WorldWideScience

Sample records for regulating signal dynamics

  1. Dynamic ubiquitin signaling in cell cycle regulation.

    Science.gov (United States)

    Gilberto, Samuel; Peter, Matthias

    2017-08-07

    The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. © 2017 Gilberto and Peter.

  2. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  3. DMPD: When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18631453 When signaling pathways collide: positive and negative regulation of toll-...uction. PubmedID 18631453 Title When signaling pathways collide: positive and neg...l) Show When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transd...likereceptor signal transduction. O'Neill LA. Immunity. 2008 Jul 18;29(1):12-20. (.png) (.svg) (.html) (.csm

  4. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral ...signaling pathways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  5. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  6. DMPD: Negative regulation of cytoplasmic RNA-mediated antiviral signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18703349 Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Komur...Show Negative regulation of cytoplasmic RNA-mediated antiviral signaling. PubmedID 18703349 Title Negative r...egulation of cytoplasmic RNA-mediated antiviral signaling. Authors Komuro A, Bamm

  7. DMPD: Regulation of cytokine signaling by SOCS family molecules. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14644140 Regulation of cytokine signaling by SOCS family molecules. Fujimoto M, Nak...a T. Trends Immunol. 2003 Dec;24(12):659-66. (.png) (.svg) (.html) (.csml) Show Regulation of cytokine signaling by SOCS family... molecules. PubmedID 14644140 Title Regulation of cytokine signaling by SOCS family molec

  8. DMPD: New insights into the regulation of TLR signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16698941 New insights into the regulation of TLR signaling. Miggin SM, O'Neill LA. ...J Leukoc Biol. 2006 Aug;80(2):220-6. Epub 2006 May 12. (.png) (.svg) (.html) (.csml) Show New insights into ...the regulation of TLR signaling. PubmedID 16698941 Title New insights into the regulation of TLR signaling.

  9. DMPD: Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18406369 Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins...svg) (.html) (.csml) Show Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. ...PubmedID 18406369 Title Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins

  10. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis.

    Science.gov (United States)

    Dufton, Neil P; Peghaire, Claire R; Osuna-Almagro, Lourdes; Raimondi, Claudio; Kalna, Viktoria; Chuahan, Abhishek; Webb, Gwilym; Yang, Youwen; Birdsey, Graeme M; Lalor, Patricia; Mason, Justin C; Adams, David H; Randi, Anna M

    2017-10-12

    The role of the endothelium in protecting from chronic liver disease and TGFβ-mediated fibrosis remains unclear. Here we describe how the endothelial transcription factor ETS-related gene (ERG) promotes liver homoeostasis by controlling canonical TGFβ-SMAD signalling, driving the SMAD1 pathway while repressing SMAD3 activity. Molecular analysis shows that ERG binds to SMAD3, restricting its access to DNA. Ablation of ERG expression results in endothelial-to-mesenchymal transition (EndMT) and spontaneous liver fibrogenesis in EC-specific constitutive hemi-deficient (Erg cEC-Het ) and inducible homozygous deficient mice (Erg iEC-KO ), in a SMAD3-dependent manner. Acute administration of the TNF-α inhibitor etanercept inhibits carbon tetrachloride (CCL 4 )-induced fibrogenesis in an ERG-dependent manner in mice. Decreased ERG expression also correlates with EndMT in tissues from patients with end-stage liver fibrosis. These studies identify a pathogenic mechanism where loss of ERG causes endothelial-dependent liver fibrogenesis via regulation of SMAD2/3. Moreover, ERG represents a promising candidate biomarker for assessing EndMT in liver disease.The transcription factor ERG is key to endothelial lineage specification and vascular homeostasis. Here the authors show that ERG balances TGFβ signalling through the SMAD1 and SMAD3 pathways, protecting the endothelium from endothelial-to-mesenchymal transition and consequent liver fibrosis in mice via a SMAD3-dependent mechanism.

  11. Neural Substrates of Social Emotion Regulation: A fMRI Study on Imitation and Expressive Suppression to Dynamic Facial Signals

    Directory of Open Access Journals (Sweden)

    Pascal eVrticka

    2013-02-01

    Full Text Available Emotion regulation is crucial for successfully engaging in social interactions. Yet, little is known about the neural mechanisms controlling behavioral responses to emotional expressions perceived in the face of other people, which constitute a key element of interpersonal communication. Here, we investigated brain systems involved in social emotion perception and regulation, using functional magnetic resonance imaging (fMRI in 20 healthy participants who saw dynamic facial expressions of either happiness or sadness, and were asked to either imitate the expression or to suppress any expression on their own face (in addition to a gender judgment control task. fMRI results revealed higher activity in regions associated with emotion (e.g., the insula, motor function (e.g., motor cortex, and theory of mind during imitation. Activity in dorsal cingulate cortex was also increased during imitation, possibly reflecting greater action monitoring or conflict with own feeling states. In addition, premotor regions were more strongly activated during both imitation and suppression, suggesting a recruitment of motor control for both the production and inhibition of emotion expressions. Expressive suppression produced increases in dorsolateral and lateral prefrontal cortex typically related to cognitive control. These results suggest that voluntary imitation and expressive suppression modulate brain responses to emotional signals perceived from faces, by up- and down-regulating activity in distributed subcortical and cortical networks that are particularly involved in emotion, action monitoring, and cognitive control.

  12. TRPC1, STIM1, and ORAI influence signal-regulated intracellular and endoplasmic reticulum calcium dynamics in human myometrial cells.

    Science.gov (United States)

    Murtazina, Dilyara A; Chung, Daesuk; Ulloa, Aida; Bryan, Emily; Galan, Henry L; Sanborn, Barbara M

    2011-08-01

    To explore the relationship between signal-stimulated increases in intracellular calcium ([Ca(2+)](i)) and depletion and refilling of the endoplasmic reticulum (ER) Ca(2+) stores ([Ca(2+)](L)) in human myometrial cells, we measured simultaneous changes in [Ca(2+)](i) and [Ca(2+)](L) using Fura-2 and Mag-fluo-4, respectively, in PHM1-41 immortalized and primary cells derived from pregnant myometrium and in primary cells derived from nonpregnant tissue. Signal- and extracellular Ca(2+)-dependent increases in [Ca(2+)](i) (SRCE) and ER refilling stimulated by oxytocin and cyclopiazonic acid were not inhibited by voltage-operated channel blocker nifedipine or mibefradil, inhibition of Na(+)/Ca(2+) exchange with KB-R7943, or zero extracellular Na(+) in PHM1-41 cells. Gadolinium-inhibited oxytocin- and cyclopiazonic acid-induced SRCE and slowed ER store refilling. TRPC1 mRNA knockdown specifically inhibited oxytocin-stimulated SRCE but had no statistically significant effect on ER store refilling and no effect on either parameter following cyclopiazonic acid treatment. Dominant negative STIMΔERM expression attenuated oxytocin- and thapsigargin-stimulated SRCE. Both STIM1 and ORAI1-ORAI3 mRNA knockdowns significantly attenuated oxytocin- and cyclopiazonic acid-stimulated SRCE. The data also suggest that reduction in STIM1 or ORAI1-ORAI3 mRNA can impede the rate of ER store refilling following removal of SERCA inhibition. These data provide evidence for both distinct and overlapping influences of TRPC1, STIM1, and ORAI1-ORAI3 on SRCE and ER store refilling in human myometrial cells that may contribute to the regulation of myometrial Ca(2+) dynamics. These findings have important implications for understanding the control of myometrial Ca(2+) dynamics in relation to myometrial contractile function.

  13. The structure and dynamics of tandem WW domains in a negative regulator of notch signaling, Suppressor of deltex.

    Science.gov (United States)

    Fedoroff, Oleg Y; Townson, Sharon A; Golovanov, Alexander P; Baron, Martin; Avis, Johanna M

    2004-08-13

    WW domains mediate protein recognition, usually though binding to proline-rich sequences. In many proteins, WW domains occur in tandem arrays. Whether or how individual domains within such arrays cooperate to recognize biological partners is, as yet, poorly characterized. An important question is whether functional diversity of different WW domain proteins is reflected in the structural organization and ligand interaction mechanisms of their multiple domains. We have determined the solution structure and dynamics of a pair of WW domains (WW3-4) from a Drosophila Nedd4 family protein called Suppressor of deltex (Su(dx)), a regulator of Notch receptor signaling. We find that the binding of a type 1 PPPY ligand to WW3 stabilizes the structure with effects propagating to the WW4 domain, a domain that is not active for ligand binding. Both WW domains adopt the characteristic triple-stranded beta-sheet structure, and significantly, this is the first example of a WW domain structure to include a domain (WW4) lacking the second conserved Trp (replaced by Phe). The domains are connected by a flexible linker, which allows a hinge-like motion of domains that may be important for the recognition of functionally relevant targets. Our results contrast markedly with those of the only previously determined three-dimensional structure of tandem WW domains, that of the rigidly oriented WW domain pair from the RNA-splicing factor Prp40. Our data illustrate that arrays of WW domains can exhibit a variety of higher order structures and ligand interaction mechanisms.

  14. Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration.

    Science.gov (United States)

    Schofield, Alice V; Steel, Rohan; Bernard, Ora

    2012-12-21

    The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.

  15. Modularized Smad-regulated TGFβ signaling pathway.

    Science.gov (United States)

    Li, Yongfeng; Wang, Minli; Carra, Claudio; Cucinotta, Francis A

    2012-12-01

    The transforming Growth Factor β (TGFβ) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. TGFβ signaling can be induced by several factors including ionizing radiation. The pathway is regulated in a negative feedback loop through promoting the nuclear import of the regulatory Smads and a subsequent expression of inhibitory Smad7, that forms ubiquitin ligase with Smurf2, targeting active TGFβ receptors for degradation. In this work, we proposed a mathematical model to study the Smad-regulated TGFβ signaling pathway. By modularization, we are able to analyze mathematically each component subsystem and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, in the TGFβ signaling pathway is discussed and supported as well by numerical simulation, indicating the robustness of the model. Published by Elsevier Inc.

  16. Notch-RBP-J signaling regulates the mobilization and function of endothelial progenitor cells by dynamic modulation of CXCR4 expression in mice.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Bone marrow (BM-derived endothelial progenitor cells (EPC have therapeutic potentials in promoting tissue regeneration, but how these cells are modulated in vivo has been elusive. Here, we report that RBP-J, the critical transcription factor mediating Notch signaling, modulates EPC through CXCR4. In a mouse partial hepatectomy (PHx model, RBP-J deficient EPC showed attenuated capacities of homing and facilitating liver regeneration. In resting mice, the conditional deletion of RBP-J led to a decrease of BM EPC, with a concomitant increase of EPC in the peripheral blood. This was accompanied by a down-regulation of CXCR4 on EPC in BM, although CXCR4 expression on EPC in the circulation was up-regulated in the absence of RBP-J. PHx in RBP-J deficient mice induced stronger EPC mobilization. In vitro, RBP-J deficient EPC showed lowered capacities of adhering, migrating, and forming vessel-like structures in three-dimensional cultures. Over-expression of CXCR4 could at least rescue the defects in vessel formation by the RBP-J deficient EPC. These data suggested that the RBP-J-mediated Notch signaling regulated EPC mobilization and function, at least partially through dynamic modulation of CXCR4 expression. Our findings not only provide new insights into the regulation of EPC, but also have implications for clinical therapies using EPC in diseases.

  17. The Dynamics of Costly Signaling

    Directory of Open Access Journals (Sweden)

    Elliott O. Wagner

    2013-04-01

    Full Text Available Costly signaling is a mechanism through which the honesty of signals can be secured in equilibrium, even in interactions where communicators have conflicting interests. This paper explores the dynamics of one such signaling game: Spence’s model of education. It is found that separating equilibria are unlikely to emerge under either the replicator or best response dynamics, but that partially communicative mixed equilibria are quite important dynamically. These mixtures are Lyapunov stable in the replicator dynamic and asymptotically stable in the best response dynamic. Moreover, they have large basins of attraction, in fact larger than those of either pooling or separating equilibria. This suggests that these mixtures may play significant, and underappreciated, roles in the explanation of the emergence and stability of information transfer.

  18. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling.

    Directory of Open Access Journals (Sweden)

    Wei Li

    2008-01-01

    Full Text Available Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub ligases. We have annotated approximately 617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein - two transmembrane domains mediate its localization to the organelle's outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULAN's downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-kappaB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment.

  19. Comment on "A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation": building a model of the mTOR signaling network with a potentially faulty tool.

    Science.gov (United States)

    Manning, Brendan D

    2012-07-10

    In their study published in Science Signaling (Research Article, 27 March 2012, DOI: 10.1126/scisignal.2002469), Dalle Pezze et al. tackle the dynamic and complex wiring of the signaling network involving the protein kinase mTOR, which exists within two distinct protein complexes (mTORC1 and mTORC2) that differ in their regulation and function. The authors use a combination of immunoblotting for specific phosphorylation events and computational modeling. The primary experimental tool employed is to monitor the autophosphorylation of mTOR on Ser(2481) in cell lysates as a surrogate for mTOR activity, which the authors conclude is a specific readout for mTORC2. However, Ser(2481) phosphorylation occurs on both mTORC1 and mTORC2 and will dynamically change as the network through which these two complexes are connected is manipulated. Therefore, models of mTOR network regulation built using this tool are inherently imperfect and open to alternative explanations. Specific issues with the main conclusion made in this study, involving the TSC1-TSC2 (tuberous sclerosis complex 1 and 2) complex and its potential regulation of mTORC2, are discussed here. A broader goal of this Letter is to clarify to other investigators the caveats of using mTOR Ser(2481) phosphorylation in cell lysates as a specific readout for either of the two mTOR complexes.

  20. A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation

    NARCIS (Netherlands)

    Dalle Pezze, Piero; Sonntag, Annika G; Thien, Antje; Prentzell, Mirja T; Gödel, Markus; Fischer, Sven; Neumann-Haefelin, Elke; Huber, Tobias B; Baumeister, Ralf; Shanley, Daryl P; Thedieck, Kathrin

    2012-01-01

    The kinase mammalian target of rapamycin (mTOR) exists in two multiprotein complexes (mTORC1 and mTORC2) and is a central regulator of growth and metabolism. Insulin activation of mTORC1, mediated by phosphoinositide 3-kinase (PI3K), Akt, and the inhibitory tuberous sclerosis complex 1/2

  1. Dynamics in atomic signaling games

    KAUST Repository

    Fox, Michael J.

    2015-04-08

    We study an atomic signaling game under stochastic evolutionary dynamics. There are a finite number of players who repeatedly update from a finite number of available languages/signaling strategies. Players imitate the most fit agents with high probability or mutate with low probability. We analyze the long-run distribution of states and show that, for sufficiently small mutation probability, its support is limited to efficient communication systems. We find that this behavior is insensitive to the particular choice of evolutionary dynamic, a property that is due to the game having a potential structure with a potential function corresponding to average fitness. Consequently, the model supports conclusions similar to those found in the literature on language competition. That is, we show that efficient languages eventually predominate the society while reproducing the empirical phenomenon of linguistic drift. The emergence of efficiency in the atomic case can be contrasted with results for non-atomic signaling games that establish the non-negligible possibility of convergence, under replicator dynamics, to states of unbounded efficiency loss.

  2. Dynamics in atomic signaling games

    KAUST Repository

    Fox, Michael J.; Touri, Behrouz; Shamma, Jeff S.

    2015-01-01

    We study an atomic signaling game under stochastic evolutionary dynamics. There are a finite number of players who repeatedly update from a finite number of available languages/signaling strategies. Players imitate the most fit agents with high probability or mutate with low probability. We analyze the long-run distribution of states and show that, for sufficiently small mutation probability, its support is limited to efficient communication systems. We find that this behavior is insensitive to the particular choice of evolutionary dynamic, a property that is due to the game having a potential structure with a potential function corresponding to average fitness. Consequently, the model supports conclusions similar to those found in the literature on language competition. That is, we show that efficient languages eventually predominate the society while reproducing the empirical phenomenon of linguistic drift. The emergence of efficiency in the atomic case can be contrasted with results for non-atomic signaling games that establish the non-negligible possibility of convergence, under replicator dynamics, to states of unbounded efficiency loss.

  3. Regulation from within: the cytoskeleton in transmembrane signaling

    Science.gov (United States)

    Jaqaman, Khuloud; Grinstein, Sergio

    2013-01-01

    There is mounting evidence that the plasma membrane is highly dynamic and organized in a complex manner. The cortical cytoskeleton is proving to be a particularly important regulator of plasmalemmal organization, modulating the mobility of proteins and lipids in the membrane, facilitating their segregation and influencing their clustering. This organization plays a critical role in receptor-mediated signaling, especially in the case of immunoreceptors, which require lateral clustering for their activation. Based on recent developments, we discuss the structures and mechanisms whereby the cortical cytoskeleton regulates membrane dynamics and organization, and how the non-uniform distribution of immunoreceptors and their self-association may affect activation and signaling. PMID:22917551

  4. Signal-regulated systems and networks

    CSIR Research Space (South Africa)

    Van Zyl, TL

    2010-07-01

    Full Text Available The article presents the use of signal regulatory networks (SRNs), a biologically inspired model based on gene regulatory networks. SRNs are a way of understanding a class of self-organizing IT systems, signal-regulated systems (SRSs). This article...

  5. Selection-Mutation Dynamics of Signaling Games

    Directory of Open Access Journals (Sweden)

    Josef Hofbauer

    2015-01-01

    Full Text Available We study the structure of the rest points of signaling games and their dynamic behavior under selection-mutation dynamics by taking the case of three signals as our canonical example. Many rest points of the replicator dynamics of signaling games are not isolated and, therefore, not robust under perturbations. However, some of them attract open sets of initial conditions. We prove the existence of certain rest points of the selection-mutation dynamics close to Nash equilibria of the signaling game and show that all but the perturbed rest points close to strict Nash equilibria are dynamically unstable. This is an important result for the evolution of signaling behavior, since it shows that the second-order forces that are governed by mutation can increase the chances of successful signaling.

  6. GEFs: Dual regulation of Rac1 signaling.

    Science.gov (United States)

    Marei, Hadir; Malliri, Angeliki

    2017-04-03

    GEFs play a critical role in regulating Rac1 signaling. They serve as signaling nodes converting upstream signals into downstream Rac1-driven cellular responses. Through associating with membrane-bound Rac1, GEFs facilitate the exchange of GDP for GTP, thereby activating Rac1. As a result, Rac1 undergoes conformational changes that mediate its interaction with downstream effectors, linking Rac1 to a multitude of physiological and pathological processes. Interestingly, there are at least 20 GEFs involved in Rac1 activation, suggesting a more complex role of GEFs in regulating Rac1 signaling apart from promoting the exchange of GDP for GTP. Indeed, accumulating evidence implicates GEFs in directing the specificity of Rac1-driven signaling cascades, although the underlying mechanisms were poorly defined. Recently, through conducting a comparative study, we highlighted the role of 2 Rac-specific GEFs, Tiam1 and P-Rex1, in dictating the biological outcome downstream of Rac1. Importantly, further proteomic analysis uncovered a GEF activity-independent function for both GEFs in modulating the Rac1 interactome, which results in the stimulation of GEF-specific signaling cascades. Here, we provide an overview of our recent findings and discuss the role of GEFs as master regulators of Rac1 signaling with a particular focus on GEF-mediated modulation of cell migration following Rac1 activation.

  7. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...... been identified and the specific roles have been investigated by genetic and cell biological methods. The present review presents an overview of the principal signaling pathways involved in regulating murine pancreatic growth, morphogenesis, and cell differentiation....

  8. Proteolytic degradation of regulator of G protein signaling 2 facilitates temporal regulation of Gq/11 signaling and vascular contraction.

    Science.gov (United States)

    Kanai, Stanley M; Edwards, Alethia J; Rurik, Joel G; Osei-Owusu, Patrick; Blumer, Kendall J

    2017-11-24

    Regulator of G protein signaling 2 (RGS2) controls signaling by receptors coupled to the G q/11 class heterotrimeric G proteins. RGS2 deficiency causes several phenotypes in mice and occurs in several diseases, including hypertension in which a proteolytically unstable RGS2 mutant has been reported. However, the mechanisms and functions of RGS2 proteolysis remain poorly understood. Here we addressed these questions by identifying degradation signals in RGS2, and studying dynamic regulation of G q/11 -evoked Ca 2+ signaling and vascular contraction. We identified a novel bipartite degradation signal in the N-terminal domain of RGS2. Mutations disrupting this signal blunted proteolytic degradation downstream of E3 ubiquitin ligase binding to RGS2. Analysis of RGS2 mutants proteolyzed at various rates and the effects of proteasome inhibition indicated that proteolytic degradation controls agonist efficacy by setting RGS2 protein expression levels, and affecting the rate at which cells regain agonist responsiveness as synthesis of RGS2 stops. Analyzing contraction of mesenteric resistance arteries supported the biological relevance of this mechanism. Because RGS2 mRNA expression often is strikingly and transiently up-regulated and then down-regulated upon cell stimulation, our findings indicate that proteolytic degradation tightly couples RGS2 transcription, protein levels, and function. Together these mechanisms provide tight temporal control of G q/11 -coupled receptor signaling in the cardiovascular, immune, and nervous systems. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Ras signaling in aging and metabolic regulation.

    Science.gov (United States)

    Slack, Cathy

    2017-12-07

    Aberrant signal transduction downstream of the Ras GTPase has a well-established role in tumorigenesis. Mutations that result in hyperactivation of Ras are responsible for a third of all human cancers. Hence, small molecule inhibitors of the Ras signal transduction cascade have been under intense focus as potential cancer treatments. In both invertebrate and mammalian models, emerging evidence has also implicated components of the Ras signaling pathway in aging and metabolic regulation. Here, I review the current evidence for Ras signaling in these newly discovered roles highlighting the interactions between the Ras pathway and other longevity assurance mechanisms. Defining the role of Ras signaling in maintaining age-related health may have important implications for the development of interventions that could not only increase lifespan but also delay the onset and/or progression of age-related functional decline.

  10. Feedback regulation of TGF-β signaling.

    Science.gov (United States)

    Yan, Xiaohua; Xiong, Xiangyang; Chen, Ye-Guang

    2018-01-01

    Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Signaling hierarchy regulating human endothelial cell development

    Science.gov (United States)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  12. Signal transforms in dynamic measurements

    CERN Document Server

    Layer, Edward

    2015-01-01

    This book is devoted to the analysis of measurement signals which requires specific mathematical operations like Convolution, Deconvolution, Laplace, Fourier, Hilbert, Wavelet or Z transform which are all presented in the present book. The different problems refer to the modulation of signals, filtration of disturbance as well as to the orthogonal signals and their use in digital form for the measurement of current, voltage, power and frequency are also widely discussed. All the topics covered in this book are presented in detail and illustrated by means of examples in MathCad and LabVIEW. This book provides a useful source for researchers, scientists and engineers who in their daily work are required to deal with problems of measurement and signal processing and can also be helpful to undergraduate students of electrical engineering.    

  13. Regulation of VEGF signaling by membrane traffic.

    Science.gov (United States)

    Horowitz, Arie; Seerapu, Himabindu Reddy

    2012-09-01

    Recent findings have drawn attention to the role of membrane traffic in the signaling of vascular endothelial growth factor (VEGF). The significance of this development stems from the pivotal function of VEGF in vasculogenesis and angiogenesis. The outline of the regulation of VEGF receptor (VEGFR) signaling by membrane traffic is similar to that of the epidermal growth factor receptor (EGFR), a prototype of the intertwining between membrane traffic and signaling. There are, however, unique features in VEGFR signaling that are conferred in part by the involvement of the co-receptor neuropilin (Nrp). Nrp1 and VEGFR2 are integrated into membrane traffic through the adaptor protein synectin, which recruits myosin VI, a molecular motor that drives inward trafficking [17,21,64]. The recent detection of only mild vascular defects in a knockin mouse model that expresses Nrp1 lacking a cytoplasmic domain [104], questions the co-receptor's role in VEGF signaling and membrane traffic. The regulation of endocytosis by ephrin-B2 is another feature unique to VEGR2/3 [18,19], but it awaits a mechanistic explanation. Current models do not fully explain how membrane traffic bridges between VEGFR and the downstream effectors that produce its functional outcome, such as cell migration. VEGF-A appears to accomplish this task in part by recruiting endocytic vesicles carrying RhoA to internalized active VEGFR2 [58]. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Anchoring Proteins as Regulators of Signaling Pathways

    Science.gov (United States)

    Perino, Alessia; Ghigo, Alessandra; Scott, John D.; Hirsch, Emilio

    2012-01-01

    Spatial and temporal organization of signal transduction is coordinated through the segregation of signaling enzymes in selected cellular compartments. This highly evolved regulatory mechanism ensures the activation of selected enzymes only in the vicinity of their target proteins. In this context, cAMP-responsive triggering of protein kinase A is modulated by a family of scaffold proteins referred to as A-kinase anchoring proteins. A-kinase anchoring proteins form the core of multiprotein complexes and enable simultaneous but segregated cAMP signaling events to occur in defined cellular compartments. In this review we will focus on the description of A-kinase anchoring protein function in the regulation of cardiac physiopathology. PMID:22859670

  15. Discrete dynamic modeling of cellular signaling networks.

    Science.gov (United States)

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  16. Dynamic decomposition of spatiotemporal neural signals.

    Directory of Open Access Journals (Sweden)

    Luca Ambrogioni

    2017-05-01

    Full Text Available Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals.

  17. BAR domain proteins regulate Rho GTPase signaling.

    Science.gov (United States)

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.

  18. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn

    2014-01-01

    In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...... a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...

  19. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    Directory of Open Access Journals (Sweden)

    Poulomi Ray

    Full Text Available Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF, Bone Morphogenetic Protein (BMP and Transforming Growth Factor beta (TGF-β signaling pathways. Rho Kinase (ROCK-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  20. Evolutionarily conserved regulation of TOR signalling.

    Science.gov (United States)

    Takahara, Terunao; Maeda, Tatsuya

    2013-07-01

    The target of rapamycin (TOR) is an evolutionarily conserved protein kinase that regulates cell growth in response to various environmental as well as intracellular cues through the formation of 2 distinct TOR complexes (TORC), TORC1 and TORC2. Dysregulation of TORC1 and TORC2 activity is closely associated with various diseases, including diabetes, cancer and neurodegenerative disorders. Over the past few years, new regulatory mechanisms of TORC1 and TORC2 activity have been elucidated. Furthermore, recent advances in the study of TOR inhibitors have revealed previously unrecognized cellular functions of TORC1. In this review, we briefly summarize the current understanding of the evolutionarily conserved TOR signalling from upstream regulators to downstream events.

  1. Membrane mechanisms and intracellular signalling in cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Dunham, Philip B.

    1995-01-01

    Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation.......Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation....

  2. Regulation of Strigolactone Biosynthesis by Gibberellin Signaling.

    Science.gov (United States)

    Ito, Shinsaku; Yamagami, Daichi; Umehara, Mikihisa; Hanada, Atsushi; Yoshida, Satoko; Sasaki, Yasuyuki; Yajima, Shunsuke; Kyozuka, Junko; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Shirasu, Ken; Yamaguchi, Shinjiro; Asami, Tadao

    2017-06-01

    Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice ( Oryza sativa ) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed ( Striga hermonthica ). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    Science.gov (United States)

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  4. Metabolic signals in sleep regulation: recent insights

    Directory of Open Access Journals (Sweden)

    Shukla C

    2016-01-01

    Full Text Available Charu Shukla, Radhika Basheer Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA Abstract: Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism. Keywords: sleep, energy balance, hypothalamus, metabolism, homeostasis

  5. Signaling hierarchy regulating human endothelial cell development.

    Science.gov (United States)

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  6. Protein phosphorylation in bcterial signaling and regulation

    KAUST Repository

    Mijakovic, Ivan

    2016-01-26

    In 2003, it was demonstrated for the first time that bacteria possess protein-tyrosine kinases (BY-kinases), capable of phosphorylating other cellular proteins and regulating their activity. It soon became apparent that these kinases phosphorylate a number of protein substrates, involved in different cellular processes. More recently, we found out that BY-kinases can be activated by several distinct protein interactants, and are capable of engaging in cross-phosphorylation with other kinases. Evolutionary studies based on genome comparison indicate that BY-kinases exist only in bacteria. They are non-essential (present in about 40% bacterial genomes), and their knockouts lead to pleiotropic phenotypes, since they phosphorylate many substrates. Surprisingly, BY-kinase genes accumulate mutations at an increased rate (non-synonymous substitution rate significantly higher than other bacterial genes). One direct consequence of this phenomenon is no detectable co-evolution between kinases and their substrates. Their promiscuity towards substrates thus seems to be “hard-wired”, but why would bacteria maintain such promiscuous regulatory devices? One explanation is the maintenance of BY-kinases as rapidly evolving regulators, which can readily adopt new substrates when environmental changes impose selective pressure for quick evolution of new regulatory modules. Their role is clearly not to act as master regulators, dedicated to triggering a single response, but they might rather be employed to contribute to fine-tuning and improving robustness of various cellular responses. This unique feature makes BY-kinases a potentially useful tool in synthetic biology. While other bacterial kinases are very specific and their signaling pathways insulated, BY-kinase can relatively easily be engineered to adopt new substrates and control new biosynthetic processes. Since they are absent in humans, and regulate some key functions in pathogenic bacteria, they are also very promising

  7. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies

    2016-01-01

    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  8. Microwave signal processing with photorefractive dynamic holography

    Science.gov (United States)

    Fotheringham, Edeline B.

    Have you ever found yourself listening to the music playing from the closest stereo rather than to the bromidic (uninspiring) person speaking to you? Your ears receive information from two sources but your brain listens to only one. What if your cell phone could distinguish among signals sharing the same bandwidth too? There would be no "full" channels to stop you from placing or receiving a call. This thesis presents a nonlinear optical circuit capable of distinguishing uncorrelated signals that have overlapping temporal bandwidths. This so called autotuning filter is the size of a U.S. quarter dollar and requires less than 3 mW of optical power to operate. It is basically an oscillator in which the losses are compensated with dynamic holographic gain. The combination of two photorefractive crystals in the resonator governs the filter's winner-take-all dynamics through signal-competition for gain. This physical circuit extracts what is mathematically referred to as the largest principal component of its spatio-temporal input space. The circuit's practicality is demonstrated by its incorporation in an RF-photonic system. An unknown mixture of unknown microwave signals, received by an antenna array, constitutes the input to the system. The output electronically returns one of the original microwave signals. The front-end of the system down converts the 10 GHz microwave signals and amplifies them before the signals phase modulate optical beams. The optical carrier is suppressed from these beams so that it may not be considered as a signal itself to the autotuning filter. The suppression is achieved with two-beam coupling in a single photorefractive crystal. The filter extracts the more intense of the signals present on the carrier-suppressed input beams. The detection of the extracted signal restores the microwave signal to an electronic form. The system, without the receiving antenna array, is packaged in a 13 x 18 x 6″ briefcase. Its power consumption equals that

  9. GABA not only a neurotransmitter: osmotic regulation by GABAAR signalling

    Directory of Open Access Journals (Sweden)

    Tiziana eCesetti

    2012-01-01

    Full Text Available In neurons the anionic channel γ-aminobutyric (GABA A receptor (GABAAR plays a central role in mediating both the neurotrophic and neurotransmitter role of GABA. Activation of this receptor by GABA also affects the function of non-neuronal cells in the central nervous system (CNS, as GABAARs are expressed in mature macroglia and in almost all progenitor types, including neural stem cells. The relevance of GABA signalling in non-neuronal cells has been comparatively less investigated than in neurons. However, it is becoming increasingly evident that these cells are direct targets of GABA regulation. In non-neuronal cells GABAAR activation leads to influx or efflux of chloride (Cl- depending on the electrochemical gradient. Ion transport is indissolubly associated to water fluxes across the plasma membrane and plays a key role in brain physiology. Therefore, GABAAR could affect osmotic tension in the brain by modulating ion gradients. In addition, since water movements also occur through specialized water channels and transporters, GABAAR signalling could affect the movement of water also by regulating the function of the channels and transporters involved, thereby affecting not only the direction of the water fluxes but also their dynamics. This regulation has consequences at the cellular level as it modulates cell volume and activates multiple intracellular signalling mechanisms important for cell proliferation, maturation and survival. It may also have consequences at the systemic level. For example, it may indirectly control neuronal excitability, by regulating the extracellular space and interstitial concentration of Cl-, and contribute to brain water homeostasis. Therefore, GABAergic osmotic regulation should be taken into account during the treatment of pathologies requiring the administration of GABAAR modulators and for the development of therapies for diseases causing water unbalance in the brain.

  10. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.

    Science.gov (United States)

    Schroeder, Elizabeth A; Shadel, Gerald S

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Regulation of Wnt/β-catenin signaling by posttranslational modifications

    Science.gov (United States)

    2014-01-01

    The canonical Wnt signaling pathway (or Wnt/β-catenin pathway) plays a pivotal role in embryonic development and adult homeostasis; deregulation of the Wnt pathway contributes to the initiation and progression of human diseases including cancer. Despite its importance in human biology and disease, how regulation of the Wnt/β-catenin pathway is achieved remains largely undefined. Increasing evidence suggests that post-translational modifications (PTMs) of Wnt pathway components are essential for the activation of the Wnt/β-catenin pathway. PTMs create a highly dynamic relay system that responds to Wnt stimulation without requiring de novo protein synthesis and offer a platform for non-Wnt pathway components to be involved in the regulation of Wnt signaling, hence providing alternative opportunities for targeting the Wnt pathway. This review highlights the current status of PTM-mediated regulation of the Wnt/β-catenin pathway with a focus on factors involved in Wnt-mediated stabilization of β-catenin. PMID:24594309

  12. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  13. SIGNALS AND REGULATORS THAT GOVERN STREPTOMYCES DEVELOPMENT

    Science.gov (United States)

    McCormick, Joseph R.; Flärdh, Klas

    2012-01-01

    Streptomyces coelicolor is the genetically best characterized species of a populous genus belonging to the Gram-positive Actinobacteria. Streptomycetes are filamentous soil organisms, well known for the production of a plethora of biologically active secondary metabolic compounds. The Streptomyces developmental life cycle is uniquely complex, and involves coordinated multicellular development with both physiological and morphological differentiation of several cell types, culminating in production of secondary metabolites and dispersal of mature spores. This review presents a current appreciation of the signaling mechanisms used to orchestrate the decision to undergo morphological differentiation, and the regulators and regulatory networks that direct the intriguing development of multigenomic hyphae, first to form specialized aerial hyphae, and then to convert them into chains of dormant spores. This current view of S. coelicolor development is destined for rapid evolution as data from “-omics” studies shed light on gene regulatory networks, new genetic screens identify hitherto unknown players, and the resolution of our insights into the underlying cell biological processes steadily improve. PMID:22092088

  14. Discrete dynamic modeling of T cell survival signaling networks

    Science.gov (United States)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  15. Unveiling Hidden Dynamics of Hippo Signalling: A Systems Analysis

    Directory of Open Access Journals (Sweden)

    Sung-Young Shin

    2016-08-01

    Full Text Available The Hippo signalling pathway has recently emerged as an important regulator of cell apoptosis and proliferation with significant implications in human diseases. In mammals, the pathway contains the core kinases MST1/2, which phosphorylate and activate LATS1/2 kinases. The pro-apoptotic function of the MST/LATS signalling axis was previously linked to the Akt and ERK MAPK pathways, demonstrating that the Hippo pathway does not act alone but crosstalks with other signalling pathways to coordinate network dynamics and cellular outcomes. These crosstalks were characterised by a multitude of complex regulatory mechanisms involving competitive protein-protein interactions and phosphorylation mediated feedback loops. However, how these different mechanisms interplay in different cellular contexts to drive the context-specific network dynamics of Hippo-ERK signalling remains elusive. Using mathematical modelling and computational analysis, we uncovered that the Hippo-ERK network can generate highly diverse dynamical profiles that can be clustered into distinct dose-response patterns. For each pattern, we offered mechanistic explanation that defines when and how the observed phenomenon can arise. We demonstrated that Akt displays opposing, dose-dependent functions towards ERK, which are mediated by the balance between the Raf-1/MST2 protein interaction module and the LATS1 mediated feedback regulation. Moreover, Ras displays a multi-functional role and drives biphasic responses of both MST2 and ERK activities; which are critically governed by the competitive protein interaction between MST2 and Raf-1. Our study represents the first in-depth and systematic analysis of the Hippo-ERK network dynamics and provides a concrete foundation for future studies.

  16. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  17. Retinoic acid signalling in thymocytes regulates T cell development

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut

    in the regulatory regions of targetgenes. RA has been reported to play a direct role in regulating multiple aspects of peripheralT cell responses1, but whether endogenous RA signalling occurs in developingthymocytes and the potential impact of such signals in regulating T cell developmentremains unclear. To address......RARα. This blocks RA signalling in developing thymocytes from the DN3/4 stageonwards and thus allows us to study the role of RA in T cell development...

  18. Minsky and dynamic macroprudential regulation

    Directory of Open Access Journals (Sweden)

    Jan Kregel

    2014-06-01

    Full Text Available In the context of current debates about the proper form of prudential regulation and proposals for the imposition of liquidity and capital ratios, the paper examines Hyman Minsky’s work as a consultant to government agencies exploring financial regulatory reform in the 1960s. As the author explains, this often-overlooked early work, a precursor to Minsky’s “financial instability hypothesis”, serves as yet another useful guide to explaining why regulation and supervision in the lead-up to the 2008 financial crisis were flawed, and why the approach to reregulation after the crisis has been incomplete.

  19. Magnetoencephalography from signals to dynamic cortical networks

    CERN Document Server

    Aine, Cheryl

    2014-01-01

    "Magnetoencephalography (MEG) provides a time-accurate view into human brain function. The concerted action of neurons generates minute magnetic fields that can be detected---totally noninvasively---by sensitive multichannel magnetometers. The obtained millisecond accuracycomplements information obtained by other modern brain-imaging tools. Accurate timing is quintessential in normal brain function, often distorted in brain disorders. The noninvasiveness and time-sensitivityof MEG are great assets to developmental studies, as well. This multiauthored book covers an ambitiously wide range of MEG research from introductory to advanced level, from sensors to signals, and from focal sources to the dynamics of cortical networks. Written by active practioners of this multidisciplinary field, the book contains tutorials for newcomers and chapters of new challenging methods and emerging technologies to advanced MEG users. The reader will obtain a firm grasp of the possibilities of MEG in the study of audition, vision...

  20. Neurotrophin signaling endosomes; biogenesis, regulation, and functions

    Science.gov (United States)

    Yamashita, Naoya; Kuruvilla, Rejji

    2016-01-01

    In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health. PMID:27327126

  1. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar

    2014-01-01

    Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many in this family of kinases are overexpressed or mutated in human malignancies and thus became an attractive drug target for cancer treatment....... The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar...

  2. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity.

    Science.gov (United States)

    Ding, Mei; Wang, Xin

    2017-12-01

    The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.

  3. Interspecific nematode signals regulate dispersal behavior.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    Full Text Available Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2 of plant parasitic Meloidogyne spp. and infective juveniles (IJs of entomopathogenic nematodes (EPN, e.g., Steinernema feltiae. Regulation of dispersal behavior has not been thoroughly investigated for C. elegans or any other nematode species. Based on the fact that ascarosides regulate entry in dauer stage as well as multiple behaviors in C. elegans adults including mating, avoidance and aggregation, we hypothesized that ascarosides might also be involved in regulation of dispersal behavior in C. elegans and for other nematodes such as IJ of phylogenetically related EPNs.Liquid chromatography-mass spectrometry analysis of C. elegans dauer conditioned media, which shows strong dispersing activity, revealed four known ascarosides (ascr#2, ascr#3, ascr#8, icas#9. A synthetic blend of these ascarosides at physiologically relevant concentrations dispersed C. elegans dauer in the presence of food and also caused dispersion of IJs of S. feltiae and J2s of plant parasitic Meloidogyne spp. Assay guided fractionation revealed structural analogs as major active components of the S. feltiae (ascr#9 and C. elegans (ascr#2 dispersal blends. Further analysis revealed ascr#9 in all Steinernema spp. and Heterorhabditis spp. infected insect host cadavers.Ascaroside blends represent evolutionarily conserved, fundamentally important communication systems for nematodes from diverse habitats, and thus may provide sustainable means for control of parasitic nematodes.

  4. Regulation of PDH, GS and insulin signalling in skeletal muscle

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup

    of inflammation on resting and exercise-induced PDH regulation in human skeletal muscle and 4) The effect of IL-6 on PDH regulation in mouse skeletal muscle. Study I demonstrated that bed rest–induced insulin resistance was associated with reduced insulinstimulated GS activity and Akt signaling as well...

  5. Low-frequency dynamics of autonomic regulation of circulatory system in healthy subjects

    Science.gov (United States)

    Skazkina, V. V.; Borovkova, E. I.; Galushko, T. A.; Khorev, V. S.; Kiselev, A. R.

    2018-04-01

    The paper is devoted to the analysis of dynamic of interactions between signals of autonomic circulatory regulation. We investigated two-hour experimental records of 30 healthy people. Phase synchronization was studied using the signals of the electrocardiogram and the photoplethysmogram of vessels. We found the presence of long synchronous intervals in some subjects. For analysis of the dynamic we calculated autocorrelation functions. The analysis made it possible to reveal indirect signs of the influence of the humoral regulation system.

  6. Regulation of insect behavior via the insulin-signaling pathway

    Directory of Open Access Journals (Sweden)

    Renske eErion

    2013-12-01

    Full Text Available The insulin/insulin-like growth factor signaling (IIS pathway is well established as a critical regulator of growth and metabolic homeostasis across the animal kingdom. Insulin-like peptides (ILPs, the functional analogs of mammalian insulin, were initially discovered in the silkmoth Bombyx mori and subsequently identified in many other insect species. Initial research focused on the role of insulin signaling in metabolism, cell proliferation, development, reproduction and aging. More recently however, increasing attention has been given to the role of insulin in the regulation of neuronal function and behavior. Here we review the role of insulin signaling in two specific insect behaviors: feeding and locomotion.

  7. Hypothalamic mTOR signaling regulates food intake.

    Science.gov (United States)

    Cota, Daniela; Proulx, Karine; Smith, Kathi A Blake; Kozma, Sara C; Thomas, George; Woods, Stephen C; Seeley, Randy J

    2006-05-12

    The mammalian Target of Rapamycin (mTOR) protein is a serine-threonine kinase that regulates cell-cycle progression and growth by sensing changes in energy status. We demonstrated that mTOR signaling plays a role in the brain mechanisms that respond to nutrient availability, regulating energy balance. In the rat, mTOR signaling is controlled by energy status in specific regions of the hypothalamus and colocalizes with neuropeptide Y and proopiomelanocortin neurons in the arcuate nucleus. Central administration of leucine increases hypothalamic mTOR signaling and decreases food intake and body weight. The hormone leptin increases hypothalamic mTOR activity, and the inhibition of mTOR signaling blunts leptin's anorectic effect. Thus, mTOR is a cellular fuel sensor whose hypothalamic activity is directly tied to the regulation of energy intake.

  8. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  9. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  10. Dynamic interpretation of hedgehog signaling in the Drosophila wing disc.

    Directory of Open Access Journals (Sweden)

    Marcos Nahmad

    2009-09-01

    Full Text Available Morphogens are classically defined as molecules that control patterning by acting at a distance to regulate gene expression in a concentration-dependent manner. In the Drosophila wing imaginal disc, secreted Hedgehog (Hh forms an extracellular gradient that organizes patterning along the anterior-posterior axis and specifies at least three different domains of gene expression. Although the prevailing view is that Hh functions in the Drosophila wing disc as a classical morphogen, a direct correspondence between the borders of these patterns and Hh concentration thresholds has not been demonstrated. Here, we provide evidence that the interpretation of Hh signaling depends on the history of exposure to Hh and propose that a single concentration threshold is sufficient to support multiple outputs. Using mathematical modeling, we predict that at steady state, only two domains can be defined in response to Hh, suggesting that the boundaries of two or more gene expression patterns cannot be specified by a static Hh gradient. Computer simulations suggest that a spatial "overshoot" of the Hh gradient occurs, i.e., a transient state in which the Hh profile is expanded compared to the Hh steady-state gradient. Through a temporal examination of Hh target gene expression, we observe that the patterns initially expand anteriorly and then refine, providing in vivo evidence for the overshoot. The Hh gene network architecture suggests this overshoot results from the Hh-dependent up-regulation of the receptor, Patched (Ptc. In fact, when the network structure was altered such that the ptc gene is no longer up-regulated in response to Hh-signaling activation, we found that the patterns of gene expression, which have distinct borders in wild-type discs, now overlap. Our results support a model in which Hh gradient dynamics, resulting from Ptc up-regulation, play an instructional role in the establishment of patterns of gene expression.

  11. Regulation of Wnt signaling by nociceptive input in animal models

    Directory of Open Access Journals (Sweden)

    Shi Yuqiang

    2012-06-01

    Full Text Available Abstract Background Central sensitization-associated synaptic plasticity in the spinal cord dorsal horn (SCDH critically contributes to the development of chronic pain, but understanding of the underlying molecular pathways is still incomplete. Emerging evidence suggests that Wnt signaling plays a crucial role in regulation of synaptic plasticity. Little is known about the potential function of the Wnt signaling cascades in chronic pain development. Results Fluorescent immunostaining results indicate that β-catenin, an essential protein in the canonical Wnt signaling pathway, is expressed in the superficial layers of the mouse SCDH with enrichment at synapses in lamina II. In addition, Wnt3a, a prototypic Wnt ligand that activates the canonical pathway, is also enriched in the superficial layers. Immunoblotting analysis indicates that both Wnt3a a β-catenin are up-regulated in the SCDH of various mouse pain models created by hind-paw injection of capsaicin, intrathecal (i.t. injection of HIV-gp120 protein or spinal nerve ligation (SNL. Furthermore, Wnt5a, a prototypic Wnt ligand for non-canonical pathways, and its receptor Ror2 are also up-regulated in the SCDH of these models. Conclusion Our results suggest that Wnt signaling pathways are regulated by nociceptive input. The activation of Wnt signaling may regulate the expression of spinal central sensitization during the development of acute and chronic pain.

  12. Regulation of adult neural progenitor cell functions by purinergic signaling.

    Science.gov (United States)

    Tang, Yong; Illes, Peter

    2017-02-01

    Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca 2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230. © 2016 Wiley Periodicals, Inc.

  13. The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals

    Science.gov (United States)

    Wu, Nan; Nguyen, Quy; Wan, Ying; Zhou, Tiaohao; Venter, Julie; Frampton, Gabriel A; DeMorrow, Sharon; Pan, Duojia; Meng, Fanyin; Glaser, Shannon; Alpini, Gianfranco; Bai, Haibo

    2018-01-01

    The Hippo signaling pathway and the Notch signaling pathway are evolutionary conserved signaling cascades that have important roles in embryonic development of many organs. In murine liver, disruption of either pathway impairs intrahepatic bile duct development. Recent studies suggested that the Notch signaling receptor Notch2 is a direct transcriptional target of the Hippo signaling pathway effector YAP, and the Notch signaling is a major mediator of the Hippo signaling in maintaining biliary cell characteristics in adult mice. However, it remains to be determined whether the Hippo signaling pathway functions through the Notch signaling in intrahepatic bile duct development. We found that loss of the Hippo signaling pathway tumor suppressor Nf2 resulted in increased expression levels of the Notch signaling pathway receptor Notch2 in cholangiocytes but not in hepatocytes. When knocking down Notch2 on the background of Nf2 deficiency in mouse livers, the excessive bile duct development induced by Nf2 deficiency was suppressed by heterozygous and homozygous deletion of Notch2 in a dose-dependent manner. These results implicated that Notch signaling is one of the downstream effectors of the Hippo signaling pathway in regulating intrahepatic bile duct development. PMID:28581486

  14. New insights into how trafficking regulates T cell receptor signaling

    Directory of Open Access Journals (Sweden)

    Jieqiong Lou

    2016-07-01

    Full Text Available AbstractThere is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR signaling. The trafficking molecules involved in lytic granule (LG secretion in cytotoxic T lymphocytes (CTL have been well studied due to the immune disorder known as familial hemophagocytic lymphohisiocytosis (FHLH. However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions.

  15. Regulation of brain insulin signaling: A new function for tau.

    Science.gov (United States)

    Gratuze, Maud; Planel, Emmanuel

    2017-08-07

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer's disease, impairment of brain insulin signaling might occur via tau loss of function. © 2017 Gratuze and Planel.

