderately large handsome deciduous tree with green branchlets and grayish-brown bark. Leaves are simple with three to four secondary veins running parallel to the mid vein. Flowers are solitary, male, female and bisexual and inconspicuous. Fruit is berry-like, small and globose ...

  15. Flowering Trees

    Indian Academy of Sciences (India)

    IAS Admin

    Aglaia elaeagnoidea (A.Juss.) Benth. of Meliaceae is a small-sized evergreen tree of both moist and dry deciduous forests. The leaves are alternate and pinnately compound, terminating in a single leaflet. Leaflets are more or less elliptic with entire margin. Flowers are small on branched inflorescence. Fruit is a globose ...

  16. Flowering Trees

    Indian Academy of Sciences (India)

    user

    Flowers are borne on stiff bunches terminally on short shoots. They are 2-3 cm across, white, sweet-scented with light-brown hairy sepals and many stamens. Loquat fruits are round or pear-shaped, 3-5 cm long and are edible. A native of China, Loquat tree is grown in parks as an ornamental and also for its fruits.

  17. Flowering Trees

    Indian Academy of Sciences (India)

    medium-sized handsome tree with a straight bole that branches at the top. Leaves are once pinnate, with two to three pairs of leaflets. Young parts of the tree are velvety. Inflorescence is a branched raceme borne at the branch ends. Flowers are large, white, attractive, and fragrant. Corolla is funnel-shaped. Fruit is an ...

  18. Flowering Trees

    Indian Academy of Sciences (India)

    Cassia siamia Lamk. (Siamese tree senna) of Caesalpiniaceae is a small or medium size handsome tree. Leaves are alternate, pinnately compound and glandular, upto 18 cm long with 8–12 pairs of leaflets. Inflorescence is axillary or terminal and branched. Flowering lasts for a long period from March to February. Fruit is ...

  19. Flowering Trees

    Indian Academy of Sciences (India)

    Andira inermis (wright) DC. , Dog Almond of Fabaceae is a handsome lofty evergreen tree. Leaves are alternate and pinnately compound with 4–7 pairs of leaflets. Flowers are fragrant and are borne on compact branched inflorescences. Fruit is ellipsoidal one-seeded drupe that is peculiar to members of this family.

  20. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Cerbera manghasL. (SEA MANGO) of Apocynaceae is a medium-sized evergreen coastal tree with milky latex. The bark is grey-brown, thick and ... Fruit is large. (5–10 cm long), oval containing two flattened seeds and resembles a mango, hence the name Mangas or. Manghas. Leaves and fruits contain ...

  1. Flowering Trees

    Indian Academy of Sciences (India)

    Muntingia calabura L. (Singapore cherry) of. Elaeocarpaceae is a medium size handsome ever- green tree. Leaves are simple and alternate with sticky hairs. Flowers are bisexual, bear numerous stamens, white in colour and arise in the leaf axils. Fruit is a berry, edible with several small seeds embedded in a fleshy pulp ...

  2. Flowering Trees

    Indian Academy of Sciences (India)

    Srimath

    Grevillea robusta A. Cunn. ex R. Br. (Sil- ver Oak) of Proteaceae is a daintily lacy ornamental tree while young and growing into a mighty tree (45 m). Young shoots are silvery grey and the leaves are fern- like. Flowers are golden-yellow in one- sided racemes (10 cm). Fruit is a boat- shaped, woody follicle.

  3. Flowering Trees

    Indian Academy of Sciences (India)

    stems and handsome foliage. Leaves are 8–10 cm long, dull green, the two thin leathery halves of the lamina fusing or the cleft between them extending beyond the middle. Flowers are gorgeous, axillary with dark purple stamens. The pod is more or less flat. B. alba is often named as B. variegate var. alba by botanists.

  4. Flowering Trees

    Indian Academy of Sciences (India)

    Guaiacum officinale L. (LIGNUM-VITAE) of Zygophyllaceae is a dense-crowned, squat, knobbly, rough and twisted medium-sized ev- ergreen tree with mottled bark. The wood is very hard and resinous. Leaves are compound. The leaflets are smooth, leathery, ovate-ellipti- cal and appear in two pairs. Flowers (about 1.5.

  5. Philadelphia and the Tomato.

    Science.gov (United States)

    Smith, Andrew F.; Kling, Tatiana

    This booklet describes for elementary students the many contributions of people, traveling many places, over many years to bring the tomato to Philadelphia. The booklet includes the following: (1) "Introduction to the Tomato"; (2) "Where Does the Tomato Come From?"; (3) "The Spanish Tomato"; (4) "The Philadelphia…

  6. Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia.

    Science.gov (United States)

    Boase, Murray R; Brendolise, Cyril; Wang, Lei; Ngo, Hahn; Espley, Richard V; Hellens, Roger P; Schwinn, Kathy E; Davies, Kevin M; Albert, Nick W

    2015-10-01

    The Md - MYB10 R6 gene from apple is capable of self-regulating in heterologous host species and enhancing anthocyanin pigmentation, but the activity of MYB10 is dependent on endogenous protein partners. Coloured foliage due to anthocyanin pigments (bronze/red/black) is an attractive trait that is often lacking in many bedding, ornamental and horticultural plants. Apples (Malus × domestica) containing an allelic variant of the anthocyanin regulator, Md-MYB10 R6 , are highly pigmented throughout the plant, due to autoregulation by MYB10 upon its own promoter. We investigated whether Md-MYB10 R6 from apple is capable of functioning within the heterologous host Petunia hybrida to generate plants with novel pigmentation patterns. The Md-MYB10 R6 transgene (MYB10-R6 pro :MYB10:MYB10 term ) activated anthocyanin synthesis when transiently expressed in Antirrhinum rosea (dorsea) petals and petunia leaf discs. Stable transgenic petunias containing Md-MYB10 R6 lacked foliar pigmentation but had coloured flowers, complementing the an2 phenotype of 'Mitchell' petunia. The absence of foliar pigmentation was due to the failure of the Md-MYB10 R6 gene to self-activate in vegetative tissues, suggesting that additional protein partners are required for Md-MYB10 to activate target genes in this heterologous system. In petunia flowers, where endogenous components including MYB-bHLH-WDR (MBW) proteins were present, expression of the Md-MYB10 R6 promoter was initiated, allowing auto-regulation to occur and activating anthocyanin production. Md-MYB10 is capable of operating within the petunia MBW gene regulation network that controls the expression of the anthocyanin biosynthesis genes, AN1 (bHLH) and MYBx (R3-MYB repressor) in petals.

  7. Effect of cytokinins on delaying petunia flower senescence: a transcriptome study approach.

    Science.gov (United States)

    Trivellini, Alice; Cocetta, Giacomo; Vernieri, Paolo; Mensuali-Sodi, Anna; Ferrante, Antonio

    2015-01-01

    Flower senescence is a fascinating natural process that represents the final developmental stage in the life of a flower. Plant hormones play an important role in regulating the timing of flower senescence. Ethylene is a trigger and usually accelerates the senescence rate, while cytokinins are known to delay it. The aim of this work was to study the effect of 6-benzylaminopurine (BA) on petal senescence by transcript profile comparison after 3 or 6 h using a cross-species method by hybridizing petunia samples to a 4 × 44 K Agilent tomato array. The relative content of ethylene, abscisic acid, anthocyanins, total carotenoids and total phenols that determine the physiological behaviours of the petal tissue were measured. BA treatment prolonged the flower life and increased the concentrations of phenols and anthocyanins, while total carotenoids did not increase and were lower than the control. The ethylene biosynthetic and perception gene expressions were studied immediately after treatment until 24 h and all genes were repressed, while ethylene production was strongly induced after 4 days. The microarray analyses highlighted that BA strongly affected gene regulation after 3 h, but only 14% of genes remained differentially expressed after 6 h. The most affected pathways and genes were those related to stress, such as heat shock proteins, abscisic acid (ABA) catabolism and its signalling pathway, lipid metabolism and antioxidant defence systems. A gene annotation enrichment analysis using DAVID showed that the most important gene clusters were involved in energy generation and conservation processes. In addition to the ethylene pathway, cytokinins seem to be strongly involved the regulation of the ABA response in flower tissues.

  8. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Fernandez, Ivan; Lok, Gerrit B; Pozo, María J; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Beneficial root endophytes such as Trichoderma spp. can reduce infections by parasitic nematodes through triggering host defences. Little is currently known about the complex hormone signalling underlying the induction of resistance. In this study, we investigated whether Trichoderma modulates the hormone signalling network in the host to induce resistance to nematodes. We investigated the role and the timing of the jasmonic acid (JA)- and salicylic acid (SA)-regulated defensive pathways in Trichoderma-induced resistance to the root knot nematode Meloidogyne incognita. A split-root system of tomato (Solanum lycopersicum) was used to study local and systemic induced defences by analysing nematode performance, defence gene expression, responsiveness to exogenous hormone application, and dependence on SA and JA signalling of Trichoderma-induced resistance. Root colonization by Trichoderma impeded nematode performance both locally and systemically at multiple stages of the parasitism, that is, invasion, galling and reproduction. First, Trichoderma primed SA-regulated defences, which limited nematode root invasion. Then, Trichoderma enhanced JA-regulated defences, thereby antagonizing the deregulation of JA-dependent immunity by the nematodes, which compromised galling and fecundity. Our results show that Trichoderma primes SA- and JA-dependent defences in roots, and that the priming of responsiveness to these hormones upon nematode attack is plastic and adaptive to the parasitism stage. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Biosynthesis of monoterpene alcohols, derivatives and conjugates in plants : roles in resistance to western flower thrips

    NARCIS (Netherlands)

    Yang, T.

    2013-01-01

    Western flower thrips (WFT), Frankliniella occidentalis, is one of the most serious pests in several vegetable and flower crops worldwide. It is a highly polyphagous insect and a vector of several plant viruses of which the Tomato Spotted Wilt Virus and the Impatiens Necrotic Spot Virus

  10. Molecular Evolution and Phylogenetic Analysis of Eight COL Superfamily Genes in Group I Related to Photoperiodic Regulation of Flowering Time in Wild and Domesticated Cotton (Gossypium) Species

    Science.gov (United States)

    Zhang, Rui; Ding, Jian; Liu, Chunxiao; Cai, Caiping; Zhou, Baoliang; Zhang, Tianzhen; Guo, Wangzhen

    2015-01-01

    Flowering time is an important ecological trait that determines the transition from vegetative to reproductive growth. Flowering time in cotton is controlled by short-day photoperiods, with strict photoperiod sensitivity. As the CO-FT (CONSTANS-FLOWER LOCUS T) module regulates photoperiodic flowering in several plants, we selected eight CONSTANS genes (COL) in group I to detect their expression patterns in long-day and short-day conditions. Further, we individually cloned and sequenced their homologs from 25 different cotton accessions and one outgroup. Finally, we studied their structures, phylogenetic relationship, and molecular evolution in both coding region and three characteristic domains. All the eight COLs in group I show diurnal expression. In the orthologous and homeologous loci, each gene structure in different cotton species is highly conserved, while length variation has occurred due to insertions/deletions in intron and/or exon regions. Six genes, COL2 to COL5, COL7 and COL8, exhibit higher nucleotide diversity in the D-subgenome than in the A-subgenome. The Ks values of 98.37% in all allotetraploid cotton species examined were higher in the A-D and At-Dt comparison than in the A-At and D-Dt comparisons, and the Pearson’s correlation coefficient (r) of Ks between A vs. D and At vs. Dt also showed positive, high correlations, with a correlation coefficient of at least 0.797. The nucleotide polymorphism in wild species is significantly higher compared to G. hirsutum and G. barbadense, indicating a genetic bottleneck associated with the domesticated cotton species. Three characteristic domains in eight COLs exhibit different evolutionary rates, with the CCT domain highly conserved, while the B-box and Var domain much more variable in allotetraploid species. Taken together, COL1, COL2 and COL8 endured greater selective pressures during the domestication process. The study improves our understanding of the domestication-related genes/traits during cotton

  11. Effect of Plant Growth Regulators on a Shoot and Root Formation from the Leaf and Flower Culture of a Standard-type Chrysanthemum 'Jinba'

    International Nuclear Information System (INIS)

    Lee, J.S.; Lee, G.J.; Chung, S.J.; Kim, J.B.; Kim, D.S.; Kang, S.Y.

    2008-01-01

    In this study we investigated the conditions of a higher frequency for regenerated plants from different explants of a standard-type chrysanthemum 'Jinba'. In vitro culture was initiated on an MS medium containing 3% sucrose, 0.8% agar, and 5 μM benzyl adenine (BA) with naphthalene acetic acid (NAA) by using surface-sterilized leaf and flower tissues from greenhouse-grown plants. Direct shoot regeneration from the leaf and flower explants was obtained 21 to 28 days after the initial culture. Among the seven combinations of the growth regulators used for the culture, the most efficient condition for the shoot and root formation from the leaf tissue was obtained when the MS basic medium was supplemented with 0.5 mg L-¹ BA and 1.0 mg L-¹ NAA, and 0.1 mg L-¹ BA and 0.5 mg L-¹ NAA, while the culture using floret tissues was most efficient on the medium supplemented with 0.5 mg L-¹ BA and 0.5 mg L-¹ NAA, and 0.1 mg L-¹ BA and 1.0 mg L-¹ NAA. These results will provide valuable information to help set up an efficient system for a tissue culture of chrysanthemum cv. Jinba to improve one or some of its negative traits in combination with a radiation mutagenesis approach

  12. The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction

    International Nuclear Information System (INIS)

    Koes, R.E.; Spelt, C.E.; Mol, J.N.M.

    1989-01-01

    We have analysed the expression of the 8-10 members of the gene family encoding the flavonoid biosynthetic enzyme chalcone synthase (CHS) from Petunia hybrida. During normal plant development only two members of the gene family (CHS-A and CHS-J) are expressed. Their expression is restricted to floral tissues mainly. About 90% of the total CHS mRNA pool is transcribed from CHS-A, wheares CHS-J delivers about 10% in flower corolla, tube and anthers. Expression of CHS-A and CHS-J during flower development is coordinated and (red) light-dependent. In young seedlings and cell suspension cultures expression of CHS-A and CHS-J can be induced with UV light. In addition to CHS-A and CHS-J, expression of another two CHS genes (CHS-B and CHS-G) is induced in young seedlings by UV light, albeit at a low level. In contrast to CHS genes from Leguminoseae, Petunia CHS genes are not inducible by phytopathogen-derived elicitors. Expression of CHS-A and CHS-J is reduced to a similar extent in a regulatory CHS mutant, Petunia hybrida Red Star, suggesting that both genes are regulated by the same trans-acting factors. Comparison of the promoter sequences of CHS-A and CHS-J reveals some striking homologies, which might represent cis-acting regulatory sequences. (author)

  13. Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress.

    Science.gov (United States)

    Wallach, Rony; Da-Costa, Noam; Raviv, Michael; Moshelion, Menachem

    2010-07-01

    Plants respond to many environmental changes by rapidly adjusting their hydraulic conductivity and transpiration rate, thereby optimizing water-use efficiency and preventing damage due to low water potential. A multiple-load-cell apparatus, time-series analysis of the measured data, and residual low-pass filtering methods were used to monitor continuously and analyse transpiration of potted tomato plants (Solanum lycopersicum cv. Ailsa Craig) grown in a temperature-controlled greenhouse during well-irrigated and drought periods. A time derivative of the filtered residual time series yielded oscillatory behaviour of the whole plant's transpiration (WPT) rate. A subsequent cross-correlation analysis between the WPT oscillatory pattern and wet-wick evaporation rates (vertical cotton fabric, 0.14 m(2) partly submerged in water in a container placed on an adjacent load cell) revealed that autonomous oscillations in WPT rate develop under a continuous increase in water stress, whereas these oscillations correspond with the fluctuations in evaporation rate when water is fully available. The relative amplitude of these autonomous oscillations increased with water stress as transpiration rate decreased. These results support the recent finding that an increase in xylem tension triggers hydraulic signals that spread instantaneously via the plant vascular system and control leaf conductance. The regulatory role of synchronized oscillations in WPT rate in eliminating critical xylem tension points and preventing embolism is discussed.

  14. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism

    OpenAIRE

    Inès, Zouari; Alessandra, Salvioli; Matteo, Chialva; Mara, Novero; Laura, Miozzi; Gian Carlo, Tenore; Paolo, Bagnaresi; Paola, Bonfante

    2014-01-01

    Background Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Results Fruits were collected at 55 days after flowering, from plants coloni...

  15. Zesty Tomato Soup

    Science.gov (United States)

    ... https://medlineplus.gov/recipe/zestytomatosoup.html Zesty Tomato Soup To use the sharing features on this page, ... Number of Servings: 4 Not your traditional tomato soup, this quick-cooking dish can be a side ...

  16. Tomato contact dermatitis

    DEFF Research Database (Denmark)

    Paulsen, Evy; Christensen, Lars P; Andersen, Klaus Ejner

    2012-01-01

    The tomato plant (Solanum lycopersicum) is an important crop worldwide. Whereas immediate-type reactions to tomato fruits are well known, contact dermatitis caused by tomatoes or tomato plants is rarely reported. The aims of this study were to present new data on contact sensitization to tomato...... plants and review the literature on contact dermatitis caused by both plants and fruits. An ether extract of tomato plants made as the original oleoresin plant extracts, was used in aimed patch testing, and between 2005 and 2011. 8 of 93 patients (9%) tested positive to the oleoresin extracts....... This prevalence is in accordance with the older literature that reports tomato plants as occasional sensitizers. The same applies to tomato fruits, which, in addition, may cause protein contact dermatitis. The allergens of the plant are unknown, but both heat-stable and heat-labile constituents seem...

  17. Gibberellin and auxin influence the diurnal transcription pattern of photoreceptor genes via CRY1a in tomato.

    Directory of Open Access Journals (Sweden)

    Paolo Facella

    Full Text Available Plant photoreceptors, phytochromes and cryptochromes, regulate many aspects of development and growth, such as seed germination, stem elongation, seedling de-etiolation, cotyledon opening, flower induction and circadian rhythms. There are several pieces of evidence of interaction between photoreceptors and phyto-hormones in all of these physiological processes, but little is known about molecular and genetic mechanisms underlying hormone-photoreceptor crosstalk.In this work, we investigated the molecular effects of exogenous phyto-hormones to photoreceptor gene transcripts of tomato wt, as well as transgenic and mutant lines with altered cryptochromes, by monitoring day/night transcript oscillations. GA and auxin alter the diurnal expression level of different photoreceptor genes in tomato, especially in mutants that lack a working form of cryptochrome 1a: in those mutants the expression of some (IAA or most (GA photoreceptor genes is down regulated by these hormones.Our results highlight the presence of molecular relationships among cryptochrome 1a protein, hormones, and photoreceptors' gene expression in tomato, suggesting that manipulation of cryptochromes could represent a good strategy to understand in greater depth the role of phyto-hormones in the plant photoperceptive mechanism.

  18. Culture of the Tomato Micro-Tom Cultivar in Greenhouse.

    Science.gov (United States)

    Rothan, Christophe; Just, Daniel; Fernandez, Lucie; Atienza, Isabelle; Ballias, Patricia; Lemaire-Chamley, Martine

    2016-01-01

    Micro-Tom tomato cultivar is particularly adapted to the development of genomic approaches in tomato. Here, we describe the culture of this plant in greenhouse, including climate regulation, seed sowing and watering, vegetative development, plant maintenance, including treatment of phytosanitary problems, and reproductive development.

  19. Ethylene and cold participate in the regulation of LeCBF1 gene expression in postharvest tomato fruits.

    Science.gov (United States)

    Zhao, Danying; Shen, Lin; Fan, Bei; Yu, Mengmeng; Zheng, Yang; Lv, Shengnan; Sheng, Jiping

    2009-10-20

    C-repeat/dehydration-responsive element binding factor (CBF) is a transcription factor regulating cold response in plants, of which little is known in fruits. We showed a double-peak expression pattern of Lycopersicon esculentum putative transcriptional activator CBF1 (LeCBF1) in mature green fruit. The peaks appeared at 2 and 16 h after subjection to cold storage (2 degrees C). The second peak was coincident with, and thus caused by a peak in endogenous ethylene production. We showed that LeCBF1 expression was regulated by exogenous ethylene and 1-methylcyclopropene, and was not expressed without cold induction. LeCBF1 expression was different in the five maturation stages of fruits, but expression peaked at 2 h at all stages.

  20. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes

    OpenAIRE

    Gomes, Eriston V.; Ulhoa, Cirano J.; Cardoza, Rosa E.; Silva, Roberto N.; Guti?rrez, Santiago

    2017-01-01

    Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum stra...

  1. Phloem unloading in tomato fruit

    International Nuclear Information System (INIS)

    Damon, S.; Hewitt, J.; Bennett, A.B.

    1986-01-01

    To begin to identify those processes that contribute to the regulation of photosynthate partitioning in tomato fruit the path of phloem unloading in this tissue has been characterized. Assymetrically labelled sucrose ( 3 H-fructosyl sucrose) was applied to source leaves. Following translocation to the fruit the apoplast was sampled. The appearance of assymetric sucrose and 3 H-fructose in the apoplast indicates that phloem unloading is apoplastic and that extracellular invertase is active. Estimation of sucrose, glucose, and fructose concentrations in the apoplast were 1 mM, 40 mM, and 40 mM, respectively. Rates of uptake of sucrose, 1-fluorosucrose, glucose, and fructose across the plasma membrane were similar and non-saturating at physiological concentrations. These results suggest that, although extracellular invertase is present, sucrose hydrolysis is not required for uptake into tomato fruit pericarp cells. 1-fluorosucrose is used to investigate the role of sucrose synthase in hydrolysis of imported photosynthate

  2. Ectopic Expression of the Coleus R2R3 MYB-Type Proanthocyanidin Regulator Gene SsMYB3 Alters the Flower Color in Transgenic Tobacco.

    Directory of Open Access Journals (Sweden)

    Qinlong Zhu

    Full Text Available Proanthocyanidins (PAs play an important role in plant disease defense and have beneficial effects on human health. We isolated and characterized a novel R2R3 MYB-type PA-regulator SsMYB3 from a well-known ornamental plant, coleus (Solenostemon scutellarioides, to study the molecular regulation of PAs and to engineer PAs biosynthesis. The expression level of SsMYB3 was correlated with condensed tannins contents in various coleus tissues and was induced by wounding and light. A complementation test in the Arabidopsis tt2 mutant showed that SsMYB3 could restore the PA-deficient seed coat phenotype and activated expression of the PA-specific gene ANR and two related genes, DFR and ANS. In yeast two-hybrid assays, SsMYB3 interacted with the Arabidopsis AtTT8 and AtTTG1 to reform the ternary transcriptional complex, and also interacted with two tobacco bHLH proteins (NtAn1a and NtJAF13-1 and a WD40 protein, NtAn11-1. Ectopic overexpression of SsMYB3 in transgenic tobacco led to almost-white flowers by greatly reducing anthocyanin levels and enhancing accumulation of condensed tannins. This overexpression of SsMYB3 upregulated the key PA genes (NtLAR and NtANR and late anthocyanin structural genes (NtDFR and NtANS, but downregulated the expression of the final anthocyanin gene NtUFGT. The formative SsMYB3-complex represses anthocyanin accumulation by directly suppressing the expression of the final anthocyanin structural gene NtUFGT, through competitive inhibition or destabilization of the endogenous NtAn2-complex formation. These results suggested that SsMYB3 may form a transcription activation complex to regulate PA biosynthesis in the Arabidopsis tt2 mutant and transgenic tobacco. Our findings suggest that SsMYB3 is involved in the regulation of PA biosynthesis in coleus and has the potential as a molecular tool for manipulating biosynthesis of PAs in fruits and other crops using metabolic engineering.

  3. Suppressing Type 2C Protein Phosphatases Alters Fruit Ripening and the Stress Response in Tomato.

    Science.gov (United States)

    Zhang, Yushu; Li, Qian; Jiang, Li; Kai, Wenbin; Liang, Bin; Wang, Juan; Du, Yangwei; Zhai, Xiawan; Wang, Jieling; Zhang, Yingqi; Sun, Yufei; Zhang, Lusheng; Leng, Ping

    2018-01-01

    Although ABA signaling has been widely studied in Arabidopsis, the roles of core ABA signaling components in fruit remain poorly understood. Herein, we characterize SlPP2C1, a group A type 2C protein phosphatase that negatively regulates ABA signaling and fruit ripening in tomato. The SlPP2C1 protein was localized in the cytoplasm close to AtAHG3/AtPP2CA. The SlPP2C1 gene was expressed in all tomato tissues throughout development, particularly in flowers and fruits, and it was up-regulated by dehydration and ABA treatment. SlPP2C1 expression in fruits was increased at 30 d after full bloom and peaked at the B + 1 stage. Suppression of SlPP2C1 expression significantly accelerated fruit ripening which was associated with higher levels of ABA signaling genes that are reported to alter the expression of fruit ripening genes involved in ethylene release and cell wall catabolism. SlPP2C1-RNAi (RNA interference) led to increased endogenous ABA accumulation and advanced release of ethylene in transgenic fruits compared with wild-type (WT) fruits. SlPP2C1-RNAi also resulted in abnormal flowers and obstructed the normal abscission of pedicels. SlPP2C1-RNAi plants were hypersensitized to ABA, and displayed delayed seed germination and primary root growth, and increased resistance to drought stress compared with WT plants. These results demonstrated that SlPP2C1 is a functional component in the ABA signaling pathway which participates in fruit ripening, ABA responses and drought tolerance. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Key factors to inoculate Botrytis cinerea in tomato plants

    Directory of Open Access Journals (Sweden)

    Álefe Vitorino Borges

    2014-09-01

    Full Text Available Studies addressing the biological control of Botrytis cinerea have been unsuccessful because of fails in inoculating tomato plants with the pathogen. With the aim of establishing a methodology for inoculation into stems, experiments were designed to assess: i. the aggressiveness of pathogen isolates; ii. the age at which tomato plants should be inoculated; iii. the susceptibility of tissues at different stem heights; iv. the need for a moist chamber after inoculation; and v. the effectiveness of gelatin regarding inoculum adhesion. Infection with an isolate from tomato plants that was previously inoculated into petioles and then re-isolated was successful. An isolate from strawberry plants was also aggressive, although less than that from tomato plants. Tomato plants close to flowering, at 65 days after sowing, and younger, middle and apical stem portions were more susceptible. There was positive correlation between lesion length and sporulation and between lesion length and broken stems. Lesion length and the percentage of sporulation sites were reduced by using a moist chamber and were not affected by adding gelatin to the inoculum suspension. This methodology has been adopted in studies of B. cinerea in tomato plants showing reproducible results. The obtained results may assist researchers who study the gray mold.

  5. Investigations of radiation stimulation of tomatoes, onions and radishes in climatic chamber and field conditions

    International Nuclear Information System (INIS)

    Shimon, J.; Pal, I.

    1974-01-01

    The results of three years' experiments with presowing irradiation of tomato, radish, and onion seeds are reported. The main criteria used, were the following: plant height, change in flowering time, number of natured fruits per plant, total carbohydrate content in ripe fruits and of vitamin C level in natured fruits for tomatoes; tuber weight, weight of leaves, total weight, dry matter formation, and contents of carbohydrates and vitamin C for radish; and appearance of flower ''arrows'', yield, and dry matter content for onions. (E.T.)

  6. The Whitefly Bemisia tabaci Knottin-1 Gene Is Implicated in Regulating the Quantity of Tomato Yellow Leaf Curl Virus Ingested and Transmitted by the Insect

    Directory of Open Access Journals (Sweden)

    Aliza Hariton Shalev

    2016-07-01

    Full Text Available The whitefly Bemisia tabaci is a major pest to agricultural crops. It transmits begomoviruses, such as Tomato yellow leaf curl virus (TYLCV, in a circular, persistent fashion. Transcriptome analyses revealed that B. tabaci knottin genes were responsive to various stresses. Upon ingestion of tomato begomoviruses, two of the four knottin genes were upregulated, knot-1 (with the highest expression and knot-3. In this study, we examined the involvement of B. tabaci knottin genes in relation to TYLCV circulative transmission. Knottins were silenced by feeding whiteflies with knottin dsRNA via detached tomato leaves. Large amounts of knot-1 transcripts were present in the abdomen of whiteflies, an obligatory transit site of begomoviruses in their circulative transmission pathway; knot-1 silencing significantly depleted the abdomen from knot-1 transcripts. Knot-1 silencing led to an increase in the amounts of TYLCV ingested by the insects and transmitted to tomato test plants by several orders of magnitude. This effect was not observed following knot-3 silencing. Hence, knot-1 plays a role in restricting the quantity of virions an insect may acquire and transmit. We suggest that knot-1 protects B. tabaci against deleterious effects caused by TYLCV by limiting the amount of virus associated with the whitefly vector.

  7. Regulation of the subunit composition of plastidic glutamine synthetase of the wild-type and of the phytochrome-deficient aurea mutant of tomato by blue/UV-A- or by UV-B-light

    International Nuclear Information System (INIS)

    Migge, A.; Carrayol, E.; Hirel, B.; Lohmann, M.; Meya, G.; Becker, T.W.

    1998-01-01

    The photomorphogenetic aurea mutant of tomato severely deficient in spectrophotometrically active phytochromes was used to study the light-regulation of the single-copy nuclear gene encoding plastidic glutamine synthetase (GS-2; EC 6.1.3.2). The de-etiolation of dark-grown aurea mutant seedling cotyledons showed an obligatory dependency on blue light. A limited red light-responsiveness of etiolated aurea cotyledons is, however, retained as seen by the stimulation of both the GS-2 transcript and protein level in the cotyledons of aurea seedlings during growth in red light. The subunits of the octameric GS-2 enzyme were represented by polypeptides with similar electrophoretic mobilities (polypeptides a) in etiolated wild-type or aurea mutant cotyledons. GS-2 proteins with similar apparent molecular masses were also seen in the cotyledons of red light-grown aurea mutant seedlings. In contrast, GS-2 polypeptides with different apparent molecular masses (polypeptides a and b) were detected in the cotyledons of wild-type seedlings grown in red light. This difference indicates that the (post-translational) modification of tomato GS-2 subunit composition is mediated by the photoreceptor phytochrome. The illumination of etiolated wild-type or aurea cotyledons with UV-A- or UV-B-light light resulted in an increase in both the GS-2 transcript and protein level. Following illumination of etiolated wild-type seedlings with UV-A-light, the relative proportion of the GS-2 polypeptides a and b was similar than upon irradiation with blue light but different than after exposure to UV-B- or red light. This result suggests the involvement of a blue/ UV-A-light-specific photoreceptor in the regulation of tomato GS-2 subunit composition. (author)

  8. Jasmonic Acid Is a Key Regulator of Spider Mite-Induced Volatile Terpenoid and Methyl Salicylate Emission in Tomato1[w

    Science.gov (United States)

    Ament, Kai; Kant, Merijn R.; Sabelis, Maurice W.; Haring, Michel A.; Schuurink, Robert C.

    2004-01-01

    The tomato (Lycopersicon esculentum) mutant def-1, which is deficient in induced jasmonic acid (JA) accumulation upon wounding or herbivory, was used to study the role of JA in the direct and indirect defense responses to phytophagous mites (Tetranychus urticae). In contrast to earlier reports, spider mites laid as many eggs and caused as much damage on def-1 as on wild-type plants, even though def-1 lacked induction of proteinase inhibitor activity. However, the hatching-rate of eggs on def-1 was significantly higher, suggesting that JA-dependent direct defenses enhanced egg mortality or increased the time needed for embryonic development. As to gene expression, def-1 had lower levels of JA-related transcripts but higher levels of salicylic acid (SA) related transcripts after 1 d of spider mite infestation. Furthermore, the indirect defense response was absent in def-1, since the five typical spider mite-induced tomato-volatiles (methyl salicylate [MeSA], 4,8,12-trimethyltrideca-1,3,7,11-tetraene [TMTT], linalool, trans-nerolidol, and trans-β-ocimene) were not induced and the predatory mite Phytoseiulus persimilis did not discriminate between infested and uninfested def-1 tomatoes as it did with wild-type tomatoes. Similarly, the expression of the MeSA biosynthetic gene salicylic acid methyltransferase (SAMT) was induced by spider mites in wild type but not in def-1. Exogenous application of JA to def-1 induced the accumulation of SAMT and putative geranylgeranyl diphosphate synthase transcripts and restored MeSA- and TMTT-emission upon herbivory. JA is therefore necessary to induce the enzymatic conversion of SA into MeSA. We conclude that JA is essential for establishing the spider mite-induced indirect defense response in tomato. PMID:15310835

  9. Flowering of Woody Bamboo in Tissue Culture Systems

    Directory of Open Access Journals (Sweden)

    Jin-Ling Yuan

    2017-09-01

    Full Text Available Flowering and subsequent seed set are not only normal activities in the life of most plants, but constitute the very reason for their existence. Woody bamboos can take a long time to flower, even over 100 years. This makes it difficult to breed bamboo, since flowering time cannot be predicted and passing through each generation takes too long. Another unique characteristic of woody bamboo is that a bamboo stand will often flower synchronously, both disrupting the supply chain within the bamboo industry and affecting local ecology. Therefore, an understanding of the mechanism that initiates bamboo flowering is important not only for biology research, but also for the bamboo industry. Induction of flowering in vitro is an effective way to both shorten the flowering period and control the flowering time, and has been shown for several species of bamboo. The use of controlled tissue culture systems allows investigation into the mechanism of bamboo flowering and facilitates selective breeding. Here, after a brief introduction of flowering in bamboo, we review the research on in vitro flowering of bamboo, including our current understanding of the effects of plant growth regulators and medium components on flower induction and how in vitro bamboo flowers can be used in research.

  10. Design a Hummingbird Flower.

    Science.gov (United States)

    Bailey, Kim

    2002-01-01

    Presents an activity that engages students in designing and making an artificial flower adapted for pollination by hummingbirds. Students work in teams to design flowers that maximize the benefit from attracting hummingbirds. Examines characteristics of real flowers adapted to pollination by hummingbirds. (DLH)

  11. Irradiation-induced mutation experiments with eiploid and tetraploid tomato plants

    International Nuclear Information System (INIS)

    Boda, J.

    1979-01-01

    Tomato mutation experiments are described. The tomatoes used in the experiment were the diploid Reziszta and its autotetraploid variety. The experimental plants were exposed to an irradiation of 5000 rsd for 1-2 days, and after transplantation into the gamma field, to chronic irradiation during the whole growing season. The chronic treatment heavily reduced fertility in the generations of tetraploid tomato plants. Recurrent treatment of tetraploid led to further deterioration in fertility. Several berries were formed with few seeds or with no seeds at all. After three irradiations, the chlorophyll mutation frequency increased in the diploid and tetraploid tomato plants. For diploids, treatment applied at the seedling stage gave a lower chlorophyll mutation frequency. With tetraploids the same treatment induced similar chlorophyll mutation frequency. As regards to phenotypic variability of quantitative characteristics in diploid and tetraploid tomatoes, the single and repeated chronic irradiation induced no increase in the variability of properties like flowering time, weight, height etc. (author)

  12. Functional genomics of tomato

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... 1Repository of Tomato Genomics Resources, Department of Plant Sciences, School .... Due to its position at the crossroads of Sanger's sequencing .... replacement for the microarray-based expression profiling. .... during RNA fragmentation step prior to library construction, ...... tomato pollen as a test case.

  13. Organic fertilization in cherry tomato plants

    Directory of Open Access Journals (Sweden)

    Janini Tatiane Lima Souza Maia

    2013-03-01

    Full Text Available Cherry tomato (Solanum lycopersicum is highly demanding with regard to mineral nutrients. The use of animal manure shows to be an efficient and sustainable fertilization way for this crop. This study aimed to evaluate the effect of different doses of cattle manure in the vegetative and reproductive growth of cherry tomato. The experiment was conducted in a greenhouse at the Plant Science Department of Universidade Federal de Vicosa, using a completely randomized experimental design with 5 treatments and 4 replications, besides 1 control treatment using chemical fertilizer as a source of NPK. After 45 days from the beginning of the experiment, the number of leaves, flowers, and fruits, the dry mass of leaves, stem, flowers, fruits, and roots, the stem length, and the root volume were evaluated. The nutrient content in leaves, stem, and roots was also evaluated. Plants grown with chemical fertilizer obtained a lower average for all phytotechnical variables analyzed. The number of leaves and fruits, and the production of dry matter of leaves, fruits, and stems showed an upward linear response with an increase in manure doses. The Ca, Mg, and S leaf contents were higher in the treatment with chemical fertilization.

  14. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines

    OpenAIRE

    Kiseleva, Antonina A.; Potokina, Elena K.; Salina, Elena A.

    2017-01-01

    Background Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number. Results In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, “Ppd-m” and “Ppd-w” with Ppd-B1a introgressed from Sonora, we investigated t...

  15. Season-controlled changes in biochemical constituents and oxidase enzyme activities in tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Sen, Supatra; Mukherji, S

    2009-07-01

    Season-controlled changes in biochemical constituents viz. carotenoids (carotene and xanthophyll) and pectic substances along with IAA-oxidase and polyphenol oxidase (PPO) enzyme activities were estimated/assayed in leaves of Lycopersicon esculentum Mill. (tomato) in two developmental stages--pre-flowering (35 days after sowing) and post-flowering (75 days after sowing) in three different seasons--summer rainy and winter Carotenoid content along with pectic substances were highest in winter and declined significantly in summer followed by rainy i.e. winter > summer > rainy. Carotenoid content was significantly higher in the pre-flowering as compared to post-flowering in all three seasons while pectic substances increased in the post-flowering as compared to pre-flowering throughout the annual cycle. IAA oxidase and PPO enzyme activities were enhanced in rainy and decreased sharply in summer and winter i.e. rainy > summer > winter. Both the enzymes exhibited higher activity in the post-flowering stage as compared to pre-flowering in all three seasons. These results indicate winter to be the most favourable season for tomato plants while rainy season environmental conditions prove to be unfavourable (stressful) with diminished content of carotenoid and pectic substances and low activities of IAA oxidase and PPO, ultimately leading to poor growth and productivity.

  16. Capsicum annuum S (CaS) promotes reproductive transition and is required for flower formation in pepper (Capsicum annuum).