  16. NUCKS Is a Positive Transcriptional Regulator of Insulin Signaling

    Directory of Open Access Journals (Sweden)

    Beiying Qiu

    2014-06-01

    Full Text Available Although much is known about the molecular players in insulin signaling, there is scant information about transcriptional regulation of its key components. We now find that NUCKS is a transcriptional regulator of the insulin signaling components, including the insulin receptor (IR. Knockdown of NUCKS leads to impaired insulin signaling in endocrine cells. NUCKS knockout mice exhibit decreased insulin signaling and increased body weight/fat mass along with impaired glucose tolerance and reduced insulin sensitivity, all of which are further exacerbated by a high-fat diet (HFD. Genome-wide ChIP-seq identifies metabolism and insulin signaling as NUCKS targets. Importantly, NUCKS is downregulated in individuals with a high body mass index and in HFD-fed mice, and conversely, its levels increase upon starvation. Altogether, NUCKS is a physiological regulator of energy homeostasis and glucose metabolism that works by regulating chromatin accessibility and RNA polymerase II recruitment to the promoters of IR and other insulin pathway modulators.

  17. Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Niss, Kristoffer; Kotarsky, Knut

    2018-01-01

    Despite the essential role of thymic epithelial cells (TEC) in T cell development, the signals regulating TEC differentiation and homeostasis remain incompletely understood. In this study, we show a key in vivo role for the vitamin A metabolite, retinoic acid (RA), in TEC homeostasis. In the abse......Despite the essential role of thymic epithelial cells (TEC) in T cell development, the signals regulating TEC differentiation and homeostasis remain incompletely understood. In this study, we show a key in vivo role for the vitamin A metabolite, retinoic acid (RA), in TEC homeostasis...

  18. Independent regulation of skeletal growth by Ihh and IGF signaling.

    Science.gov (United States)

    Long, Fanxin; Joeng, Kyu-Sang; Xuan, Shouhong; Efstratiadis, Argiris; McMahon, Andrew P

    2006-10-01

    The insulin-like growth factors (IGFs) play a major role in regulating the systemic growth of mammals. However, it is unclear to what extent their systemic and/or local functions act in concert with other local growth factors controlling the sizes of individual organs. We have specifically addressed whether growth control of the skeleton by IGFs interacts genetically with that by Indian hedgehog (Ihh), a locally produced growth signal for the endochondral skeleton. Here, we report that disruption of both IGF and Ihh signaling resulted in additive reduction in the size of the embryonic skeleton. Thus, IGF and Ihh signaling appear to control the growth of the skeleton in parallel pathways.

  19. Social costs enforce honesty of a dynamic signal of motivation.

    Science.gov (United States)

    Ligon, Russell A; McGraw, Kevin J

    2016-10-26

    Understanding the processes that promote signal reliability may provide important insights into the evolution of diverse signalling strategies among species. The signals that animals use to communicate must comprise mechanisms that prohibit or punish dishonesty, and social costs of dishonesty have been demonstrated for several fixed morphological signals (e.g. colour badges of birds and wasps). The costs maintaining the honesty of dynamic signals, which are more flexible and potentially cheatable, are unknown. Using an experimental manipulation of the dynamic visual signals used by male veiled chameleons (Chamaeleo calyptratus) during aggressive interactions, we tested the idea that the honesty of rapid colour change signals is maintained by social costs. Our results reveal that social costs are an important mechanism maintaining the honesty of these dynamic colour signals-'dishonest' chameleons whose experimentally manipulated coloration was incongruent with their contest behaviour received more physical aggression than 'honest' individuals. This is the first demonstration, to the best our knowledge, that the honesty of a dynamic signal of motivation-physiological colour change-can be maintained by the social costliness of dishonesty. Behavioural responses of signal receivers, irrespective of any specific detection mechanisms, therefore prevent chameleon cheaters from prospering. © 2016 The Author(s).

  20. Regulator of G-protein signaling - 5 (RGS5 is a novel repressor of hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    William M Mahoney

    Full Text Available Hedgehog (Hh signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc and smoothened (Smo. Recent studies identify Smo as a G-protein coupled receptor (GPCR-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP, we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.

  1. BMP signalling differentially regulates distinct haematopoietic stem cell types

    NARCIS (Netherlands)

    M. Crisan (Mihaela); P. Solaimani Kartalaei (Parham); C.S. Vink (Chris); T. Yamada-Inagawa (Tomoko); K. Bollerot (Karine); W.F.J. van IJcken (Wilfred); R. Van Der Linden (Reinier); S.C. de Sousa Lopes (Susana Chuva); R. Monteiro (Rui); C.L. Mummery (Christine); E.A. Dzierzak (Elaine)

    2015-01-01

    textabstractAdult haematopoiesis is the outcome of distinct haematopoietic stem cell (HSC) subtypes with self-renewable repopulating ability, but with different haematopoietic cell lineage outputs. The molecular basis for this heterogeneity is largely unknown. BMP signalling regulates HSCs as they

  2. Social costs enforce honesty of a dynamic signal of motivation

    Science.gov (United States)

    McGraw, Kevin J.

    2016-01-01

    Understanding the processes that promote signal reliability may provide important insights into the evolution of diverse signalling strategies among species. The signals that animals use to communicate must comprise mechanisms that prohibit or punish dishonesty, and social costs of dishonesty have been demonstrated for several fixed morphological signals (e.g. colour badges of birds and wasps). The costs maintaining the honesty of dynamic signals, which are more flexible and potentially cheatable, are unknown. Using an experimental manipulation of the dynamic visual signals used by male veiled chameleons (Chamaeleo calyptratus) during aggressive interactions, we tested the idea that the honesty of rapid colour change signals is maintained by social costs. Our results reveal that social costs are an important mechanism maintaining the honesty of these dynamic colour signals—‘dishonest’ chameleons whose experimentally manipulated coloration was incongruent with their contest behaviour received more physical aggression than ‘honest’ individuals. This is the first demonstration, to the best our knowledge, that the honesty of a dynamic signal of motivation—physiological colour change—can be maintained by the social costliness of dishonesty. Behavioural responses of signal receivers, irrespective of any specific detection mechanisms, therefore prevent chameleon cheaters from prospering. PMID:27798310

  3. Time-dependent, glucose-regulated Arabidopsis Regulator of G-protein Signaling 1 network

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar Jaiswal

    2016-04-01

    Full Text Available Plants lack 7-transmembrane, G-protein coupled receptors (GPCRs because the G alpha subunit of the heterotrimeric G protein complex is “self-activating”—meaning that it spontaneously exchanges bound GDP for GTP without the need of a GPCR. In lieu of GPCRs, most plants have a seven transmembrane receptor-like regulator of G-protein signaling (RGS protein, a component of the complex that keeps G-protein signaling in its non-activated state. The addition of glucose physically uncouples AtRGS1 from the complex through specific endocytosis leaving the activated G protein at the plasma membrane. The complement of proteins in the AtRGS1/G-protein complex over time from glucose-induced endocytosis was profiled by immunoprecipitation coupled to mass spectrometry (IP-MS. A total of 119 proteins in the AtRGS1 complex were identified. Several known interactors of the complex were identified, thus validating the approach, but the vast majority (93/119 were not known previously. AtRGS1 protein interactions were dynamically modulated by d-glucose. At low glucose levels, the AtRGS1 complex is comprised of proteins involved in transport, stress and metabolism. After glucose application, the AtRGS1 complex rapidly sheds many of these proteins and recruits other proteins involved in vesicular trafficking and signal transduction. The profile of the AtRGS1 components answers several questions about the type of coat protein and vesicular trafficking GTPases used in AtRGS1 endocytosis and the function of endocytic AtRGS1.

  4. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    International Nuclear Information System (INIS)

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-01-01

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: ► YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. ► YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. ► Knockdown of Gli2 rescues the Yap-overexpression phenotype in P19 cells. ► Knockdown of Gli2 rescues the Yap

  5. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  6. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  7. Regulation of G protein-coupled receptor signalling: focus on the cardiovascular system and regulator of G protein signalling proteins

    NARCIS (Netherlands)

    Hendriks-Balk, Mariëlle C.; Peters, Stephan L. M.; Michel, Martin C.; Alewijnse, Astrid E.

    2008-01-01

    G protein-coupled receptors (GPCRs) are involved in many biological processes. Therefore, GPCR function is tightly controlled both at receptor level and at the level of signalling components. Well-known mechanisms by which GPCR function can be regulated comprise desensitization/resensitization

  8. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    Science.gov (United States)

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  9. Control of striatal signaling by G protein regulators

    Directory of Open Access Journals (Sweden)

    Keqiang eXie

    2011-08-01

    Full Text Available Signaling via heterotrimeric G proteins plays a crucial role in modulating the responses of striatal neurons that ultimately shape core behaviors mediated by the basal ganglia circuitry, such as reward valuation, habit formation and movement coordination. Activation of G-protein-coupled receptors (GPCRs by extracellular signals activates heterotrimeric G proteins by promoting the binding of GTP to their α subunits. G proteins exert their effects by influencing the activity of key effector proteins in this region, including ion channels, second messenger enzymes and protein kinases. Striatal neurons express a staggering number of GPCRs whose activation results in the engagement of downstream signaling pathways and cellular responses with unique profiles but common molecular mechanisms. Studies over the last decade have revealed that the extent and duration of GPCR signaling are controlled by a conserved protein family named Regulator of G protein Signaling (RGS. RGS proteins accelerate GTP hydrolysis by the α subunits of G proteins, thus promoting deactivation of GPCR signaling. In this review, we discuss the progress made in understanding the roles of RGS proteins in controlling striatal G protein signaling and providing integration and selectivity of signal transmission. We review evidence on the formation of a macromolecular complex between RGS proteins and other components of striatal signaling pathways, their molecular regulatory mechanisms and impacts on GPCR signaling in the striatum obtained from biochemical studies and experiments involving genetic mouse models. Special emphasis is placed on RGS9-2, a member of the RGS family that is highly enriched in the striatum and plays critical roles in drug addiction and motor control.

  10. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2009-04-01

    Reactive oxygen species (ROS) have multifaceted roles in the orchestration of plant gene expression and gene-product regulation. Cellular redox homeostasis is considered to be an "integrator" of information from metabolism and the environment controlling plant growth and acclimation responses, as well as cell suicide events. The different ROS forms influence gene expression in specific and sometimes antagonistic ways. Low molecular antioxidants (e.g., ascorbate, glutathione) serve not only to limit the lifetime of the ROS signals but also to participate in an extensive range of other redox signaling and regulatory functions. In contrast to the low molecular weight antioxidants, the "redox" states of components involved in photosynthesis such as plastoquinone show rapid and often transient shifts in response to changes in light and other environmental signals. Whereas both types of "redox regulation" are intimately linked through the thioredoxin, peroxiredoxin, and pyridine nucleotide pools, they also act independently of each other to achieve overall energy balance between energy-producing and energy-utilizing pathways. This review focuses on current knowledge of the pathways of redox regulation, with discussion of the somewhat juxtaposed hypotheses of "oxidative damage" versus "oxidative signaling," within the wider context of physiological function, from plant cell biology to potential applications.

  11. Regulation of IGF-1 signaling by microRNAs

    Directory of Open Access Journals (Sweden)

    Hwa Jin eJung

    2015-01-01

    Full Text Available The insulin-like growth factor 1 (IGF-1 signaling pathway regulates critical biological processes including development, homeostasis, and aging. Dysregulation of this pathway has been implicated in a myriad of diseases such as cancers, neurodegenerative diseases, and metabolic disorders, making the IGF-1 signaling pathway a prime target to develop therapeutic and intervention strategies. Recently, small non-coding RNA molecules in ~22 nucleotide length, microRNAs (miRNAs, have emerged as a new regulator of biological processes in virtually all organ systems and increasing studies are linking altered miRNA function to disease mechanisms. A miRNA binds to 3’UTRs of multiple target genes and coordinately down-regulates their expression, thereby exerting a profound influence on gene regulatory networks. Here we review the components of the IGF-1 signaling pathway that are known targets of miRNA regulation, and highlight recent studies that suggest therapeutic potential of these miRNAs against various diseases.

  12. Functional connectivity change as shared signal dynamics

    Science.gov (United States)

    Cole, Michael W.; Yang, Genevieve J.; Murray, John D.; Repovš, Grega; Anticevic, Alan

    2015-01-01

    Background An increasing number of neuroscientific studies gain insights by focusing on differences in functional connectivity – between groups, individuals, temporal windows, or task conditions. We found using simulations that additional insights into such differences can be gained by forgoing variance normalization, a procedure used by most functional connectivity measures. Simulations indicated that these functional connectivity measures are sensitive to increases in independent fluctuations (unshared signal) in time series, consistently reducing functional connectivity estimates (e.g., correlations) even though such changes are unrelated to corresponding fluctuations (shared signal) between those time series. This is inconsistent with the common notion of functional connectivity as the amount of inter-region interaction. New Method Simulations revealed that a version of correlation without variance normalization – covariance – was able to isolate differences in shared signal, increasing interpretability of observed functional connectivity change. Simulations also revealed cases problematic for non-normalized methods, leading to a “covariance conjunction” method combining the benefits of both normalized and non-normalized approaches. Results We found that covariance and covariance conjunction methods can detect functional connectivity changes across a variety of tasks and rest in both clinical and non-clinical functional MRI datasets. Comparison with Existing Method(s) We verified using a variety of tasks and rest in both clinical and non-clinical functional MRI datasets that it matters in practice whether correlation, covariance, or covariance conjunction methods are used. Conclusions These results demonstrate the practical and theoretical utility of isolating changes in shared signal, improving the ability to interpret observed functional connectivity change. PMID:26642966

  13. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish

    Science.gov (United States)

    Swartz, Mary E.; McCarthy, Neil; Norrie, Jacqueline L.; Eberhart, Johann K.

    2016-01-01

    The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. PMID:27122171

  14. Regulation of PCP by the Fat signaling pathway

    Science.gov (United States)

    Matis, Maja; Axelrod, Jeffrey D.

    2013-01-01

    Planar cell polarity (PCP) in epithelia, orthogonal to the apical–basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations. PMID:24142873

  15. Circadian regulation of hormone signaling and plant physiology.

    Science.gov (United States)

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.

  16. Regulator of G-Protein Signaling 7 Regulates Reward Behavior by Controlling Opioid Signaling in the Striatum.

    Science.gov (United States)

    Sutton, Laurie P; Ostrovskaya, Olga; Dao, Maria; Xie, Keqiang; Orlandi, Cesare; Smith, Roy; Wee, Sunmee; Martemyanov, Kirill A

    2016-08-01

    Morphine mediates its euphoric and analgesic effects by acting on the μ-opioid receptor (MOR). MOR belongs to the family of G-protein coupled receptors whose signaling efficiency is controlled by the regulator of G-protein signaling (RGS) proteins. Our understanding of the molecular diversity of RGS proteins that control MOR signaling, their circuit specific actions, and underlying cellular mechanisms is very limited. We used genetic approaches to ablate regulator of G-protein signaling 7 (RGS7) both globally and in specific neuronal populations. We used conditioned place preference and self-administration paradigms to examine reward-related behavior and a battery of tests to assess analgesia, tolerance, and physical dependence to morphine. Electrophysiology approaches were applied to investigate the impact of RGS7 on morphine-induced alterations in neuronal excitability and plasticity of glutamatergic synapses. At least three animals were used for each assessment. Elimination of RGS7 enhanced reward, increased analgesia, delayed tolerance, and heightened withdrawal in response to morphine administration. RGS7 in striatal neurons was selectively responsible for determining the sensitivity of rewarding and reinforcing behaviors to morphine without affecting analgesia, tolerance, and withdrawal. In contrast, deletion of RGS7 in dopaminergic neurons did not influence morphine reward. RGS7 exerted its effects by controlling morphine-induced changes in excitability of medium spiny neurons in nucleus accumbens and gating the compositional plasticity of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors. This study identifies RGS7 as a novel regulator of MOR signaling by dissecting its circuit specific actions and pinpointing its role in regulating morphine reward by controlling the activity of nucleus accumbens neurons. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. JAK/Stat signaling regulates heart precursor diversification in Drosophila

    Science.gov (United States)

    Johnson, Aaron N.; Mokalled, Mayssa H.; Haden, Tom N.; Olson, Eric N.

    2011-01-01

    Intercellular signal transduction pathways regulate the NK-2 family of transcription factors in a conserved gene regulatory network that directs cardiogenesis in both flies and mammals. The Drosophila NK-2 protein Tinman (Tin) was recently shown to regulate Stat92E, the Janus kinase (JAK) and Signal transducer and activator of transcription (Stat) pathway effector, in the developing mesoderm. To understand whether the JAK/Stat pathway also regulates cardiogenesis, we performed a systematic characterization of JAK/Stat signaling during mesoderm development. Drosophila embryos with mutations in the JAK/Stat ligand upd or in Stat92E have non-functional hearts with luminal defects and inappropriate cell aggregations. Using strong Stat92E loss-of-function alleles, we show that the JAK/Stat pathway regulates tin expression prior to heart precursor cell diversification. tin expression can be subdivided into four phases and, in Stat92E mutant embryos, the broad phase 2 expression pattern in the dorsal mesoderm does not restrict to the constrained phase 3 pattern. These embryos also have an expanded pericardial cell domain. We show the E(spl)-C gene HLHm5 is expressed in a pattern complementary to tin during phase 3 and that this expression is JAK/Stat dependent. In addition, E(spl)-C mutant embryos phenocopy the cardiac defects of Stat92E embryos. Mechanistically, JAK/Stat signals activate E(spl)-C genes to restrict Tin expression and the subsequent expression of the T-box transcription factor H15 to direct heart precursor diversification. This study is the first to characterize a role for the JAK/Stat pathway during cardiogenesis and identifies an autoregulatory circuit in which tin limits its own expression domain. PMID:21965617

  18. Membrane-Initiated Estradiol Signaling Regulating Sexual Receptivity

    Science.gov (United States)

    Micevych, Paul E.; Dewing, Phoebe

    2011-01-01

    Estradiol has profound actions on the structure and function of the nervous system. In addition to nuclear actions that directly modulate gene expression, the idea that estradiol can rapidly activate cell signaling by binding to membrane estrogen receptors (mERs) has emerged. Even the regulation of sexual receptivity, an action previously thought to be completely regulated by nuclear ERs, has been shown to have a membrane-initiated estradiol signaling (MIES) component. This highlighted the question of the nature of mERs. Several candidates have been proposed, ERα, ERβ, ER-X, GPR30 (G protein coupled estrogen receptor), and a receptor activated by a diphenylacrylamide compound, STX. Although each of these receptors has been shown to be active in specific assays, we present evidence for and against their participation in sexual receptivity by acting in the lordosis-regulating circuit. The initial MIES that activates the circuit is in the arcuate nucleus of the hypothalamus (ARH). Using both activation of μ-opioid receptors (MOR) in the medial preoptic nucleus and lordosis behavior, we document that both ERα and the STX-receptor participate in the required MIES. ERα and the STX-receptor activation of cell signaling are dependent on the transactivation of type 1 metabotropic glutamate receptors (mGluR1a) that augment progesterone synthesis in astrocytes and protein kinase C (PKC) in ARH neurons. While estradiol-induced sexual receptivity does not depend on neuroprogesterone, proceptive behaviors do. Moreover, the ERα and the STX-receptor activation of medial preoptic MORs and augmentation of lordosis were sensitive to mGluR1a blockade. These observations suggest a common mechanism through which mERs are coupled to intracellular signaling cascades, not just in regulating reproduction, but in actions throughout the neuraxis including the cortex, hippocampus, striatum, and dorsal root ganglias. PMID:22649369

  19. Membrane–initiated estradiol signaling regulating sexual receptivity

    Directory of Open Access Journals (Sweden)

    Paul E Micevych

    2011-09-01

    Full Text Available Estradiol has profound actions on the structure and function of the nervous system. In addition to nuclear actions that directly modulate gene expression, the idea that estradiol can rapidly activate cell signaling by binding to membrane estrogen receptors (mERs has emerged. Even the regulation of sexual receptivity, an action previously thought to be completely regulated by nuclear ERs, has been shown to have a membrane-initiated estradiol signaling (MIES component. This highlighted the question of the nature of mERs. Several candidates have been proposed, ERα, ERβ, ER-X, GPR30 (G protein coupled estrogen receptor; GPER, and a receptor activated by a diphenylacrylamide compound, STX. Although each of these receptors has been shown to be active in specific assays, we present evidence for and against their participation in sexual receptivity by acting in the lordosis-regulating circuit. The initial MIES that activates the circuit is in the arcuate nucleus of the hypothalamus (ARH. Using both activation of μ-opioid receptors (MOR in the medial preoptic nucleus and lordosis behavior, we document that both ERα and the STX receptor participate in the required MIES. ERα and the STX receptor activation of cell signaling are dependent on the transactivation of type 1 metabotropic glutamate receptors (mGluR1a that augment progesterone synthesis in astrocytes and protein kinase C (PKC in ARH neurons. While estradiol-induced sexual receptivity does not depend on neuroprogesterone, proceptive behaviors do. Moreover, the ERα and the STX receptor activation of medial preoptic MORs and augmentation of lordosis were sensitive to mGluR1a blockade. These observations suggest a common mechanism through which mERs are coupled to intracellular signaling cascades, not just in regulating reproduction, but in actions throughout the neuraxis including the cortex, hippocampus, striatum and DRGs.

  20. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  1. Hippo Signaling Regulates Pancreas Development through Inactivation of Yap

    Science.gov (United States)

    Day, Caroline E.; Boerner, Brian P.; Johnson, Randy L.; Sarvetnick, Nora E.

    2012-01-01

    The mammalian pancreas is required for normal metabolism, with defects in this vital organ commonly observed in cancer and diabetes. Development must therefore be tightly controlled in order to produce a pancreas of correct size, cell type composition, and physiologic function. Through negative regulation of Yap-dependent proliferation, the Hippo kinase cascade is a critical regulator of organ growth. To investigate the role of Hippo signaling in pancreas biology, we deleted Hippo pathway components in the developing mouse pancreas. Unexpectedly, the pancreas from Hippo-deficient offspring was reduced in size, with defects evident throughout the organ. Increases in the dephosphorylated nuclear form of Yap are apparent throughout the exocrine compartment and correlate with increases in levels of cell proliferation. However, the mutant exocrine tissue displays extensive disorganization leading to pancreatitis-like autodigestion. Interestingly, our results suggest that Hippo signaling does not directly regulate the pancreas endocrine compartment as Yap expression is lost following endocrine specification through a Hippo-independent mechanism. Altogether, our results demonstrate that Hippo signaling plays a crucial role in pancreas development and provide novel routes to a better understanding of pathological conditions that affect this organ. PMID:23071096

  2. [The history of optical signals for traffic regulation].

    Science.gov (United States)

    Draeger, J; Harsch, V

    2008-04-01

    For signal transmission in traffic today, different optical, acoustic, or other physical or technical means are used for information. The different kinds of traffic (water navigation, road and rail, and, later air transport) made traffic regulation necessary early on. This regulation, from its very beginning in ancient times, began by means of optical signals; nowadays, this remains the most important method. From the very start, minimum requirements for the navigator's vision, color discrimination, dark adaptation, and even visual field were needed. For historical reasons, it was in seafaring medicine that these first developed. Besides the development of the different signals, methods for checking the requirements were soon developed. National and international requirements have been very different. Only within the last 50 years has international cooperation led to the acceptance of general standards for the different traffic modes. This article discusses the technical development of optical signals for the different kinds of traffic, from ancient times to the present, and explains the development of minimum requirements for the different visual functions.

  3. Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis.

    Directory of Open Access Journals (Sweden)

    Philipp S Orekhov

    2015-10-01

    Full Text Available Motile bacteria and archaea respond to chemical and physical stimuli seeking optimal conditions for survival. To this end transmembrane chemo- and photoreceptors organized in large arrays initiate signaling cascades and ultimately regulate the rotation of flagellar motors. To unravel the molecular mechanism of signaling in an archaeal phototaxis complex we performed coarse-grained molecular dynamics simulations of a trimer of receptor/transducer dimers, namely NpSRII/NpHtrII from Natronomonas pharaonis. Signaling is regulated by a reversible methylation mechanism called adaptation, which also influences the level of basal receptor activation. Mimicking two extreme methylation states in our simulations we found conformational changes for the transmembrane region of NpSRII/NpHtrII which resemble experimentally observed light-induced changes. Further downstream in the cytoplasmic domain of the transducer the signal propagates via distinct changes in the dynamics of HAMP1, HAMP2, the adaptation domain and the binding region for the kinase CheA, where conformational rearrangements were found to be subtle. Overall these observations suggest a signaling mechanism based on dynamic allostery resembling models previously proposed for E. coli chemoreceptors, indicating similar properties of signal transduction for archaeal photoreceptors and bacterial chemoreceptors.

  4. Hedgehog Signaling Regulates the Survival of Gastric Cancer Cells by Regulating the Expression of Bcl-2

    Science.gov (United States)

    Han, Myoung-Eun; Lee, Young-Suk; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Oh, Sae-Ock

    2009-01-01

    Gastric cancer is the second most common cause of cancer deaths worldwide. The underlying molecular mechanisms of its carcinogenesis are relatively poorly characterized. Hedgehog (Hh) signaling, which is critical for development of various organs including the gastrointestinal tract, has been associated with gastric cancer. The present study was undertaken to reveal the underlying mechanism by which Hh signaling controls gastric cancer cell proliferation. Treatment of gastric cancer cells with cyclopamine, a specific inhibitor of Hh signaling pathway, reduced proliferation and induced apoptosis of gastric cancer cells. Cyclopamine treatment induced cytochrome c release from mitochondria and cleavage of caspase 9. Moreover, Bcl-2 expression was significantly reduced by cyclopamine treatment. These results suggest that Hh signaling regulates the survival of gastric cancer cells by regulating the expression of Bcl-2. PMID:19742123

  5. Protein Phosphatase 2A in the Regulation of Wnt Signaling, Stem Cells, and Cancer.

    Science.gov (United States)

    Thompson, Joshua J; Williams, Christopher S

    2018-02-26

    Protein phosphorylation is a ubiquitous cellular process that allows for the nuanced and reversible regulation of protein activity. Protein phosphatase 2A (PP2A) is a heterotrimeric serine-threonine phosphatase-composed of a structural, regulatory, and catalytic subunit-that controls a variety of cellular events via protein dephosphorylation. While much is known about PP2A and its basic biochemistry, the diversity of its components-especially the multitude of regulatory subunits-has impeded the determination of PP2A function. As a consequence of this complexity, PP2A has been shown to both positively and negatively regulate signaling networks such as the Wnt pathway. Wnt signaling modulates major developmental processes, and is a dominant mediator of stem cell self-renewal, cell fate, and cancer stem cells. Because PP2A affects Wnt signaling both positively and negatively and at multiple levels, further understanding of this complex dynamic may ultimately provide insight into stem cell biology and how to better treat cancers that result from alterations in Wnt signaling. This review will summarize literature that implicates PP2A as a tumor suppressor, explore PP2A mutations identified in human malignancy, and focus on PP2A in the regulation of Wnt signaling and stem cells so as to better understand how aberrancy in this pathway can contribute to tumorigenesis.

  6. Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis.

    Science.gov (United States)

    Rankin, Scott A; McCracken, Kyle W; Luedeke, David M; Han, Lu; Wells, James M; Shannon, John M; Zorn, Aaron M

    2018-02-01

    A small number of signaling pathways are used repeatedly during organogenesis, and they can have drastically different effects on the same population of cells depending on the embryonic stage. How cellular competence changes over developmental time is not well understood. Here we used Xenopus, mouse, and human pluripotent stem cells to investigate how the temporal sequence of Wnt, BMP, and retinoic acid (RA) signals regulates endoderm developmental competence and organ induction, focusing on respiratory fate. While Nkx2-1+ lung fate is not induced until late somitogenesis stages, here we show that lung competence is restricted by the gastrula stage as a result of Wnt and BMP-dependent anterior-posterior (A-P) patterning. These early Wnt and BMP signals make posterior endoderm refractory to subsequent RA/Wnt/BMP-dependent lung induction. We further mapped how RA modulates the response to Wnt and BMP in a temporal specific manner. In the gastrula RA promotes posterior identity, however in early somite stages of development RA regulates respiratory versus pharyngeal potential in anterior endoderm and midgut versus hindgut potential in posterior endoderm. Together our data suggest a dynamic and conserved response of vertebrate endoderm during organogenesis, wherein early Wnt/BMP/RA impacts how cells respond to later Wnt/BMP/RA signals, illustrating how reiterative combinatorial signaling can regulate both developmental competence and subsequent fate specification. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    Science.gov (United States)

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  8. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Directory of Open Access Journals (Sweden)

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  9. Dynamics of optical signals in a nematic waveguide

    Science.gov (United States)

    Reyes, J. Adrian

    2001-03-01

    We study the modes in a nonlinear nematic waveguide above the Frederickz transition and calculate each of the thresholds associated with different optical and orientational modes. Then, we exhibit the presence of kink-like solutions for the orientational equation under the action of optical fields and study its propagation. Finally, we analyse the dynamics of optical signal in the presence of orientational kinks for different modes and type of signals.

  10. Lysophosphatidic acid acyltransferase beta regulates mTOR signaling.

    Directory of Open Access Journals (Sweden)

    Michelle A Blaskovich

    Full Text Available Lysophosphatidic acid acyltransferase (LPAAT-β is a phosphatidic acid (PA generating enzyme that plays an essential role in triglyceride synthesis. However, LPAAT-β is now being studied as an important regulator of cell growth and differentiation and as a potential therapeutic target in cancer since PA is necessary for the activity of key proteins such as Raf, PKC-ζ and mTOR. In this report we determine the effect of LPAAT-β silencing with siRNA in pancreatic adenocarcinoma cell lines. We show for the first time that LPAAT-β knockdown inhibits proliferation and anchorage-independent growth of pancreatic cancer cells. This is associated with inhibition of signaling by mTOR as determined by levels of mTORC1- and mTORC2-specific phosphorylation sites on 4E-BP1, S6K and Akt. Since PA regulates the activity of mTOR by modulating its binding to FKBP38, we explored the possibility that LPAAT-β might regulate mTOR by affecting its association with FKBP38. Coimmunoprecipitation studies of FKBP38 with mTOR show increased levels of FKBP38 associated with mTOR when LPAAT-β protein levels are knocked down. Furthermore, depletion of LPAAT-β results in increased Lipin 1 nuclear localization which is associated with increased nuclear eccentricity, a nuclear shape change that is dependent on mTOR, further confirming the ability of LPAAT-β to regulate mTOR function. Our results provide support for the hypothesis that PA generated by LPAAT-β regulates mTOR signaling. We discuss the implications of these findings for using LPAAT-β as a therapeutic target.

  11. The Spectrin cytoskeleton regulates the Hippo signalling pathway.

    Science.gov (United States)

    Fletcher, Georgina C; Elbediwy, Ahmed; Khanal, Ichha; Ribeiro, Paulo S; Tapon, Nic; Thompson, Barry J

    2015-04-01

    The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Role of protein dynamics in transmembrane receptor signalling

    DEFF Research Database (Denmark)

    Wang, Yong; Bugge, Katrine Østergaard; Kragelund, Birthe Brandt

    2018-01-01

    Cells are dependent on transmembrane receptors to communicate and transform chemical and physical signals into intracellular responses. Because receptors transport 'information', conformational changes and protein dynamics play a key mechanistic role. We here review examples where experiment...... to function. Because the receptors function in a heterogeneous environment and need to be able to switch between distinct functional states, they may be particularly sensitive to small perturbations that complicate studies linking dynamics to function....

  13. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation

    Science.gov (United States)

    2012-07-01

    Std. Z39.18 Victoria Seewaldt, M.D. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation Duke University Durham...attomole- zeptomole range. Internal dilution curves insure a high-dynamic calibration range. DU -26 8L DU -26 6L DU -29 5R DU -22 9.2 L DU...3: Nanobiosensor technology is translated to test for pathway deregulation in RPFNA cytology obtained from 10 high-risk women with cytological

  14. Cell adhesion signaling regulates RANK expression in osteoclast precursors.

    Directory of Open Access Journals (Sweden)

    Ayako Mochizuki

    -adherent condition. These results suggest that cell adhesion signaling regulates RANK expression in osteoclast precursors.

  15. ROS-related redox regulation and signaling in plants.

    Science.gov (United States)

    Noctor, Graham; Reichheld, Jean-Philippe; Foyer, Christine H

    2017-07-18

    As sessile oxygenic organisms with a plastic developmental programme, plants are uniquely positioned to exploit reactive oxygen species (ROS) as powerful signals. Plants harbor numerous ROS-generating pathways, and these oxidants and related redox-active compounds have become tightly embedded into plant function and development during the course of evolution. One dominant view of ROS-removing systems sees them as beneficial antioxidants battling to keep damaging ROS below dangerous levels. However, it is now established that ROS are a necessary part of subcellular and intercellular communication in plants and that some of their signaling functions require ROS-metabolizing systems. For these reasons, it is suggested that "ROS processing systems" would be a more accurate term than "antioxidative systems" to describe cellular components that are most likely to interact with ROS and, in doing so, transmit oxidative signals. Within this framework, our update provides an overview of the complexity and compartmentation of ROS production and removal. We place particular emphasis on the importance of ROS-interacting systems such as the complex cellular thiol network in the redox regulation of phytohormone signaling pathways that are crucial for plant development and defense against external threats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition.

    Science.gov (United States)

    Kunkemoeller, Britta; Kyriakides, Themis R

    2017-10-20

    Impaired wound healing is a major complication of diabetes, and can lead to development of chronic foot ulcers in a significant number of patients. Despite the danger posed by poor healing, very few specific therapies exist, leaving patients at risk of hospitalization, amputation, and further decline in overall health. Recent Advances: Redox signaling is a key regulator of wound healing, especially through its influence on the extracellular matrix (ECM). Normal redox signaling is disrupted in diabetes leading to several pathological mechanisms that alter the balance between reactive oxygen species (ROS) generation and scavenging. Importantly, pathological oxidative stress can alter ECM structure and function. There is limited understanding of the specific role of altered redox signaling in the diabetic wound, although there is evidence that ROS are involved in the underlying pathology. Preclinical studies of antioxidant-based therapies for diabetic wound healing have yielded promising results. Redox-based therapeutics constitute a novel approach for the treatment of wounds in diabetes patients that deserve further investigation. Antioxid. Redox Signal. 27, 823-838.

  17. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling

    Science.gov (United States)

    Yang, Jason H.; Polanowska-Grabowska, Renata K.; Smith, Jeffrey S.; Shields, Charles W.; Saucerman, Jeffrey J.

    2014-01-01

    β-adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca2+ handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy. Spatially-targeted FRET reporters for PKA activity identified slower PKA activation and lower isoproterenol sensitivity in the nucleus (t50 = 10.60±0.68 min; EC50 = 89.00 nmol/L) than in the cytosol (t50 = 3.71±0.25 min; EC50 = 1.22 nmol/L). These differences were not explained by cAMP or AKAP-based compartmentation. A computational model of cytosolic and nuclear PKA activity was developed and predicted that differences in nuclear PKA dynamics and magnitude are regulated by slow PKA catalytic subunit diffusion, while differences in isoproterenol sensitivity are regulated by nuclear expression of protein kinase inhibitor (PKI). These were validated by FRET and immunofluorescence. The model also predicted differential phosphorylation of PKA substrates regulating cell contractility and hypertrophy. Ca2+ and cell hypertrophy measurements validated these predictions and identified higher isoproterenol sensitivity for contractile enhancements (EC50 = 1.84 nmol/L) over cell hypertrophy (EC50 = 85.88 nmol/L). Over-expression of spatially targeted PKA catalytic subunit to the cytosol or nucleus enhanced contractile and hypertrophic responses, respectively. We conclude that restricted PKA catalytic subunit diffusion is an important PKA compartmentation mechanism and the nucleus comprises a novel PKA signaling microdomain, insulating hypertrophic from contractile β-adrenergic signaling responses. PMID:24225179

  18. A cyclic GMP signalling module that regulates gliding motility in a malaria parasite.

    Directory of Open Access Journals (Sweden)

    Robert W Moon

    2009-09-01

    Full Text Available The ookinete is a motile stage in the malaria life cycle which forms in the mosquito blood meal from the zygote. Ookinetes use an acto-myosin motor to glide towards and penetrate the midgut wall to establish infection in the vector. The regulation of gliding motility is poorly understood. Through genetic interaction studies we here describe a signalling module that identifies guanosine 3', 5'-cyclic monophosphate (cGMP as an important second messenger regulating ookinete differentiation and motility. In ookinetes lacking the cyclic nucleotide degrading phosphodiesterase delta (PDEdelta, unregulated signalling through cGMP results in rounding up of the normally banana-shaped cells. This phenotype is suppressed in a double mutant additionally lacking guanylyl cyclase beta (GCbeta, showing that in ookinetes GCbeta is an important source for cGMP, and that PDEdelta is the relevant cGMP degrading enzyme. Inhibition of the cGMP-dependent protein kinase, PKG, blocks gliding, whereas enhanced signalling through cGMP restores normal gliding speed in a mutant lacking calcium dependent protein kinase 3, suggesting at least a partial overlap between calcium and cGMP dependent pathways. These data demonstrate an important function for signalling through cGMP, and most likely PKG, in dynamically regulating ookinete gliding during the transmission of malaria to the mosquito.

  19. Protein kinase C signaling and cell cycle regulation

    Directory of Open Access Journals (Sweden)

    Adrian R Black

    2013-01-01

    Full Text Available A link between T cell proliferation and the protein kinase C (PKC family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks, cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1→S and/or G2→M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in

  20. Bmp indicator mice reveal dynamic regulation of transcriptional response.

    Directory of Open Access Journals (Sweden)

    Anna L Javier

    Full Text Available Cellular responses to Bmp ligands are regulated at multiple levels, both extracellularly and intracellularly. Therefore, the presence of these growth factors is not an accurate indicator of Bmp signaling activity. While a common approach to detect Bmp signaling activity is to determine the presence of phosphorylated forms of Smad1, 5 and 8 by immunostaining, this approach is time consuming and not quantitative. In order to provide a simpler readout system to examine the presence of Bmp signaling in developing animals, we developed BRE-gal mouse embryonic stem cells and a transgenic mouse line that specifically respond to Bmp ligand stimulation. Our reporter identifies specific transcriptional responses that are mediated by Smad1 and Smad4 with the Schnurri transcription factor complex binding to a conserved Bmp-Responsive Element (BRE, originally identified among Drosophila, Xenopus and human Bmp targets. Our BRE-gal mES cells specifically respond to Bmp ligands at concentrations as low as 5 ng/ml; and BRE-gal reporter mice, derived from the BRE-gal mES cells, show dynamic activity in many cellular sites, including extraembryonic structures and mammary glands, thereby making this a useful scientific tool.

  1. Regulation of Strigolactone Biosynthesis by Gibberellin Signaling1[OPEN

    Science.gov (United States)

    Ito, Shinsaku; Yamagami, Daichi; Umehara, Mikihisa; Hanada, Atsushi; Sasaki, Yasuyuki; Yajima, Shunsuke; Kyozuka, Junko; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Yamaguchi, Shinjiro

    2017-01-01

    Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice (Oryza sativa) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed (Striga hermonthica). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections. PMID:28404726

  2. Dynamic multiprotein assemblies shape the spatial structure of cell signaling.

    Science.gov (United States)

    Nussinov, Ruth; Jang, Hyunbum

    2014-01-01

    Cell signaling underlies critical cellular decisions. Coordination, efficiency as well as fail-safe mechanisms are key elements. How the cell ensures that these hallmarks are at play are important questions. Cell signaling is often viewed as taking place through discrete and cross-talking pathways; oftentimes these are modularized to emphasize distinct functions. While simple, convenient and clear, such models largely neglect the spatial structure of cell signaling; they also convey inter-modular (or inter-protein) spatial separation that may not exist. Here our thesis is that cell signaling is shaped by a network of multiprotein assemblies. While pre-organized, the assemblies and network are loose and dynamic. They contain transiently-associated multiprotein complexes which are often mediated by scaffolding proteins. They are also typically anchored in the membrane, and their continuum may span the cell. IQGAP1 scaffolding protein which binds proteins including Raf, calmodulin, Mek, Erk, actin, and tens more, with actin shaping B-cell (and likely other) membrane-anchored nanoclusters and allosterically polymerizing in dynamic cytoskeleton formation, and Raf anchoring in the membrane along with Ras, provides a striking example. The multivalent network of dynamic proteins and lipids, with specific interactions forming and breaking, can be viewed as endowing gel-like properties. Collectively, this reasons that efficient, productive and reliable cell signaling takes place primarily through transient, preorganized and cooperative protein-protein interactions spanning the cell rather than stochastic, diffusion-controlled processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M.; Abel, Steven M.; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S.; Hansen, Scott D.; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K.; Kuriyan, John; Groves, Jay T.

    2014-01-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras–guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. PMID:24994643

  4. The signaling lipid sphingosine 1-phosphate regulates mechanical pain

    Science.gov (United States)

    Hill, Rose Z; Hoffman, Benjamin U; Morita, Takeshi; Campos, Stephanie M; Lumpkin, Ellen A; Brem, Rachel B

    2018-01-01

    Somatosensory neurons mediate responses to diverse mechanical stimuli, from innocuous touch to noxious pain. While recent studies have identified distinct populations of A mechanonociceptors (AMs) that are required for mechanical pain, the molecular underpinnings of mechanonociception remain unknown. Here, we show that the bioactive lipid sphingosine 1-phosphate (S1P) and S1P Receptor 3 (S1PR3) are critical regulators of acute mechanonociception. Genetic or pharmacological ablation of S1PR3, or blockade of S1P production, significantly impaired the behavioral response to noxious mechanical stimuli, with no effect on responses to innocuous touch or thermal stimuli. These effects are mediated by fast-conducting A mechanonociceptors, which displayed a significant decrease in mechanosensitivity in S1PR3 mutant mice. We show that S1PR3 signaling tunes mechanonociceptor excitability via modulation of KCNQ2/3 channels. Our findings define a new role for S1PR3 in regulating neuronal excitability and establish the importance of S1P/S1PR3 signaling in the setting of mechanical pain thresholds. PMID:29561262

  5. Precise regulation of gene expression dynamics favors complex promoter architectures.

    Directory of Open Access Journals (Sweden)

    Dirk Müller

    2009-01-01

    Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.

  6. The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility.

    Science.gov (United States)

    Wall, Mark J; Collins, Dawn R; Chery, Samantha L; Allen, Zachary D; Pastuzyn, Elissa D; George, Arlene J; Nikolova, Viktoriya D; Moy, Sheryl S; Philpot, Benjamin D; Shepherd, Jason D; Müller, Jürgen; Ehlers, Michael D; Mabb, Angela M; Corrêa, Sonia A L

    2018-05-24

    Neuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasome-dependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. AMBIDEXTER Dynamics and Self-Regulation Capability

    International Nuclear Information System (INIS)

    Oh, Se Kee; Lee, Young Joon; Ham, Tae Kyu; Seo, Myung Hwan; Hong, Sung Taek; Kwon, Tae An

    2009-01-01

    Safety-related events in a nuclear reactor system are mostly incurred by sudden imbalance between their heat source and sink behaviors. Controllability and resiliency are assessed if the system be safely recoverable from the imbalance. Inherent safety characteristics of the reactor should be an ideal design philosophy in this aspect. The AMBIDEXTER safety design was explored with maximum reliance on counteractive responses by the system itself. As for the realization, negative reactivity feedback and fail-safe criteria are the fundamental considerations. Details of how to implement them in the design can be found in the paper accompanied. the reactor and the primary heat exchanger are integrated into a closed loop in the vessel. The fuel salt flows downwardly in the outer core region, gains fission heat and then, rises upwardly through the central inner core region where resonance absorbers face better conversion chance. In the primary heat exchanger, heat transfer between the tube-side fuel salt and the shell-side coolant salt is made. For chemical processing, part of the fuel salt flow is discharged from the heat exchanger and returns to the reactor through bypass line. This paper examines the dynamic performances of the AMBIDEXTER reactor system to investigate the range of its self-regulation capability and safety impacts

  8. Intercellular calcium signaling is regulated by morphogens during Drosophila wing development

    OpenAIRE

    Chen, Danny; Levis, Megan; Arredondo-Walsh, Ninfamaria; Zartman, Jeremiah; Brodskiy, Pavel; Wu, Qinfeng; Huizar, Francisco; Soundarrajan, Dharsan; Narciso, Cody; Chen, Jianxu; Liang, Peixian

    2017-01-01

    Organ development is driven by a set of patterned inductive signals. However, how these signals are integrated to coordinate tissue patterning is still poorly understood. Calcium ions (Ca2+) are critical signaling components involved in signal integration and are regulated by a core Ca2+ signaling toolkit. Ca2+ signaling encodes a significant fraction of information in cells through both amplitude and frequency-dependent regulation of transcription factors and key regulatory enzymes. A range ...

  9. INSULIN SIGNALING AND THE REGULATION OF INSECT DIAPAUSE

    Directory of Open Access Journals (Sweden)

    Cheolho eSim

    2013-07-01

    Full Text Available A rich chapter in the history of insect endocrinology has focused on hormonal control of diapause, especially the major roles played by juvenile hormones (JHs, ecdysteroids, and the neuropeptides that govern JH and ecdysteroid synthesis. More recently, experiments with adult diapause in Drosophila melanogaster and the mosquito Culex pipiens, and pupal diapause in the flesh fly Sarcophaga crassipalpis provide strong evidence that insulin signaling is also an important component of the regulatory pathway leading to the diapause phenotype. Insects produce many different insulin-like peptides (ILPs, and not all are involved in the diapause response; ILP-1 appears to be the one most closely linked to diapause in C. pipiens. Many steps in the pathway leading from perception of daylength (the primary environmental cue used to program diapause to generation of the diapause phenotype remain unknown, but the role for insulin signaling in mosquito diapause appears to be upstream of JH, as evidenced by the fact that application of exogenous JH can rescue the effects of knocking down expression of ILP-1 or the Insulin Receptor. Fat accumulation, enhancement of stress tolerance, and other features of the diapause phenotype are likely linked to the insulin pathway through the action of a key transcription factor, FOXO. This review highlights many parallels for the role of insulin signaling as a regulator in insect diapause and dauer formation in the nematode Caenorhabditis elegans.

  10. CGGBP1-CTCF dynamics in regulation of chromosomal interactions

    Directory of Open Access Journals (Sweden)

    Divyesh Patel

    2017-10-01

    Full Text Available Genome organisation and gene expression is regulated by specific DNA sequences that include “insulator elements”. Insulator proteins, such as CTCF bind to insulator elements to block spreading of silent chromatin in-cis or inhibit interactions between transcriptional enhancers and promoters. By binding to insulators in a methylation-sensittive manner, CTCF establishes and maintains contrasting transcription patterns on either side of the insulator elements [1]. Though details of CTCF-insulator activities have been worked out, mechanisms of regulation of insulator activity by other proteins is unknown. CTCF-binding insulators are retrotransposon-derived, the same elements to which CGGBP1 binds making CGGBP1 a candidate insulator regulator factor [2]. Objective is to explore role of CGGBP1-CTCF dynamics in regulation of insulator activity. 1064Sk skin fibroblasts were grown in presence or absence of CGGBP1 in growth stimulated or starved condition. ChIP-seq was performed to identify CGGBP1-binding DNA sequence motifs [3]. We have observed a strong overlap between binding sites of CTCF and CGGBP1 [4, 5].  CGGBP1 and CTCF seem to share the retrotransposons-derived M1 and M2 motifs. Unlike in quiescent cells, growth factor-stimulation increased CGGBP1 binding to CTCF-CGGBP1 binding sites with decreased CTCF insulator activity. The distance between CGGBP1 M1 and M2 motifs was longer in quiescent cells as compared to growth stimulated cells. Our results suggest that CGGBP1 negatively regulates CTCF insulator activity in normal cells in a growth signal-dependent manner.

  11. Churchill regulates cell movement and mesoderm specification by repressing Nodal signaling

    Directory of Open Access Journals (Sweden)

    Mentzer Laura

    2007-11-01

    Full Text Available Abstract Background Cell movements are essential to the determination of cell fates during development. The zinc-finger transcription factor, Churchill (ChCh has been proposed to regulate cell fate by regulating cell movements during gastrulation in the chick. However, the mechanism of action of ChCh is not understood. Results We demonstrate that ChCh acts to repress the response to Nodal-related signals in zebrafish. When ChCh function is abrogated the expression of mesodermal markers is enhanced while ectodermal markers are expressed at decreased levels. In cell transplant assays, we observed that ChCh-deficient cells are more motile than wild-type cells. When placed in wild-type hosts, ChCh-deficient cells often leave the epiblast, migrate to the germ ring and are later found in mesodermal structures. We demonstrate that both movement of ChCh-compromised cells to the germ ring and acquisition of mesodermal character depend on the ability of the donor cells to respond to Nodal signals. Blocking Nodal signaling in the donor cells at the levels of Oep, Alk receptors or Fast1 inhibited migration to the germ ring and mesodermal fate change in the donor cells. We also detect additional unusual movements of transplanted ChCh-deficient cells which suggests that movement and acquisition of mesodermal character can be uncoupled. Finally, we demonstrate that ChCh is required to limit the transcriptional response to Nodal. Conclusion These data establish a broad role for ChCh in regulating both cell movement and Nodal signaling during early zebrafish development. We show that chch is required to limit mesodermal gene expression, inhibit Nodal-dependant movement of presumptive ectodermal cells and repress the transcriptional response to Nodal signaling. These findings reveal a dynamic role for chch in regulating cell movement and fate during early development.

  12. Signal classification using global dynamical models, Part I: Theory

    International Nuclear Information System (INIS)

    Kadtke, J.; Kremliovsky, M.

    1996-01-01

    Detection and classification of signals is one of the principal areas of signal processing, and the utilization of nonlinear information has long been considered as a way of improving performance beyond standard linear (e.g. spectral) techniques. Here, we develop a method for using global models of chaotic dynamical systems theory to define a signal classification processing chain, which is sensitive to nonlinear correlations in the data. We use it to demonstrate classification in high noise regimes (negative SNR), and argue that classification probabilities can be directly computed from ensemble statistics in the model coefficient space. We also develop a modification for non-stationary signals (i.e. transients) using non-autonomous ODEs. In Part II of this paper, we demonstrate the analysis on actual open ocean acoustic data from marine biologics. copyright 1996 American Institute of Physics

  13. Regulation of brown adipocyte metabolism by myostatin/follistatin signaling

    Directory of Open Access Journals (Sweden)

    Rajan eSingh

    2014-10-01

    Full Text Available Obesity develops from perturbations of cellular bioenergetics, when energy uptake exceeds energy expenditure, and represents a major risk factor for the development of type 2 diabetes, dyslipidemia, cardiovascular disease, cancer, and other conditions. Brown adipose tissue (BAT has long been known to dissipate energy as heat and contribute to energy expenditure, but its presence and physiological role in adult human physiology has been questioned for years. Recent demonstrations of metabolically active brown fat depots in adult humans have revolutionized current therapeutic approaches for obesity-related diseases. The balance between white adipose tissue (WAT and BAT affects the systemic energy balance and is widely believed to be the key determinant in the development of obesity and related metabolic diseases. Members of the transforming growth factor-beta (TGF-β superfamily play an important role in regulating overall energy homeostasis by modulation of brown adipocyte characteristics. Inactivation of TGF-β/Smad3/myostatin (Mst signaling promotes browning of white adipocytes, increases mitochondrial biogenesis and protects mice from diet-induced obesity, suggesting the need for development of a novel class of TGF-β/Mst antagonists for the treatment of obesity and related metabolic diseases. We recently described an important role of follistatin (Fst, a soluble glycoprotein that is known to bind and antagonize Mst actions, during brown fat differentiation and the regulation of cellular metabolism. Here we highlight various investigations performed using different in vitro and in vivo models to support the contention that targeting TGF-β/Mst signaling enhances brown adipocyte functions and regulates energy balance, reducing insulin resistance and curbing the development of obesity and diabetes.

  14. Synchronization of developmental processes and defense signaling by growth regulating transcription factors.

    Directory of Open Access Journals (Sweden)

    Jinyi Liu

    Full Text Available Growth regulating factors (GRFs are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.

  15. Modelling and Analysis of a New Piezoelectric Dynamic Balance Regulator

    Directory of Open Access Journals (Sweden)

    Mu-Xun Xu

    2012-11-01

    Full Text Available In this paper, a new piezoelectric dynamic balance regulator, which can be used in motorised spindle systems, is presented. The dynamic balancing adjustment mechanism is driven by an in-plane bending vibration from an annular piezoelectric stator excited by a high-frequency sinusoidal input voltage. This device has different construction, characteristics and operating principles than a conventional balance regulator. In this work, a dynamic model of the regulator is first developed using a detailed analytical method. Thereafter, MATLAB is employed to numerically simulate the relations between the dominant parameters and the characteristics of the regulator based on thedynamic model. Finally, experimental measurements are used to certify the validity of the dynamic model. Consequently, the mathematical model presented and analysed in this paper can be used as a tool for optimising the design of a piezoelectric dynamic balance regulator during steady state operation.

  16. Nuclear movement regulated by non-Smad Nodal signaling via JNK is associated with Smad signaling during zebrafish endoderm specification.

    Science.gov (United States)

    Hozumi, Shunya; Aoki, Shun; Kikuchi, Yutaka

    2017-11-01

    Asymmetric nuclear positioning is observed during animal development, but its regulation and significance in cell differentiation remain poorly understood. Using zebrafish blastulae, we provide evidence that nuclear movement towards the yolk syncytial layer, which comprises extraembryonic tissue, occurs in the first cells fated to differentiate into the endoderm. Nodal signaling is essential for nuclear movement, whereas nuclear envelope proteins are involved in movement through microtubule formation. Positioning of the microtubule-organizing center, which is proposed to be crucial for nuclear movement, is regulated by Nodal signaling and nuclear envelope proteins. The non-Smad JNK signaling pathway, which is downstream of Nodal signaling, regulates nuclear movement independently of the Smad pathway, and this nuclear movement is associated with Smad signal transduction toward the nucleus. Our study provides insight into the function of nuclear movement in Smad signaling toward the nucleus, and could be applied to the control of TGFβ signaling. © 2017. Published by The Company of Biologists Ltd.

  17. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    Directory of Open Access Journals (Sweden)

    H. Susana Marinho

    2014-01-01

    Full Text Available The regulatory mechanisms by which hydrogen peroxide (H2O2 modulates the activity of transcription factors in bacteria (OxyR and PerR, lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4 and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1 are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1 synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for

  18. Entropy for the Complexity of Physiological Signal Dynamics.

    Science.gov (United States)

    Zhang, Xiaohua Douglas

    2017-01-01

    Recently, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of biological dynamics. Portable noninvasive medical devices are crucial to capture individual characteristics of biological dynamics. The wearable noninvasive medical devices and the analysis/management of related digital medical data will revolutionize the management and treatment of diseases, subsequently resulting in the establishment of a new healthcare system. One of the key features that can be extracted from the data obtained by wearable noninvasive medical device is the complexity of physiological signals, which can be represented by entropy of biological dynamics contained in the physiological signals measured by these continuous monitoring medical devices. Thus, in this chapter I present the major concepts of entropy that are commonly used to measure the complexity of biological dynamics. The concepts include Shannon entropy, Kolmogorov entropy, Renyi entropy, approximate entropy, sample entropy, and multiscale entropy. I also demonstrate an example of using entropy for the complexity of glucose dynamics.

  19. Operating regimes of signaling cycles: statics, dynamics, and noise filtering.

    Directory of Open Access Journals (Sweden)

    Carlos Gomez-Uribe

    2007-12-01

    Full Text Available A ubiquitous building block of signaling pathways is a cycle of covalent modification (e.g., phosphorylation and dephosphorylation in MAPK cascades. Our paper explores the kind of information processing and filtering that can be accomplished by this simple biochemical circuit. Signaling cycles are particularly known for exhibiting a highly sigmoidal (ultrasensitive input-output characteristic in a certain steady-state regime. Here, we systematically study the cycle's steady-state behavior and its response to time-varying stimuli. We demonstrate that the cycle can actually operate in four different regimes, each with its specific input-output characteristics. These results are obtained using the total quasi-steady-state approximation, which is more generally valid than the typically used Michaelis-Menten approximation for enzymatic reactions. We invoke experimental data that suggest the possibility of signaling cycles operating in one of the new regimes. We then consider the cycle's dynamic behavior, which has so far been relatively neglected. We demonstrate that the intrinsic architecture of the cycles makes them act--in all four regimes--as tunable low-pass filters, filtering out high-frequency fluctuations or noise in signals and environmental cues. Moreover, the cutoff frequency can be adjusted by the cell. Numerical simulations show that our analytical results hold well even for noise of large amplitude. We suggest that noise filtering and tunability make signaling cycles versatile components of more elaborate cell-signaling pathways.

  20. Hypothalamic eIF2α Signaling Regulates Food Intake

    Directory of Open Access Journals (Sweden)

    Anne-Catherine Maurin

    2014-02-01

    Full Text Available The reversible phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2α kinase GCN2 leads to food intake inhibition. We report here that GCN2 is rapidly activated in the mediobasal hypothalamus (MBH after consumption of a leucine-deficient diet. Furthermore, knockdown of GCN2 in this particular area shows that MBH GCN2 activity controls the onset of the aversive response. Importantly, pharmacological experiments demonstrate that the sole phosphorylation of eIF2α in the MBH is sufficient to regulate food intake. eIF2α signaling being at the crossroad of stress pathways activated in several pathological states, our study indicates that hypothalamic eIF2α phosphorylation could play a critical role in the onset of anorexia associated with certain diseases.

  1. Mannotriose regulates learning and memory signal transduction in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Lina Zhang; Weiwei Dai; Xueli Zhang; Zhangbin Gong; Guoqin Jin

    2013-01-01

    Rehmannia is a commonly used Chinese herb, which improves learning and memory. However, the crucial components of the signal transduction pathway associated with this effect remain elusive. Pri-mary hippocampal neurons were cultured in vitro, insulted with high-concentration (1 × 10-4 mol/L) cor-ticosterone, and treated with 1 × 10-4 mol/L mannotriose. Thiazolyl blue tetrazolium bromide assay and western blot analysis showed that hippocampal neuron survival rates and protein levels of glucocorti-coid receptor, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor were al dramatical y decreased after high-concentration corticosterone-induced injury. This effect was reversed by mannotriose, to a similar level as RU38486 and donepezil. Our findings indicate that mannotriose could protect hippocampal neurons from high-concentration corticosterone-induced injury. The mechanism by which this occurred was associated with levels of glucocorticoid receptor protein, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor.

  2. Ihh signaling regulates mandibular symphysis development and growth.

    Science.gov (United States)

    Sugito, H; Shibukawa, Y; Kinumatsu, T; Yasuda, T; Nagayama, M; Yamada, S; Minugh-Purvis, N; Pacifici, M; Koyama, E

    2011-05-01

    Symphyseal secondary cartilage is important for mandibular development, but the molecular mechanisms underlying its formation remain largely unknown. Here we asked whether Indian hedgehog (Ihh) regulates symphyseal cartilage development and growth. By embryonic days 16.5 to 18.5, Sox9-expressing chondrocytes formed within condensed Tgfβ-1/Runx2-expressing mesenchymal cells at the prospective symphyseal joint site, and established a growth-plate-like structure with distinct Ihh, collagen X, and osteopontin expression patterns. In post-natal life, mesenchymal cells expressing the Ihh receptor Patched1 were present anterior to the Ihh-expressing secondary cartilage, proliferated, differentiated into chondrocytes, and contributed to anterior growth of alveolar bone. In Ihh-null mice, however, symphyseal development was defective, mainly because of enhanced chondrocyte maturation and reduced proliferation of chondroprogenitor cells. Proliferation was partially restored in dual Ihh;Gli3 mutants, suggesting that Gli3 is normally a negative regulator of symphyseal development. Thus, Ihh signaling is essential for symphyseal cartilage development and anterior mandibular growth.

  3. Regulation of CaMKII signaling in cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Mariya Yordanova Mollova

    2015-08-01

    Full Text Available Heart failure (HF is a major cause of death in the developed countries. (Murray and Lopez, 1996;Koitabashi and Kass, 2012. Adverse cardiac remodeling that precedes heart muscle dysfunction is characterized by a myriad of molecular changes affecting the cardiomyocyte. Among these, alterations in protein kinase pathways play often an important mediator role since they link upstream pathologic stress signaling with downstream regulatory programs and thus affect both the structural and functional integrity of the heart muscle. In the context of cardiac disease, a profound understanding for the overriding mechanisms that regulate protein kinase activity (protein-protein interactions, post-translational modifications, or targeting via anchoring proteins is crucial for the development of specific and effective pharmacological treatment strategies targeting the failing myocardium.In this review, we focus on several mechanisms of upstream regulation of Ca2+/Calmodulin-dependent kinase II (CaM Kinase II, CaMKII that play a relevant pathophysiological role in the development and progression of cardiovascular disease; precise targeting of these mechanisms might therefore represent novel and promising tools for prevention and treatment of HF.

  4. TIM-1 signaling in B cells regulates antibody production

    International Nuclear Information System (INIS)

    Ma, Juan; Usui, Yoshihiko; Takeda, Kazuyoshi; Harada, Norihiro; Yagita, Hideo; Okumura, Ko; Akiba, Hisaya

    2011-01-01

    Highlights: → TIM-1 is highly expressed on anti-IgM + anti-CD40-stimulated B cells. → Anti-TIM-1 mAb enhanced proliferation and Ig production on activated B cell in vitro. → TIM-1 signaling regulates Ab production by response to TI-2 and TD antigens in vivo. -- Abstract: Members of the T cell Ig and mucin (TIM) family have recently been implicated in the control of T cell-mediated immune responses. In this study, we found TIM-1 expression on anti-IgM- or anti-CD40-stimulated splenic B cells, which was further up-regulated by the combination of anti-IgM and anti-CD40 Abs. On the other hand, TIM-1 ligand was constitutively expressed on B cells and inducible on anti-CD3 + anti-CD28-stimulated CD4 + T cells. In vitro stimulation of activated B cells by anti-TIM-1 mAb enhanced proliferation and expression of a plasma cell marker syndecan-1 (CD138). We further examined the effect of TIM-1 signaling on antibody production in vitro and in vivo. Higher levels of IgG2b and IgG3 secretion were detected in the culture supernatants of the anti-TIM-1-stimulated B cells as compared with the control IgG-stimulated B cells. When immunized with T-independent antigen TNP-Ficoll, TNP-specific IgG1, IgG2b, and IgG3 Abs were slightly increased in the anti-TIM-1-treated mice. When immunized with T-dependent antigen OVA, serum levels of OVA-specific IgG2b, IgG3, and IgE Abs were significantly increased in the anti-TIM-1-treated mice as compared with the control IgG-treated mice. These results suggest that TIM-1 signaling in B cells augments antibody production by enhancing B cell proliferation and differentiation.

  5. TIM-1 signaling in B cells regulates antibody production

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Juan [Department of Immunology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Usui, Yoshihiko [Department of Immunology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku-ku, Tokyo 160-0023 (Japan); Takeda, Kazuyoshi [Department of Immunology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Harada, Norihiro [Department of Immunology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Department of Respiratory Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Research Institute for Diseases of Old Ages, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Yagita, Hideo; Okumura, Ko [Department of Immunology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Akiba, Hisaya, E-mail: hisaya@juntendo.ac.jp [Department of Immunology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2011-03-11

    Highlights: {yields} TIM-1 is highly expressed on anti-IgM + anti-CD40-stimulated B cells. {yields} Anti-TIM-1 mAb enhanced proliferation and Ig production on activated B cell in vitro. {yields} TIM-1 signaling regulates Ab production by response to TI-2 and TD antigens in vivo. -- Abstract: Members of the T cell Ig and mucin (TIM) family have recently been implicated in the control of T cell-mediated immune responses. In this study, we found TIM-1 expression on anti-IgM- or anti-CD40-stimulated splenic B cells, which was further up-regulated by the combination of anti-IgM and anti-CD40 Abs. On the other hand, TIM-1 ligand was constitutively expressed on B cells and inducible on anti-CD3{sup +} anti-CD28-stimulated CD4{sup +} T cells. In vitro stimulation of activated B cells by anti-TIM-1 mAb enhanced proliferation and expression of a plasma cell marker syndecan-1 (CD138). We further examined the effect of TIM-1 signaling on antibody production in vitro and in vivo. Higher levels of IgG2b and IgG3 secretion were detected in the culture supernatants of the anti-TIM-1-stimulated B cells as compared with the control IgG-stimulated B cells. When immunized with T-independent antigen TNP-Ficoll, TNP-specific IgG1, IgG2b, and IgG3 Abs were slightly increased in the anti-TIM-1-treated mice. When immunized with T-dependent antigen OVA, serum levels of OVA-specific IgG2b, IgG3, and IgE Abs were significantly increased in the anti-TIM-1-treated mice as compared with the control IgG-treated mice. These results suggest that TIM-1 signaling in B cells augments antibody production by enhancing B cell proliferation and differentiation.

  6. Dopamine D1 signaling organizes network dynamics underlying working memory.

    Science.gov (United States)

    Roffman, Joshua L; Tanner, Alexandra S; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J; Ho, New Fei; Nitenson, Adam Z; Chonde, Daniel B; Greve, Douglas N; Abi-Dargham, Anissa; Buckner, Randy L; Manoach, Dara S; Rosen, Bruce R; Hooker, Jacob M; Catana, Ciprian

    2016-06-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography-magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory-emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits.

  7. Interaction Dynamics Determine Signaling and Output Pathway Responses

    Directory of Open Access Journals (Sweden)

    Klement Stojanovski

    2017-04-01

    Full Text Available The understanding of interaction dynamics in signaling pathways can shed light on pathway architecture and provide insights into targets for intervention. Here, we explored the relevance of kinetic rate constants of a key upstream osmosensor in the yeast high-osmolarity glycerol-mitogen-activated protein kinase (HOG-MAPK pathway to signaling output responses. We created mutant pairs of the Sln1-Ypd1 complex interface that caused major compensating changes in the association (kon and dissociation (koff rate constants (kinetic perturbations but only moderate changes in the overall complex affinity (Kd. Yeast cells carrying a Sln1-Ypd1 mutant pair with moderate increases in kon and koff displayed a lower threshold of HOG pathway activation than wild-type cells. Mutants with higher kon and koff rates gave rise to higher basal signaling and gene expression but impaired osmoadaptation. Thus, the kon and koff rates of the components in the Sln1 osmosensor determine proper signaling dynamics and osmoadaptation.

  8. Osteogenic Transcription Regulated by Exaggerated Stretch Loading via Convergent Wnt Signaling

    Science.gov (United States)

    Juran, Cassandra M.; Blaber, Elizabeth A.; Almeida, Eduardo A. C.

    2017-01-01

    Cell and animal studies conducted onboard the International Space Station and formerly the Shuttle flights have provided data illuminating the deleterious biological response of bone to mechanical unloading. Down regulation of proliferative mechanisms within stem cell populations of the osteogenic niche is a suggested mechanism for loss of bone mass. However the intercellular communicative cues from osteoblasts and osteocytes in managing stem cell proliferation and osteogenic differentiation are largely unknown. In this investigation, MLO-Y4 osteocyte-like and MC3T3-E1 osteoblast-like cells, are co-culture under dynamic tensile conditions and evaluated for phenotypic expression of biochemical signaling proteins influential in driving stem cell differentiation. MLO-Y4 and MC3T3-E1 were co-cultured on polyethersulfone membrane with a 0.45m porosity to permit soluble factor transfer and direct cell-cell gap junction signaling. Cyclic tensile stimulation was applied for 48 h at a frequency of 0.1Hz and strain of 0.1. Total Live cell counts indicate mechanical activation of MC3T3-E1s inhibits proliferation while MLO-Y4s increase in number. However, the percent of live MLO-Y4s within the population is low (46.3 total count, *p0.05, n4) suggesting a potential apoptotic signaling cascade. Immunofluorescence demonstrated that stimulation of co-cultures elicits increased gap junction communication. Previously reported PCR evaluation of osteogenic markers further corroborate that the co-cultured populations communicative networks play a role in translating mechanical signals to molecular messaging. These findings suggest that an osteocyte-osteoblast signaling feedback mechanism may regulate mechanotransduction of an apoptotic cascade within osteocytes and transcription of cytokine signaling proteins responsible for stem cell niche recruitment much more directly than previously believed.

  9. Extracellular signal regulated kinase 5 mediates signals triggered by the novel tumor promoter palytoxin

    International Nuclear Information System (INIS)

    Charlson, Aaron T.; Zeliadt, Nicholette A.; Wattenberg, Elizabeth V.

    2009-01-01

    Palytoxin is classified as a non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type skin tumor because it does not bind to or activate protein kinase C. Palytoxin is thus a novel tool for investigating alternative signaling pathways that may affect carcinogenesis. We previously showed that palytoxin activates three major members of the mitogen activated protein kinase (MAPK) family, extracellular signal regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Here we report that palytoxin also activates another MAPK family member, called ERK5, in HeLa cells and in keratinocytes derived from initiated mouse skin (308 cells). By contrast, TPA does not activate ERK5 in these cell lines. The major cell surface receptor for palytoxin is the Na+,K+-ATPase. Accordingly, ouabain blocked the ability of palytoxin to activate ERK5. Ouabain alone did not activate ERK5. ERK5 thus represents a divergence in the signaling pathways activated by these two agents that bind to the Na+,K+-ATPase. Cycloheximide, okadaic acid, and sodium orthovanadate did not mimic the effect of palytoxin on ERK5. These results indicate that the stimulation of ERK5 by palytoxin is not simply due to inhibition of protein synthesis or inhibition of serine/threonine or tyrosine phosphatases. Therefore, the mechanism by which palytoxin activates ERK5 differs from that by which it activates ERK1/2, JNK, and p38. Finally, studies that used pharmacological inhibitors and shRNA to block ERK5 action indicate that ERK5 contributes to palytoxin-stimulated c-Fos gene expression. These results suggest that ERK5 can act as an alternative mediator for transmitting diverse tumor promoter-stimulated signals.

  10. SOX9 regulates ERBB signalling in pancreatic cancer development.

    Science.gov (United States)

    Grimont, Adrien; Pinho, Andreia V; Cowley, Mark J; Augereau, Cécile; Mawson, Amanda; Giry-Laterrière, Marc; Van den Steen, Géraldine; Waddell, Nicola; Pajic, Marina; Sempoux, Christine; Wu, Jianmin; Grimmond, Sean M; Biankin, Andrew V; Lemaigre, Frédéric P; Rooman, Ilse; Jacquemin, Patrick

    2015-11-01

    The transcription factor SOX9 was recently shown to stimulate ductal gene expression in pancreatic acinar-to-ductal metaplasia and to accelerate development of premalignant lesions preceding pancreatic ductal adenocarcinoma (PDAC). Here, we investigate how SOX9 operates in pancreatic tumourigenesis. We analysed genomic and transcriptomic data from surgically resected PDAC and extended the expression analysis to xenografts from PDAC samples and to PDAC cell lines. SOX9 expression was manipulated in human cell lines and mouse models developing PDAC. We found genetic aberrations in the SOX9 gene in about 15% of patient tumours. Most PDAC samples strongly express SOX9 protein, and SOX9 levels are higher in classical PDAC. This tumour subtype is associated with better patient outcome, and cell lines of this subtype respond to therapy targeting epidermal growth factor receptor (EGFR/ERBB1) signalling, a pathway essential for pancreatic tumourigenesis. In human PDAC, high expression of SOX9 correlates with expression of genes belonging to the ERBB pathway. In particular, ERBB2 expression in PDAC cell lines is stimulated by SOX9. Inactivating Sox9 expression in mice confirmed its role in PDAC initiation; it demonstrated that Sox9 stimulates expression of several members of the ERBB pathway and is required for ERBB signalling activity. By integrating data from patient samples and mouse models, we found that SOX9 regulates the ERBB pathway throughout pancreatic tumourigenesis. Our work opens perspectives for therapy targeting tumourigenic mechanisms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Dynamics and control of the ERK signaling pathway: Sensitivity, bistability, and oscillations.

    Science.gov (United States)

    Arkun, Yaman; Yasemi, Mohammadreza

    2018-01-01

    Cell signaling is the process by which extracellular information is transmitted into the cell to perform useful biological functions. The ERK (extracellular-signal-regulated kinase) signaling controls several cellular processes such as cell growth, proliferation, differentiation and apoptosis. The ERK signaling pathway considered in this work starts with an extracellular stimulus and ends with activated (double phosphorylated) ERK which gets translocated into the nucleus. We model and analyze this complex pathway by decomposing it into three functional subsystems. The first subsystem spans the initial part of the pathway from the extracellular growth factor to the formation of the SOS complex, ShC-Grb2-SOS. The second subsystem includes the activation of Ras which is mediated by the SOS complex. This is followed by the MAPK subsystem (or the Raf-MEK-ERK pathway) which produces the double phosphorylated ERK upon being activated by Ras. Although separate models exist in the literature at the subsystems level, a comprehensive model for the complete system including the important regulatory feedback loops is missing. Our dynamic model combines the existing subsystem models and studies their steady-state and dynamic interactions under feedback. We establish conditions under which bistability and oscillations exist for this important pathway. In particular, we show how the negative and positive feedback loops affect the dynamic characteristics that determine the cellular outcome.

  12. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis

    Directory of Open Access Journals (Sweden)

    Zuzanna Rzepka

    2016-06-01

    Full Text Available Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes - dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI or 5,6-dihydroxyindole-2-carboxylic acid (DHICA. Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones. Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells.

  13. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    Science.gov (United States)

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  14. Duplicate retention in signalling proteins and constraints from network dynamics.

    Science.gov (United States)

    Soyer, O S; Creevey, C J

    2010-11-01

    Duplications are a major driving force behind evolution. Most duplicates are believed to fix through genetic drift, but it is not clear whether this process affects all duplications equally or whether there are certain gene families that are expected to show neutral expansions under certain circumstances. Here, we analyse the neutrality of duplications in different functional classes of signalling proteins based on their effects on response dynamics. We find that duplications involving intermediary proteins in a signalling network are neutral more often than those involving receptors. Although the fraction of neutral duplications in all functional classes increase with decreasing population size and selective pressure on dynamics, this effect is most pronounced for receptors, indicating a possible expansion of receptors in species with small population size. In line with such an expectation, we found a statistically significant increase in the number of receptors as a fraction of genome size in eukaryotes compared with prokaryotes. Although not confirmative, these results indicate that neutral processes can be a significant factor in shaping signalling networks and affect proteins from different functional classes differently. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.

  15. Possible signals of vacuum dynamics in the Universe

    Science.gov (United States)

    Peracaula, Joan Solà; de Cruz Pérez, Javier; Gómez-Valent, Adrià

    2018-05-01

    We study a generic class of time-evolving vacuum models which can provide a better phenomenological account of the overall cosmological observations as compared to the ΛCDM. Among these models, the running vacuum model (RVM) appears to be the most motivated and favored one, at a confidence level of ˜3σ. We further support these results by computing the Akaike and Bayesian information criteria. Our analysis also shows that we can extract fair signals of dynamical dark energy (DDE) by confronting the same set of data to the generic XCDM and CPL parametrizations. In all cases we confirm that the combined triad of modern observations on Baryonic Acoustic Oscillations, Large Scale Structure formation, and the Cosmic Microwave Background, provide the bulk of the signal sustaining a possible vacuum dynamics. In the absence of any of these three crucial data sources, the DDE signal can not be perceived at a significant confidence level. Its possible existence could be a cure for some of the tensions existing in the ΛCDM when confronted to observations.

  16. Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors.

    Science.gov (United States)

    Hanna, David A; Martinez-Guzman, Osiris; Reddi, Amit R

    2017-04-04

    Heme (iron protoporphyrin IX) is an essential protein prosthetic group and signaling molecule required for most life on Earth. All heme-dependent processes require the dynamic and rapid mobilization of heme from sites of synthesis or uptake to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitate that heme mobilization be carefully controlled to mitigate the deleterious effects of this essential toxin. Indeed, a number of disorders, including certain cancers, cardiovascular diseases, and aging and age-related neurodegenerative diseases, are tied to defects in heme homeostasis. However, the molecules and mechanisms that mediate heme transport and trafficking, and the dynamics of these processes, are poorly understood. This is in large part due to the lack of physical tools for probing cellular heme. Herein, we discuss the recent development of fluorescent probes that can monitor and image kinetically labile heme with respect to its mobilization and role in signaling. In particular, we will highlight how heme gazing with these tools can uncover new heme trafficking factors upon being integrated with genetic screens and illuminate the concentration, subcellular distribution, and dynamics of labile heme in various physiological contexts. Altogether, the monitoring of labile heme, along with recent biochemical and cell biological studies demonstrating the reversible regulation of certain cellular processes by heme, is challenging us to reconceptualize heme from being a static cofactor buried in protein active sites to a dynamic and mobile signaling molecule.

  17. Crosstalk between intracellular and extracellular signals regulating interneuron production migration and integration into the cortex

    Directory of Open Access Journals (Sweden)

    Elise ePeyre

    2015-04-01

    Full Text Available During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: 1/ Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; 2/ Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; 3/ Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.

  18. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex.

    Science.gov (United States)

    Peyre, Elise; Silva, Carla G; Nguyen, Laurent

    2015-01-01

    During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.

  19. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics

    DEFF Research Database (Denmark)

    Akimov, Vyacheslav; Rigbolt, Kristoffer T G; Nielsen, Mogens M

    2011-01-01

    Protein ubiquitination is a dynamic reversible post-translational modification that plays a key role in the regulation of numerous cellular processes including signal transduction, endocytosis, cell cycle control, DNA repair and gene transcription. The conjugation of the small protein ubiquitin...... investigating ubiquitination on a proteomic scale, mainly due to the inherited complexity and heterogeneity of ubiquitination. We describe here a quantitative proteomics strategy based on the specificity of ubiquitin binding domains (UBDs) and Stable Isotope Labeling by Amino acids in Cell culture (SILAC...... as ubiquitination-dependent events in signaling pathways. In addition to a detailed seven time-point profile of EGFR ubiquitination over 30 minutes of ligand stimulation, our data determined prominent involvement of Lysine-63 ubiquitin branching in EGF signaling. Furthermore, we found two centrosomal proteins, PCM1...

  20. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense

    OpenAIRE

    Huffaker, Alisa; Pearce, Gregory; Veyrat, Nathalie; Erb, Matthias; Turlings, Ted C. J.; Sartor, Ryan; Shen, Zhouxin; Briggs, Steven P.; Vaughan, Martha M.; Alborn, Hans T.; Teal, Peter E. A.; Schmelz, Eric A.

    2013-01-01

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates antiherbivore defenses in the Solanaceae, but in other plant families, peptides with analogous activity have remained elusive. In the current study, we demonstrate that a member of the maize (Zea mays) plant elicitor peptide (Pep) family, ZmPep3, regulates responses against herbivores. Consistent with being a signal, expression o...

  1. FEL small signal dynamics and electron beam prebunching

    International Nuclear Information System (INIS)

    Dattoli, G.

    1993-01-01

    A seed signal and/or a pre-bunched electron beam may provide the start up of a free electron laser (FEL). Recently, interest has grown around FEL's operating with pre-bunched electron beams; this paper is, therefore, devoted to the analysis of the dynamic features of FEL's operating in such a configuration. It exploits a slightly modified form of the FEL high gain equation to derive quantities of practical interest like the dependence of the system growth rate on the bunching coefficients

  2. Analysis of a dynamic model of guard cell signaling reveals the stability of signal propagation

    Science.gov (United States)

    Gan, Xiao; Albert, RéKa

    Analyzing the long-term behaviors (attractors) of dynamic models of biological systems can provide valuable insight into biological phenotypes and their stability. We identified the long-term behaviors of a multi-level, 70-node discrete dynamic model of the stomatal opening process in plants. We reduce the model's huge state space by reducing unregulated nodes and simple mediator nodes, and by simplifying the regulatory functions of selected nodes while keeping the model consistent with experimental observations. We perform attractor analysis on the resulting 32-node reduced model by two methods: 1. converting it into a Boolean model, then applying two attractor-finding algorithms; 2. theoretical analysis of the regulatory functions. We conclude that all nodes except two in the reduced model have a single attractor; and only two nodes can admit oscillations. The multistability or oscillations do not affect the stomatal opening level in any situation. This conclusion applies to the original model as well in all the biologically meaningful cases. We further demonstrate the robustness of signal propagation by showing that a large percentage of single-node knockouts does not affect the stomatal opening level. Thus, we conclude that the complex structure of this signal transduction network provides multiple information propagation pathways while not allowing extensive multistability or oscillations, resulting in robust signal propagation. Our innovative combination of methods offers a promising way to analyze multi-level models.

  3. Early Seizure Detection Based on Cardiac Autonomic Regulation Dynamics

    Directory of Open Access Journals (Sweden)

    Jonatas Pavei

    2017-10-01

    Full Text Available Epilepsy is a neurological disorder that causes changes in the autonomic nervous system. Heart rate variability (HRV reflects the regulation of cardiac activity and autonomic nervous system tone. The early detection of epileptic seizures could foster the use of new treatment approaches. This study presents a new methodology for the prediction of epileptic seizures using HRV signals. Eigendecomposition of HRV parameter covariance matrices was used to create an input for a support vector machine (SVM-based classifier. We analyzed clinical data from 12 patients (9 female; 3 male; age 34.5 ± 7.5 years, involving 34 seizures and a total of 55.2 h of interictal electrocardiogram (ECG recordings. Data from 123.6 h of ECG recordings from healthy subjects were used to test false positive rate per hour (FP/h in a completely independent data set. Our methodological approach allowed the detection of impending seizures from 5 min to just before the onset of a clinical/electrical seizure with a sensitivity of 94.1%. The FP rate was 0.49 h−1 in the recordings from patients with epilepsy and 0.19 h−1 in the recordings from healthy subjects. Our results suggest that it is feasible to use the dynamics of HRV parameters for the early detection and, potentially, the prediction of epileptic seizures.

  4. Rac1 promotes chondrogenesis by regulating STAT3 signaling pathway.

    Science.gov (United States)

    Kim, Hyoin; Sonn, Jong Kyung

    2016-09-01

    The small GTPase protein Rac1 is involved in a wide range of biological processes including cell differentiation. Previously, Rac1 was shown to promote chondrogenesis in micromass cultures of limb mesenchyme. However, the pathways mediating Rac1's role in chondrogenesis are not fully understood. This study aimed to explore the molecular mechanisms by which Rac1 regulates chondrogenic differentiation. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased as chondrogenesis proceeded in micromass cultures of chick wing bud mesenchyme. Inhibition of Rac1 with NSC23766, janus kinase 2 (JAK2) with AG490, or STAT3 with stattic inhibited chondrogenesis and reduced phosphorylation of STAT3. Conversely, overexpression of constitutively active Rac1 (Rac L61) increased phosphorylation of STAT3. Rac L61 expression resulted in increased expression of interleukin 6 (IL-6), and treatment with IL-6 increased phosphorylation of STAT3. NSC23766, AG490, and stattic prohibited cell aggregation, whereas expression of Rac L61 increased cell aggregation, which was reduced by stattic treatment. Our studies indicate that Rac1 induces STAT3 activation through expression and action of IL-6. Overexpression of Rac L61 increased expression of bone morphogenic protein 4 (BMP4). BMP4 promoted chondrogenesis, which was inhibited by K02288, an activin receptor-like kinase-2 inhibitor, and increased phosphorylation of p38 MAP kinase. Overexpression of Rac L61 also increased phosphorylation of p38 MAPK, which was reduced by K02288. These results suggest that Rac1 activates STAT3 by expression of IL-6, which in turn increases expression and activity of BMP4, leading to the promotion of chondrogenesis. © 2016 International Federation for Cell Biology.

  5. A quantitative and dynamic model for plant stem cell regulation.

    Directory of Open Access Journals (Sweden)

    Florian Geier

    Full Text Available Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.

  6. SCF(KMD) controls cytokinin signaling by regulating the degradation of type-B response regulators.

    Science.gov (United States)

    Kim, Hyo Jung; Chiang, Yi-Hsuan; Kieber, Joseph J; Schaller, G Eric

    2013-06-11

    Cytokinins are plant hormones that play critical roles in growth and development. In Arabidopsis, the transcriptional response to cytokinin is regulated by action of type-B Arabidopsis response regulators (ARRs). Although central elements in the cytokinin signal transduction pathway have been identified, mechanisms controlling output remain to be elucidated. Here we demonstrate that a family of F-box proteins, called the kiss me deadly (KMD) family, targets type-B ARR proteins for degradation. KMD proteins form an S-phase kinase-associated PROTEIN1 (SKP1)/Cullin/F-box protein (SCF) E3 ubiquitin ligase complex and directly interact with type-B ARR proteins. Loss-of-function KMD mutants stabilize type-B ARRs and exhibit an enhanced cytokinin response. In contrast, plants with elevated KMD expression destabilize type-B ARR proteins leading to cytokinin insensitivity. Our results support a model in which an SCF(KMD) complex negatively regulates cytokinin responses by controlling levels of a key family of transcription factors.

  7. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  8. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning.

    Science.gov (United States)

    Hart, Andrew S; Clark, Jeremy J; Phillips, Paul E M

    2015-01-01

    Cue- and reward-evoked phasic dopamine activity during Pavlovian and operant conditioning paradigms is well correlated with reward-prediction errors from formal reinforcement learning models, which feature teaching signals in the form of discrepancies between actual and expected reward outcomes. Additionally, in learning tasks where conditioned cues probabilistically predict rewards, dopamine neurons show sustained cue-evoked responses that are correlated with the variance of reward and are maximal to cues predicting rewards with a probability of 0.5. Therefore, it has been suggested that sustained dopamine activity after cue presentation encodes the uncertainty of impending reward delivery. In the current study we examined the acquisition and maintenance of these neural correlates using fast-scan cyclic voltammetry in rats implanted with carbon fiber electrodes in the nucleus accumbens core during probabilistic Pavlovian conditioning. The advantage of this technique is that we can sample from the same animal and recording location throughout learning with single trial resolution. We report that dopamine release in the nucleus accumbens core contains correlates of both expected value and variance. A quantitative analysis of these signals throughout learning, and during the ongoing updating process after learning in probabilistic conditions, demonstrates that these correlates are dynamically encoded during these phases. Peak CS-evoked responses are correlated with expected value and predominate during early learning while a variance-correlated sustained CS signal develops during the post-asymptotic updating phase. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling.

    Science.gov (United States)

    Monterisi, Stefania; Lobo, Miguel J; Livie, Craig; Castle, John C; Weinberger, Michael; Baillie, George; Surdo, Nicoletta C; Musheshe, Nshunge; Stangherlin, Alessandra; Gottlieb, Eyal; Maizels, Rory; Bortolozzi, Mario; Micaroni, Massimo; Zaccolo, Manuela

    2017-05-02

    cAMP/PKA signalling is compartmentalised with tight spatial and temporal control of signal propagation underpinning specificity of response. The cAMP-degrading enzymes, phosphodiesterases (PDEs), localise to specific subcellular domains within which they control local cAMP levels and are key regulators of signal compartmentalisation. Several components of the cAMP/PKA cascade are located to different mitochondrial sub-compartments, suggesting the presence of multiple cAMP/PKA signalling domains within the organelle. The function and regulation of these domains remain largely unknown. Here, we describe a novel cAMP/PKA signalling domain localised at mitochondrial membranes and regulated by PDE2A2. Using pharmacological and genetic approaches combined with real-time FRET imaging and high resolution microscopy, we demonstrate that in rat cardiac myocytes and other cell types mitochondrial PDE2A2 regulates local cAMP levels and PKA-dependent phosphorylation of Drp1. We further demonstrate that inhibition of PDE2A, by enhancing the hormone-dependent cAMP response locally, affects mitochondria dynamics and protects from apoptotic cell death.

  10. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  11. Dynamic Characteristics of Buildings from Signal Processing of Ambient Vibration

    Science.gov (United States)

    Dobre, Daniela; Sorin Dragomir, Claudiu

    2017-10-01

    The experimental technique used to determine the dynamic characteristics of buildings is based on records of low intensity oscillations of the building produced by various natural factors, such as permanent agitation type microseismic motions, city traffic, wind etc. The possibility of recording these oscillations is provided by the latest seismic stations (Geosig and Kinemetrics digital accelerographs). The permanent microseismic agitation of the soil is a complex form of stationary random oscillations. The building filters the soil excitation, selects and increases the components of disruptive vibrations corresponding to its natural vibration periods. For some selected buildings, with different instrumentation schemes for the location of sensors (in free-field, at basement, ground floor, roof level), a correlation between the dynamic characteristics resulted from signal processing of ambient vibration and from a theoretical analysis will be presented. The interpretation of recording results could highlight the behavior of the whole structure. On the other hand, these results are compared with those from strong motions, or obtained from a complex dynamic analysis, and they are quite different, but they are explicable.

  12. Distinct Calcium Signaling Pathways Regulate Calmodulin Gene Expression in Tobacco1

    Science.gov (United States)

    van der Luit, Arnold H.; Olivari, Claudio; Haley, Ann; Knight, Marc R.; Trewavas, Anthony J.

    1999-01-01

    Cold shock and wind stimuli initiate Ca2+ transients in transgenic tobacco (Nicotiana plumbaginifolia) seedlings (named MAQ 2.4) containing cytoplasmic aequorin. To investigate whether these stimuli initiate Ca2+ pathways that are spatially distinct, stress-induced nuclear and cytoplasmic Ca2+ transients and the expression of a stress-induced calmodulin gene were compared. Tobacco seedlings were transformed with a construct that encodes a fusion protein between nucleoplasmin (a major oocyte nuclear protein) and aequorin. Immunocytochemical evidence indicated targeting of the fusion protein to the nucleus in these plants, which were named MAQ 7.11. Comparison between MAQ 7.11 and MAQ 2.4 seedlings confirmed that wind stimuli and cold shock invoke separate Ca2+ signaling pathways. Partial cDNAs encoding two tobacco calmodulin genes, NpCaM-1 and NpCaM-2, were identified and shown to have distinct nucleotide sequences that encode identical polypeptides. Expression of NpCaM-1, but not NpCaM-2, responded to wind and cold shock stimulation. Comparison of the Ca2+ dynamics with NpCaM-1 expression after stimulation suggested that wind-induced NpCaM-1 expression is regulated by a Ca2+ signaling pathway operational predominantly in the nucleus. In contrast, expression of NpCaM-1 in response to cold shock is regulated by a pathway operational predominantly in the cytoplasm. PMID:10557218

  13. Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2018-01-01

    Full Text Available Wound healing is a complex process that involves sequential phases that overlap in time and space and affect each other dynamically at the gene and protein levels. We previously showed that insulin accelerates wound healing by stimulating faster and regenerative healing. One of the processes that insulin stimulates is an increase in monocyte/macrophage chemotaxis. In this study, we performed experiments in vivo and in vitro to elucidate the signaling transduction pathways that are involved in insulin-induced monocyte/macrophage chemotaxis. We found that insulin stimulates THP-1 cell chemotaxis in a dose-dependent and insulin receptor-dependent manner. We also show that the kinases PI3K-Akt, SPAK/JNK, and p38 MAPK are key molecules in the insulin-induced signaling pathways that lead to chemoattraction of the THP-1 cell. Furthermore, both PI3K-Akt and SPAK/JNK signaling involve Rac1 activation, an important molecule in regulating cell motility. Indeed, topical application of Rac1 inhibitor at an early stage during the healing process caused delayed and impaired healing even in the presence of insulin. These results delineate cell and molecular mechanisms involved in insulin-induced chemotaxis of monocyte/macrophage, cells that are critical for proper healing.

  14. Insulin-dependent signaling: regulation by amino acids and energy

    NARCIS (Netherlands)

    Meijer, A. J.

    2004-01-01

    Recent research has indicated that amino acids stimulate a signal-transduction pathway that is also used by insulin. Moreover, for insulin to exert its anabolic and anticatabolic effects on protein, there is an absolute requirement for amino acids. This signaling pathway becomes inhibited by

  15. TSC1 and TSC2 regulate cilia length and canonical Hedgehog signaling via different mechanisms

    DEFF Research Database (Denmark)

    Rosengren, Thomas; Larsen, Lasse Jonsgaard; Pedersen, Lotte Bang

    2018-01-01

    Primary cilia are sensory organelles that coordinate multiple cellular signaling pathways, including Hedgehog (HH), Wingless/Int (WNT) and Transforming Growth Factor-β (TGF-β) signaling. Similarly, primary cilia have been implicated in regulation of mTOR signaling, in which Tuberous Sclerosis Com...

  16. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals

    International Nuclear Information System (INIS)

    Li, Q; Clifford, G D

    2012-01-01

    In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal. (paper)

  17. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals.

    Science.gov (United States)

    Li, Q; Clifford, G D

    2012-09-01

    In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal.

  18. VanT, a central regulator of quorum sensing signalling in Vibrio anguillarum

    OpenAIRE

    Croxatto, Antony

    2006-01-01

    Many bacteria produce signal molecules that serve in a cell-to-cell communication system termed quorum sensing. This signalling system allows a bacterial population to co-ordinately regulate functions according to their cell number in a defined environment. As bacterial growth progresses towards the stationary phase, signalling molecules accumulate in the growth medium and, above a certain threshold level, regulate the expression of genes involved in diverse functions. Most of the functions m...

  19. Detecting signals of seasonal influenza severity through age dynamics

    DEFF Research Database (Denmark)

    Lee, Elizabeth C.; Viboud, Cécile; Simonsen, Lone

    2015-01-01

    stages of an outbreak. To address the limitations of traditional indicators, we propose a novel severity index based on influenza age dynamics estimated from routine physician diagnosis data that can be used retrospectively and for early warning. METHODS: We developed a quantitative 'ground truth......' severity benchmark that synthesizes multiple traditional severity indicators from publicly available influenza surveillance data in the United States. Observing that the age distribution of cases may signal severity early in an epidemic, we constructed novel retrospective and early warning severity indexes....... The retrospective index was well correlated with the severity benchmark and correctly identified the two most severe seasons. The early warning index performance varied, but it projected 2007-08 as relatively severe 10 weeks prior to the epidemic peak. Influenza severity varied significantly among states within...

  20. Neuronal Regulation of Schwann Cell Mitochondrial Ca2+ Signaling during Myelination

    OpenAIRE

    Daisuke Ino; Hiroshi Sagara; Junji Suzuki; Kazunori Kanemaru; Yohei Okubo; Masamitsu Iino

    2015-01-01

    Schwann cells (SCs) myelinate peripheral neurons to promote the rapid conduction of action potentials, and the process of myelination is known to be regulated by signals from axons to SCs. Given that SC mitochondria are one of the potential regulators of myelination, we investigated whether SC mitochondria are regulated by axonal signaling. Here, we show a purinergic mechanism that sends information from neurons to SC mitochondria during myelination. Our results show that electrical stimulati...

  1. Retinoic acid signalling in thymocytes regulates T cell development

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut

    . Here, using a RA sensitive reporter mouse model, we demonstrate that endogenous RAR responses are induced in CD69+CD4+CD8lo and CD69+CD4+CD8+ thymocytes undergoing positive selection and lineage commitment, and continue to be present in both CD4+ and CD8+ single positive (SP) cells, with RA signaling...... further enhanced in recently generated CD69+ CD4+ SP cells. To address the potential biological significance of RA signaling in developing thymocytes, we evaluated T cell development in CD4Cre-dnRAR mice, where RA signaling is blocked in thymocytes from the CD4+CD8+ double positive (DP) stage onwards due...

  2. Regulation of ARE-mRNA Stability by Cellular Signaling

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Lykke-Andersen, Jens

    2013-01-01

    but as a response to different cellular cues they can become either stabilized, allowing expression of a given gene, or further destabilized to silence their expression. These tightly regulated mRNAs include many that encode growth factors, proto-oncogenes, cytokines, and cell cycle regulators. Failure to properly...

  3. Syndecans – key regulators of cell signaling and biological functions

    DEFF Research Database (Denmark)

    Afratis, Nikolaos A.; Nikitovic, Dragana; Multhaupt, Hinke A.B.

    2017-01-01

    molecules during cancer initiation and progression. Particularly syndecans interact with other cell surface receptors, such as growth factor receptors and integrins, which lead to activation of downstream signaling pathways, which are critical for the cellular behavior. Moreover, this review describes...

  4. Regulation of Early Steps of GPVI Signal Transduction by Phosphatases: A Systems Biology Approach.

    Directory of Open Access Journals (Sweden)

    Joanne L Dunster

    2015-11-01

    Full Text Available We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2, provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in

  5. DMPD: Signal integration between IFNgamma and TLR signalling pathways in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16920490 Signal integration between IFNgamma and TLR signalling pathways in macroph...tml) (.csml) Show Signal integration between IFNgamma and TLR signalling pathways in macrophages. PubmedID 16920490 Title Signal inte...gration between IFNgamma and TLR signalling pathways in

  6. Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry

    Science.gov (United States)

    Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.

    2015-12-01

    Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.