    Science.gov (United States)

    Cohen, Oded; Borovsky, Yelena; David-Schwartz, Rakefet; Paran, Ilan

    2014-05-01

    The genetic control of the transition to flowering has mainly been studied in model species, while few data are available in crop species such as pepper (Capsicum spp.). To elucidate the genetic control of the transition to flowering in pepper, mutants that lack flowers were isolated and characterized. Genetic mapping and sequencing allowed the identification of the gene disrupted in the mutants. Double mutants and expression analyses were used to characterize the relationships between the mutated gene and other genes controlling the transition to flowering and flower differentiation. The mutants were characterized by a delay in the initiation of sympodial growth, a delay in the termination of sympodial meristems and complete inhibition of flower formation. Capsicum annuum S (CaS), the pepper (Capsicum annuum) ortholog of tomato (Solanum lycopersicum) COMPOUND INFLORESCENCE and petunia (Petunia hybrida) EVERGREEN, was found to govern the mutant phenotype. CaS is required for the activity of the flower meristem identity gene Ca-ANANTHA and does not affect the expression of CaLEAFY. CaS is epistatic over other genes controlling the transition to flowering with respect to flower formation. Comparative homologous mutants in the Solanaceae indicate that CaS has uniquely evolved to have a critical role in flower formation, while its role in meristem maturation is conserved in pepper, tomato and petunia. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  17. MicroRNA profiling of tomato leaf curl new delhi virus (tolcndv infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease

    Directory of Open Access Journals (Sweden)

    Haq Qazi MR

    2010-10-01

    Full Text Available Abstract Background Tomato leaf curl virus (ToLCV, a constituent of the genus Begomovirus, infects tomato and other plants with a hallmark disease symptom of upward leaf curling. Since microRNAs (miRs are known to control plants developmental processes, we evaluated the roles of miRNAs in Tomato leaf curl New Delhi virus (ToLCNDV induced leaf curling. Results Microarray analyses of miRNAs, isolated from the leaves of both healthy and ToLCNDV agroinfected tomato cv Pusa Ruby, revealed that ToLCNDV infection significantly deregulated various miRNAs representing ~13 different conserved families (e.g., miR319, miR172, etc.. The precursors of these miRNAs showed similar deregulated patterns, indicating that the transcription regulation of respective miRNA genes was perhaps the cause of deregulation. The expression levels of the miRNA-targeted genes were antagonistic with respect to the amount of corresponding miRNA. Such deregulation was tissue-specific in nature as no analogous misexpression was found in flowers. The accumulation of miR159/319 and miR172 was observed to increase with the days post inoculation (dpi of ToLCNDV agroinfection in tomato cv Pusa Ruby. Similarly, these miRs were also induced in ToLCNDV agroinfected tomato cv JK Asha and chilli plants, both exhibiting leaf curl symptoms. Our results indicate that miR159/319 and miR172 might be associated with leaf curl symptoms. This report raises the possibility of using miRNA(s as potential signature molecules for ToLCNDV infection. Conclusions The expression of several host miRNAs is affected in response to viral infection. The levels of the corresponding pre-miRs and the predicted targets were also deregulated. This change in miRNA expression levels was specific to leaf tissues and observed to be associated with disease progression. Thus, certain host miRs are likely indicator of viral infection and could be potentially employed to develop viral resistance strategies.

  18. Transcriptomic Analysis of Flower Bud Differentiation in Magnolia sinostellata

    Directory of Open Access Journals (Sweden)

    Lijie Fan

    2018-04-01

    Full Text Available Magnolias are widely cultivated for their beautiful flowers, but despite their popularity, the molecular mechanisms regulating flower bud differentiation have not been elucidated. Here, we used paraffin sections and RNA-seq to study the process of flower bud differentiation in Magnolia sinostellata. Flower bud development occurred between 28 April and 30 May 2017 and was divided into five stages: undifferentiated, early flower bud differentiation, petal primordium differentiation, stamen primordium differentiation, and pistil primordium differentiation. A total of 52,441 expressed genes were identified, of which 11,592 were significantly differentially expressed in the five bud development stages. Of these, 82 genes were involved in the flowering. In addition, MADS-box and AP2 family genes play critical roles in the formation of flower organs and 20 differentially expressed genes associated with flower bud differentiation were identified in M. sinostellata. A qRT-PCR analysis verified that the MADS-box and AP2 family genes were expressed at high levels during flower bud differentiation. Consequently, this study provides a theoretical basis for the genetic regulation of flowering in M. sinostellata, which lays a foundation for further research into flowering genes and may facilitate the development of new cultivars.

  19. 21 CFR 155.190 - Canned tomatoes.

    Science.gov (United States)

    2010-04-01

    ... tomatoes. (a) Identity—(1) Description. (i) Canned tomatoes is the food prepared from mature tomatoes...). Without shifting the tomatoes, so incline the sieve as to facilitate drainage of the liquid. Two minutes...

  20. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress.

    Science.gov (United States)

    Sun, Liang; Wang, Yan-Ping; Chen, Pei; Ren, Jie; Ji, Kai; Li, Qian; Li, Ping; Dai, Sheng-Jie; Leng, Ping

    2011-11-01

    In order to characterize the potential transcriptional regulation of core components of abscisic acid (ABA) signal transduction in tomato fruit development and drought stress, eight SlPYL (ABA receptor), seven SlPP2C (type 2C protein phosphatase), and eight SlSnRK2 (subfamily 2 of SNF1-related kinases) full-length cDNA sequences were isolated from the tomato nucleotide database of NCBI GenBank. All SlPYL, SlPP2C, and SlSnRK2 genes obtained are homologous to Arabidopsis AtPYL, AtPP2C, and AtSnRK2 genes, respectively. Based on phylogenetic analysis, SlPYLs and SlSnRK2s were clustered into three subfamilies/subclasses, and all SlPP2Cs belonged to PP2C group A. Within the SlPYL gene family, SlPYL1, SlPYL2, SlPYL3, and SlPYL6 were the major genes involved in the regulation of fruit development. Among them, SlPYL1 and SlPYL2 were expressed at high levels throughout the process of fruit development and ripening; SlPYL3 was strongly expressed at the immature green (IM) and mature green (MG) stages, while SlPYL6 was expressed strongly at the IM and red ripe (RR) stages. Within the SlPP2C gene family, the expression of SlPP2C, SlPP2C3, and SlPP2C4 increased after the MG stage; SlPP2C1 and SlPP2C5 peaked at the B3 stage, while SlPP2C2 and SlPP2C6 changed little during fruit development. Within the SlSnRK2 gene family, the expression of SlSnRK2.2, SlSnRK2.3, SlSnRK2.4, and SlSnRK2C was higher than that of other members during fruit development. Additionally, most SlPYL genes were down-regulated, while most SlPP2C and SlSnRK2 genes were up-regulated by dehydration in tomato leaf.

  1. An Apology for Flowers

    OpenAIRE

    Mehdi Aghamohammadi

    2017-01-01

    Prompting critical reflection on the common claim that flowers are always symbolic of female sexuality, the present article intends to explore symbolic roles of flowers in Persian literature and provide examples, mainly from Persian poetry, with the aim of refuting the claim. The writer, in fact, attempts to highlight overshadowed facets of flower symbolism by overshadowing carnal and ignoble readings of it. The reason why Persian literature has come into the focus of this study is that flowe...

  2. octadecenoic acid in tomato

    African Journals Online (AJOL)

    User

    bly involved in plant defense responses is synthesized in tomato fruits and subjected to metabo- lism. Its catabolism or .... stored at -20°C. Enzymatic in vitro synthesis of radiolabeled ..... with nematicidal activity from Culture of basidiomycetes.

  3. Guidelines to use tomato in experiments with a controlled environment.

    Directory of Open Access Journals (Sweden)

    Dietmar eSchwarz

    2014-11-01

    Full Text Available Domesticated tomato (Solanum lycopersicum is the most important horticultural crop worldwide. Low polymorphism at the DNA level conflicts with the wealth of morphological variation. Fruits vary widely in size, shape and colour. In contrast, genetic variation between the 16 wild relatives is tremendous. Several large seed banks provide tomato germplasm for both domesticated and wild accessions of tomato. Recently, the genomes of the inbred cultivar Heinz 1706 (≈900 Mb and S. pimpinellifolium (739 Mb were sequenced. Genomic markers and genome re-sequencing data are available for >150 cultivars and accessions. Transformation of tomato is relatively easy and T-DNA insertion line collections are available. Tomato is widely used as a model crop for fruit development but also for diverse physiological, cellular, biochemical, molecular and genetic studies. It can be easily grown in greenhouses or growth chambers. Plants grow, flower, and develop fruits well at daily light lengths between 8-16 hours. The required daily light integral of an experiment depends on growth stage and temperature investigated. Temperature must be 10-35°C, relative humidity 30-90 % and CO2 concentration 200-1500 µmol mol-1. Temperature determines the speed of the phenological development while daily light integral and CO2 concentration affect photosynthesis and biomass production. Seed to seed cultivation takes 100 days at 20°C and can be shortened or delayed by temperature. Tomato may be cultivated in soil, substrates, or aeroponically without any substrate. Root volume and water uptake requirements are primarily determined by transpiration demands of the plants. Many nutrient supply recipes and strategies are available to ensure sufficient supply as well as specific nutrient deficits/surplus. Using appropriate cultivation techniques makes tomato a convenient model plant for researchers, even for beginners.

  4. Guidelines to use tomato in experiments with a controlled environment

    Science.gov (United States)

    Schwarz, Dietmar; Thompson, Andrew J.; Kläring, Hans-Peter

    2014-01-01

    Domesticated tomato (Solanum lycopersicum) is the most important horticultural crop worldwide. Low polymorphism at the DNA level conflicts with the wealth of morphological variation. Fruits vary widely in size, shape, and color. In contrast, genetic variation between the 16 wild relatives is tremendous. Several large seed banks provide tomato germplasm for both domesticated and wild accessions of tomato. Recently, the genomes of the inbred cultivar “Heinz 1706” (≈900 Mb), and S. pimpinellifolium (739 Mb) were sequenced. Genomic markers and genome re-sequencing data are available for >150 cultivars and accessions. Transformation of tomato is relatively easy and T-DNA insertion line collections are available. Tomato is widely used as a model crop for fruit development but also for diverse physiological, cellular, biochemical, molecular, and genetic studies. It can be easily grown in greenhouses or growth chambers. Plants grow, flower, and develop fruits well at daily light lengths between 8 and 16 h. The required daily light integral of an experiment depends on growth stage and temperature investigated. Temperature must be 10–35°C, relative humidity 30–90%, and, CO2 concentration 200–1500 μmol mol−1. Temperature determines the speed of the phenological development while daily light integral and CO2 concentration affect photosynthesis and biomass production. Seed to seed cultivation takes 100 days at 20°C and can be shortened or delayed by temperature. Tomato may be cultivated in soil, substrates, or aeroponically without any substrate. Root volume, and water uptake requirements are primarily determined by transpiration demands of the plants. Many nutrient supply recipes and strategies are available to ensure sufficient supply as well as specific nutrient deficits/surplus. Using appropriate cultivation techniques makes tomato a convenient model plant for researchers, even for beginners. PMID:25477888

  5. Screening tomato genotypes for adaptation to high temperature in West Africa

    DEFF Research Database (Denmark)

    Kugblenu, Yvonne O.; Danso, Eric Oppong; Ofori, Kwadjo

    2013-01-01

    ’ with a combined average of 85.7 g. The first two principal components (PCs) accounted for 79.7% of total variation. The first PC had positive weights for number of flowers per truss, number of fruits per plant, total number of flowers, yield per plant and number of trusses. PC2 explained 11% of the total......Tomato is an important vegetable widely grown in the tropics due to its nutritional value and financial benefits for farmers. In Ghana, there is an undersupply caused by production ceasing entirely from October to May due to high temperatures. Heat stress has been reported to cause excessive flower...

  6. Efficiency of local Indonesia honey bees (Apis cerana L.) and stingless bee (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination.

    Science.gov (United States)

    Putra, Ramadhani Eka; Kinasih, Ida

    2014-01-01

    Tomato (Lycopersicon esculentum Mill.) is considered as one of major agricultural commodity of Indonesia farming. However, monthly production is unstable due to lack of pollination services. Common pollinator agent of tomatoes is bumblebees which is unsuitable for tropical climate of Indonesia and the possibility of alteration of local wild plant interaction with their pollinator. Indonesia is rich with wild bees and some of the species already domesticated for years with prospect as pollinating agent for tomatoes. This research aimed to assess the efficiency of local honey bee (Apis cerana L.) and stingless bee (Trigona iridipennis), as pollinator of tomato. During this research, total visitation rate and total numbers of pollinated flowers by honey bee and stingless bee were compared between them with bagged flowers as control. Total fruit production, average weight and size also measured in order to correlated pollination efficiency with quantity and quality of fruit produced. Result of this research showed that A. cerana has slightly higher rate of visitation (p>0.05) and significantly shorter handling time (p tomato flowers. However, honey bee pollinated tomato flowers more efficient pollinator than stingless bee (80.3 and 70.2% efficiency, respectively; p tomatoes were similar (p>0.05). Based on the results, it is concluded that the use of Apis cerana and Trigona spp., for pollinating tomatoes in tropical climates could be an alternative to the use of non-native Apis mellifera and bumblebees (Bombus spp.). However, more researches are needed to evaluate the cost/benefit on large-scale farming and greenhouse pollination using both bees against other bee species and pollination methods.

  7. Heterosis for flower and fruit traits in tomato ( Lycopersicon ...

    African Journals Online (AJOL)

    Seven accessions and one locally approved variety were crossed in half diallel fashion and the resulting F1 progeny along with their parents were evaluated in a 6 × 6 Tripple Lattice Design at Agricultural Research Institute, Mingora (NWFP), Pakistan during 2007 - 2008 crop season. Highly significant differences were ...

  8. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism.

    Science.gov (United States)

    Zouari, Inès; Salvioli, Alessandra; Chialva, Matteo; Novero, Mara; Miozzi, Laura; Tenore, Gian Carlo; Bagnaresi, Paolo; Bonfante, Paola

    2014-03-21

    Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Fruits were collected at 55 days after flowering, from plants colonized with Funneliformis mosseae and from control plants, which were fertilized to avoid responses related to nutrient deficiency. Transcriptome analysis identified 712 genes that are differentially expressed in fruits from mycorrhizal and control plants. Gene Ontology (GO) enrichment analysis of these genes showed 81 overrepresented functional GO classes. Up-regulated GO classes include photosynthesis, stress response, transport, amino acid synthesis and carbohydrate metabolism functions, suggesting a general impact of fungal symbiosis on primary metabolisms and, particularly, on mineral nutrition. Down-regulated GO classes include cell wall, metabolism and ethylene response pathways. Quantitative RT-PCR validated the RNA-Seq results for 12 genes out of 14 when tested at three fruit ripening stages, mature green, breaker and turning. Quantification of fruit nutraceutical and mineral contents produced values consistent with the expression changes observed by RNA-Seq analysis. This RNA-Seq profiling produced a novel data set that explores the intersection of mycorrhization and fruit development. We found that the fruits of mycorrhizal plants show two transcriptomic "signatures": genes characteristic of a climacteric fleshy fruit, and genes characteristic of mycorrhizal status, like phosphate and sulphate transporters. Moreover, mycorrhizal plants under low nutrient conditions produce fruits with a nutrient content similar to those from non-mycorrhizal plants under high nutrient conditions

  9. POSTHARVEST FUNGAL DETERIORATION OF TOMATO ...

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    commercial food vendors often intentionally use physically damaged tomatoes and ... The production of the bulk of the fresh tomato and. 'tatase' in Nigeria is in ...... mycotoxin contamination of food include but not limited to mycotoxicoses, liver ...

  10. The influence of growth retardants and cytokinins on flowering of ornamental plants

    Directory of Open Access Journals (Sweden)

    Anna Pobudkiewicz

    2012-12-01

    Full Text Available Growth retardants are applied in order to obtain short and well compact plants. They usually inhibit stem elongation, but also can influence the flowering of plants. The aim of cytokinin application is to obtain well branched plants without removing the apical meristem. Cytokinins usually increase the number of axillary shoots but also can influence flowering. Growth retardants and cytokinins can affect flower size, pedicel length, number of flowers, flower longevity, abortion of flower buds and number of days from potting plants to the first open flower. Flowering of growth retardant and cytokinin treated plants might depend on the method of growth regulator used (foliar spray or soil drench, plant species or even a plant cultivar, but in the highest degree it depends on the growth regulator rate used. These growth regulators, when are applied at rates appropriate for height and habit control, very seldom influence flowering of ornamental plants, but applied at high rates can delay flowering, diminish flower diameter or flower pedicel length and also can decrease the number of flowers per plant. In cultivation of bulb plants, growth retardants, used at very high rates, also cause abortion of flower buds.

  11. Performance of different tomato cultivars under organic and inorganic regimes

    International Nuclear Information System (INIS)

    Ali, I.; Khattak, A. M.; Ali, M.; Ullah, K.

    2015-01-01

    To study the performance of different tomato cultivars under organic and inorganic regimes an experiment was conducted at New Developmental Farm, The University of Agriculture, Peshawar, Pakistan during the summer 2013-14. The experiment was laid out in RCBD with split plot arrangement having four replications. Organic regimes (FYM, poultry manure and mushroom compost) and inorganic (NPK) regimes were allotted to main plot, while cultivars (Roma VF, Roma, Super Classic, Bambino and Rio Grande) were subjected to sub plots. Organic and Inorganic regimes significantly (P ≤ 0.01) influenced all the studied attributes of tomato cultivars. Among different cultivars, Roma gave maximum plant survival (93.8 percentage), number of leaves plant (84.1), number of flower inflorescence (5.4), number of fruits inflorescence (4.3), number of fruit plant (25.4), fruit size (63.9 cm) fruit weight plant (9.1 kg) and total yield (22.9 t ha). However, it was closely followed by cultivar Rio Grande for number of leaves plant (79.6), number of flower inflorescence (5.1), number of fruits inflorescence (4.0) and number of fruits plant (24.9). Cultivar Super Classic produced minimum number of leaves plant (67.7), flower inflorescence (4.8), fruit size (60.6 cm), fruit weight plant (8.6 kg) and total yield (21.7 t ha). Similarly, highest plant survival (90.0 percentage), number of flower inflorescence (5.1), number of fruits inflorescence (4.0), number of fruit plant (25.4), fruit size (62.4 ml), fruit weight plant (8.90 kg) and total yield (22.9 t ha) were recorded in plants provided with organic conditions Roma cultivar performed better than other cultivars under the agro climatic condition of Peshawar followed by cultivar Rio Grande. Therefore, organic tomato production, and these two cultivars are recommended to be grown in Peshawar area. (author)

  12. Heat tolerance in Field Grown Tomatoes (Lycopersicon esculentum Mill.) under Semi Arid Conditions of West Africa

    DEFF Research Database (Denmark)

    Kugblenu, Y O; Oppong Danso, E; Ofori, K

    2013-01-01

    One major reason for extremely low production of tomato in Ghana is that the length of the growing season last only for a few months due to the high temperature influx during the remaining months. The temperatures recorded during these months are above the optimum for tomato flowering and fruiting...... and this consequently affects yield. To solve this problem a number management practices may be undertaken such has growing heat tolerant tomato varieties or providing shade to mitigate the devastating effect of high temperatures. Therefore the present study was conducted outside the normal growing season from June...... to October, which has a mean temperature of 23°C. Heat tolerant tomato cultivars were grown from April to July with a mean temperature of 25°C to evaluate their performance under these conditions and to assess the effect of shading on the production of one of the genotypes. Fruiting percentage...

  13. COMPATIBILITY AND FEASIBILITY OF GRAFT TOMATO CULTIVAR SANTA CRUZ KADA IN DIFFERENT ROOTSTOCKS

    Directory of Open Access Journals (Sweden)

    A. R. Zeist

    2015-02-01

    Full Text Available Tomato production through the technique of grafting aims to control soil pathogens, induce flowering, and improve tolerance to waterlogging, salinity and alkalinity of the soil. For this work were performed 50 grafts for each type of rootstock, totaling 100 slips and 50 seedlings kept as control. After 15 days of grafting, the seedlings were evaluated on the percentage of picks grafting. The treatment which used the tomato cultivar Cherry Red® as rootstock presented results of vegetative growth (height and volume Cup higher than other treatments. However after transplanting, defective development was observed for plants with grafting when compared to the controls. After 35 days of follow up, there was a low survival rate, being 5% of the plants. According to the results obtained in this work the tomato cultivar Santa Cruz Kada® has good compatibility with the rootstock cultivar Cayenne® pepper and tomato cultivar Cherry Red®

  14. Influence of simulated Quinclorac drift on the accumulation and movement of herbicide in tomato (Lycopersicon esculentum) plants.

    Science.gov (United States)

    Lovelace, Michael L; Hoagland, Robert E; Talbert, Ronald E; Scherder, Eric F

    2009-07-22

    Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) is a herbicide commonly used in rice, and its drift has been suspected of causing injury to off-target tomato fields throughout Arkansas. Studies were conducted to evaluate the effects of single and multiple simulated quinclorac drift applications on tomato plant growth and development. Residues extracted from tomato plants treated with 0.42 g of ai ha(-1) were below the detection limit of liquid chromatography-double mass spectrometry (LC-MS/MS) analysis. Quinclorac residue levels and half-lives in tomato tissue increased as the application rate and number of applications increased. From 3 to 72 h after (14)C-quinclorac treatment of plants, most of the absorbed (14)C was retained in the treated leaf, and translocations of (14)C out of the treated leaf of vegetative and flowering tomato plant tissues were similar. Of the (14)C that translocated out of the treated leaf, the greatest movement was acropetally. The flower cluster contained 1% of the total absorbed (14)C, which suggests the potential for quinclorac translocation into tomato fruit. More extensive research will be required to understand the impact that quinclorac may have on tomato production in the area.

  15. Translating BPEL to FLOWer

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard

    FLOWer is a case handling tool made by Pallas-Athena for process management in the service industry. BPEL on the other hand is a language for web service orchestration, and has become a de facto standard, because of its popularity, for specifying workflow processes even though that was not its...... original purpose. This paper describe an approach translating BPLE to FLOWer, or more precisely form BPEL to CHIP. where CHIP is the interchange language that FLOWer import from and export to. The aim of the translation scheme that I give is to derive a CHIP specification that is behaviorally equivalent...

  16. 7 CFR 318.13-23 - Cut flowers from Hawaii.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Cut flowers from Hawaii. 318.13-23 Section 318.13-23... SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES Regulated Articles From Hawaii and the Territories § 318.13-23 Cut flowers from Hawaii. (a) Except for cut blooms and leis...

  17. The Tomato U-Box Type E3 Ligase PUB13 Acts With Group III Ubiquitin E2 Enzymes to Modulate FLS2-Mediated Immune Signaling

    Directory of Open Access Journals (Sweden)

    Bangjun Zhou

    2018-05-01

    Full Text Available In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays a significant role in plant pattern-triggered immunity (PTI and flowering time control. The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating enzymes (E2 with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To address this question, we investigate here the tomato (Solanum lycopersicum homolog of PUB13, SlPUB13 by utilizing the recently characterized complete set of tomato E2s. Of the 13 groups of tomato E2s, only members in group III are found to interact and act with SlPUB13. Knocking-down of the group III E2 genes enhances callose deposition and induction of the RbohB gene in the immunity-associated, early oxidative burst after flg22 treatment. The group III E2s are also found to work with SlPUB13 to ubiquitinate FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 in vivo upon flg22 treatment, suggesting an essential role for group III E2s in the modulation of FLS2-mediated immune signaling by PUB13. Additionally, another immunity-associated E3, NtCMPG1 is shown to also work specifically with members of group III E2 in the in vitro ubiquitination assay, which implies the group III E2 enzymes may cooperate with many E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate the notion that group III E2 enzymes play an important role in PTI and build a foundation for further functional and mechanistic characterization of tomato PUB13.

  18. Enhancing Brassinosteroid Signaling via Overexpression of Tomato (Solanum lycopersicum SlBRI1 Improves Major Agronomic Traits

    Directory of Open Access Journals (Sweden)

    Shuming Nie

    2017-08-01

    Full Text Available Brassinosteroids (BRs play important roles in plant growth, development, and stress responses through the receptor, Brassinosteroid-insensitive 1 (BRI1, which perceives BRs and initiates BR signaling. There is considerable potential agricultural value in regulating BR signaling in crops. In this study, we investigated the effects of overexpressing the tomato (Solanum lycopersicum BRI1 gene, SlBRI1, on major agronomic traits, such as seed germination, vegetative growth, fruit ethylene production, carotenoid accumulation, yield, and quality attributes. SlBRI1 overexpression enhanced the endogenous BR signaling intensity thereby increasing the seed germination rate, lateral root number, hypocotyl length, CO2 assimilation, plant height, and flower size. The transgenic plants also showed an increase in fruit yield and fruit number per plant, although the mean weight of individual fruit was reduced, compared with wild type. SlBRI1 overexpression also promoted fruit ripening and ethylene production, and caused an increase in levels of carotenoids, ascorbic acid, soluble solids, and soluble sugars during fruit ripening. An increased BR signaling intensity mediated by SlBRI1 overexpression was therefore positively correlated with carotenoid accumulation and fruit nutritional quality. Our results indicate that enhancing BR signaling by overexpression of SlBRI1 in tomato has the potential to improve multiple major agronomic traits.

  19. Fertilization in Flowering Plants

    Indian Academy of Sciences (India)

    IAS Admin

    Ecology and the Environ- ment, Bengaluru as ... remaining plants, it is an abiotic agent (abiotic pollination), .... tion was slow until the origin of flowering plants and evolution of ..... Although pollination is generally a mutual interaction in a major-.

  20. Fertilization in Flowering Plants

    Indian Academy of Sciences (India)

    Ecology and the. Environment ... agents (pollinators), the next step before fertilization is to se- .... the embryo sac are referred to as pollen-pistil interaction and play ..... evolutionary success of flowering plants when compared to other groups of ...

  1. Stars and Flowers, Flowers and Stars

    Science.gov (United States)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  2. Pollination of Greenhouse Tomatoes by the Mexican bumblebee Bombus ephippiatus (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Carlos Hernan Vergara

    2012-04-01

    Full Text Available The Mexican native bumblebee Bombus ephippiatus Say was evaluated as a potential pollinator of greenhouse tomatoes (Solanum lycopersicon L.. The experiments were performed at San Andrés Cholula, Puebla, Mexico, from June to December 2004 in two 1 000 m2 greenhouses planted with tomatoes of the cultivar Mallory (Hazera ®. For the experiments, we used two colonies of Bombus ephippiatus, reared in the laboratory from queens captured in the field. Four treatments were applied to 20 study plants: pollination by bumble bees, manual pollination, pollination by mechanical vibration and no pollination (bagged flowers, no vibration. We measured percentage of flowers visited by bumble bees, number of seeds per fruit, maturing time, sugar content, fruit weight and fruit shape. All available flowers were visited by bumblebees, as measured by the degree of anther cone bruising. The number of seeds per fruit was higher for bumble bee-pollinated plants as compared with plants pollinated mechanically or not pollinated and was not significantly different between hand-pollinated and bumble bee-pollinated plants. Maturation time was significantly longer and sugar content, fresh weight and seed count were significantly higher for bumblebee pollinated flowers than for flowers pollinated manually or with no supplemental pollination, but did not differ with flowers pollinated mechanically.

  3. A lesion mimic phenotype in tomato obtained by isolating and silencing an Lls1 homologue

    NARCIS (Netherlands)

    Spassieva, S; Hille, J

    Lesion mimic phenotypes serve as a tool to study the regulation of cell death in plants. In order to obtain a tomato lesion mimic phenotype, we used the conservation of the lethal leaf spot 1 (Lls1) genes between plant species. The tomato Lls1 homologue was cloned, sequenced and analyzed. It showed

  4. Microarray analysis of genes affected by salt stress in tomato | Zhou ...

    African Journals Online (AJOL)

    This study has provided a set of candidate genes, especially those in the regulatory machinery that can be further investigated to define salt stress in tomato and other plant species. Keywords: Antioxidants, cellular metabolism, cell wall, chaperonine, ethylene, protein kinase, tomato, transcription regulator, translation ...

  5. Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner.

    Science.gov (United States)

    Himeno, Misako; Neriya, Yutaro; Minato, Nami; Miura, Chihiro; Sugawara, Kyoko; Ishii, Yoshiko; Yamaji, Yasuyuki; Kakizawa, Shigeyuki; Oshima, Kenro; Namba, Shigetou

    2011-09-01

    Abnormal flowers are often induced by infection of certain plant pathogens, e.g. phytoplasma, but the molecular mechanisms underlying these malformations have remained poorly understood. Here, we show that infection with OY-W phytoplasma (Candidatus Phytoplasma asteris, onion yellows phytoplasma strain, line OY-W) affects the expression of the floral homeotic genes of petunia plants in an organ-specific manner. Upon infection with OY-W phytoplasma, floral morphological changes, including conversion to leaf-like structures, were observed in sepals, petals and pistils, but not in stamens. As the expression levels of homeotic genes differ greatly between floral organs, we examined the expression levels of homeotic genes in each floral organ infected by OY-W phytoplasma, compared with healthy plants. The expression levels of several homeotic genes required for organ development, such as PFG, PhGLO1 and FBP7, were significantly downregulated by the phytoplasma infection in floral organs, except the stamens, suggesting that the unique morphological changes caused by the phytoplasma infection might result from the significant decrease in expression of some crucial homeotic genes. Moreover, the expression levels of TER, ALF and DOT genes, which are known to participate in floral meristem identity, were significantly downregulated in the phytoplasma-infected petunia meristems, implying that phytoplasma would affect an upstream signaling pathway of floral meristem identity. Our results suggest that phytoplasma infection may have complex effects on floral development, resulting in the unique phenotypes that were clearly distinct from the mutant flower phenotypes produced by the knock-out or the overexpression of certain homeotic genes. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  6. Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit.

    Science.gov (United States)

    Zhang, Xinhua; Shen, Lin; Li, Fujun; Meng, Demei; Sheng, Jiping

    2011-09-14

    The effects of methyl salicylate (MeSA) on chilling injury (CI) and gene expression levels, enzyme activities, and metabolites related to arginine catabolism in cherry tomato fruit were investigated. Freshly harvested fruits were treated with 0.05 mM MeSA vapor at 20 °C for 12 h and then stored at 2 °C for up to 28 days. MeSA reduced CI and enhanced the accumulation of putrescine, spermidine, and spermine, which was associated with increased gene expression levels and activities of arginase, arginine decarboxylase, and ornithine decarboxylase at most sampling times. MeSA also increased nitric oxide synthase activity, which at least partly contributed to the increased nitric oxide content. The results indicate that MeSA activates the different pathways of arginine catabolism in cold-stored fruit and that the reduction in CI by MeSA may be due to the coordinated metabolism of arginine and the increase in polyamines and nitric oxide levels.

  7. Pollination of tomatoes by the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera (Hymenoptera, Apidae).

    Science.gov (United States)

    dos Santos, S A Bispo; Roselino, A C; Hrncir, M; Bego, L R

    2009-06-30

    The pollination effectiveness of the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera was tested in tomato plots. The experiment was conducted in four greenhouses as well as in an external open plot in Ribeirão Preto, SP, Brazil. The tomato plants were exposed to visits by M. quadrifasciata in one greenhouse and to A. mellifera in another; two greenhouses were maintained without bees (controls) and an open field plot was exposed to pollinators in an area where both honey bee and stingless bee colonies are abundant. We counted the number of tomatoes produced in each plot. Two hundred tomatoes from each plot were weighed, their vertical and transversal circumferences were measured, and the seeds were counted. We collected 253 Chrysomelidae, 17 Halictidae, one Paratrigona sp, and one honey bee from the flowers of the tomato plants in the open area. The largest number of fruits (1414 tomatoes), the heaviest and largest tomatoes, and the ones with the most seed were collected from the greenhouse with stingless bees. Fruits cultivated in the greenhouse with honey bees had the same weight and size as those produced in one of the control greenhouses. The stingless bee, M. quadrifasciata, was significantly more efficient than honey bees in pollinating greenhouse tomatoes.

  8. Overexpression of the tomato pollen receptor kinase LePRK1 rewires pollen tube growth to a blebbling mode

    Science.gov (United States)

    The tubular growth of a pollen tube cell is crucial for the sexual reproduction of flowering plants. LePRK1 is a pollen-specific and plasma membrane–localized receptor-like kinase from tomato (Solanum lycopersicum). LePRK1 interacts with another receptor, LePRK2, and with KINASE PARTNER PROTEIN (KPP...

  9. Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox).

    Science.gov (United States)

    Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang

    2014-01-01

    Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data

  10. Flowering time control in European winter wheat

    Directory of Open Access Journals (Sweden)

    Simon Martin Langer

    2014-10-01

    Full Text Available Flowering time is an important trait in wheat breeding as it affects adaptation and yield potential. The aim of this study was to investigate the genetic architecture of flowering time in European winter bread wheat cultivars. To this end a population of 410 winter wheat varieties was evaluated in multi-location field trials and genotyped by a genotyping-by-sequencing approach and candidate gene markers. Our analyses revealed that the photoperiod regulator Ppd-D1 is the major factor affecting flowering time in this germplasm set, explaining 58% of the genotypic variance. Copy number variation at the Ppd-B1 locus was present but explains only 3.2% and thus a comparably small proportion of genotypic variance. By contrast, the plant height loci Rht-B1 and Rht-D1 had no effect on flowering time. The genome-wide scan identified six QTL which each explain only a small proportion of genotypic variance and in addition we identified a number of epistatic QTL, also with small effects. Taken together, our results show that flowering time in European winter bread wheat cultivars is mainly controlled by Ppd-D1 while the fine tuning to local climatic conditions is achieved through Ppd-B1 copy number variation and a larger number of QTL with small effects.

  11. Functional characterization of the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter in transgenic tomato plants.

    Science.gov (United States)

    Yang, Qingjie; Yuan, Dawei; Shi, Lianxuan; Capell, Teresa; Bai, Chao; Wen, Nuan; Lu, Xiaodan; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2012-10-01

    The accumulation of carotenoids in plants depends critically on the spatiotemporal expression profiles of the genes encoding enzymes in the carotenogenic pathway. We cloned and characterized the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter to determine its role in the regulation of carotenogenesis, because the native gene is expressed at high levels in petals, which contain abundant chromoplasts. We transformed tomato (Solanum lycopersicum cv. Micro-Tom) plants with the gusA gene encoding the reporter enzyme β-glucuronidase (GUS) under the control of the GlZEP promoter, and investigated the reporter expression profile at the mRNA and protein levels. We detected high levels of gusA expression and GUS activity in chromoplast-containing flowers and fruits, but minimal levels in immature fruits containing green chloroplasts, in sepals, leaves, stems and roots. GlZEP-gusA expression was strictly associated with fruit development and chromoplast differentiation, suggesting an evolutionarily-conserved link between ZEP and the differentiation of organelles that store carotenoid pigments. The impact of our results on current models for the regulation of carotenogenesis in plants is discussed.

  12. Flowering in Xanthium strumarium

    Science.gov (United States)

    Leonard, Maggy; Kinet, Jean-Marie; Bodson, Monique; Havelange, Andrée; Jacqmard, Annie; Bernier, Georges

    1981-01-01

    Vegetative plants of Xanthium strumarium L. grown in long days were induced to flower by exposure to one or several 16-hour dark periods. The distribution of male and female inflorescences on the flowering shoot was described, and a scoring system was designed to assess the development of the female inflorescences. The time of movement of the floral stimulus out of the induced leaf and the timing of action of high temperature were shown to be similar for both the apical male and lateral female inflorescences. Strong photoperiodic induction of the plants favored female sex expression, while maleness was enhanced by exogenous gibberellic acid. The problem of the control of sex expression in Xanthium is discussed in relation to the distribution pattern of male and female inflorescences on the flowering shoot and to the state of the meristem at the time of the arrival of the floral stimulus. Images PMID:16661844

  13. Dissecting a QTL into Candidate Genes Highlighted the Key Role of Pectinesterases in Regulating the Ascorbic Acid Content in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Valentino Ruggieri

    2015-07-01

    Full Text Available Tomato ( is a crucial component of the human diet because of its high nutritional value and the antioxidant content of its fruit. As a member of the Solanaceae family, it is considered a model species for genomic studies in this family, especially since its genome has been completely sequenced. Among genomic resources available, introgression lines represent a valuable tool to mine the genetic diversity present in wild species. One introgression line, IL12-4, was previously selected for high ascorbic acid (AsA content, and a transcriptomic analysis indicated the involvement of genes controlling pectin degradation in AsA accumulation. In this study the integration of data from different “omics” platforms has been exploited to identify candidate genes that increase AsA belonging to the wild region 12-4. Thirty-two genes potentially involved in pathways controlling AsA levels were analyzed with bioinformatic tools. Two hundred-fifty nonsynonymous polymorphisms were detected in their coding regions, and 11.6% revealed deleterious effects on predicted protein function. To reduce the number of genes that had to be functionally validated, introgression sublines of the region 12–4 were selected using species-specific polymorphic markers between the two species. Four sublines were obtained and we demonstrated that a subregion of around 1 Mbp includes 12 candidate genes potentially involved in AsA accumulation. Among these, only five exhibited structural deleterious variants, and one of the 12 was differentially expressed between the two species. We have highlighted the role of three polymorphic pectinesterases and inhibitors of pectinesterases that merit further investigation.

  14. Companion cropping with potato onion enhances the disease resistance of tomato against Verticillium dahliae

    Directory of Open Access Journals (Sweden)

    Xuepeng eFu

    2015-09-01

    Full Text Available Intercropping could alleviate soil-borne diseases, however, few studies focused on the immunity of the host plant induced by the interspecific interactions. To test whether or not intercropping could enhance the disease resistance of host plant, we investigated the effect of companion cropping with potato onion on tomato Verticillium wilt caused by Verticillium dahliae (V. dahliae. To investigate the mechanisms, the root exudates were collected from tomato and potato onion which were grown together or separately, and were used to examine the antifungal activities against V. dahliae in vitro, respectively. Furthermore, RNA-seq was used to examine the expression pattern of genes related to disease resistance in tomato companied with potato onion compared to that in tomato grown alone, under the condition of infection with V. dahliae. The results showed that companion cropping with potato onion could alleviate the incidence and severity of tomato Verticillium wilt. The further studies revealed that the root exudates from tomato companied with potato onion significantly inhibited the mycelia growth and spore germination of V. dahliae. However, there were no significant effects on these two measurements for the root exudates from potato onion grown alone or from potato onion grown with tomato. RNA-seq data analysis showed the disease defense genes associated with pathogenesis-related proteins, biosynthesis of lignin, hormone metabolism and signal transduction were expressed much higher in the tomato companied with potato onion than those in the tomato grown alone, which indicated that these defense genes play important roles in tomato against V. dahliae infection, and meant that the disease resistance of tomato against V. dahliae was enhanced in the companion copping with potato onion. We proposed that companion cropping with potato onion could enhance the disease resistance of tomato against V. dahliae by regulating the expression of genes related

  15. Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea.