  7. Integration of G protein α (Gα) signaling by the regulator of G protein signaling 14 (RGS14).

    Science.gov (United States)

    Brown, Nicole E; Goswami, Devrishi; Branch, Mary Rose; Ramineni, Suneela; Ortlund, Eric A; Griffin, Patrick R; Hepler, John R

    2015-04-03

    RGS14 contains distinct binding sites for both active (GTP-bound) and inactive (GDP-bound) forms of Gα subunits. The N-terminal regulator of G protein signaling (RGS) domain binds active Gαi/o-GTP, whereas the C-terminal G protein regulatory (GPR) motif binds inactive Gαi1/3-GDP. The molecular basis for how RGS14 binds different activation states of Gα proteins to integrate G protein signaling is unknown. Here we explored the intramolecular communication between the GPR motif and the RGS domain upon G protein binding and examined whether RGS14 can functionally interact with two distinct forms of Gα subunits simultaneously. Using complementary cellular and biochemical approaches, we demonstrate that RGS14 forms a stable complex with inactive Gαi1-GDP at the plasma membrane and that free cytosolic RGS14 is recruited to the plasma membrane by activated Gαo-AlF4(-). Bioluminescence resonance energy transfer studies showed that RGS14 adopts different conformations in live cells when bound to Gα in different activation states. Hydrogen/deuterium exchange mass spectrometry revealed that RGS14 is a very dynamic protein that undergoes allosteric conformational changes when inactive Gαi1-GDP binds the GPR motif. Pure RGS14 forms a ternary complex with Gαo-AlF4(-) and an AlF4(-)-insensitive mutant (G42R) of Gαi1-GDP, as observed by size exclusion chromatography and differential hydrogen/deuterium exchange. Finally, a preformed RGS14·Gαi1-GDP complex exhibits full capacity to stimulate the GTPase activity of Gαo-GTP, demonstrating that RGS14 can functionally engage two distinct forms of Gα subunits simultaneously. Based on these findings, we propose a working model for how RGS14 integrates multiple G protein signals in host CA2 hippocampal neurons to modulate synaptic plasticity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. TGF-β Signaling Regulates Pancreatic β-Cell Proliferation through Control of Cell Cycle Regulator p27 Expression

    International Nuclear Information System (INIS)

    Suzuki, Tomoyuki; Dai, Ping; Hatakeyama, Tomoya; Harada, Yoshinori; Tanaka, Hideo; Yoshimura, Norio; Takamatsu, Tetsuro

    2013-01-01

    Proliferation of pancreatic β-cells is an important mechanism underlying β-cell mass adaptation to metabolic demands. Increasing β-cell mass by regeneration may ameliorate or correct both type 1 and type 2 diabetes, which both result from inadequate production of insulin by β-cells of the pancreatic islet. Transforming growth factor β (TGF-β) signaling is essential for fetal development and growth of pancreatic islets. In this study, we exposed HIT-T15, a clonal pancreatic β-cell line, to TGF-β signaling. We found that inhibition of TGF-β signaling promotes proliferation of the cells significantly, while TGF-β signaling stimulation inhibits proliferation of the cells remarkably. We confirmed that this proliferative regulation by TGF-β signaling is due to the changed expression of the cell cycle regulator p27. Furthermore, we demonstrated that there is no observed effect on transcriptional activity of p27 by TGF-β signaling. Our data show that TGF-β signaling mediates the cell-cycle progression of pancreatic β-cells by regulating the nuclear localization of CDK inhibitor, p27. Inhibition of TGF-β signaling reduces the nuclear accumulation of p27, and as a result this inhibition promotes proliferation of β-cells

  9. GDSL LIPASE1 Modulates Plant Immunity through Feedback Regulation of Ethylene Signaling1[W

    Science.gov (United States)

    Kim, Hye Gi; Kwon, Sun Jae; Jang, Young Jin; Nam, Myung Hee; Chung, Joo Hee; Na, Yun-Cheol; Guo, Hongwei; Park, Ohkmae K.

    2013-01-01

    Ethylene is a key signal in the regulation of plant defense responses. It is required for the expression and function of GDSL LIPASE1 (GLIP1) in Arabidopsis (Arabidopsis thaliana), which plays an important role in plant immunity. Here, we explore molecular mechanisms underlying the relationship between GLIP1 and ethylene signaling by an epistatic analysis of ethylene response mutants and GLIP1-overexpressing (35S:GLIP1) plants. We show that GLIP1 expression is regulated by ethylene signaling components and, further, that GLIP1 expression or application of petiole exudates from 35S:GLIP1 plants affects ethylene signaling both positively and negatively, leading to ETHYLENE RESPONSE FACTOR1 activation and ETHYLENE INSENSITIVE3 (EIN3) down-regulation, respectively. Additionally, 35S:GLIP1 plants or their exudates increase the expression of the salicylic acid biosynthesis gene SALICYLIC ACID INDUCTION-DEFICIENT2, known to be inhibited by EIN3 and EIN3-LIKE1. These results suggest that GLIP1 regulates plant immunity through positive and negative feedback regulation of ethylene signaling, and this is mediated by its activity to accumulate a systemic signal(s) in the phloem. We propose a model explaining how GLIP1 regulates the fine-tuning of ethylene signaling and ethylene-salicylic acid cross talk. PMID:24170202

  10. cDREM: inferring dynamic combinatorial gene regulation.

    Science.gov (United States)

    Wise, Aaron; Bar-Joseph, Ziv

    2015-04-01

    Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs.

  11. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Michael eMutlak

    2015-07-01

    Full Text Available Cardiac hypertrophy results from increased mechanical load on the heart and through the actions of local and systemic neuro-humoral factors, cytokines and growth factors. These mechanical and neuroendocrine effectors act through stretch, G protein-coupled receptors and tyrosine kinases to induce the activation of a myriad of intracellular signaling pathways including the extracellular signal-regulated kinases 1/2 (ERK1/2. Since most stimuli that provoke myocardial hypertrophy also elicit an acute phosphorylation of the threonine-glutamate-tyrosine (TEY motif within the activation loops of ERK1 and ERK2 kinases, resulting in their activation, ERKs have long been considered promotors of cardiac hypertrophy. Several mouse models were generated in order to directly understand the causal role of ERK1/2 activation in the heart. These models include direct manipulation of ERK1/2 such as overexpression, mutagenesis or knockout models, manipulations of upstream kinases such as MEK1 and manipulations of the phosphatases that depohosphorylate ERK1/2 such as DUSP6. The emerging understanding from these studies, as will be discussed here, is more complex than originally considered. While there is little doubt that ERK1/2 activation or the lack of it modulates the hypertrophic process or the type of hypertrophy that develops, it appears that not all ERK1/2 activation events are the same. While much has been learned, some questions remain regarding the exact role of ERK1/2 in the heart, the upstream events that result in ERK1/2 activation and the downstream effector in hypertrophy.

  12. Within-Family Dynamics and Self-Regulation in Preschoolers

    NARCIS (Netherlands)

    Karreman, A.

    2006-01-01

    Separate research lines have stressed the importance of within-family dynamics on the one hand and self-regulation on the other hand for the development and stability of problem behavior in young children. Few empirical studies have directly addressed the relation between family processes and

  13. Large-Scale Phosphoproteomics Reveals Shp-2 Phosphatase-Dependent Regulators of Pdgf Receptor Signaling

    DEFF Research Database (Denmark)

    Batth, Tanveer S; Papetti, Moreno; Pfeiffer, Anamarija

    2018-01-01

    Despite its low cellular abundance, phosphotyrosine (pTyr) regulates numerous cell signaling pathways in health and disease. We applied comprehensive phosphoproteomics to unravel differential regulators of receptor tyrosine kinase (RTK)-initiated signaling networks upon activation by Pdgf-ββ, Fgf-2...... of Pdgfr pTyr signaling. Application of a recently introduced allosteric Shp-2 inhibitor revealed global regulation of the Pdgf-dependent tyrosine phosphoproteome, which significantly impaired cell migration. In addition, we present a list of hundreds of Shp-2-dependent targets and putative substrates...

  14. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling

    Directory of Open Access Journals (Sweden)

    Song eQin

    2014-04-01

    Full Text Available Neural stem cells (NSCs are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates BMP-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  15. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling.

    Science.gov (United States)

    Qin, Song; Niu, Wenze; Iqbal, Nida; Smith, Derek K; Zhang, Chun-Li

    2014-01-01

    Neural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates bone morphogenetic protein (BMP)-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP) and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  16. Canonical wnt signaling regulates atrioventricular junction programming and electrophysiological properties

    NARCIS (Netherlands)

    Gillers, Benjamin S.; Chiplunkar, Aditi; Aly, Haytham; Valenta, Tomas; Basler, Konrad; Christoffels, Vincent M.; Efimov, Igor R.; Boukens, Bastiaan J.; Rentschler, Stacey

    2015-01-01

    Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. To determine the role of canonical Wnt signaling in the myocardium during AVC development. We used a

  17. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    sensitivity in type I muscle fibers possibly reflects a superior effect of insulin on metabolic signaling compared to type II muscle fibers. This was investigated in the present thesis by examining muscle biopsies from lean and obese healthy subjects as well as patients with type 2 diabetes. From these muscle...

  18. Signaling pathways regulated by Brassicaceae extract inhibit the ...

    African Journals Online (AJOL)

    Background: The goal of this study was identification signaling molecules mediated the formation of AGEs in brain of rats injected with CdCl2 and the role of camel whey proteins and Brassicaceae extract on formation of AGEs in brain. Methods: Ninety male rats were randomly grouped into five groups; Normal control (GpI) ...

  19. Robo signaling regulates the production of cranial neural crest cells.

    Science.gov (United States)

    Li, Yan; Zhang, Xiao-Tan; Wang, Xiao-Yu; Wang, Guang; Chuai, Manli; Münsterberg, Andrea; Yang, Xuesong

    2017-12-01

    Slit/Robo signaling plays an important role in the guidance of developing neurons in developing embryos. However, it remains obscure whether and how Slit/Robo signaling is involved in the production of cranial neural crest cells. In this study, we examined Robo1 deficient mice to reveal developmental defects of mouse cranial frontal and parietal bones, which are derivatives of cranial neural crest cells. Therefore, we determined the production of HNK1 + cranial neural crest cells in early chick embryo development after knock-down (KD) of Robo1 expression. Detection of markers for pre-migratory and migratory neural crest cells, PAX7 and AP-2α, showed that production of both was affected by Robo1 KD. In addition, we found that the transcription factor slug is responsible for the aberrant delamination/EMT of cranial neural crest cells induced by Robo1 KD, which also led to elevated expression of E- and N-Cadherin. N-Cadherin expression was enhanced when blocking FGF signaling with dominant-negative FGFR1 in half of the neural tube. Taken together, we show that Slit/Robo signaling influences the delamination/EMT of cranial neural crest cells, which is required for cranial bone development. Copyright © 2017. Published by Elsevier Inc.

  20. Biglycan and decorin differentially regulate signaling in the fetal membranes

    Science.gov (United States)

    Wu, Zhiping; Horgan, Casie E.; Carr, Olivia; Owens, Rick T.; Iozzo, Renato V.; Lechner, Beatrice E.

    2014-01-01

    Preterm birth is the leading cause of newborn mortality in the United States and about one third of cases are caused by preterm premature rupture of fetal membranes, a complication that is frequently observed in patients with Ehlers-Danlos Syndrome. Notably, a subtype of Ehlers-Danlos Syndrome is caused by expression of abnormal biglycan and decorin proteoglycans. As compound deficiency of these two small leucine-rich proteoglycans is a model of preterm birth, we investigated the fetal membranes of Bgn−/−;Dcn−/− double-null and single-null mice. Our results showed that biglycan signaling supported fetal membrane remodeling during early gestation in the absence of concomitant changes in TGFβ levels. In late gestation, biglycan signaling acted in a TGFβ–dependent manner to aid in membrane stabilization. In contrast, decorin signaling supported fetal membrane remodeling at early stages of gestation in a TGFβ–dependent manner, and fetal membrane stabilization at later stages of gestation without changes in TGFβ levels. Furthermore, exogenous soluble decorin was capable of rescuing the TGFβ signaling pathway in fetal membrane mesenchymal cells. Collectively, these findings provide novel targets for manipulation of fetal membrane extracellular matrix stability and could represent novel targets for research on preventive strategies for preterm premature rupture of fetal membranes. PMID:24373743

  1. Cellular Architecture Regulates Collective Calcium Signaling and Cell Contractility.

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2016-05-01

    Full Text Available A key feature of multicellular systems is the ability of cells to function collectively in response to external stimuli. However, the mechanisms of intercellular cell signaling and their functional implications in diverse vascular structures are poorly understood. Using a combination of computational modeling and plasma lithography micropatterning, we investigate the roles of structural arrangement of endothelial cells in collective calcium signaling and cell contractility. Under histamine stimulation, endothelial cells in self-assembled and microengineered networks, but not individual cells and monolayers, exhibit calcium oscillations. Micropatterning, pharmacological inhibition, and computational modeling reveal that the calcium oscillation depends on the number of neighboring cells coupled via gap junctional intercellular communication, providing a mechanistic basis of the architecture-dependent calcium signaling. Furthermore, the calcium oscillation attenuates the histamine-induced cytoskeletal reorganization and cell contraction, resulting in differential cell responses in an architecture-dependent manner. Taken together, our results suggest that endothelial cells can sense and respond to chemical stimuli according to the vascular architecture via collective calcium signaling.

  2. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  3. Quantitative regulation of B cell division destiny by signal strength.

    Science.gov (United States)

    Turner, Marian L; Hawkins, Edwin D; Hodgkin, Philip D

    2008-07-01

    Differentiation to Ab secreting and isotype-switched effector cells is tightly linked to cell division and therefore the degree of proliferation strongly influences the nature of the immune response. The maximum number of divisions reached, termed the population division destiny, is stochastically distributed in the population and is an important parameter in the quantitative outcome of lymphocyte responses. In this study, we further assessed the variables that regulate B cell division destiny in vitro in response to T cell- and TLR-dependent stimuli. Both the concentration and duration of stimulation were able to regulate the average maximum number of divisions undergone for each stimulus. Notably, a maximum division destiny was reached during provision of repeated saturating stimulation, revealing that an intrinsic limit to proliferation exists even under these conditions. This limit was linked directly to division number rather than time of exposure to stimulation and operated independently of the survival regulation of the cells. These results demonstrate that a B cell population's division destiny is regulable by the stimulatory conditions up to an inherent maximum value. Division destiny is a crucial parameter in regulating the extent of B cell responses and thereby also the nature of the immune response mounted.

  4. Dancing with Hormones: A Current Perspective of Nitrate Signaling and Regulation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Peizhu Guan

    2017-09-01

    Full Text Available In nature and agriculture, nitrate availability is a main environmental cue for plant growth, development and stress responses. Nitrate signaling and regulation are hence at the center of communications between plant intrinsic programs and the environment. It is also well known that endogenous phytohormones play numerous critical roles in integrating extrinsic cues and intrinsic responses, regulating and refining almost all aspects of plant growth, development and stress responses. Therefore, interaction between nitrate and phytohormones, such as auxins, cytokinins, abscisic acid, gibberellins, and ethylene, is prevalent. The growing evidence indicates that biosynthesis, de-conjugation, transport, and signaling of hormones are partly controlled by nitrate signaling. Recent advances with nitrate signaling and transcriptional regulation in Arabidopsis give rise to new paradigms. Given the comprehensive nitrate transport, sensing, signaling and regulations at the level of the cell and organism, nitrate itself is a local and long-distance signal molecule, conveying N status at the whole-plant level. A direct molecular link between nitrate signaling and cell cycle progression was revealed with TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20 – NIN-LIKE PROTEIN 6/7 (NLP6/7 regulatory nexus. NLPs are key regulators of nitrogen responses in plants. TCPs function as the main regulators of plant morphology and architecture, with the emerging role as integrators of plant developmental responses to the environment. By analogy with auxin being proposed as a plant morphogen, nitrate may be an environmental morphogen. The morphogen-gradient-dependent and cell-autonomous mechanisms of nitrate signaling and regulation are an integral part of cell growth and cell identification. This is especially true in root meristem growth that is regulated by intertwined nitrate, phytohormones, and glucose-TOR signaling pathways. Furthermore, the nitrate

  5. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  6. Bicaudal-D1 regulates the intracellular sorting and signalling of neurotrophin receptors.

    Science.gov (United States)

    Terenzio, Marco; Golding, Matthew; Russell, Matthew R G; Wicher, Krzysztof B; Rosewell, Ian; Spencer-Dene, Bradley; Ish-Horowicz, David; Schiavo, Giampietro

    2014-07-17

    We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor-containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain-derived neurotrophic factor (BDNF)-activated TrkB and p75 neurotrophin receptor (p75(NTR)) by disrupting the endosomal sorting, reducing lysosomal degradation and increasing the co-localisation of these neurotrophin receptors with retromer-associated sorting nexin 1. The resulting re-routing of active receptors increased their recycling to the plasma membrane and altered the repertoire of signalling-competent TrkB isoforms and p75(NTR) available for ligand binding on the neuronal surface. This resulted in attenuated, but more sustained, AKT activation in response to BDNF stimulation. These data, together with our observation that Bicd1 expression is restricted to the developing nervous system when neurotrophin receptor expression peaks, indicate that BICD1 regulates neurotrophin signalling by modulating the endosomal sorting of internalised ligand-activated receptors. © 2014 The Authors.

  7. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chen-Shuang Li

    2016-01-01

    Full Text Available Human umbilical cord mesenchymal stem cells (hUCMSCs are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.

  8. ROS-activated calcium signaling mechanisms regulating endothelial barrier function.

    Science.gov (United States)

    Di, Anke; Mehta, Dolly; Malik, Asrar B

    2016-09-01

    Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Protein kinase C signaling and cell cycle regulation

    OpenAIRE

    Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. Th...

  10. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

    Science.gov (United States)

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-09-28

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expression of AKT. We also found a dynamic elevation of protein O-GlcNAcylation during the first four hours of cerebral ischemia, followed by continuous decline after middle cerebral artery occlusion (MCAO) in the mouse brain. The elevation of O-GlcNAcylation coincided with activation of cell apoptosis. Finally, we found a negative correlation between AKT phosphorylation and O-GlcNAcylation in ischemic brain tissue. These results indicate that cerebral ischemia induces a rapid increase of O-GlcNAcylation that promotes apoptosis through down-regulation of AKT activity. These findings provide a novel mechanism through which O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

  11. Warts signaling controls organ and body growth through regulation of ecdysone

    DEFF Research Database (Denmark)

    Møller, Morten Erik; Nagy, Stanislav; Gerlach, Stephan Uwe

    2017-01-01

    Coordination of growth between individual organs and the whole body is essential during development to produce adults with appropriate size and proportions [1, 2]. How local organ-intrinsic signals and nutrient-dependent systemic factors are integrated to generate correctly proportioned organisms...... under different environmental conditions is poorly understood. In Drosophila, Hippo/Warts signaling functions intrinsically to regulate tissue growth and organ size [3, 4], whereas systemic growth is controlled via antagonistic interactions of the steroid hormone ecdysone and nutrient-dependent insulin....../insulin-like growth factor (IGF) (insulin) signaling [2, 5]. The interplay between insulin and ecdysone signaling regulates systemic growth and controls organismal size. Here, we show that Warts (Wts; LATS1/2) signaling regulates systemic growth in Drosophila by activating basal ecdysone production, which negatively...

  12. Self-regulated dynamical criticality in human ECoG

    Directory of Open Access Journals (Sweden)

    Guillermo eSolovey

    2012-07-01

    Full Text Available Mounting experimental and theoretical results indicate that neural systems are poised near a critical state. In human subjects, however, most evidence comes from functional MRI studies, an indirect measurement of neuronal activity with poor temporal resolution. Electrocorticography (ECoG provides a unique window into human brain activity: each electrode records, with high temporal resolution, the activity resulting from the sum of the local field potentials of sim 10^5 neurons. We show that the human brain ECoG recordings display features of self-regulated dynamical criticality: dynamical modes of activation drift around the critical stability threshold, moving in and out of the unstable region and equilibrating the global dynamical state at a very fast time scale. Moreover, the analysis also reveals differences between the resting state and a motor task, associated with increased stability of a fraction of the dynamical modes.

  13. N-wasp is essential for the negative regulation of B cell receptor signaling.

    Directory of Open Access Journals (Sweden)

    Chaohong Liu

    2013-11-01

    Full Text Available Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP, which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell-specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation.

  14. Dynamic hydro-climatic networks in pristine and regulated rivers

    Science.gov (United States)

    Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.

    2014-12-01

    Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes

  15. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    Directory of Open Access Journals (Sweden)

    Niurka Trujillo-Paredes

    2016-03-01

    Full Text Available Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs, but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+. These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons.

  16. VEGFR2 Trafficking, Signaling and Proteolysis is Regulated by the Ubiquitin Isopeptidase USP8.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Abdul-Zani, Izma; Wheatcroft, Stephen B; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2016-01-01

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular function. VEGF-A binding to vascular endothelial growth factor receptor 2 (VEGFR2) stimulates endothelial signal transduction and regulates multiple cellular responses. Activated VEGFR2 undergoes ubiquitination but the enzymes that regulate this post-translational modification are unclear. In this study, the de-ubiquitinating enzyme, USP8, is shown to regulate VEGFR2 trafficking, de-ubiquitination, proteolysis and signal transduction. USP8-depleted endothelial cells displayed altered VEGFR2 ubiquitination and production of a unique VEGFR2 extracellular domain proteolytic fragment caused by VEGFR2 accumulation in the endosome-lysosome system. In addition, perturbed VEGFR2 trafficking impaired VEGF-A-stimulated signal transduction in USP8-depleted cells. Thus, regulation of VEGFR2 ubiquitination and de-ubiquitination has important consequences for the endothelial cell response and vascular physiology. © 2015 The Authors. Traffic published by John Wiley & Sons Ltd.

  17. Microenvironments and Signaling Pathways Regulating Early Dissemination, Dormancy, and Metastasis

    Science.gov (United States)

    2016-09-01

    regulators of branching morphogenesis during mammary gland development 17,18, arguing that normal mammary epithelial cells cooperate with these innate ...CD45+CD11b+F4/80+ cells lacking lymphoid and granulocytic markers (Supplementary Fig.3B). viSNE plots 30 of myelo- monocytic cells (Fig.5A) showed that...cancer cells and how the microenvironment in these primary sites named P-TMEM (Primary Tumor Microenvironment of Metastases) contribute to early

  18. High levels of Notch signaling down-regulate Numb and Numblike

    NARCIS (Netherlands)

    Chapman, G.; Liu, L.; Sahlgren, C.; Dahlqvist, C.; Lendahl, U.

    2006-01-01

    Inhibition of Notch signaling by Numb is critical for many cell fate decisions. In this study, we demonstrate a more complex relationship between Notch and the two vertebrate Numb homologues Numb and Numblike. Although Numb and Numblike at low levels of Notch signaling negatively regulated Notch,

  19. Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling

    Directory of Open Access Journals (Sweden)

    Jin-A Kim

    2015-05-01

    Full Text Available Mesenchymal stromal cells (MSCs have been extensively utilized for various cell therapeutic trials, but the signals regulating their stromal function remain largely unclear. Here, we show that canonical Wnt signals distinctively regulate MSCs in a biphasic manner depending on signal intensity, i.e., MSCs exhibit proliferation and progenitor self-renewal under low Wnt/β-catenin signaling, whereas they exhibit enhanced osteogenic differentiation with priming to osteoblast-like lineages under high Wnt/β-catenin signaling. Moreover, low or high levels of β-catenin in MSCs distinctly regulated the hematopoietic support of MSCs to promote proliferation or the undifferentiated state of hematopoietic progenitors, respectively. A gene expression study demonstrated that different intracellular levels of β-catenin in MSCs induce distinct transcriptomic changes in subsets of genes belonging to different gene function categories. Different β-catenin levels also induced differences in intracellular levels of the β-catenin co-factors, Tcf-1 and Lef-1. Moreover, nano-scale mass spectrometry of proteins that co-precipitated with β-catenin revealed distinctive spectra of proteins selectively interacting with β-catenin at specific expression levels. Together, these results show that Wnt/β-catenin signals can coax distinct transcription milieu to induce different transcription profiles in MSCs depending on the signal intensity and that fine-tuning of the canonical Wnt signaling intensity can regulate the phase-specific functionality of MSCs.

  20. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer.

    Science.gov (United States)

    Roberts, David D; Kaur, Sukhbir; Isenberg, Jeffrey S

    2017-10-20

    In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H 2 S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H 2 S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.

  1. Disruption of Core Planar Cell Polarity Signaling Regulates Renal Tubule Morphogenesis but Is Not Cystogenic.

    Science.gov (United States)

    Kunimoto, Koshi; Bayly, Roy D; Vladar, Eszter K; Vonderfecht, Tyson; Gallagher, Anna-Rachel; Axelrod, Jeffrey D

    2017-10-23

    Oriented cell division (OCD) and convergent extension (CE) shape developing renal tubules, and their disruption has been associated with polycystic kidney disease (PKD) genes, the majority of which encode proteins that localize to primary cilia. Core planar cell polarity (PCP) signaling controls OCD and CE in other contexts, leading to the hypothesis that disruption of PCP signaling interferes with CE and/or OCD to produce PKD. Nonetheless, the contribution of PCP to tubulogenesis and cystogenesis is uncertain, and two major questions remain unanswered. Specifically, the inference that mutation of PKD genes interferes with PCP signaling is untested, and the importance of PCP signaling for cystogenic PKD phenotypes has not been examined. We show that, during proliferative stages, PCP signaling polarizes renal tubules to control OCD. However, we find that, contrary to the prevailing model, PKD mutations do not disrupt PCP signaling but instead act independently and in parallel with PCP signaling to affect OCD. Indeed, PCP signaling that is normally downregulated once development is completed is retained in cystic adult kidneys. Disrupting PCP signaling results in inaccurate control of tubule diameter, a tightly regulated parameter with important physiological ramifications. However, we show that disruption of PCP signaling is not cystogenic. Our results suggest that regulating tubule diameter is a key function of PCP signaling but that loss of this control does not induce cysts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    International Nuclear Information System (INIS)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-01-01

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways

  3. Target sites for chemical regulation of strigolactone signaling

    Directory of Open Access Journals (Sweden)

    Hidemitsu eNakamura

    2014-11-01

    Full Text Available Demands for plant growth regulators (chemicals that control plant growth are increasing globally, especially in developing countries. Both positive and negative plant growth regulators are widely used to enhance crop production and to suppress unwanted shoot growth, respectively. Strigolactones (SLs are multifunctional molecules that function as phytohormones, inhibiting shoot branching and also functioning in the rhizospheric communication with symbiotic fungi and parasitic weeds. Therefore, it is anticipated that chemicals that regulate the functions of SLs will be widely used in agricultural applications. Although the SL biosynthetic pathway is not fully understood, it has been demonstrated that beta-carotene isomerases, carotenoid cleavage dioxygenases (CCDs, and a cytochrome P450 monooxygenase are involved in strigolactone biosynthesis. A CCD inhibitor, abamine, which is also an inhibitor of abscisic acid biosynthesis, reduces the levels of SL in several plant species and reduces the germination rate of Orobanche minor seeds grown with tobacco. On the basis of the structure of abamine, several chemicals have been designed to specifically inhibit CCDs during SL synthesis. Cytochrome P450 monooxygenase is another target enzyme in the development of SL biosynthesis inhibitors, and the triazole-derived TIS series of chemicals is known to include SL biosynthesis inhibitors, although their target enzyme has not been identified. Recently, DWARF14 (D14 has been shown to be a receptor for SLs, and the D-ring moiety of SL is essential for its recognition by D14. A variety of SL agonists are currently under development and most agonists commonly contain the D-ring or a D-ring-like moiety. Several research groups have also resolved the crystal structure of D14 in the last two years. It is expected that this information on the D14 structure will be invaluable not only for developing SL agonists with novel structures but also in the design of inhibitors

  4. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  5. period-Regulated Feeding Behavior and TOR Signaling Modulate Survival of Infection.

    Science.gov (United States)

    Allen, Victoria W; O'Connor, Reed M; Ulgherait, Matthew; Zhou, Clarice G; Stone, Elizabeth F; Hill, Vanessa M; Murphy, Keith R; Canman, Julie C; Ja, William W; Shirasu-Hiza, Mimi M

    2016-01-25

    Most metazoans undergo dynamic, circadian-regulated changes in behavior and physiology. Currently, it is unknown how circadian-regulated behavior impacts immunity against infection. Two broad categories of defense against bacterial infection are resistance, control of microbial growth, and tolerance, control of the pathogenic effects of infection. Our study of behaviorally arrhythmic Drosophila circadian period mutants identified a novel link between nutrient intake and tolerance of infection with B. cepacia, a bacterial pathogen of rising importance in hospital-acquired infections. We found that infection tolerance in wild-type animals is stimulated by acute exposure to dietary glucose and amino acids. Glucose-stimulated tolerance was induced by feeding or direct injection; injections revealed a narrow window for glucose-stimulated tolerance. In contrast, amino acids stimulated tolerance only when ingested. We investigated the role of a known amino-acid-sensing pathway, the TOR (Target of Rapamycin) pathway, in immunity. TORC1 is circadian regulated and inhibition of TORC1 decreased resistance, as in vertebrates. Surprisingly, inhibition of the less well-characterized TOR complex 2 (TORC2) dramatically increased survival, through both resistance and tolerance mechanisms. This work suggests that dietary intake on the day of infection by B. cepacia can make a significant difference in long-term survival. We further demonstrate that TOR signaling mediates both resistance and tolerance of infection and identify TORC2 as a novel potential therapeutic target for increasing survival of infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Post-transcriptional regulation of ethylene perception and signaling in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Schaller, George Eric [Dartmouth College, Hanover, NH (United States)

    2014-03-19

    The simple gas ethylene functions as an endogenous regulator of plant growth and development, and modulates such energy relevant processes as photosynthesis and biomass accumulation. Ethylene is perceived in the plant Arabidopsis by a five-member family of receptors related to bacterial histidine kinases. Our data support a general model in which the receptors exist as parts of larger protein complexes. Our goals have been to (1) characterize physical interactions among members of the signaling complex; (2) the role of histidine-kinase transphosphorylation in signaling by the complex; and (3) the role of a novel family of proteins that regulate signal output by the receptors.

  7. Microprudential Regulation in a Dynamic Model of Banking

    OpenAIRE

    Gianni De Nicolò; Andrea Gamba; Marcella Lucchetta

    2014-01-01

    This paper studies the quantitative impact of microprudential bank regulations on bank lending and value metrics of efficiency and welfare in a dynamic model of banks that are financed by debt and equity, undertake maturity transformation, are exposed to credit and liquidity risks, and face financing frictions. We show that (1) there exists an inverted U-shaped relationship between bank lending, welfare, and capital requirements, (2) liquidity requirements unambiguously reduce lending, effici...

  8. Coronin-1A links cytoskeleton dynamics to TCR alpha beta-induced cell signaling.

    Directory of Open Access Journals (Sweden)

    Bénédicte Mugnier

    Full Text Available Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR-induced immunological synapse (IS formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of alpha beta T cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-kappaB (I kappa B. Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts alpha beta T cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages.

  9. Study on non-linear bistable dynamics model based EEG signal discrimination analysis method.

    Science.gov (United States)

    Ying, Xiaoguo; Lin, Han; Hui, Guohua

    2015-01-01

    Electroencephalogram (EEG) is the recording of electrical activity along the scalp. EEG measures voltage fluctuations generating from ionic current flows within the neurons of the brain. EEG signal is looked as one of the most important factors that will be focused in the next 20 years. In this paper, EEG signal discrimination based on non-linear bistable dynamical model was proposed. EEG signals were processed by non-linear bistable dynamical model, and features of EEG signals were characterized by coherence index. Experimental results showed that the proposed method could properly extract the features of different EEG signals.

  10. Molecular signaling networks in regulation of immunity and disease

    DEFF Research Database (Denmark)

    Laursen, Janne Marie; Jensen, Stina Rikke; Sørensen, Morten

    and dynamic microbial communities with the immune cell compartment in the gut, and therefore the interaction between components from different gut bacteria can efficiently shape the phenotype of the immune response. A specialized antigenpresenting cell present at mucosal surfaces, the dendritic cell (DC......), plays a crucial role in shaping the nature of the adaptive/memorybased immune response after encountering inflammatory compounds. In the gut, the DC is continuously exposed to microbial and dietary components that are recognized by its innate pattern recognition receptors, and the phenotype developed...... in the DC during activation is of profound importance for the state of immune response and thereby also affects the inflammatory and metabolic status in tissues. We have shown that specific fermentation products from gut bacteria have distinct immunoregulatory effects that effectively inhibit...

  11. Dynamic measures of RSA predict distress and regulation in toddlers.

    Science.gov (United States)

    Brooker, Rebecca J; Buss, Kristin A

    2010-05-01

    In this study, we examined a new method for quantifying individual variability using dynamic measures of respiratory sinus arrhythmia (RSA). This method incorporated temporal variation into the measurement of RSA and provided information beyond that offered by more traditional quantifications such as difference scores. Dynamic and static measures of change in RSA were tested in relation to displays of emotion and affective behaviors during a fear-eliciting episode in a sample of 88 typically developing and high-fear toddlers during a laboratory visit at age 24 months. Dynamic measures of RSA contributed information that was unique from traditionally employed, static change scores in predicting high-fear toddlers' displays of shyness during a fear-eliciting episode. In contrast, RSA change scores offered information related to boldness in nonhigh-fear children. In addition, several associations included estimates of nonlinear change in RSA. Implications for the study of individual differences in RSA and relations with emotion and emotion regulation are discussed.

  12. Sulfur availability regulates plant growth via glucose-TOR signaling.

    Science.gov (United States)

    Dong, Yihan; Silbermann, Marleen; Speiser, Anna; Forieri, Ilaria; Linster, Eric; Poschet, Gernot; Allboje Samami, Arman; Wanatabe, Mutsumi; Sticht, Carsten; Teleman, Aurelio A; Deragon, Jean-Marc; Saito, Kazuki; Hell, Rüdiger; Wirtz, Markus

    2017-10-27

    Growth of eukaryotic cells is regulated by the target of rapamycin (TOR). The strongest activator of TOR in metazoa is amino acid availability. The established transducers of amino acid sensing to TOR in metazoa are absent in plants. Hence, a fundamental question is how amino acid sensing is achieved in photo-autotrophic organisms. Here we demonstrate that the plant Arabidopsis does not sense the sulfur-containing amino acid cysteine itself, but its biosynthetic precursors. We identify the kinase GCN2 as a sensor of the carbon/nitrogen precursor availability, whereas limitation of the sulfur precursor is transduced to TOR by downregulation of glucose metabolism. The downregulated TOR activity caused decreased translation, lowered meristematic activity, and elevated autophagy. Our results uncover a plant-specific adaptation of TOR function. In concert with GCN2, TOR allows photo-autotrophic eukaryotes to coordinate the fluxes of carbon, nitrogen, and sulfur for efficient cysteine biosynthesis under varying external nutrient supply.

  13. Large-signal, dynamic simulation of the slowpoke-3 nuclear heating reactor

    International Nuclear Information System (INIS)

    Tseng, C.M.; Lepp, R.M.

    1983-07-01

    A 2 MWt nuclear reactor, called SLOWPOKE-3, is being developed at the Chalk River Nuclear Laboratories (CRNL). This reactor, which is cooled by natural circulation, is designed to produce hot water for commercial space heating and perhaps generate some electricity in remote locations where the costs of alternate forms of energy are high. A large-signal, dynamic simulation of this reactor, without closed-loop control, was developed and implemented on a hybrid computer, using the basic equations of conservation of mass, energy and momentum. The natural circulation of downcomer flow in the pool was simulated using a special filter, capable of modelling various flow conditions. The simulation was then used to study the intermediate and long-term transient response of SLOWPOKE-3 to large disturbances, such as loss of heat sink, loss of regulation, daily load following, and overcooling of the reactor coolant. Results of the simulation show that none of these disturbances produce hazardous transients

  14. Fuz regulates craniofacial development through tissue specific responses to signaling factors.

    Directory of Open Access Journals (Sweden)

    Zichao Zhang

    Full Text Available The planar cell polarity effector gene Fuz regulates ciliogenesis and Fuz loss of function studies reveal an array of embryonic phenotypes. However, cilia defects can affect many signaling pathways and, in humans, cilia defects underlie several craniofacial anomalies. To address this, we analyzed the craniofacial phenotype and signaling responses of the Fuz(-/- mice. We demonstrate a unique role for Fuz in regulating both Hedgehog (Hh and Wnt/β-catenin signaling during craniofacial development. Fuz expression first appears in the dorsal tissues and later in ventral tissues and craniofacial regions during embryonic development coincident with cilia development. The Fuz(-/- mice exhibit severe craniofacial deformities including anophthalmia, agenesis of the tongue and incisors, a hypoplastic mandible, cleft palate, ossification/skeletal defects and hyperplastic malformed Meckel's cartilage. Hh signaling is down-regulated in the Fuz null mice, while canonical Wnt signaling is up-regulated revealing the antagonistic relationship of these two pathways. Meckel's cartilage is expanded in the Fuz(-/- mice due to increased cell proliferation associated with the up-regulation of Wnt canonical target genes and decreased non-canonical pathway genes. Interestingly, cilia development was decreased in the mandible mesenchyme of Fuz null mice, suggesting that cilia may antagonize Wnt signaling in this tissue. Furthermore, expression of Fuz decreased expression of Wnt pathway genes as well as a Wnt-dependent reporter. Finally, chromatin IP experiments demonstrate that β-catenin/TCF-binding directly regulates Fuz expression. These data demonstrate a new model for coordination of Hh and Wnt signaling and reveal a Fuz-dependent negative feedback loop controlling Wnt/β-catenin signaling.

  15. The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts

    Directory of Open Access Journals (Sweden)

    Perry Trinity L

    2007-11-01

    Full Text Available Abstract Background Heparan sulfate proteoglycans modulate signaling by a variety of growth factors. The mammalian proteoglycan Perlecan binds and regulates signaling by Sonic Hedgehog, Fibroblast Growth Factors (FGFs, Vascular Endothelial Growth Factor (VEGF and Platelet Derived Growth Factor (PDGF, among others, in contexts ranging from angiogenesis and cardiovascular development to cancer progression. The Drosophila Perlecan homolog trol has been shown to regulate the activity of Hedgehog and Branchless (an FGF homolog to control the onset of stem cell proliferation in the developing brain during first instar. Here we extend analysis of trol mutant phenotypes to show that trol is required for a variety of developmental events and modulates signaling by multiple growth factors in different situations. Results Different mutations in trol allow developmental progression to varying extents, suggesting that trol is involved in multiple cell-fate and patterning decisions. Analysis of the initiation of neuroblast proliferation at second instar demonstrated that trol regulates this event by modulating signaling by Hedgehog and Branchless, as it does during first instar. Trol protein is distributed over the surface of the larval brain, near the regulated neuroblasts that reside on the cortical surface. Mutations in trol also decrease the number of circulating plasmatocytes. This is likely to be due to decreased expression of pointed, the response gene for VEGF/PDGF signaling that is required for plasmatocyte proliferation. Trol is found on plasmatocytes, where it could regulate VEGF/PDGF signaling. Finally, we show that in second instar brains but not third instar brain lobes and eye discs, mutations in trol affect signaling by Decapentaplegic (a Transforming Growth Factor family member, Wingless (a Wnt growth factor and Hedgehog. Conclusion These studies extend the known functions of the Drosophila Perlecan homolog trol in both developmental and

  16. Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis.

    Science.gov (United States)

    Shah, Preeya T; Martin, Rebecca; Yan, Yanling; Shapiro, Joseph I; Liu, Jiang

    2016-01-01

    Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal tubular Na/K-ATPase signaling and decreased transcellular sodium transport leading to increases in urinary sodium excretion. However, once this system is overstimulated, the signaling, and associated changes in sodium excretion are blunted. This review aims to evaluate ROS-mediated carbonylation of the Na/K-ATPase, and its potential role in the regulation of pump signaling and sodium reabsorption in the renal proximal tubule (RPT).

  17. Decoding cell signalling and regulation of oligodendrocyte differentiation.

    Science.gov (United States)

    Santos, A K; Vieira, M S; Vasconcellos, R; Goulart, V A M; Kihara, A H; Resende, R R

    2018-05-22

    Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Negative regulation of Toll-like receptor signalling 

    Directory of Open Access Journals (Sweden)

    Halina Antosz

    2013-04-01

    Full Text Available The mechanism of innate immunity is based on the pattern recognition receptors (PRR that recognize molecular patterns associated with pathogens (PAMPs. Among PRR receptors Toll-like receptors (TLR are distinguished. As a result of contact with pathogens, TLRs activate specific intracellular signaling pathways. It happens through proteins such as adaptor molecules, e.g. MyD88, TIRAP, TRIF, TRAM, and IPS-1, which participate in the cascade activation of kinases (IKK, MAP, RIP-1, TBK-1 as well as transcription factors (NF-κB, AP-1 and regulatory factor (IRF3. The result of this activation is the production of active proinflammatory cytokines, chemokines, interferons and enzymes. The PRR pathways are controlled by extra – and intracellular molecules to prevent overexpression of PRR. They include soluble receptors (sTLR, transmembrane proteins (ST2, SIGIRR, RP105, TRAIL-R and intracellular inhibitors (SOCS-1, SOCS-3, sMyD88, TOLLIP, IRAK-M, SARM, A20, β-arrestin, CYLD, SHP. These molecules maintain the balance between activation and inhibition and ensure balancing of the beneficial and adverse effects of antigen recognition.

  19. Signaling Pathways Regulating Redox Balance in Cancer Metabolism.

    Science.gov (United States)

    De Santis, Maria Chiara; Porporato, Paolo Ettore; Martini, Miriam; Morandi, Andrea

    2018-01-01

    The interplay between rewiring tumor metabolism and oncogenic driver mutations is only beginning to be appreciated. Metabolic deregulation has been described for decades as a bystander effect of genomic aberrations. However, for the biology of malignant cells, metabolic reprogramming is essential to tackle a harsh environment, including nutrient deprivation, reactive oxygen species production, and oxygen withdrawal. Besides the well-investigated glycolytic metabolism, it is emerging that several other metabolic fluxes are relevant for tumorigenesis in supporting redox balance, most notably pentose phosphate pathway, folate, and mitochondrial metabolism. The relationship between metabolic rewiring and mutant genes is still unclear and, therefore, we will discuss how metabolic needs and oncogene mutations influence each other to satisfy cancer cells' demands. Mutations in oncogenes, i.e., PI3K/AKT/mTOR, RAS pathway, and MYC, and tumor suppressors, i.e., p53 and liver kinase B1, result in metabolic flexibility and may influence response to therapy. Since metabolic rewiring is shaped by oncogenic driver mutations, understanding how specific alterations in signaling pathways affect different metabolic fluxes will be instrumental for the development of novel targeted therapies. In the era of personalized medicine, the combination of driver mutations, metabolite levels, and tissue of origins will pave the way to innovative therapeutic interventions.

  20. On a possible mechanism of the brain for responding to dynamical features extracted from input signals

    International Nuclear Information System (INIS)

    Liu Zengrong; Chen Guanrong

    2003-01-01

    Based on the general theory of nonlinear dynamical systems, a possible mechanism for responding to some dynamical features extracted from input signals in brain activities is described and discussed. This mechanism is first converted to a nonlinear dynamical configuration--a generalized synchronization of complex dynamical systems. Then, some general conditions for achieving such synchronizations are derived. It is shown that dynamical systems have potentials of producing different responses for different features extracted from various input signals, which may be used to describe brain activities. For illustration, some numerical examples are given with simulation figures

  1. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhong Xin [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Sun, Cong Cong [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zheng, Jia Yong [Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Zhou, Xuan [Ningbo First Hospital, Ningbo, Zhejiang (China); Cong, Wei Tao [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Xiao Kun, E-mail: proflxk@163.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Jin, Li Tai, E-mail: jin_litai@126.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-06-15

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  2. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    International Nuclear Information System (INIS)

    Zhu, Zhong Xin; Sun, Cong Cong; Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui; Zheng, Jia Yong; Zhou, Xuan; Cong, Wei Tao; Li, Xiao Kun; Jin, Li Tai

    2017-01-01

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  3. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells

    Science.gov (United States)

    McMurray, R. J.; Wann, A. K. T.; Thompson, C. L.; Connelly, J. T.; Knight, M. M.

    2013-01-01

    The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation. PMID:24346024

  4. Dopamine Signaling Regulates Fat Content through β-Oxidation in Caenorhabditis elegans

    Science.gov (United States)

    Barros, Alexandre Guimarães de Almeida; Bridi, Jessika Cristina; de Souza, Bruno Rezende; de Castro Júnior, Célio; de Lima Torres, Karen Cecília; Malard, Leandro; Jorio, Ado; de Miranda, Débora Marques; Ashrafi, Kaveh; Romano-Silva, Marco Aurélio

    2014-01-01

    The regulation of energy balance involves an intricate interplay between neural mechanisms that respond to internal and external cues of energy demand and food availability. Compelling data have implicated the neurotransmitter dopamine as an important part of body weight regulation. However, the precise mechanisms through which dopamine regulates energy homeostasis remain poorly understood. Here, we investigate mechanisms through which dopamine modulates energy storage. We showed that dopamine signaling regulates fat reservoirs in Caenorhabditis elegans. We found that the fat reducing effects of dopamine were dependent on dopaminergic receptors and a set of fat oxidation enzymes. Our findings reveal an ancient role for dopaminergic regulation of fat and suggest that dopamine signaling elicits this outcome through cascades that ultimately mobilize peripheral fat depots. PMID:24465759

  5. DMPD: TLR signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 2007 Feb 1. (.png) (.svg) (.html) (.csml) Show TLR signaling. PubmedID 17275323 Title TLR signaling. Author...s Kawai T, Akira S. Publication Semin Immunol. 2007 Feb;19(1):24-32. Epub 2007 Feb 1. Pathway - PNG File (.png) SVG File (.svg) HTML... File (.html) CSML File (.csml) Open .csml file with CIOP

  6. Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B.

    Science.gov (United States)

    Tchankouo-Nguetcheu, Stéphane; Udinotti, Mario; Durand, Marjorie; Meng, Tzu-Ching; Taouis, Mohammed; Rabinow, Leonard

    2014-10-01

    PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.

  7. Nutritive, Post-ingestive Signals Are the Primary Regulators of AgRP Neuron Activity

    Directory of Open Access Journals (Sweden)

    Zhenwei Su

    2017-12-01

    Full Text Available Summary: The brain regulates food intake by processing sensory cues and peripheral physiological signals, but the neural basis of this integration remains unclear. Hypothalamic, agouti-related protein (AgRP-expressing neurons are critical regulators of food intake. AgRP neuron activity is high during hunger and is rapidly reduced by the sight and smell of food. Here, we reveal two distinct components of AgRP neuron activity regulation: a rapid but transient sensory-driven signal and a slower, sustained calorie-dependent signal. We discovered that nutrients are necessary and sufficient for sustained reductions in AgRP neuron activity and that activity reductions are proportional to the calories obtained. This change in activity is recapitulated by exogenous administration of gut-derived satiation signals. Furthermore, we showed that the nutritive value of food trains sensory systems—in a single trial—to drive rapid, anticipatory AgRP neuron activity inhibition. Together, these data demonstrate that nutrients are the primary regulators of AgRP neuron activity. : Su et al. demonstrate that nutrient content in the GI tract is rapidly signaled to hypothalamic neurons activated by hunger. This rapid effect is mediated by three satiation signals that synergistically reduce the activity of AgRP neurons. These findings uncover how hunger circuits in the brain are regulated and raise the possibility that hunger can be pharmacologically controlled. Keywords: calcium imaging, AgRP neurons, calories, satiation signals, sensory regulation, single trial learning, cholecystokinin, CCK, peptide tyrosine tyrosine, PYY, amylin, homeostasis

  8. Membrane tension regulates clathrin-coated pit dynamics

    Science.gov (United States)

    Liu, Allen

    2014-03-01

    Intracellular organization depends on close communication between the extracellular environment and a network of cytoskeleton filaments. The interactions between cytoskeletal filaments and the plasma membrane lead to changes in membrane tension that in turns help regulate biological processes. Endocytosis is thought to be stimulated by low membrane tension and the removal of membrane increases membrane tension. While it is appreciated that the opposing effects of exocytosis and endocytosis have on keeping plasma membrane tension to a set point, it is not clear how membrane tension affects the dynamics of clathrin-coated pits (CCPs), the individual functional units of clathrin-mediated endocytosis. Furthermore, although it was recently shown that actin dynamics counteracts membrane tension during CCP formation, it is not clear what roles plasma membrane tension plays during CCP initiation. Based on the notion that plasma membrane tension is increased when the membrane area increases during cell spreading, we designed micro-patterned surfaces of different sizes to control the cell spreading sizes. Total internal reflection fluorescence microscopy of living cells and high content image analysis were used to quantify the dynamics of CCPs. We found that there is an increased proportion of CCPs with short (<20s) lifetime for cells on larger patterns. Interestingly, cells on larger patterns have higher CCP initiation density, an effect unexpected based on the conventional view of decreasing endocytosis with increasing membrane tension. Furthermore, by analyzing the intensity profiles of CCPs that were longer-lived, we found CCP intensity decreases with increasing cell size, indicating that the CCPs are smaller with increasing membrane tension. Finally, disruption of actin dynamics significantly increased the number of short-lived CCPs, but also decreased CCP initiation rate. Together, our study reveals new mechanistic insights into how plasma membrane tension regulates

  9. Endothelin-1 Regulation of Exercise-Induced Changes in Flow: Dynamic Regulation of Vascular Tone

    Directory of Open Access Journals (Sweden)

    Robert M. Rapoport

    2017-10-01

    Full Text Available Although endothelin (ET-1 is a highly potent vasoconstrictor with considerable efficacy in numerous vascular beds, the role of endogenous ET-1 in the regulation of vascular tone remains unclear. The perspective that ET-1 plays little role in the on-going regulation of vascular tone at least under physiologic conditions is supported by findings that potential ET-1 constriction is minimized by the release of the vasodilator and ET-1 synthesis inhibitor, nitric oxide (NO. Indeed, ET-1 release and constriction is self-limited by ET-1-induced, endothelial ETB receptor-mediated release of NO. Moreover, even if the balance between ET-1 and NO were reversed as the result of lowered NO activity, as occurs in a number of pathophysiologies associated with endothelial dysfunction, the well-known resistance of ET-1 constriction to reversal (as determined with exogenous ET-1 precludes ET-1 in the dynamic, i.e., moment-to-moment, regulation of vascular tone. On the other hand, and as presently reviewed, findings of ET-1-dependent modulation of organ blood flow with exercise under physiologic conditions demonstrate the dynamic regulation of vascular tone by ET-1. We speculate that this regulation is mediated at least in part through changes in ET-1 synthesis/release caused by pulsatile flow-induced shear stress and NO.

  10. Regulator of G protein signaling 5 (RGS5) inhibits sonic hedgehog function in mouse cortical neurons.

    Science.gov (United States)

    Liu, Chuanliang; Hu, Qiongqiong; Jing, Jia; Zhang, Yun; Jin, Jing; Zhang, Liulei; Mu, Lili; Liu, Yumei; Sun, Bo; Zhang, Tongshuai; Kong, Qingfei; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Liu, Xijun; Zhao, Wei; Wang, Jinghua; Feng, Tao; Li, Hulun

    2017-09-01

    Regulator of G protein signaling 5 (RGS5) acts as a GTPase-activating protein (GAP) for the Gαi subunit and negatively regulates G protein-coupled receptor signaling. However, its presence and function in postmitotic differentiated primary neurons remains largely uncharacterized. During neural development, sonic hedgehog (Shh) signaling is involved in cell signaling pathways via Gαi activity. In particular, Shh signaling is essential for embryonic neural tube patterning, which has been implicated in neuronal polarization involving neurite outgrowth. Here, we examined whether RGS5 regulates Shh signaling in neurons. RGS5 transcripts were found to be expressed in cortical neurons and their expression gradually declined in a time-dependent manner in culture system. When an adenovirus expressing RGS5 was introduced into an in vitro cell culture model of cortical neurons, RGS5 overexpression significantly reduced neurite outgrowth and FM4-64 uptake, while cAMP-PKA signaling was also affected. These findings suggest that RGS5 inhibits Shh function during neurite outgrowth and the presynaptic terminals of primary cortical neurons mature via modulation of cAMP. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Coordinated Regulation of Insulin Signaling by the Protein Tyrosine Phosphatases PTP1B and TCPTP

    Science.gov (United States)

    Galic, Sandra; Hauser, Christine; Kahn, Barbara B.; Haj, Fawaz G.; Neel, Benjamin G.; Tonks, Nicholas K.; Tiganis, Tony

    2005-01-01

    The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell. PMID:15632081

  12. Dynamics of BMP signaling in limb bud mesenchyme and polydactyly.

    Science.gov (United States)

    Norrie, Jacqueline L; Lewandowski, Jordan P; Bouldin, Cortney M; Amarnath, Smita; Li, Qiang; Vokes, Martha S; Ehrlich, Lauren I R; Harfe, Brian D; Vokes, Steven A

    2014-09-15

    Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Neuronal Regulation of Schwann Cell Mitochondrial Ca2+ Signaling during Myelination

    Directory of Open Access Journals (Sweden)

    Daisuke Ino

    2015-09-01

    Full Text Available Schwann cells (SCs myelinate peripheral neurons to promote the rapid conduction of action potentials, and the process of myelination is known to be regulated by signals from axons to SCs. Given that SC mitochondria are one of the potential regulators of myelination, we investigated whether SC mitochondria are regulated by axonal signaling. Here, we show a purinergic mechanism that sends information from neurons to SC mitochondria during myelination. Our results show that electrical stimulation of rat sciatic nerve increases extracellular ATP levels enough to activate purinergic receptors. Indeed, electrical stimulation of sciatic nerves induces Ca2+ increases in the cytosol and the mitochondrial matrix of surrounding SCs via purinergic receptor activation. Chronic suppression of this pathway during active myelination suppressed the longitudinal and radial development of myelinating SCs and caused hypomyelination. These results demonstrate a neuron-to-SC mitochondria signaling, which is likely to have an important role in proper myelination.

  14. Validation of the dynamics of SDS and RRS flux, flow, pressure and temperature signals using noise analysis technique

    International Nuclear Information System (INIS)

    Glockler, O.; Cooke, D.F.; Tulett, M.V.

    1995-01-01

    In 1992, a program was initiated to establish reactor noise analysis as a practical tool for plant performance monitoring and system diagnostics in Ontario Hydro's CANDU reactors. Since then, various CANDU-specific noise analysis applications have been developed and validated. The noise-based statistical techniques are being successfully applied as powerful troubleshooting and diagnostic tools to a wide variety of actual operational I and C problems. Critical plant components, instrumentation and processes are monitored on a regular basis, and their dynamic characteristics are verified on-power. Recent applications of noise analysis include (1) validating the dynamics of in-core flux detectors (ICFDS) and ion chambers, (2) estimating the prompt fraction ICFDs in noise measurements at full power and in power rundown tests, (3) identifying the cause of excessive signal fluctuations in certain flux detectors, (4) validating the dynamic coupling between liquid zone control signals, (5) detecting and monitoring mechanical vibrations of detector tubes, reactivity devices and fuel channels induced by moderator/coolant flow, (6) estimating the dynamics and response time of RTD temperature signals, (7) isolating the cause of RTD signal anomalies, (8) investigating the source of abnormal flow signal behaviour, (9) estimating the overall response time of flow and pressure signals, (1 0) detecting coolant boiling in fully instrumented fuel channels, (1 1) monitoring moderator circulation via temperature noise, and (12) predicting the performance of shut-off rods. Some of these applications are performed on an as needed basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the regulator (Atomic Energy Control Board of Canada) with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the

  15. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems.

    Science.gov (United States)

    Yeatts, Andrew B; Choquette, Daniel T; Fisher, John P

    2013-02-01

    Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro. This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems. The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased. Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Evidence for dynamic network regulation of Drosophila photoreceptor function from mutants lacking the neurotransmitter histamine

    Directory of Open Access Journals (Sweden)

    An eDau

    2016-03-01

    Full Text Available Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdcJK910 mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdcJK910 photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdcJK910 photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdcJK910 R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdcJK910 mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.

  17. Diverse Regulation of Temperature Sensation by Trimeric G-Protein Signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Tomoyo Ujisawa

    Full Text Available Temperature sensation by the nervous system is essential for life and proliferation of animals. The molecular-physiological mechanisms underlying temperature signaling have not been fully elucidated. We show here that diverse regulatory machinery underlies temperature sensation through trimeric G-protein signaling in the nematode Caenorhabditis elegans. Molecular-genetic studies demonstrated that cold tolerance is regulated by additive functions of three Gα proteins in a temperature-sensing neuron, ASJ, which is also known to be a light-sensing neuron. Optical recording of calcium concentration in ASJ upon temperature-changes demonstrated that three Gα proteins act in different aspects of temperature signaling. Calcium concentration changes in ASJ upon temperature change were unexpectedly decreased in a mutant defective in phosphodiesterase, which is well known as a negative regulator of calcium increase. Together, these data demonstrate commonalities and differences in the molecular components concerned with light and temperature signaling in a single sensory neuron.

  18. Diverse Regulation of Temperature Sensation by Trimeric G-Protein Signaling in Caenorhabditis elegans

    Science.gov (United States)

    Ujisawa, Tomoyo; Ohta, Akane; Uda-Yagi, Misato

    2016-01-01

    Temperature sensation by the nervous system is essential for life and proliferation of animals. The molecular-physiological mechanisms underlying temperature signaling have not been fully elucidated. We show here that diverse regulatory machinery underlies temperature sensation through trimeric G-protein signaling in the nematode Caenorhabditis elegans. Molecular-genetic studies demonstrated that cold tolerance is regulated by additive functions of three Gα proteins in a temperature-sensing neuron, ASJ, which is also known to be a light-sensing neuron. Optical recording of calcium concentration in ASJ upon temperature-changes demonstrated that three Gα proteins act in different aspects of temperature signaling. Calcium concentration changes in ASJ upon temperature change were unexpectedly decreased in a mutant defective in phosphodiesterase, which is well known as a negative regulator of calcium increase. Together, these data demonstrate commonalities and differences in the molecular components concerned with light and temperature signaling in a single sensory neuron. PMID:27788246

  19. Cross-regulation of cytokine signalling: pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation.

    Science.gov (United States)

    Radtke, Simone; Wüller, Stefan; Yang, Xiang-ping; Lippok, Barbara E; Mütze, Barbara; Mais, Christine; de Leur, Hildegard Schmitz-Van; Bode, Johannes G; Gaestel, Matthias; Heinrich, Peter C; Behrmann, Iris; Schaper, Fred; Hermanns, Heike M

    2010-03-15

    The inflammatory response involves a complex interplay of different cytokines which act in an auto- or paracrine manner to induce the so-called acute phase response. Cytokines are known to crosstalk on multiple levels, for instance by regulating the mRNA stability of targeted cytokines through activation of the p38-MAPK pathway. In our study we discovered a new mechanism that answers the long-standing question how pro-inflammatory cytokines and environmental stress restrict immediate signalling of interleukin (IL)-6-type cytokines. We show that p38, activated by IL-1beta, TNFalpha or environmental stress, impairs IL-6-induced JAK/STAT signalling through phosphorylation of the common cytokine receptor subunit gp130 and its subsequent internalisation and degradation. We identify MK2 as the kinase that phosphorylates serine 782 in the cytoplasmic part of gp130. Consequently, inhibition of p38 or MK2, deletion of MK2 or mutation of crucial amino acids within the MK2 target site or the di-leucine internalisation motif blocks receptor depletion and restores IL-6-dependent STAT activation as well as gene induction. Hence, a novel negative crosstalk mechanism for cytokine signalling is described, where cytokine receptor turnover is regulated in trans by pro-inflammatory cytokines and stress stimuli to coordinate the inflammatory response.

  20. Dynamics Analysis for Hydroturbine Regulating System Based on Matrix Model

    Directory of Open Access Journals (Sweden)

    Jiafu Wei

    2017-01-01

    Full Text Available The hydraulic turbine model is the key factor which affects the analysis precision of the hydraulic turbine governing system. This paper discusses the basic principle of the hydraulic turbine matrix model and gives two methods to realize. Using the characteristic matrix to describe unit flow and torque and their relationship with the opening and unit speed, it can accurately represent the nonlinear characteristics of the turbine, effectively improve the convergence of simulation process, and meet the needs of high precision real-time simulation of power system. Through the simulation of a number of power stations, it indicates that, by analyzing the dynamic process of the hydraulic turbine regulating with 5-order matrix model, the calculation results and field test data will have good consistency, and it can better meet the needs of power system dynamic simulation.

  1. The dynamic regulation of NAD metabolism in mitochondria

    Science.gov (United States)

    Stein, Liana Roberts; Imai, Shin-ichiro

    2012-01-01

    Mitochondria are intracellular powerhouses that produce ATP and carry out diverse functions for cellular energy metabolism. While the maintenance of an optimal NAD/NADH ratio is essential for mitochondrial function, it has recently become apparent that the maintenance of the mitochondrial NAD pool also has critical importance. The biosynthesis, transport, and catabolism of NAD and its key intermediates play an important role in the regulation of NAD-consuming mediators, such as sirtuins, poly-ADP-ribose polymerases, and CD38/157 ectoenzymes, in intra- and extracellular compartments. Mitochondrial NAD biosynthesis is also modulated in response to nutritional and environmental stimuli. In this article, we discuss this dynamic regulation of NAD metabolism in mitochondria to shed light on the intimate connection between NAD and mitochondrial function. PMID:22819213

  2. Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling

    Science.gov (United States)

    Serafimidis, Ioannis; Rodriguez-Aznar, Eva; Lesche, Mathias; Yoshioka, Kazuaki; Takuwa, Yoh; Dahl, Andreas; Pan, Duojia; Gavalas, Anthony

    2017-01-01

    During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches. PMID:28248965

  3. Regulation of leptin and insulin signaling by the t cell protein tyrosine phosphatase

    OpenAIRE

    Loh, Kim Yong

    2017-01-01

    The prevalence of obesity and diabetes are increasing at alarming rates. Both are major health concerns worldwide. Food intake, energy expenditure and hepatic glucose production are regulated by hypothalamic neuronal circuits that respond to peripheral signals including leptin and insulin. Leptin is produced by adipose tissue and acts in the hypothalamus via the JAK2/STAT3 signaling pathway to decrease food intake and increase energy expenditure. It is now also widely appreciated that insulin...

  4. Environmental regulation and the export dynamics of energy technologies

    International Nuclear Information System (INIS)

    Costantini, Valeria; Crespi, Francesco

    2008-01-01

    The pollution haven hypothesis affirms that an open market regime will encourage the flow of low-technology polluting industries towards developing countries because of potential comparative advantages related to low environmental standards. In contrast, the hypothesis suggested by Porter and van der Linde claims that innovating firms operate in a dynamic competitive situation which allows global diffusion of environmental-friendly technologies. Environmental regulation may represent a relevant mechanism through which technological change is induced. In this way, countries that are subject to more stringent environmental regulations may become net exporters of environmental technologies. This paper provides new evidence on the evolution of export flows of environmental technologies across different countries for the energy sector. Advanced economies, particularly the European Union, have increasingly focused on the role of energy policies as tools for sustaining the development path. The Kyoto Protocol commitments, together with growing import dependence on energy products, have brought attention to the analysis of innovation processes in this specific sector. The analysis uses a gravity model in order to test the determinants and the transmission channels through which environmental technologies for renewable energies and energy efficiency are exported to advanced and developing countries. Our results are consistent with the Porter and van der Linde hypothesis where environmental regulation represents a significant source of comparative advantages. What strongly emerges is that the stringency of environmental regulation supplemented by the strength of the National Innovation System is a crucial driver of export performance in the field of energy technologies. (author)

  5. Rapidly exploring structural and dynamic properties of signaling networks using PathwayOracle

    Directory of Open Access Journals (Sweden)

    Ram Prahlad T

    2008-08-01

    Full Text Available Abstract Background In systems biology the experimentalist is presented with a selection of software for analyzing dynamic properties of signaling networks. These tools either assume that the network is in steady-state or require highly parameterized models of the network of interest. For biologists interested in assessing how signal propagates through a network under specific conditions, the first class of methods does not provide sufficiently detailed results and the second class requires models which may not be easily and accurately constructed. A tool that is able to characterize the dynamics of a signaling network using an unparameterized model of the network would allow biologists to quickly obtain insights into a signaling network's behavior. Results We introduce PathwayOracle, an integrated suite of software tools for computationally inferring and analyzing structural and dynamic properties of a signaling network. The feature which differentiates PathwayOracle from other tools is a method that can predict the response of a signaling network to various experimental conditions and stimuli using only the connectivity of the signaling network. Thus signaling models are relatively easy to build. The method allows for tracking signal flow in a network and comparison of signal flows under different experimental conditions. In addition, PathwayOracle includes tools for the enumeration and visualization of coherent and incoherent signaling paths between proteins, and for experimental analysis – loading and superimposing experimental data, such as microarray intensities, on the network model. Conclusion PathwayOracle provides an integrated environment in which both structural and dynamic analysis of a signaling network can be quickly conducted and visualized along side experimental results. By using the signaling network connectivity, analyses and predictions can be performed quickly using relatively easily constructed signaling network models

  6. The histone deacetylase HDAC1 positively regulates Notch signaling during Drosophila wing development

    Directory of Open Access Journals (Sweden)

    Zehua Wang

    2018-02-01

    Full Text Available The Notch signaling pathway is highly conserved across different animal species and plays crucial roles in development and physiology. Regulation of Notch signaling occurs at multiple levels in different tissues and cell types. Here, we show that the histone deacetylase HDAC1 acts as a positive regulator of Notch signaling during Drosophila wing development. Depletion of HDAC1 causes wing notches on the margin of adult wing. Consistently, the expression of Notch target genes is reduced in the absence of HDAC1 during wing margin formation. We further provide evidence that HDAC1 acts upstream of Notch activation. Mechanistically, we show that HDAC1 regulates Notch protein levels by promoting Notch transcription. Consistent with this, the HDAC1-associated transcriptional co-repressor Atrophin (Atro is also required for transcriptional activation of Notch in the wing disc. In summary, our results demonstrate that HDAC1 positively regulates Notch signaling and reveal a previously unidentified function of HDAC1 in Notch signaling.

  7. Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells.

    Directory of Open Access Journals (Sweden)

    Yukina Kawada

    Full Text Available Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic β cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic β cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2 expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic β cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes.

  8. In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Hedgehog (Hh signaling is highly conserved in all metazoan animals and plays critical roles in many developmental processes. Dysregulation of the Hh signaling cascade has been implicated in many diseases, including cancer. Although key components of the Hh pathway have been identified, significant gaps remain in our understanding of the regulation of individual Hh signaling molecules. Here, we report the identification of novel regulators of the Hh pathway, obtained from an in vivo RNA interference (RNAi screen in Drosophila. By selectively targeting critical genes functioning in post-translational modification systems utilizing ubiquitin (Ub and Ub-like proteins, we identify two novel genes (dUba3 and dUbc12 that negatively regulate Hh signaling activity. We provide in vivo and in vitro evidence illustrating that dUba3 and dUbc12 are essential components of the neddylation pathway; they function in an enzyme cascade to conjugate the ubiquitin-like NEDD8 modifier to Cullin proteins. Neddylation activates the Cullin-containing ubiquitin ligase complex, which in turn promotes the degradation of Cubitus interruptus (Ci, the downstream transcription factor of the Hh pathway. Our study reveals a conserved molecular mechanism of the neddylation pathway in Drosophila and sheds light on the complex post-translational regulations in Hh signaling.

  9. Regulation of traffic and organelle architecture of the ER-Golgi interface by signal transduction.

    Science.gov (United States)

    Tillmann, Kerstin D; Millarte, Valentina; Farhan, Hesso

    2013-09-01

    The components that control trafficking between organelles of the secretory pathway as well as their architecture were uncovered to a reasonable extent in the past decades. However, only recently did we begin to explore the regulation of the secretory pathway by cellular signaling. In the current review, we focus on trafficking between the endoplasmic reticulum and the Golgi apparatus. We highlight recent advances that have been made toward a better understanding of how the secretory pathway is regulated by signaling and discuss how this knowledge is important to obtain an integrative view of secretion in the context of other homeostatic processes such as growth and proliferation.

  10. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  11. CD147 regulates extrinsic apoptosis in spermatocytes by modulating NFκB signaling pathways.

    Science.gov (United States)

    Wang, Chaoqun; Fok, Kin Lam; Cai, Zhiming; Chen, Hao; Chan, Hsiao Chang

    2017-01-10

    CD147 null mutant male mice are infertile with arrested spermatogenesis and increased apoptotic germ cells. Our previous studies have shown that CD147 prevents apoptosis in mouse spermatocytes but not spermatogonia. However, the underlying mechanism remains elusive. In the present study, we aim to determine the CD147-regulated apoptotic pathway in mouse spermatocytes. Our results showed that immunodepletion of CD147 triggered apoptosis through extrinsic apoptotic pathway in mouse testis and spermatocyte cell line (GC-2 cells), accompanied by activation of non-canonical NFκB signaling and suppression of canonical NFκB signaling. Furthermore, CD147 was found to interact with TRAF2, a factor known to regulate NFκB and extrinsic apoptotic signaling, and interfering CD147 led to the decrease of TRAF2. Consistently, depletion of CD147 by CRISPR/Cas9 technique in GC-2 cells down-regulated TRAF2 and resulted in cell death with suppressed canonical NFκB and activated non-canonical NFκB signaling. On the contrary, interfering of CD147 had no effect on NFκB signaling pathways as well as TRAF2 protein level in mouse spermatogonia cell line (GC-1 cells). Taken together, these results suggested that CD147 plays a key role in reducing extrinsic apoptosis in spermatocytes, but not spermatogonia, through modulating NFκB signaling pathway.

  12. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  13. Specification of Drosophila corpora cardiaca neuroendocrine cells from mesoderm is regulated by Notch signaling.

    Directory of Open Access Journals (Sweden)

    Sangbin Park

    2011-08-01

    Full Text Available Drosophila neuroendocrine cells comprising the corpora cardiaca (CC are essential for systemic glucose regulation and represent functional orthologues of vertebrate pancreatic α-cells. Although Drosophila CC cells have been regarded as developmental orthologues of pituitary gland, the genetic regulation of CC development is poorly understood. From a genetic screen, we identified multiple novel regulators of CC development, including Notch signaling factors. Our studies demonstrate that the disruption of Notch signaling can lead to the expansion of CC cells. Live imaging demonstrates localized emergence of extra precursor cells as the basis of CC expansion in Notch mutants. Contrary to a recent report, we unexpectedly found that CC cells originate from head mesoderm. We show that Tinman expression in head mesoderm is regulated by Notch signaling and that the combination of Daughterless and Tinman is sufficient for ectopic CC specification in mesoderm. Understanding the cellular, genetic, signaling, and transcriptional basis of CC cell specification and expansion should accelerate discovery of molecular mechanisms regulating ontogeny of organs that control metabolism.

  14. Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals.

    Science.gov (United States)

    Weisman, Ronit

    2016-10-01

    All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.

  15. Antipersistent dynamics in short time scale variability of self-potential signals

    Directory of Open Access Journals (Sweden)

    M. Ragosta

    2000-06-01

    Full Text Available Time scale properties of self-potential signals are investigated through the analysis of the second order structure function (variogram, a powerful tool to investigate the spatial and temporal variability of observational data. In this work we analyse two sequences of self-potential values measured by means of a geophysical monitoring array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few minutes to several days. It is shown that signal fluctuations are characterised by two time scale ranges in which self-potential variability appears to follow slightly different dynamical behaviours. Results point to the presence of fractal, non stationary features expressing a long term correlation with scaling coefficients which are the clue of stabilising mechanisms. In the scale ranges in which the series show scale invariant behaviour, self-potentials evolve like fractional Brownian motions with anticorrelated increments typical of processes regulated by negative feedback mechanisms (antipersistence. On scales below about 6 h the strength of such an antipersistence appears to be slightly greater than that observed on larger time scales where the fluctuations are less efficiently stabilised.

  16. An mDia2/ROCK signaling axis regulates invasive egress from epithelial ovarian cancer spheroids.

    Science.gov (United States)

    Pettee, Krista M; Dvorak, Kaitlyn M; Nestor-Kalinoski, Andrea L; Eisenmann, Kathryn M

    2014-01-01

    Multi-cellular spheroids are enriched in ascites of epithelial ovarian cancer (OvCa) patients. They represent an invasive and chemoresistant cellular population fundamental to metastatic dissemination. The molecular mechanisms triggering single cell invasive egress from spheroids remain enigmatic. mDia formins are Rho GTPase effectors that are key regulators of F-actin cytoskeletal dynamics. We hypothesized that mDia2-driven F-actin dynamics promote single cell invasive transitions in clinically relevant three-dimensional (3D) OvCa spheroids. The current study is a dissection of the contribution of the F-actin assembly factor mDia2 formin in invasive transitions and using a clinically relevant ovarian cancer spheroid model. We show that RhoA-directed mDia2 activity is required for tight spheroid organization, and enrichment of mDia2 in the invasive cellular protrusions of collagen-embedded OVCA429 spheroids. Depleting mDia2 in ES-2 spheroids enhanced invasive dissemination of single amoeboid-shaped cells. This contrasts with spheroids treated with control siRNA, where a mesenchymal invasion program predominated. Inhibition of another RhoA effector, ROCK, had no impact on ES-2 spheroid formation but dramatically inhibited spheroid invasion through induction of a highly elongated morphology. Concurrent inhibition of ROCK and mDia2 blocked single cell invasion from ES-2 spheroids more effectively than inhibition of either protein alone, indicating that invasive egress of amoeboid cells from mDia2-depleted spheroids is ROCK-dependent. Our findings indicate that multiple GTPase effectors must be suppressed in order to fully block invasive egress from ovarian cancer spheroids. Furthermore, tightly regulated interplay between ROCK and mDia2 signaling pathways dictates the invasive capacities and the type of invasion program utilized by motile spheroid-derived ovarian cancer cells. As loss of the gene encoding mDia2, DRF3, has been linked to cancer progression and

  17. An mDia2/ROCK signaling axis regulates invasive egress from epithelial ovarian cancer spheroids.

    Directory of Open Access Journals (Sweden)

    Krista M Pettee

    Full Text Available Multi-cellular spheroids are enriched in ascites of epithelial ovarian cancer (OvCa patients. They represent an invasive and chemoresistant cellular population fundamental to metastatic dissemination. The molecular mechanisms triggering single cell invasive egress from spheroids remain enigmatic. mDia formins are Rho GTPase effectors that are key regulators of F-actin cytoskeletal dynamics. We hypothesized that mDia2-driven F-actin dynamics promote single cell invasive transitions in clinically relevant three-dimensional (3D OvCa spheroids. The current study is a dissection of the contribution of the F-actin assembly factor mDia2 formin in invasive transitions and using a clinically relevant ovarian cancer spheroid model. We show that RhoA-directed mDia2 activity is required for tight spheroid organization, and enrichment of mDia2 in the invasive cellular protrusions of collagen-embedded OVCA429 spheroids. Depleting mDia2 in ES-2 spheroids enhanced invasive dissemination of single amoeboid-shaped cells. This contrasts with spheroids treated with control siRNA, where a mesenchymal invasion program predominated. Inhibition of another RhoA effector, ROCK, had no impact on ES-2 spheroid formation but dramatically inhibited spheroid invasion through induction of a highly elongated morphology. Concurrent inhibition of ROCK and mDia2 blocked single cell invasion from ES-2 spheroids more effectively than inhibition of either protein alone, indicating that invasive egress of amoeboid cells from mDia2-depleted spheroids is ROCK-dependent. Our findings indicate that multiple GTPase effectors must be suppressed in order to fully block invasive egress from ovarian cancer spheroids. Furthermore, tightly regulated interplay between ROCK and mDia2 signaling pathways dictates the invasive capacities and the type of invasion program utilized by motile spheroid-derived ovarian cancer cells. As loss of the gene encoding mDia2, DRF3, has been linked to cancer

  18. Fast Responding Voltage Regulator and Dynamic VAR Compensator

    Energy Technology Data Exchange (ETDEWEB)

    Divan, Deepak [Varentec, Incorporated, San Jose, CA (United States); Moghe, Rohit [Varentec, Incorporated, San Jose, CA (United States); Tholomier, Damien [Varentec, Incorporated, San Jose, CA (United States)

    2014-12-31

    The objectives of this project were to develop a dynamic VAR compensator (DVC) for voltage regulation through VAR support to demonstrate the ability to achieve greater levels of voltage control on electricity distribution networks, and faster response compared to existing grid technology. The goal of the project was to develop a prototype Fast Dynamic VAR Compensator (Fast DVC) hardware device, and this was achieved. In addition to developing the dynamic VAR compensator device, Varentec in partnership with researchers at North Carolina State University (NCSU) successfully met the objectives to model the potential positive impact of such DVCs on representative power networks. This modeling activity validated the ability of distributed dynamic VAR compensators to provide fast voltage regulation and reactive power control required to respond to grid disturbances under high penetration of fluctuating and intermittent distributed energy resources (DERs) through extensive simulation studies. Specifically the following tasks were set to be accomplished: 1) Development of dynamic VAR compensator to support dynamic voltage variations on the grid through VAR control 2) Extensive testing of the DVC in the lab environment 3) Present the operational DVC device to the DOE at Varentec’s lab 4) Formulation of a detailed specification sheet, unit assembly document, test setup document, unit bring-up plan, and test plan 5) Extensive simulations of the DVC in a system with high PV penetration. Understanding the operation with many DVC on a single distribution system 6) Creation and submittal of quarterly and final reports conveying the design documents, unit performance data, modeling simulation charts and diagrams, and summary explanations of the satisfaction of program goals. This report details the various efforts that led to the development of the Fast DVC as well as the modeling & simulation results. The report begins with the introduction in Section II which outlines the

  19. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    Science.gov (United States)

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  20. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice[OPEN

    Science.gov (United States)

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-01-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. PMID:26002868

  1. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice.

    Science.gov (United States)

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-06-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. © 2015 American Society of Plant Biologists. All rights reserved.

  2. Lvr, a Signaling System That Controls Global Gene Regulation and Virulence in Pathogenic Leptospira

    Science.gov (United States)

    Adhikarla, Haritha; Wunder, Elsio A.; Mechaly, Ariel E.; Mehta, Sameet; Wang, Zheng; Santos, Luciane; Bisht, Vimla; Diggle, Peter; Murray, Gerald; Adler, Ben; Lopez, Francesc; Townsend, Jeffrey P.; Groisman, Eduardo; Picardeau, Mathieu; Buschiazzo, Alejandro; Ko, Albert I.

    2018-01-01

    Leptospirosis is an emerging zoonotic disease with more than 1 million cases annually. Currently there is lack of evidence for signaling pathways involved during the infection process of Leptospira. In our comprehensive genomic analysis of 20 Leptospira spp. we identified seven pathogen-specific Two-Component System (TCS) proteins. Disruption of two these TCS genes in pathogenic Leptospira strain resulted in loss-of-virulence in a hamster model of leptospirosis. Corresponding genes lvrA and lvrB (leptospira virulence regulator) are juxtaposed in an operon and are predicted to encode a hybrid histidine kinase and a hybrid response regulator, respectively. Transcriptome analysis of lvr mutant strains with disruption of one (lvrB) or both genes (lvrA/B) revealed global transcriptional regulation of 850 differentially expressed genes. Phosphotransfer assays demonstrated that LvrA phosphorylates LvrB and predicted further signaling downstream to one or more DNA-binding response regulators, suggesting that it is a branched pathway. Phylogenetic analyses indicated that lvrA and lvrB evolved independently within different ecological lineages in Leptospira via gene duplication. This study uncovers a novel-signaling pathway that regulates virulence in pathogenic Leptospira (Lvr), providing a framework to understand the molecular bases of regulation in this life-threatening bacterium. PMID:29600195

  3. Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Hua Bai

    2013-11-01

    Full Text Available Reduced insulin/IGF signaling increases lifespan in many animals. To understand how insulin/IGF mediates lifespan in Drosophila, we performed chromatin immunoprecipitation-sequencing analysis with the insulin/IGF regulated transcription factor dFOXO in long-lived insulin/IGF signaling genotypes. Dawdle, an Activin ligand, is bound and repressed by dFOXO when reduced insulin/IGF extends lifespan. Reduced Activin signaling improves performance and protein homeostasis in muscles of aged flies. Activin signaling through the Smad binding element inhibits the transcription of Autophagy-specific gene 8a (Atg8a within muscle, a factor controlling the rate of autophagy. Expression of Atg8a within muscle is sufficient to increase lifespan. These data reveal how insulin signaling can regulate aging through control of Activin signaling that in turn controls autophagy, representing a potentially conserved molecular basis for longevity assurance. While reduced Activin within muscle autonomously retards functional aging of this tissue, these effects in muscle also reduce secretion of insulin-like peptides at a distance from the brain. Reduced insulin secretion from the brain may subsequently reinforce longevity assurance through decreased systemic insulin/IGF signaling.

  4. Insulin signaling in Caenorhabditis elegans regulates both endocrine-like and cell-autonomous outputs.

    Science.gov (United States)

    Iser, Wendy B; Gami, Minaxi S; Wolkow, Catherine A

    2007-03-15

    In C. elegans, insulin signaling affects development, lifespan and stress resistance. Several studies have shown that insulin signaling affects lifespan in an endocrine-like manner from different cells, while the major downstream target of insulin, the FOXO transcription factor encoded by daf-16, may act preferentially in intestinal cells to prolong lifespan. This discrepancy raised the possibility that insulin may have both endocrine and cell-intrinsic outputs. Here, we further investigated the types of cells capable of producing endocrine outputs of insulin and also identified a new cell-intrinsic insulin output. We found that insulin signaling within groups of neurons promoted wildtype lifespan, showing that the endocrine outputs of insulin were not restricted to specific cells. In contrast, DAF-16 appeared to have a greater effect on lifespan when expressed in a combination of tissues. These results suggest that insulin signaling may regulate DAF-16 through cell-intrinsic and endocrine pathways. We also found that an insulin-dependent response to fasting in intestinal cells was preferentially regulated by intestinal insulin signaling and was less responsive to insulin signaling from non-intestinal cells. Together, these results show that C. elegans insulin signaling has endocrine as well as tissue-specific outputs which could influence lifespan in a combinatorial fashion.

  5. Genome-wide endogenous DAF-16/FOXO recruitment dynamics during lowered insulin signalling in C. elegans.

    Science.gov (United States)

    Kumar, Neeraj; Jain, Vaibhav; Singh, Anupama; Jagtap, Urmila; Verma, Sonia; Mukhopadhyay, Arnab

    2015-12-08

    Lowering insulin-IGF-1-like signalling (IIS) activates FOXO transcription factors (TF) to extend life span across species. To study the dynamics of FOXO chromatin occupancy under this condition in C. elegans, we report the first recruitment profile of endogenous DAF-16 and show that the response is conserved. DAF-16 predominantly acts as a transcriptional activator and binding within the 0.5 kb promoter-proximal region results in maximum induction of downstream targets that code for proteins involved in detoxification and longevity. Interestingly, genes that are activated under low IIS already have higher DAF-16 recruited to their promoters in WT. DAF-16 binds to variants of the FOXO consensus sequence in the promoter proximal regions of genes that are exclusively targeted during low IIS. We also define a set of 'core' direct targets, after comparing multiple studies, which tend to co-express and contribute robustly towards IIS-associated phenotypes. Additionally, we show that nuclear hormone receptor DAF-12 as well as zinc-finger TF EOR-1 may bind DNA in close proximity to DAF-16 and distinct TF classes that are direct targets of DAF-16 may be instrumental in regulating its indirect targets. Together, our study provides fundamental insights into the transcriptional biology of FOXO/DAF-16 and gene regulation downstream of the IIS pathway.

  6. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    Directory of Open Access Journals (Sweden)

    Franca Citarella

    2013-08-01

    Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.

  7. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer.

    Science.gov (United States)

    Shields, Sarah; Conroy, Emer; O'Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W; O'Connor, Darran; McCann, Amanda; Gallagher, William M; Coppinger, Judith A

    2018-03-20

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.

  8. FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription.

    Directory of Open Access Journals (Sweden)

    Nishal S Patel

    Full Text Available Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR signalling in Raldh2-/- embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that

  9. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Directory of Open Access Journals (Sweden)

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  10. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Pooja Chandrakant Thacker

    Full Text Available Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.

  11. Rictor positively regulates B cell receptor signaling by modulating actin reorganization via ezrin.

    Directory of Open Access Journals (Sweden)

    Lu Huang

    2017-08-01

    Full Text Available As the central hub of the metabolism machinery, the mammalian target of rapamycin complex 2 (mTORC2 has been well studied in lymphocytes. As an obligatory component of mTORC2, the role of Rictor in T cells is well established. However, the role of Rictor in B cells still remains elusive. Rictor is involved in B cell development, especially the peripheral development. However, the role of Rictor on B cell receptor (BCR signaling as well as the underlying cellular and molecular mechanism is still unknown. This study used B cell-specfic Rictor knockout (KO mice to investigate how Rictor regulates BCR signaling. We found that the key positive and negative BCR signaling molecules, phosphorylated Brutons tyrosine kinase (pBtk and phosphorylated SH2-containing inositol phosphatase (pSHIP, are reduced and enhanced, respectively, in Rictor KO B cells. This suggests that Rictor positively regulates the early events of BCR signaling. We found that the cellular filamentous actin (F-actin is drastically increased in Rictor KO B cells after BCR stimulation through dysregulating the dephosphorylation of ezrin. The high actin-ezrin intensity area restricts the lateral movement of BCRs upon stimulation, consequently reducing BCR clustering and BCR signaling. The reduction in the initiation of BCR signaling caused by actin alteration is associated with a decreased humoral immune response in Rictor KO mice. The inhibition of actin polymerization with latrunculin in Rictor KO B cells rescues the defects of BCR signaling and B cell differentiation. Overall, our study provides a new pathway linking cell metablism to BCR activation, in which Rictor regulates BCR signaling via actin reorganization.

  12. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China); Han, Zhe [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Chuai, Manli [College of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH (United Kingdom); Wang, Li-jing [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Ho Lee, Kenneth Ka [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Geng, Jian-guo, E-mail: jgeng@umich.edu [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109 (United States); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China)

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  13. DMPD: TLR signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available kira S. Publication Cell Death Differ. 2006 May;13(5):816-25. Pathway - PNG File (.png) SVG File (.svg) HTML File (.html...16410796 TLR signaling. Kawai T, Akira S. Cell Death Differ. 2006 May;13(5):816-25. (.png) (.svg) (.html

  14. Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms

    Directory of Open Access Journals (Sweden)

    Rodrigo eEspaña

    2012-08-01

    Full Text Available The hypocretins/orexins are comprised of two neuroexcitatory peptides that are synthesized exclusively within a circumscribed region of the lateral hypothalamus. These peptides project widely throughout the brain and interact with a variety of regions involved in the regulation of arousal-related processes including those associated with motivated behavior. The current review focuses on emerging evidence indicating that the hypocretins influence reward and reinforcement processing via actions on the mesolimbic dopamine system. We discuss contemporary perspectives of hypocretin regulation of mesolimbic dopamine signaling in both drug free and drug states, as well as hypocretin regulation of behavioral responses to drugs of abuse, particularly as it relates to cocaine.

  15. Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms

    Science.gov (United States)

    Calipari, Erin S.; España, Rodrigo A.

    2012-01-01

    The hypocretins/orexins are comprised of two neuroexcitatory peptides that are synthesized exclusively within a circumscribed region of the lateral hypothalamus. These peptides project widely throughout the brain and interact with a variety of regions involved in the regulation of arousal-related processes including those associated with motivated behavior. The current review focuses on emerging evidence indicating that the hypocretins influence reward and reinforcement processing via actions on the mesolimbic dopamine system. We discuss contemporary perspectives of hypocretin regulation of mesolimbic dopamine signaling in both drug free and drug states, as well as hypocretin regulation of behavioral responses to drugs of abuse, particularly as it relates to cocaine. PMID:22933994

  16. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway.

    Science.gov (United States)

    Mimura, Manaki; Nagato, Yasuo; Itoh, Jun-Ichi

    2012-05-01

    Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.

  17. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation.

    Science.gov (United States)

    Wang, Yi-Long; Chen, Hui; Zhan, Yi-Qun; Yin, Rong-Hua; Li, Chang-Yan; Ge, Chang-Hui; Yu, Miao; Yang, Xiao-Ming

    2016-08-17

    EWSR1, participating in transcription and splicing, has been identified as a translocation partner for various transcription factors, resulting in translocation, which in turn plays crucial roles in tumorigenesis. Recent studies have investigated the role of EWSR1 in mitosis. However, the effect of EWSR1 on mitosis is poorly understood. Here, we observed that depletion of EWSR1 resulted in cell cycle arrest in the mitotic phase, mainly due to an increase in the time from nuclear envelope breakdown to metaphase, resulting in a high percentage of unaligned chromosomes and multipolar spindles. We also demonstrated that EWSR1 is a spindle-associated protein that interacts with α-tubulin during mitosis. EWSR1 depletion increased the cold-sensitivity of spindle microtubules, and decreased the rate of spindle assembly. EWSR1 regulated the level of microtubule acetylation in the mitotic spindle; microtubule acetylation was rescued in EWSR1-depleted mitotic cells following suppression of HDAC6 activity by its specific inhibitor or siRNA treatment. In summary, these results suggest that EWSR1 regulates the acetylation of microtubules in a cell cycle-dependent manner through its dynamic location on spindle MTs, and may be a novel regulator for mitosis progress independent of its translocation.

  18. Multiobjective Traffic Signal Control Model for Intersection Based on Dynamic Turning Movements Estimation

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2014-01-01

    Full Text Available The real-time traffic signal control for intersection requires dynamic turning movements as the basic input data. It is impossible to detect dynamic turning movements directly through current traffic surveillance systems, but dynamic origin-destination (O-D estimation can obtain it. However, the combined models of dynamic O-D estimation and real-time traffic signal control are rare in the literature. A framework for the multiobjective traffic signal control model for intersection based on dynamic O-D estimation (MSC-DODE is presented. A state-space model using Kalman filtering is first formulated to estimate the dynamic turning movements; then a revised sequential Kalman filtering algorithm is designed to solve the model, and the root mean square error and mean percentage error are used to evaluate the accuracy of estimated dynamic turning proportions. Furthermore, a multiobjective traffic signal control model is put forward to achieve real-time signal control parameters and evaluation indices. Finally, based on practical survey data, the evaluation indices from MSC-DODE are compared with those from Webster method. The actual and estimated turning movements are further input into MSC-DODE, respectively, and results are also compared. Case studies show that results of MSC-DODE are better than those of Webster method and are very close to unavailable actual values.

  19. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Margarida Ressurreição

    2014-06-01

    Full Text Available Protein kinases C (PKCs and extracellular signal-regulated kinases (ERKs are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.

  20. Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling.

    Science.gov (United States)

    Schmogrow, R; Meyer, M; Schindler, P C; Nebendahl, B; Dreschmann, M; Meyer, J; Josten, A; Hillerkuss, D; Ben-Ezra, S; Becker, J; Koos, C; Freude, W; Leuthold, J

    2014-01-13

    We demonstrate two efficient processing techniques for Nyquist signals, namely computation of signals using dynamic precision as well as arbitrary rational oversampling factors. With these techniques along with massively parallel processing it becomes possible to generate and receive high data rate Nyquist signals with flexible symbol rates and bandwidths, a feature which is highly desirable for novel flexgrid networks. We achieved maximum bit rates of 252 Gbit/s in real-time.

  1. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function

    Directory of Open Access Journals (Sweden)

    Gina A. Smith

    2017-10-01

    Full Text Available Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A and vascular endothelial growth factor receptor 2 (VEGFR2 regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response.

  2. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-01-01

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  3. Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2

    DEFF Research Database (Denmark)

    Fernández Pérez, Leandro; Flores-Morales, Amilcar; Guerra, Borja

    2016-01-01

    Growth hormone (GH) is a critical regulator of linear body growth during childhood but continues to have important metabolic actions throughout life. The GH receptor (GHR) is ubiquitously expressed, and deficiency of GHR signaling causes a dramatic impact on normal physiology during somatic devel...

  4. Eight paths of ERK1/2 signalling pathway regulating hepatocyte ...

    Indian Academy of Sciences (India)

    2011-12-05

    Dec 5, 2011 ... This study aims at exploring which paths of ERK1/2 signalling pathway participate in the regulation of rat .... total RNA was used to synthesize the first strand of cDNA. ..... stem cells contribute to regeneration of injured liver.

  5. A novel crosstalk between Alk7 and cGMP signaling differentially regulates brown adipocyte function

    Directory of Open Access Journals (Sweden)

    Aileen Balkow

    2015-08-01

    Conclusions: We found a so far unknown crosstalk between cGMP and Alk7 signaling pathways. Tight regulation of Alk7 is required for efficient differentiation of brown adipocytes. Alk7 has differential effects on adipogenic differentiation and the development of the thermogenic program in brown adipocytes.

  6. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner

    NARCIS (Netherlands)

    Sjöqvist, M.; Antfolk, D.; Ferraris, S.; Rraklli, V.; Haga, C.; Antila, C.; Mutvei, A.; Imanishi, S.Y.; Holmberg, J.; Jin, S.; Eriksson, J.E.; Lendahl, U.; Sahlgren, C.M.

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick

  7. Nrf2 regulates cellular behaviors and Notch signaling in oral squamous cell carcinoma cells.

    Science.gov (United States)

    Fan, Hong; Paiboonrungruan, Chorlada; Zhang, Xinyan; Prigge, Justin R; Schmidt, Edward E; Sun, Zheng; Chen, Xiaoxin

    2017-11-04

    Oxidative stress is known to play a pivotal role in the development of oral squamous cell carcinoma (OSCC). We have demonstrated that activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has chemopreventive effects against oxidative stress-associated OSCC. However, Nrf2 have dual roles in cancer development; while it prevents carcinogenesis of normal cells, hyperactive Nrf2 also promotes the survival of cancer cells. This study is aimed to understand the function of Nrf2 in regulating cellular behaviors of OSCC cells, and the potential mechanisms through which Nrf2 facilitates OSCC. We established the Nrf2-overexpressing and Nrf2-knockdown OSCC cell lines, and examined the function of Nrf2 in regulating cell proliferation, migration, invasion, cell cycle and colony formation. Our data showed that Nrf2 overexpression promoted cancer phenotypes in OSCC cells, whereas Nrf2 silencing inhibited these phenotypes. In addition, Nrf2 positively regulated Notch signaling pathway in OSCC cells in vitro. Consistent with this observation, Nrf2 activation in Keap1 -/- mice resulted in not only hyperproliferation of squamous epithelial cells in mouse tongue as evidenced by increased expression of PCNA, but also activation of Notch signaling in these cells as evidenced by increased expression of NICD1 and Hes1. In conclusion, Nrf2 regulates cancer behaviors and Notch signaling in OSCC cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Regulation of slow and fast muscle myofibrillogenesis by Wnt/beta-catenin and myostatin signaling.

    NARCIS (Netherlands)

    Tee, J.M.; van Rooijen, C.R.; Boonen, R.A.C.M.; Zivkovic, D.

    2009-01-01

    Deviation from proper muscle development or homeostasis results in various myopathic conditions. Employing genetic as well as chemical intervention, we provide evidence that a tight regulation of Wnt/beta-catenin signaling is essential for muscle fiber growth and maintenance. In zebrafish embryos,

  9. Running on Empty: Leptin Signaling in VTA Regulates Reward from Physical Activity.

    Science.gov (United States)

    Chen, Zuxin; Kenny, Paul J

    2015-10-06

    Hunger increases physical activity and stamina to support food-directed foraging behaviors, but underlying mechanisms are unclear. In this issue, Fernandes et al. (2015) show that disruption of leptin-regulated STAT3 signaling in midbrain dopamine neurons increases the rewarding effects of running in mice, which could explain the "high" experienced by endurance runners. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Abdul-Zani, Izma; Wheatcroft, Stephen B; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2017-10-15

    Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. © 2017. Published by The Company of Biologists Ltd.

  11. Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis.

    Science.gov (United States)

    Hill, Jennifer W; Xu, Yong; Preitner, Frederic; Fukuda, Makota; Cho, You-Ree; Luo, Ji; Balthasar, Nina; Coppari, Roberto; Cantley, Lewis C; Kahn, Barbara B; Zhao, Jean J; Elmquist, Joel K

    2009-11-01

    Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons. We found that deleting p85alpha alone induced resistance to diet-induced obesity. In contrast, deletion of the p110alpha catalytic subunit of PI3K led to increased weight gain and adipose tissue along with reduced energy expenditure. Independent of these effects, increased PI3K activity in POMC neurons improved insulin sensitivity, whereas decreased PI3K signaling resulted in impaired glucose regulation. These studies show that activity of the PI3K pathway in POMC neurons is involved in not only normal energy regulation but also glucose homeostasis.