    Science.gov (United States)

    Zhu, Changfu; Yang, Qingjie; Ni, Xiuzhen; Bai, Chao; Sheng, Yanmin; Shi, Lianxuan; Capell, Teresa; Sandmann, Gerhard; Christou, Paul

    2014-04-01

    Over the last two decades, many carotenogenic genes have been cloned and used to generate metabolically engineered plants producing higher levels of carotenoids. However, comparatively little is known about the regulation of endogenous carotenogenic genes in higher plants, and this restricts our ability to predict how engineered plants will perform in terms of carotenoid content and composition. During petal development in the Great Yellow Gentian (Gentiana lutea), carotenoid accumulation, the formation of chromoplasts and the upregulation of several carotenogenic genes are temporally coordinated. We investigated the regulatory mechanisms responsible for this coordinated expression by isolating five G. lutea carotenogenic gene (GlPDS, GlZDS, GlLYCB, GlBCH and GlLYCE) promoters by inverse polymerase chain reaction (PCR). Each promoter was sufficient for developmentally regulated expression of the gusA reporter gene following transient expression in tomato (Solanum lycopersicum cv. Micro-Tom). Interestingly, the GlLYCB and GlBCH promoters drove high levels of gusA expression in chromoplast-containing mature green fruits, but low levels in chloroplast-containing immature green fruits, indicating a strict correlation between promoter activity, tomato fruit development and chromoplast differentiation. As well as core promoter elements such as TATA and CAAT boxes, all five promoters together with previously characterized GlZEP promoter contained three common cis-regulatory motifs involved in the response to methyl jasmonate (CGTCA) and ethylene (ATCTA), and required for endosperm expression (Skn-1_motif, GTCAT). These shared common cis-acting elements may represent binding sites for transcription factors responsible for co-regulation. Our data provide insight into the regulatory basis of the coordinated upregulation of carotenogenic gene expression during flower development in G. lutea. © 2013 Scandinavian Plant Physiology Society.

  16. λ-Carrageenan Suppresses Tomato Chlorotic Dwarf Viroid (TCDVd Replication and Symptom Expression in Tomatoes

    Directory of Open Access Journals (Sweden)

    Jatinder S. Sangha

    2015-05-01

    Full Text Available The effect of carrageenans on tomato chlorotic dwarf viroid (TCDVd replication and symptom expression was studied. Three-week-old tomato plants were spray-treated with iota(ɩ-, lambda(λ-, and kappa(κ-carrageenan at 1 g·L−1 and inoculated with TCDVd after 48 h. The λ-carrageenan significantly suppressed viroid symptom expression after eight weeks of inoculation, only 28% plants showed distinctive bunchy-top symptoms as compared to the 82% in the control group. Viroid concentration was reduced in the infected shoot cuttings incubated in λ-carrageenan amended growth medium. Proteome analysis revealed that 16 tomato proteins were differentially expressed in the λ-carrageenan treated plants. Jasmonic acid related genes, allene oxide synthase (AOS and lipoxygenase (LOX, were up-regulated in λ-carrageenan treatment during viroid infection. Taken together, our results suggest that λ-carrageenan induced tomato defense against TCDVd, which was partly jasmonic acid (JA dependent, and that it could be explored in plant protection against viroid infection.

  17. Transgenic tomato hybrids resistant to tomato spotted wilt virus infection.

    NARCIS (Netherlands)

    Haan, de P.; Ultzen, T.; Prins, M.; Gielen, J.; Goldbach, R.; Grinsven, van M.

    1996-01-01

    Tomato spotted wilt virus (TSWV) infections cause significant economic losses in the commercial culture of tomato (Lycopersicon esculentum). Culture practices have only been marginally effective in controlling TSWV. The ultimate way to minimize losses caused by TSWV is resistant varieties. These can

  18. The Ca2+ induced two-component system, CvsSR regulates the Type III secretion system and the extracytoplasmic function sigma-factor AlgU in Pseudomonas syringae pv. tomato DC3000.

    Science.gov (United States)

    Fishman, Maxwell R; Zhang, Johnson; Bronstein, Philip A; Stodghill, Paul; Filiatrault, Melanie J

    2017-12-20

    Two-component systems (TCSs) of bacteria regulate many different aspects of the bacterial life cycle including pathogenesis. Most TCSs remain uncharacterized with no information about the signal(s) or regulatory targets and/or role in bacterial pathogenesis. Here, we characterized a TCS in the plant-pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 ( Pto ) composed of the histidine kinase, CvsS, and the response regulator, CvsR. CvsSR is necessary for virulence of Pto , since ΔcvsS and ΔcvsR strains produced fewer symptoms and demonstrated reduced growth on multiple hosts as compared to WT. We discovered that expression of cvsSR is induced by Ca 2+ concentrations found in leaf apoplastic fluid. Thus, Ca 2+ can be added to the list of signals that promote pathogenesis of Pto during host colonization. Through chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) and global transcriptome analysis (RNA-seq) we discerned the CvsR regulon. CvsR directly activated expression of the type III secretion system regulators, hrpR and hrpS , that regulates Pto virulence in a type III secretion system dependent manner. CvsR also indirectly repressed transcription of the extracytoplasmic sigma factor algU and production of alginate. Phenotypic analysis determined that CvsSR inversely regulated biofilm formation, swarming motility, and cellulose production in a Ca 2+ -dependent manner. Overall, our results show that CvsSR is a key regulatory hub critical for interaction with host plants. Importance Pathogenic bacteria must be able to react and respond to the surrounding environment, make use of available resources, and avert or counter host immune responses. Often, these abilities rely on two-component systems (TCSs) composed of interacting proteins that modulate gene expression. We identified a TCS in the plant-pathogenic bacterium Pseudomonas syringae that responds to the presence of calcium, which is an important signal during the plant

  19. Down-Regulation of Glycosyl Transferase Genes in Streptococcus Mutans by Punica Granatum L. Flower and Rhus Coriaria L. Fruit Water Extracts.

    Science.gov (United States)

    Vahid-Dastjerdi, Elahe; Monadi, Elham; Khalighi, Hamid Reza; Torshabi, Maryam

    2016-01-01

    In our previous studies, we showed the inhibitory effects of Punica granatum L. flower and Rhus coriaria L. fruit water extracts on dental plaque accumulation by several bacteria, especially Streptococcus mutans (S. mutans), on orthodontic wire by in-vitro assays. In this study, the anti-cariogenic properties of the extracts were evaluated by assessing their effects on expression of glycosyltransferase (gtf) genes, which are responsible for initial biofilm formation by S. mutans. In this study, the effect of herbal extracts on expression of gtfB, C (encoding enzymes that produce water-insoluble glucans) and D (encoding enzymes that produce water-soluble glucans) genes in S. mutans growing in planktonic state was evaluated quantitatively by real-time polymerase chain reaction (PCR) method. The minimum biofilm inhibitory concentration (MBIC) of understudied herbal water extracts significantly suppressed gtfB, C and D gene expression by 85.3 ± 7.5%, 33.3 ± 6.4% and 25 ± 14%, respectively for Punica granatum L. extract and 73.4 ± 7.3%, 93.8 ± 2.7% and 59.3 ± 9.8%, respectively for Rhus coriaria L. extract compared to the non-treated control group (P Punica granatum L. extract. These findings suggest that Punica granatum L. and especially Rhus coriaria L. maybe used as novel, natural antiplaque agents since they inhibit specific genes associated with bacterial biofilm formation without necessarily affecting the growth of oral bacteria.

  20. Silver Nanoparticles Biosynthesized Using Achillea biebersteinii Flower Extract: Apoptosis Induction in MCF-7 Cells via Caspase Activation and Regulation of Bax and Bcl-2 Gene Expression

    Directory of Open Access Journals (Sweden)

    Javad Baharara

    2015-02-01

    Full Text Available Silver nanoparticles (Ag-NPs, the most popular nanoparticles, possess unique properties. Achillea biebersteinii is a plant of the Asteraceae family rich in active antitumor components. The aim of this research was the characterization and investigation of the cytotoxic properties of Ag-NPs synthesized using A. biebersteinii flower extract, on a human breast cancer cell line. The Ag-NPs were synthesized after approximately 180 min of reaction at 40 °C, then they were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM and dynamic light scattering (DLS. The anti-apoptosis effect of Ag-NPs on the MCF-7 cell line was investigated by MTT assay, DAPI and acridine orange staining and caspase activity. The transcriptional expression of bax, bcl-2, caspase-3, -8 and -9 were also evaluated by RT-PCR. The TEM images revealed that the Ag-NPs morphology had a different shape. The DLS indicated that the average hydrodynamic diameter of the biosynthesized Ag-NPs was around 12 nm. By UV-visible spectroscopy the strongest absorbance peak was observed at 460 nm. The FTIR results also showed interaction between the plant extract and Ag-NPs due to the similarity in the peak patterns. The EDS results showed that Ag-NPs display an absorption peak at 3 keV, indicating the presence of the element silver. The Ag-NPs caused a dose-dependent decrease in cell viability, fragmentation in nucleic acid, inhibited the proliferation and induction of apoptosis on MCF-7 by suppressing specific cell cycle genes, and simulation programmed cell dead genes. Further investigation is required to establish the potential of this novel and promising approach in cancer therapy.

  1. Fertilization in Flowering Plants

    Indian Academy of Sciences (India)

    ... for the right pollen,the pistil imposes a tough competition amongst them, comparableto a swayamvara of Indian mythology, to select the bestavailable pollen. Flowering plants have evolved into a matriarchalsociety. The selection of the male partner is totally theprerogative of the mother (pistil); the boy (pollen grain) andthe ...

  2. 21 CFR 73.585 - Tomato lycopene extract; tomato lycopene concentrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Tomato lycopene extract; tomato lycopene... SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.585 Tomato lycopene extract; tomato lycopene concentrate. (a) Identity. (1) The color additive tomato lycopene extract is a...

  3. Some aspects of mineral nutrition and flowering

    NARCIS (Netherlands)

    Hinnawy, El E.I.

    1956-01-01

    In mustard N deficiency accelerated flower initiation and particularly flower bud development. Excess N delayed flowering but increased number of flowers. Of other elements Ca influenced flowering most.

    Dill developed its flowers most rapidly with normal or high rates of N. N deficiency retarded

  4. A Petunia Homeodomain-Leucine Zipper Protein, PhHD-Zip, Plays an Important Role in Flower Senescence

    Science.gov (United States)

    Chang, Xiaoxiao; Donnelly, Linda; Sun, Daoyang; Rao, Jingping; Reid, Michael S.; Jiang, Cai-Zhong

    2014-01-01

    Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence. PMID:24551088

  5. A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence.

    Science.gov (United States)

    Chang, Xiaoxiao; Donnelly, Linda; Sun, Daoyang; Rao, Jingping; Reid, Michael S; Jiang, Cai-Zhong

    2014-01-01

    Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.

  6. A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Chang

    Full Text Available Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO, and ABA (NCED biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29 was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA and abiotic stresses (dehydration, NaCl and cold. Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.

  7. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation

    NARCIS (Netherlands)

    Lopez Raez, J.A.; Charnikhova, T.; Gomez-Roldan, M.V.; Matusova, R.; Kohlen, W.; Vos, de C.H.; Verstappen, F.W.A.; Puech-Pages, V.; Becard, G.; Mulder, P.P.J.; Bouwmeester, H.J.

    2008-01-01

    Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). Strigolactone production under phosphate starvation, in

  8. Trafficking of the potato spindle tuber viroid between tomato and Orobanche ramosa.

    Science.gov (United States)

    Vachev, T; Ivanova, D; Minkov, I; Tsagris, M; Gozmanova, M

    2010-04-10

    Viroids, small RNA pathogens capable of infecting flowering plants, coexist in the field with parasitic plants that infest many crops. The ability of viroids to be exchanged between host and parasitic plants and spread in the latter has not yet been investigated. We studied the interaction between the Potato spindle tuber viroid (PSTVd) and Branched bromrape (Orobanche ramosa) using the tomato, Solanum lycopersicon, as a common host. We report the long distance trafficking of PSTVd RNA via the phloem from tomato to O. ramosa, but not vice versa. Furthermore, we identify O. ramosa as a novel host with the ability to facilitate the replication and processing of PSTVd. Finally, molecular variants of PSTVd with single nucleotide substitutions that replicate with different efficiencies in tomato were isolated from O. ramosa. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Biological control of corky root in tomato.

    Science.gov (United States)

    Fiume, G; Fiume, F

    2008-01-01

    Corky root caused by Pyrenochaeta lycopersici (Schneider et Gerlach) is one of the most important soil borne fungal pathogens which develops in the soils, causing diseases in different crops. The research was carried out to evaluate the effectiveness of the biological control of corky root on tomato. Biological control was performed by using Trichoderma viride Pers. 18/17 SS, Streptomyces spp. AtB42 and Bacillus subtilis M51 PI. According to present and future regulations on the use of chemical fungicides and considering that treatments must avoids environmental pollution, the main object of this research was to find alternative strategies by using biocontrol agents against P. lycopersici that affect tomato plants. In laboratory, the effectiveness of T. viride 18/17 SS, Streptomyces spp. AtB42 and B. subtilis M51 PI to control P. lycopersici were studied. In greenhouse, the research was carried out comparing the following treatments: 1) untreated control; 2) T. viride 18/17 SS; 3) Streptomyces spp. AtB42; 4) B. subtilis M51 PI. Roots of plants of tomato H3028 Hazera were treated with the antagonist suspensions just prior of transplant. Treatments were repeated about 2 months after, with the same suspensions sprayed on the soil to the plant collar. In dual culture, the inhibition of P. lycopersici ranged up to 81.2% (caused from T. viride 18/17 SS), 75.6% (from Streptomyces spp. AtB42) and 66.8% (from B. subtilis M51 PI). In greenhouse trials, with regard to corky root symptoms, all treated plots showed signifycative differences compared to untreated. T. viride gave the better results followed by Streptomyces spp. and then by B. subtilis. The fungus antagonist showed good root surface competence such as demonstrated its persistence on the roots surface of the tomato plants whose roots were treated with T. viride 18/17 SS up to 2 months before.

  10. Preferences of cut flowers consumers

    Directory of Open Access Journals (Sweden)

    Sylwia Kierczyńska

    2010-01-01

    Full Text Available The results of interviews suggest that majority of the cut flowers’ consumers has favourite kind of flower, among which most frequently pointed one was the rose. More than half of the interviewed favour the uniform colour of cut flowers and red colour was the most favourite one. The subtle smell of flowers was the most preferable one but the intensive fragrance was favoured for more consumers than odourless flowers. The data from selected florists’ confirm the information from interviews – in spite of the occasion, roses were the most demanded cut flowers.

  11. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato

    KAUST Repository

    Thirumalaikumar, Venkatesh P.

    2017-06-22

    Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species, and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2 O2 ) levels, and a decrease of the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2 O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2, and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato. This article is protected by copyright. All rights reserved.

  12. Refuges, flower strips, biodiversity and agronomic interest.

    Science.gov (United States)

    Roy, Grégory; Wateau, Karine; Legrand, Mickaël; Oste, Sandrine

    2008-01-01

    Several arthropods are natural predators of pests, and they are able to reduce and control their population development. FREDON Nord Pas-de-Calais (Federation Regionate de Defense contre les Organismes Nuisibles = Regional Federation for Pest Control) has begun for a long time to form farmers to the recognition of beneficial arthropods and to show them their usefulness. These beneficial insects or arachnids are present everywhere, in orchards and even in fields which are areas relatively poor in biodiversity. Adults feed in the flower strips instead larvae and some adults feed on preys such as aphids or caterpillars. Most of the time, beneficial insects can regulate pest but sometimes, in agricultural area, they can't make it early enough and efficiently. Their action begin too late and there biodiversity and number are too low. It's possible to enhance their action by manipulating the ecological infrastructures, like sewing flower strips or installing refuges. Flower strips increase the density of natural enemies and make them be present earlier in the field in order to control pests. Refuges permit beneficial's to spend winter on the spot. So they're able to be active and to grow in number earlier. From 2004 to 2007, on the one hand, FREDON Nord Pas-de-Calais has developed a research program. Its purpose was to inventory practices and also tools and means available and to judge the advisability of using such or such beneficial refuge in orchards. On the second hand, it studied the impact in orchard of refuges on population of beneficial's and the difference there were between manufactured refuges and homemade refuges. Interesting prospects were obtained with some of them. Otherwise, since 2003, FREDON has studied flower strips influence on beneficial population and their impact on pest control. In cabbage fields, results of trials have shown that flower strips lead to a reduction of aphid number under acceptable economic level, up to 50 meters from flower strips

  13. Inferring the gene network underlying the branching of tomato inflorescence.

    Directory of Open Access Journals (Sweden)

    Laura Astola

    Full Text Available The architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the expressions of the involved genes. Our approach starts from employing biological expert knowledge to select the most probable gene candidates behind branching behavior. To find how these genes interact, we develop a stepwise procedure for computational inference of the network structure. Our data consists of expression levels from primary shoot meristems, measured at different developmental stages on three different genotypes of tomato. With the network inferred by our algorithm, we can explain the dynamics corresponding to all three genotypes simultaneously, despite their apparent dissimilarities. We also correctly predict the chronological order of expression peaks for the main hubs in the network. Based on the inferred network, using optimal experimental design criteria, we are able to suggest an informative set of experiments for further investigation of the mechanisms underlying branching behavior.

  14. Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice.

    Directory of Open Access Journals (Sweden)

    Eri Ogiso-Tanaka

    Full Text Available In rice (Oryza sativa L., there is a diversity in flowering time that is strictly genetically regulated. Some indica cultivars show extremely late flowering under long-day conditions, but little is known about the gene(s involved. Here, we demonstrate that functional defects in the florigen gene RFT1 are the main cause of late flowering in an indica cultivar, Nona Bokra. Mapping and complementation studies revealed that sequence polymorphisms in the RFT1 regulatory and coding regions are likely to cause late flowering under long-day conditions. We detected polymorphisms in the promoter region that lead to reduced expression levels of RFT1. We also identified an amino acid substitution (E105K that leads to a functional defect in Nona Bokra RFT1. Sequencing of the RFT1 region in rice accessions from a global collection showed that the E105K mutation is found only in indica, and indicated a strong association between the RFT1 haplotype and extremely late flowering in a functional Hd1 background. Furthermore, SNPs in the regulatory region of RFT1 and the E105K substitution in 1,397 accessions show strong linkage disequilibrium with a flowering time-associated SNP. Although the defective E105K allele of RFT1 (but not of another florigen gene, Hd3a is found in many cultivars, relative rate tests revealed no evidence for differential rate of evolution of these genes. The ratios of nonsynonymous to synonymous substitutions suggest that the E105K mutation resulting in the defect in RFT1 occurred relatively recently. These findings indicate that natural mutations in RFT1 provide flowering time divergence under long-day conditions.

  15. Let the flowers grow…

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The Environmental part of CERN Safety policy is represented by a flower whose petals are the various domains of its application. The Environment Services section within the Occupational Health and Safety and Environmental Protection Unit is in charge of monitoring the impact of the Laboratory on the environment. You are called on to make every effort to reduce this impact as much as reasonably achievable. Read why and how…   A physics Laboratory occupying a territory of the size of a small village, with sites scattered across an even larger area, has a considerable potential impact on the environment. Energy and water consumption, waste management... these are all aspects of the same problem or, in the representation, petals of the same flower. Each one should be carefully studied and dealt with. The nine members of the Environment Services section deal with matters that concern these and other aspects of the CERN's policy for the protection of the environment. “...

  16. Acetyl salicylic acid and 24-epibrassinolide attenuate decline in photosynthesis, chlorophyll contents and membrane thermo- stability in tomato (lycopersicon esculentum mill.) under heat stress

    International Nuclear Information System (INIS)

    Khan, A.R.; Hui, C.Z.; Ghazanfar, B.

    2015-01-01

    The effect of exogenous application of varying levels of 24-epibrassinolide (0.75, 1.5 and 3 micro M) and acetyl salicylic acid (0.25, 0.75 and 1.25 micro M) for induction of heat tolerance in terms of their effect on photosynthesis, chlorophyll content, membrane integrity and survival in four weeks old tomato (cultivar: Mei Jie Lo) seedlings under high temperature stress (46 degree C/4 h daily) for 21 days was investigated. The daily heat stress treatment had deleterious effects on seedlings but chemical treatments significantly reduced the magnitude of losses to different extents. 24-epibrassinolide (3 micro M) was over all the best treatment to improve survival (86.11%), photosynthesis (39.4%) and chlorophyll contents (26.12%) accompanied with initiation of flower buds and improved vegetative growth. Whereas acetyl salicylic acid (1.25 mM) best improved photosynthetic activity (40.6%) as compared to the untreated heat stressed control seedlings. Moreover, 3 micro M 24-epibrassinolide and 0.75 micro M acetyl salicylic acid reduced cell membrane injury to 8.3 and 6.9% respectively as compared with 22.4% in heat stressed control seedlings. However lower doses of acetyl salicylic acid (0.25 and 0.75 micro M) had slight (5.6 and 12.8%) inhibition effect on the photosynthesis than the heat stressed controls. Overall both acetyl salicylic acid and 24-epibrassinolide up regulated basal heat tolerance in tomato seedlings and studied concentrations demonstrated signature affect upon different parameters. Thus both chemical agents can be potential candidates for further investigations for exogenous application aiming at extension of tomato growth season in summer. (author)

  17. Comprehensive analyses of DNA methylation profile, regulation on flowering, and seed mineral accumulation in Arabidopsis thaliana in response to zinc deficiency

    OpenAIRE

    Chen Xiaochao

    2016-01-01

    Zinc (Zn) is an essential micronutrient for plant growth and development, which plays important roles in DNA binding, metabolic, catalytic and transcriptional regulator activities. However, Zn deficiency is a worldwide problem due to its limited bioavailability in soils in many agricultural areas, often as a result of high CaCO3 content and high pH. In addition, phytic acid is able to strongly chelate cations, such as Zn2+, Fe2+, Ca2+ and Mg2+ to form the phytate salts. Phytate cannot be dige...

  18. Eating flowers? Exploring attitudes and consumers' representation of edible flowers.

    Science.gov (United States)

    Rodrigues, H; Cielo, D P; Goméz-Corona, C; Silveira, A A S; Marchesan, T A; Galmarini, M V; Richards, N S P S

    2017-10-01

    Edible flowers have gained more attention in recent years thanks to their perceived health benefits. Despite this attention, it seems that edible flowers are not popularized for consumption in South America, being considered unfamiliar for some cultures from this continent. In this context, the general goal of the present study was to investigate the three dimensions of social representation theory, the representational field, the information and the attitude of the two conditions of edible flowers: a more general "food made with flowers" and more directional product "yoghurt made with flowers", using Brazilian consumers. To achieve this goal, a free word association task was applied. A total of 549 consumers participated in this study. Participants were divided into two conditions, in which the inductor expressions for the free word association task changed: (a) food products made with flowers and (b) yoghurt made with flowers. Results showed a very positive attitude to both situations, and consumers associated Food products made with flowers to "health care" while the central core of yoghurt made with flowers reflected the innovative condition of this product, supported here by their unpredictable character (information generated). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Proteomic identification of differentially expressed proteins during alfalfa (Medicago sativa L. flower development

    Directory of Open Access Journals (Sweden)

    Lingling Chen

    2016-10-01

    Full Text Available Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa (Medicago sativa L. seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1, pollination (S2, and the post-pollination senescence period (S3. Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD. Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs, carbonic anhydrase (CA, and NADPH: quinone oxidoreductase-like protein (NQOLs. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower

  20. Proteomic Identification of Differentially Expressed Proteins during Alfalfa (Medicago sativa L.) Flower Development.

    Science.gov (United States)

    Chen, Lingling; Chen, Quanzhu; Zhu, Yanqiao; Hou, Longyu; Mao, Peisheng

    2016-01-01

    Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa ( Medicago sativa L.) seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1), pollination (S2), and the post-pollination senescence period (S3). Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD). Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs), carbonic anhydrase, and NADPH: quinone oxidoreductase-like protein. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower development and

  1. Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis.

    Science.gov (United States)

    Wiśniewska, A; Dąbrowska-Bronk, J; Szafrański, K; Fudali, S; Święcicka, M; Czarny, M; Wilkowska, A; Morgiewicz, K; Matusiak, J; Sobczak, M; Filipecki, M

    2013-06-01

    The potato cyst nematode (Globodera rostochiensis) induces feeding sites (syncytia) in tomato and potato roots. In a previous study, 135 tomato genes up-regulated during G. rostochiensis migration and syncytium development were identified. Five genes (CYP97A29, DFR, FLS, NIK and PMEI) were chosen for further study to examine their roles in plant-nematode interactions. The promoters of these genes were isolated and potential cis regulatory elements in their sequences were characterized using bioinformatics tools. Promoter fusions with the β-glucuronidase gene were constructed and introduced into tomato and potato genomes via transformation with Agrobacterium rhizogenes to produce hairy roots. The analysed promoters displayed different activity patterns in nematode-infected and uninfected transgenic hairy roots.

  2. Influence of Pollination Technique on Greenhouse Tomato Production

    Directory of Open Access Journals (Sweden)

    I.K. Nazer

    2003-01-01

    Full Text Available An experiment was carried out to study the effects of four pollination techniques; Bumblebees (Bombus terrerstris L., plant growth bioregulator (PGB (Parachlorophenoxy acetic acid, hand vibration, and control (natural pollination on tomato (Lycopersicon esculentum Mill production in greenhouses. Bumblebees showed no problem in visiting flowers at a temperature range of 17-42°C during the day and 2-14°C at night. Bumblebee pollinated plants produced a yield per plant which was significantly higher than plants treated with PGB, vibration and the control, respectively. Fruit set of tomato flowers over 10 clusters was 99.1, 96.7, 76.7, and 65.7% for bumblebee treatment, PGB application, vibration and the control, respectively. In the bumblebee pollinated flowers, the quality of fruits was superior. The fruits were hard, with more seeds, and had a high specific gravity and better appearance. The average fruit weight was 100.3, 80.5, 84.1, and 70.6 g for the bumblebee, PGB, vibration and the control, respectively. The PGB treatment produced bigger sized but puffy fruits (108.4 ml. While fruit size in the vibration treatment was the highest (126.8 ml, followed by the bumblebee and the control which were 99.3 and 98.5 ml, respectively. Fruit specific gravity in the bumblebee treatment was significantly higher than other treatments, with no significant differences between the PGB and the vibration treatments. The least dense fruits were in the control treatment. Regarding the firmness of fruits, the bumblebee treatment gave the hardest fruits, while the PGB and the vibration treatments were intermediate and the control was the least. Average seed number per fruit was 177.0, 86.5, 61.8, and 89.8 for bumblebee, vibration, PGB and the control, respectively.

  3. COMPLEX PROCESSING TECHNOLOGY OF TOMATO RAW MATERIALS

    Directory of Open Access Journals (Sweden)

    A. M. Gadzhieva

    2015-01-01

    Full Text Available Tomatoes grown in the central and southern parts of the country, which contain 5-6 % of solids, including 0.13 % of pectin, 0.86 % of fat, 0.5 % of organic acids; 0.5 % minerals, etc. were used as a subject of research. These tomatoes, grown in the mountains, on soils with high salinity, contain high amounts of valuable components and have a long-term preservation. For the extraction of valuable components from dried tomato pomace CO2 extraction method was applied. Technological and environmental feasibility of tomatoes stage drying in the atmosphere of inert gas in solar dry kiln were evaluated; production scheme of dried tomatoes is improved; a system for tomato pomace drying is developed; a production scheme of powders of pulp, skin and seeds of tomatoes is developed. Combined method of tomato pomace drying involves the simultaneous use of the electromagnetic field of low and ultra-high frequency and blowing product surface with hot nitrogen. Conducting the drying process in an inert gas atmosphere of nitrogen intensified the process of moisture removing from tomatoes. The expediency of using tomato powder as enriching additive was proved. Based on the study of the chemical composition of the tomato powder made from Dagestan varieties of tomatoes, and on the organoleptic evaluation and physico-chemical studies of finished products, we have proved the best degree of recoverability of tomato powder during the production of reconstituted juice and tomato beverages.

  4. A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification

    Directory of Open Access Journals (Sweden)

    Daniel Fulop

    2016-10-01

    Full Text Available Quantitative Trait Loci (QTL mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum and its more distant interfertile relatives typically follow a near isogenic line (NIL design, such as the S. pennellii Introgression Line (IL population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii. This so-called Backcrossed Inbred Line (BIL population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping.

  5. How and why does tomato accumulate a large amount of GABA in the fruit?

    Directory of Open Access Journals (Sweden)

    Mariko eTakayama

    2015-08-01

    Full Text Available γ-Aminobutyric acid (GABA has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate of the tricarboxylic acid (TCA cycle via reactions catalysed by three enzymes: glutamate decarboxylase (GAD, GABA transaminase (GABA-T and succinic semialdehyde dehydrogenase (SSADH. The GABA shunt plays a major role in primary carbon and nitrogen metabolism and is an integral part of the TCA cycle under stress and non-stress conditions. Tomato is one of the major crops that accumulate a relatively high level of GABA in its fruits. The GABA levels in tomato fruits dramatically change during fruit development; the GABA levels increase from flowering to the mature green stage and then rapidly decrease during the ripening stage. Although GABA constitutes up to 50% of the free amino acids at the mature green stage, the molecular mechanism of GABA accumulation and the physiological function of GABA during tomato fruit development remain unclear. In this review, we summarize recent studies of GABA accumulation in tomato fruits and discuss the potential biological roles of GABA in tomato fruit development.

  6. Identification and Functional Characterization of a Tonoplast Dicarboxylate Transporter in Tomato (Solanum lycopersicum).

    Science.gov (United States)

    Liu, Ruiling; Li, Boqiang; Qin, Guozheng; Zhang, Zhanquan; Tian, Shiping

    2017-01-01

    Acidity plays an important role in flavor and overall organoleptic quality of fruit and is mainly due to the presence of organic acids. Understanding the molecular basis of organic acid metabolism is thus of primary importance for fruit quality improvement. Here, we cloned a putative tonoplast dicarboxylate transporter gene ( SlTDT ) from tomato, and submitted it to the NCBI database (GenBank accession number: KC733165). SlTDT protein contained 13 putative transmembrane domains in silico analysis. Confocal microscopic study using green fluorescent fusion proteins revealed that SlTDT was localized on tonoplast. The expression patterns of SlTDT in tomato were analyzed by RT-qPCR. The results indicated that SlTDT expressed in leaves, roots, flowers and fruits at different ripening stages, suggesting SlTDT may be associated with the development of different tissues. To further explore the function of SlTDT , we constructed both overexpression and RNAi vectors and obtained transgenic tomato plants by agrobacterium-mediated method. Gas chromatography-mass spectrometer (GC-MS) analysis showed that overexpression of SlTDT significantly increased malate content, and reduced citrate content in tomato fruit. By contrast, repression of SlTDT in tomato reduced malate content of and increased citrate content. These results indicated that SlTDT played an important role in remobilization of malate and citrate in fruit vacuoles.

  7. Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits

    Science.gov (United States)

    MADS-box transcription factors are key elements of the genetic networks controlling flower and fruit development. Among these, the class D clade are involved in seed, ovule, and funiculus development. The tomato genome comprises two class D genes, Sl-AGL11 and Sl-MBP3, both displaying high expressio...

  8. A Calcium-Dependent Protein Kinase Is Systemically Induced upon Wounding in Tomato Plants1

    Science.gov (United States)

    Chico, José Manuel; Raíces, Marcela; Téllez-Iñón, María Teresa; Ulloa, Rita María

    2002-01-01

    A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks. PMID:11788771

  9. Summer Flowering Cover Crops Support Wild Bees in Vineyards.

    Science.gov (United States)

    Wilson, Houston; Wong, Jessica S; Thorp, Robbin W; Miles, Albie F; Daane, Kent M; Altieri, Miguel A

    2018-02-08

    Agricultural expansion and intensification negatively affect pollinator populations and has led to reductions in pollination services across multiple cropping systems. As a result, growers and researchers have utilized the restoration of local and landscape habitat diversity to support pollinators, and wild bees in particular. Although a majority of studies to date have focussed on effects in pollinator-dependent crops such as almond, tomato, sunflower, and watermelon, supporting wild bees in self-pollinated crops, such as grapes, can contribute to broader conservation goals as well as provide other indirect benefits to growers. This study evaluates the influence of summer flowering cover crops and landscape diversity on the abundance and diversity of vineyard bee populations. We showed that diversity and abundance of wild bees were increased on the flowering cover crop, but were unaffected by changes in landscape diversity. These findings indicate that summer flowering cover crops can be used to support wild bees and this could be a useful strategy for grape growers interested in pollinator conservation as part of a broader farmscape sustainability agenda. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Patterning of Inflorescences and Flowers by the F-Box Protein DOUBLE TOP and the LEAFY Homolog ABERRANT LEAF AND FLOWER of Petunia.

    NARCIS (Netherlands)

    Souer, E.J.; Bliek, M.; Koes, R.E.; Kusters, E.; Bruin de, R.A.

    2008-01-01

    Angiosperms display a wide variety of inflorescence architectures differing in the positions where flowers or branches arise. The expression of floral meristem identity (FMI) genes determines when and where flowers are formed. In Arabidopsis thaliana, this is regulated via transcription of LEAFY

  11. Acetaldehyde stimulation of net gluconeogenic carbon movement from applied malic acid in tomato fruit pericarp tissue

    International Nuclear Information System (INIS)

    Halinska, A.; Frenkel, C.

    1991-01-01

    Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied l-[U- 14 C]malic acid as the source for gluconeogenic carbon mobilization. Results indicate that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification

  12. The effects of different irrigation levels on flowering and flower ...

    African Journals Online (AJOL)

    Water usage is a vital issue for all agricultural crops as well as for ornamental crops. To obtain high quality flowers, it is essential to supply water when it is required. A problem which is common with cut flower growers are determining when to irrigate and the amount of water to apply. The effect of two irrigation intervals (I1: ...

  13. The effects of different irrigation levels on flowering and flower ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-26

    Oct 26, 2011 ... important export production in cut flower is carnation and it consists of 89% of cut flower export. ... irrigation management in arid and semi-arid regions will shift from emphasizing ..... Handbook of Plant and Crop. Stress (Ed: M.

  14. Cytogenetic and molecular studies on tomato chromosomes using diploid tomato and tomato monosomic additions in tetraploid potato

    NARCIS (Netherlands)

    Chang, S.B.

    2004-01-01

    Geneticists have studied the tomato, Lycopersicon esculentum, for several decades and now obtained a saturated linkage map on which numerous genes controlling morphological traits and disease resistances, and molecular markers have been positioned. They also investigated the chromosomes of tomato,

  15. EFFECTIVE COMPLEX PROCESSING OF RAW TOMATOES

    Directory of Open Access Journals (Sweden)

    AIDA M. GADZHIEVA

    2018-03-01

    Full Text Available Tomatoes grown in the central and southern parts of the country, which contain 5 - 6 % of solids, including 0.13 % of pectin, 0.86 % of fat, 0.5 % of organic acids, 0.5 % minerals, etc. are used as research material. These tomatoes, grown in the mountains, on soils with high salinity, contain high amounts of valuable components and have long term preservation. For the extraction of valuable components from dried tomato pomace, the CO2 extraction method is applied. The technological and environmental feasibility of graded tomato drying in the atmosphere of an inert gas and in a solar drier is evaluated; the scheme of dried tomatoes production is improved; a system for tomato pomace drying is developed; a scheme of tomato powder production from pulp, skin and seeds is developed. The combined method of tomato pomace drying involves the simultaneous use of electromagnetic field of low and ultra-high frequency and blowing hot nitrogen on the product surface. Conducting the drying process in the atmosphere of nitrogen intensifies the process of removing moisture from tomatoes. The expediency of using tomato powder as an enriching additive is proved. Based on the study of the chemical composition of the tomato powder made from the Dagestan varieties, and on the organoleptic evaluation and physicochemical analysis of finished products, we prove the best degree of recoverability of tomato powder in the production of reconstituted juice and tomato beverages.

  16. Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction

    Science.gov (United States)

    Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M.; Kazan, Kemal

    2015-01-01

    Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects. PMID:26034991

  17. Involvement of ethylene in sex expression and female flower development in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Manzano, Susana; Martínez, Cecilia; García, Juan Manuel; Megías, Zoraida; Jamilena, Manuel

    2014-12-01

    Although it is known that ethylene has a masculinizing effect on watermelon, the specific role of this hormone in sex expression and flower development has not been analyzed in depth. By using different approaches the present work demonstrates that ethylene regulates differentially two sex-related developmental processes: sexual expression, i.e. the earliness and the number of female flowers per plant, and the development of individual floral buds. Ethylene production in the shoot apex as well as in male, female and bisexual flowers demonstrated that the female flower requires much more ethylene than the male one to develop, and that bisexual flowers result from a decrease in ethylene production in the female floral bud. The occurrence of bisexual flowers was found to be associated with elevated temperatures in the greenhouse, concomitantly with a reduction of ethylene production in the shoot apex. External treatments with ethephon and AVG, and the use of Cucurbita rootstocks with different ethylene production and sensitivity, confirmed that, as occurs in other cucurbit species, ethylene is required to arrest the development of stamens in the female flower. Nevertheless, in watermelon ethylene inhibits the transition from male to female flowering and reduces the number of pistillate flowers per plant, which runs contrary to findings in other cucurbit species. The use of Cucurbita rootstocks with elevated ethylene production delayed the production of female flowers but reduced the number of bisexual flowers, which is associated with a reduced fruit set and altered fruit shape.