  12. Nonautonomous Regulation of Neuronal Migration by Insulin Signaling, DAF-16/FOXO, and PAK-1

    Directory of Open Access Journals (Sweden)

    Lisa M. Kennedy

    2013-09-01

    Full Text Available Neuronal migration is essential for nervous system development in all organisms and is regulated in the nematode, C. elegans, by signaling pathways that are conserved in humans. Here, we demonstrate that the insulin/IGF-1-PI3K signaling pathway modulates the activity of the DAF-16/FOXO transcription factor to regulate the anterior migrations of the hermaphrodite-specific neurons (HSNs during embryogenesis of C. elegans. When signaling is reduced, DAF-16 is activated and promotes migration; conversely, when signaling is enhanced, DAF-16 is inactivated, and migration is inhibited. We show that DAF-16 acts nonautonomously in the hypodermis to promote HSN migration. Furthermore, we identify PAK-1, a p21-activated kinase, as a downstream mediator of insulin/IGF-1-DAF-16 signaling in the nonautonomous control of HSN migration. Because a FOXO-Pak1 pathway was recently shown to regulate mammalian neuronal polarity, our findings indicate that the roles of FOXO and Pak1 in neuronal migration are most likely conserved from C. elegans to higher organisms.

  13. Hsp70-Bag3 interactions regulate cancer-related signaling networks.

    Science.gov (United States)

    Colvin, Teresa A; Gabai, Vladimir L; Gong, Jianlin; Calderwood, Stuart K; Li, Hu; Gummuluru, Suryaram; Matchuk, Olga N; Smirnova, Svetlana G; Orlova, Nina V; Zamulaeva, Irina A; Garcia-Marcos, Mikel; Li, Xiaokai; Young, Z T; Rauch, Jennifer N; Gestwicki, Jason E; Takayama, Shinichi; Sherman, Michael Y

    2014-09-01

    Bag3, a nucleotide exchange factor of the heat shock protein Hsp70, has been implicated in cell signaling. Here, we report that Bag3 interacts with the SH3 domain of Src, thereby mediating the effects of Hsp70 on Src signaling. Using several complementary approaches, we established that the Hsp70-Bag3 module is a broad-acting regulator of cancer cell signaling by modulating the activity of the transcription factors NF-κB, FoxM1, Hif1α, the translation regulator HuR, and the cell-cycle regulators p21 and survivin. We also identified a small-molecule inhibitor, YM-1, that disrupts the Hsp70-Bag3 interaction. YM-1 mirrored the effects of Hsp70 depletion on these signaling pathways, and in vivo administration of this drug was sufficient to suppress tumor growth in mice. Overall, our results defined Bag3 as a critical factor in Hsp70-modulated signaling and offered a preclinical proof-of-concept that the Hsp70-Bag3 complex may offer an appealing anticancer target. ©2014 American Association for Cancer Research.

  14. Dynamics of Phosphoinositide-Dependent Signaling in Sympathetic Neurons

    OpenAIRE

    Kruse, Martin; Vivas, Oscar; Traynor-Kaplan, Alexis; Hille, Bertil

    2016-01-01

    In neurons, loss of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] leads to a decrease in exocytosis and changes in electrical excitability. Restoration of PI(4,5)P2 levels after phospholipase C activation is therefore essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We measured dynamic changes of PI(4,5)P2, phosphatidylinositol 4-phosphate, diacylglycerol, inositol 1,4,5-trisphosphate...

  15. Notch1-Dll4 signaling and mechanical force regulate leader cell formation during collective cell migration

    OpenAIRE

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D.; Wong, Pak Kin

    2015-01-01

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysis and computational modeling to show that leader cell identity is dynamically regulated by Dll4 sign...

  16. Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1.

    Science.gov (United States)

    Galeone, Antonio; Han, Seung Yeop; Huang, Chengcheng; Hosomi, Akira; Suzuki, Tadashi; Jafar-Nejad, Hamed

    2017-08-04

    Mutations in the human N- glycanase 1 ( NGLY1 ) cause a rare, multisystem congenital disorder with global developmental delay. However, the mechanisms by which NGLY1 and its homologs regulate embryonic development are not known. Here we show that Drosophila Pngl encodes an N -glycanase and exhibits a high degree of functional conservation with human NGLY1. Loss of Pngl results in developmental midgut defects reminiscent of midgut-specific loss of BMP signaling. Pngl mutant larvae also exhibit a severe midgut clearance defect, which cannot be fully explained by impaired BMP signaling. Genetic experiments indicate that Pngl is primarily required in the mesoderm during Drosophila development. Loss of Pngl results in a severe decrease in the level of Dpp homodimers and abolishes BMP autoregulation in the visceral mesoderm mediated by Dpp and Tkv homodimers. Thus, our studies uncover a novel mechanism for the tissue-specific regulation of an evolutionarily conserved signaling pathway by an N -glycanase enzyme.

  17. The regulation of ras-raf signaling pathway on G1 phase of the irradiated cells

    International Nuclear Information System (INIS)

    Guo Dehuang; Dong Bo; Liu Nongle; Wen Gengyun; Luo Qingliang; Mao Bingzhi

    2000-01-01

    Objective: To investigate the way of ras-raf signaling pathway which regulate the G 1 phase in irradiated KG-1 cells. Methods: Blocked the GM-CSF signaling pathway by transfected DN-ras and then momentary transfected cyclin D1 into irradiated KG-1 cells, the effects of cyclin D1 on G 1 phase was examined. Results: The irradiated KG-1 cells transfected DN-ras can't recover form G 1 phase arrest even though the GM-CSF was given,momentary transfected cyclin D1 promote the irradiated KG-1 cells from G 1 arrest. Conclusion: Activation of ras-raf signaling pathway regulate the cell cycle of the irradiated KG-1 cells through promotion the expression of the cyclin D1

  18. Regulation of heterotrimeric G-protein signaling by NDPK/NME proteins and caveolins: an update.

    Science.gov (United States)

    Abu-Taha, Issam H; Heijman, Jordi; Feng, Yuxi; Vettel, Christiane; Dobrev, Dobromir; Wieland, Thomas

    2018-02-01

    Heterotrimeric G proteins are pivotal mediators of cellular signal transduction in eukaryotic cells and abnormal G-protein signaling plays an important role in numerous diseases. During the last two decades it has become evident that the activation status of heterotrimeric G proteins is both highly localized and strongly regulated by a number of factors, including a receptor-independent activation pathway of heterotrimeric G proteins that does not involve the classical GDP/GTP exchange and relies on nucleoside diphosphate kinases (NDPKs). NDPKs are NTP/NDP transphosphorylases encoded by the nme/nm23 genes that are involved in a variety of cellular events such as proliferation, migration, and apoptosis. They therefore contribute, for example, to tumor metastasis, angiogenesis, retinopathy, and heart failure. Interestingly, NDPKs are translocated and/or upregulated in human heart failure. Here we describe recent advances in the current understanding of NDPK functions and how they have an impact on local regulation of G-protein signaling.

  19. Spop promotes skeletal development and homeostasis by positively regulating Ihh signaling.

    Science.gov (United States)

    Cai, Hongchen; Liu, Aimin

    2016-12-20

    Indian Hedgehog (Ihh) regulates chondrocyte and osteoblast differentiation through the Glioma-associated oncogene homolog (Gli) transcription factors. Previous in vitro studies suggested that Speckle-type POZ protein (Spop), part of the Cullin-3 (Cul3) ubiquitin ligase complex, targets Gli2 and Gli3 for degradation and negatively regulates Hedgehog (Hh) signaling. In this study, we found defects in chondrocyte and osteoblast differentiation in Spop-null mutant mice. Strikingly, both the full-length and repressor forms of Gli3, but not Gli2, were up-regulated in Spop mutants, and Ihh target genes Patched 1 (Ptch1) and parathyroid hormone-like peptide (Pthlh) were down-regulated, indicating compromised Hh signaling. Consistent with this finding, reducing Gli3 dosage greatly rescued the Spop mutant skeletal defects. We further show that Spop directly targets the Gli3 repressor for ubiquitination and degradation. Finally, we demonstrate in a conditional mutant that loss of Spop results in brachydactyly and osteopenia, which can be rescued by reducing the dosage of Gli3. In summary, Spop is an important positive regulator of Ihh signaling and skeletal development.

  20. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    International Nuclear Information System (INIS)

    Shibuya, Masabumi; Claesson-Welsh, Lena

    2006-01-01

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases

  1. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling.

    Science.gov (United States)

    Noctor, Graham; Foyer, Christine H

    2016-07-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Regulation of cellular communication by signaling microdomains in the blood vessel wall.

    Science.gov (United States)

    Billaud, Marie; Lohman, Alexander W; Johnstone, Scott R; Biwer, Lauren A; Mutchler, Stephanie; Isakson, Brant E

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.

  3. Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall

    Science.gov (United States)

    Billaud, Marie; Lohman, Alexander W.; Johnstone, Scott R.; Biwer, Lauren A.; Mutchler, Stephanie; Isakson, Brant E.

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function. PMID:24671377

  4. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal.

    Science.gov (United States)

    Fuentealba, Luis C; Eivers, Edward; Ikeda, Atsushi; Hurtado, Cecilia; Kuroda, Hiroki; Pera, Edgar M; De Robertis, Edward M

    2007-11-30

    BMP receptors determine the intensity of BMP signals via Smad1 C-terminal phosphorylations. Here we show that a finely controlled cell biological pathway terminates this activity. The duration of the activated pSmad1(Cter) signal was regulated by sequential Smad1 linker region phosphorylations at conserved MAPK and GSK3 sites required for its polyubiquitinylation and transport to the centrosome. Proteasomal degradation of activated Smad1 and total polyubiquitinated proteins took place in the centrosome. Inhibitors of the Erk, p38, and JNK MAPKs, as well as GSK3 inhibitors, prolonged the duration of a pulse of BMP7. Wnt signaling decreased pSmad1(GSK3) antigen levels and redistributed it from the centrosome to cytoplasmic LRP6 signalosomes. In Xenopus embryos, it was found that Wnts induce epidermis and that this required an active BMP-Smad pathway. Epistatic experiments suggested that the dorsoventral (BMP) and anteroposterior (Wnt/GSK3) patterning gradients are integrated at the level of Smad1 phosphorylations during embryonic pattern formation.

  5. Hormone response element binding proteins: novel regulators of vitamin D and estrogen signaling.

    Science.gov (United States)

    Lisse, Thomas S; Hewison, Martin; Adams, John S

    2011-03-01

    Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as "vitamin D or estrogen response element-binding proteins", behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. BMAL1-dependent regulation of the mTOR signaling pathway delays aging.

    Science.gov (United States)

    Khapre, Rohini V; Kondratova, Anna A; Patel, Sonal; Dubrovsky, Yuliya; Wrobel, Michelle; Antoch, Marina P; Kondratov, Roman V

    2014-01-01

    The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1-/- mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism.

  7. Atg9 antagonizes TOR signaling to regulate intestinal cell growth and epithelial homeostasis in Drosophila.

    Science.gov (United States)

    Wen, Jung-Kun; Wang, Yi-Ting; Chan, Chih-Chiang; Hsieh, Cheng-Wen; Liao, Hsiao-Man; Hung, Chin-Chun; Chen, Guang-Chao

    2017-11-16

    Autophagy is essential for maintaining cellular homeostasis and survival under various stress conditions. Autophagy-related gene 9 (Atg9) encodes a multipass transmembrane protein thought to act as a membrane carrier for forming autophagosomes. However, the molecular regulation and physiological importance of Atg9 in animal development remain largely unclear. Here, we generated Atg9 null mutant flies and found that loss of Atg9 led to shortened lifespan, locomotor defects, and increased susceptibility to stress. Atg9 loss also resulted in aberrant adult midgut morphology with dramatically enlarged enterocytes. Interestingly, inhibiting the TOR signaling pathway rescued the midgut defects of the Atg9 mutants. In addition, Atg9 interacted with PALS1-associated tight junction protein (Patj), which associates with TSC2 to regulate TOR activity. Depletion of Atg9 caused a marked decrease in TSC2 levels. Our findings revealed an antagonistic relationship between Atg9 and TOR signaling in the regulation of cell growth and tissue homeostasis.

  8. Drak2 Does Not Regulate TGF-β Signaling in T Cells.

    Directory of Open Access Journals (Sweden)

    Tarsha L Harris

    Full Text Available Drak2 is a serine/threonine kinase expressed highest in T cells and B cells. Drak2-/- mice are resistant to autoimmunity in mouse models of type 1 diabetes and multiple sclerosis. Resistance to these diseases occurs, in part, because Drak2 is required for the survival of autoreactive T cells that induce disease. However, the molecular mechanisms by which Drak2 affects T cell survival and autoimmunity are not known. A recent report demonstrated that Drak2 negatively regulated transforming growth factor-β (TGF-β signaling in tumor cell lines. Thus, increased TGF-β signaling in the absence of Drak2 may contribute to the resistance to autoimmunity in Drak2-/- mice. Therefore, we examined if Drak2 functioned as a negative regulator of TGF-β signaling in T cells, and whether the enhanced susceptibility to death of Drak2-/- T cells was due to augmented TGF-β signaling. Using several in vitro assays to test TGF-β signaling and T cell function, we found that activation of Smad2 and Smad3, which are downstream of the TGF-β receptor, was similar between wildtype and Drak2-/- T cells. Furthermore, TGF-β-mediated effects on naïve T cell proliferation, activated CD8+ T cell survival, and regulatory T cell induction was similar between wildtype and Drak2-/- T cells. Finally, the increased susceptibility to death in the absence of Drak2 was not due to enhanced TGF-β signaling. Together, these data suggest that Drak2 does not function as a negative regulator of TGF-β signaling in primary T cells stimulated in vitro. It is important to investigate and discern potential molecular mechanisms by which Drak2 functions in order to better understand the etiology of autoimmune diseases, as well as to validate the use of Drak2 as a target for therapeutic treatment of these diseases.

  9. Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time.

    Science.gov (United States)

    Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G

    2014-01-20

    Designed by biological and social evolutionary pressures, facial expressions of emotion comprise specific facial movements to support a near-optimal system of signaling and decoding. Although highly dynamical, little is known about the form and function of facial expression temporal dynamics. Do facial expressions transmit diagnostic signals simultaneously to optimize categorization of the six classic emotions, or sequentially to support a more complex communication system of successive categorizations over time? Our data support the latter. Using a combination of perceptual expectation modeling, information theory, and Bayesian classifiers, we show that dynamic facial expressions of emotion transmit an evolving hierarchy of "biologically basic to socially specific" information over time. Early in the signaling dynamics, facial expressions systematically transmit few, biologically rooted face signals supporting the categorization of fewer elementary categories (e.g., approach/avoidance). Later transmissions comprise more complex signals that support categorization of a larger number of socially specific categories (i.e., the six classic emotions). Here, we show that dynamic facial expressions of emotion provide a sophisticated signaling system, questioning the widely accepted notion that emotion communication is comprised of six basic (i.e., psychologically irreducible) categories, and instead suggesting four. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".

    Science.gov (United States)

    Maret, Wolfgang

    2017-10-31

    In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

  11. Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling

    Science.gov (United States)

    Fukada, Toshiyuki; Tonks, Nicholas K.

    2003-01-01

    Changes in expression of PTP1B, the prototypic protein tyrosine phosphatase, have been associated with various human diseases; however, the mechanisms by which PTP1B expression is regulated have not been defined. We have identified an enhancer sequence within the PTP1B promoter which serves as a binding site for the transcription factor Y box-binding protein-1 (YB-1). Overexpression of YB-1 resulted in increased levels of PTP1B. Furthermore, depletion of YB-1 protein, by expression of a specific antisense construct, led to an ∼70% decrease in expression of PTP1B, but no change in the level of its closest relative, TC-PTP. Expression of antisense YB-1 resulted in increased sensitivity to insulin and enhanced signaling through the cytokine receptor gp130, which was suppressed by re-expression of PTP1B. Finally, we observed a correlation between the expression of PTP1B and that of YB-1 in cancer cell lines and an animal model of type II diabetes. Our data reveal an important role for YB-1 as a regulator of PTP1B expression, and further highlight PTP1B as a critical regulator of insulin- and cytokine-mediated signal transduction. PMID:12554649

  12. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals

    Directory of Open Access Journals (Sweden)

    Jiaduo Zhao

    2016-01-01

    Full Text Available In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector’s false alarms.

  13. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals.

    Science.gov (United States)

    Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong

    2016-01-20

    In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.

  14. Myosin II dynamics are regulated by tension in intercalating cells.

    Science.gov (United States)

    Fernandez-Gonzalez, Rodrigo; Simoes, Sérgio de Matos; Röper, Jens-Christian; Eaton, Suzanne; Zallen, Jennifer A

    2009-11-01

    Axis elongation in Drosophila occurs through polarized cell rearrangements driven by actomyosin contractility. Myosin II promotes neighbor exchange through the contraction of single cell boundaries, while the contraction of myosin II structures spanning multiple pairs of cells leads to rosette formation. Here we show that multicellular actomyosin cables form at a higher frequency than expected by chance, indicating that cable assembly is an active process. Multicellular cables are sites of increased mechanical tension as measured by laser ablation. Fluorescence recovery after photobleaching experiments show that myosin II is stabilized at the cortex in regions of increased tension. Myosin II is recruited in response to an ectopic force and relieving tension leads to a rapid loss of myosin, indicating that tension is necessary and sufficient for cortical myosin localization. These results demonstrate that myosin II dynamics are regulated by tension in a positive feedback loop that leads to multicellular actomyosin cable formation and efficient tissue elongation.

  15. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  16. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2012-01-01

    Highlights: ► Estrogen signaling and demethylation can both control gene expression in breast cancers. ► Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. ► 137 genes are influenced by both 17β-estradiol and demethylating agent 5-aza-2′-deoxycytidine. ► A set of genes is identified as targets of both estrogen signaling and demethylation. ► There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2′-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment

  17. Axo-Glia Interaction Preceding CNS Myelination Is Regulated by Bidirectional Eph-Ephrin Signaling

    Directory of Open Access Journals (Sweden)

    Cecilie Linneberg

    2015-09-01

    Full Text Available In the central nervous system, myelination of axons is required to ensure fast saltatory conduction and for survival of neurons. However, not all axons are myelinated, and the molecular mechanisms involved in guiding the oligodendrocyte processes toward the axons to be myelinated are not well understood. Only a few negative or positive guidance clues that are involved in regulating axo-glia interaction prior to myelination have been identified. One example is laminin, known to be required for early axo-glia interaction, which functions through α6β1 integrin. Here, we identify the Eph-ephrin family of guidance receptors as novel regulators of the initial axo-glia interaction, preceding myelination. We demonstrate that so-called forward and reverse signaling, mediated by members of both Eph and ephrin subfamilies, has distinct and opposing effects on processes extension and myelin sheet formation. EphA forward signaling inhibits oligodendrocyte process extension and myelin sheet formation, and blocking of bidirectional signaling through this receptor enhances myelination. Similarly, EphB forward signaling also reduces myelin membrane formation, but in contrast to EphA forward signaling, this occurs in an integrin-dependent manner, which can be reversed by overexpression of a constitutive active β1-integrin. Furthermore, ephrin-B reverse signaling induced by EphA4 or EphB1 enhances myelin sheet formation. Combined, this suggests that the Eph-ephrin receptors are important mediators of bidirectional signaling between axons and oligodendrocytes. It further implies that balancing Eph-ephrin forward and reverse signaling is important in the selection process of axons to be myelinated.

  18. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    Science.gov (United States)

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  19. Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data

    Directory of Open Access Journals (Sweden)

    Yachie Nozomu

    2010-05-01

    Full Text Available Abstract Background Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches. Results We analyzed time-course phosphoproteome data obtained previously by liquid chromatography mass spectrometry with the stable isotope labeling using amino acids in cell culture (SILAC method. This provides the relative phosphorylation activities of digested peptides at each of five time points after stimulating HeLa cells with epidermal growth factor (EGF. We initially calculated the correlations between the phosphorylation dynamics patterns of every pair of peptides and connected the strongly correlated pairs to construct a network. We found that peptides extracted from the same intracellular fraction (nucleus vs. cytoplasm tended to be close together within this phosphorylation dynamics-based network. The network was then analyzed using graph theory and compared with five known signal-transduction pathways. The dynamics-based network was correlated with known signaling pathways in the NetPath and Phospho.ELM databases, and especially with the EGF receptor (EGFR signaling pathway. Although the phosphorylation patterns of many proteins were drastically changed by the EGF stimulation, our results suggest that only EGFR signaling transduction was both strongly activated and precisely controlled. Conclusions The construction of a phosphorylation dynamics-based network provides a useful overview of condition-specific intracellular signal transduction using quantitative time-course phosphoproteome data under specific experimental conditions. Detailed prediction of signal transduction based on phosphoproteome dynamics remains challenging. However, since the phosphorylation profiles of kinase-substrate pairs on the specific pathway were localized in the dynamics

  20. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics.

    Science.gov (United States)

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng; Shah, Vijay H

    2014-10-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  1. Regulation of hedgehog signaling by Myc-interacting zinc finger protein 1, Miz1.

    Directory of Open Access Journals (Sweden)

    Jiuyi Lu

    Full Text Available Smoothened (Smo mediated Hedgehog (Hh signaling plays an essential role in regulating embryonic development and postnatal tissue homeostasis. Aberrant activation of the Hh pathway contributes to the formation and progression of various cancers. In vertebrates, however, key regulatory mechanisms responsible for transducing signals from Smo to the nucleus remain to be delineated. Here, we report the identification of Myc-interacting Zinc finger protein 1 (Miz1 as a Smo and Gli2 binding protein that positively regulates Hh signaling. Overexpression of Miz1 increases Gli luciferase reporter activity, whereas knockdown of endogenous Miz1 has the opposite effect. Activation of Smo induces translocation of Miz1 to the primary cilia together with Smo and Gli2. Furthermore, Miz1 is localized to the nucleus upon Hh activation in a Smo-dependent manner, and loss of Miz1 prevents the nuclear translocation of Gli2. More importantly, silencing Miz1 expression inhibits cell proliferation in vitro and the growth of Hh-driven medulloblastoma tumors allografted in SCID mice. Taken together, these results identify Miz1 as a novel regulator in the Hh pathway that plays an important role in mediating Smo-dependent oncogenic signaling.

  2. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination.

    Directory of Open Access Journals (Sweden)

    Yuna Kim

    2006-06-01

    Full Text Available The genes encoding members of the wingless-related MMTV integration site (WNT and fibroblast growth factor (FGF families coordinate growth, morphogenesis, and differentiation in many fields of cells during development. In the mouse, Fgf9 and Wnt4 are expressed in gonads of both sexes prior to sex determination. Loss of Fgf9 leads to XY sex reversal, whereas loss of Wnt4 results in partial testis development in XX gonads. However, the relationship between these signals and the male sex-determining gene, Sry, was unknown. We show through gain- and loss-of-function experiments that fibroblast growth factor 9 (FGF9 and WNT4 act as opposing signals to regulate sex determination. In the mouse XY gonad, Sry normally initiates a feed-forward loop between Sox9 and Fgf9, which up-regulates Fgf9 and represses Wnt4 to establish the testis pathway. Surprisingly, loss of Wnt4 in XX gonads is sufficient to up-regulate Fgf9 and Sox9 in the absence of Sry. These data suggest that the fate of the gonad is controlled by antagonism between Fgf9 and Wnt4. The role of the male sex-determining switch--Sry in the case of mammals--is to tip the balance between these underlying patterning signals. In principle, sex determination in other vertebrates may operate through any switch that introduces an imbalance between these two signaling pathways.

  3. Regulation of G-protein coupled receptor traffic by an evolutionary conserved hydrophobic signal.

    Science.gov (United States)

    Angelotti, Tim; Daunt, David; Shcherbakova, Olga G; Kobilka, Brian; Hurt, Carl M

    2010-04-01

    Plasma membrane (PM) expression of G-protein coupled receptors (GPCRs) is required for activation by extracellular ligands; however, mechanisms that regulate PM expression of GPCRs are poorly understood. For some GPCRs, such as alpha2c-adrenergic receptors (alpha(2c)-ARs), heterologous expression in non-native cells results in limited PM expression and extensive endoplasmic reticulum (ER) retention. Recently, ER export/retentions signals have been proposed to regulate cellular trafficking of several GPCRs. By utilizing a chimeric alpha(2a)/alpha(2c)-AR strategy, we identified an evolutionary conserved hydrophobic sequence (ALAAALAAAAA) in the extracellular amino terminal region that is responsible in part for alpha(2c)-AR subtype-specific trafficking. To our knowledge, this is the first luminal ER retention signal reported for a GPCR. Removal or disruption of the ER retention signal dramatically increased PM expression and decreased ER retention. Conversely, transplantation of this hydrophobic sequence into alpha(2a)-ARs reduced their PM expression and increased ER retention. This evolutionary conserved hydrophobic trafficking signal within alpha(2c)-ARs serves as a regulator of GPCR trafficking.

  4. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery.

    Science.gov (United States)

    Choy, Meng S; Li, Yang; Machado, Luciana E S F; Kunze, Micha B A; Connors, Christopher R; Wei, Xingyu; Lindorff-Larsen, Kresten; Page, Rebecca; Peti, Wolfgang

    2017-02-16

    Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Analysis of Coherent Phonon Signals by Sparsity-promoting Dynamic Mode Decomposition

    Science.gov (United States)

    Murata, Shin; Aihara, Shingo; Tokuda, Satoru; Iwamitsu, Kazunori; Mizoguchi, Kohji; Akai, Ichiro; Okada, Masato

    2018-05-01

    We propose a method to decompose normal modes in a coherent phonon (CP) signal by sparsity-promoting dynamic mode decomposition. While the CP signals can be modeled as the sum of finite number of damped oscillators, the conventional method such as Fourier transform adopts continuous bases in a frequency domain. Thus, the uncertainty of frequency appears and it is difficult to estimate the initial phase. Moreover, measurement artifacts are imposed on the CP signal and deforms the Fourier spectrum. In contrast, the proposed method can separate the signal from the artifact precisely and can successfully estimate physical properties of the normal modes.

  6. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.

    Science.gov (United States)

    Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum

    2013-01-01

    Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  7. Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex.

    Science.gov (United States)

    Oliva, Carlos; Soldano, Alessia; Mora, Natalia; De Geest, Natalie; Claeys, Annelies; Erfurth, Maria-Luise; Sierralta, Jimena; Ramaekers, Ariane; Dascenco, Dan; Ejsmont, Radoslaw K; Schmucker, Dietmar; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2016-10-24

    The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circuits and identified differences in the cellular and molecular mechanisms of Robo/Slit function. First, we find that signaling by Robo receptors in the brain is regulated by the Receptor Protein Tyrosine Phosphatase RPTP69d. RPTP69d increases membrane availability of Robo3 without affecting its phosphorylation state. Second, we detect no midline localization of Slit during brain development. Instead, Slit is enriched in the mushroom body, a neuronal structure covering large areas of the brain. Thus, a divergent molecular mechanism regulates neuronal circuit wiring in the Drosophila brain, partly in response to signals from the mushroom body. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Inefficient national environmental regulation as a signal of high abatement costs

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, U.

    1997-12-31

    This paper analyses the importance of informational asymmetries in international environmental regulation by use of a game theoretic approach of signaling games. More specific it analysis whether it is possible for a government to try to extract higher compensation in an international unidirectoral environmental problem. This may be possible when the national environmental regulation carries a signal of the cost of the regulated industry. In this case the government e.g. by means of inefficient environmental regulation on a national level may try to signal high abatement costs. In spite of the fact that many international environmental problems seem to be solvable by the use of financial payments there are only few examples that compensation payment arrangements have been implemented. As many countries and especially many polluting firms possess better information about abatement costs than the countries that receive the pollution, it is worthwhile to include asymmetric information. Consequently, this paper analyses whether the introduction of asymmetric information about abatement costs may bring forward incentives to misrepresent the true abatement cost in order to capture more compensation. If these incentives turn out to be present, it may explain some of the suspicion against using financial payment in order to induce other countries to join an agreement. The analysis shows that it may indeed be the case that the expected gain from cheating is so large that it gives incentives to use an inefficient national environmental policy. (au) 13 refs.

  9. Differential Dopamine Regulation of Ca2+ Signaling and Its Timing Dependence in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Immani Swapna

    2016-04-01

    Full Text Available Dopamine action in the nucleus accumbens (NAc is thought to drive appetitive behavior and Pavlovian reward learning. However, it remains controversial how dopamine achieves these behavioral effects by regulating medium spiny projection neurons (MSNs of the NAc, especially on a behaviorally relevant timescale. Metabotropic glutamate receptor (mGluR-induced Ca2+ signaling dependent on the Ca2+- releasing messenger inositol 1,4,5-triphosphate (IP3 plays a critical role in controlling neuronal excitability and synaptic plasticity. Here, we show that transient dopamine application facilitates mGluR/IP3-induced Ca2+ signals within a time window of ∼2–10 s in a subpopulation of MSNs in the NAc core. Dopamine facilitation of IP3-induced Ca2+ signaling is mediated by D1 dopamine receptors. In dopamine-insensitive MSNs, activation of A2A adenosine receptors causes enhancement of IP3-evoked Ca2+ signals, which is reversed by D2 dopamine receptor activation. These results show that dopamine differentially regulates Ca2+ signaling on the order of seconds in two distinct MSN subpopulations.

  10. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling.

    Science.gov (United States)

    Wang, Ying; Branicky, Robyn; Noë, Alycia; Hekimi, Siegfried

    2018-04-18

    Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling. © 2018 Wang et al.

  11. Notch1 regulates hippocampal plasticity through interaction with the Reelin pathway, glutamatergic transmission and CREB signaling

    Directory of Open Access Journals (Sweden)

    Emanuele eBrai

    2015-11-01

    Full Text Available Notch signaling plays a crucial role in adult brain function such as synaptic plasticity, memory and olfaction. Several reports suggest an involvement of this pathway in neurodegenerative dementia. Yet, to date, the mechanism underlying Notch activity in mature neurons remains unresolved. In this work, we investigate how Notch regulates synaptic potentiation and contributes to the establishment of memory in mice. We observe that Notch1 is a postsynaptic receptor with functional interactions with the Reelin receptor, ApoER2, and the ionotropic receptor, NMDAR. Targeted loss of Notch1 in the hippocampal CA fields affects Reelin signaling by influencing Dab1 expression and impairs the synaptic potentiation achieved through Reelin stimulation. Further analysis indicates that loss of Notch1 affects the expression and composition of the NMDAR but not AMPAR. Glutamatergic signaling is further compromised through downregulation of CamKII and its secondary and tertiary messengers resulting in reduced CREB signaling. Our results identify Notch1 as an important regulator of mechanisms involved in synaptic plasticity and memory formation. These findings emphasize the possible involvement of this signaling receptor in dementia.

  12. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence.

    Science.gov (United States)

    Bassler, B L; Wright, M; Showalter, R E; Silverman, M R

    1993-08-01

    Density-dependent expression of luminescence in Vibrio harveyi is regulated by the concentration of an extracellular signal molecule (autoinducer) in the culture medium. A recombinant clone that restored function to one class of spontaneous dim mutants was found to encode functions necessary for the synthesis of, and response to, a signal molecule. Sequence analysis of the region encoding these functions revealed three open reading frames, two (luxL and luxM) that are required for production of an autoinducer substance and a third (luxN) that is required for response to this signal substance. The LuxL and LuxM proteins are not similar in amino acid sequence to other proteins in the database, but the LuxN protein contains regions of sequence resembling both the histidine protein kinase and the response regulator domains of the family of two-component, signal transduction proteins. The phenotypes of mutants with luxL, luxM and luxN defects indicated that an additional signal-response system controlling density-dependent expression of luminescence remains to be identified.

  13. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    Science.gov (United States)

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  14. Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Vázquez-Chávez, Elena; Lasserre, Rémi; Agüera-González, Sonia; Cuche, Céline; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2017-04-01

    The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Non-autonomous Regulation of Neuronal Migration by Insulin Signaling, DAF-16/FOXO and PAK-1

    Science.gov (United States)

    Kennedy, Lisa M.; Pham, Steven C.D.L.; Grishok, Alla

    2013-01-01

    SUMMARY Neuronal migration is essential for nervous system development in all organisms and is regulated in the nematode, C. elegans, by signaling pathways that are conserved in humans. Here, we demonstrate that the Insulin/IGF-1-PI3K signaling pathway modulates the activity of the DAF-16/FOXO transcription factor to promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. When signaling is reduced, DAF-16 is activated and promotes migration, conversely, when signaling is enhanced, DAF-16 is inactivated and migration is inhibited. We show that DAF-16 acts non-autonomously in the hypodermis to promote HSN migration. Furthermore, we identify PAK-1, a p21-activated kinase, as a downstream mediator of Insulin/IGF-1-DAF-16 signaling in the non-autonomous control of HSN migration. As a FOXO-Pak1 pathway was recently shown to regulate mammalian neuronal polarity, our findings indicate that the roles of FOXO and Pak1 in neuronal migration are likely conserved from C. elegans to higher organisms. PMID:23994474

  16. Fragile X mental retardation protein regulates trans-synaptic signaling in Drosophila

    Directory of Open Access Journals (Sweden)

    Samuel H. Friedman

    2013-11-01

    Fragile X syndrome (FXS, the most common inherited determinant of intellectual disability and autism spectrum disorders, is caused by loss of the fragile X mental retardation 1 (FMR1 gene product (FMRP, an mRNA-binding translational repressor. A number of conserved FMRP targets have been identified in the well-characterized Drosophila FXS disease model, but FMRP is highly pleiotropic in function and the full spectrum of FMRP targets has yet to be revealed. In this study, screens for upregulated neural proteins in Drosophila fmr1 (dfmr1 null mutants reveal strong elevation of two synaptic heparan sulfate proteoglycans (HSPGs: GPI-anchored glypican Dally-like protein (Dlp and transmembrane Syndecan (Sdc. Our recent work has shown that Dlp and Sdc act as co-receptors regulating extracellular ligands upstream of intracellular signal transduction in multiple trans-synaptic pathways that drive synaptogenesis. Consistently, dfmr1 null synapses exhibit altered WNT signaling, with changes in both Wingless (Wg ligand abundance and downstream Frizzled-2 (Fz2 receptor C-terminal nuclear import. Similarly, a parallel anterograde signaling ligand, Jelly belly (Jeb, and downstream ERK phosphorylation (dpERK are depressed at dfmr1 null synapses. In contrast, the retrograde BMP ligand Glass bottom boat (Gbb and downstream signaling via phosphorylation of the transcription factor MAD (pMAD seem not to be affected. To determine whether HSPG upregulation is causative for synaptogenic defects, HSPGs were genetically reduced to control levels in the dfmr1 null background. HSPG correction restored both (1 Wg and Jeb trans-synaptic signaling, and (2 synaptic architecture and transmission strength back to wild-type levels. Taken together, these data suggest that FMRP negatively regulates HSPG co-receptors controlling trans-synaptic signaling during synaptogenesis, and that loss of this regulation causes synaptic structure and function defects characterizing the FXS disease state.

  17. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals

    Directory of Open Access Journals (Sweden)

    Yong-Hua eLiu

    2013-08-01

    Full Text Available A large body of evidence shows that sugars function both as nutrients and signals to regulate fruit and seed set under normal and stress conditions including heat and drought. Inadequate sucrose import to, and its degradation within, reproductive organs cause fruit and seed abortion under heat and drought. As nutrients, sucrose-derived hexoses provide carbon skeletons and energy for growth and development of fruits and seeds. Sugar metabolism can also alleviate the impact of stress on fruit and seed through facilitating biosynthesis of heat shock proteins (Hsps and non-enzymic antioxidants (e.g. glutathione, ascorbic acid, which collectively maintain the integrity of membranes and prevent programmed cell death (PCD through protecting proteins and scavenging reactive oxygen species (ROS. In parallel, sugars (sucrose, glucose and fructose, also exert signalling roles through cross-talk with hormone and ROS signalling pathways and by mediating cell division and PCD. At the same time, emerging data indicate that sugar-derived signalling systems, including trehalose-6 phosphate (T6P, sucrose non-fermenting related kinase-1 (SnRK and the target of rapamycin (TOR kinase complex also play important roles in regulating plant development through modulating nutrient and energy signalling and metabolic processes, especially under abiotic stresses where sugar availability is low. This review aims to evaluate recent progress of research on abiotic stress responses of reproductive organs focusing on roles of sugar metabolism and signalling and addressing the possible biochemical and molecular mechanism by which sugars regulate fruit and seed set under heat and drought.

  18. Role of Translocted Signals in Regulating Root Development and Nutrient Uptake in Legumes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, C. A. [School of Plant Biology, University of Western Australia, Crawley, WA (Australia)

    2013-11-15

    Uptake of nutrients is achieved through the expression and activity of specific carrier/transporter mechanisms localized in the root system and distributed as a consequence of the development of the architecture of the system. Both root system development and the nutrient transport mechanisms are responsive to environmental factors that include nutrient supply and availability, water supply, salinity, soil acidity and compaction together with a wide range of biotic stresses. The response to each may be regulated at the molecular level by both local and systemic signals. These signals include the classical plant growth regulators but also low molecular weight compounds such as sugars and amino acids as well as macromolecules, including peptides, proteins and nucleic acids. Among the latter, recent research has shown that small RNA species and especially small interfering RNAs (siRNA) and microRNAs (miRNA) are potent and effective regulators of gene expression which, in the context of root development as well as nutrient uptake, have central and critical roles. Systemic (translocated) signals that specifically regulate root development and function are less well defined but analyses of phloem exudate in species of lupin (Lupinus albus and L. angustifolius) and species of Brassica and cucurbits have demonstrated that a wide range of macromolecules, including miRNAs, are present and potentially translocated from source organs (principally leaves) to sinks (shoot apical meristems, developing fruits and seeds, roots and nodules). While specific signaling roles for many of these macromolecules are yet to be discovered there are some that have been documented and their regulatory activity in organ development and functioning, as well as in nutrition, confirmed. The following article provides an up to date review and presents the results of recent research using lupin with emphasis on the analysis of small RNAs and their likely role(s) in regulation of root development and

  19. Detection of chaotic dynamics in human gait signals from mobile devices

    Science.gov (United States)

    DelMarco, Stephen; Deng, Yunbin

    2017-05-01

    The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.

  20. IFT20 modulates ciliary PDGFRα signaling by regulating the stability of Cbl E3 ubiquitin ligases

    DEFF Research Database (Denmark)

    Schmid, Fabian Marc; Schou, Kenneth Bødtker; Vilhelm, Martin Juel

    2018-01-01

    ciliogenesis, and ciliary localization of the receptor is required for its appropriate ligand-mediated activation by PDGF-AA. However, the mechanisms regulating sorting of PDGFRα and feedback inhibition of PDGFRα signaling at the cilium are unknown. Here, we provide evidence that intraflagellar transport...... protein 20 (IFT20) interacts with E3 ubiquitin ligases c-Cbl and Cbl-b and is required for Cbl-mediated ubiquitination and internalization of PDGFRα for feedback inhibition of receptor signaling. In wild-type cells treated with PDGF-AA, c-Cbl becomes enriched in the cilium, and the receptor...

  1. A growing field: The regulation of axonal regeneration by Wnt signaling.

    Science.gov (United States)

    Garcia, Armando L; Udeh, Adanna; Kalahasty, Karthik; Hackam, Abigail S

    2018-01-01

    The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout the developing central nervous system (CNS). Recently, studies in mammalian and fish model systems have demonstrated that Wnt/β-catenin signaling also promotes axonal regeneration in the adult optic nerve and spinal cord after injury, raising the possibility that Wnt could be developed as a therapeutic strategy. In this review, we summarize experimental evidence that reveals novel roles for Wnt signaling in the injured CNS, and discuss possible mechanisms by which Wnt ligands could overcome molecular barriers inhibiting axonal growth to promote regeneration. A central challenge in the neuroscience field is developing therapeutic strategies that induce robust axonal regeneration. Although adult axons have the capacity to respond to axonal guidance molecules after injury, there are several major obstacles for axonal growth, including extensive neuronal death, glial scars at the injury site, and lack of axonal guidance signals. Research in rodents demonstrated that activation of Wnt/β-catenin signaling in retinal neurons and radial glia induced neuronal survival and axonal growth, but that activation within reactive glia at the injury site promoted proliferation and glial scar formation. Studies in zebrafish spinal cord injury models confirm an axonal regenerative role for Wnt/β-catenin signaling and identified the cell types responsible. Additionally, in vitro and in vivo studies demonstrated that Wnt induces axonal and neurite growth through transcription-dependent effects of its central mediator β-catenin, potentially by inducing regeneration-promoting genes. Canonical Wnt signaling may also function through transcription-independent interactions of β-catenin with cytoskeletal elements, which could stabilize growing axons and control growth cone

  2. The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response.

    Directory of Open Access Journals (Sweden)

    Cole Johnson

    2014-03-01

    Full Text Available The yeast Saccharomyces cerevisiae undergoes a dramatic growth transition from its unicellular form to a filamentous state, marked by the formation of pseudohyphal filaments of elongated and connected cells. Yeast pseudohyphal growth is regulated by signaling pathways responsive to reductions in the availability of nitrogen and glucose, but the molecular link between pseudohyphal filamentation and glucose signaling is not fully understood. Here, we identify the glucose-responsive Sks1p kinase as a signaling protein required for pseudohyphal growth induced by nitrogen limitation and coupled nitrogen/glucose limitation. To identify the Sks1p signaling network, we applied mass spectrometry-based quantitative phosphoproteomics, profiling over 900 phosphosites for phosphorylation changes dependent upon Sks1p kinase activity. From this analysis, we report a set of novel phosphorylation sites and highlight Sks1p-dependent phosphorylation in Bud6p, Itr1p, Lrg1p, Npr3p, and Pda1p. In particular, we analyzed the Y309 and S313 phosphosites in the pyruvate dehydrogenase subunit Pda1p; these residues are required for pseudohyphal growth, and Y309A mutants exhibit phenotypes indicative of impaired aerobic respiration and decreased mitochondrial number. Epistasis studies place SKS1 downstream of the G-protein coupled receptor GPR1 and the G-protein RAS2 but upstream of or at the level of cAMP-dependent PKA. The pseudohyphal growth and glucose signaling transcription factors Flo8p, Mss11p, and Rgt1p are required to achieve wild-type SKS1 transcript levels. SKS1 is conserved, and deletion of the SKS1 ortholog SHA3 in the pathogenic fungus Candida albicans results in abnormal colony morphology. Collectively, these results identify Sks1p as an important regulator of filamentation and glucose signaling, with additional relevance towards understanding stress-responsive signaling in C. albicans.

  3. Regulation of signaling genes by TGFβ during entry into dauer diapause in C. elegans

    Directory of Open Access Journals (Sweden)

    Patterson Garth I

    2004-09-01

    Full Text Available Abstract Background When resources are scant, C. elegans larvae arrest as long-lived dauers under the control of insulin/IGF- and TGFβ-related signaling pathways. However, critical questions remain regarding the regulation of this developmental event. How do three dozen insulin-like proteins regulate one tyrosine kinase receptor to control complex events in dauer, metabolism and aging? How are signals from the TGFβ and insulin/IGF pathways integrated? What gene expression programs do these pathways regulate, and how do they control complex downstream events? Results We have identified genes that show different levels of expression in a comparison of wild-type L2 or L3 larvae (non-dauer to TGFβ mutants at similar developmental stages undergoing dauer formation. Many insulin/IGF pathway and other known dauer regulatory genes have changes in expression that suggest strong positive feedback by the TGFβ pathway. In addition, many insulin-like ligand and novel genes with similarity to the extracellular domain of insulin/IGF receptors have altered expression. We have identified a large group of regulated genes with putative binding sites for the FOXO transcription factor, DAF-16. Genes with DAF-16 sites upstream of the transcription start site tend to be upregulated, whereas genes with DAF-16 sites downstream of the coding region tend to be downregulated. Finally, we also see strong regulation of many novel hedgehog- and patched-related genes, hormone biosynthetic genes, cell cycle genes, and other regulatory genes. Conclusions The feedback regulation of insulin/IGF pathway and other dauer genes that we observe would be predicted to amplify signals from the TGFβ pathway; this amplification may serve to ensure a decisive choice between "dauer" and "non-dauer", even if environmental cues are ambiguous. Up and down regulation of insulin-like ligands and novel genes with similarity to the extracellular domain of insulin/IGF receptors suggests opposing

  4. Regulation of Arabidopsis Early Anther Development by Putative Cell-Cell Signaling Molecules and Transcriptional Regulators

    Institute of Scientific and Technical Information of China (English)

    Yu-Jin Sun; Carey LH Hord; Chang-Bin Chen; Hong Ma

    2007-01-01

    Anther development in flowering plants involves the formation of several cell types, including the tapetal and pollen mother cells. The use of genetic and molecular tools has led to the identification and characterization of genes that are critical for normal cell division and differentiation in Arabidopsis early anther development. We review here several recent studies on these genes, including the demonstration that the putative receptor protein kinases BAM1 and BAM2 together play essential roles in the control of early cell division and differentiation. In addition, we discuss the hypothesis that BAM1/2 may form a positive-negative feedback regulatory loop with a previously identified key regulator, SPOROCYTELESS (also called NOZZLE),to control the balance between sporogenous and somatic cell types in the anther. Furthermore, we summarize the isolation and functional analysis of the DYSFUNCTIONAL TAPETUM1 (DYT1) gene in promoting proper tapetal cell differentiation. Our finding that DYT1 encodes a putative transcription factor of the bHLH family, as well as relevant expression analyses, strongly supports a model that DYT1 serves as a critical link between upstream factors and downstream target genes that are critical for normal tapetum development and function. These studies, together with other recently published works, indicate that cell-cell communication and transcriptional control are key processes essential for cell fate specification in anther development.

  5. Both sides of the same coin: Rac1 splicing regulating by EGF signaling.

    Science.gov (United States)

    Fu, Xiang-Dong

    2017-04-01

    EGF, a well-studied mitogen for cancer cells, is revealed to induce an E3 ubiquitin ligase adaptor SPSB1, which recruits the Elongin B/C-Collin complex to trigger ubiquitylation of the negative splicing regulator hnRNP A1. This event is synergized with EGF-activated SR proteins to alter alternative splicing of a key small GTPase Rac1 to enhance cell migration, highlighting converging EGF signals on both negative and positive splicing regulators to jointly promote a key cancer pathway.

  6. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1999-01-01

    ), which were among the first substrates of ERK to be discovered and which has proven to be a ubiquitous and versatile mediator of ERK signal transduction. RSK is composed of two functional kinase domains that are activated in a sequential manner by a series of phosphorylations. Recently, a family of RSK......-related kinases that are activated by ERK as well as p38 MAPK were discovered and named mitogen- and stress-activated protein kinases (MSK). A number of cellular functions of RSK have been proposed. (1) Regulation of gene expression via association and phosphorylation of transcriptional regulators including c...

  7. Signalling from the periphery to the brain that regulates energy homeostasis.

    Science.gov (United States)

    Kim, Ki-Suk; Seeley, Randy J; Sandoval, Darleen A

    2018-04-01

    The CNS regulates body weight; however, we still lack a clear understanding of what drives decisions about when, how much and what to eat. A vast array of peripheral signals provides information to the CNS regarding fluctuations in energy status. The CNS then integrates this information to influence acute feeding behaviour and long-term energy homeostasis. Previous paradigms have delegated the control of long-term energy homeostasis to the hypothalamus and short-term changes in feeding behaviour to the hindbrain. However, recent studies have identified target hindbrain neurocircuitry that integrates the orchestration of individual bouts of ingestion with the long-term regulation of energy balance.

  8. Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Cho Hyunju

    2013-01-01

    Full Text Available Abstract Background Palmitic acid, the most common saturated free fatty acid, has been implicated in ER (endoplasmic reticulum stress-mediated apoptosis. This lipoapotosis is dependent, in part, on the upregulation of the activating transcription factor-4 (ATF4. To better understand the mechanisms by which palmitate upregulates the expression level of ATF4, we integrated literature information on palmitate-induced ER stress signaling into a discrete dynamic model. The model provides an in silico framework that enables simulations and predictions. The model predictions were confirmed through further experiments in human hepatocellular carcinoma (HepG2 cells and the results were used to update the model and our current understanding of the signaling induced by palmitate. Results The three key things from the in silico simulation and experimental results are: 1 palmitate induces different signaling pathways (PKR (double-stranded RNA-activated protein kinase, PERK (PKR-like ER kinase, PKA (cyclic AMP (cAMP-dependent protein kinase A in a time dependent-manner, 2 both ATF4 and CREB1 (cAMP-responsive element-binding protein 1 interact with the Atf4 promoter to contribute to a prolonged accumulation of ATF4, and 3 CREB1 is involved in ER-stress induced apoptosis upon palmitate treatment, by regulating ATF4 expression and possibly Ca2+ dependent-CaM (calmodulin signaling pathway. Conclusion The in silico model helped to delineate the essential signaling pathways in palmitate-mediated apoptosis.