  18. Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae

    Directory of Open Access Journals (Sweden)

    Teeri Teemu H

    2006-06-01

    Full Text Available Abstract Background The inflorescence of the cut-flower crop Gerbera hybrida (Asteraceae consists of two principal flower types, ray and disc, which form a tightly packed head, or capitulum. Despite great interest in plant morphological evolution and the tractability of the gerbera system, very little is known regarding genetic mechanisms involved in flower type specification. Here, we provide comparative staging of ray and disc flower development and microarray screening for differentially expressed genes, accomplished via microdissection of hundreds of coordinately developing flower primordia. Results Using a 9K gerbera cDNA microarray we identified a number of genes with putative specificity to individual flower types. Intrestingly, several of these encode homologs of MADS-box transcription factors otherwise known to regulate flower organ development. From these and previously obtained data, we hypothesize the functions and protein-protein interactions of several gerbera MADS-box factors. Conclusion Our RNA expression results suggest that flower-type specific MADS protein complexes may play a central role in differential development of ray and disc flowers across the gerbera capitulum, and that some commonality is shared with known protein functions in floral organ determination. These findings support the intriguing conjecture that the gerbera flowering head is more than a mere floral analog at the level of gene regulation.

  19. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry.

    Science.gov (United States)

    Song, Guo-qing; Walworth, Aaron; Zhao, Dongyan; Jiang, Ning; Hancock, James F

    2013-11-01

    The blueberry FLOWERING LOCUS T ( FT )-like gene ( VcFT ) cloned from the cDNA of a tetraploid, northern highbush blueberry ( Vaccinium corymbosum L.) is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering. Blueberry is a woody perennial bush with a longer juvenile period than annual crops, requiring vernalization to flower normally. Few studies have been reported on the molecular mechanism of flowering in blueberry or other woody plants. Because FLOWERING LOCUS T (FT) from Arabidopsis thaliana plays a multifaceted role in generating mobile molecular signals to regulate plant flowering time, isolation and functional analysis of the blueberry (Vaccinium corymbosum L.) FT-like gene (VcFT) will facilitate the elucidation of molecular mechanisms of flowering in woody plants. Based on EST sequences, a 525-bpVcFT was identified and cloned from the cDNA of a tetraploid, northern highbush blueberry cultivar, Bluecrop. Ectopic expression of 35S:VcFT in tobacco induced flowering an average of 28 days earlier than wild-type plants. Expression of the 35S:VcFT in the blueberry cultivar Aurora resulted in an extremely early flowering phenotype, which flowered not only during in vitro culture, a growth stage when nontransgenic shoots had not yet flowered, but also in 6-10-week old, soil-grown transgenic plants, in contrast to the fact that at least 1 year and 800 chilling hours are required for the appearance of the first flower of both nontransgenic 'Aurora' and transgenic controls with the gusA. These results demonstrate that the VcFT is a functional floral activator and overexpression of the VcFT is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering.

  20. Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh.).

    Science.gov (United States)

    Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu

    2015-10-01

    Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  1. Stop and Paint the Flowers.

    Science.gov (United States)

    Phillips, Shelley

    2002-01-01

    Describes an art lesson where students used watercolors to paint a flower bouquet arranged in a vase. Explains that the students viewed examples of flower bouquets by artists such as Vincent van Gogh and Odilon Redon. Discusses, in detail, the process of creating the artworks. (CMK)

  2. Interconnection between flowering time control and activation of systemic acquired resistance

    Directory of Open Access Journals (Sweden)

    Zeeshan Zahoor Banday

    2015-03-01

    Full Text Available The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some local infections, plants develop systemic acquired resistance (SAR, which provides heightened resistance during subsequent infections. Infected tissues generate mobile signalling molecules that travel to the systemic tissues, where they epigenetically modify expression of a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA which is required for SAR activation positively regulates flowering. Certain components of chromatin remodelling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D (FLD, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1 (PIE1, an orthologue of yeast chromatin remodelling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.

  3. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant.

    Science.gov (United States)

    Zhao, Zhi-Gang; Du, Guo-Zhen; Huang, Shuang-Quan

    2010-05-20

    Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites.

  4. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant

    Directory of Open Access Journals (Sweden)

    Du Guo-Zhen

    2010-05-01

    Full Text Available Abstract Background Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae. Results We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers, showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. Conclusions This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites.

  5. Managing thrips and tospoviruses in tomato

    Science.gov (United States)

    Tomato spotted wilt virus and more recently emerged Tomato chlorotic spot virus and Groundnut ringspot virus are all transmitted by thrips, making managment complex. All three viruses and the thrips vector are major pests of tomato in Florida. Current management tools for these viruses and the th...

  6. Carotenes in processed tomato after thermal treatment

    NARCIS (Netherlands)

    Luterotti, S.; Bicanic, D.D.; Markovic, K.; Franko, M.

    2015-01-01

    This report adds to the ongoing vivid dispute on the fate of carotenes in tomato upon thermal processing. Although many papers dealing with changes in the raw tomatoes during industrial treatment have already appeared, data on the fate of finished, processed tomato products when they are

  7. Gamma-irradiation of tomatoes

    International Nuclear Information System (INIS)

    Tencheva, S.; Todorov, S.

    1975-01-01

    The influence of gamma-ray on tomatoes picked in a pink-red ripening stage, good for consumption, is studied. For that purpose tomatoes of ''Pioneer 2'' variety packed in perforated 500 g plastic bags were irradiated on a gamma device (Cobalt-60) at a dose power of 1900 rad/min with doses 200 or 300 krad. Samples were stored after irradiation at room temperature (20 - 22sup(o)C). Microbiological studies demonstrated that 44 resp. 99.96 per cent of the initial number of microorganisms was destroyed after irradiation with 200 resp. 300 krad. The time required for the number of microorganisms to be restored was accordingly increased. Irradiation delayed tomato ripening by 4 to 6 days, demonstrable by the reduced content of the basic staining substances - carotene and licopine. Immediately after irradiation the ascorbic acid content was reduced by an average of 13 per cent. After 18 days the amount of ascorbic acid in irradiated tomatoes was increased to a higher than the starting level, this is attributed to reductone formation during irradiation. The elevated total sugar content shown to be invert sugar was due to further tomato ripening. (Ch.K.)

  8. The structure of flower visitation webs : how morphology and abundance affect interaction patterns between flowers and flower visitors

    NARCIS (Netherlands)

    Stang, Martina

    2007-01-01

    Interaction patterns between plants and flower visitors in a Mediterranean flower visitation web can be explained surprisingly well by the combination of two simple mechanisms. Firstly, the size threshold that the nectar tube depth of flowers puts on the tongue length of potential flower visitors;

  9. Say it with flowers: Flowering acceleration by root communication.

    Science.gov (United States)

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings.

  10. Cloning and characterization of prunus serotina AGAMOUS, a putative flower homeotic gene

    Science.gov (United States)

    Xiaomei Liu; Joseph Anderson; Paula Pijut

    2010-01-01

    Members of the AGAMOUS subfamily of MADS-box transcription factors play an important role in regulating the development of reproductive organs in flowering plants. To help understand the mechanism of floral development in black cherry (Prunus serotina), PsAG (a putative flower homeotic identity gene) was isolated...

  11. Biochar enhances yield and quality of tomato under reduced irrigation

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Li, Guitong; Andersen, Mathias Neumann

    2014-01-01

    tBiochar is an amendment that can be used for enhancing soil water storage which may increase cropproductivity. The objective of this study was to investigate the effects of biochar on physiology, yield andquality of tomato under different irrigation regimes. From early flowering to fruit maturity...... stages, theplants were subjected to full irrigation (FI), deficit irrigation (DI) and partial root-zone drying irrigation(PRD) and two levels of biochar (0% and 5% by weight). In FI, the plants were irrigated daily to pot waterholding capacity while in DI and PRD, 70% of FI was irrigated on either...... the whole or one side of the pots,respectively. In PRD, irrigation was switched between sides when the soil water content of the dry sidedecreased to 15%. The results showed that addition of biochar increased the soil moisture contents in DIand PRD, which consequently improved physiology, yield, and quality...

  12. Say it with flowers: Flowering acceleration by root communication

    OpenAIRE

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs i...

  13. DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species

    KAUST Repository

    Salhi, Adil; Negrã o, Só nia; Essack, Magbubah; Morton, Mitchell J. L.; Bougouffa, Salim; Mohamad Razali, Rozaimi; Radovanovic, Aleksandar; Marchand, Benoit; Kulmanov, Maxat; Hoehndorf, Robert; Tester, Mark A.; Bajic, Vladimir B.

    2017-01-01

    Tomato is the most economically important horticultural crop used as a model to study plant biology and particularly fruit development. Knowledge obtained from tomato research initiated improvements in tomato and, being transferrable to other such economically important crops, has led to a surge of tomato-related research and published literature. We developed DES-TOMATO knowledgebase (KB) for exploration of information related to tomato. Information exploration is enabled through terms from 26 dictionaries and combination of these terms. To illustrate the utility of DES-TOMATO, we provide several examples how one can efficiently use this KB to retrieve known or potentially novel information. DES-TOMATO is free for academic and nonprofit users and can be accessed at http://cbrc.kaust.edu.sa/des_tomato/, using any of the mainstream web browsers, including Firefox, Safari and Chrome.

  14. DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species

    KAUST Repository

    Salhi, Adil

    2017-07-14

    Tomato is the most economically important horticultural crop used as a model to study plant biology and particularly fruit development. Knowledge obtained from tomato research initiated improvements in tomato and, being transferrable to other such economically important crops, has led to a surge of tomato-related research and published literature. We developed DES-TOMATO knowledgebase (KB) for exploration of information related to tomato. Information exploration is enabled through terms from 26 dictionaries and combination of these terms. To illustrate the utility of DES-TOMATO, we provide several examples how one can efficiently use this KB to retrieve known or potentially novel information. DES-TOMATO is free for academic and nonprofit users and can be accessed at http://cbrc.kaust.edu.sa/des_tomato/, using any of the mainstream web browsers, including Firefox, Safari and Chrome.

  15. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development.

    Science.gov (United States)

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir.

  16. Tomato plants use non-enzymatic antioxidant pathways to cope with moderate UV-A/B irradiation: A contribution to the use of UV-A/B in horticulture.

    Science.gov (United States)

    Mariz-Ponte, N; Mendes, R J; Sario, S; Ferreira de Oliveira, J M P; Melo, P; Santos, C

    2018-02-01

    Plants developed receptors for solar UV-A/B radiation, which regulate a complex network of functions through the plant's life cycle. However, greenhouse grown crops, like tomato, are exposed to strongly reduced UV radiation, contrarily to their open-field counterparts. A new paradigm of modern horticulture is to supplement adequate levels of UV to greenhouse cultures, inducing a positive mild stress necessary to stimulate oxidative stress pathways and antioxidant mechanisms. Protected cultures of Solanum (cv MicroTom) were supplemented with moderate UV-A (1h and 4h) and UV-B (1min and 5min) doses during the flowering/fruiting period. After 30days, flowering/fruit ripening synchronization were enhanced, paralleled by the upregulation of blue/UV-A and UV-B receptors' genes cry1a and uvr8. UV-B caused moreover an increase in the expression of hy5, of HY5 repressor cop1 and of a repressor of COP1, uvr8. While all UV-A/B conditions increased SOD activity, increases of the generated H 2 O 2 , as well as lipid peroxidation and cell mebrane disruption, were minimal. However, the activity of antioxidant enzymes downstream from SOD (CAT, APX, GPX) was not significant. These results suggest that the major antioxidant pathways involve phenylpropanoid compounds, which also have an important role in UV screening. This hypothesis was confirmed by the increase of phenolic compounds and by the upregulation of chs and fls, coding for CHS and FLS enzymes involved in the phenylpropanoid synthesis. Overall, all doses of UV-A or UV-B were beneficial to flowering/fruiting but lower UV-A/B doses induced lower redox disorders and were more effective in the fruiting process/synchronization. Considering the benefits observed on flowering/fruiting, with minimal impacts in the vegetative part, we demonstrate that both UV-A/B could be used in protected tomato horticulture systems. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X.

    Science.gov (United States)

    Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong

    2015-06-01

    The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.

  18. Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (Solanum lycopersicum) fruit peel.

    Science.gov (United States)

    Wada, Takuji; Onishi, Mio; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2015-01-01

    In Arabidopsis thaliana, the R3-type MYB transcription factor CAPRICE (CPC) and bHLH transcription factor GLABRA3 (GL3) cooperatively regulate epidermal cell differentiation. CPC and GL3 are involved in root-hair differentiation, trichome initiation and anthocyanin biosynthesis in Arabidopsis epidermal cells. Previously, we showed that CPC and GL3 also influence anthocyanin accumulation in tomato. Introduction of 35S::CPC into tomato significantly inhibits anthocyanin accumulation in cotyledons, leaves and stems. In contrast, introduction of GL3::GL3 strongly enhances anthocyanin accumulation in cotyledons, leaves and stems of tomato. In this study, we investigated the effect of CPC and GL3 on anthocyanin accumulation in the epidermis of tomato fruit. Unlike the results with vegetative tissues, overexpression of CPC and GL3 did not influence anthocyanin biosynthesis in tomato fruit peel.

  19. The development of tomatillo (Physalis ixocarpa Brot. in Polish conditions. II. Flowering and fruiting

    Directory of Open Access Journals (Sweden)

    Leszek S. Jankiewicz

    2013-12-01

    Full Text Available The reproductive development of tomatillo (husk tomato was investigated in the conditions of central Poland. The developmental cycle of tomatillo in Poland lasts 20-23 weeks, including 6 weeks in a greenhouse or a tunnel and is longer than in Mexico (15 weeks. The plant grows well in Poland and is fruiting aboundantly. The cv. Rendidora B1 was early fruiting and sensitive to drought so it should be cultivated in a garden. Cvs Bujna and Antocyjanowa were medium late or late and suitable for open-field cultivation. Fruit development lasts about 6 weeks. Fruiting was concentrated on the apparent lateral branches of the 1st and 2nd order during the large part of a vegetative season. Among the abscised generative organs predominated flowers and at the end of vegetative season the flower buds. The maximum abscission of flower buds and flowers took place about 2-4 weeks after the most intensive flowering and fruit set. The fruits of many individuals are easily cracking. After being abscised they are attacked frequently by Botrytis sp.

  20. Competitiveness of tomato production in punjab, pakistan

    International Nuclear Information System (INIS)

    Akhtar, W.; Qureshi, A.H.; Khan, M.A.

    2016-01-01

    The study measures competitiveness at farm level and economic efficiency at country level of tomato production in relation to tomato trade by using Policy Analysis Matrix (PAM) framework in Punjab, Pakistan. The province was divided into two tomato production regions i.e., Central and Southern Punjab for analysis purpose under importable scenario by using import parity price. Results of PAM model revealed that tomato production in both regions of Punjab has competitiveness under prevailing market situation as indicated by positive private profitability and private cost ratio (PCR) which is less than 1. Competitiveness difference in two regions indicated that Central Punjab has more competitiveness at farm level in tomato production. Economic efficiency results i.e. Domestic Resource Cost (DRC) ratio remained 0.39 and 0.51 in Central and Southern Punjab, respectively with positive social profitability indicating strong comparative advantage under importable scenario. The above results implied that Central Punjab has greater economic efficiency than Southern Punjab in domestic resources use for production of tomato as import substitute commodity. Results of Nominal Protection Coefficient (NPC) and Effective Protection Coefficient (EPC) indicated that combine effects of policies on output and tradable input market did not pass any protection to tomato farmers in the study area. Net effect of policy or market failure is reducing the profitability of tomato producers at farm level which indicates lack of motivation from policies for farmers to expand tomato production as import substitute crop. Present study recommended competitiveness and economic efficiency analysis in other tomato producing regions of the country for year round tomato supply on the basis of resource efficiency and to curtail tomato imports to save the precious foreign exchange. To enhance the competitiveness there is need to increase farmer's incentives through increase of farm level price up to

  1. INFLUENCE OF BIOLOGICALLY ACTIVE SUBSTANCES ON TOMATO YIELD AND QUALITY

    OpenAIRE

    G. I. Yarovoy; V. I. Kuzmenko

    2017-01-01

    The study of influence of growth regulators and biopreparations affecting on decrease of disease development, increase of yield capacity and final product quality was carried out in tomato. It was shown that all preparations were effective in decreasing the process of diseases development and increasing the yield capacity and product quality. The studies were carried out in the experimental fields at the Institute of Vegetables and Melons NAAS, in Ukraine in 2011-2012. The field studies were ...

  2. The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato

    Directory of Open Access Journals (Sweden)

    Imène Hichri

    2017-07-01

    Full Text Available Salinity threatens productivity of economically important crops such as tomato (Solanum lycopersicum L.. WRKY transcription factors appear, from a growing body of knowledge, as important regulators of abiotic stresses tolerance. Tomato SlWRKY3 is a nuclear protein binding to the consensus CGTTGACC/T W box. SlWRKY3 is preferentially expressed in aged organs, and is rapidly induced by NaCl, KCl, and drought. In addition, SlWRKY3 responds to salicylic acid, and 35S::SlWRKY3 tomatoes showed under salt treatment reduced contents of salicylic acid. In tomato, overexpression of SlWRKY3 impacted multiple aspects of salinity tolerance. Indeed, salinized (125 mM NaCl, 20 days 35S::SlWRKY3 tomato plants displayed reduced oxidative stress and proline contents compared to WT. Physiological parameters related to plant growth (shoot and root biomass and photosynthesis (stomatal conductance and chlorophyll a content were retained in transgenic plants, together with lower Na+ contents in leaves, and higher accumulation of K+ and Ca2+. Microarray analysis confirmed that many stress-related genes were already up-regulated in transgenic tomatoes under optimal conditions of growth, including genes coding for antioxidant enzymes, ion and water transporters, or plant defense proteins. Together, these results indicate that SlWRKY3 is an important regulator of salinity tolerance in tomato.

  3. Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis.

    Science.gov (United States)

    Trivellini, Alice; Cocetta, Giacomo; Hunter, Donald A; Vernieri, Paolo; Ferrante, Antonio

    2016-10-01

    Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Silencing SlMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion.

    Science.gov (United States)

    Wang, Yunshu; Hu, Zongli; Zhang, Jianling; Yu, XiaoHui; Guo, Jun-E; Liang, Honglian; Liao, Changguang; Chen, Guoping

    2018-02-19

    Mediator complex, a conserved multi-protein, is necessary for controlling RNA polymerase II (Pol II) transcription in eukaryotes. Given little is known about them in tomato, a tomato Mediator subunit 18 gene was isolated and named SlMED18. To further explore the function of SlMED18, the transgenic tomato plants targeting SlMED18 by RNAi-mediated gene silencing were generated. The SlMED18-RNAi lines exhibited multiple developmental defects, including smaller size and slower growth rate of plant and significantly smaller compound leaves. The contents of endogenous bioactive GA 3 in SlMED18 silenced lines were slightly less than that in wild type. Furthermore, qRT-PCR analysis indicated that expression of gibberellins biosynthesis genes such as SlGACPS and SlGA20x2, auxin transport genes (PIN1, PIN4, LAX1 and LAX2) and several key regulators, KNOX1, KNOX2, PHAN and LANCEOLATE(LA), which involved in the leaf morphogenesis were significantly down-regulated in SlMED18-RNAi lines. These results illustrated that SlMED18 plays an essential role in regulating plant internode elongation and leaf expansion in tomato plants and it acts as a key positive regulator of gibberellins biosynthesis and signal transduction as well as auxin proper transport signalling. These findings are the basis for understanding the function of the individual Mediator subunits in tomato.

  5. Hormones and tomato seed germination

    NARCIS (Netherlands)

    Liu, Y.

    1996-01-01

    Using GA- and ABA-deficient mutants, exogenous gibberellins (GAs), abscisic acid (ABA) and osmoticum, we studied the roles of GAs and ABA in the induction of cell cycle activities, internal free space formation and changes in water relations during seed development and imbibition in tomato. First of

  6. Effect of Dry Season Tomato Farming on Poverty Alleviation among ...

    African Journals Online (AJOL)

    Effect of Dry Season Tomato Farming on Poverty Alleviation among Women ... their major sources of resources for tomato farming, marketing and marketing ... and the effect of dry season tomato farming as strategy for poverty reduction; ...

  7. The tomato sauce making process affects the bioaccessibility and bioavailability of tomato phenolics: a pharmacokinetic study.

    Science.gov (United States)

    Martínez-Huélamo, Miriam; Tulipani, Sara; Estruch, Ramón; Escribano, Elvira; Illán, Montserrat; Corella, Dolores; Lamuela-Raventós, Rosa M

    2015-04-15

    Tomato sauce is the most commonly consumed processed tomato product worldwide, but very little is known about how the manufacturing process may affect the phenolic composition and bioavailability after consumption. In a prospective randomised, cross-over intervention study, we analysed the plasma and urinary levels of tomato phenolic compounds and their metabolites after acute consumption of raw tomatoes and tomato sauce, enriched or not with refined olive oil during production. Respectively, eleven and four phenolic metabolites were found in urine and plasma samples. The plasma concentration and urinary excretion of naringenin glucuronide were both significantly higher after the consumption of tomato sauce than raw tomatoes. The results suggest that the mechanical and thermal treatments during tomato sauce manufacture may help to deliver these potentially bioactive phenolics from the food matrix more effectively than the addition of an oil component, thus increasing their bioavailability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Generation of gamma irradiation and EMS-induced mutant lines of the H7996 tomato (Solanum lycopersicum L.)

    International Nuclear Information System (INIS)

    Canama, Alma O.; Galvez, Hayde F.; Tongson, Eden Jane U.; Quilloy, Reynaldo B.; Hautea, Desiree M.

    2010-01-01

    Tomato (L.) is one of the most important vegetable crops grown worldwide for the fresh vegetable market and food processing industry. With the completion of the genome-sequencing projects in various crops, the major challenge will be determine the gene function. One approach is to generate and to analyze mutant phenotypes. The paper reports the generation of gamma-irradiated and ethy methane sulfonate (EMS)-treated mutant populations, identification and phenotypic characterization of dominant and visible mutations in tomato mutant lines. Mutant populations of tomato H7996 were created using physical (cobalt 60 gamma ray) and chemical EMS mutagens. Generally, based on high-throughput phenotypic characterization, mutations were observed on the plant habit, size, morphology, leaf and flower color and morphology and fruit characteristics. Specifically, the most common dominant and visible mutations noted in the M 1 generation were monopodial, compact, short internodes, multi-branch plant type, light yellow and ghost leaf coloration, tiny and long pedicel leaf morphology and small or short plant size. In the M2 generation, homogeneous and segregating M 2 families were selected to constitute the core set of visible tomato mutants. Initial bacterial wilt resistance (BWR) gene knockouts were also identified. The mutant lines will be used as a rich source of genetic materials for breeding and functional genomics of tomato. (author)

  9. Screening of tomato varieties for fruit tree based Agroforestry system

    OpenAIRE

    J. Hossain

    2014-01-01

    An experiment was conducted with four tomato varieties under a six year old orchard was accomplished at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) research farm during October 2011 to April 2012. The experiment was laid out in a Randomized Complete Block Design with three replications. Four tomato varieties (BARI Tomato 2, BARI Tomato 8, BARI Tomato 14 and BARI Tomato 15) were grown under guava, mango, olive and control. Results showed that light availability in co...

  10. Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways

    NARCIS (Netherlands)

    Ament, K.; Schie, C.C.; Bouwmeester, H.J.; Haring, M.A.; Schuurink, R.C.

    2006-01-01

    Two cDNAs encoding geranylgeranyl pyrophosphate (GGPP) synthases from tomato (Lycopersicon esculentum) have been cloned and functionally expressed in Escherichia coli. LeGGPS1 was predominantly expressed in leaf tissue and LeGGPS2 in ripening fruit and flower tissue. LeGGPS1 expression was induced

  11. Stamen-derived bioactive gibberellin is essential for male flower development of Cucurbita maxima L.

    Science.gov (United States)

    Pimenta Lange, Maria João; Knop, Nicole; Lange, Theo

    2012-04-01

    Gibberellin (GA) signalling during pumpkin male flower development is highly regulated, including biosynthetic, perception, and transduction pathways. GA 20-oxidases, 3-oxidases, and 2-oxidases catalyse the final part of GA synthesis. Additionally, 7-oxidase initiates this part of the pathway in some cucurbits including Cucurbita maxima L. (pumpkin). Expression patterns for these GA-oxidase-encoding genes were examined by competitive reverse transcription-PCR (RT-PCR) and endogenous GA levels were determined during pumpkin male flower development. In young flowers, GA20ox3 transcript levels are high in stamens, followed by high levels of the GA precursor GA(9). Later, just before flower opening, transcript levels for GA3ox3 and GA3ox4 increase in the hypanthium and stamens, respectively. In the stamen, following GA3ox4 expression, bioactive GA(4) levels rise dramatically. Accordingly, catabolic GA2ox2 and GA2ox3 transcript levels are low in developing flowers, and increase in mature flowers. Putative GA receptor GID1b and DELLA repressor GAIPb transcript levels do not change in developing flowers, but increase sharply in mature flowers. Emasculation arrests floral development completely and leads to abscission of premature flowers. Application of GA(4) (but not of its precursors GA(12)-aldehyde or GA(9)) restores normal growth of emasculated flowers. These results indicate that de novo GA(4) synthesis in the stamen is under control of GA20ox3 and GA3ox4 genes just before the rapid flower growth phase. Stamen-derived bioactive GA is essential and sufficient for male flower development, including the petal and the pedicel growth.

  12. Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae.

    Science.gov (United States)

    McKeown, Meghan; Schubert, Marian; Preston, Jill C; Fjellheim, Siri

    2017-09-01

    Flowering time is a carefully regulated trait controlled primarily through the action of the central genetic regulator, FLOWERING LOCUS T (FT). Recently it was demonstrated that a microRNA, miR5200, targets the end of the second exon of FT under short-day photoperiods in the grass subfamily Pooideae, thus preventing FT transcripts from reaching threshold levels under non-inductive conditions. Pooideae are an interesting group in that they rapidly diversified from the tropics into the northern temperate region during a major global cooling event spanning the Eocene-Oligocene transition. We hypothesize that miR5200 photoperiod-sensitive regulation of Pooideae flowering time networks assisted their transition into northern seasonal environments. Here, we test predictions derived from this hypothesis that miR5200, originally found in bread wheat and later identified in Brachypodium distachyon, (1) was present in the genome of the Pooideae common ancestor, (2) is transcriptionally regulated by photoperiod, and (3) is negatively correlated with FT transcript abundance, indicative of miR5200 regulating FT. Our results demonstrate that miR5200 did evolve at or around the base of Pooideae, but only acquired photoperiod-regulated transcription within the Brachypodium lineage. Based on expression profiles and previous data, we posit that the progenitor of miR5200 was co-regulated with FT by an unknown mechanism. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Anti-atherosclerotic effects of tomatoes

    Directory of Open Access Journals (Sweden)

    Hidekatsu Yanai

    2017-06-01

    Full Text Available Tomatoes are rich in lycopene, which causes the red coloring of tomatoes. Several reports have suggested lycopene plays a role in the prevention of cardiovascular diseases. In this study, we systematically reviewed the interventional studies using tomatoes or tomato products to understandtheanti-atherosclerotic effects of the tomatoas a functional food. We found that a significantnumber of interventional studies reportedtheanti-atherosclerotic effects of tomatoes, includinganti-obesity effects, hypotensiveeffects, improvement of lipid/glucose metabolismand endothelial function, anti-oxidative and anti-inflammatory effect, and anti-platelet effect; however, the anti-platelet effect was disagreed uponby some studies. Furthermore, we discoveredcooking methods significantlyaffect anti-atherosclerotic effects of tomatoes.

  14. Predicting the presence of whiteflies and tomato yellow leaf curl virus in Florida tomato fields

    Science.gov (United States)

    Florida is one of the leading states for production of fresh market tomatoes. Production is severely affected by Tomato yellow leaf curl virus (TYLCV). The objective of this study was to identify landscape and climatic factors that drive whitefly populations and TYLCV incidence in commercial tomato ...

  15. Tomato juices and tomato juice concentrates : a study of factors contributing to their gross viscosity

    NARCIS (Netherlands)

    Heutink, R.

    1986-01-01

    The gross viscosity of tomato juice and tomato juice concentrates was found to be determined primarily by the water insoluble solids (WIS) content. The serum viscosity did not contribute to gross viscosity. The WIS consisted of whole tomato cells, vascular bundles and skin fragments. In general the

  16. Redox proteomics of tomato in response to Pseudomonas syringae infection

    Science.gov (United States)

    Balmant, Kelly Mayrink; Parker, Jennifer; Yoo, Mi-Jeong; Zhu, Ning; Dufresne, Craig; Chen, Sixue

    2015-01-01

    Unlike mammals with adaptive immunity, plants rely on their innate immunity based on pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) for pathogen defense. Reactive oxygen species, known to play crucial roles in PTI and ETI, can perturb cellular redox homeostasis and lead to changes of redox-sensitive proteins through modification of cysteine sulfhydryl groups. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, little is known about redox proteins and how they function in PTI and ETI. In this study, cysTMT proteomics technology was used to identify similarities and differences of protein redox modifications in tomato resistant (PtoR) and susceptible (prf3) genotypes in response to Pseudomonas syringae pv tomato (Pst) infection. In addition, the results of the redox changes were compared and corrected with the protein level changes. A total of 90 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, biosynthesis of cysteine, sucrose and brassinosteroid, cell wall biogenesis, polysaccharide/starch biosynthesis, cuticle development, lipid metabolism, proteolysis, tricarboxylic acid cycle, protein targeting to vacuole, and oxidation–reduction. This inventory of previously unknown protein redox switches in tomato pathogen defense lays a foundation for future research toward understanding the biological significance of protein redox modifications in plant defense responses. PMID:26504582

  17. Tolerance of edible flowers to gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Amanda C.R.; Araujo, Michel M.; Costa, Helbert S.F.; Almeida, Mariana C.; Villavicencio, Anna Lucia C.H., E-mail: ackoike@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil)

    2011-07-01

    People have been eating flowers and using them in culinary creations for hundreds of years. Edible flowers are increasingly being used in meals as an ingredient in salads or garnish, entrees, drinks and desserts. The irradiation process is an alternative method that can be used in disinfestation of food and flowers, using doses that do not damage the product. The sensitivity of flowers to irradiation varies from species to species. In the present research was irradiated with doses up to 1 kGy some edible flowers to examine their physical tolerance to gamma-rays. Furthermore, high doses gamma irradiation causes petal withering, browning process and injury in edible flowers. (author)

  18. Tolerance of edible flowers to gamma irradiation

    International Nuclear Information System (INIS)

    Koike, Amanda C.R.; Araujo, Michel M.; Costa, Helbert S.F.; Almeida, Mariana C.; Villavicencio, Anna Lucia C.H.

    2011-01-01

    People have been eating flowers and using them in culinary creations for hundreds of years. Edible flowers are increasingly being used in meals as an ingredient in salads or garnish, entrees, drinks and desserts. The irradiation process is an alternative method that can be used in disinfestation of food and flowers, using doses that do not damage the product. The sensitivity of flowers to irradiation varies from species to species. In the present research was irradiated with doses up to 1 kGy some edible flowers to examine their physical tolerance to gamma-rays. Furthermore, high doses gamma irradiation causes petal withering, browning process and injury in edible flowers. (author)

  19. Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiao Luo

    Full Text Available Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG. Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time.

  20. Metatranscriptome Analysis of Fig Flowers Provides Insights into Potential Mechanisms for Mutualism Stability and Gall Induction.

    Directory of Open Access Journals (Sweden)

    Ellen O Martinson

    Full Text Available A striking property of the mutualism between figs and their pollinating wasps is that wasps consistently oviposit in the inner flowers of the fig syconium, which develop into galls that house developing larvae. Wasps typically do not use the outer ring of flowers, which develop into seeds. To better understand differences between gall and seed flowers, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, we found significant differences in gene expression between gall- and seed flowers in receptive syconia prior to oviposition. In particular, transcripts assigned to flavonoids and carbohydrate metabolism were significantly up-regulated in gall flowers relative to seed flowers. In response to oviposition, gall flowers significantly up-regulated the expression of chalcone synthase, which previously has been connected to gall formation in other plants. We propose several genes encoding proteins with signal peptides or associations with venom of other Hymenoptera as candidate genes for gall initiation or growth. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides insight into a possible stability mechanism in the ancient fig-fig wasp association.

  1. Ectopic Expression of a WRKY Homolog from Glycine soja Alters Flowering Time in Arabidopsis

    Science.gov (United States)

    Liu, Baohui; Zhu, Dan; Bai, Xi; Cai, Hua; Ji, Wei; Cao, Lei; Wu, Jing; Wang, Mingchao; Ding, Xiaodong; Zhu, Yanming

    2013-01-01

    Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO) and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG). Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time. PMID:23991184

  2. Developmental changes in the metabolic network of snapdragon flowers.

    Directory of Open Access Journals (Sweden)

    Joëlle K Muhlemann

    Full Text Available Evolutionary and reproductive success of angiosperms, the most diverse group of land plants, relies on visual and olfactory cues for pollinator attraction. Previous work has focused on elucidating the developmental regulation of pathways leading to the formation of pollinator-attracting secondary metabolites such as scent compounds and flower pigments. However, to date little is known about how flowers control their entire metabolic network to achieve the highly regulated production of metabolites attracting pollinators. Integrative analysis of transcripts and metabolites in snapdragon sepals and petals over flower development performed in this study revealed a profound developmental remodeling of gene expression and metabolite profiles in petals, but not in sepals. Genes up-regulated during petal development were enriched in functions related to secondary metabolism, fatty acid catabolism, and amino acid transport, whereas down-regulated genes were enriched in processes involved in cell growth, cell wall formation, and fatty acid biosynthesis. The levels of transcripts and metabolites in pathways leading to scent formation were coordinately up-regulated during petal development, implying transcriptional induction of metabolic pathways preceding scent formation. Developmental gene expression patterns in the pathways involved in scent production were different from those of glycolysis and the pentose phosphate pathway, highlighting distinct developmental regulation of secondary metabolism and primary metabolic pathways feeding into it.

  3. Analysis of tomato plasma membrane H(+)-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species.

    Science.gov (United States)

    Liu, Junli; Liu, Jianjian; Chen, Aiqun; Ji, Minjie; Chen, Jiadong; Yang, Xiaofeng; Gu, Mian; Qu, Hongye; Xu, Guohua

    2016-10-01

    In plants, the plasma membrane H(+)-ATPase (HA) is considered to play a crucial role in regulating plant growth and respoding to environment stresses. Multiple paralogous genes encoding different isozymes of HA have been identified and characterized in several model plants, while limited information of the HA gene family is available to date for tomato. Here, we describe the molecular and expression features of eight HA-encoding genes (SlHA1-8) from tomato. All these genes are interrupted by multiple introns with conserved positions. SlHA1, 2, and 4 were widely expressed in all tissues, while SlHA5, 6, and 7 were almost only expressed in flowers. SlHA8, the transcripts of which were barely detectable under normal or nutrient-/salt-stress growth conditions, was strongly activated in arbuscular mycorrhizal (AM) fungal-colonized roots. Extreme lack of SlHA8 expression in M161, a mutant defective to AM fungal colonization, provided genetic evidence towards the dependence of its expression on AM symbiosis. A 1521-bp SlHA8 promoter could direct the GUS reporter expression specifically in colonized cells of transgenic tobacco, soybean, and rice mycorrhizal roots. Promoter deletion assay revealed a 223-bp promoter fragment of SlHA8 containing a variant of AM-specific cis-element MYCS (vMYCS) sufficient to confer the AM-induced activity. Targeted deletion of this motif in the corresponding promoter region causes complete abolishment of GUS staining in mycorrhizal roots. Together, these results lend cogent evidence towards the evolutionary conservation of a potential regulatory mechanism mediating the activation of AM-responsive HA genes in diverse mycorrhizal plant species.

  4. Evolutionary Co-Option of Floral Meristem Identity Genes for Patterning of the Flower-Like Asteraceae Inflorescence1

    Science.gov (United States)

    Broholm, Suvi K.; Tähtiharju, Sari

    2016-01-01

    The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems. PMID:27382139

  5. Evolutionary Co-Option of Floral Meristem Identity Genes for Patterning of the Flower-Like Asteraceae Inflorescence.

    Science.gov (United States)

    Zhao, Yafei; Zhang, Teng; Broholm, Suvi K; Tähtiharju, Sari; Mouhu, Katriina; Albert, Victor A; Teeri, Teemu H; Elomaa, Paula

    2016-09-01

    The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems. © 2016 American Society of Plant Biologists. All rights reserved.

  6. Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways.

    Science.gov (United States)

    Jogaiah, Sudisha; Abdelrahman, Mostafa; Tran, Lam-Son Phan; Ito, Shin-Ichi

    2018-04-01

    In the present study, we investigated the role of Trichoderma virens (TriV_JSB100) spores or cell-free culture filtrate in the regulation of growth and activation of the defence responses of tomato (Solanum lycopersicum) plants against Fusarium oxysporum f. sp. lycopersici by the development of a biocontrol-plant-pathogen interaction system. Two-week-old tomato seedlings primed with TriV_JSB100 spores cultured on barley grains (BGS) or with cell-free culture filtrate (CF) were inoculated with Fusarium pathogen under glasshouse conditions; this resulted in significantly lower disease incidence in tomato Oogata-Fukuju plants treated with BGS than in those treated with CF. To dissect the pathways associated with this response, jasmonic acid (JA) and salicylic acid (SA) signalling in BGS- and CF-induced resistance was evaluated using JA- and SA-impaired tomato lines. We observed that JA-deficient mutant def1 plants were susceptible to Fusarium pathogen when they were treated with BGS. However, wild-type (WT) BGS-treated tomato plants showed a higher JA level and significantly lower disease incidence. SA-deficient mutant NahG plants treated with CF were also found to be susceptible to Fusarium pathogen and displayed low SA levels, whereas WT CF-treated tomato plants exhibited moderately lower disease levels and substantially higher SA levels. Expression of the JA-responsive defensin gene PDF1 was induced in WT tomato plants treated with BGS, whereas the SA-inducible pathogenesis-related protein 1 acidic (PR1a) gene was up-regulated in WT tomato plants treated with CF. These results suggest that TriV_JSB100 BGS and CF differentially induce JA and SA signalling cascades for the elicitation of Fusarium oxysporum resistance in tomato. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  7. Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (solanum lycopersicum) fruit peel

    OpenAIRE

    Wada, Takuji; Onishi, Mio; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2015-01-01

    In Arabidopsis thaliana, the R3-type MYB transcription factor CAPRICE (CPC) and bHLH transcription factor GLABRA3 (GL3) cooperatively regulate epidermal cell differentiation. CPC and GL3 are involved in root-hair differentiation, trichome initiation and anthocyanin biosynthesis in Arabidopsis epidermal cells. Previously, we showed that CPC and GL3 also influence anthocyanin accumulation in tomato. Introduction of 35S::CPC into tomato significantly inhibits anthocyanin accumulation in cotyledo...