  9. Electric Vehicle Smart Charging using Dynamic Price Signal

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Pedersen, Anders Bro; Marinelli, Mattia

    2014-01-01

    , however, be resolved by using intelligent EV charging strategies, commonly referred to as ”Smart Charging”. The basic approach involves modifying the default vehicle charging scheme of ”immediate charging”, to a more optimal one that is derived from insight into the current state of the grid. This work......With yearly increases in Electric Vehicle (EV) sales, the future for electric mobility continues to brighten, and with more vehicles hitting the roads every day, the energy requirements on the grid will increase, potentially causing low-voltage distribution grid congestion. This problem can...... proposed in this paper, involves a real-time control strategy for charging the EV using a dynamic price tariff, with the objective of minimizing the charging cost. Two different charging scenario are investigated, and the results are verified by experiments on a real Electric Vehicle. Finally, the costs...

  10. Current-induced atomic dynamics, instabilities, and Raman signals

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Brandbyge, Mads; Hedegard, Per

    2012-01-01

    We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an effective nonequilibrium bath. The bath results in random forces describing Joule...... heating, current-induced forces including the nonconservative wind force, dissipative frictional forces, and an effective Lorentz-type force due to the Berry phase of the nonequilibrium electrons. Using a generic two-level molecular model, we highlight the importance of both current-induced forces...... and Joule heating for the stability of the system. We compare the impact of the different forces, and the wide-band approximation for the electronic structure on our result. We examine the current-induced instabilities (excitation of runaway "waterwheel" modes) and investigate the signature...

  11. Extracellular signal-regulated protein kinases 1 and 2 activation by addictive drugs: a signal toward pathological adaptation.

    Science.gov (United States)

    Pascoli, Vincent; Cahill, Emma; Bellivier, Frank; Caboche, Jocelyne; Vanhoutte, Peter

    2014-12-15

    Addiction is a chronic and relapsing psychiatric disorder that is thought to occur in vulnerable individuals. Synaptic plasticity evoked by drugs of abuse in the so-called neuronal circuits of reward has been proposed to underlie behavioral adaptations that characterize addiction. By increasing dopamine in the striatum, addictive drugs alter the balance of dopamine and glutamate signals converging onto striatal medium-sized spiny neurons (MSNs) and activate intracellular events involved in long-term behavioral alterations. Our laboratory contributed to the identification of salient molecular changes induced by administration of addictive drugs to rodents. We pioneered the observation that a common feature of addictive drugs is to activate, by a double tyrosine/threonine phosphorylation, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the striatum, which control a plethora of substrates, some of them being critically involved in cocaine-mediated molecular and behavioral adaptations. Herein, we review how the interplay between dopamine and glutamate signaling controls cocaine-induced ERK1/2 activation in MSNs. We emphasize the key role of N-methyl-D-aspartate receptor potentiation by D1 receptor to trigger ERK1/2 activation and its subsequent nuclear translocation where it modulates both epigenetic and genetic processes engaged by cocaine. We discuss how cocaine-induced long-term synaptic and structural plasticity of MSNs, as well as behavioral adaptations, are influenced by ERK1/2-controlled targets. We conclude that a better knowledge of molecular mechanisms underlying ERK1/2 activation by drugs of abuse and/or its role in long-term neuronal plasticity in the striatum may provide a new route for therapeutic treatment in addiction. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Integrin and GPCR Crosstalk in the Regulation of ASM Contraction Signaling in Asthma.

    Science.gov (United States)

    Teoh, Chun Ming; Tam, John Kit Chung; Tran, Thai

    2012-01-01

    Airway hyperresponsiveness (AHR) is one of the cardinal features of asthma. Contraction of airway smooth muscle (ASM) cells that line the airway wall is thought to influence aspects of AHR, resulting in excessive narrowing or occlusion of the airway. ASM contraction is primarily controlled by agonists that bind G protein-coupled receptor (GPCR), which are expressed on ASM. Integrins also play a role in regulating ASM contraction signaling. As therapies for asthma are based on symptom relief, better understanding of the crosstalk between GPCRs and integrins holds good promise for the design of more effective therapies that target the underlying cellular and molecular mechanism that governs AHR. In this paper, we will review current knowledge about integrins and GPCRs in their regulation of ASM contraction signaling and discuss the emerging concept of crosstalk between the two and the implication of this crosstalk on the development of agents that target AHR.

  13. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

    KAUST Repository

    Liao, Hsin-Wei

    2015-11-16

    Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment.

  14. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways

    International Nuclear Information System (INIS)

    Heizmann, Beate; Sellars, MacLean; Macias-Garcia, Alejandra; Chan, Susan; Kastner, Philippe

    2016-01-01

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.

  15. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-01-01

    Full Text Available Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF signaling pathway in early embryoid bodies (EBs. Gcn5−/− EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.

  16. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

    Science.gov (United States)

    Liao, Hsin-Wei; Hsu, Jung-Mao; Xia, Weiya; Wang, Hung-Ling; Wang, Ying-Nai; Chang, Wei-Chao; Arold, Stefan T.; Chou, Chao-Kai; Tsou, Pei-Hsiang; Yamaguchi, Hirohito; Fang, Yueh-Fu; Lee, Hong-Jen; Lee, Heng-Huan; Tai, Shyh-Kuan; Yang, Mhu-Hwa; Morelli, Maria P.; Sen, Malabika; Ladbury, John E.; Chen, Chung-Hsuan; Grandis, Jennifer R.; Kopetz, Scott; Hung, Mien-Chie

    2015-01-01

    Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment. PMID:26571401

  17. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

    KAUST Repository

    Liao, Hsin-Wei; Hsu, Jung-Mao; Xia, Weiya; Wang, Hung-Ling; Wang, Ying-Nai; Chang, Wei-Chao; Arold, Stefan T.; Chou, Chao-Kai; Tsou, Pei-Hsiang; Yamaguchi, Hirohito; Fang, Yueh-Fu; Lee, Hong-Jen; Lee, Heng-Huan; Tai, Shyh-Kuan; Yang, Mhu-Hwa; Morelli, Maria P.; Sen, Malabika; Ladbury, John E.; Chen, Chung-Hsuan; Grandis, Jennifer R.; Kopetz, Scott; Hung, Mien-Chie

    2015-01-01

    Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment.

  18. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.

    Science.gov (United States)

    Liu, Qiang; Zhang, Juan; Zerbinatti, Celina; Zhan, Yan; Kolber, Benedict J; Herz, Joachim; Muglia, Louis J; Bu, Guojun

    2011-01-11

    Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.

  19. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2011-01-01

    Full Text Available Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.

  20. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heizmann, Beate [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Sellars, MacLean [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Macias-Garcia, Alejandra [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Institute for Medical Engineering and Science at MIT, Cambridge, MA 02139 (United States); Chan, Susan, E-mail: scpk@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Kastner, Philippe, E-mail: scpk@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Faculté de Médecine, Université de Strasbourg, Strasbourg (France)

    2016-02-12

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.

  1. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    Science.gov (United States)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  2. Ras Signaling Regulates Stem Cells and Amelogenesis in the Mouse Incisor.

    Science.gov (United States)

    Zheng, X; Goodwin, A F; Tian, H; Jheon, A H; Klein, O D

    2017-11-01

    The role of Ras signaling during tooth development is poorly understood. Ras proteins-which are activated by many upstream pathways, including receptor tyrosine kinase cascades-signal through multiple effectors, such as the mitogen-activated protein kinase (MAPK) and PI3K pathways. Here, we utilized the mouse incisor as a model to study how the MAPK and PI3K pathways regulate dental epithelial stem cells and amelogenesis. The rodent incisor-which grows continuously throughout the life of the animal due to the presence of epithelial and mesenchymal stem cells-provides a model for the study of ectodermal organ renewal and regeneration. Utilizing models of Ras dysregulation as well as inhibitors of the MAPK and PI3K pathways, we found that MAPK and PI3K regulate dental epithelial stem cell activity, transit-amplifying cell proliferation, and enamel formation in the mouse incisor.

  3. Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation

    Science.gov (United States)

    de la Fuente, Alerie Guzman; Errea, Oihana; van Wijngaarden, Peter; Gonzalez, Ginez A.; Kerninon, Christophe; Jarjour, Andrew A.; Lewis, Hilary J.; Jones, Clare A.; Nait-Oumesmar, Brahim; Zhao, Chao; Huang, Jeffrey K.; ffrench-Constant, Charles

    2015-01-01

    The mechanisms regulating differentiation of oligodendrocyte (OLG) progenitor cells (OPCs) into mature OLGs are key to understanding myelination and remyelination. Signaling via the retinoid X receptor γ (RXR-γ) has been shown to be a positive regulator of OPC differentiation. However, the nuclear receptor (NR) binding partner of RXR-γ has not been established. In this study we show that RXR-γ binds to several NRs in OPCs and OLGs, one of which is vitamin D receptor (VDR). Using pharmacological and knockdown approaches we show that RXR–VDR signaling induces OPC differentiation and that VDR agonist vitamin D enhances OPC differentiation. We also show expression of VDR in OLG lineage cells in multiple sclerosis. Our data reveal a role for vitamin D in the regenerative component of demyelinating disease and identify a new target for remyelination medicines. PMID:26644513

  4. Emotion regulation and the dynamics of feelings: A conceptual and methodological framework [IF: 3.3

    OpenAIRE

    Hoeksma, J.B.; Oosterlaan, J.; Schipper, E.M.

    2004-01-01

    The emotional system is defined as a dynamical system that has neurological and biochemical structures that force the system to change in a regular and consistent way. This dynamic view allows for an alternative definition of emotion regulation, which describes when emotion regulation is needed, identifies its goal, and illustrates how regulation is achieved. The thesis developed here is that feelings - the private mental experience of emotion - play a crucial role in emotion regulation. Spec...

  5. Emotion regulation and the dynamic of feelings: A conceptual and methodological framework

    OpenAIRE

    Hoeksma, J.B.; Oosterlaan, J.; Schipper, E.

    2004-01-01

    The emotional system is defined as a dynamical system that has neurological and biochemical structures that force the system to change in a regular and consistent way. This dynamic view allows for an alternative definition of emotion regulation, which describes when emotion regulation is needed, identifies its goal, and illustrates how regulation is achieved. The thesis developed here is that feelings - the private mental experience of emotion - play a crucial role in emotion regulation. Spec...

  6. RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation.

    Science.gov (United States)

    Azmi, Peter; Seth, Arun

    2005-11-01

    Our laboratory has found that the 154aa RING finger protein 11 (RNF11), has modular domains and motifs including a RING-H2 finger domain, a PY motif, an ubiquitin interacting motif (UIM), a 14-3-3 binding sequence and an AKT phosphorylation site. RNF11 represents a unique protein with no other known immediate family members yet described. Comparative genetic analysis has shown that RNF11 is highly conserved throughout evolution. This may indicate a conserved and non-redundant role for the RNF11 protein. Molecular binding assays using RNF11 have shown that RNF11 has important roles in growth factor signalling, ubiquitination and transcriptional regulation. RNF11 has been shown to interact with HECT-type E3 ubiquitin ligases Nedd4, AIP4, Smurf1 and Smurf2, as well as with Cullin1, the core protein in the multi-subunit SCF E3 ubiquitin ligase complex. Work done in our laboratory has shown that RNF11 is capable of antagonizing Smurf2-mediated inhibition of TGFbeta signalling. Furthermore, RNF11 is capable of degrading AMSH, a positive regulator of both TGFbeta and EGFR signalling pathways. Recently, we have found that RNF11 can directly enhance TGFbeta signalling through a direct association with Smad4, the common signal transducer and transcription factor in the TGFbeta, BMP, and Activin pathways. Through its association with Smad4 and other transcription factors, RNF11 may have a role in direct transcriptional regulation. Our laboratory and others have found nearly 80 protein interactions for RNF11, placing RNF11 at the cross-roads of cell signalling and transcriptional regulation. RNF11 is highly expressed in breast tumours. Deregulation of RNF11 function may prove to be harmful to patient therapeutic outcomes. RNF11 may therefore provide a novel target for cancer therapeutics. The purpose of this review is to discuss the role of RNF11 in cell signalling and transcription factor modulation with special attention given to the ubiquitin-proteasomal pathway, TGFbeta

  7. Functional proteomic analysis of corticosteroid pharmacodynamics in rat liver: Relationship to hepatic stress, signaling, energy regulation, and drug metabolism.

    Science.gov (United States)

    Ayyar, Vivaswath S; Almon, Richard R; DuBois, Debra C; Sukumaran, Siddharth; Qu, Jun; Jusko, William J

    2017-05-08

    Corticosteroids (CS) are anti-inflammatory agents that cause extensive pharmacogenomic and proteomic changes in multiple tissues. An understanding of the proteome-wide effects of CS in liver and its relationships to altered hepatic and systemic physiology remains incomplete. Here, we report the application of a functional pharmacoproteomic approach to gain integrated insight into the complex nature of CS responses in liver in vivo. An in-depth functional analysis was performed using rich pharmacodynamic (temporal-based) proteomic data measured over 66h in rat liver following a single dose of methylprednisolone (MPL). Data mining identified 451 differentially regulated proteins. These proteins were analyzed on the basis of temporal regulation, cellular localization, and literature-mined functional information. Of the 451 proteins, 378 were clustered into six functional groups based on major clinically-relevant effects of CS in liver. MPL-responsive proteins were highly localized in the mitochondria (20%) and cytosol (24%). Interestingly, several proteins were related to hepatic stress and signaling processes, which appear to be involved in secondary signaling cascades and in protecting the liver from CS-induced oxidative damage. Consistent with known adverse metabolic effects of CS, several rate-controlling enzymes involved in amino acid metabolism, gluconeogenesis, and fatty-acid metabolism were altered by MPL. In addition, proteins involved in the metabolism of endogenous compounds, xenobiotics, and therapeutic drugs including cytochrome P450 and Phase-II enzymes were differentially regulated. Proteins related to the inflammatory acute-phase response were up-regulated in response to MPL. Functionally-similar proteins showed large diversity in their temporal profiles, indicating complex mechanisms of regulation by CS. Clinical use of corticosteroid (CS) therapy is frequent and chronic. However, current knowledge on the proteome-level effects of CS in liver and

  8. Identification of DreI as an antiviral factor regulated by RLR signaling pathway.

    Directory of Open Access Journals (Sweden)

    Shun Li

    Full Text Available BACKGROUND: Retinoic acid-inducible gene I (RIG-I-like receptors (RLRs had been demonstrated to prime interferon (IFN response against viral infection via the conserved RLR signaling in fish, and a novel fish-specific gene, the grass carp reovirus (GCRV-induced gene 2 (Gig2, had been suggested to play important role in host antiviral response. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we cloned and characterized zebrafish Gig2 homolog (named Danio rerio Gig2-I, DreI, and revealed its antiviral role and expressional regulation signaling pathway. RT-PCR, Western blot and promoter activity assay indicate that DreI can be induced by poly I:C, spring viremia of carp virus (SVCV and recombinant IFN (rIFN, showing that DreI is a typical ISG. Using the pivotal signaling molecules of RLR pathway, including RIG-I, MDA5 and IRF3 from crucian carp, it is found that DreI expression is regulated by RLR cascade and IRF3 plays an important role in this regulation. Furthermore, promoter mutation assay confirms that the IFN-stimulated regulatory elements (ISRE in the 5' flanking region of DreI is essential for its induction. Finally, overexpression of DreI leads to establish a strong antiviral state against SVCV and Rana grylio virus (RGV infection in EPC (Epithelioma papulosum cyprinid cells. CONCLUSIONS/SIGNIFICANCE: These data indicate that DreI is an antiviral protein, which is regulated by RLR signaling pathway.

  9. Transcription factor RBP-J-mediated signalling regulates basophil immunoregulatory function in mouse asthma model.

    Science.gov (United States)

    Qu, Shuo-Yao; He, Ya-Long; Zhang, Jian; Wu, Chang-Gui

    2017-09-01

    Basophils (BA) play an important role in the promotion of aberrant T helper type 2 (Th2) immune responses in asthma. It is not only the effective cell, but also modulates the initiation of Th2 immune responses. We earlier demonstrated that Notch signalling regulates the biological function of BAin vitro. However, whether this pathway plays the same role in vivo is not clear. The purpose of the present study was to investigate the effect of Notch signalling on BA function in the regulation of allergic airway inflammation in a murine model of asthma. Bone marrow BA were prepared by bone marrow cell culture in the presence of recombinant interleukin-3 (rIL-3; 300 pg/ml) for 7 days, followed by isolation of the CD49b + microbeads. The recombination signal binding protein J (RBP-J -/- ) BA were co-cultured with T cells, and the supernatant and the T-cell subtypes were examined. The results indicated disruption of the capacity of BA for antigen presentation alongside an up-regulation of the immunoregulatory function. This was possibly due to the low expression of OX40L in the RBP-J -/- BA. Basophils were adoptively transferred to ovalbumin-sensitized recipient mice, to establish an asthma model. Lung pathology, cytokine profiles of brobchoalveolar fluid, airway hyperactivity and the absolute number of Th1/Th2 cells in lungs were determined. Overall, our results indicate that the RBP-J-mediated Notch signalling is critical for BA-dependent immunoregulation. Deficiency of RBP-J influences the immunoregulatory functions of BA, which include activation of T cells and their differentiation into T helper cell subtypes. The Notch signalling pathway is a potential therapeutic target for BA-based immunotherapy against asthma. © 2017 John Wiley & Sons Ltd.

  10. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle.

    Science.gov (United States)

    Clarke, Hugh J

    2018-01-01

    Prior to ovulation, the mammalian oocyte undergoes a process of differentiation within the ovarian follicle that confers on it the ability to give rise to an embryo. Differentiation comprises two phases-growth, during which the oocyte increases more than 100-fold in volume as it accumulates macromolecules and organelles that will sustain early embryogenesis; and meiotic maturation, during which the oocyte executes the first meiotic division and prepares for the second division. Entry of an oocyte into the growth phase appears to be triggered when the adjacent granulosa cells produce specific growth factors. As the oocyte grows, it elaborates a thick extracellular coat termed the zona pellucida. Nonetheless, cytoplasmic extensions of the adjacent granulosa cells, termed transzonal projections (TZPs), enable them to maintain contact-dependent communication with the oocyte. Through gap junctions located where the TZP tips meet the oocyte membrane, they provide the oocyte with products that sustain its metabolic activity and signals that regulate its differentiation. Conversely, the oocyte secretes diffusible growth factors that regulate proliferation and differentiation of the granulosa cells. Gap junction-permeable products of the granulosa cells prevent precocious initiation of meiotic maturation, and the gap junctions also enable oocyte maturation to begin in response to hormonal signals received by the granulosa cells. Development of the oocyte or the somatic compartment may also be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules. Oocyte differentiation thus depends on continuous signaling interactions with the somatic cells of the follicle. WIREs Dev Biol 2018, 7:e294. doi: 10.1002/wdev.294 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Early Embryonic

  11. Regulation of gene expression by photosynthetic signals triggered through modified CO2 availability

    Directory of Open Access Journals (Sweden)

    Wormuth Dennis

    2006-08-01

    Full Text Available Abstract Background To coordinate metabolite fluxes and energy availability, plants adjust metabolism and gene expression to environmental changes through employment of interacting signalling pathways. Results Comparing the response of Arabidopsis wild-type plants with that of the mutants adg1, pgr1 and vtc1 upon altered CO2-availability, the regulatory role of the cellular energy status, photosynthetic electron transport, the redox state and concentration of ascorbate and glutathione and the assimilatory force was analyzed in relation to the transcript abundance of stress-responsive nuclear encoded genes and psaA and psbA encoding the reaction centre proteins of photosystem I and II, respectively. Transcript abundance of Bap1, Stp1, psaA and psaB was coupled with seven metabolic parameters. Especially for psaA and psaB, the complex analysis demonstrated that the assumed PQ-dependent redox control is subordinate to signals linked to the relative availability of 3-PGA and DHAP, which define the assimilatory force. For the transcripts of sAPx and Csd2 high correlations with the calculated redox state of NADPH were observed in pgr1, but not in wild-type, suggesting that in wild-type plants signals depending on thylakoid acidification overlay a predominant redox-signal. Strongest correlation with the redox state of ascorbate was observed for 2CPA, whose transcript abundance regulation however was almost insensitive to the ascorbate content demonstrating dominance of redox regulation over metabolite sensing. Conclusion In the mutants, signalling pathways are partially uncoupled, demonstrating dominance of metabolic control of photoreaction centre expression over sensing the redox state of the PQ-pool. The balance between the cellular redox poise and the energy signature regulates sAPx and Csd2 transcript abundance, while 2CPA expression is primarily redox-controlled.

  12. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling.

    Science.gov (United States)

    Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

    2014-10-02

    The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.

  13. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    Science.gov (United States)

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Signaling pathways regulating the expression of Prx1 and Prx2 in the Chick Mandibular Mesenchyme

    Science.gov (United States)

    Doufexi, Aikaterini-El; Mina, Mina

    2009-01-01

    Prx1 and Prx2 are members of the aristaless-related homeobox genes shown to play redundant but essential roles in morphogenesis of the mandibular processes. To gain insight into the signaling pathways that regulate expression of Prx genes in the mandibular mesenchyme, we used the chick as a model system. We examined the patterns of gene expression in the face and the roles of signals derived from the epithelium on the expression of Prx genes in the mandibular mesenchyme. Our results demonstrated stage-dependent roles of mandibular epithelium on the expression of Prx in the mandibular mesenchyme and provide evidence for positive roles of members of the fibroblast and hedgehog families derived from mandibular epithelium on the expression of Prx genes in the mandibular mesenchyme. Our studies suggest that endothelin-1 signaling derived from the mesenchyme is involved in restricting the expression of Prx2 to the medial mandibular mesenchyme. PMID:18942149

  15. Roles of Notch1 Signaling in Regulating Satellite Cell Fates Choices and Postnatal Skeletal Myogenesis.

    Science.gov (United States)

    Shan, Tizhong; Xu, Ziye; Wu, Weiche; Liu, Jiaqi; Wang, Yizhen

    2017-11-01

    Adult skeletal muscle stem cells, also called satellite cells, are indispensable for the growth, maintenance, and regeneration of the postnatal skeletal muscle. Satellite cells, predominantly quiescent in mature resting muscles, are activated after skeletal muscle injury or degeneration. Notch1 signaling is an evolutionarily conserved pathway that plays crucial roles in satellite cells homeostasis and postnatal skeletal myogenesis and regeneration. Activation of Notch1 signaling promotes the muscle satellite cells quiescence and proliferation, but inhibits differentiation of muscle satellite cells. Notably, the new roles of Notch1 signaling during late-stage of skeletal myogenesis including in post-differentiation myocytes and post-fusion myotubes have been recently reported. Here, we mainly review and discuss the regulatory roles of Notch1 in regulating satellite cell fates choices and skeletal myogenesis. J. Cell. Physiol. 232: 2964-2967, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Performance Analysis of Control Signal Transmission Technique for Cognitive Radios in Dynamic Spectrum Access Networks

    Science.gov (United States)

    Sakata, Ren; Tomioka, Tazuko; Kobayashi, Takahiro

    When cognitive radio (CR) systems dynamically use the frequency band, a control signal is necessary to indicate which carrier frequencies are currently available in the network. In order to keep efficient spectrum utilization, this control signal also should be transmitted based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers have to receive control signals without knowledge of their carrier frequencies. To enable such transmission and reception, this paper proposes a novel scheme called DCPT (Differential Code Parallel Transmission). With DCPT, receivers can receive low-rate information with no knowledge of the carrier frequencies. The transmitter transmits two signals whose carrier frequencies are spaced by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver acquires the DCPT signal, it multiplies the signal by a frequency-shifted version of the signal; this yields a DC component that represents the data signal which is then demodulated. The performance was evaluated by means of numerical analysis and computer simulation. We confirmed that DCPT operates successfully even under severe interference if its parameters are appropriately configured.

  17. Regulator of calcineurin 1 differentially regulates TLR-dependent MyD88 and TRIF signaling pathways.

    Directory of Open Access Journals (Sweden)

    Zheng Pang

    Full Text Available Toll-like receptors (TLRs recognize the conserved molecular patterns in microorganisms and trigger myeloid differentiation primary response 88 (MyD88 and/or TIR-domain-containing adapter-inducing interferon-β (TRIF pathways that are critical for host defense against microbial infection. However, the molecular mechanisms that govern TLR signaling remain incompletely understood. Regulator of calcineurin-1 (RCAN1, a small evolutionarily conserved protein that inhibits calcineurin phosphatase activity, suppresses inflammation during Pseudomonas aeruginosa infection. Here, we define the roles for RCAN1 in P. aeruginosa lipopolysaccharide (LPS-activated TLR4 signaling. We compared the effects of P. aeruginosa LPS challenge on bone marrow-derived macrophages from both wild-type and RCAN1-deficient mice and found that RCAN1 deficiency increased the MyD88-NF-κB-mediated cytokine production (IL-6, TNF and MIP-2, whereas TRIF-interferon-stimulated response elements (ISRE-mediated cytokine production (IFNβ, RANTES and IP-10 was suppressed. RCAN1 deficiency caused increased IκBα phosphorylation and NF-κB activity in the MyD88-dependent pathway, but impaired ISRE activation and reduced IRF7 expression in the TRIF-dependent pathway. Complementary studies of a mouse model of P. aeruginosa LPS-induced acute pneumonia confirmed that RCAN1-deficient mice displayed greatly enhanced NF-κB activity and MyD88-NF-κB-mediated cytokine production, which correlated with enhanced pulmonary infiltration of neutrophils. By contrast, RCAN1 deficiency had little effect on the TRIF pathway in vivo. These findings demonstrate a novel regulatory role of RCAN1 in TLR signaling, which differentially regulates MyD88 and TRIF pathways.

  18. hCLP46 regulates U937 cell proliferation via Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenzhan; Du, Jie; Chu, Qiaoyun [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Youxin [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Liu, Lixin [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Song, Manshu [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Wang, Wei, E-mail: wei6014@yahoo.com [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China)

    2011-04-29

    Highlights: {yields} Knock down of hCLP46 by RNAi impairs mammalian Notch signaling. {yields} hCLP46 affects neither cell surface Notch1 expression nor ligand-receptor binding. {yields} Knock down of hCLP46 inhibits U937 cell-growth by up-regulation of CDKN1B. -- Abstract: Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.

  19. Neuronal Regulation of Schwann Cell Mitochondrial Ca(2+) Signaling during Myelination.

    Science.gov (United States)

    Ino, Daisuke; Sagara, Hiroshi; Suzuki, Junji; Kanemaru, Kazunori; Okubo, Yohei; Iino, Masamitsu

    2015-09-29

    Schwann cells (SCs) myelinate peripheral neurons to promote the rapid conduction of action potentials, and the process of myelination is known to be regulated by signals from axons to SCs. Given that SC mitochondria are one of the potential regulators of myelination, we investigated whether SC mitochondria are regulated by axonal signaling. Here, we show a purinergic mechanism that sends information from neurons to SC mitochondria during myelination. Our results show that electrical stimulation of rat sciatic nerve increases extracellular ATP levels enough to activate purinergic receptors. Indeed, electrical stimulation of sciatic nerves induces Ca(2+) increases in the cytosol and the mitochondrial matrix of surrounding SCs via purinergic receptor activation. Chronic suppression of this pathway during active myelination suppressed the longitudinal and radial development of myelinating SCs and caused hypomyelination. These results demonstrate a neuron-to-SC mitochondria signaling, which is likely to have an important role in proper myelination. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis.

    Science.gov (United States)

    Kim, Woohyun; Lee, Yeon; Park, Jeongmoo; Lee, Nayoung; Choi, Giltsu

    2013-04-01

    Seed dormancy, a seed status that prohibits germination even in the presence of inductive germination signals, is a poorly understood process. To identify molecular components that regulate seed dormancy, we screened T-DNA insertion lines and identified a mutant designated honsu (hon). HON loss-of-function mutants display deep seed dormancy, whereas HON-overexpressing lines display shallow seed dormancy. HON encodes a seed-specific group A phosphatase 2C (PP2C) and is one of the major negative regulators of seed dormancy among group A PP2Cs. Like other PP2C family members, HON interacts with PYR1/RCAR11 in the presence of ABA. Our analysis indicates that HON inhibits ABA signaling and activates gibberellic acid signaling, and both of these conditions must be satisfied to promote the release of seed dormancy. However, HON mRNA levels are increased in mutants displaying deep seed dormancy or under conditions that deepen seed dormancy, and decreased in mutants displaying shallow seed dormancy or under conditions that promote the release of seed dormancy. Taken together, our results indicate that the expression of HON mRNA is homeostatically regulated by seed dormancy.

  1. Plant phospholipase C family: Regulation and functional role in lipid signaling.

    Science.gov (United States)

    Singh, Amarjeet; Bhatnagar, Nikita; Pandey, Amita; Pandey, Girdhar K

    2015-08-01

    Phospholipase C (PLC), a major membrane phospholipid hydrolyzing enzyme generates signaling messengers such as diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) in animals, and their phosphorylated forms such as phosphatidic acid (PA) and inositol hexakisphosphate (IP6) are thought to regulate various cellular processes in plants. Based on substrate specificity, plant PLC family is sub-divided into phosphatidylinositol-PLC (PI-PLC) and phosphatidylcholine-PLC (PC-PLC) groups. The activity of plant PLCs is regulated by various factors and the major ones include, Ca(2+) concentration, phospholipid substrate, post-translational modifications and interacting proteins. Most of the PLC members have been localized at the plasma membrane, suited for their function of membrane lipid hydrolysis. Several PLC members have been implicated in various cellular processes and signaling networks, triggered in response to a number of environmental cues and developmental events in different plant species, which makes them potential candidates for genetically engineering the crop plants for stress tolerance and enhancing the crop productivity. In this review article, we are focusing mainly on the plant PLC signaling and regulation, potential cellular and physiological role in different abiotic and biotic stresses, nutrient deficiency, growth and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mutations in TSPEAR, Encoding a Regulator of Notch Signaling, Affect Tooth and Hair Follicle Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Alon Peled

    2016-10-01

    Full Text Available Despite recent advances in our understanding of the pathogenesis of ectodermal dysplasias (EDs, the molecular basis of many of these disorders remains unknown. In the present study, we aimed at elucidating the genetic basis of a new form of ED featuring facial dysmorphism, scalp hypotrichosis and hypodontia. Using whole exome sequencing, we identified 2 frameshift and 2 missense mutations in TSPEAR segregating with the disease phenotype in 3 families. TSPEAR encodes the thrombospondin-type laminin G domain and EAR repeats (TSPEAR protein, whose function is poorly understood. TSPEAR knock-down resulted in altered expression of genes known to be regulated by NOTCH and to be involved in murine hair and tooth development. Pathway analysis confirmed that down-regulation of TSPEAR in keratinocytes is likely to affect Notch signaling. Accordingly, using a luciferase-based reporter assay, we showed that TSPEAR knock-down is associated with decreased Notch signaling. In addition, NOTCH1 protein expression was reduced in patient scalp skin. Moreover, TSPEAR silencing in mouse hair follicle organ cultures was found to induce apoptosis in follicular epithelial cells, resulting in decreased hair bulb diameter. Collectively, these observations indicate that TSPEAR plays a critical, previously unrecognized role in human tooth and hair follicle morphogenesis through regulation of the Notch signaling pathway.

  3. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana.

    Science.gov (United States)

    Wei, Jian; Li, Dong-Xu; Zhang, Jia-Rong; Shan, Chi; Rengel, Zed; Song, Zhong-Bang; Chen, Qi

    2018-04-27

    Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H 2 O 2 and Ca 2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H 2 O 2 production and Ca 2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent K d (dissociation constant) of 0.73 ± 0.10 nmol/L (r 2  = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H 2 O 2 and Ca 2+ signaling transduction cascade. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. RUNX1: A Regulator of NF-kB Signaling in Pulmonary Diseases.

    Science.gov (United States)

    Tang, Xiaoju; Sun, Ling; Wang, Gang; Chen, Bojiang; Luo, Fengming

    2018-01-01

    Runt-related transcription factor 1 (RUNX1), a member of the RUNX family, is one of the key regulatory proteins in vertebrates. RUNX1 is involved in embryonic development, hematopoiesis, angiogenesis, tumorigenesis and immune response. In the past few decades, studies mainly focused on the effect of RUNX1 on acute leukemia and cancer. Only few studies about the function of RUNX1 in the pathological process of pulmonary diseases have been reported. Recent studies have demonstrated that RUNX1 is highly expressed in both mesenchymal and epithelial compartments of the developing and postnatal lung and that it plays a critical role in the lipopolysaccharide induced lung inflammation by regulating the NF-kB pathway. RUNX1 participates in the regulation of the NF-kB signaling pathway through interaction with IkB kinase complex in the cytoplasm or interaction with the NF-kB subunit P50. NF-kB is well-known signaling pathway necessary for inflammatory response in the lung. This review is to highlight the RUNX1 structure, isoforms and to present the mechanism that RUNX1 regulates NF-kB. This will illustrate the great potential role of RUNX1 in the inflammation signaling pathway in pulmonary diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    Science.gov (United States)

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. Copyright © 2016 the American Physiological Society.

  6. Predictive model identifies key network regulators of cardiomyocyte mechano-signaling.

    Directory of Open Access Journals (Sweden)

    Philip M Tan

    2017-11-01

    Full Text Available Mechanical strain is a potent stimulus for growth and remodeling in cells. Although many pathways have been implicated in stretch-induced remodeling, the control structures by which signals from distinct mechano-sensors are integrated to modulate hypertrophy and gene expression in cardiomyocytes remain unclear. Here, we constructed and validated a predictive computational model of the cardiac mechano-signaling network in order to elucidate the mechanisms underlying signal integration. The model identifies calcium, actin, Ras, Raf1, PI3K, and JAK as key regulators of cardiac mechano-signaling and characterizes crosstalk logic imparting differential control of transcription by AT1R, integrins, and calcium channels. We find that while these regulators maintain mostly independent control over distinct groups of transcription factors, synergy between multiple pathways is necessary to activate all the transcription factors necessary for gene transcription and hypertrophy. We also identify a PKG-dependent mechanism by which valsartan/sacubitril, a combination drug recently approved for treating heart failure, inhibits stretch-induced hypertrophy, and predict further efficacious pairs of drug targets in the network through a network-wide combinatorial search.

  7. Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries.

    Directory of Open Access Journals (Sweden)

    Sonya Hui

    Full Text Available We recently identified sphingosine-1-phosphate (S1P signaling and the cystic fibrosis transmembrane conductance regulator (CFTR as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i express critical S1P signaling elements, (ii constrict in response to S1P and (iii lose myogenic responsiveness following S1P receptor antagonism (JTE013. However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.

  8. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells.

    Science.gov (United States)

    Fonseca, Sonya G; Ishigaki, Shinsuke; Oslowski, Christine M; Lu, Simin; Lipson, Kathryn L; Ghosh, Rajarshi; Hayashi, Emiko; Ishihara, Hisamitsu; Oka, Yoshitomo; Permutt, M Alan; Urano, Fumihiko

    2010-03-01

    Wolfram syndrome is an autosomal-recessive disorder characterized by insulin-dependent diabetes mellitus, caused by nonautoimmune loss of beta cells, and neurological dysfunctions. We have previously shown that mutations in the Wolfram syndrome 1 (WFS1) gene cause Wolfram syndrome and that WFS1 has a protective function against ER stress. However, it remained to be determined how WFS1 mitigates ER stress. Here we have shown in rodent and human cell lines that WFS1 negatively regulates a key transcription factor involved in ER stress signaling, activating transcription factor 6alpha (ATF6alpha), through the ubiquitin-proteasome pathway. WFS1 suppressed expression of ATF6alpha target genes and repressed ATF6alpha-mediated activation of the ER stress response element (ERSE) promoter. Moreover, WFS1 stabilized the E3 ubiquitin ligase HRD1, brought ATF6alpha to the proteasome, and enhanced its ubiquitination and proteasome-mediated degradation, leading to suppression of ER stress signaling. Consistent with these data, beta cells from WFS1-deficient mice and lymphocytes from patients with Wolfram syndrome exhibited dysregulated ER stress signaling through upregulation of ATF6alpha and downregulation of HRD1. These results reveal a role for WFS1 in the negative regulation of ER stress signaling and in the pathogenesis of diseases involving chronic, unresolvable ER stress, such as pancreatic beta cell death in diabetes.

  9. Negative Regulation of Receptor Tyrosine Kinase (RTK Signaling: A Developing Field

    Directory of Open Access Journals (Sweden)

    Fernanda Ledda

    2007-01-01

    Full Text Available ophic factors control cellular physiology by activating specific receptor tyrosine kinases (RTKs. While the over activation of RTK signaling pathways is associated with cell growth and cancer, recent findings support the concept that impaired down-regulation or deactivation of RTKs may also be a mechanism involved in tumor formation. Under this perspective, the molecular determinants of RTK signaling inhibition may act as tumor-suppressor genes and have a potential role as tumor markers to monitor and predict disease progression. Here, we review the current understanding of the physiological mechanisms that attenuate RTK signaling and discuss evidence that implicates deregulation of these events in cancer.Abbreviations: BDP1: Brain-derived phosphatase 1; Cbl: Casitas B-lineage lymphoma; CIN-85: Cbl-interacting protein of 85 kDa; DER: Drosophila EGFR; EGFR: Epidermal growth factor receptor; ERK 1/2: Extracellular signal-regulated kinase 1/2; Grb2: Growth factor receptor-bound protein 2; HER2: Human epidermal growth factor receptor 2; LRIG: Leucine-rich repeats and immunoglobulin-like domain 1; MAPK: Mitogen-activated protein kinase; Mig 6: Mitogen-inducible gene 6; PTEN: Phosphatase and tensin homologue; RET: Rearranged in transformation; RTK: Receptor tyrosine kinase. SH2 domain: Src-homology 2 domain; SH3 domain: Src-homology 3 domain; Spry: Sprouty.

  10. Wnt and BMP signaling crosstalk in regulating dental stem cells: Implications in dental tissue engineering

    Directory of Open Access Journals (Sweden)

    Fugui Zhang

    2016-12-01

    Full Text Available Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental stem cells, along with the signaling mechanisms governing stem cell self-renewal and differentiation. In this review, we first summarize the biological characteristics of seven types of dental stem cells, including dental pulp stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, periodontal ligament stem cells, alveolar bone-derived mesenchymal stem cells (MSCs, and MSCs from gingiva. We then focus on how these stem cells are regulated by bone morphogenetic protein (BMP and/or Wnt signaling by examining the interplays between these pathways. Lastly, we analyze the current status of dental tissue engineering strategies that utilize oral/dental stem cells by harnessing the interplays between BMP and Wnt pathways. We also highlight the challenges that must be addressed before the dental stem cells may reach any clinical applications. Thus, we can expect to witness significant progresses to be made in regenerative dentistry in the coming decade.

  11. Cigarette smoke regulates VEGFR2-mediated survival signaling in rat lungs

    Directory of Open Access Journals (Sweden)

    Stevenson Christopher S

    2010-02-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF and VEGF receptor 2 (VEGFR2-mediated survival signaling is critical to endothelial cell survival, maintenance of the vasculature and alveolar structure and regeneration of lung tissue. Reduced VEGF and VEGFR2 expression in emphysematous lungs has been linked to increased endothelial cell death and vascular regression. Previously, we have shown that CS down-regulated the VEGFR2 and its downstream signaling in mouse lungs. However, the VEGFR2-mediated survival signaling in response to oxidants/cigarette smoke (CS is not known. We hypothesized that CS exposure leads to disruption of VEGFR2-mediated endothelial survival signaling in rat lungs. Methods Adult male Sprague-Dawley rats were exposed CS for 3 days, 8 weeks and 6 months to investigate the effect of CS on VEGFR2-mediated survival signaling by measuring the Akt/PI3-kinase/eNOS downstream signaling in rat lungs. Results and Discussion We show that CS disrupts VEGFR2/PI3-kinase association leading to decreased Akt and eNOS phosphorylation. This may further alter the phosphorylation of the pro-apoptotic protein Bad and increase the Bad/Bcl-xl association. However, this was not associated with a significant lung cell death as evidenced by active caspase-3 levels. These data suggest that although CS altered the VEGFR2-mediated survival signaling in the rat lungs, but it was not sufficient to cause lung cell death. Conclusion The rat lungs exposed to CS in acute, sub-chronic and chronic levels may be representative of smokers where survival signaling is altered but was not associated with lung cell death whereas emphysema is known to be associated with lung cell apoptosis.

  12. Light Controls Cytokinin Signaling via Transcriptional Regulation of Constitutively Active Sensor Histidine Kinase CKI1.

    Science.gov (United States)

    Dobisova, Tereza; Hrdinova, Vendula; Cuesta, Candela; Michlickova, Sarka; Urbankova, Ivana; Hejatkova, Romana; Zadnikova, Petra; Pernisova, Marketa; Benkova, Eva; Hejatko, Jan

    2017-05-01

    In plants, the multistep phosphorelay (MSP) pathway mediates a range of regulatory processes, including those activated by cytokinins. The cross talk between cytokinin response and light has been known for a long time. However, the molecular mechanism underlying the interaction between light and cytokinin signaling remains elusive. In the screen for upstream regulators we identified a LONG PALE HYPOCOTYL ( LPH ) gene whose activity is indispensable for spatiotemporally correct expression of CYTOKININ INDEPENDENT1 ( CKI1 ), encoding the constitutively active sensor His kinase that activates MSP signaling. lph is a new allele of HEME OXYGENASE1 ( HY1 ) that encodes the key protein in the biosynthesis of phytochromobilin, a cofactor of photoconvertible phytochromes. Our analysis confirmed the light-dependent regulation of the CKI1 expression pattern. We show that CKI1 expression is under the control of phytochrome A (phyA), functioning as a dual (both positive and negative) regulator of CKI1 expression, presumably via the phyA-regulated transcription factors (TF) PHYTOCHROME INTERACTING FACTOR3 and CIRCADIAN CLOCK ASSOCIATED1. Changes in CKI1 expression observed in lph / hy1 - 7 and phy mutants correlate with misregulation of MSP signaling, changed cytokinin sensitivity, and developmental aberrations that were previously shown to be associated with cytokinin and/or CKI1 action. Besides that, we demonstrate a novel role of phyA-dependent CKI1 expression in the hypocotyl elongation and hook development during skotomorphogenesis. Based on these results, we propose that the light-dependent regulation of CKI1 provides a plausible mechanistic link underlying the well-known interaction between light- and cytokinin-controlled plant development. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-01-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear how NAD+ and NAD+ intermediates shuttle between different

  14. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-11-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates

  15. Evaluating sustainability of truck weight regulations: A system dynamics view

    Directory of Open Access Journals (Sweden)

    Pei Liu

    2015-11-01

    Full Text Available Purpose: Targeting the problem of overload trucking in Highway Transportation of iron ore from Caofeidian to Tangshan (HTCT, this paper aims to assess long-term effects of alternative Truck Weight Regulation (TWR policies on sustainability of HTCT. Design/methodology/approach: A system dynamics model was established for policy evaluation. The model, composed of six interrelating modules, is able to simulate policies effects on trucking issues such as freight flow, truck traffic flow, pavement performance, highway transport capacity and trucking time, and further on the Cumulative Economic Cost (CEC including transport cost and time cost of freight owners and the Cumulative Social Cost (CSC including pavement maintenance cost, green house gas emission cost, air pollutants emission cost and traffic accidents cost, so the effects of TWR policies on sustainability of HTCT could be evaluated. Findings: According to different values of overload ratio which a TWR policy allows, alternative TWR policies are classified into three types, which are The Rigid Policy (TRP, The Moderate Policy (TMP and The Tolerant Policy (TTP. Results show that the best policy for sustainability of HTCT depends on the importance of CSC which is expected by the local government. To be specific, (1 if CSC is considered much less important than CEC, the local government should continue implementing the current TTP with the maximum overload ratio; (2 if CSC is considered much more important than CEC, then TRP is recommended; and (3 if CSC is considered slightly more important than CES, TMP with overload ratio of 80% is the best. Practical implications: Conclusions of this paper may help the local government design appropriate TWR policies to achieve sustainability of HTCT. Originality/value: To the best of our knowledge, this is the first effort to evaluate TWR policies on sustainability of regional freight transportation based on system dynamics modeling.

  16. PTP1B is a negative regulator of interleukin 4–induced STAT6 signaling

    Science.gov (United States)

    Lu, Xiaoqing; Malumbres, Raquel; Shields, Benjamin; Jiang, Xiaoyu; Sarosiek, Kristopher A.; Natkunam, Yasodha

    2008-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed enzyme shown to negatively regulate multiple tyrosine phosphorylation-dependent signaling pathways. PTP1B can modulate cytokine signaling pathways by dephosphorylating JAK2, TYK2, and STAT5a/b. Herein, we report that phosphorylated STAT6 may serve as a cytoplasmic substrate for PTP1B. Overexpression of PTP1B led to STAT6 dephosphorylation and the suppression of STAT6 transcriptional activity, whereas PTP1B knockdown or deficiency augmented IL-4–induced STAT6 signaling. Pretreatment of these cells with the PTK inhibitor staurosporine led to sustained STAT6 phosphorylation consistent with STAT6 serving as a direct substrate of PTP1B. Furthermore, PTP1B-D181A “substrate-trapping” mutants formed stable complexes with phosphorylated STAT6 in a cellular context and endogenous PTP1B and STAT6 interacted in an interleukin 4 (IL-4)–inducible manner. We delineate a new negative regulatory loop of IL-4–JAK-STAT6 signaling. We demonstrate that IL-4 induces PTP1B mRNA expression in a phosphatidylinositol 3-kinase–dependent manner and enhances PTP1B protein stability to suppress IL-4–induced STAT6 signaling. Finally, we show that PTP1B expression may be preferentially elevated in activated B cell–like diffuse large B-cell lymphomas. These observations identify a novel regulatory loop for the regulation of IL-4–induced STAT6 signaling that may have important implications in both neoplastic and inflammatory processes. PMID:18716132

  17. Src-family kinases negatively regulate NFAT signaling in resting human T cells.

    Directory of Open Access Journals (Sweden)

    Alan Baer

    Full Text Available T cell signaling is required for activation of both natural and therapeutic T cells including chimeric antigen receptor (CAR T cells. Identification of novel factors and pathways regulating T cell signaling may aid in development of effective T cell therapies. In resting human T cells, the majority of Src-family of tyrosine kinases (SFKs are inactive due to phosphorylation of a conserved carboxy-terminal tyrosine residue. Recently, a pool of enzymatically active SFKs has been identified in resting T cells; however, the significance of these is incompletely understood. Here, we characterized the role of active SFKs in resting human T cells. Pharmacologic inhibition of active SFKs enhanced distal TCR signaling as measured by IL-2 release and CD25 surface expression following TCR-independent activation. Mechanistically, inhibition of the active pool of SFKs induced nuclear translocation of NFAT1, and enhanced NFAT1-dependent signaling in resting T cells. The negative regulation of NFAT1 signaling was in part mediated by the Src-kinase Lck as human T cells lacking Lck had increased levels of nuclear NFAT1 and demonstrated enhanced NFAT1-dependent gene expression. Inhibition of active SFKs in resting primary human T cells also increased nuclear NFAT1 and enhanced NFAT1-dependent signaling. Finally, the calcineurin inhibitor FK506 and Cyclosporin A reversed the effect of SFKs inhibition on NFAT1. Together, these data identified a novel role of SFKs in preventing aberrant NFAT1 activation in resting T cells, and suggest that maintaining this pool of active SFKs in therapeutic T cells may increase the efficacy of T cell therapies.

  18. Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans.

    Science.gov (United States)

    Schultz, Robbie D; Bennett, Emily E; Ellis, E Ann; Gumienny, Tina L

    2014-01-01

    In mammals, Bone Morphogenetic Protein (BMP) pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle.

  19. Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Robbie D Schultz

    Full Text Available In mammals, Bone Morphogenetic Protein (BMP pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle.