  8. Determination of pesticide residues in tomato using dispersive solid-phase extraction and gas chromatography/ion trap mass spectrometry

    OpenAIRE

    Andrade, Graziela C. R. Moura; Freguglia, Rosana M. O; Furlani, Regina P. Z; Torres, Nádia H; Tornisielo, Valdemar L

    2011-01-01

    Tomato crop is frequently damaged by diseases, pests and abiotic stresses, resulting in lower yielding and loss of fruit quality. The intensive use of pesticides in tomatoes without observation of good agriculture practices and regulations has caused great concern with a probable final product contamination. The QuEChERS method of sample preparation was used for the determination of six pesticides (buprofezin, carbofuran, endosulfan-α, endosulfan-β, endosulfan sulfate and monocrotop...

  9. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles.

    Science.gov (United States)

    Aiese Cigliano, Riccardo; Sanseverino, Walter; Cremona, Gaetana; Ercolano, Maria R; Conicella, Clara; Consiglio, Federica M

    2013-01-28

    Histone post-translational modifications (HPTMs) including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs) in tomato are sketchy. Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs), 15 histone deacetylases (HDACs), 52 histone methytransferases (HMTs) and 26 histone demethylases (HDMs), and compared them with those detected in Arabidopsis (Arabidopsis thaliana), maize (Zea mays) and rice (Oryza sativa) orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs) and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.

  10. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles

    Directory of Open Access Journals (Sweden)

    Aiese Cigliano Riccardo

    2013-01-01

    Full Text Available Abstract Background Histone post-translational modifications (HPTMs including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs in tomato are sketchy. Results Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs, 15 histone deacetylases (HDACs, 52 histone methytransferases (HMTs and 26 histone demethylases (HDMs, and compared them with those detected in Arabidopsis (Arabidopsis thaliana, maize (Zea mays and rice (Oryza sativa orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. Conclusions In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.

  11. Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis

    KAUST Repository

    Kim, Dongjin; Abdelaziz, Mohamad E.; Ntui, Valentine Otang; Guo, Xiujie; Al-Babili, Salim

    2017-01-01

    Piriformospora indica is an endophytic fungus colonizing roots of a wide variety of plants. Previous studies showed that P. indica promotes early flowering and plant growth in the medicinal plant Coleus forskohlii. To determine the impact of P. indica on flowering time in Arabidopsis, we co-cultivated the plants with P. indica under long day condition. P. indica inoculated Arabidopsis plants displayed significant early flowering phenotype. qRT-PCR analysis of colonized plants revealed an up-regulation of flowering regulatory (FLOWERING LOCUS T, LEAFY, and APETALA1) and gibberellin biosynthetic (Gibberellin 20-Oxidase2, Gibberellin 3-Oxidase1 and Gibberellin requiring1) genes, while the flowering-repressing gene FLOWERING LOCUS C was down regulated. Quantification of gibberellins content showed that the colonization with P. indica caused an increase in GA4 content. Compared to wild-type plants, inoculation of the Arabidopsis ga5 mutant affected in gibberellin biosynthetic gene led to less pronounced changes in the expression of genes regulating flowering and to a lower increase in GA4 content. Taken together, our data indicate that P. indica promotes early flowering in Arabidopsis likely by increasing gibberellin content.

  12. Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis

    KAUST Repository

    Kim, Dongjin

    2017-06-28

    Piriformospora indica is an endophytic fungus colonizing roots of a wide variety of plants. Previous studies showed that P. indica promotes early flowering and plant growth in the medicinal plant Coleus forskohlii. To determine the impact of P. indica on flowering time in Arabidopsis, we co-cultivated the plants with P. indica under long day condition. P. indica inoculated Arabidopsis plants displayed significant early flowering phenotype. qRT-PCR analysis of colonized plants revealed an up-regulation of flowering regulatory (FLOWERING LOCUS T, LEAFY, and APETALA1) and gibberellin biosynthetic (Gibberellin 20-Oxidase2, Gibberellin 3-Oxidase1 and Gibberellin requiring1) genes, while the flowering-repressing gene FLOWERING LOCUS C was down regulated. Quantification of gibberellins content showed that the colonization with P. indica caused an increase in GA4 content. Compared to wild-type plants, inoculation of the Arabidopsis ga5 mutant affected in gibberellin biosynthetic gene led to less pronounced changes in the expression of genes regulating flowering and to a lower increase in GA4 content. Taken together, our data indicate that P. indica promotes early flowering in Arabidopsis likely by increasing gibberellin content.

  13. Distribution of 14C photoassimilated in function of nightly temperature and of the gibberellic acid application during the antese, in two tomatoes' cultivars

    International Nuclear Information System (INIS)

    Pilatti, R.A.

    1981-01-01

    The effects of the nightly temperature of the airy part, as well as the gibberelic acid application in the leave and in the plant inflorescence, in the distribution of the 14 C photo assimilated in two tomato cultivars are studied: one of them with determined habit (Marmande) and the other one with indeterminated habit (Platense), five days after the 'antese' of the first flowers of the first racime's flower. The radicular temperature was stable day and night in 18 0 C. (L.M.J.) [pt

  14. Flowers and Landscape by Serendipity.

    Science.gov (United States)

    Pippin, Sandi

    2003-01-01

    Describes an art lesson in which students sketch drawings of flowers and use watercolor paper and other materials to paint a landscape. Explains that the students also learn about impressionism in this lesson. Discusses how the students prepare the paper and create their artwork. (CMK)

  15. Thrips (Thysanoptera) of coffee flowers

    Science.gov (United States)

    A survey of thrips (Thysanoptera) associated with coffee flowers was conducted in coffee plantations in Chiapas, Mexico. The main objectives were to identify them and to determine whether they were carrying coffee pollen grains. A total of 40 thrips species in 22 genera were identified. The most com...

  16. Pyrethrum flowers and pyrethroid insecticides.

    OpenAIRE

    Casida, J E

    1980-01-01

    The natural pyrethrins from the daisy-like flower, Tanacetum or Chrysanthemum cinerariifolium, are nonpersistent insecticides of low toxicity to mammals. Synthetic analogs or pyrethroids, evolved from the natural compounds by successive isosteric modifications, are more potent and stable and are the newest important class of crop protection chemicals. They retain many of the favorable properties of the pyrethrins.

  17. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion.

    Science.gov (United States)

    Apel, Wiebke; Bock, Ralph

    2009-09-01

    Carotenoids are essential pigments of the photosynthetic apparatus and an indispensable component of the human diet. In addition to being potent antioxidants, they also provide the vitamin A precursor beta-carotene. In tomato (Solanum lycopersicum) fruits, carotenoids accumulate in specialized plastids, the chromoplasts. How the carotenoid biosynthetic pathway is regulated and what limits total carotenoid accumulation in fruit chromoplasts is not well understood. Here, we have introduced the lycopene beta-cyclase genes from the eubacterium Erwinia herbicola and the higher plant daffodil (Narcissus pseudonarcissus) into the tomato plastid genome. While expression of the bacterial enzyme did not strongly alter carotenoid composition, expression of the plant enzyme efficiently converted lycopene, the major storage carotenoid of the tomato fruit, into provitamin A (beta-carotene). In green leaves of the transplastomic tomato plants, more lycopene was channeled into the beta-branch of carotenoid biosynthesis, resulting in increased accumulation of xanthophyll cycle pigments and correspondingly reduced accumulation of the alpha-branch xanthophyll lutein. In fruits, most of the lycopene was converted into beta-carotene with provitamin A levels reaching 1 mg per g dry weight. Unexpectedly, transplastomic tomatoes also showed a >50% increase in total carotenoid accumulation, indicating that lycopene beta-cyclase expression enhanced the flux through the pathway in chromoplasts. Our results provide new insights into the regulation of carotenoid biosynthesis and demonstrate the potential of plastids genome engineering for the nutritional enhancement of food crops.

  18. Notes on collecting flower-visiting insects

    NARCIS (Netherlands)

    Willemstein, S.C.

    1974-01-01

    Flower-visiting insects may play a role in the pollination of the flowers they visit. An important indication for this is the pollen they carry on their body. The transport of pollen does not prove pollination without observations of the behaviour of the insects on the flowers, but at least it

  19. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis

    Science.gov (United States)

    Wan, Lei; Tan, Hsueh-Li; Thomas-Ahner, Jennifer M.; Pearl, Dennis K.; Erdman, John W.; Moran, Nancy E.; Clinton, Steven K.

    2014-01-01

    Consumption of tomato products containing the carotenoid lycopene is associated with a reduced risk of prostate cancer. To identify gene expression patterns associated with early testosterone-driven prostate carcinogenesis, which are impacted by dietary tomato and lycopene, wild type (WT) and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed control or tomato- or lycopene-containing diets from 4-10 wk-of-age. Eight-week-old mice underwent sham surgery, castration, or castration followed by testosterone-repletion (2.5 mg/kg/d initiated 1 wk after castration). Ten-wk-old intact TRAMP mice exhibit early multifocal prostatic intraepithelial neoplasia (PIN). Of the 200 prostate cancer-related genes measured by quantitative NanoString®, 189 are detectable, 164 significantly differ by genotype, 179 by testosterone status, and 30 by diet type (Plycopene feeding (Srd5a1) and by tomato-feeding (Srd5a2, Pxn, and Srebf1). Additionally, tomato-feeding significantly reduced expression of genes associated with stem cell features, Aldh1a and Ly6a, while lycopene-feeding significantly reduced expression of neuroendocrine differentiation-related genes, Ngfr and Syp. Collectively, these studies demonstrate a profile of testosterone-regulated genes associated with early stages of prostate carcinogenesis that are potential mechanistic targets of dietary tomato components. Future studies on androgen signaling/metabolism, stem cell features, and neuroendocrine differentiation pathways may elucidate the mechanisms by which dietary tomato and lycopene impact prostate cancer risk. PMID:25315431

  20. Tomato (Lycopersicon esculentum Supplementation Induces Changes in Cardiac miRNA Expression, Reduces Oxidative Stress and Left Ventricular Mass, and Improves Diastolic Function

    Directory of Open Access Journals (Sweden)

    Bruna L. B. Pereira

    2015-11-01

    Full Text Available The aim of this study was to evaluate the effects of tomato supplementation on the normal rat heart and the role of oxidative stress in this scenario. Male Wistar rats were assigned to two groups: a control group (C; n = 16, in which animals received a control diet + 0.5 mL of corn oil/kg body weight/day, and a tomato group (T; n = 16, in which animals received a control diet supplemented with tomato +0.5 mL of corn oil/kg body weight/day. After three months, morphological, functional, and biochemical analyses were performed. Animals supplemented with tomato had a smaller left atrium diameter and myocyte cross-sectional area (CSA compared to the control group (C group: 474 (415–539; T group: 273 (258–297 µm2; p = 0.004. Diastolic function was improved in rats supplemented with tomato. In addition, lipid hydroperoxide was lower (C group: 267 ± 46.7; T group: 219 ± 23.0 nmol/g; p = 0.039 in the myocardium of rats supplemented with tomato. Tomato intake was also associated with up-regulation of miR-107 and miR-486 and down-regulation of miR-350 and miR-872. In conclusion, tomato supplementation induces changes in miRNA expression and reduces oxidative stress. In addition, these alterations may be responsible for CSA reduction and diastolic function improvement.

  1. Tomato (Lycopersicon esculentum) Supplementation Induces Changes in Cardiac miRNA Expression, Reduces Oxidative Stress and Left Ventricular Mass, and Improves Diastolic Function.

    Science.gov (United States)

    Pereira, Bruna L B; Arruda, Fernanda C O; Reis, Patrícia P; Felix, Tainara F; Santos, Priscila P; Rafacho, Bruna P; Gonçalves, Andrea F; Claro, Renan T; Azevedo, Paula S; Polegato, Bertha F; Okoshi, Katashi; Fernandes, Ana A H; Paiva, Sergio A R; Zornoff, Leonardo A M; Minicucci, Marcos F

    2015-11-19

    The aim of this study was to evaluate the effects of tomato supplementation on the normal rat heart and the role of oxidative stress in this scenario. Male Wistar rats were assigned to two groups: a control group (C; n = 16), in which animals received a control diet + 0.5 mL of corn oil/kg body weight/day, and a tomato group (T; n = 16), in which animals received a control diet supplemented with tomato +0.5 mL of corn oil/kg body weight/day. After three months, morphological, functional, and biochemical analyses were performed. Animals supplemented with tomato had a smaller left atrium diameter and myocyte cross-sectional area (CSA) compared to the control group (C group: 474 (415-539); T group: 273 (258-297) µm²; p = 0.004). Diastolic function was improved in rats supplemented with tomato. In addition, lipid hydroperoxide was lower (C group: 267 ± 46.7; T group: 219 ± 23.0 nmol/g; p = 0.039) in the myocardium of rats supplemented with tomato. Tomato intake was also associated with up-regulation of miR-107 and miR-486 and down-regulation of miR-350 and miR-872. In conclusion, tomato supplementation induces changes in miRNA expression and reduces oxidative stress. In addition, these alterations may be responsible for CSA reduction and diastolic function improvement.

  2. Heterologous expression of wheat VERNALIZATION 2 (TaVRN2 gene in Arabidopsis delays flowering and enhances freezing tolerance.

    Directory of Open Access Journals (Sweden)

    Amadou Diallo

    Full Text Available The vernalization gene 2 (VRN2, is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2 is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.

  3. Mycorrhizal Dependency and Response of Tomato ( Lycopersicon ...

    African Journals Online (AJOL)

    A pot experiment was conducted on tomato (Lycopersicon esculentum) to evaluate the responses of tomato to inoculation of mycorrhiza (AMF) under different levels of soil phosphorus (P) concentrations in a greenhouse study. The results showed different responses on dry matter yield, shoot phosphorus concentration, ...

  4. 21 CFR 155.191 - Tomato concentrates.

    Science.gov (United States)

    2010-04-01

    ... Tomato concentrates. (a) Identity—(1) Definition. Tomato concentrates are the class of foods each of... greater in length. (c) Blemishes, such as dark brown or black particles (specks)—not more than four exceed...; place a U.S. No. 12 screen (1.68 millimeters (0.066 inch) openings) over the sink drain; transfer the...

  5. An improved Agrobacterium mediated transformation in tomato ...

    African Journals Online (AJOL)

    Bacterial wilt is a devastating disease of tomato crop throughout the world. This disease is very dangerous in hot and humid regions, where it spreads with the irrigation water to whole field within days, which resulted in severe decline in yield. Two varieties of tomato were used for developing bacterial wilt resistance.

  6. Economic Sustainability of Italian Greenhouse Cherry Tomato

    Directory of Open Access Journals (Sweden)

    Riccardo Testa

    2014-11-01

    Full Text Available Greenhouse tomato cultivation plays an important role in Sicily, being the primary production area in Italy, due to its favorable pedo-climatic conditions that permit extra-seasonal productions. In Sicily, more than half of greenhouse tomato production is derived from the Province of Ragusa on the southeastern coast, where especially cherry tomato typologies are cultivated. Over the last decade, the Ragusa Province has registered a decrease both in terms of greenhouse tomato area and harvested production due to several structural problems that would require restructuring of the tomato supply chain. Thus, since recognition of real costs and profitability of tomato growing is a vital issue, both from the perspective of the farm, as well as from that of the entrepreneur, the aim of this paper was to analyze the economic sustainability of Sicilian greenhouse cherry tomato cultivated in the Ragusa Province. In particular, an economic analysis on 30 representative farms was conducted in order to estimate production costs and profits of greenhouse cherry tomato. According to our results, the lack of commercial organization, which characterizes the small farms we surveyed, determines low contractual power for farmers and, consequently, low profitability.

  7. Isolation and composition of chromoplasts from tomatoes.

    Science.gov (United States)

    Hansen, Linn U; Chiu, Mei-Chen M

    2005-08-24

    The fruit of the tomato plant is composed of elongated tomato cells filled with organelles called chromoplasts (plastids). These plastids scattered throughout the cell are rich in nutrients, particularly protein (33%) and lipids (20%). They can be released from the cells by rupture of their cell membranes and then isolated. Plastids and their cell contents can be utilized by the food-processing industry for the preparation of special food products. This study was designed to examine the macronutrient content of isolated tomato plastids and, therefore, determine its potential nutritional value. Use of tomato plastids in pasta sauces and rice dishes, salsa, and extrusion products would increase the nutritional value of the product. Because glucose has been removed in the process of plastid isolation, tomato plastids are useful in the diets of diabetics and cardiovascular patients, as well as for patients in need of weight reduction. Composition comparison of tomato plastid is made with tomato paste, from which glucose has not been removed. Many people require low-sugar products for medical reasons (diabetics and those with cardiovascular disease) and others for weight loss. Therefore, tomato chromoplasts having high protein and lipid contents and low sugar content may be useful in meeting these particular human needs.

  8. Peeling mechanism of tomato under infrared heating

    Science.gov (United States)

    Critical behaviors of peeling tomatoes using infrared heat are thermally induced peel loosening and subsequent cracking. However, the mechanism of peel loosening and cracking due to infrared heating remains unclear. This study aimed at investigating the mechanism of peeling tomatoes under infrared h...

  9. Prediction of processing tomato peeling outcomes

    Science.gov (United States)

    Peeling outcomes of processing tomatoes were predicted using multivariate analysis of Magnetic Resonance (MR) images. Tomatoes were obtained from a whole-peel production line. Each fruit was imaged using a 7 Tesla MR system, and a multivariate data set was created from 28 different images. After ...

  10. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha

    Science.gov (United States)

    Tang, Mingyong; Tao, Yan-Bin

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha. PMID:27168978

  11. Ectopic expression of Jatropha curcas APETALA1 (JcAP1 caused early flowering in Arabidopsis, but not in Jatropha

    Directory of Open Access Journals (Sweden)

    Mingyong Tang

    2016-04-01

    Full Text Available Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1 is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1 was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha.

  12. Two tomato endoglucanases have a function during syncytium development

    Directory of Open Access Journals (Sweden)

    Małgorzata Lichocka

    2011-01-01

    Full Text Available Globodera rostochiensis, as well as other cyst nematodes, induces formation of a multinucleate feeding site, called syncytium, in host roots. In tomato roots infected with a potato cyst nematode, the syncytium is initiated in the cortex or pericycle. Progressive cell wall dissolution and subsequent fusion of protoplasts of newly incorporated cells lead to syncytium formation. Expansion and development of a syncytium strongly depends on modifications of a cell wall, including its degradation, elongation, thickening, and formation of ingrowths within it in close contact with tracheary elements. Recent reports have demonstrated that during formation of syncytium, numerous genes of plant origin, coding for cell wall-modifying enzymes are up-re-gulated. In this research, we studied a detailed distribution and function of two tomato 1,4-β-endoglucanases in developing feeding sites induced by G. rostochiensis. In situ localization of tomato LeCel7 and LeCel8 transcripts and proteins demonstrated that these enzymes were specifically up-regulated within syncytium and in the cells adjacent to the syncytium. In non-infected roots an expression of LeCel7 and LeCel8 was observed in the root cap and lateral root primordia. Our data confirm that cell wall-modifying enzymes of plant origin have a role in a modification of cell wall within syncytia, and demonstrate that plant endoglucanases are involved in syncytia formation.

  13. Mineral Content in Leaves of Tomato Plants Grafted on Solanum Rootstocks

    OpenAIRE

    松添, 直隆; 間, 浩美; 花田, 勝美; モハメド, アリ; 大久保, 敬; 藤枝, 國光

    1995-01-01

    Nutrient uptake of tomato plants cv. Momotaro grafted on Solanum sisymbriifoliulm, S. torvum and S. toxicarium which are resistant to soil-born disease were compared with tomato grafted on its own root, a tomato/tomato, scion/rootstock combination. Mineral content in leaves of tomato/S. sisymbriifoliulm was nearly equal to that of tomato/tomato. In leaves of tomato/S. torvum, nitrogen content was higher, and magnesium content was lower than those of tomato/tomato. Furthermore, phosphorus and ...

  14. Temperature-driven flower longevity in a high-alpine species of Oxalis influences reproductive assurance.

    Science.gov (United States)

    Arroyo, Mary T K; Dudley, Leah S; Jespersen, Gus; Pacheco, Diego A; Cavieres, Lohengrin A

    2013-12-01

    How high-alpine plants confront stochastic conditions for animal pollination is a critical question. We investigated the effect of temperature on potential flower longevity (FL) measured in pollinator-excluded flowers and actual FL measured in pollinated flowers in self-incompatible Oxalis compacta and evaluated if plastically prolonged potential FL can ameliorate slow pollination under cool conditions. Pollinator-excluded and hand-pollinated flowers were experimentally warmed with open-top chambers (OTCs) on a site at 3470 m above sea level (asl). Flower-specific temperatures, and pollinator-excluded and open-pollination flower life-spans were measured at six alpine sites between 3100 and 3470 m asl. Fruit set was analyzed in relation to inferred pollination time. Warming reduced potential FL. Variable thermal conditions across the alpine landscape predicted potential and actual FL; flower senescence was pollination-regulated. Actual FL and potential FL were coupled. Prolonged potential FL generally increased fruit set under cooler conditions. Plastic responses permit virgin flowers of O. compacta to remain open longer under cooler temperatures, thereby ameliorating slow pollination, and to close earlier when pollination tends to be faster under warmer conditions. Plastic potential FL provides adaptive advantages in the cold, thermally variable alpine habitat, and has important implications for reproductive success in alpine plants in a warming world. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  15. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    Directory of Open Access Journals (Sweden)

    Aaron E Walworth

    Full Text Available In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L., a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora', which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT. Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5 gene was down-regulated and associated with five other differentially expressed (DE genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2, a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5, and a VERNALIZATION1-like gene (VcVRN1, may function as integrators in place of FLOWERING LOCUS C (FLC in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1, LEAFY-like (VcLFY, APETALA1-like (VcAP1, CAULIFLOWER 1-like (VcCAL1, and FRUITFULL-like (VcFUL genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of

  16. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants

    Science.gov (United States)

    Walworth, Aaron E.; Chai, Benli; Song, Guo-qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora (‘VcFT-Aurora’), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in ‘VcFT-Aurora’. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all

  17. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    Science.gov (United States)

    Walworth, Aaron E; Chai, Benli; Song, Guo-Qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora'), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these

  18. Plastid and Stromule Morphogenesis in Tomato

    Science.gov (United States)

    PYKE, KEVIN A.; HOWELLS, CAROLINE A.

    2002-01-01

    By using green fluorescent protein targeted to the plastid organelle in tomato (Lycopersicon esculentum Mill.), the morphology of plastids and their associated stromules in epidermal cells and trichomes from stems and petioles and in the chromoplasts of pericarp cells in the tomato fruit has been revealed. A novel characteristic of tomato stromules is the presence of extensive bead‐like structures along the stromules that are often observed as free vesicles, distinct from and apparently unconnected to the plastid body. Interconnections between the red pigmented chromoplast bodies are common in fruit pericarp cells suggesting that chromoplasts could form a complex network in this cell type. The potential implications for carotenoid biosynthesis in tomato fruit and for vesicles originating from beaded stromules as a secretory mechanism for plastids in glandular trichomes of tomato is discussed. PMID:12466096

  19. Antioxidant Activity from Various Tomato Processing

    Directory of Open Access Journals (Sweden)

    Retno Sri Iswari

    2016-04-01

    Full Text Available Tomato is one of the high antioxidant potential vegetables. Nowadays, there are many techniques of tomato processings instead of fresh consumption, i.e. boiled, steamed, juiced and sauteed. Every treatment of cooking will influence the chemical compound inside the fruits and the body's nutrition intake. It is important to conduct the research on antioxidant compound especially lycopene, β-carotene, vitamin C, α-tocopherol, and its activity after processing. This research has been done using the experimental method. Tomatoes were cooked into six difference ways, and then it was extracted using the same procedure continued with antioxidant measurement. The research results showed that steaming had promoted the higher antioxidant numbers (lycopene. α-tocopherol, β-carotene and vitamin C and higher TCA and antioxidant activities in the tomatoes than other processings. It was indicated that steaming was the best way to enhance amount, capacity and activities of antioxidants of the tomatoes.

  20. A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.

    Directory of Open Access Journals (Sweden)

    Felipe Leal Valentim

    Full Text Available Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive models. Such models are invaluable as they enable to investigate how various types of inputs are combined to give a quantitative readout. To investigate the effect of gene expression disturbances on flowering time, we developed a dynamic model for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimated based on expression time-courses for relevant genes, and a consistent set of flowering times for plants of various genetic backgrounds. Validation was performed by predicting changes in expression level in mutant backgrounds and comparing these predictions with independent expression data, and by comparison of predicted and experimental flowering times for several double mutants. Remarkably, the model predicts that a disturbance in a particular gene has not necessarily the largest impact on directly connected genes. For example, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1 mutation has a larger impact on APETALA1 (AP1, which is not directly regulated by SOC1, compared to its effect on LEAFY (LFY which is under direct control of SOC1. This was confirmed by expression data. Another model prediction involves the importance of cooperativity in the regulation of APETALA1 (AP1 by LFY, a prediction supported by experimental evidence. Concluding, our model for flowering time gene regulation enables to address how different quantitative inputs are combined into one quantitative output, flowering time.

  1. Response of tomato cultivars to different organic fertilizers under agro-climatic conditions of mingora, Swat

    International Nuclear Information System (INIS)

    Yousafzai, S.K.; Khan, S.M.; Khan, J.; Khan, S.A.; Hussain, I.; Naz, I.

    2016-01-01

    An experiment was conducted at Agricultural Research Institute (ARI) Mingora, Swat during 2013 to study the effect of different organic fertilizers of tomato cultivars under the agro-climatic conditions of Mingora, Swat. The experiment was conducted in randomized complete block design with split plot arrangements having four treatments with three replications. Almost all the traits showed significant differences for organic fertilizers and varieties, while their interactions had a varied response. The analyzed data showed that poultry manure gave maximum yield (24.65 t ha/sup -1/), followed by FYM (24.38 t ha/sup -1/) and mushroom compost (24.11 t ha/sup -1/ ) while minimum was recorded in plots where no organic fertilizer was used. The results revealed that cultivar, Rio Grand showed maximum number of plant survival percentage (98.33 percent), days to flowering (40.73), number of flowers plant/sup -1/ (6.23), number of fruit plant (25.67), fruit 3 weight (8.84 kg), number of leaves plant/sup -1/ (83.66), fruit size (64.70 cm/sup 3/) and total yield (25.67 t ha/sup -1/ ) in Farm Yard Manure (FYM). Considering the overall performance, it was found that the tomato cultivar Rio Grand was promising for yield and other characters where FYM was applied. (author)

  2. Genome Sequences of Two Pseudomonas syringae pv. tomato Race 1 Strains, Isolated from Tomato Fields in California

    OpenAIRE

    Thapa, Shree P.; Coaker, Gitta

    2016-01-01

    Pseudomonas syringae pv. tomato race 1 strains have evolved to overcome genetic resistance in tomato. Here, we present the draft genome sequences of two race 1 P.?syringae pv. tomato strains, A9 and 407, isolated from diseased tomato plants in California.

  3. Effects of tomato variety, temperature differential and post-stem removal time on internalization of Salmonella Thompson into tomatoes

    Science.gov (United States)

    Tomatoes have been implicated in several Salmonellosis outbreaks due to possible contamination through bacterial infiltration into tomatoes during post-harvest handling. The aim of this study was to determine the effects of tomato variety, dump tank water to tomato pulp temperature differential, and...

  4. Flower morphology of Dendrobium Sonia mutants

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Azhar Mohamad; Affrida Abu Hassan; Zaiton Ahmad; Mohd Nazir Basiran

    2010-01-01

    Dendrobium Sonia is a commercial hybrid which is popular as cut flower and potted plant in Malaysia. Variability in flower is important for new variety to generate more demands and choices in selection. Mutation induction is a tool in creating variability for new flower color and shape. In vitro cultures of protocorm-like bodies (PLBs) were exposed to gamma ray at dose 35 Gy. Phenotypic characteristics of the flower were observed at fully bloomed flower with emphasis on shape and color. Approximately 2000 regenerated irradiated plants were observed and after subsequent flowering, 100 plants were finally selected for further evaluation. Most of the color and shape changes are expressed in different combinations of petal, sepal and lip of the flower. In this work, 11 stable mutants were found different at flower phenotype as compared to control. Amongst these, four mutant varieties with commercial potential has been named as Dendrobium 'SoniaKeenaOval', Dendrobium 'SoniaKeenaRadiant', Dendrobium 'SoniaKeenaHiengDing' and Dendrobium 'Sonia KeenaAhmadSobri'. In this paper, variations in flower morphology and flower color were discussed, giving emphasis on variations in flower petal shape. (author)

  5. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    jiahong yu

    2016-08-01

    Full Text Available The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps in plants, but little is known about this family in tomato (Solanum lycopersicum, an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20 gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83% were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root and reproductive organs (floral bud and flower, suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript

  6. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses.

    Science.gov (United States)

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps) in plants, but little is known about this family in tomato (Solanum lycopersicum), an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20) gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship, and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83%) were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root) and reproductive organs (floral bud and flower), suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript levels of SlHsp20

  7. Recent advancements to study flowering time in almond and other Prunus species.

    Science.gov (United States)

    Sánchez-Pérez, Raquel; Del Cueto, Jorge; Dicenta, Federico; Martínez-Gómez, Pedro

    2014-01-01

    Flowering time is an important agronomic trait in almond since it is decisive to avoid the late frosts that affect production in early flowering cultivars. Evaluation of this complex trait is a long process because of the prolonged juvenile period of trees and the influence of environmental conditions affecting gene expression year by year. Consequently, flowering time has to be studied for several years to have statistical significant results. This trait is the result of the interaction between chilling and heat requirements. Flowering time is a polygenic trait with high heritability, although a major gene Late blooming (Lb) was described in "Tardy Nonpareil." Molecular studies at DNA level confirmed this polygenic nature identifying several genome regions (Quantitative Trait Loci, QTL) involved. Studies about regulation of gene expression are scarcer although several transcription factors have been described as responsible for flowering time. From the metabolomic point of view, the integrated analysis of the mechanisms of accumulation of cyanogenic glucosides and flowering regulation through transcription factors open new possibilities in the analysis of this complex trait in almond and in other Prunus species (apricot, cherry, peach, plum). New opportunities are arising from the integration of recent advancements including phenotypic, genetic, genomic, transcriptomic, and metabolomics studies from the beginning of dormancy until flowering.

  8. Influence of shading on ornamental and physiological characteristics during flower development of groundcover rose (Rosa hybrida L.)

    Science.gov (United States)

    Hou, Wei; Luo, Ya; Wang, Xiaorong; Chen, Qing; Sun, Bo; Wang, Yan; Liu, Zejing; Tang, Haoru; Zhang, Yong

    2018-04-01

    The objective of the present investigation was to study the effect of shading on flower quality during flower development and photosynthetic capacity of groundcover rose (Rosa hybrida L.). The results showed that shade significantly increased flower diameter, levels of soluble protein and soluble sugar, total carotenoids content and superoxide dismutase (SOD) activity, while contents of malondialdehyde (MDA) and total anthocyanins in shaded flowers were significantly decreased as compared to sun-exposed flowers. However, no significant changes were observed in petal color parameters L*, a*, b* and C* between sun exposure and shade treatment plants at each flower developmental stage. Therefore, groundcover rose seemed to have the capacity to shade condition through auto-regulation. These results could provide us with a theoretical basis for further application of groundcover rose in the greening of urban spaces and an understanding of the mechanisms behind the changes induced by shade.

  9. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    OpenAIRE

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-01-01

    Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in ...

  10. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape

    Directory of Open Access Journals (Sweden)

    Li Dongmei

    2009-05-01

    Full Text Available Abstract Background Universally accepted landmark stages are necessary to highlight key events in plant reproductive development and to facilitate comparisons among species. Domestication and selection of tomato resulted in many varieties that differ in fruit shape and size. This diversity is useful to unravel underlying molecular and developmental mechanisms that control organ morphology and patterning. The tomato fruit shape gene SUN controls fruit elongation. The most dramatic effect of SUN on fruit shape occurs after pollination and fertilization although a detailed investigation into the timing of the fruit shape change as well as gene expression profiles during critical developmental stages has not been conducted. Results We provide a description of floral and fruit development in a red-fruited closely related wild relative of tomato, Solanum pimpinellifolium accession LA1589. We use established and propose new floral and fruit landmarks to present a framework for tomato developmental studies. In addition, gene expression profiles of three key stages in floral and fruit development are presented, namely floral buds 10 days before anthesis (floral landmark 7, anthesis-stage flowers (floral landmark 10 and fruit landmark 1, and 5 days post anthesis fruit (fruit landmark 3. To demonstrate the utility of the landmarks, we characterize the tomato shape gene SUN in fruit development. SUN controls fruit shape predominantly after fertilization and its effect reaches a maximum at 8 days post-anthesis coinciding with fruit landmark 4 representing the globular embryo stage of seed development. The expression profiles of the NILs that differ at sun show that only 34 genes were differentially expressed and most of them at a less than 2-fold difference. Conclusion The landmarks for flower and fruit development in tomato were outlined and integrated with the effect of SUN on fruit shape. Although we did not identify many genes differentially expressed in

  11. Anther development stage and gamma radiation effects on tomato anther-derived callus formation

    International Nuclear Information System (INIS)

    Brasileiro, Ana Christina R.; Willadino, Lilia; Guerra, Marcelo; Colaco, Waldeciro; Meunier, Isabelle; Camara, Terezinha R.

    1999-01-01

    Two experiments were carried (I) to determine tomato anther development stage influence on callus production; and (II) to investigate gamma radiation effects on anther culture. In the first experiment, anthers of a tomato hybrid (IPA 5 x Rotam 4-F 1 ) were grown on three media. Although calli were induced at all stages of anther development, varying from prophase I to mono nucleate microspore, callus frequency decreased as anther development progressed and calli induction were not significantly affected by all media tested. Anthers containing prophase I meiocytes produced the highest calli frequency. Anther and flower bud length both were significantly correlated with anther development stage. In the second experiment, seed and floral buds of tomato hybrids IPA 5 x Rotam 4 (F 2 ), IPA 6 x Rotam 4 (F 2 ) and IPA 8 x 217.1 (F 2 ) were submitted to gamma-ray and anthers were plated on two media described by Gresshoff and Doy (1972) supplemented with 2.0 mg L -1 NAA + 5.0 mg L -1 KIN and 2.0 mg L -1 NAA + 1.0 mg L -1 KIN. No significant differences for genotype and dosage testes were found for calli formation. (author)

  12. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content

    Directory of Open Access Journals (Sweden)

    Aspasia Efthimiadou

    2014-01-01

    Full Text Available The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences.

  13. Optimisation of transgene action at the post-transcriptional level: high quality parthenocarpic fruits in industrial tomatoes

    Directory of Open Access Journals (Sweden)

    Defez Roberto

    2002-01-01

    Full Text Available Abstract Background Genetic engineering of parthenocarpy confers to horticultural plants the ability to produce fruits under environmental conditions that curtail fruit productivity and quality. The DefH9-iaaM transgene, whose predicted action is to confer auxin synthesis specifically in the placenta, ovules and derived tissues, has been shown to confer parthenocarpy to several plant species (tobacco, eggplant, tomato and varieties. Results UC82 tomato plants, a typical cultivar used by the processing industry, transgenic for the DefH9-iaaM gene produce parthenocarpic fruits that are malformed. UC82 plants transgenic for the DefH9-RI-iaaM, a DefH9-iaaM derivative gene modified in its 5'ULR by replacing 53 nucleotides immediately upstream of the AUG initiation codon with an 87 nucleotides-long sequence derived from the rolA intron sequence, produce parthenocarpic fruits of high quality. In an in vitro translation system, the iaaM mRNA, modified in its 5'ULR is translated 3–4 times less efficiently than the original transcript. An optimal expressivity of parthenocarpy correlates with a reduced transgene mRNA steady state level in DefH9-RI-iaaM flower buds in comparison to DefH9-iaaM flower buds. Consistent with the known function of the iaaM gene, flower buds transgenic for the DefH9-RI-iaaM gene contain ten times more IAA than control untransformed flower buds, but five times less than DefH9-iaaM flower buds. Conclusions By using an auxin biosynthesis transgene downregulated at the post-transcriptional level, an optimal expressivity of parthenocarpy has been achieved in a genetic background not suitable for the original transgene. Thus, the method allows the generation of a wider range of expressivity of the desired trait in transgenic plants.

  14. Effects of flowering phenology and synchrony on the reproductive success of a long-flowering shrub

    Science.gov (United States)

    Rodríguez-Pérez, Javier; Traveset, Anna

    2016-01-01

    Flowering phenology and synchrony with biotic and abiotic resources are crucial traits determining the reproductive success in insect-pollinated plants. In seasonal climates, plants flowering for long periods should assure reproductive success when resources are more predictable. In this work, we evaluated the relationship between flowering phenology and synchrony and reproductive success in Hypericum balearicum, a shrub flowering all year round but mainly during spring and summer. We studied two contrasting localities (differing mostly in rainfall) during 3 years, and at different biological scales spanning from localities to individual flowers and fruits. We first monitored (monthly) flowering phenology and reproductive success (fruit and seed set) of plants, and assessed whether in the locality with higher rainfall plants had longer flowering phenology and synchrony and relatively higher reproductive success within or outside the flowering peak. Secondly, we censused pollinators on H. balearicum individuals and measured reproductive success along the flowering peak of each locality to test for an association between (i) richness and abundance of pollinators and (ii) fruit and seed set, and seed weight. We found that most flowers (∼90 %) and the highest fruit set (∼70 %) were produced during the flowering peak of each locality. Contrary to expectations, plants in the locality with lower rainfall showed more relaxed flowering phenology and synchrony and set more fruits outside the flowering peak. During the flowering peak of each locality, the reproductive success of early-flowering individuals depended on a combination of both pollinator richness and abundance and rainfall; by contrast, reproductive success of late-flowering individuals was most dependent on rainfall. Plant species flowering for long periods in seasonal climates, thus, appear to be ideal organisms to understand how flowering phenology and synchrony match with biotic and abiotic resources, and

  15. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae.

    Science.gov (United States)

    Campos, Laura; Lisón, Purificación; López-Gresa, María Pilar; Rodrigo, Ismael; Zacarés, Laura; Conejero, Vicente; Bellés, José María

    2014-10-01

    Hydroxycinnamic acid amides (HCAA) are secondary metabolites involved in plant development and defense that have been widely reported throughout the plant kingdom. These phenolics show antioxidant, antiviral, antibacterial, and antifungal activities. Hydroxycinnamoyl-CoA:tyramine N-hydroxycinnamoyl transferase (THT) is the key enzyme in HCAA synthesis and is induced in response to pathogen infection, wounding, or elicitor treatments, preceding HCAA accumulation. We have engineered transgenic tomato plants overexpressing tomato THT. These plants displayed an enhanced THT gene expression in leaves as compared with wild type (WT) plants. Consequently, leaves of THT-overexpressing plants showed a higher constitutive accumulation of the amide coumaroyltyramine (CT). Similar results were found in flowers and fruits. Moreover, feruloyltyramine (FT) also accumulated in these tissues, being present at higher levels in transgenic plants. Accumulation of CT, FT and octopamine, and noradrenaline HCAA in response to Pseudomonas syringae pv. tomato infection was higher in transgenic plants than in the WT plants. Transgenic plants showed an enhanced resistance to the bacterial infection. In addition, this HCAA accumulation was accompanied by an increase in salicylic acid levels and pathogenesis-related gene induction. Taken together, these results suggest that HCAA may play an important role in the defense of tomato plants against P. syringae infection.

  16. Effects of Arbuscular Mycorrhizal Symbiosis (Glomus intraradice on Egyptian Broomrape (Orobanche aegyptiaca. Pers in Cultivated Tomato (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    mojtaba zafarian

    2017-03-01

    Full Text Available Introduction: Mycorrhizal symbiosis is one of the most popular and highest symbiotic relationship in plant kingdom. Most plants (about 80% of vascular plant species have at least one type of mycorrhiza. Arbuscular mycorrhizal fungies are the most important endomycorhiza fungi that play an important role in agriculture. Materials and Methods: In order to evaluate the effect of arbuscular mycorrhizal (Glomus intraradice symbiosis to control Egyptian Broomrape (Orobanche aegyptiaca. Pers in cultivated tomato (Lycopersicon esculentum Mill. growth, a glasshouse experiment was conducted in CRD design with four replications in Shahrekord university in summer 2014. Treatments consisted of four arbuscular mycorrhizal levels (50, 100, 150 and 200 kg ha-1 and two control treatments of weed free and weed infested treatments, respectively. In this experiment, seeds of speedy tomato cultivar planted in the bed that consisted of coco peat and peat moss were transplanted to the pots. Pots with diameter 20 and height 15 cm were filled with soil in the ratio 4: 1: 1 manure, sand and clay respectively and with 50 mg of Orobanche seeds that were collected in the previous year. It should be noted that the soil combination was disinfected at a temperature of 80OC for 72 h to reduce the potential effects of soil microbial population in reducing Orobanche germination. The fungal inoculation, containing sandy soil fungal body parts and organs fungal root was then added to each pot. Fungi strain was provided from the plant protection clinic located in Hamadan. Also, nutrition of tomato after being transplanted to pots was carried out with foliar application of complete micronutrient of 20-20-20 every 7 days under glasshouse condition. At the end of the season, were measured number of stems, number of nodules on the roots of tomato, time of emergence of orobanche flower on the soil surface, orobanche dry weight and tomato root and shoot dry weight. Statistical analysis of

  17. Responses of grafted tomato (Solanum lycopersiocon L. to abiotic stresses in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Abdulaziz Al-Harbi

    2017-09-01

    Full Text Available Quantity and quality of irrigation water are considered the most imperative limiting factors for plant production in arid environment. Adoptions of strategies can minimize crop water consumption while nonexistent yield reduction is considered challenge for scholars especially in arid environment. Grafting is regarded as a promising tool to avoid or reduce yield loss caused by abiotic stresses. Tomato (Solanum lycopersium Mill., commercial cultivar Faridah was grafted on Unifort rootstock and grown under regulated deficit irrigation (RDI (100%, 80% and 60% ETc, using two types of irrigation water, fresh (EC = 0.86 dS/m and brackish (EC = 3.52 dS/m. The effects of grafting and RDI on water use efficiency, vegetative growth, yield, fruit quality were investigated. Plant vegetative growth was reduced under water and salinity stresses. Grafting the plant significantly improves the vegetative growth under both conditions. The results showed that crop yield, Ca+2 and K+ were considerably increased in grafted tomato compared to non-grafted plants under water and salinity stresses. Grafted tomato plants accumulated less Na+ and Cl−, especially under high levels of salinity compared to non-grafted plants. Grafting tomato plants showed a slight decrease on the fruit quality traits such as vitamin C, titratable acidity (TA and total soluble solids (TSS. This study confirmed that grafted tomato plants can mitigate undesirable impact of salt stress on growth and fruit quality.

  18. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management.

    Science.gov (United States)

    Nandi, Munmun; Macdonald, Jacqueline; Liu, Peng; Weselowski, Brian; Yuan, Ze-Chun

    2018-03-12

    Bacterial canker disease is considered to be one of the most destructive diseases of tomato (Solanum lycopersicum), and is caused by the seed-borne Gram-positive bacterium Clavibacter michiganensis ssp. michiganensis (Cmm). This vascular pathogen generally invades and proliferates in the xylem through natural openings or wounds, causing wilt and canker symptoms. The incidence of symptomless latent infections and the invasion of tomato seeds by Cmm are widespread. Pathogenicity is mediated by virulence factors and transcriptional regulators encoded by the chromosome and two natural plasmids. The virulence factors include serine proteases, cell wall-degrading enzymes (cellulases, xylanases, pectinases) and others. Mutational analyses of these genes and gene expression profiling (via quantitative reverse transcription-polymerase chain reaction, transcriptomics and proteomics) have begun to shed light on their roles in colonization and virulence, whereas the expression of tomato genes in response to Cmm infection suggests plant factors involved in the defence response. These findings may aid in the generation of target-specific bactericides or new resistant varieties of tomato. Meanwhile, various chemical and biological controls have been researched to control Cmm. This review presents a detailed investigation regarding the pathogen Cmm, bacterial canker infection, molecular interactions between Cmm and tomato, and current perspectives on improved disease management. © 2018 AGRICULTURE AND AGRI-FOOD CANADA. MOLECULAR PLANT PATHOLOGY © 2018 JOHN WILEY & SONS LTD.

  19. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  20. Genome-wide identification and characterization of GRAS transcription factors in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Niu, Yiling; Zhao, Tingting; Xu, Xiangyang; Li, Jingfu

    2017-01-01

    Solanum lycopersicum , belonging to Solanaceae, is one of the commonly used model plants. The GRAS genes are transcriptional regulators, which play a significant role in plant growth and development, and the functions of several GRAS genes have been recognized, such as, axillary shoot meristem formation, radial root patterning, phytohormones (gibberellins) signal transduction, light signaling, and abiotic/biotic stress; however, only a few of these were identified and functionally characterized. In this study, a gene family was analyzed comprehensively with respect to phylogeny, gene structure, chromosomal localization, and expression pattern; the 54 GRAS members were screened from tomato by bioinformatics for the first time. The GRAS genes among tomato, Arabidopsis , rice, and grapevine were rebuilt to form a phylogenomic tree, which was divided into ten groups according to the previous classification of Arabidopsis and rice. A multiple sequence alignment exhibited the typical GRAS domain and conserved motifs similar to other gene families. Both the segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in tomato; the expression patterns across a variety of tissues and biotic conditions revealed potentially different functions of GRAS genes in tomato development and stress responses. Altogether, this study provides valuable information and robust candidate genes for future functional analysis for improving the resistance of tomato growth.

  1. Effects of recurrent irradiation and cross fertilization on improvement of cultivated tomato (Solanum lycopersicon L.) and wild tomato (Solanum pimpinellifolium L.)

    International Nuclear Information System (INIS)

    Nunoo, J.

    2010-01-01

    Two separate experiments were conducted to determine the effects of recurrent irradiation and cross fertilization on the improvement of fruit quality and plant architecture of two tomato species (Solanum lycopersicon L.) and (Solanum pimpinellifolium L.) in Ghana. In the first experiment, a variant line of the wild tomato (Solanum pimpinellifolium L.) (SP 300/30.4.2.4) previously obtained through irradiation with gamma rays at 300 Gy was re-irradiated with gamma rays at 150 Gy and 300 Gy using gamma irradiation. The second experiment involved hybridization of the same variant line (SP 300/30.4.2.4) with five cultivars of the cultivated tomato (Solanum lycopersicon L). Progeny were assessed in both M1 and M2 generations for the first experiment but only at the F 2 generation for the second experiment. Significant variations were observed in number of days to first flowering and 50% fruiting. Fruit size increased from 1.36 g and 1.67 g to 1.77 g and 2.66 g in the M 1 and M 2 generations respectively following re-irradiation at 300 Gy. Three 150 Gy treated plants at the M 1 generation and two 300 Gy treated plants at the M 2 generations exhibited erect growth habit compared to the parental line (SP 300/30.4.2.4) which was sprawling. A variant line among the 300 Gy treated plants had a fused fruit of fruit weight of 3.57 g with four locules. Also, hybridization involving five cultivars of the cultivated tomato (S. lycopersicon L.) as female parents and the variant line (SP 300/30.4.2.4) generated variability in several traits including plant architecture, days to flowering and fruiting, fruit weight and number of seeds per fruit in the F 2 generation. Variations in style-length, number of locules, fruit shape and colour were also observed among the plants in the F 2 generation. Generally, significant improvements were obtained with respect to plant architecture (that is reduced plant height), earliness and fruit quality (that is fruit size and colour). Although no

  2. Efikasi Chitosan untuk Memperpanjang Flower Longevity Bunga Anggrek Dendrobium Hibrida dalam Pot (Potted Flower

    Directory of Open Access Journals (Sweden)

    I MADE SUKEWIJAYA

    2015-09-01

    Full Text Available Effication of Chitosan on Lengthening The Flower Longevity of Potted Orchid ofDendrobium Hybrid. The aim of the current research is to investigate general effects of Chitosantreatment on the flowering of Dendrobium orchid and to find out the optimum concentration of Chitosanin lengthening flower longevity of potted orchid of Dendrobium hybrid. Results of the research showedthat Chitosan application significantly affected variables of the number of flower per-plant, the length ofindividual flower, period of time to get full blooming, and the flower longevity. The best results for thoseof variables was achieved with Chitosan concentration of 0.15%.

  3. Nutritional evaluation of dried tomato seeds.

    Science.gov (United States)

    Persia, M E; Parsons, C M; Schang, M; Azcona, J

    2003-01-01

    Two samples of tomato seeds, a by-product of the tomato canning industry were evaluated to determine proximate analysis, amino acid content, and digestibility, TMEn, and protein efficiency ratio. Tomato seeds were also used to replace corn and soybean meal (SBM) in a chick diet on an equal true amino acid digestibility and TMEn basis. Tomato seeds were found to contain 8.5% moisture, 25% CP, 20.0% fat, 3.1% ash, 35.1% total dietary fiber, 0.12% Ca, 0.58% P, and 3,204 kcal/kg of TMEn. The total amounts of methionine, cystine, and lysine in the tomato seeds were 0.39, 0.40, and 1.34%, respectively, and their true digestibility coefficients, determined in cecectomized roosters, were 75, 70, and 54%, respectively. The protein efficiency ratio (weight gain per unit of protein intake) value when fed to chicks at 9% CP was 2.5 compared to 3.6 for SBM (P seeds could replace corn and SBM without any adverse affects on chick weight gain, feed intake, or gain:feed ratio from 8 to 21 d posthatch. Tomato seeds at any level in the diet did not significantly affect skin pigmentation. Although the protein quality of tomato seeds may not be as high as SBM, tomato seeds do contain substantial amounts of digestible amino acids and TMEn. When formulating diets on a true digestible amino acid and TMEn basis, tomato seeds can be supplemented into chick rations at up to 15% without any adverse affects on growth performance.

  4. Flowers and Wild Megachilid Bees Share Microbes.

    Science.gov (United States)

    McFrederick, Quinn S; Thomas, Jason M; Neff, John L; Vuong, Hoang Q; Russell, Kaleigh A; Hale, Amanda R; Mueller, Ulrich G

    2017-01-01

    Transmission pathways have fundamental influence on microbial symbiont persistence and evolution. For example, the core gut microbiome of honey bees is transmitted socially and via hive surfaces, but some non-core bacteria associated with honey bees are also found on flowers, and these bacteria may therefore be transmitted indirectly between bees via flowers. Here, we test whether multiple flower and wild megachilid bee species share microbes, which would suggest that flowers may act as hubs of microbial transmission. We sampled the microbiomes of flowers (either bagged to exclude bees or open to allow bee visitation), adults, and larvae of seven megachilid bee species and their pollen provisions. We found a Lactobacillus operational taxonomic unit (OTU) in all samples but in the highest relative and absolute abundances in adult and larval bee guts and pollen provisions. The presence of the same bacterial types in open and bagged flowers, pollen provisions, and bees supports the hypothesis that flowers act as hubs of transmission of these bacteria between bees. The presence of bee-associated bacteria in flowers that have not been visited by bees suggests that these bacteria may also be transmitted to flowers via plant surfaces, the air, or minute insect vectors such as thrips. Phylogenetic analyses of nearly full-length 16S rRNA gene sequences indicated that the Lactobacillus OTU dominating in flower- and megachilid-associated microbiomes is monophyletic, and we propose the name Lactobacillus micheneri sp. nov. for this bacterium.

  5. Overexpression of fatty acid amide hydrolase induces early flowering in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Neal D. Teaster

    2012-02-01

    Full Text Available N-Acylethanolamines (NAEs are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE. In animal systems this reaction is part of the endocannabinoid signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH, which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440 lowered endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination. Reduced NAE levels were accompanied by an accelerated growth phenotype, increased sensitivity to abscisic acid (ABA, enhanced susceptibility to bacterial pathogens, and early flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH overexpression. AtFAAH overexpressors flowered several days earlier than wild type and AtFAAH knockouts under both non-inductive short day (SD and inductive long day (LD conditions. Microarray analysis revealed that the FLOWERING LOCUS T (FT gene, which plays a major role in regulating flowering time, and one target MADS box transcription factor, SEPATALLA3 (SEP3, were elevated in AtFAAH overexpressors. Furthermore, AtFAAH overexpressors, with the early flowering phenotype had lower endogenous NAE levels in leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpressors is, in part, explained by elevated FT gene expression resulting from the enhanced NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in floral signaling pathways.

  6. COMPARISON OF CAROTENOID CONTENT IN TOMATO, TOMATO PULP AND KETCHUP BY LIQUID CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    J. J. T. GAMA

    2009-01-01

    Full Text Available

    Although tomatoes are commonly consumed fresh, over 80 % the consumption of tomatoes is in the form of processed products such as tomato pulp, ketchup, juice and sauce. Research has indicated the potential health benefits of a diet rich in tomatoes and tomato products. The present study was carried out to determine the carotenoid content of fresh tomato, tomato pulp and ketchup by high performance liquid chromatography. The major differences among these products were in the concentration of some of the pigments. Tomato had all-trans-lycopene (1046-1099 μg/g DW, cislycopene (125-132 μg/g DW and all-trans- -carotene (45-59 μg/g DW as principal carotenoids. Tomato pulp and ketchup had all-trans-lycopene (951-999 μg/g DW and 455-476 μg/g DW, all-trans- -carotene (76-88 DW μg/g and 20-27 DW μg/g and cis-lycopene (71-83 μg/g DW and 14-25 μg/g DW as the main pigments, respectively. They also contained other carotenoids in much smaller amounts (lycoxanthin, zeaxanthin, anteraxanthin, lutein, -carotene, -carotene and phytofluene.

  7. Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth

    NARCIS (Netherlands)

    Ivanchenko, Maria G.; den Os, Desiree; Monshausen, Gabriele B.; Dubrovsky, Joseph G.; Bednarova, Andrea; Krishnan, Natraj

    2013-01-01

    The hormone auxin and reactive oxygen species (ROS) regulate root elongation, but the interactions between the two pathways are not well understood. The aim of this study was to investigate how auxin interacts with ROS in regulating root elongation in tomato, Solanum lycopersicum. Wild-type and

  8. Hormonal control of seed development in gibberellin- and ABA-deficient tomato (Lycopersicon esculentum Mill. cv. Moneymaker) mutants

    NARCIS (Netherlands)

    Castro, de R.D.; Hilhorst, H.W.M.

    2006-01-01

    Developing seeds of tomato gibberellin (GA)-deficient gib1 and abscisic acid (ABA)-deficient sitw mutants enabled us to analyze the role of GA in the regulation of embryo histo-differentiation, and the role of ABA in the regulation of maturation and quiescence. Our data show that DNA synthesis and

  9. Flower, fruit phenology and flower traits in Cordia boissieri (Boraginaceae from northeastern Mexico

    Directory of Open Access Journals (Sweden)

    Cristian Adrian Martínez-Adriano

    2016-05-01

    Full Text Available We characterized variations in Cordia boissieri flowers and established if these variations occur between plants or between flowering events. Flowering and fruiting was measured for 256 plants. A GLM test was used to determine the relationship between flowering and fruit set processes and rainfall. We performed measurements of floral traits to detect variations within the population and between flowering events. The position of the anthers with respect to the ovary was determined in 1,500 flowers. Three out of four flowering events of >80% C. boissieri plants occurred after rainfall events. Only one flowering event occurred in a drought. Most plants flowered at least twice a year. The overlapping of flowering and fruiting only occurred after rainfall. Anthesis lasted three-to-five days, and there were two flower morphs. Half of the plants had longistylus and half had brevistylus flowers. Anacahuita flower in our study had 1–4 styles; 2–9 stamens; 6.5–41.5 mm long corolla; sepals from 4.5–29.5 mm in length; a total length from 15.5–59 mm; a corolla diameter from 10.5–77 mm. The nectar guide had a diameter from 5–30.5 mm; 4–9 lobes; and 5 distinguishable nectar guide colors. The highest variation of phenotypic expression was observed between plants.

  10. Flower, fruit phenology and flower traits in Cordia boissieri (Boraginaceae) from northeastern Mexico.

    Science.gov (United States)

    Martínez-Adriano, Cristian Adrian; Jurado, Enrique; Flores, Joel; González-Rodríguez, Humberto; Cuéllar-Rodríguez, Gerardo

    2016-01-01

    We characterized variations in Cordia boissieri flowers and established if these variations occur between plants or between flowering events. Flowering and fruiting was measured for 256 plants. A GLM test was used to determine the relationship between flowering and fruit set processes and rainfall. We performed measurements of floral traits to detect variations within the population and between flowering events. The position of the anthers with respect to the ovary was determined in 1,500 flowers. Three out of four flowering events of >80% C. boissieri plants occurred after rainfall events. Only one flowering event occurred in a drought. Most plants flowered at least twice a year. The overlapping of flowering and fruiting only occurred after rainfall. Anthesis lasted three-to-five days, and there were two flower morphs. Half of the plants had longistylus and half had brevistylus flowers. Anacahuita flower in our study had 1-4 styles; 2-9 stamens; 6.5-41.5 mm long corolla; sepals from 4.5-29.5 mm in length; a total length from 15.5-59 mm; a corolla diameter from 10.5-77 mm. The nectar guide had a diameter from 5-30.5 mm; 4-9 lobes; and 5 distinguishable nectar guide colors. The highest variation of phenotypic expression was observed between plants.

  11. Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Swiecicka, Magdalena; Filipecki, Marcin; Lont, Dieuwertje; Van Vliet, Joke; Qin, Ling; Goverse, Aska; Bakker, Jaap; Helder, Johannes

    2009-07-01

    Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.

  12. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas.

    Science.gov (United States)

    Li, Chaoqiong; Luo, Li; Fu, Qiantang; Niu, Longjian; Xu, Zeng-Fu

    2014-05-08

    Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) -like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha.

  13. Gas exchanges and water use efficiency in the selection of tomato genotypes tolerant to water stress.

    Science.gov (United States)

    Borba, M E A; Maciel, G M; Fraga Júnior, E F; Machado Júnior, C S; Marquez, G R; Silva, I G; Almeida, R S

    2017-06-20

    Water stress can affect the yield in tomato crops and, despite this, there are few types of research aiming to select tomato genotypes resistant to the water stress using physiological parameters. This experiment aimed to study the variables that are related to the gas exchanges and the efficiency in water use, in the selection of tomato genotypes tolerant to water stress. It was done in a greenhouse, measuring 7 x 21 m, in a randomized complete block design, with four replications (blocks), being five genotypes in the F 2 BC 1 generation, which were previously obtained from an interspecific cross between Solanum pennellii versus S. lycopersicum and three check treatments, two susceptible [UFU-22 (pre-commercial line) and cultivar Santa Clara] and one resistant (S. pennellii). At the beginning of flowering, the plants were submitted to a water stress condition, through irrigation suspension. After that CO 2 assimilation, internal CO 2 , stomatal conductance, transpiration, leaf temperature, instantaneous water use efficiency, intrinsic efficiency of water use, instantaneous carboxylation efficiency, chlorophyll a and b, and the potential leaf water (Ψf) were observed. Almost all variables that were analyzed, except CO 2 assimilation and instantaneous carboxylation efficiency, demonstrated the superiority of the wild accession, S. pennellii, concerning the susceptible check treatments. The high photosynthetic rate and the low stomatal conductance and transpiration, presented by the UFU22/F 2 BC 1 #2 population, allowed a better water use efficiency. Because of that, these physiological characteristics are promising in the selection of tomato genotypes tolerant to water stress.

  14. Biotechnological strategies for enhancing the nutritive and nutraceutical values of tomato (Solanum lycopersicon

    Directory of Open Access Journals (Sweden)

    Charles Ojo OLAIYA

    2015-12-01

    engineering and regulative genetic elements. However, the full potential of these technologies has not been realised and the relative gap between risk assessment and regulatory threshold desires much attention. These biotechnological strategies for enhancing the nutritive and nutraceutical values of the tomato food crop are discussed in this article.

  15. Zingiber zerumbet flower stem postharvest characterization

    Directory of Open Access Journals (Sweden)

    Charleston Gonçalves

    2017-05-01

    Full Text Available About the Zingiber zerumbet little is known about its cut flower postharvest and market, despite its high ornamental potential. The inflorescences, which resemble a compact cone, emerge from the base of the plants and start with green color changing to red with the age. This study objective was to characterize floral stem of ornamental ginger in two cultivate conditions and to evaluate the longevity of those submitted to post-harvest treatments. Flower stems were harvest from clumps cultivated under full sun and partial shade area, and were submitted to the postharvest treatments: complete flower immersion in tap water (CFI or only the base stem immersion (BSI. The flower stems harvested from clumps at partial shade presented higher fresh weight, length and diameter of the inflorescences compared to flower stems harvested from clumps at full sun area. The flower stem bracts cultivated in full sun area changed the color from green to red 10.69 and 11.94 days after BSI and CFI postharvest treatments, and the vase life were 22.94 and 28.19 days, respectively. Flower stem harvest in partial shade area change the color only after 18.94 and 18.43 days and the vase life durability was 27.56 and 31.81, respectively. The complete immersion of the flower stem increase the vase life durability in 5.25 and 4.25 days compared to flowers kept with the stem base immersed only, in flower stems harvested from clumps cultivated in full sun area and partial shade area, respectively. Flower stems harvested from clumps cultivated in partial shade area and completely immerse in tap water during 3 hours increase the vase life durability in 8.87 days compared to flowers harvested from clumps cultivated in full sun area and base immersed only.

  16. Postharvest fungal deterioration of tomato ( Lycopersicum ...

    African Journals Online (AJOL)

    Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives ... tomatoes and pepper were sourced from Mile 12 Market in Lagos state. ... the ingestion of mycotoxins that are usually associated with fungal species), ...

  17. Fertilizers applied to certified organic tomato culture

    International Nuclear Information System (INIS)

    Martins, T.C.G.; De Nadai Fernandes, E.A.; Ferrari, A.A.; Bacchi, M.A.; Tagliaferro, F.S.

    2010-01-01

    The tomato culture demands large quantities of mineral nutrients, which are supplied by synthetic fertilizers in the conventional cultivation system. In the organic cultivation system only alternative fertilizers are allowed by the certifiers and accepted as safe for humans and environment. The chemical composition of rice bran, oyster flour, cattle manure and ground charcoal, as well as soils and tomato fruits were evaluated by instrumental neutron activation analysis (INAA). The potential contribution of organic fertilizers to the enrichment of chemical elements in soil and their transfer to fruits was investigated using concentration ratios for fertilizer and soil samples, and also for soil and tomato. Results evidenced that these alternative fertilizers could be taken as important sources of Br, Ca, Ce, K, Na and Zn for the organic tomato culture. (author)

  18. Callus formation and organogenesis of tomato (Lycopersicon ...

    African Journals Online (AJOL)

    USER

    2010-07-12

    Jul 12, 2010 ... propagated plants upon transfer to soil under natural conditions. ... Effect of high temperature and heat shock on tomato (Lycopersicon esculentum Mill) genotypes .... Modulation of mineral and fatty acid profiles during ...

  19. (edta) on the germination of tomato

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    response of plant to salinity stress varies according to plant ... National Horticultural Research Institute (NIHORT), Ibadan, Oyo. State .... the work of Mgbeze et al. ... accumulation of four tomato cultivars. American. Journal of Plant Physiology, ...

  20. Tomato leaves methanol extract possesses anti- inflammatory ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... demonstrated, the anti-inflammatory effect of tomato leaves and its associated molecular mechanisms have not yet .... dissolved in 10% of culture-grade dimethylsulfoxide (DMSO; Sigma-. Aldrich .... In Vitro Cell. Dev. Biol.

  1. Turkish tomato greenhouse gets geothermal heating

    NARCIS (Netherlands)

    Sikkema, A.; Maaswinkel, R.H.M.

    2011-01-01

    Wageningen UR Greenhouse Horticulture will set up an ultramodern greenhouse in Turkey, together with Dutch greenhouse builders and contractors. Geothermal energy will be used there to provide heat and carbon dioxide for tomato cultivation.

  2. Identification of arbuscular mycorrhiza (AM-responsive microRNAs in tomato

    Directory of Open Access Journals (Sweden)

    Ping eWu

    2016-03-01

    Full Text Available A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM fungi. MicroRNAs (miRNAs have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase. Unlike the profiles in other plants such as rice and Arabidopsis, a large proportion of predicted tomato miRNAs was 24 nt in length. A similar pattern was observed in the potato genome but not in tobacco, indicating a Solanum genus-specific expansion of 24-nt miRNAs. About 40% identified tomato miRNAs showed significantly altered expressions upon Rhizophagus irregularis inoculation, suggesting the potential roles of these novel miRNAs in AM symbiosis. The differential expression of five known and six novel miRNAs were further validated using qPCR analysis. Interestingly, three up-regulated known tomato miRNAs belong to a known miR171 family, a member of which has been reported in Medicago truncatula to regulate AM symbiosis. Thus, the miR171 family likely regulates AM symbiosis conservatively across different plant lineages. More than 1000 genes targeted by potential AM-responsive miRNAs were provided and their roles in AM symbiosis are worth further exploring.

  3. QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage.

    Science.gov (United States)

    Shu, Jinshuai; Liu, Yumei; Zhang, Lili; Li, Zhansheng; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2018-04-01

    A major QTL controlling early flowering in broccoli × cabbage was identified by marker analysis and next-generation sequencing, corresponding to GRF6 gene conditioning flowering time in Arabidopsis. Flowering is an important agronomic trait for hybrid production in broccoli and cabbage, but the genetic mechanism underlying this process is unknown. In this study, segregation analysis with BC 1 P1, BC 1 P2, F 2 , and F 2:3 populations derived from a cross between two inbred lines "195" (late-flowering) and "93219" (early flowering) suggested that flowering time is a quantitative trait. Next, employing a next-generation sequencing-based whole-genome QTL-seq strategy, we identified a major genomic region harboring a robust flowering time QTL using an F 2 mapping population, designated Ef2.1 on cabbage chromosome 2 for early flowering. Ef2.1 was further validated by indel (insertion or deletion) marker-based classical QTL mapping, explaining 51.5% (LOD = 37.67) and 54.0% (LOD = 40.5) of the phenotypic variation in F 2 and F 2:3 populations, respectively. Combined QTL-seq and classical QTL analysis narrowed down Ef1.1 to a 228-kb genomic region containing 29 genes. A cabbage gene, Bol024659, was identified in this region, which is a homolog of GRF6, a major gene regulating flowering in Arabidopsis, and was designated BolGRF6. qRT-PCR study of the expression level of BolGRF6 revealed significantly higher expression in the early flowering genotypes. Taken together, our results provide support for BolGRF6 as a possible candidate gene for early flowering in the broccoli line 93219. The identified candidate genomic regions and genes may be useful for molecular breeding to improve broccoli and cabbage flowering times.

  4. 15 CFR Appendix A to Subpart L of... - Flower Garden Banks National Marine Sanctuary Boundary Coordinates

    Science.gov (United States)

    2010-01-01

    ... Sanctuary Boundary Coordinates A Appendix A to Subpart L of Part 922 Commerce and Foreign Trade Regulations..., DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL MARINE SANCTUARY PROGRAM REGULATIONS Flower Garden Banks National Marine Sanctuary Pt. 922, Subpt. L, App. A Appendix A to Subpart L of Part...

  5. Characterization of two TERMINAL FLOWER1 homologs PgTFL1 and PgCENa from pomegranate (Punica granatum L.).

    Science.gov (United States)

    Patil, Hemant B; Chaurasia, Akhilesh K; Azeez, Abdul; Krishna, Bal; Subramaniam, V R; Sane, Aniruddha P; Sane, Prafullachandra V

    2017-12-21

    FLOWERING LOCUS T (FT) and TERMINAL FLOWER1/CENTRORADIALIS (TFL1/CEN) are the key regulators of flowering time in plants with FT promoting flowering and TFL1 repressing flowering. TFL1 also controls floral meristem identity and its maintenance. In this study we have characterized two pomegranate (Punica granatum L.) TFL1/CEN-like genes designated as PgTFL1 and PgCENa. The expression of PgTFL1 and PgCENa fluctuated through alternate pruning and flowering cycles, being highly expressed during the vegetative phase (immediately after pruning) and decreasing gradually in the months thereafter such that their lowest levels, especially for PgCENa coincided with the flowering phase. Both the genes are able to functionally suppress the Arabidopsis tfl1-14 mutant flowering defect. Their expression in Arabidopsis resulted in delayed flowering time, increased plant height and leaf number, branches and shoot buds as compared with wild type, suggesting that PgTFL1 and PgCENa are bonafide homologs of TFL1. However, both the genes show distinct expression patterns, being expressed differentially in vegetative shoot apex and floral bud samples. While PgTFL1 expression was low in vegetative shoot apex and high in flower bud, PgCENa expression showed the opposite trend. These results suggest that the two TFL1s in pomegranate may be utilized to control distinct developmental processes, namely repression of flowering by PgCENa and development and growth of the reproductive tissues by PgTFL1 via distinct temporal and developmental regulation of their expression. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Influence of UV-A or UV-B light and of the nitrogen source on the induction of ferredoxin-dependent glutamate synthase in etiolated tomato cotyledons

    International Nuclear Information System (INIS)

    Migge, A.; Carrayol, E.; Hirel, B.; Lohmann, M.; Meya, G.; Becker, T.W.

    1998-01-01

    The influence of ultraviolet A (UV-A) or B (UV-B) light and of the nitrogen source on the induction of ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) was examined in etiolated cotyledons of tomato (Lycopersicon escu- lentum L.). The Fd-GOGAT activity increased upon illumination of etiolated tomato cotyledons with UV-A or UV-B light. This stimulation of Fd-GOGAT activity was correlated with an increase in both the Fd-GOGAT transcript level and the Fd-GOGAT protein abundance. These results suggest that UV-A or UV-B light stimulates the de novo synthesis of Fd-GOGAT in etiolated tomato cotyledons. Both UV-A and UV-B light failed to influence the activity of NADH-GOGAT (EC 1.4.1.14) in etiolated tomato cotyledons. Taken together, our data indicate that the tomato genes encoding Fd- or NADH-dependent glutamate synthase are regulated differently by UV-A or UV-B light. No difference with respect to both the Fd-GOGAT transcript and protein abundance was found between cotyledons of tomato seedlings grown with either nitrate or ammonium as the sole N-source in the dark or in white light. In addition, the increase in the Fd-GOGAT protein pool induced by white light in etiolated nitrate-grown tomato seedling cotyledons was similar to that induced by white light in etiolated ammonium-grown tomato seedling cotyledons. These results show that the tomato Fd-GOGAT protein level does not depend strongly on the nature of the nitrogen source and that there appears to be no major stimulatory effect on the Fd-GOGAT protein pool produced by nitrate during the illumination of etiolated tomato cotyledons

  7. Effect of textile waste water on tomato plant, Lycopersicon esculentum.

    Science.gov (United States)

    Marwari, Richa; Khan, T I

    2012-09-01

    In this study Sanganer town, Jaipur was selected as study area. The plants of Lycopersicon esculentum var. K 21(Tomato) treated with 20 and 30% textile wastewater were analyzed for metal accumulation, growth and biochemical parameters at per, peak and post flowering stages. Findings of the study revealed that chlorophyll content was most severely affected with the increase in metal concentration. Total chlorophyll content showed a reduction of 72.44% while carbohydrate, protein and nitrogen content showed a reduction of 46.83, 71.65 and 71.65% respectively. With the increase in waste water treatment the root and shoot length, root and shoot dry weight and total dry weight were reduced to 50.55, 52.06, 69.93, 72.42, 72.10% respectively. After crop harvesting, the fruit samples of the plants treated with highest concentration of textile waste water contained 2.570 mg g(-1)d.wt. of Zn, 0.800 mg g(-1) d.wt. Cu, 1.520 mg g(-1) d.wt. Cr and 2.010 mg g(-1) d.wt. Pb.

  8. flowers

    African Journals Online (AJOL)

    Administrator

    2011-06-08

    Jun 8, 2011 ... the formation and asymmetrical collapse of microcavities in the vicinity of cell walls leading to the generation of microjets rupturing the cells in plant. The aim of this paper was to explore the optimum ultrasonic extraction condition of flavonoids and phenolics and provide some theoretical basis for integrative ...

  9. Capsella rubella TGA4, a bZIP transcription factor, causes delayed flowering in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Li Maofu

    2016-01-01

    Full Text Available Flowering time is usually regulated by many environmental factors and endogenous signals. TGA family members are bZIP transcription factors that bind to the octopine synthase element, which has been closely linked to defense/stress responses. Most TGA factors interact with non-expressor of PR1 (NPR1 and plant defense responses are strengthened by this interaction. TGA1and TGA4factors bind to NPR1 only in salicylic acid (SA-induced leaves, suggesting that TGA4 has another function during plant development. Here, we isolated a bZIP transcription factor gene, TGA4, from Capsella rubella. TGA4transcripts were detected in most tissues, with high expression in leaves, low expression in stems and flowering buds, and undetectable in siliques. CruTGA4was over expressed in Arabidopsis thaliana wild typeCol-0 plants. Flowering time and total leaf number in the transgenic plants showed that overexpression of CruTGA4could delay flowering in A. thaliana. Our findings suggest that TGA4 may act as flowering regulator that controls plant flowering.

  10. Different gene expression patterns between leaves and flowers in Lonicera japonica revealed by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Libin eZhang

    2016-05-01

    Full Text Available The perennial and evergreen twining vine, Lonicera japonica is an important herbal medicine with great economic value. However, gene expression information for flowers and leaves of L. japonica remains elusive, which greatly impedes functional genomics research on this species. In this study, transcriptome profiles from leaves and flowers of L. japonica were examined using next-generation sequencing technology. A total of 239.41 million clean reads were used for de novo assembly with Trinity software, which generated 150,523 unigenes with N50 containing 947 bp. All the unigenes were annotated using Nr, SwissProt, COGs (Clusters of Orthologous Groups, GO (Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes databases. A total of 35,327 differentially expressed genes (DEGs, P≤0.05 between leaves and flowers were detected. Among them, a total of 6,602 DEGs were assigned with important biological processes including Metabolic process, Response to stimulus, Cellular process and etc. KEGG analysis showed that three possible enzymes involved in the biosynthesis of chlorogenic acid were up-regulated in flowers. Furthermore, the TF-based regulation network in L. japonica identified three differentially expressed transcription factors between leaves and flowers, suggesting distinct regulatory roles in L. japonica. Taken together, this study has provided a global picture of differential gene expression patterns between leaves and flowers in L japonica, providing a useful genomic resource that can also be used for functional genomics research on L. japonica in the future.

  11. Early histological, hormonal, and molecular changes during pineapple (Ananas comosus (L.) Merrill) artificial flowering induction.

    Science.gov (United States)

    Espinosa, Maita Eulalia Ávila; Moreira, Rafael Oliveira; Lima, André Almeida; Ságio, Solange Aparecida; Barreto, Horllys Gomes; Luiz, Sara Lazara Pérez; Abreu, Carlos Eduardo Aragón; Yanes-Paz, Ermis; Ruíz, Yanelis Capdesuñer; González-Olmedo, Justo Lorenzo; Chalfun-Júnior, Antonio

    2017-02-01

    Natural flowering can cause serious scheduling problems in the pineapple (Ananas comosus) industry and increase harvest costs. Pineapple flowering is thought to be triggered by increased ethylene levels and artificial forcing of pineapple flowering is a common practice to promote flowering synchronisation. However, little is known about the early hormonal and molecular changes of pineapple flowering induction and development. Here, we aimed to analyse the molecular, hormonal, and histological changes during artificial pineapple flowering by Ethrel ® 48 treatment. Histological analyses of the shoot apical meristem, leaf gibberellic acid (GA 3 ), and ethylene quantification were carried out during the first 72h after Ethrel ® 48 treatment. Expression profiles from ethylene biosynthesis (AcACS2 and AcACO1), gibberellin metabolism (AcGA2-ox1 and AcDELLA1), and flower development (FT-like gene (AcFT), LFY-like gene (AcLFY), and a PISTILLATA-like gene (AcPI)) genes were analysed during the first 24h after Ethrel ® 48 treatment. Differentiation processes of the shoot apical meristem into flower buds were already present in the first 72h after Ethrel ® 48 treatment. Ethrel ® 48 lead to a reduction in GA 3 levels, probably triggered by elevated ethylene levels and the positive regulation AcGA2-ox1. AcLFY activation upon Ethrel ® 48 may also have contributed to the reduction of GA 3 levels and, along with the up-regulation of AcPI, are probably associated with the flower induction activation. AcFT and AcDELLA1 do not seem to be regulated by GA 3 and ethylene. Decreased GA 3 and increased ethylene levels suggest an accumulation of AcDELLA1, which may display an important role in pineapple flowering induction. Thus, this study shows that molecular, hormonal, and histological changes are present right after Ethrel ® 48 treatment, providing new insights into how pineapple flowering occurs under natural conditions. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Comparative Genomic Analysis of Soybean Flowering Genes

    Science.gov (United States)

    Jung, Chol-Hee; Wong, Chui E.; Singh, Mohan B.; Bhalla, Prem L.