  20. The dynamic landscape of gene regulation during Bombyx mori oogenesis.

    Science.gov (United States)

    Zhang, Qiang; Sun, Wei; Sun, Bang-Yong; Xiao, Yang; Zhang, Ze

    2017-09-11

    Oogenesis in the domestic silkworm (Bombyx mori) is a complex process involving previtellogenesis, vitellogenesis and choriogenesis. During this process, follicles show drastic morphological and physiological changes. However, the genome-wide regulatory profiles of gene expression during oogenesis remain to be determined. In this study, we obtained time-series transcriptome data and used these data to reveal the dynamic landscape of gene regulation during oogenesis. A total of 1932 genes were identified to be differentially expressed among different stages, most of which occurred during the transition from late vitellogenesis to early choriogenesis. Using weighted gene co-expression network analysis, we identified six stage-specific gene modules that correspond to multiple regulatory pathways. Strikingly, the biosynthesis pathway of the molting hormone 20-hydroxyecdysone (20E) was enriched in one of the modules. Further analysis showed that the ecdysteroid 20-hydroxylase gene (CYP314A1) of steroidgenesis genes was mainly expressed in previtellogenesis and early vitellogenesis. However, the 20E-inactivated genes, particularly the ecdysteroid 26-hydroxylase encoding gene (Cyp18a1), were highly expressed in late vitellogenesis. These distinct expression patterns between 20E synthesis and catabolism-related genes might ensure the rapid decline of the hormone titer at the transition point from vitellogenesis to choriogenesis. In addition, we compared landscapes of gene regulation between silkworm (Lepidoptera) and fruit fly (Diptera) oogeneses. Our results show that there is some consensus in the modules of gene co-expression during oogenesis in these insects. The data presented in this study provide new insights into the regulatory mechanisms underlying oogenesis in insects with polytrophic meroistic ovaries. The results also provide clues for further investigating the roles of epigenetic reconfiguration and circadian rhythm in insect oogenesis.

  1. Dynamic regulation of Drosophila nuclear receptor activity in vivo.

    Science.gov (United States)

    Palanker, Laura; Necakov, Aleksandar S; Sampson, Heidi M; Ni, Ruoyu; Hu, Chun; Thummel, Carl S; Krause, Henry M

    2006-09-01

    Nuclear receptors are a large family of transcription factors that play major roles in development, metamorphosis, metabolism and disease. To determine how, where and when nuclear receptors are regulated by small chemical ligands and/or protein partners, we have used a 'ligand sensor' system to visualize spatial activity patterns for each of the 18 Drosophila nuclear receptors in live developing animals. Transgenic lines were established that express the ligand binding domain of each nuclear receptor fused to the DNA-binding domain of yeast GAL4. When combined with a GAL4-responsive reporter gene, the fusion proteins show tissue- and stage-specific patterns of activation. We show that these responses accurately reflect the presence of endogenous and exogenously added hormone, and that they can be modulated by nuclear receptor partner proteins. The amnioserosa, yolk, midgut and fat body, which play major roles in lipid storage, metabolism and developmental timing, were identified as frequent sites of nuclear receptor activity. We also see dynamic changes in activation that are indicative of sweeping changes in ligand and/or co-factor production. The screening of a small compound library using this system identified the angular psoralen angelicin and the insect growth regulator fenoxycarb as activators of the Ultraspiracle (USP) ligand-binding domain. These results demonstrate the utility of this system for the functional dissection of nuclear receptor pathways and for the development of new receptor agonists and antagonists that can be used to modulate metabolism and disease and to develop more effective means of insect control.

  2. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-04

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. Copyright © 2014, American Association for the Advancement of Science.

  3. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    Science.gov (United States)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  4. Benchmarking of small-signal dynamics of single-phase PLLs

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    Phase-looked Loop (PLL) is a critical component for the control and grid synchronization of grid-connected power converters. This paper presents a benchmarking study on the small-signal dynamics of three commonly used PLLs for single-phase converters, including enhanced PLL, second......-order generalized integrator based PLL, and the inverse-PLL. First, a unified small-signal model of those PLLs is established for comparing their dynamics. Then, a systematic design guideline for parameters tuning of the PLLs is formulated. To confirm the validity of theoretical analysis, nonlinear time...

  5. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna W.; Satyshur, Kenneth A.; Morales, Neydis Moreno; Forest, Katrina T. (UW)

    2016-02-01

    ABSTRACT

    Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacteriumRamlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, theR. tataouinensisbacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR fromAgrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems.

  6. MicroRNA-7/NF-κB signaling regulatory feedback circuit regulates gastric carcinogenesis

    Science.gov (United States)

    Zhao, Xiao-Di; Lu, Yuan-Yuan; Guo, Hao; Xie, Hua-Hong; He, Li-Jie; Shen, Gao-Fei; Zhou, Jin-Feng; Li, Ting; Hu, Si-Jun; Zhou, Lin; Han, Ya-Nan; Liang, Shu-Li; Wang, Xin; Wu, Kai-Chun; Shi, Yong-Quan; Nie, Yong-Zhan

    2015-01-01

    MicroRNAs play essential roles in gene expression regulation during carcinogenesis. Here, we investigated the role of miR-7 and the mechanism by which it is dysregulated in gastric cancer (GC). We used genome-wide screenings and identified RELA and FOS as novel targets of miR-7. Overexpression of miR-7 repressed RELA and FOS expression and prevented GC cell proliferation and tumorigenesis. These effects were clinically relevant, as low miR-7 expression was correlated with high RELA and FOS expression and poor survival in GC patients. Intriguingly, we found that miR-7 indirectly regulated RELA activation by targeting the IκB kinase IKKε. Furthermore, IKKε and RELA can repress miR-7 transcription, which forms a feedback circuit between miR-7 and nuclear factor κB (NF-κB) signaling. Additionally, we demonstrate that down-regulation of miR-7 may occur as a result of the aberrant activation of NF-κB signaling by Helicobacter pylori infection. These findings suggest that miR-7 may serve as an important regulator in GC development and progression. PMID:26261179

  7. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds

    Directory of Open Access Journals (Sweden)

    Zhenguo Ma

    2017-12-01

    Full Text Available During germination of barley (Hordeum vulgare L. seeds, important morphological and physiological changes take place, including development of organs and tissues and activation of metabolic pathways. Germination and dormancy of seeds are regulated by abscisic acid, gibberellins, reactive oxygen species (ROS, reactive nitrogen species (RNS and several other factors. Activities of ascorbate–glutathione cycle enzymes, responsible for scavenging ROS, strongly increase. Catalase and superoxide dismutase activities, also scavenging ROS, decrease at the onset of seed germination and then increase. With the increase in aerobic metabolism after radicle protrusion, the activities of the fermentation enzymes lactate and alcohol dehydrogenase decline rapidly. The RNS-scavenging activity of S-nitrosoglutathione reductase decreases in the course of seed germination, in concert with elevation of nitric oxide production and protein nitrosylation. This activity supports the role of RNS in regulating seed germination. Transcription of various genes at different phases of seed germination exhibits phase-specific changes. During imbibition, genes involved in cell wall metabolism are highly expressed; in the middle phase of seed germination before radicle protrusion, genes involved in amino acid synthesis, protein synthesis, and transport and nucleic acid synthesis are upregulated significantly, and after radicle protrusion, genes involved in photosynthetic metabolism are induced. In summary, signal transduction and metabolic regulation of seed germination involve diverse reactions and complex regulation at different levels of metabolic organization. Keywords: Seed germination, Reactive oxygen species, Reactive nitrogen species, Signal transduction, Gene expression

  8. Dynamic Interaction- and Phospho-Proteomics Reveal Lck as a Major Signaling Hub of CD147 in T Cells.

    Science.gov (United States)

    Supper, Verena; Hartl, Ingrid; Boulègue, Cyril; Ohradanova-Repic, Anna; Stockinger, Hannes

    2017-03-15

    Numerous publications have addressed CD147 as a tumor marker and regulator of cytoskeleton, cell growth, stress response, or immune cell function; however, the molecular functionality of CD147 remains incompletely understood. Using affinity purification, mass spectrometry, and phosphopeptide enrichment of isotope-labeled peptides, we examined the dynamic of the CD147 microenvironment and the CD147-dependent phosphoproteome in the Jurkat T cell line upon treatment with T cell stimulating agents. We identified novel dynamic interaction partners of CD147 such as CD45, CD47, GNAI2, Lck, RAP1B, and VAT1 and, furthermore, found 76 CD147-dependent phosphorylation sites on 57 proteins. Using the STRING protein network database, a network between the CD147 microenvironment and the CD147-dependent phosphoproteins was generated and led to the identification of key signaling hubs around the G proteins RAP1B and GNB1, the kinases PKCβ, PAK2, Lck, and CDK1, and the chaperone HSPA5. Gene ontology biological process term analysis revealed that wound healing-, cytoskeleton-, immune system-, stress response-, phosphorylation- and protein modification-, defense response to virus-, and TNF production-associated terms are enriched within the microenvironment and the phosphoproteins of CD147. With the generated signaling network and gene ontology biological process term grouping, we identify potential signaling routes of CD147 affecting T cell growth and function. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    Science.gov (United States)

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  10. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konuma, Tsuyoshi [Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology (United States); Harada, Erisa [Suntory Foundation for Life Sciences, Bioorganic Research Institute (Japan); Sugase, Kenji, E-mail: sugase@sunbor.or.jp, E-mail: sugase@moleng.kyoto-u.ac.jp [Kyoto University, Department of Molecular Engineering, Graduate School of Engineering (Japan)

    2015-12-15

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  11. p120-catenin differentially regulates cell migration by Rho-dependent intracellular and secreted signals

    DEFF Research Database (Denmark)

    Epifano, Carolina; Megias, Diego; Perez-Moreno, Mirna

    2014-01-01

    The adherens junction protein p120-catenin is implicated in the regulation of cadherin stability, cell migration and inflammatory responses in mammalian epithelial tissues. How these events are coordinated to promote wound repair is not understood. We show that p120 catenin regulates the intrinsic...... migratory properties of primary mouse keratinocytes, but also influences the migratory behavior of neighboring cells by secreted signals. These events are rooted in the ability of p120-catenin to regulate RhoA GTPase activity, which leads to a two-tiered control of cell migration. One restrains cell...... motility via an increase in actin stress fibers, reduction in integrin turnover and an increase in the robustness of focal adhesions. The other is coupled to the secretion of inflammatory cytokines including interleukin-24, which causally enhances randomized cell movements. Taken together, our results...

  12. Sonic hedgehog signaling regulates actin cytoskeleton via Tiam1-Rac1 cascade during spine formation.

    Science.gov (United States)

    Sasaki, Nobunari; Kurisu, Junko; Kengaku, Mineko

    2010-12-01

    The sonic hedgehog (Shh) pathway has essential roles in several processes during development of the vertebrate central nervous system (CNS). Here, we report that Shh regulates dendritic spine formation in hippocampal pyramidal neurons via a novel pathway that directly regulates the actin cytoskeleton. Shh signaling molecules Patched (Ptc) and Smoothened (Smo) are expressed in several types of postmitotic neurons, including cerebellar Purkinje cells and hippocampal pyramidal neurons. Knockdown of Smo induces dendritic spine formation in cultured hippocampal neurons independently of Gli-mediated transcriptional activity. Smo interacts with Tiam1, a guanine nucleotide exchange factor for Rac1, via its cytoplasmic C-terminal region. Inhibition of Tiam1 or Rac1 activity suppresses spine induction by Smo knockdown. Shh induces remodeling of the actin cytoskeleton independently of transcriptional activation in mouse embryonic fibroblasts. These findings demonstrate a novel Shh pathway that regulates the actin cytoskeleton via Tiam1-Rac1 activation. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Pten Regulates Retinal Amacrine Cell Number by Modulating Akt, Tgfβ, and Erk Signaling.

    Science.gov (United States)

    Tachibana, Nobuhiko; Cantrup, Robert; Dixit, Rajiv; Touahri, Yacine; Kaushik, Gaurav; Zinyk, Dawn; Daftarian, Narsis; Biernaskie, Jeff; McFarlane, Sarah; Schuurmans, Carol

    2016-09-07

    All tissues are genetically programmed to acquire an optimal size that is defined by total cell number and individual cellular dimensions. The retina contains stereotyped proportions of one glial and six neuronal cell types that are generated in overlapping waves. How multipotent retinal progenitors know when to switch from making one cell type to the next so that appropriate numbers of each cell type are generated is poorly understood. Pten is a phosphatase that controls progenitor cell proliferation and differentiation in several lineages. Here, using a conditional loss-of-function strategy, we found that Pten regulates retinal cell division and is required to produce the full complement of rod photoreceptors and amacrine cells in mouse. We focused on amacrine cell number control, identifying three downstream Pten effector pathways. First, phosphoinositide 3-kinase/Akt signaling is hyperactivated in Pten conditional knock-out (cKO) retinas, and misexpression of constitutively active Akt (Akt-CA) in retinal explants phenocopies the reduction in amacrine cell production observed in Pten cKOs. Second, Akt-CA activates Tgfβ signaling in retinal explants, which is a negative feedback pathway for amacrine cell production. Accordingly, Tgfβ signaling is elevated in Pten cKO retinas, and epistatic analyses placed Pten downstream of TgfβRII in amacrine cell number control. Finally, Pten regulates Raf/Mek/Erk signaling levels to promote the differentiation of all amacrine cell subtypes, which are each reduced in number in Pten cKOs. Pten is thus a positive regulator of amacrine cell production, acting via multiple downstream pathways, highlighting its diverse actions as a mediator of cell number control. Despite the importance of size for optimal organ function, how individual cell types are generated in correct proportions is poorly understood. There are several ways to control cell number, including readouts of organ function (e.g., secreted hormones reach functional

  14. High speed, wide dynamic range analog signal processing for avalanche photodiode

    CERN Document Server

    Walder, J P; Pangaud, P

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  15. High speed, wide dynamic range analog signal processing for avalanche photodiode

    International Nuclear Information System (INIS)

    Walder, J.P.; El Mamouni, Houmani; Pangaud, Patrick

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented

  16. High speed, wide dynamic range analog signal processing for avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Walder, J.P. E-mail: walder@in2p3.fr; El Mamouni, Houmani; Pangaud, Patrick

    2000-03-11

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  17. Nuclear Regulator Knowledge Management in a Dynamic Nuclear Industry Environment

    International Nuclear Information System (INIS)

    Turner, J.

    2016-01-01

    Full text: The paper outlines the experiences to date in developing mature knowledge management within the UK’s nuclear regulatory body The Office for Nuclear Regulation (ONR). In 2010 concerns over the loss of knowledge due to the age profile within the organization instigated a review of knowledge management and the development of a knowledge management initiative. Initially activities focused on knowledge capture but in order to move to through life knowledge transfer, knowledge management was then aligned with organizational resilience initiatives. A review of progress highlighted the need to better engage the whole organization to achieve the desired level of maturity for knowledge management. Knowledge management activities now cover organizational culture and environment and all aspects of organizational resilience. Benefits to date include clear understanding of core knowledge requirements, better specifications for recruitment and training and the ability to deploy new regulatory approaches. During the period of implementing the knowledge management programme ONR undertook several organizational changes in moving to become a separate statutory body. The UK nuclear industry was in a period of increased activity including the planning of new nuclear reactors. This dynamic environment caused challenges for embedding knowledge management within ONR which are discussed in the paper. (author

  18. Nutritional status-dependent endocannabinoid signalling regulates the integration of rat visceral information.

    Science.gov (United States)

    Khlaifia, Abdessattar; Matias, Isabelle; Cota, Daniela; Tell, Fabien

    2017-06-01

    Vagal sensory inputs transmit information from the viscera to brainstem neurones located in the nucleus tractus solitarii to set physiological parameters. These excitatory synapses exhibit a CB1 endocannabinoid-induced long-term depression (LTD) triggered by vagal fibre stimulation. We investigated the impact of nutritional status on long-term changes in this long-term synaptic plasticity. Food deprivation prevents LTD induction by disrupting CB1 receptor signalling. Short-term refeeding restores the capacity of vagal synapses to express LTD. Ghrelin and cholecystokinin, respectively released during fasting and refeeding, play a key role in the control of LTD via the activation of energy sensing pathways such as AMPK and the mTOR and ERK pathways. Communication form the viscera to the brain is essential to set physiological homoeostatic parameters but also to drive more complex behaviours such as mood, memory and emotional states. Here we investigated the impact of the nutritional status on long-term changes in excitatory synaptic transmission in the nucleus tractus solitarii, a neural hub integrating visceral signals. These excitatory synapses exhibit a CB1 endocannabinoid (eCB)-induced long-term depression (LTD) triggered by vagal fibre stimulation. Since eCB signalling is known to be an important component of homoeostatic regulation of the body and is regulated during various stressful conditions, we tested the hypothesis that food deprivation alters eCB signalling in central visceral afferent fibres. Food deprivation prevents eCB-LTD induction due to the absence of eCB signalling. This loss was reversed by blockade of ghrelin receptors. Activation of the cellular fuel sensor AMP-activated protein kinase or inhibition of the mechanistic target of rapamycin pathway abolished eCB-LTD in free-fed rats. Signals associated with energy surfeit, such as short-term refeeding, restore eCB-LTD induction, which in turn requires activation of cholecystokinin receptors and

  19. Neuronal RING finger protein 11 (RNF11 regulates canonical NF-κB signaling

    Directory of Open Access Journals (Sweden)

    Pranski Elaine L

    2012-04-01

    Full Text Available Abstract Background The RING domain-containing protein RING finger protein 11 (RNF11 is a member of the A20 ubiquitin-editing protein complex and modulates peripheral NF-κB signaling. RNF11 is robustly expressed in neurons and colocalizes with a population of α-synuclein-positive Lewy bodies and neurites in Parkinson disease patients. The NF-κB pathway has an important role in the vertebrate nervous system, where the absence of NF-κB activity during development can result in learning and memory deficits, whereas chronic NF-κB activation is associated with persistent neuroinflammation. We examined the functional role of RNF11 with respect to canonical NF-κB signaling in neurons to gain understanding of the tight association of inflammatory pathways, including NF-κB, with the pathogenesis of neurodegenerative diseases. Methods and results Luciferase assays were employed to assess NF-κB activity under targeted short hairpin RNA (shRNA knockdown of RNF11 in human neuroblastoma cells and murine primary neurons, which suggested that RNF11 acts as a negative regulator of canonical neuronal NF-κB signaling. These results were further supported by analyses of p65 translocation to the nucleus following depletion of RNF11. Coimmunoprecipitation experiments indicated that RNF11 associates with members of the A20 ubiquitin-editing protein complex in neurons. Site-directed mutagenesis of the myristoylation domain, which is necessary for endosomal targeting of RNF11, altered the impact of RNF11 on NF-κB signaling and abrogated RNF11’s association with the A20 ubiquitin-editing protein complex. A partial effect on canonical NF-κB signaling and an association with the A20 ubiquitin-editing protein complex was observed with mutagenesis of the PPxY motif, a proline-rich region involved in Nedd4-like protein interactions. Last, shRNA-mediated reduction of RNF11 in neurons and neuronal cell lines elevated levels of monocyte chemoattractant protein 1 and

  20. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.

    Science.gov (United States)

    Wang, Dashan

    2018-06-01

    The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.

  1. The Ihh signal is essential for regulating proliferation and hypertrophy of cultured chicken chondrocytes.

    Science.gov (United States)

    Ma, R S; Zhou, Z L; Luo, J W; Zhang, H; Hou, J F

    2013-10-01

    The Indian hedgehog (Ihh) signal plays a vital role in regulating proliferation and hypertrophy of chondrocytes. To investigate its function in postnatal chicken (Gallus gallus) chondrocytes, cyclopamine was used to inhibit Ihh signaling. The MTT and ALP assays revealed the downgrade-proliferation and upgrade-differentiation of chondrocytes. To further elucidate the mechanism, the mRNA expression levels of Ihh, parathyroid hormone related protein (PTHrP), Gli-2, Bcl-2, Bone Morphogenetic Protein 6 (BMP-6), type X collagen (Col X) and type II collagen (Col II) were detected by quantitative real-time RT-PCR analysis, and the protein expressions of Ihh, Col X, and Col II were determined using Western blot analysis. After the Ihh signal was blocked, chondrocytes demonstrated high expression levels of PTHrP and Col X and low levels of Gli-2, BMP-6, Bcl-2 and Col II although Ihh expression was increased. Based on these results, the Ihh signal is essential for balancing chicken chondrocyte proliferation and hypertrophy, and the regulatory function of PTHrP acts in an Ihh-dependent manner. Furthermore, BMP-6 and Bcl-2 played roles in maintaining the development of chondrocytes and may be downstream regulatory factors of Ihh signaling. © 2013.

  2. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    International Nuclear Information System (INIS)

    Krauss, Robert S.

    2010-01-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  3. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Robert S., E-mail: Robert.Krauss@mssm.edu [Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  4. TOR Complex 2-Ypk1 Signaling Maintains Sphingolipid Homeostasis by Sensing and Regulating ROS Accumulation

    Directory of Open Access Journals (Sweden)

    Brad J. Niles

    2014-02-01

    Full Text Available Reactive oxygen species (ROS are produced during normal metabolism and can function as signaling molecules. However, ROS at elevated levels can damage cells. Here, we identify the conserved target of rapamycin complex 2 (TORC2/Ypk1 signaling module as an important regulator of ROS in the model eukaryotic organism, S. cerevisiae. We show that TORC2/Ypk1 suppresses ROS produced both by mitochondria as well as by nonmitochondrial sources, including changes in acidification of the vacuole. Furthermore, we link vacuole-related ROS to sphingolipids, essential components of cellular membranes, whose synthesis is also controlled by TORC2/Ypk1 signaling. In total, our data reveal that TORC2/Ypk1 act within a homeostatic feedback loop to maintain sphingolipid levels and that ROS are a critical regulatory signal within this system. Thus, ROS sensing and signaling by TORC2/Ypk1 play a central physiological role in sphingolipid biosynthesis and in the maintenance of cell growth and viability.

  5. Microwave dynamic large signal waveform characterization of advanced InGaP HBT for power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lixin; Jin Zhi; Liu Xinyu, E-mail: zhaolixin@ime.ac.c [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2009-12-15

    In wireless mobile communications and wireless local area networks (WLAN), advanced InGaP HBT with power amplifiers are key components. In this paper, the microwave large signal dynamic waveform characteristics of an advanced InGaP HBT are investigated experimentally for 5.8 GHz power amplifier applications. The microwave large signal waveform distortions at various input power levels, especially at large signal level, are investigated and the reasons are analyzed. The output power saturation is also explained. These analyses will be useful for power amplifier designs. (semiconductor devices)

  6. Fluoxetine Regulates Neurogenesis In Vitro Through Modulation of GSK-3β/β-Catenin Signaling

    Science.gov (United States)

    Hui, Jiaojie; Zhang, Jianping; Kim, Hoon; Tong, Chang; Ying, Qilong; Li, Zaiwang; Mao, Xuqiang; Shi, Guofeng; Yan, Jie; Zhang, Zhijun

    2015-01-01

    Background: It is generally accepted that chronic treatment with antidepressants increases hippocampal neurogenesis, but the molecular mechanisms underlying their effects are unknown. Recently, glycogen synthase kinase-3 beta (GSK-3β)/β-catenin signaling was shown to be involved in the mechanism of how antidepressants might influence hippocampal neurogenesis. Methods: The aim of this study was to determine whether GSK-3β/β-catenin signaling is involved in the alteration of neurogenesis as a result of treatment with fluoxetine, a selective serotonin reuptake inhibitor. The mechanisms involved in fluoxetine’s regulation of GSK-3β/β-catenin signaling pathway were also examined. Results: Our results demonstrated that fluoxetine increased the proliferation of embryonic neural precursor cells (NPCs) by up-regulating the phosphorylation of Ser9 on GSK-3β and increasing the level of nuclear β-catenin. The overexpression of a stabilized β-catenin protein (ΔN89 β-catenin) significantly increased NPC proliferation, while inhibition of β-catenin expression in NPCs led to a significant decrease in the proliferation and reduced the proliferative effects induced by fluoxetine. The effects of fluoxetine-induced up-regulation of both phosphorylation of Ser9 on GSK-3β and nuclear β-catenin were significantly prevented by the 5-hydroxytryptamine-1A (5-HT1A) receptor antagonist WAY-100635. Conclusions: The results demonstrate that fluoxetine may increase neurogenesis via the GSK-3β/β-catenin signaling pathway that links postsynaptic 5-HT1A receptor activation. PMID:25522429

  7. FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size.

    Directory of Open Access Journals (Sweden)

    Camille I Petersen

    2011-06-01

    Full Text Available The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP. Despite the great variation in the number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is known about the development of this structure. Here, we report that a balance between Sprouty (Spry genes and Fgf10, which respectively antagonize and activate receptor tyrosine kinase (RTK signaling, regulates the number of CVPs. Deletion of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and Spry1(-/-;Spry2(-/- embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive, mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian species may be linked to levels of signaling by the FGF pathway.

  8. Zebrafish foxo3b negatively regulates canonical Wnt signaling to affect early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Xun-wei Xie

    Full Text Available FOXO genes are involved in many aspects of development and vascular homeostasis by regulating cell apoptosis, proliferation, and the control of oxidative stress. In addition, FOXO genes have been showed to inhibit Wnt/β-catenin signaling by competing with T cell factor to bind to β-catenin. However, how important of this inhibition in vivo, particularly in embryogenesis is still unknown. To demonstrate the roles of FOXO genes in embryogenesis will help us to further understand their relevant physiological functions. Zebrafish foxo3b gene, an orthologue of mammalian FOXO3, was expressed maternally and distributed ubiquitously during early embryogenesis and later restricted to brain. After morpholino-mediated knockdown of foxo3b, the zebrafish embryos exhibited defects in axis and neuroectoderm formation, suggesting its critical role in early embryogenesis. The embryo-developmental marker gene staining at different stages, phenotype analysis and rescue assays revealed that foxo3b acted its role through negatively regulating both maternal and zygotic Wnt/β-catenin signaling. Moreover, we found that foxo3b could interact with zebrafish β-catenin1 and β-catenin2 to suppress their transactivation in vitro and in vivo, further confirming its role relevant to the inhibition of Wnt/β-catenin signaling. Taken together, we revealed that foxo3b played a very important role in embryogenesis and negatively regulated maternal and zygotic Wnt/β-catenin signaling by directly interacting with both β-catenin1 and β-catenin2. Our studies provide an in vivo model for illustrating function of FOXO transcription factors in embryogenesis.

  9. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis.

    Science.gov (United States)

    Ishimaru, Yoshiyasu; Tomonari, Sayuri; Matsuoka, Yuji; Watanabe, Takahito; Miyawaki, Katsuyuki; Bando, Tetsuya; Tomioka, Kenji; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro

    2016-05-17

    Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect's life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb'Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb'jhamt In contrast, JH production is up-regulated by Decapentaplegic (Gb'Dpp) and Glass-bottom boat/60A (Gb'Gbb) signaling that occurs as part of the transcriptional activation of Gb'jhamt Gb'Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb'myo expression is suppressed, the activation of Gb'jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb'myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb'myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development.

  10. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Muñoz

    2015-03-01

    Full Text Available Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30 and channels formed by pannexins (Panx-1. The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS and neuronal NOS (nNOS are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in

  11. N-terminal nesprin-2 variants regulate β-catenin signalling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiuping; Minaisah, Rose-Marie; Ferraro, Elisa; Li, Chen; Porter, Lauren J.; Zhou, Can; Gao, Fang; Zhang, Junyi; Rajgor, Dipen; Autore, Flavia; Shanahan, Catherine M.; Warren, Derek T., E-mail: derek.warren@kcl.ac.uk

    2016-07-15

    The spatial compartmentalisation of biochemical signalling pathways is essential for cell function. Nesprins are a multi-isomeric family of proteins that have emerged as signalling scaffolds, herein, we investigate the localisation and function of novel nesprin-2 N-terminal variants. We show that these nesprin-2 variants display cell specific distribution and reside in both the cytoplasm and nucleus. Immunofluorescence microscopy revealed that nesprin-2 N-terminal variants colocalised with β-catenin at cell-cell junctions in U2OS cells. Calcium switch assays demonstrated that nesprin-2 and β-catenin are lost from cell-cell junctions in low calcium conditions whereas emerin localisation at the NE remained unaltered, furthermore, an N-terminal fragment of nesprin-2 was sufficient for cell-cell junction localisation and interacted with β-catenin. Disruption of these N-terminal nesprin-2 variants, using siRNA depletion resulted in loss of β-catenin from cell-cell junctions, nuclear accumulation of active β-catenin and augmented β-catenin transcriptional activity. Importantly, we show that U2OS cells lack nesprin-2 giant, suggesting that the N-terminal nesprin-2 variants regulate β-catenin signalling independently of the NE. Together, these data identify N-terminal nesprin-2 variants as novel regulators of β-catenin signalling that tether β-catenin to cell-cell contacts to inhibit β-catenin transcriptional activity. - Highlights: • N-terminal nesprin-2 variants display cell specific expression patterns. • N-terminal spectrin repeats of nesprin-2 interact with β-catenin. • N-terminal nesprin-2 variants scaffold β-catenin at cell-cell junctions.. • Nesprin-2 variants play multiple roles in β-catenin signalling.

  12. Emotion regulation and the dynamics of feelings: A conceptual and methodological framework [IF: 3.3

    NARCIS (Netherlands)

    Hoeksma, J.B.; Oosterlaan, J.; Schipper, E.M.

    2004-01-01

    The emotional system is defined as a dynamical system that has neurological and biochemical structures that force the system to change in a regular and consistent way. This dynamic view allows for an alternative definition of emotion regulation, which describes when emotion regulation is needed,

  13. Emotion Regulation and the Dynamics of Feelings: A Conceptual and Methodological Framework

    Science.gov (United States)

    Hoeksma, Jan B.; Oosterlaan, Jaap; Schipper, Eline M.

    2004-01-01

    The emotional system is defined as a dynamical system that has neurological and biochemical structures that force the system to change in a regular and consistent way. This dynamic view allows for an alternative definition of emotion regulation, which describes when emotion regulation is needed, identifies its goal, and illustrates how regulation…

  14. Emotion regulation and the dynamic of feelings: A conceptual and methodological framework

    NARCIS (Netherlands)

    Hoeksma, J.B.; Oosterlaan, J.; Schipper, E.

    2004-01-01

    The emotional system is defined as a dynamical system that has neurological and biochemical structures that force the system to change in a regular and consistent way. This dynamic view allows for an alternative definition of emotion regulation, which describes when emotion regulation is needed,

  15. Na/K-ATPase regulates bovine sperm capacitation through raft- and non-raft-mediated signaling mechanisms.

    Science.gov (United States)

    Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C

    2017-11-01

    Highly dynamic lipid microdomains (rafts) in the sperm plasma membrane contain several signaling proteins that regulate sperm capacitation. Na/K-ATPase isoforms (testis-specific isoform ATP1A4 and ubiquitous isoform ATP1A1) are abundant in bovine sperm plasma membrane. We previously reported that incubation of bovine sperm with ouabain, a specific Na/K-ATPase ligand, induced tyrosine phosphorylation of several sperm proteins during capacitation. The objective of this study was to investigate the roles of lipid rafts and non-rafts in Na/K-ATPase enzyme activity and signaling during bovine sperm capacitation. Content of ATP1A4 and, to a lesser extent, ATP1A1 was increased in raft and non-raft fractions of capacitated sperm, although non-raft enzyme activities of both isoforms were higher than the corresponding activities in rafts from capacitated sperm. Yet, ATP1A4 was the predominant isoform responsible for total Na/K-ATPase activity in both rafts and non-rafts. A comparative increase in phosphorylation of signaling molecules was observed in both raft (CAV1) and non-raft (EGFR and ERK1/2) membrane fractions during capacitation. Although SRC was phosphorylated in both membrane fractions, the non-raft fraction possessed more of this activated form. We also inferred, by immunoprecipitation, that ATP1A4 interacted with CAV1 and EGFR in the raft fraction, whereas interactions of ATP1A4 with SRC, EGFR, and ERK1/2 occurred in the non-raft fraction of ouabain-capacitated sperm; conversely, ATP1A1 interacted only with CAV1 in both fractions of uncapacitated and capacitated sperm. In conclusion, both raft and non-raft cohorts of Na/K-ATPase isoforms contributed to phosphorylation of signaling molecules during bovine sperm capacitation. © 2017 Wiley Periodicals, Inc.

  16. Stat5 signaling specifies basal versus stress erythropoietic responses through distinct binary and graded dynamic modalities.

    Directory of Open Access Journals (Sweden)

    Ermelinda Porpiglia

    2012-08-01

    Full Text Available Erythropoietin (Epo-induced Stat5 phosphorylation (p-Stat5 is essential for both basal erythropoiesis and for its acceleration during hypoxic stress. A key challenge lies in understanding how Stat5 signaling elicits distinct functions during basal and stress erythropoiesis. Here we asked whether these distinct functions might be specified by the dynamic behavior of the Stat5 signal. We used flow cytometry to analyze Stat5 phosphorylation dynamics in primary erythropoietic tissue in vivo and in vitro, identifying two signaling modalities. In later (basophilic erythroblasts, Epo stimulation triggers a low intensity but decisive, binary (digital p-Stat5 signal. In early erythroblasts the binary signal is superseded by a high-intensity graded (analog p-Stat5 response. We elucidated the biological functions of binary and graded Stat5 signaling using the EpoR-HM mice, which express a "knocked-in" EpoR mutant lacking cytoplasmic phosphotyrosines. Strikingly, EpoR-HM mice are restricted to the binary signaling mode, which rescues these mice from fatal perinatal anemia by promoting binary survival decisions in erythroblasts. However, the absence of the graded p-Stat5 response in the EpoR-HM mice prevents them from accelerating red cell production in response to stress, including a failure to upregulate the transferrin receptor, which we show is a novel stress target. We found that Stat5 protein levels decline with erythroblast differentiation, governing the transition from high-intensity graded signaling in early erythroblasts to low-intensity binary signaling in later erythroblasts. Thus, using exogenous Stat5, we converted later erythroblasts into high-intensity graded signal transducers capable of eliciting a downstream stress response. Unlike the Stat5 protein, EpoR expression in erythroblasts does not limit the Stat5 signaling response, a non-Michaelian paradigm with therapeutic implications in myeloproliferative disease. Our findings show how the

  17. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Nak-Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yang, Mi-So [Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Song, Du-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Baek, E-mail: ebbyun80@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Hong, E-mail: ehbyun80@kongju.ac.k [Department of Food Science and Technology, Kongju National University, Yesan 340-800 (Korea, Republic of)

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  18. Phase dynamics of complex-valued neural networks and its application to traffic signal control.

    Science.gov (United States)

    Nishikawa, Ikuko; Iritani, Takeshi; Sakakibara, Kazutoshi; Kuroe, Yasuaki

    2005-01-01

    Complex-valued Hopfield networks which possess the energy function are analyzed. The dynamics of the network with certain forms of an activation function is de-composable into the dynamics of the amplitude and phase of each neuron. Then the phase dynamics is described as a coupled system of phase oscillators with a pair-wise sinusoidal interaction. Therefore its phase synchronization mechanism is useful for the area-wide offset control of the traffic signals. The computer simulations show the effectiveness under the various traffic conditions.

  19. Trihydrophobin 1 Phosphorylation by c-Src Regulates MAPK/ERK Signaling and Cell Migration

    Science.gov (United States)

    Wu, Weibin; Sun, Zhichao; Wu, Jingwen; Peng, Xiaomin; Gan, Huacheng; Zhang, Chunyi; Ji, Lingling; Xie, Jianhui; Zhu, Haiyan; Ren, Shifang

    2012-01-01

    c-Src activates Ras-MAPK/ERK signaling pathway and regulates cell migration, while trihydrophobin 1 (TH1) inhibits MAPK/ERK activation and cell migration through interaction with A-Raf and PAK1 and inhibiting their kinase activities. Here we show that c-Src interacts with TH1 by GST-pull down assay, coimmunoprecipitation and confocal microscopy assay. The interaction leads to phosphorylation of TH1 at Tyr-6 in vivo and in vitro. Phosphorylation of TH1 decreases its association with A-Raf and PAK1. Further study reveals that Tyr-6 phosphorylation of TH1 reduces its inhibition on MAPK/ERK signaling, enhances c-Src mediated cell migration. Moreover, induced tyrosine phosphorylation of TH1 has been found by EGF and estrogen treatments. Taken together, our findings demonstrate a novel mechanism for the comprehensive regulation of Ras/Raf/MEK/ERK signaling and cell migration involving tyrosine phosphorylation of TH1 by c-Src. PMID:22238675

  20. The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling.

    Science.gov (United States)

    Giorgetti-Peraldi, S; Murdaca, J; Mas, J C; Van Obberghen, E

    2001-07-05

    Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and angiogenesis. Activation of VEGF receptors leads to the recruitment of SH2 containing proteins which link the receptors to the activation of signaling pathways. Here we report that Grb10, an adapter protein of which the biological role remains unknown, is tyrosine phosphorylated in response to VEGF in endothelial cells (HUVEC) and in 293 cells expressing the VEGF receptor KDR. An intact SH2 domain is required for Grb10 tyrosine phosphorylation in response to VEGF, and this phosphorylation is mediated in part through the activation of Src. In HUVEC, VEGF increases Grb10 mRNA level. Expression of Grb10 in HUVEC or in KDR expressing 293 cells results in an increase in the amount and in the tyrosine phosphorylation of KDR. In 293 cells, this is correlated with the activation of signaling molecules, such as MAP kinase. By expressing mutants of Grb10, we found that the positive action of Grb10 is independent of its SH2 domain. Moreover, these Grb10 effects on KDR seem to be specific since Grb10 has no effect on the insulin receptor, and Grb2, another adapter protein, does not mimic the effect of Grb10 on KDR. In conclusion, we propose that VEGF up-regulates Grb10 level, which in turn increases KDR molecules, suggesting that Grb10 could be involved in a positive feedback loop in VEGF signaling.

  1. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor.

    Science.gov (United States)

    Wang, Feifei; Wang, Lijuan; Qiao, Longfei; Chen, Jiacai; Pappa, Maria Belen; Pei, Haixia; Zhang, Tao; Chang, Caren; Dong, Chun-Hai

    2017-11-01

    The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.

  2. NRAGE induces β-catenin/Arm O-GlcNAcylation and negatively regulates Wnt signaling

    International Nuclear Information System (INIS)

    Chen, Yuxin; Jin, Lei; Xue, Bin; Jin, Dong; Sun, Fenyong; Wen, Chuanjun

    2017-01-01

    The Wnt pathway is crucial for animal development, as well as tumor formation. Understanding the regulation of Wnt signaling will help to elucidate the mechanism of the cell cycle, cell differentiation and tumorigenesis. It is generally accepted that in response to Wnt signals, β-catenin accumulates in the cytoplasm and is imported into the nucleus where it recruits LEF/TCF transcription factors to activate the expression of target genes. In this study, we report that human NRAGE, a neurotrophin receptor p75 (p75NTR) binding protein, markedly suppresses the expression of genes activated by the Wnt pathway. Consistent with this finding, loss of function of NRAGE by RNA interference (RNAi) activates the Wnt pathway. Moreover, NRAGE suppresses the induction of axis duplication by microinjected β-catenin in Xenopus embryos. To our surprise, NRAGE induces nuclear localization of β-catenin and increases its DNA binding ability. Further studies reveal that NRAGE leads to the modification of β-catenin/Arm with O-linked beta-N-acetylglucosamine (O-GlcNAc), and failure of the association between β-catenin/Arm and pygopus(pygo) protein, which is required for transcriptional activation of Wnt target genes. Therefore, our findings suggest a novel mechanism for regulating Wnt signaling. - Highlights: • NRAGE suppresses the expressions of Wnt pathway downstream genes. • NRAGE induces nuclear localization of β-catenin and increases its DNA binding ability. • NRAGE activity leads to the O-GlcNAcylation of β-catenin.

  3. Crosstalk between KCNK3-Mediated Ion Current and Adrenergic Signaling Regulates Adipose Thermogenesis and Obesity.

    Science.gov (United States)

    Chen, Yi; Zeng, Xing; Huang, Xuan; Serag, Sara; Woolf, Clifford J; Spiegelman, Bruce M

    2017-11-02

    Adrenergic stimulation promotes lipid mobilization and oxidation in brown and beige adipocytes, where the harnessed energy is dissipated as heat in a process known as adaptive thermogenesis. The signaling cascades and energy-dissipating pathways that facilitate thermogenesis have been extensively described, yet little is known about the counterbalancing negative regulatory mechanisms. Here, we identify a two-pore-domain potassium channel, KCNK3, as a built-in rheostat negatively regulating thermogenesis. Kcnk3 is transcriptionally wired into the thermogenic program by PRDM16, a master regulator of thermogenesis. KCNK3 antagonizes norepinephrine-induced membrane depolarization by promoting potassium efflux in brown adipocytes. This limits calcium influx through voltage-dependent calcium channels and dampens adrenergic signaling, thereby attenuating lipolysis and thermogenic respiration. Adipose-specific Kcnk3 knockout mice display increased energy expenditure and are resistant to hypothermia and obesity. These findings uncover a critical K + -Ca 2+ -adrenergic signaling axis that acts to dampen thermogenesis, maintain tissue homeostasis, and reveal an electrophysiological regulatory mechanism of adipocyte function. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling.

    Science.gov (United States)

    Bresson, Laura; Faraldo, Marisa M; Di-Cicco, Amandine; Quintanilla, Miguel; Glukhova, Marina A; Deugnier, Marie-Ange

    2018-02-21

    Stem cells (SCs) drive mammary development, giving rise postnatally to an epithelial bilayer composed of luminal and basal myoepithelial cells. Dysregulation of SCs is thought to be at the origin of certain breast cancers; however, the molecular identity of SCs and the factors regulating their function remain poorly defined. We identified the transmembrane protein podoplanin (Pdpn) as a specific marker of the basal compartment, including multipotent SCs, and found Pdpn localized at the basal-luminal interface. Embryonic deletion of Pdpn targeted to basal cells diminished basal and luminal SC activity and affected the expression of several Wnt/β-catenin signaling components in basal cells. Moreover, Pdpn loss attenuated mammary tumor formation in a mouse model of β-catenin-induced breast cancer, limiting tumor-initiating cell expansion and promoting molecular features associated with mesenchymal-to-epithelial cell transition. In line with the loss-of-function data, we demonstrated that mechanistically Pdpn enhances Wnt/β-catenin signaling in mammary basal cells. Overall, this study uncovers a role for Pdpn in mammary SC function and, importantly, identifies Pdpn as a new regulator of Wnt/β-catenin signaling, a key pathway in mammary development and tumorigenesis. © 2018. Published by The Company of Biologists Ltd.

  5. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    2008-03-01

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  6. Structural basis of SUFU–GLI interaction in human Hedgehog signalling regulation

    International Nuclear Information System (INIS)

    Cherry, Amy L.; Finta, Csaba; Karlström, Mikael; Jin, Qianren; Schwend, Thomas; Astorga-Wells, Juan; Zubarev, Roman A.; Del Campo, Mark; Criswell, Angela R.; Sanctis, Daniele de; Jovine, Luca; Toftgård, Rune

    2013-01-01

    Crystal and small-angle X-ray scattering structures of full-length human SUFU alone and in complex with the conserved SYGHL motif from GLI transcription factors show major conformational changes associated with binding and reveal an intrinsically disordered region crucial for pathway activation. Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU–GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU–GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics

  7. Acetylbritannilactone Modulates Vascular Endothelial Growth Factor Signaling and Regulates Angiogenesis in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jingshan Zhao

    Full Text Available The present study was conducted to determine the effects of 1-O-acetylbritannilactone (ABL, a compound extracted from Inula britannica L., on vascular endothelial growth factor (VEGF signaling and angiogenesis in endothelial cells (ECs. We showed that ABL promotes VEGF-induced cell proliferation, growth, migration, and tube formation in cultured human ECs. Furthermore, the modulatory effect of ABL on VEGF-induced Akt, MAPK p42/44, and p38 phosphorylation, as well as on upstream VEGFR-2 phosphorylation, were associated with VEGF-dependent Matrigel angiogenesis in vivo. In addition, animals treated with ABL (26 mg/kg/day recovered blood flow significantly earlier than control animals, suggesting that ABL affects ischemia-mediated angiogenesis and arteriogenesis in vivo. Finally, we demonstrated that ABL strongly reduced the levels of VEGFR-2 on the cell surface, enhanced VEGFR-2 endocytosis, which consistent with inhibited VE-cadherin, a negative regulator of VEGF signaling associated with VEGFR-2 complex formation, but did not alter VE-cadherin or VEGFR-2 expression in ECs. Our results suggest that ABL may serve as a novel therapeutic intervention for various cardiovascular diseases, including chronic ischemia, by regulating VEGF signaling and modulating angiogenesis.

  8. Epidermal wound repair is regulated by the planar cell polarity signaling pathway.

    Science.gov (United States)

    Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A; Murdoch, Jennifer N; Humbert, Patrick O; Parekh, Vishwas; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M; Jane, Stephen M

    2010-07-20

    The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects, and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3(-)(/-) mice, we identified RhoGEF19, a homolog of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerization, cellular polarity, and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling and broadly implicate this pathway in epidermal repair. (c) 2010 Elsevier Inc. All rights reserved.

  9. Fibroblast growth factor signaling potentiates VE-cadherin stability at adherens junctions by regulating SHP2.

    Directory of Open Access Journals (Sweden)

    Kunihiko Hatanaka

    Full Text Available The fibroblast growth factor (FGF system plays a critical role in the maintenance of vascular integrity via enhancing the stability of VE-cadherin at adherens junctions. However, the precise molecular mechanism is not well understood. In the present study, we aimed to investigate the detailed mechanism of FGF regulation of VE-cadherin function that leads to endothelial junction stabilization.In vitro studies demonstrated that the loss of FGF signaling disrupts the VE-cadherin-catenin complex at adherens junctions by increasing tyrosine phosphorylation levels of VE-cadherin. Among protein tyrosine phosphatases (PTPs known to be involved in the maintenance of the VE-cadherin complex, suppression of FGF signaling reduces SHP2 expression levels and SHP2/VE-cadherin interaction due to accelerated SHP2 protein degradation. Increased endothelial permeability caused by FGF signaling inhibition was rescued by SHP2 overexpression, indicating the critical role of SHP2 in the maintenance of endothelial junction integrity.These results identify FGF-dependent maintenance of SHP2 as an important new mechanism controlling the extent of VE-cadherin tyrosine phosphorylation, thereby regulating its presence in adherens junctions and endothelial permeability.

  10. No special K! A signal detection framework for the strategic regulation of memory accuracy.

    Science.gov (United States)

    Higham, Philip A

    2007-02-01

    Two experiments investigated criterion setting and metacognitive processes underlying the strategic regulation of accuracy on the Scholastic Aptitude Test (SAT) using Type-2 signal detection theory (SDT). In Experiment 1, report bias was manipulated by penalizing participants either 0.25 (low incentive) or 4 (high incentive) points for each error. Best guesses to unanswered items were obtained so that Type-2 signal detection indices of discrimination and bias could be calculated. The same incentive manipulation was used in Experiment 2, only the test was computerized, confidence ratings were taken so that receiver operating characteristic (ROC) curves could be generated, and feedback was manipulated. The results of both experiments demonstrated that SDT provides a viable alternative to A. Koriat and M. Goldsmith's (1996c) framework of monitoring and control and reveals information about the regulation of accuracy that their framework does not. For example, ROC analysis indicated that the threshold model implied by formula scoring is inadequate. Instead, performance on the SAT should be modeled with an equal-variance Gaussian, Type-2 signal detection model. ((c) 2007 APA, all rights reserved).

  11. Structural basis of SUFU–GLI interaction in human Hedgehog signalling regulation

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Amy L.; Finta, Csaba; Karlström, Mikael; Jin, Qianren; Schwend, Thomas [Karolinska Institutet, Novum, Hälsovägen 7, SE-141 83 Huddinge (Sweden); Astorga-Wells, Juan [Karolinska Institutet, Scheeles väg 2, SE-171 77 Stockholm (Sweden); Biomotif AB, Enhagsvägen 7, SE-182 12 Danderyd (Sweden); Zubarev, Roman A. [Karolinska Institutet, Scheeles väg 2, SE-171 77 Stockholm (Sweden); Del Campo, Mark; Criswell, Angela R. [Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381 (United States); Sanctis, Daniele de [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Jovine, Luca, E-mail: luca.jovine@ki.se; Toftgård, Rune, E-mail: luca.jovine@ki.se [Karolinska Institutet, Novum, Hälsovägen 7, SE-141 83 Huddinge (Sweden)

    2013-12-01

    Crystal and small-angle X-ray scattering structures of full-length human SUFU alone and in complex with the conserved SYGHL motif from GLI transcription factors show major conformational changes associated with binding and reveal an intrinsically disordered region crucial for pathway activation. Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU–GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, inc