    2012-01-01

    Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis. PMID:22679494

  13. A plant-based chemical genomics screen for the identification of flowering inducers.

    Science.gov (United States)

    Fiers, Martijn; Hoogenboom, Jorin; Brunazzi, Alice; Wennekes, Tom; Angenent, Gerco C; Immink, Richard G H

    2017-01-01

    Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to influence this process. We aimed to discover novel compounds that are able to induce flowering in the model plant Arabidopsis. For this purpose we developed a plant-based screening platform that can be used in a chemical genomics study. Here we describe the set-up of the screening platform and various issues and pitfalls that need to be addressed in order to perform a chemical genomics screening on Arabidopsis plantlets. We describe the choice for a molecular marker, in combination with a sensitive reporter that's active in plants and is sufficiently sensitive for detection. In this particular screen, the firefly Luciferase marker was used, fused to the regulatory sequences of the floral meristem identity gene APETALA1 (AP1) , which is an early marker for flowering. Using this screening platform almost 9000 compounds were screened, in triplicate, in 96-well plates at a concentration of 25 µM. One of the identified potential flowering inducing compounds was studied in more detail and named Flowering1 (F1). F1 turned out to be an analogue of the plant hormone Salicylic acid (SA) and appeared to be more potent than SA in the induction of flowering. The effect could be confirmed by watering Arabidopsis plants with SA or F1, in which F1 gave a significant reduction in time to flowering in comparison to SA treatment or the control. In this study a chemical genomics screening platform was developed to discover compounds that can induce flowering in Arabidopsis. This platform was used successfully, to identify a compound that can speed-up flowering in Arabidopsis.

  14. Performance of Different Tomato Genotypes in the Arid Tropics of Sudan during the Summer Season. II. Generative Development

    Directory of Open Access Journals (Sweden)

    Adil H.A. Abdelmageed

    2009-10-01

    Full Text Available Eleven tomato genotypes of diverse origin were grown in Shambat, University of Khartoum, Sudan, in a randomized block design with three replications for two successive seasons (2002/2003, 2003/2004. The same genotypes were firstly evaluated under glasshouse conditions at the Humboldt University of Berlin, Germany during 2002. Highly significant differences were encountered among the different genotypes for most of the generative characters, such as number of days to flowering, number of flowers per plant, number of fruits per plant, fruit fresh weight per plant and fruit set percentage. Based on results obtained from this study, the genotype ‘Summerset’ proved to be high yielding under high temperature conditions in comparison to other genotypes.

  15. Fertilization Mechanisms in Flowering Plants.

    Science.gov (United States)

    Dresselhaus, Thomas; Sprunck, Stefanie; Wessel, Gary M

    2016-02-08

    Compared with the animal kingdom, fertilization is particularly complex in flowering plants (angiosperms). Sperm cells of angiosperms have lost their motility and require transportation as a passive cargo by the pollen tube cell to the egg apparatus (egg cell and accessory synergid cells). Sperm cell release from the pollen tube occurs after intensive communication between the pollen tube cell and the receptive synergid, culminating in the lysis of both interaction partners. Following release of the two sperm cells, they interact and fuse with two dimorphic female gametes (the egg and the central cell) forming the major seed components embryo and endosperm, respectively. This process is known as double fertilization. Here, we review the current understanding of the processes of sperm cell reception, gamete interaction, their pre-fertilization activation and fusion, as well as the mechanisms plants use to prevent the fusion of egg cells with multiple sperm cells. The role of Ca(2+) is highlighted in these various processes and comparisons are drawn between fertilization mechanisms in flowering plants and other eukaryotes, including mammals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. INTEGRATED WEED MANAGEMENT ON THE PROCESSING TOMATO CROP AND TOMATO FOR CONSUMPTION IN NATURA

    Directory of Open Access Journals (Sweden)

    Y. O. Castro

    2016-11-01

    Full Text Available Weeds cause direct and indirect damage to processing tomato and tomato for consumption in natura. The coexistence period is decisive for the intensity of damage, although the economic cost is also considered for decision making when to control the weeds. There are similarities between processing tomato and tomato for consumption in natura cropping system and peculiarities. This causes the management has adopted its common applications and its variables within each system. As control alternative, the farmer has basically the preventive control, mechanical, cultural, biological and chemical. The application of a single method is not recommended. Ideally, the methods needs to be integrated in order to combat weeds, highly evolved populations and resistant to unfavorable conditions. Consider weed management taking only one control measure is to underestimate the evolutionary ability of such species. Therefore, it is necessary to integrate the various methods available to the weed interference not impede the tomato production.

  17. rainfall and temperature effects on flowering and pollen productions ...

    African Journals Online (AJOL)

    RAINFALL AND TEMPERATURE EFFECTS ON FLOWERING AND POLLEN. PRODUCTIONS IN COCOA ... chocolate or for extracting cocoa butter. Although, all cultivated .... healthy flowers of the selected clones. These flowers were stored in ...

  18. In silico transcriptional regulatory networks involved in tomato fruit ripening

    Directory of Open Access Journals (Sweden)

    Stilianos Arhondakis

    2016-08-01

    Full Text Available ABSTRACTTomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37 and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

  19. An Environmental Approach to Positive Emotion: Flowers

    Directory of Open Access Journals (Sweden)

    Jeannette Haviland-Jones

    2005-01-01

    Full Text Available For more than 5000 years, people have cultivated flowers although there is no known reward for this costly behavior. In three different studies we show that flowers are a powerful positive emotion “inducer”. In Study 1, flowers, upon presentation to women, always elicited the Duchenne or true smile. Women who received flowers reported more positive moods 3 days later. In Study 2, a flower given to men or women in an elevator elicited more positive social behavior than other stimuli. In Study 3, flowers presented to elderly participants (55+ age elicited positive mood reports and improved episodic memory. Flowers have immediate and long-term effects on emotional reactions, mood, social behaviors and even memory for both males and females. There is little existing theory in any discipline that explains these findings. We suggest that cultivated flowers are rewarding because they have evolved to rapidly induce positive emotion in humans, just as other plants have evolved to induce varying behavioral responses in a wide variety of species leading to the dispersal or propagation of the plants.

  20. Flower pigment analysis of Melastoma malabathricum | Janna ...

    African Journals Online (AJOL)

    The objective of this study is to analyse the colour pigment, anthocyanin, that can be detected in flower and their stability in extracted form. All the analysed results will be used in the next study for the production of new food colouring material. From the observation, it shows that S3 flower developmental stage contains the ...

  1. A new method for promoting lily flowering

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... FT is thought to be the florigen in plants. In this research, a new method for promoting lily flowering was introduced. The function of FT gene cloned from Arabidopsis on promoting lily flowering was analyzed. pET-30a-FT vector was constructed to indicate the expression of FT:eGFP fuse protein in.

  2. Symbolic Dynamics, Flower Automata and Infinite Traces

    Science.gov (United States)

    Foryś, Wit; Oprocha, Piotr; Bakalarski, Slawomir

    Considering a finite alphabet as a set of allowed instructions, we can identify finite words with basic actions or programs. Hence infinite paths on a flower automaton can represent order in which these programs are executed and a flower shift related with it represents list of instructions to be executed at some mid-point of the computation.

  3. Genetic control of flowering time in legumes

    Directory of Open Access Journals (Sweden)

    James L Weller

    2015-04-01

    Full Text Available The timing of flowering, and in particular the degree to which it is responsive to the environment, is a key factor in the adaptation of a given species to various eco-geographic locations and agricultural practices. Flowering time variation has been documented in many crop legumes, and selection for specific variants has permitted significant expansion and improvement in cultivation, from prehistoric times to the present day. Recent advances in legume genomics have accelerated the process of gene identification and functional analysis, and opened up new prospects for a molecular understanding of flowering time adaptation in this important crop group. Within the legumes, two species have been prominent in flowering time studies; the vernalization-responsive long-day species pea (Pisum sativum and the warm-season short-day plant soybean (Glycine max. Analysis of flowering in these species is now being complemented by reverse genetics capabilities in the model legumes Medicago truncatula and Lotus japonicus, and the emergence of genome-scale resources in a range of other legumes. This review will outline the insights gained from detailed forward genetic analysis of flowering time in pea and soybean, highlighting the importance of light perception, the circadian clock and the FT family of flowering integrators. It discusses the current state of knowledge on genetic mechanisms for photoperiod and vernalization response, and concludes with a broader discussion of flowering time adaptation across legumes generally.

  4. Postharvest: Cut flowers and potted plants

    Science.gov (United States)

    In the past fifty years, the cut flower market has changed dramatically, from a local market with growers located on city outskirts, to a global one; flowers and cut foliage sourced from throughout the world are sold as bunches or combined into arrangements and bouquets in the major target markets. ...

  5. Economics Of Wholesale Marketing Of Tomato Fruits In Ibadan ...

    African Journals Online (AJOL)

    Economics Of Wholesale Marketing Of Tomato Fruits In Ibadan Metropolis Of Oyo State, Nigeria. ... fruits, determining marketing efficiency, margin and marketing costs associated with tomato marketing. ... EMAIL FULL TEXT EMAIL FULL TEXT

  6. TARGET MICROFLORA OF A TOMATO C ROPPED SOIL.

    African Journals Online (AJOL)

    The effect of benomyl on the microflora of a tomato cropped soil was investigated. ... both in culture and soil treatments. ... pseudomonads to benomyl in culture .... bacterial pathogens of tomato solanucearum. Indian Pin to 11:01. in vitro.

  7. Yield and Adaptability Evaluation of Newly Introduced Tomato ...

    African Journals Online (AJOL)

    High yield is a major ambition to tomato plant breeders and farmers. The purpose of the ... Tabora Region on the growth and yield of newly introduced tomato varieties. The tested ..... (1985). Evaluation of some American tomatocultivars grown.

  8. Effect of tomato cultivars, honey finisher and processing methods on ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... microbiological and sensory quality of tomato ketchup that was prepared using low-cost ... The color of tomato ketchup samples were measured by comparing it with standard color chart .... multiple rage tests. RESULTS AND ...

  9. In vitro flowering ofDendrobium candidum.

    Science.gov (United States)

    Wang, G; Xu, Z; Chia, T F; Chua, N H

    1997-02-01

    Dendrobium candidum, a wild orchid species from China, normally requires three to four years of cultivation before it can produce flowers. The effects of plant hormones and polyamines on flower initiation of this species in tissue culture were investigated. The addition of spermidine, or BA, or the combination of NAA and BA to the culture medium can induce protocorms or shoots to flower within three to six months with a frequency of 31.6%-45.8%. The flowering frequency can be further increased to 82.8 % on the average by pre-treatment of protocorms in an ABA-containing medium followed by transfer onto MS medium with BA. The induction of precocious flowering depends on the developmental stage of the experimental materials (protocorms, shoots and plantlets) used, and usually occurs only when mt formation is inhibited.

  10. Effective salt criteria in callus-cultured tomato genotypes.

    Science.gov (United States)

    Dogan, Mahmut; Tipirdamaz, Rukiye; Demir, Yavuz

    2010-01-01

    Na+, Cl-, K+, Ca2+, and proline contents, the rate of lipid peroxidation level in terms of malondialdehyde (MDA) and chlorophyll content, and the changes in the activity of antioxidant enzymes, such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), ascorbate peroxidase (APX: EC 1.11.1.11), and glutathione reductase (GR: EC 1.6.4.2), in tissues of five tomato cultivars in salt tolerance were investigated in a callus culture. The selection of effective parameters used in these tomato genotypes and to find out the use of in vitro tests in place of in vivo salt tolerance tests were investigated. As a material, five different tomato genotypes during a 10-day time period were used, and 150 mM NaCl was applied at callus plant tissue. The exposure to NaCl induced a significant increase in MDA content in both salt-resistant and salt-sensitive cultivars. But the MDA content was higher in salt-sensitive cultivars. The chlorophyll content was more decreased in salt-sensitive than in salt-resistant ones. The proline amount was more increased in salt-sensitive than in salt-resistant ones. It has been reported that salt-tolerant plants, besides being able to regulate the ion and water movements, also exhibit a strong antioxidative enzyme system for effective removal of ROS. The degree of damage depends on the balance between the formation of ROS and its removal by the antioxidative scavenging system that protects against them. Exclusion or inclusion of Na+, Cl-, K+, and Ca2+, antioxidant enzymes and MDA concentration play a key protective role against stress, and this feature at the callus plant tissue used as an identifier for tolerance to salt proved to be an effective criterion.

  11. The Variation of Oncidium Rosy Sunset Flower Volatiles with Daily Rhythm, Flowering Period, and Flower Parts

    Directory of Open Access Journals (Sweden)

    Yi-Tien Chiu

    2017-09-01

    Full Text Available Oncidium is an important ornamental crop worldwide, and in recent years, the characteristics of the flower aroma have become a concern for breeders. This study used headspace solid-phase microextraction (HS-SPME and gas chromatography/mass spectrometry (GC-MS analysis of the volatile compounds to study the aroma characteristics of Onc. Rosy Sunset. A total of 45 compounds were identified, with the major compound being linalool. Onc. Rosy Sunset had the highest odor concentration from 10:00 to 12:00 and lowest from 20:00 to 24:00. The inflorescence emitted the highest quantities of volatile compounds during stages 3–6, which then decreased with the aging of the flowers. In Onc. Rosy Sunset, the sepals and petals were the major parts for the floral fragrance emission, in which linalool content was the highest, whereas the lip and column had a different composition of major volatile compounds, of which benzaldehyde, β-myrcene, and β-caryophyllene dominated.

  12. A Virus-Induced Assay for Functional Dissection and Analysis of Monocot and Dicot Flowering Time Genes.

    Science.gov (United States)

    Qin, Cheng; Chen, Weiwei; Shen, Jiajia; Cheng, Linming; Akande, Femi; Zhang, Ke; Yuan, Chen; Li, Chunyang; Zhang, Pengcheng; Shi, Nongnong; Cheng, Qi; Liu, Yule; Jackson, Stephen; Hong, Yiguo

    2017-06-01

    Virus-induced flowering (VIF) uses virus vectors to express Flowering Locus T ( FT ) to induce flowering in plants. This approach has recently attracted wide interest for its practical applications in accelerating breeding in crops and woody fruit trees. However, the insight into VIF and its potential as a powerful tool for dissecting florigenic proteins remained to be elucidated. Here, we describe the mechanism and further applications of Potato virus X (PVX)-based VIF in the short-day Nicotiana tabacum cultivar Maryland Mammoth. Ectopic delivery of Arabidopsis ( Arabidopsis thaliana ) AtFT by PVX/AtFT did not induce the expression of the endogenous FT ortholog NtFT4 ; however, it was sufficient to trigger flowering in Maryland Mammoth plants grown under noninductive long-day conditions. Infected tobacco plants developed no systemic symptoms, and the PVX-based VIF did not cause transgenerational flowering. We showed that the PVX-based VIF is a much more rapid method to examine the impacts of single amino acid mutations on AtFT for floral induction than making individual transgenic Arabidopsis lines for each mutation. We also used the PVX-based VIF to demonstrate that adding a His- or FLAG-tag to the N or C terminus of AtFT could affect its florigenic activity and that this system can be applied to assay the function of FT genes from heterologous species, including tomato ( Solanum lycopersicum ) SFT and rice ( Oryza sativa ) Hd3a Thus, the PVX-based VIF represents a simple and efficient system to identify individual amino acids that are essential for FT-mediated floral induction and to test the ability of mono- and dicotyledonous FT genes and FT fusion proteins to induce flowering. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Governance of agro-pesticide through private environmental and social standards in the global cut flower chain from Ethiopia.

    Science.gov (United States)

    Mengistie, Belay T; Mol, Arthur P J; Oosterveer, Peter

    2017-11-01

    The international cut flower industry is strongly criticized because of its environmental impacts and unsafe working conditions. Increasing certification of cut flowers is used to improve the growers' environmental and social performance. But what is the impact of this private governance instrument on regulating the use of pesticides? This paper assesses the potential of private certification on governing the environmental and social problems from pesticide use along the global cut flower supply chain. We use detailed farm-level data to analyse the environmental and social impacts of flower certification in Ethiopia by comparing different national and international certification schemes. Our analysis does not show significant differences between these different private standards for most environmental and health and safety variables. The Ethiopian cut flower industry remains far from improving its sustainability performance through private certification. However, certification schemes may enable farmers to have access to international markets and keep up their reputation.

  14. Industrial processing versus home processing of tomato sauce

    NARCIS (Netherlands)

    Tomas, Merve; Beekwilder, Jules; Hall, Robert D.; Sagdic, Osman; Boyacioglu, Dilek; Capanoglu, Esra

    2017-01-01

    The effect of industrial and home processing, in vitro gastrointestinal digestion, individual phenolic content, and antioxidant capacity of tomato into tomato sauce were investigated. Industrial processing of tomato fruit into sauce had an overall positive effect on the total antioxidant capacity

  15. Economics Of Tomato Production In Yewa North Local Government ...

    African Journals Online (AJOL)

    Questions relating to the socio-economic characteristics of the tomato farmers, tomato outputs, output prices and cost of resources viz. labour, seed, fertilizer and land used in production, as well as constraints to tomato production were asked in the questionnaire. Production function analysis was used to show the ...

  16. Morphological and Molecular Identification of Colletotrichum acutatum from Tomato Fruit

    OpenAIRE

    Svetlana Živković; Saša Stojanović; Žarko IVanović; Nenad Trkulja; Nenad Dolovac; Goran Aleksić; Jelica Balaž

    2010-01-01

    Colletotrichum gloeosporioides, Colletotrichum acutatum, Colletotrichum coccodes, and Colletotrichum dematium are the four main species of Colletotrichum that cause tomato anthracnose. In Serbia, the occurrence of anthracnose on tomato fruit has been recorded during the last several years. Typical fruit symptoms include dark, sunken, and circular lesion with orange conidial masses. Pathogen isolates were obtained from a diseased tomato fruits, on PDA medium...

  17. Biochemical evaluation of tomato germplasm part I: workflow and methods

    Science.gov (United States)

    Of the seed crop species conserved at PGRU, tomato (Solanum lycopersicum L.) is the largest in terms of numbers of accessions. Furthermore, tomato ranks very high among vegetable crops in economic importance to the US. We are characterizing a tomato core collection for traits that are of interest to...

  18. Vision-based judgment of tomato maturity under growth conditions ...

    African Journals Online (AJOL)

    To determine the picking time of tomato and design the control strategy for the harvesting robot, the judgment of tomato maturity under natural conditions is ... Hue-mean and red-green color-difference image mean can be used as a criterion for the judgment of tomato maturity, and the tests indicated that the redgreen mean ...

  19. Transcriptome Profiling of Tomato Uncovers an Involvement of Cytochrome P450s and Peroxidases in Stigma Color Formation

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2017-05-01

    Full Text Available Stigma is a crucial structure of female reproductive organ in plants. Stigma color is usually regarded as an important trait in variety identification in some species, but the molecular mechanism of stigma color formation remains elusive. Here, we characterized a tomato mutant, yellow stigma (ys, that shows yellow rather than typical green color in the stigma. Analysis of pigment contents revealed that the level of flavonoid naringenin chalcone was increased in the ys stigma, possibly as a result of higher accumulation of p-coumaric acid, suggesting that naringenin chalcone might play a vital role in yellow color control in tomato stigma. To understand the genes and gene networks that regulate tomato stigma color, RNA-sequencing (RNA-Seq analyses were performed to compare the transcriptomes of stigmas between ys mutant and wild-type (WT. We obtained 507 differentially expressed genes, in which, 84 and 423 genes were significantly up-regulated and down-regulated in the ys mutant, respectively. Two cytochrome P450 genes, SlC3H1 and SlC3H2 which encode p-coumarate 3-hydroxylases, and six peroxidase genes were identified to be dramatically inhibited in the yellow stigma. Further bioinformatic and biochemical analyses implied that the repression of the two SlC3Hs and six PODs may indirectly lead to higher naringenin chalcone level through inhibiting lignin biosynthesis, thereby contributing to yellow coloration in tomato stigma. Thus, our data suggest that two SlC3Hs and six PODs are involved in yellow stigma formation. This study provides valuable information for dissecting the molecular mechanism of stigma color control in tomato.Statement: This study reveals that two cytochrome P450s (SlC3H1 and SlC3H2 and six peroxidases potentially regulate the yellow stigma formation by indirectly enhancing biosynthesis of yellow-colored naringenin chalcone in the stigma of tomato.

  20. Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes

    Science.gov (United States)

    Chen, Long-Fang O.; Lin, Chun-Hung; Lai, Ying-Mi; Huang, Jia-Yuan; Sung, Zinmay Renee

    2012-01-01

    Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development. PMID:22537758

  1. Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile.

    Science.gov (United States)

    Ding, Lihua; Wang, Yanwen; Yu, Hao

    2013-04-01

    SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) encodes a MADS-box protein that plays an essential role in integrating multiple flowering signals to regulate the transition from vegetative to reproductive development in the model plant Arabidopsis. Although SOC1-like genes have been isolated in various angiosperms, its orthologs in Orchidaceae, one of the largest families of flowering plants, are so far unknown. To investigate the regulatory mechanisms of flowering time control in orchids, we isolated a SOC1-like gene, DOSOC1, from Dendrobium Chao Praya Smile. DOSOC1 was highly expressed in reproductive organs, including inflorescence apices, pedicels, floral buds and open flowers. Its expression significantly increased in whole plantlets during the transition from vegetative to reproductive development, which usually occurred after 8 weeks of culture in Dendrobium Chao Praya Smile. In the shoot apex at the floral transitional stage, DOSOC1 was particularly expressed in emerging floral meristems. Overexpression of DOSOC1 in wild-type Arabidopsis plants resulted in early flowering, which was coupled with the up-regulation of two other flowering promoters, AGAMOUS-LIKE 24 and LEAFY. In addition, overexpression of DOSOC1 was able partially to complement the late-flowering phenotype of Arabidopsis soc1-2 loss-of-function mutants. Furthermore, we successfully created seven 35S:DOSOC1 transgenic Dendrobium orchid lines, which consistently exhibited earlier flowering than wild-type orchids. Our results suggest that SOC1-like genes play an evolutionarily conserved role in promoting flowering in the Orchidaceae family, and that DOSOC1 isolated from Dendrobium Chao Praya Smile could serve as an important target for genetic manipulation of flowering time in orchids.

  2. Fungi of genus Alternaria occurring on tomato

    Directory of Open Access Journals (Sweden)

    Joanna Marcinkowska

    2013-12-01

    Full Text Available Tomato early blight in central Poland was caused by Alternaria solani (A. porri f. sp., solani and A. alernata (A. tenuis. A. alternata was isolated more often than A. solani. All isolates of A. solani in controlled conditions killed tomato seedlings, while pathogenic isolates of A. alternata caused only slight seedling blight. In greenhouse tests A. solani proved to be strongly pathogenic for leaves and stems of tomato but A. alternata was weakly pathogenic. The latter species attacked only injured fruits while, A. solanicould penetrate through undamaged peel of fruits. Both of these species caused the same type of symptoms; the differences consisted only in intensification of disease symptoms. During 1974 and 1975 field tomatoes were moderately attacked by early blight. Thebest development of this disease occurred by the turn of August and September. Determinate variety 'New Yorker' was distinguished by more severe infection of stem parts of tomato whereas the fruits of a stock variety 'Apollo' were more strongly attacked.

  3. Superfamily of ankyrin repeat proteins in tomato.

    Science.gov (United States)

    Yuan, Xiaowei; Zhang, Shizhong; Qing, Xiaohe; Sun, Meihong; Liu, Shiyang; Su, Hongyan; Shu, Huairui; Li, Xinzheng

    2013-07-10

    The ankyrin repeat (ANK) protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, no detailed information concerning this family is available for tomato (Solanum lycopersicum) due to the limited information on whole genome sequences. In this study, we identified a total of 130 ANK genes in tomato genome (SlANK), and these genes were distributed across all 12 chromosomes at various densities. And chromosomal localizations of SlANK genes indicated 25 SlANK genes were involved in tandem duplications. Based on their domain composition, all of the SlANK proteins were grouped into 13 subgroups. A combined phylogenetic tree was constructed with the aligned SlANK protein sequences. This tree revealed that the SlANK proteins comprise five major groups. An analysis of the expression profiles of SlANK genes in tomato in different tissues and in response to stresses showed that the SlANK proteins play roles in plant growth, development and stress responses. To our knowledge, this is the first report of a genome-wide analysis of the tomato ANK gene family. This study provides valuable information regarding the classification and putative functions of SlANK genes in tomato. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. INFLUENCE OF BIOLOGICALLY ACTIVE SUBSTANCES ON TOMATO YIELD AND QUALITY

    Directory of Open Access Journals (Sweden)

    G. I. Yarovoy

    2017-01-01

    Full Text Available The study of influence of growth regulators and biopreparations affecting on decrease of disease development, increase of yield capacity and final product quality was carried out in tomato. It was shown that all preparations were effective in decreasing the process of diseases development and increasing the yield capacity and product quality. The studies were carried out in the experimental fields at the Institute of Vegetables and Melons NAAS, in Ukraine in 2011-2012. The field studies were performed according to ‘Methodology of Experimental Work in Vegetable and Melon Growing’ on area sown with cultivars ‘Karas’ and ‘Kremenchugskiy’. The fungicides ‘Mars U 77%’, ‘Vimpel with Fitotsid’, ‘Vermistim’ wth ‘Azotofit’ and ‘Bioglobin’ with ‘Azotofit’ were used on cultivars of tomato, as control were the plants without treatment. It was determined that all preparations decreased the development of diseases. On average, the development of early dry spot had decreased by 12.2–16.1% and anthracnose by 10.0–12.6% in the cultivars ‘Kremenchugskiy’ and ‘Karas’. Thus, biopreparations used on the varieties ‘Kremenchugskiy’ and ‘Karas’ were effective in decrease of disease development, such as early dry spot, anthracnose, in a range of 39.1–52.7 %. Generally, during observation period the efficacy index of the preparations ‘Vermistim’ with ‘Azotofit’, ‘Bioglobin’ with ‘Azotofit’ was higher than others preparations on the varieties ‘Kremenchug and ‘Karas’ against early dry spot (48.3–50.9%, 50.3–52.7% and anthracnose (46.1–47.0%, 47.6–48.5%. The results showed that the vast majority of biological preparations, phytohormones used against diseases in tomato crops of varieties ‘Kremenchugskiy’ and ‘Karas’, were effective in a range of 39.1-52.7% and also maintained the tomato yield within 2.8-5.1 t/ha or 8.1- 13.9%. The biological preparations, phytohormones improved

  5. Recent Progress of Flower Colour Modification by Biotechnology

    Directory of Open Access Journals (Sweden)

    Steve Chandler

    2009-12-01

    Full Text Available Genetically-modified, colour-altered varieties of the important cut-flower crop carnation have now been commercially available for nearly ten years. In this review we describe the manipulation of the anthocyanin biosynthesis pathway that has lead to the development of these varieties and how similar manipulations have been successfully applied to both pot plants and another cut-flower species, the rose. From this experience it is clear that down- and up-regulation of the flavonoid and anthocyanin pathway is both possible and predictable. The major commercial benefit of the application of this technology has so far been the development of novel flower colours through the development of transgenic varieties that produce, uniquely for the target species, anthocyanins derived from delphinidin. These anthocyanins are ubiquitous in nature, and occur in both ornamental plants and common food plants. Through the extensive regulatory approval processes that must occur for the commercialization of genetically modified organisms, we have accumulated considerable experimental and trial data to show the accumulation of delphinidin based anthocyanins in the transgenic plants poses no environmental or health risk.

  6. Physicochemical and microbiological evaluation of sun dried tomatoes in comparison with fresh tomatoes

    International Nuclear Information System (INIS)

    Sohail, M.

    2011-01-01

    The present study was conducted to evaluate the quality of sun dried tomatoes in comparison with fresh tomatoes. Fresh fully ripen tomatoes were washed and cut in thin slices with sterilized stainless steel knife and divided into two lots, one was taken as control and other was dipped in 3% potassium meta bisulfite solution for 5 minutes. The samples were spread over stainless steel trays covered with muslin cloth and kept in solar dehydrator for 5 days at 55 +- 2 deg. C. The physicochemical analyses were carried out in both dried and fresh (control) tomatoes. They were also analyzed microbiologically for bacterial and fugal count. Results showed that sun dried tomatoes are microbiologically safe. The values of moisture content and vitamin C of fresh and sun dried tomatoes statistically differ from each others at probability level of 5 %. The nutrient which is highly affected by sun drying is vitamin C. In fresh tomatoes it was 32.5 mg/100 g which is reduced to 24.6 mg/100 g after sun drying and further reduced to 15.86 mg/100 g during three months storage. The moisture content of the fresh tomatoes was 94.4% which decreased to 8.15% after drying, and then slowly increased to 9.95% in the three months storage. Statistically no major difference was found in the other nutrients during storage, which indicates that sun drying is nutritionally and microbiologically safe and can be used to preserve tomatoes and other fruits and vegetables for off season use. (author)

  7. Genetic divergence of tomato subsamples

    Directory of Open Access Journals (Sweden)

    André Pugnal Mattedi

    2014-02-01

    Full Text Available Understanding the genetic variability of a species is crucial for the progress of a genetic breeding program and requires characterization and evaluation of germplasm. This study aimed to characterize and evaluate 101 tomato subsamples of the Salad group (fresh market and two commercial controls, one of the Salad group (cv. Fanny and another of the Santa Cruz group (cv. Santa Clara. Four experiments were conducted in a randomized block design with three replications and five plants per plot. The joint analysis of variance was performed and characteristics with significant complex interaction between control and experiment were excluded. Subsequently, the multicollinearity diagnostic test was carried out and characteristics that contributed to severe multicollinearity were excluded. The relative importance of each characteristics for genetic divergence was calculated by the Singh's method (Singh, 1981, and the less important ones were excluded according to Garcia (1998. Results showed large genetic divergence among the subsamples for morphological, agronomic and organoleptic characteristics, indicating potential for genetic improvement. The characteristics total soluble solids, mean number of good fruits per plant, endocarp thickness, mean mass of marketable fruit per plant, total acidity, mean number of unmarketable fruit per plant, internode diameter, internode length, main stem thickness and leaf width contributed little to the genetic divergence between the subsamples and may be excluded in future studies.

  8. Pre-infestation of Tomato Plants by Aphids Modulates Transmission-Acquisition Relationship among Whiteflies, Tomato Yellow Leaf Curl Virus (TYLCV and Plants

    Directory of Open Access Journals (Sweden)

    Xiao L. Tan

    2017-09-01

    Full Text Available Herbivory defense systems in plants are largely regulated by jasmonate-(JA and salicylate-(SA signaling pathways. Such defense mechanisms may impact insect feeding dynamic, may also affect the transmission-acquisition relationship among virus, plants and vectoring insects. In the context of the tomato – whitefly – Tomato Yellow Leaf Curl Virus (TYLCV biological model, we tested the impact of pre-infesting plants with a non-vector insect (aphid Myzus persicae on feeding dynamics of a vector insect (whitefly Bemisia tabaci as well as virus transmission-acquisition. We showed that an aphid herbivory period of 0–48 h led to a transient systemic increase of virus concentration in the host plant (root, stem, and leaf, with the same pattern observed in whiteflies feeding on aphid-infested plants. We used real-time quantitative PCR to study the expression of key genes of the SA- and JA-signaling pathways, as well as electrical penetration graph (EPG to characterize the impact of aphid pre-infestation on whitefly feeding during TYLCV transmission (whitefly to tomato and acquisition (tomato to whitefly. The impact of the duration of aphid pre-infestation (0, 24, or 48 h on phloem feeding by whitefly (E2 during the transmission phase was similar to that of global whitefly feeding behavior (E1, E2 and probing duration during the acquisition phase. In addition, we observed that a longer phase of aphid pre-infestation prior to virus transmission by whitefly led to the up-regulation and down-regulation of SA- and JA-signaling pathway genes, respectively. These results demonstrated a significant impact of aphid pre-infestation on the tomato – whitefly – TYLCV system. Transmission and acquisition of TYLCV was positively correlated with feeding activity of B. tabaci, and both were mediated by the SA- and JA-pathways. TYLCV concentration during the transmission phases was modulated by up- and down-regulation of SA- and JA-pathways, respectively. The two

  9. Application of in vitro flowering technique on evaluating of mutation capacity and colour selection of Torenia fournieri L. following irradiation

    International Nuclear Information System (INIS)

    Le Van Thuc; Le Thi Thuy Linh; Hoang Hung Tien; Dang Thi Dien; Le Thi Bich Thy; Han Huynh Dien

    2013-01-01

    The transformation from vegetative to reproductive stage (flowering stage) depends on a lot of elements: physical and chemical elements, age of explant source, and plant growth regulators. In this study, we examined some elements that affect to the differentiating ability of in vitro Torenia fournieri L. flower shoot. Results showed that the older the shoots were, the higher the percentage of flowering shoot formation would be 60-day-old shoots gave the highest percentage of flowering shoot formation (65%) after 30-day culture. Moreover, the amount of macronutrients and micronutrients, sucrose concentration, growth regulators, activated charcoal and lighting conditions affect significantly the flowering ability. Shoots cultured on plant growth regulator free 1/4MS media supplemented with 60 g.l -1 sucrose and 1 g.l -1 activated charcoal in vessels covered with either plastic wrap with millipore filter or unabsorbable cotton-wool plug under a 10 h light (45 µmol.m -2 .s -1 )/14 h dark photoperiod resulted in the best flowering shoot formation of Torenia shoots cultured in vitro (89.18%, 2.80 flower buds/explant). In vitro flowers and the ex vitro ones have no significant difference in their morphology and color. Gamma-ray irradiation is one of the most effective techniques to produce mutants in plant breeding programs. In this research, the effect of Co 60 gamma-rays to produce flower color mutants in combination with in vitro flowering technique for morphological change isolation in Torenia was also investigated. After treated with gamma-rays, shoot regeneration was obtained when leaf explants were cultured on MS medium containing 0.5 mg/l BAP and 0.5 mg/l NAA. Shoots were grown on MS medium supplemented with 0.2 mg/l BA for shoot proliferation. The mutation efficiencies of the gamma-ray irradiation for flower color was examined owing to in vitro flowering technique. LG 50 at 30 - 40 Gy and 0.098 Gy/sec for leaf blades as well as plantlets was found to be suitable

  10. The Effect of Washing and Peeling on Reduction of Dithiocarbamates Residues in Cucumber and Tomato

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mehrasebi

    2016-03-01

    Full Text Available Background: Dithiocarbamates, the main group of fungicides, are used to control about 400 pathogens in more than 70 crops. These pesticides are widely applied to crops including potato, cereal, apple, pear and leafy vegetables throughout the world since 1960. From the late 1980s, using these fungicides has caused much debate among regulators about their long-term effects on consumers and occupational users. Method: In this study the residues of Dithiocarbamates in cucumber and tomato using the colorimetric method (Keppel method was measured. Respectively 80 and 45 samples of greenhouse cucumber and tomato were collected from Zanjan vegetables center in autumns and winter 2013. The samples were analyzed in 4 treatments of: unwashed, washing with water, washing whit detergent and peeling. Result: The results showed that the average concentration of Dithiocarbamates residues in unwashed greenhouse cucumber and tomatoes were 384.5 µg/kg and 65 µg/kg respectively. 35% and 5% of unwashed and water washed cucumber and tomato samples (respectively had higher Dithiocarbamates residue than MRL recommended by Institute of Standards and Industrial Research of Iran (0.5mg/kg. Conclusion: The treatments of washing and peeling had significant effect on the reduction of Dithiocarbamates residues in the all samples.

  11. Carotenoid Profile of Tomato Sauces: Effect of Cooking Time and Content of Extra Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Anna Vallverdú-Queralt

    2015-04-01

    Full Text Available The consumption of carotenoid-rich vegetables such as tomatoes and tomato sauces is associated with reduced risk of several chronic diseases. The predominant carotenoids in tomato products are in the (all-E configuration, but (Z isomers can be formed during thermal processing. The effect of cooking time (15, 30, 45 and 60 min and the addition of extra virgin olive oil (5% and 10% on the carotenoid extractability of tomato sauces was monitored using liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS and LC-ultraviolet detection (LC-UV. The thermal treatment and the addition of extra virgin olive oil increased the levels of antioxidant activity, total carotenoids, Z-lycopene isomers, α-carotene and β-carotene. These results are of particular nutritional benefit since higher lycopene intake has been associated with a reduced risk of lethal prostate and a reduction of prostate-specific antigen (PSA levels. Moreover, β-carotene has been reported to suppress the up-regulation of heme oxygenase-1 gene expression in a dose dependent manner and to suppress UVA-induced HO-1 gene expression in cultured FEK4.

  12. Effects of gamma radiation in tomato seeds

    Energy Technology Data Exchange (ETDEWEB)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter, E-mail: tawiendl@hotmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  13. Improving tomato seed quality- challenges and possibilities

    DEFF Research Database (Denmark)

    Shrestha, Santosh

    The thesis investigates the possibility of using single seed near-infrared (NIR) spectroscopy, multispectral imaging (MSI) and NIR hyperspectral imaging (NIR-HSI) in combination with chemometrics for rapid determination of the tomato seed quality. The results of the PhD study are compiled in four...... manuscripts (MS). These non-destructive methods show the potential of sorting tomato seeds as per their viability and varietal identity. The results are discussed in the context of possible contribution from these methods in the improvement of the seed quality in Nepal. In MS I, potential application of NIR...... spectroscopy in combination with chemometrics for prediction of tomato seed viability is demonstrated. The work in MS I also emphasises on identifying the important NIR spectral regions for the chemometric model that are relevant to the separation of viable and non-viable seeds. The NIR-HIS method was also...

  14. Effects of gamma radiation in tomato seeds

    International Nuclear Information System (INIS)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter; Arthur, Paula B.

    2013-01-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  15. Survey of tomato diseases in Cameroon

    Directory of Open Access Journals (Sweden)

    Fontem, DA.

    1993-01-01

    Full Text Available Tomato (Lycopersicon esculentum Mill. is the most widely cultivated field vegetable crop in Cameroon. On-farm surveys were undertaken from November 1988 to October 1991 to identify nursery and field diseases in major tomato producing areas of Cameroon, Damping-off and seedling blights were the main seedling diseases. Of the eleven diseases observed in the field, the most widely distributed and severe on the foliage and fruits were early (Alternaria solani and late (Phytophthora infestans blights. Late blight was the most severe disease in the wet season while early blight was most severe in the dry season. Nine pathogens were associated with various fruit rots. This study indicates the need for an identification of appropriate control methods for early and late blights of tomato in Cameroon.

  16. Flowering schedule in a perennial plant

    DEFF Research Database (Denmark)

    Ehrlén, Johan; Raabova, Jana; Dahlgren, Johan

    2015-01-01

    Optimal timing of reproduction within a season may be influenced by several abiotic and biotic factors. These factors sometimes affect different components of fitness, making assessments of net selection difficult. We used estimates of offspring fitness to examine how pre-dispersal seed predation...... from early flowers. Reproductive values of early and late flowers balanced at a predation intensity of 63%. Across 15 natural populations, the strength of selection for allocation to late flowers was positively correlated with mean seed predation intensity. Our results suggest that the optimal shape...

  17. New functionally dioecious bush tomato from northwestern Australia, Solanum ossicruentum, may utilize "trample burr" dispersal.

    Science.gov (United States)

    Martine, Christopher T; Cantley, Jason T; Frawley, Emma S; Butler, Alice R; Jordon-Thaden, Ingrid E

    2016-01-01

    A new Australian species of functionally dioecious bush tomato of Solanum subgenus Leptostemonum is described. Solanum ossicruentum Martine & J.Cantley, sp. nov., is thought to be allied with members of the problematic "Dioicum Complex" lineage, but differs in its short silvery indumentum, long calyx lobes, larger stature, and an unusual fruit morphology that may represent "trample burr" seed dispersal. The species occurs in a range extending from the eastern Kimberley in Western Australia to far northwestern Northern Territory and has been recognized for decades as a variant of Solanum dioicum W.Fitzg. Specimens of this species were previously referred to by D.E. Symon and others as Solanum dioicum 'Tanami.' Ex situ crossing studies and SEM images of inaperturate pollen grains produced in morphologically hermaphrodite flowers indicate that this taxon is functionally dioecious. The scientific name was chosen with the help of 150 seventh grade life science students from Pennsylvania, USA.

  18. Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophyll synthesis and accumulation in transgenic tomato plants.

    Science.gov (United States)

    D'Ambrosio, Caterina; Stigliani, Adriana Lucia; Giorio, Giovanni

    2011-02-01

    Plant chloroplasts are enriched in xanthophylls which participate in photosynthesis as light-absorbing pigments and as dissipaters of excess light. In comparison, chromoplasts have evolved the capacity to synthesize and store brightly coloured carotenoid pigments to give flowers and fruits the power to attract pollinators and fruit dispersers. The best performing accumulator of xanthophylls in tomato is the petal chromoplast in contrast to the fruit chromoplast which only seems able to store carotenes. We have generated genetically engineered tomato lines carrying the tomato CrtR-b2 transgene with the aim of forcing the fruit to accumulate beta-xanthophylls. Both chloroplast- and chromoplast-containing tissues of hemizygous transgenic plants were found to contain elevated xanthophyll contents as a direct consequence of the increased number of CrtR-b2 transcripts. Hemizygous transgenic leaves contained fourfold more violaxanthin than control leaves. Developing fruits were yellow instead of green since they lacked chlorophyll a, and their violaxanthin and neoxanthin contents were seven- and threefold higher, respectively, than those of the control. Ripe fruits of hemizygous transgenic plants contained free violaxanthin and significant amounts of esterified xanthophylls. Esterified xanthophylls were present also in ripe fruits of control and homozygous plants. However, in transgenic homozygous plants, we observed a reduction in transcript content in most tissues, particularly in petals, due to a post-transcriptional gene silencing process. These findings demonstrate that tomato fruit chromoplasts can accumulate xanthophylls with the same sequestration mechanism (esterification) as that exploited by chromoplasts of the tomato petal and pepper fruit. This study on transgenic plants overexpressing an important carotenoid gene (CrtR-b2) provides an interesting model for future investigations on perturbations in beta-carotene-derived xanthophyll synthesis which in turn may

  19. Flower bud transcriptome analysis of Sapium sebiferum (Linn.) Roxb. and primary investigation of drought induced flowering: pathway construction and G-quadruplex prediction based on transcriptome.

    Science.gov (United States)

    Yang, Minglei; Wu, Ying; Jin, Shan; Hou, Jinyan; Mao, Yingji; Liu, Wenbo; Shen, Yangcheng; Wu, Lifang

    2015-01-01

    Sapium sebiferum (Linn.) Roxb. (Chinese Tallow Tree) is a perennial woody tree and its seeds are rich in oil which hold great potential for biodiesel production. Despite a traditional woody oil plant, our understanding on S. sebiferum genetics and molecular biology remains scant. In this study, the first comprehensive transcriptome of S. sebiferum flower has been generated by sequencing and de novo assembly. A total of 149,342 unigenes were generated from raw reads, of which 24,289 unigenes were successfully matched to public database. A total of 61 MADS box genes and putative pathways involved in S. sebiferum flower development have been identified. Abiotic stress response network was also constructed in this work, where 2,686 unigenes are involved in the pathway. As for lipid biosynthesis, 161 unigenes have been identified in fatty acid (FA) and triacylglycerol (TAG) biosynthesis. Besides, the G-Quadruplexes in RNA of S. sebiferum also have been predicted. An interesting finding is that the stress-induced flowering was observed in S. sebiferum for the first time. According to the results of semi-quantitative PCR, expression tendencies of flowering-related genes, GA1, AP2 and CRY2, accorded with stress-related genes, such as GRX50435 and PRXⅡ39562. This transcriptome provides functional genomic information for further research of S. sebiferum, especially for the genetic engineering to shorten the juvenile period and improve yield by regulating flower development. It also offers a useful database for the research of other Euphorbiaceae family plants.

  20. Flowering, nectar production and insects visits in two cultivars of Cucurbita maxima Duch. flowers

    Directory of Open Access Journals (Sweden)

    Marta Dmitruk

    2012-12-01

    Full Text Available The study was conducted on experimental plots in the conditions of Lublin. In the years 1998-2000 flowering, nectar secretion and insect visitation of male and female flowers of two winter squash (Cucurbita maxima Duch. cultivars: 'Ambar' and 'Amazonka', were studied. The plants flowered from July to October. The flower life span was within the range of 7-10 hours. Female flowers of cv. Ambar were marked by the most abundant nectar secretion (129 mg. The nectar sugar content can be estimated as average (25%-35%. Winter squash nectar contained 84% of sucrose as well as 8-9% of fructose and 7%-8% of glucose. Flowers of the studied taxa were frequently foraged by the honey bee (66%-98% of total insects and bumblebees (1%-30%.

  1. Design of Tomato Drying System by Utilizing Brine Geothermal

    Science.gov (United States)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  2. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea

    NARCIS (Netherlands)

    Gonorazky, Gabriela; Guzzo, María Carla; Abd-El-Haliem, Ahmed M.; Joosten, Matthieu H.A.J.; Laxalt, Ana María

    2016-01-01

    The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated on pathogen attack. We have previously shown that the fungal elicitor xylanase induces a raise of SlPLC2 and SlPLC5

  3. Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis

    NARCIS (Netherlands)

    Karlova, R.B.; Haarst, van J.C.; Maliepaard, C.A.; Geest, van de H.C.; Bovy, A.G.; Lammers, M.; Angenent, G.C.; Maagd, de R.A.

    2013-01-01

    MicroRNAs (miRNAs) play important roles in plant development through regulation of gene expression by mRNA degradation or translational inhibition. Despite the fact that tomato (Solanum lycopersicum) is the model system for studying fleshy fruit development and ripening, only a few experimentally

  4. Genetic ablation of carotene oxygenases and consumption of lycopene or tomato powder diets modulates carotenoid and lipid metabolism in mice

    Science.gov (United States)

    Ford, Nikki A.; Elsen, Amy C.; Erdman, John W.

    2013-01-01

    Carotene-15,15'-monooxygenase (CMO-I) cleaves β-carotene to form vitamin A while carotene-9’,10’-monooxygenase (CMO-II) preferentially cleaves non-provitamin A carotenoids. Recent reports indicate that beta-carotene metabolites regulate dietary lipid uptake while lycopene regulates peroxisome-proliferated activator receptor (PPAR) expression. To determine the physiologic consequences of carotenoids and their interactions with CMO-I and CMO-II, we characterized mammalian carotenoid metabolism, metabolic perturbations and lipid metabolism in female CMO-I−/− and CMO-II−/− mice fed lycopene or tomato-containing diets for 30 days. We hypothesized that there would be significant interactions between diet and genotype on carotenoid accumulation and lipid parameters. CMO-I−/− mice had higher levels of leptin, insulin and hepatic lipidosis, but lower levels of serum cholesterol. CMO-II−/− mice had increased tissue lycopene and phytofluene accumulation, reduced IGF-1 levels and cholesterol levels, but elevated liver lipids and cholesterol compared with WT mice. The diets did not modulate these genotypic perturbations, but lycopene and tomato powder did significantly decrease serum insulin-like growth factor-I. Tomato powder also reduced hepatic PPAR expression, independent of genotype. These data point to the pleiotropic actions of CMO-I and CMO-II supporting a strong role of these proteins in regulating tissue carotenoid accumulation and the lipid metabolic phenotype, as well as tomato carotenoid-independent regulation of lipid metabolism. PMID:24034573

  5. Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water

    Directory of Open Access Journals (Sweden)

    B. Kahlaoui

    2018-01-01

    Full Text Available In scope of crop salinity tolerance, an experiment was carried out in a field using saline water (6.57 dS m−1 and subsurface drip irrigation (SDI on two tomato cultivars (Solanum lycopersicum, cv. Rio Grande and Heinz-2274 in a salty clay soil. Exogenous application of proline was done by foliar spray at two concentrations: 10 and 20 mg L−1, with a control (saline water without proline, during the flowering stage. Significant higher increases in proline and total soluble protein contents, glutamine synthetase (GS, EC6.3.1.2 activities and decreases in proline oxidase (l-proline: O2 Oxidoreductase, EC1.4.3.1 activities were detected in both tomato cultivars when irrigated with saline water (6.57 dS m−1 and exogenously applied by the lower concentration of proline. Taking in consideration the obtained results, it was concluded that the foliar spray of low concentration of proline can increase the tolerance of both cultivars of tomato to salinity under field conditions.

  6. Intra- and interspecific competition between western flower thrips and sweetpotato whitefly.

    Science.gov (United States)

    Wu, Qing-Jun; Hou, Wen-Jie; Li, Fei; Xu, Bao-Yun; Xie, Wen; Wang, Shao-Li; Zhang, You-Jun

    2014-01-01

    The western flower thrips, Frankliniella occidentalis (Pergande), and the sweetpotato whitefly, Bemisia tabaci (Gennadius), are both invasive insect pests and are present in most of the same agricultural crops without a clear dominance of either species. Here, intra- and interspecific competition in B. tabaci and F. occidentalis was determined under controlled experiments. The results showed that intraspecific competition was distinct in F. occidentalis and that the co-occurrence of B. tabaci had a strong effect on F. occidentalis, resulting in a decrease in oviposition. Significant intraspecific competition was found in B. tabaci, and the coexistence of F. occidentalis had limited effect on the oviposition of B. tabaci. In a selective host plant preference experiment, both F. occidentalis and B. tabaci preferred eggplants most, followed by cucumbers and tomatoes. On cucumber plants, B. tabaci was predominant, whereas on eggplant and tomato plants, F. occidentalis and B. tabaci exhibited comparative competitive abilities during the initial stage. However, over time, higher numbers of B. tabaci than that of F. occidentalis were found on the two host plants. Our in vitro and potted plant experiments indicate that B. tabaci is competitively superior to F. occidentalis, which might help to explain their differential distribution patterns in China. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  7. Carotenoids and lycopene content in fresh and dried tomato fruits and tomato juice

    Directory of Open Access Journals (Sweden)

    Andrea Mendelová

    2013-01-01

    Full Text Available Important component of the tomato are carotenoid dyes, especially lycopene. The importance of lycopene in the diet of people in recent years has grown mainly for its pharmacological effects due to its ability to reduce the risk of carcinoma diseases and prevention of cardiovascular diseases. The aim of this work was to analyze the content of total carotenoids and lycopene in 8 varieties of tomato and to monitor dynamic changes after their different treatments (heating, drying. The experiment included following tomato varieties: Bambino F1, Darina F1, Diana F1, Denár, Milica F1, Orange F1, Paulína F1, Šejk F1.We found that processing of tomato fruits into juices and dried slices positively affected the presence of carotenoids and lycopene. Processing leads to an increase in the content of carotenoids that can be attributed to better availability of these components in the human body.

  8. USING BACH FLOWER IN HOLISTIC PSYCHOTHERAPY

    Directory of Open Access Journals (Sweden)

    Vagner Ferreira do Nascimento

    2017-05-01

    Full Text Available This is a narrative review from scientific literature that aimed to describe concepts and approaches for indications of the therapeutic use of Bach flower remedies in holistic psychotherapy. The review was developed in February 2016 from books, official documents and articles indexed in Lilacs and Scielo databases. Bach flower remedies is a therapeutic method that aims to restore the balance of human being, restoring its vital energy through holistic care. Because the flower essences act on psychic and emotional dimension of individual, when employed in holistic psychotherapy can provide greater autonomy, self-care and effectiveness compared to other alternative methods. The literature indicated that flower essence therapy is a safe practice and can be used in a complementary to health care, but should be performed by qualified professionals. It has also shown to be a promising and important area for nursing professional, but it still requires greater investment in research in the area to support the practice.

  9. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    OpenAIRE

    Peng, Hui; Yang, Tianbao; Jurick, Wayne M.

    2014-01-01

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen in...

  10. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation

    OpenAIRE

    López-Ráez, Juan A.; Charnikhova, Tatsiana;; Gómez-Roldán,Victoria;; Matusova, Radoslava;; Kohlen, Wouter;; De Vos, Ric;; Verstappe, Francel;; Puech-Pages, Virginie;; Bécard, Guillaume;; Mulder, Patrick;; Bouwmeester, Harro;

    2008-01-01

    Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). * Strigolactone production under phosphate starvation, in the presence of the carotenoid biosynthesis inhibitor fluridone and in the abscisic acid (ABA) mutant notabilis were assessed using a germination bioassay with seeds of Orobanche ramosa; a hyphal b...

  11. Salt and genotype impact on plant physiology and root proteome variations in tomato.

    Science.gov (United States)

    Manaa, Arafet; Ben Ahmed, Hela; Valot, Benoît; Bouchet, Jean-Paul; Aschi-Smiti, Samira; Causse, Mathilde; Faurobert, Mireille

    2011-05-01

    To evaluate the genotypic variation of salt stress response in tomato, physiological analyses and a proteomic approach have been conducted in parallel on four contrasting tomato genotypes. After a 14 d period of salt stress in hydroponic conditions, the genotypes exhibited different responses in terms of plant growth, particularly root growth, foliar accumulation of Na(+), and foliar K/Na ratio. As a whole, Levovil appeared to be the most tolerant genotype while Cervil was the most sensitive one. Roma and Supermarmande exhibited intermediary behaviours. Among the 1300 protein spots reproducibly detected by two-dimensional electrophoresis, 90 exhibited significant abundance variations between samples and were submitted to mass spectrometry for identification. A common set of proteins (nine spots), up- or down-regulated by salt-stress whatever the genotype, was detected. But the impact of the tomato genotype on the proteome variations was much higher than the salt effect: 33 spots that were not variable with salt stress varied with the genotype. The remaining number of variable spots (48) exhibited combined effects of the genotype and the salt factors, putatively linked to the degrees of genotype tolerance. The carbon metabolism and energy-related proteins were mainly up-regulated by salt stress and exhibited most-tolerant versus most-sensitive abundance variations. Unexpectedly, some antioxidant and defence proteins were also down-regulated, while some proteins putatively involved in osmoprotectant synthesis and cell wall reinforcement were up-regulated by salt stress mainly in tolerant genotypes. The results showed the effect of 14 d stress on the tomato root proteome and underlined significant genotype differences, suggesting the importance of making use of genetic variability.

  12. Effects on Tomato Bacterial Canker of Resistance Inducers and Copper Compounds in Greenhouse

    OpenAIRE

    Baştaş, Kubilay

    2014-01-01

    Bacterial canker of tomato caused by Clavibacter michiganensis subsp. michiganensis produces considerable economic losses in many countries because effective control measures are lacking. In this study, the effectiveness of some chemicals, a plant growth regulator (Prohexadione-Ca (PC)), two plant activators (hydrogen peroxide (HP)) and harpin protein (Hrp), fungicides, maneb+copper (MC), copper compounds (copper sulfate pentahydrate (CSP) copper hydroxide (CH) and copper oxychloride (CO)) an...

  13. Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.

    Science.gov (United States)

    Teixido, A L; Guzmán, B; Staggemeier, V G; Valladares, F

    2017-11-01

    In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.

    Science.gov (United States)

    Wang, Xiping; Feng, Suhua; Nakayama, Naomi; Crosby, W L; Irish, Vivian; Deng, Xing Wang; Wei, Ning

    2003-05-01

    The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation.

  15. AP2/ERF Transcription Factors Involved in Response to Tomato Yellow Leaf Curly Virus in Tomato

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2016-07-01

    Full Text Available Tomato yellow leaf curly virus (TYLCV, transmitted by the whitefly (, causes leaf curling and yellowing, plant dwarfism, and growth inhibition in tomato ( L.. The APETALA2 (AP2 and ethylene response factor (ERF transcription factor (TF family, the largest plant-specific TF family, was identified to function in plant development and pathogen defense. Our study aimed to analyze the mechanism underlying the function of ERF (SlERF TFs in response to TYLCV infection and improve useful information to increase the resistance to TYLCV in tomato. A total of 22 tomato AP2/ERF TFs in response to TYLCV were identified according to transcriptome database. Five ERF-B3 TFs were identified in cultivars Hongbeibei (highly resistant, Zheza-301, Zhefen-702 (both resistant, Jinpeng-1, and Xianke-6 (both susceptible. Interaction network indicated that SlERF TFs could interact with mitogen-activated protein kinase (MAPK. Expression profiles of five ERF-B3 genes (, , , , and were detected by quantitative real-time–polymerase chain reaction (qRT-PCR after TYLCV infection in five tomato cultivars. expression was upregulated in five tomato cultivars. The expressions of three genes (, , and were upregulated in Zheza-301 and Zhefen-702. and expressions were downregulated in Hongbeibei and Xianke-6, respectively. Yeast one-hybrid showed that the GCC-box binding ability of ERF-B3 TFs differed in resistant and susceptible tomato cultivars. Expression profiles were related to the GCC-box binding ability of SlERF TFs in resistant and susceptible tomato cultivars. The defense mechanism underlying the tomato’s response to TYLCV involved a complicated network, which provided important information for us in breeding and genetic analysis.

  16. Pepino mosaic virus and Tomato chlorosis virus causing mixed infection in protected tomato crops in Sicily

    Directory of Open Access Journals (Sweden)

    SALVATORE DAVINO

    2008-07-01

    Full Text Available An unusual virus-like yellow leaf disorder associated with fruit marbling was observed during the winter of 2005 in some greenhouse tomato crops in the province of Ragusa Sicily (Southern Italy. Leaf samples from 250 symptomatic tomato plants were serologically tested by DAS-ELISA technique for 5 viruses: Tomato spotted wilt virus (TSWV, Impatiens necrotic spot virus (INSV, Tobacco mosaic virus (TMV, Cucumber mosaic virus (CMV and Pepino mosaic virus (PepMV. PepMV was detected in 215 of the samples. The virus was mechanically transmitted to cucumber, wild metel, wild tobacco and ‘Rio Grande’ tomato. The experimental host range of PepMV-Ragusa differed from that of the PepMV found in Sardinia in 2001, which infected ‘Camone’ tomato. By applying RT-PCR to 25 PepMV-infected tomato plants, the expected 844 bp DNA fragment for PepMV and the expected 439 bp DNA fragment for Tomato chlororis virus (ToCV were obtained from all the samples tested. Sequences of the obtained amplicons were used to study the phylogenetic relationships of the viruses with isolates from other countries. Nucleotide sequence alignments showed that the sequence CP-PepMV-Ragusa (Genbank acc. No. DQ 517884 were 99% homologous with both US2 and Spain-Murcia isolates, while those of ToCV-Ragusa (Genbank acc. No. DQ517885 isolate HSP70, were 99% homologous with the Florida isolate, and 98% with the Lebanon isolate. The results proved that the unusual disorder found in greenhouse tomatoes in Sicily can be associated with infections by PepMV and ToCV, reported for the first time in a mixed infection.

  17. Phytochrome, plant growth and flowering

    Science.gov (United States)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  18. Phytochrome, plant growth and flowering

    Energy Technology Data Exchange (ETDEWEB)

    King, R.W.; Bagnall, D.J. [CSIRO, Canberra (Australia)

    1994-12-31

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. As shown for chrysanthemum, with FR depletion plants grown in sunlight are small, more branched and darker green. We examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  19. Tomato FK506 Binding Protein 12KD (FKBP12 mediates the interaction between rapamycin and Target of Rapamycin (TOR

    Directory of Open Access Journals (Sweden)

    Fangjie Xiong

    2016-11-01

    Full Text Available Target of Rapamycin (TOR signaling is an important regulator in multiple organisms including yeast, plants and animals. However, the TOR signaling in plants is much less understood as compared to that in yeast and animals. TOR kinase can be efficiently suppressed by rapamycin in the presence of functional FK506 Binding Protein 12KD (FKBP12 in yeast and animals. In most examined higher plants rapamycin fails to inhibit TOR kinase due to the non-functional FKBP12. Here we find that tomato plants showed obvious growth inhibition when treated with rapamycin and the inhibitory phenotype is similar to suppression of TOR causing by active-site TOR inhibitors (asTORis such as KU63794, AZD8055 and Torin1. The chemical genetic assays using TOR inhibitors and heterologous expressing SlFKBP12 in Arabidopsis indicated that the TOR signaling is functional in tomato. The protein gel shifting and TOR inhibitors combination assays showed that SlFKBP12 can mediate the interaction between rapamycin and TOR. Furthermore, comparative expression profiling analysis between treatments with rapamycin and KU63794 identified highly overlapped Differentially Expressed Genes (DEGs which are involved in many anabolic and catabolic processes, such as photosynthesis, cell wall restructuring, and senescence in tomato. These observations suggest that SlFFBP12 is functional in tomato. The results provided basic information of TOR signaling in tomato, and also some new insights into how TOR controls plant growth and development through reprogramming the transcription profiles

  20. Tomato FK506 Binding Protein 12KD (FKBP12) Mediates the Interaction between Rapamycin and Target of Rapamycin (TOR).

    Science.gov (United States)

    Xiong, Fangjie; Dong, Pan; Liu, Mei; Xie, Gengxin; Wang, Kai; Zhuo, Fengping; Feng, Li; Yang, Lu; Li, Zhengguo; Ren, Maozhi

    2016-01-01

    Target of Rapamycin (TOR) signaling is an important regulator in multiple organisms including yeast, plants, and animals. However, the TOR signaling in plants is much less understood as compared to that in yeast and animals. TOR kinase can be efficiently suppressed by rapamycin in the presence of functional FK506 Binding Protein 12 KD (FKBP12) in yeast and animals. In most examined higher plants rapamycin fails to inhibit TOR kinase due to the non-functional FKBP12. Here we find that tomato plants showed obvious growth inhibition when treated with rapamycin and the inhibitory phenotype is similar to suppression of TOR causing by active-site TOR inhibitors (asTORis) such as KU63794, AZD8055, and Torin1. The chemical genetic assays using TOR inhibitors and heterologous expressing SlFKBP12 in Arabidopsis indicated that the TOR signaling is functional in tomato. The protein gel shifting and TOR inhibitors combination assays showed that SlFKBP12 can mediate the interaction between rapamycin and TOR. Furthermore, comparative expression profile analysis between treatments with rapamycin and KU63794 identified highly overlapped Differentially Expressed Genes (DEGs) which are involved in many anabolic and catabolic processes, such as photosynthesis, cell wall restructuring, and senescence in tomato. These observations suggest that SlFFBP12 is functional in tomato. The results provided basic information of TOR signaling in tomato, and also some new insights into how TOR controls plant growth and development through reprogramming the transcription profiles.

  1. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5

    Science.gov (United States)

    Thines, Bryan C.; Duarte, Maritza I.; Harmon, Frank G.

    2014-01-01

    Warm temperature promotes flowering in Arabidopsis thaliana and this response involves multiple signalling pathways. To understand the temporal dynamics of temperature perception, tests were carried out to determine if there was a daily window of enhanced sensitivity to warm temperature (28 °C). Warm temperature applied during daytime, night-time, or continuously elicited earlier flowering, but the effects of each treatment were unequal. Plants exposed to warm night (WN) conditions flowered nearly as early as those in constant warm (CW) conditions, while treatment with warm days (WD) caused later flowering than either WN or CW. Flowering in each condition relied to varying degrees on the activity of CO , FT , PIF4 , and PIF5 , as well as the action of unknown genes. The combination of signalling pathways involved in flowering depended on the time of the temperature cue. WN treatments caused a significant advance in the rhythmic expression waveform of CO, which correlated with pronounced up-regulation of FT expression, while WD caused limited changes in CO expression and no stimulation of FT expression. WN- and WD-induced flowering was partially CO independent and, unexpectedly, dependent on PIF4 and PIF5 . pif4-2, pif5-3, and pif4-2 pif5-3 mutants had delayed flowering under all three warm conditions. The double mutant was also late flowering in control conditions. In addition, WN conditions alone imposed selective changes to PIF4 and PIF5 expression. Thus, the PIF4 and PIF5 transcription factors promote flowering by at least two means: inducing FT expression in WN and acting outside of FT by an unknown mechanism in WD. PMID:24574484

  2. Biology of flower-infecting fungi.

    Science.gov (United States)

    Ngugi, Henry K; Scherm, Harald

    2006-01-01

    The ability to infect host flowers offers important ecological benefits to plant-parasitic fungi; not surprisingly, therefore, numerous fungal species from a wide range of taxonomic groups have adopted a life style that involves flower infection. Although flower-infecting fungi are very diverse, they can be classified readily into three major groups: opportunistic, unspecialized pathogens causing necrotic symptoms such as blossom blights (group 1), and specialist flower pathogens which infect inflorescences either through the gynoecium (group 2) or systemically through the apical meristem (group 3). This three-tier system is supported by life history attributes such as host range, mode of spore transmission, degree of host sterilization as a result of infection, and whether or not the fungus undergoes an obligate sexual cycle, produces resting spores in affected inflorescences, and is r- or K-selected. Across the three groups, the flower as an infection court poses important challenges for disease management. Ecologically and evolutionarily, terms and concepts borrowed from the study of venereal (sexually transmitted) diseases of animals do not adequately capture the range of strategies employed by fungi that infect flowers.

  3. Pollination Services of Mango Flower Pollinators

    Science.gov (United States)

    Huda, A. Nurul; Salmah, M. R. Che; Hassan, A. Abu; Hamdan, A.; Razak, M. N. Abdul

    2015-01-01

    Measuring wild pollinator services in agricultural production is very important in the context of sustainable management. In this study, we estimated the contribution of native pollinators to mango fruit set production of two mango cultivars Mangifera indica (L). cv. ‘Sala’ and ‘Chok Anan’. Visitation rates of pollinators on mango flowers and number of pollen grains adhering to their bodies determined pollinator efficiency for reproductive success of the crop. Chok Anan failed to produce any fruit set in the absence of pollinators. In natural condition, we found that Sala produced 4.8% fruit set per hermaphrodite flower while Chok Anan produced 3.1% per flower. Hand pollination tremendously increased fruit set of naturally pollinated flower for Sala (>100%), but only 33% for Chok Anan. Pollinator contribution to mango fruit set was estimated at 53% of total fruit set production. Our results highlighted the importance of insect pollinations in mango production. Large size flies Eristalinus spp. and Chrysomya spp. were found to be effective pollen carriers and visited more mango flowers compared with other flower visitors. PMID:26246439

  4. Transcriptome Analysis of Flower Sex Differentiation in Jatropha curcas L. Using RNA Sequencing.

    Science.gov (United States)

    Xu, Gang; Huang, Jian; Yang, Yong; Yao, Yin-an

    2016-01-01

    Jatropha curcas is thought to be a promising biofuel material, but its yield is restricted by a low ratio of instaminate/staminate flowers (1/10-1/30). Furthermore, valuable information about flower sex differentiation in this plant is scarce. To explore the mechanism of this process in J. curcas, transcriptome profiling of flower development was carried out, and certain genes related with sex differentiation were obtained through digital gene expression analysis of flower buds from different phases of floral development. After Illumina sequencing and clustering, 57,962 unigenes were identified. A total of 47,423 unigenes were annotated, with 85 being related to carpel and stamen differentiation, 126 involved in carpel and stamen development, and 592 functioning in the later development stage for the maturation of staminate or instaminate flowers. Annotation of these genes provided comprehensive information regarding the sex differentiation of flowers, including the signaling system, hormone biosynthesis and regulation, transcription regulation and ubiquitin-mediated proteolysis. A further expression pattern analysis of 15 sex-related genes using quantitative real-time PCR revealed that gibberellin-regulated protein 4-like protein and AMP-activated protein kinase are associated with stamen differentiation, whereas auxin response factor 6-like protein, AGAMOUS-like 20 protein, CLAVATA1, RING-H2 finger protein ATL3J, auxin-induced protein 22D, and r2r3-myb transcription factor contribute to embryo sac development in the instaminate flower. Cytokinin oxidase, Unigene28, auxin repressed-like protein ARP1, gibberellin receptor protein GID1 and auxin-induced protein X10A are involved in both stages mentioned above. In addition to its function in the differentiation and development of the stamens, the gibberellin signaling pathway also functions in embryo sac development for the instaminate flower. The auxin signaling pathway also participates in both stamen development

  5. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    Science.gov (United States)

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; Han, Cliff S.; Stajich, Jason E.; Kaloshian, Isgouhi; Borkovich, Katherine A.

    2014-01-01

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. We explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. Taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs. PMID:25330340

  6. Identification of Genes Associated with Lemon Floral Transition and Flower Development during Floral Inductive Water Deficits: A Hypothetical Model.

    Science.gov (United States)

    Li, Jin-Xue; Hou, Xiao-Jin; Zhu, Jiao; Zhou, Jing-Jing; Huang, Hua-Bin; Yue, Jian-Qiang; Gao, Jun-Yan; Du, Yu-Xia; Hu, Cheng-Xiao; Hu, Chun-Gen; Zhang, Jin-Zhi

    2017-01-01

    Water deficit is a key factor to induce flowering in many woody plants, but reports on the molecular mechanisms of floral induction and flowering by water deficit are scarce. Here, we analyzed the morphology, cytology, and different hormone levels of lemon buds during floral inductive water deficits. Higher levels of ABA were observed, and the initiation of floral bud differentiation was examined by paraffin sections analysis. A total of 1638 differentially expressed genes (DEGs) were identified by RNA sequencing. DEGs were related to flowering, hormone biosynthesis, or metabolism. The expression of some DEGs was associated with floral induction by real-time PCR analysis. However, some DEGs may not have anything to do with flowering induction/flower development; they may be involved in general stress/drought response. Four genes from the phosphatidylethanolamine-binding protein family were further investigated. Ectopic expression of these genes in Arabidopsis changed the flowering time of transgenic plants. Furthermore, the 5' flanking region of these genes was also isolated and sequence analysis revealed the presence of several putative cis -regulatory elements, including basic elements and hormone regulation elements. The spatial and temporal expression patterns of these promoters were investigated under water deficit treatment. Based on these findings, we propose a model for citrus flowering under water deficit conditions, which will enable us to further understand the molecular mechanism of water deficit-regulated flowering in citrus. Based on gene activity during floral inductive water deficits identified by RNA sequencing and genes associated with lemon floral transition, a model for citrus flowering under water deficit conditions is proposed.

  7. Functional analysis of PI-like gene in relation to flower development ...

    Indian Academy of Sciences (India)

    lying flower development in bamboo, a petal-identity gene was identified as a ... 35S::BoPI fully rescued the defective petal forma- tion in the ... Arabidopsis converted sepals to petals; BoPI-C interacted with BoAP3 on yeast two-hybrid assay, just like the full-length ... PI homologue function in regulating perianth organ forma-.

  8. A plant-based chemical genomics screen for the identification of flowering inducers

    NARCIS (Netherlands)

    Fiers, Martijn; Hoogenboom, Jorin; Brunazzi, Alice; Wennekes, Tom; Angenent, Gerco C; Immink, Richard G H

    2017-01-01

    BACKGROUND: Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to

  9. 21 CFR 156.145 - Tomato juice.

    Science.gov (United States)

    2010-04-01

    ...). The food is preserved by heat sterilization (canning), refrigeration, or freezing. When sealed in a... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Tomato juice. 156.145 Section 156.145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  10. Enhanced regeneration in explants of tomato (Lycopersicon ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... The development of a cost effective and efficient protocol for mass propagation of high quality tomato seedlings via tissue culture could help to reduce the price per seedling. A good in vitro plant regeneration system may also assist in further improvement of the commercially important cultivars for disease.

  11. Peroxidase gene expression during tomato fruit ripening

    International Nuclear Information System (INIS)

    Biggs, M.S.; Flurkey, W.H.; Handa, A.K.

    1987-01-01

    Auxin oxidation has been reported to play a critical role in the initiation of pear fruit ripening and a tomato fruit peroxidase (POD) has been shown to have IAA-oxidase activity. However, little is known about changes in the expression of POD mRNA in tomato fruit development. They are investigating the expression of POD mRNA during tomato fruit maturation. Fruit pericarp tissues from six stages of fruit development and ripening (immature green, mature green, breaker, turning, ripe, and red ripe fruits) were used to extract poly (A) + RNAs. These RNAs were translated in vitro in a rabbit reticulocyte lysate system using L- 35 S-methionine. The 35 S-labeled products were immunoprecipitated with POD antibodies to determine the relative proportions of POD mRNA. High levels of POD mRNA were present in immature green and mature green pericarp, but declined greatly by the turning stage of fruit ripening. In addition, the distribution of POD mRNA on free vs bound polyribosomes will be presented, as well as the presence or absence of POD mRNA in other tomato tissues

  12. Temperature field for radiative tomato peeling

    International Nuclear Information System (INIS)

    Cuccurullo, G; Giordano, L

    2017-01-01

    Nowadays peeling of tomatoes is performed by using steam or lye, which are expensive and polluting techniques, thus sustainable alternatives are searched for dry peeling and, among that, radiative heating seems to be a fairly promising method. This paper aims to speed up the prediction of surface temperatures useful for realizing dry-peeling, thus a 1D-analytical model for the unsteady temperature field in a rotating tomato exposed to a radiative heating source is presented. Since only short times are of interest for the problem at hand, the model involves a semi-infinite slab cooled by convective heat transfer while heated by a pulsating heat source. The model being linear, the solution is derived following the Laplace Transform method. A 3D finite element model of the rotating tomato is introduced as well in order to validate the analytical solution. A satisfactory agreement is attained. Therefore, two different ways to predict the onset of the peeling conditions are available which can be of help for proper design of peeling plants. Particular attention is paid to study surface temperature uniformity, that being a critical parameter for realizing an easy tomato peeling. (paper)

  13. Tomato leaves methanol extract possesses antiinflammatory activity ...

    African Journals Online (AJOL)

    Recently, the leaves of tomato plant that contained several active compounds including alkaloid, steroid and flavanoid has been used for the treatment of variety of diseases and as anti-cancer, antioxidant and anti-gout. Although, a number of pharmacological properties have already been demonstrated, the ...

  14. Genetic (in)stability in tomato

    NARCIS (Netherlands)

    Wisman, E.

    1993-01-01

    In the present study tomato lines carrying unstable alleles of the loci yv or sulfurea were characterized. In addition, we aimed at the isolation of an endogenous transposable element supposedly active in the unstable lines. Since the unstable loci were not cloned, we

  15. How to grasp a ripe tomato

    NARCIS (Netherlands)

    Verhagen, L.

    2012-01-01

    Fortunately, we don’t have to think about this when we are standing in the supermarket after a busy day. We adjust our grip without effort, making sure we don’t squish an overripe tomato, while we firmly grasp a hard green one. This is actually a complex task in which humans are surprisingly

  16. Nitrogen determination on tomato ( Lycopersicon esculentum Mill ...

    African Journals Online (AJOL)

    In order to investigate the effectiveness of a new method based on color image analysis and the Minolta SPAD-502 chlorophyll meter for the diagnosis of nitrogen deficiencies of tomato seedlings, a field experiment was conducted. In this study, five levels of nitrogen fertilization were established so as to induce nitrogen ...

  17. Response of Pratylenchus spp Infected Tomato ( Lycopersicon ...

    African Journals Online (AJOL)

    The need to reduce the negative impact of synthetic nematicides on the environment necessitated the search for bio-pesticides. This study was conducted to evaluate the nematicidal potential of chromatographic fractions from Mangifera indica on tomato in the screenhouse and field. M. indica bark was extracted with ...

  18. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Chen, Zongxiang; Li, Fuli; Yang, Songnan; Dong, Yibo; Yuan, Qianhua; Wang, Feng; Li, Weimin; Jiang, Ying; Jia, Shirong; Pei, Xinwu

    2013-01-01

    MicroRNAs (miRNAs) is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing) to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2) and one flowering stage (CWR-F2) were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and lays a foundation for further study of phase change

  19. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff..

    Directory of Open Access Journals (Sweden)

    Zongxiang Chen

    Full Text Available BACKGROUND: MicroRNAs (miRNAs is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. RESULTS: Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2 and one flowering stage (CWR-F2 were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. CONCLUSIONS: This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and

  20. Growth regulators, DNA content and anatomy in vitro -cultivated ...

    African Journals Online (AJOL)

    Growth regulators, DNA content and anatomy in vitro -cultivated Curcuma longa ... Shoots were inoculated in MS culture medium with the addition of 30 g/L of sucrose ... flow cytometry, utilizing two reference standards, green pea, and tomato.