WorldWideScience

Sample records for regulating nk cell

  1. NK Cell Subtypes as Regulators of Autoimmune Liver Disease

    Directory of Open Access Journals (Sweden)

    Guohui Jiao

    2016-01-01

    Full Text Available As major components of innate immunity, NK cells not only exert cell-mediated cytotoxicity to destroy tumors or infected cells, but also act to regulate the functions of other cells in the immune system by secreting cytokines and chemokines. Thus, NK cells provide surveillance in the early defense against viruses, intracellular bacteria, and cancer cells. However, the effecter function of NK cells must be exquisitely controlled to prevent inadvertent attack against normal “self” cells. In an organ such as the liver, where the distinction between immunotolerance and immune defense against routinely processed pathogens is critical, the plethora of NK cells has a unique role in the maintenance of homeostasis. Once self-tolerance is broken, autoimmune liver disease resulted. NK cells act as a “two-edged weapon” and even play opposite roles with both regulatory and inducer activities in the hepatic environment. That is, NK cells act not only to produce inflammatory cytokines and chemokines, but also to alter the proliferation and activation of associated lymphocytes. However, the precise regulatory mechanisms at work in autoimmune liver diseases remain to be identified. In this review, we focus on recent research with NK cells and their potential role in the development of autoimmune liver disease.

  2. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    Science.gov (United States)

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  3. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  4. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma.

    Science.gov (United States)

    Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-Ichiro

    2015-03-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1 + CD11b + Ly6G med Ly6C med MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27 + CD11b + NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14 + HLA-DR - and CD14 - HLA-DR - MDSC) in NHL patients and found that higher IL-10-producing CD14 + HLA-DR - MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma.

  5. Lymphocytes Negatively Regulate NK Cell Activity via Qa-1b following Viral Infection

    Directory of Open Access Journals (Sweden)

    Haifeng C. Xu

    2017-11-01

    Full Text Available NK cells can reduce anti-viral T cell immunity during chronic viral infections, including infection with the lymphocytic choriomeningitis virus (LCMV. However, regulating factors that maintain the equilibrium between productive T cell and NK cell immunity are poorly understood. Here, we show that a large viral load resulted in inhibition of NK cell activation, which correlated with increased expression of Qa-1b, a ligand for inhibitory NK cell receptors. Qa-1b was predominantly upregulated on B cells following LCMV infection, and this upregulation was dependent on type I interferons. Absence of Qa-1b resulted in increased NK cell-mediated regulation of anti-viral T cells following viral infection. Consequently, anti-viral T cell immunity was reduced in Qa-1b- and NKG2A-deficient mice, resulting in increased viral replication and immunopathology. NK cell depletion restored anti-viral immunity and virus control in the absence of Qa-1b. Taken together, our findings indicate that lymphocytes limit NK cell activity during viral infection in order to promote anti-viral T cell immunity.

  6. Resident Peritoneal NK cells

    Science.gov (United States)

    Gonzaga, Rosemary; Matzinger, Polly; Perez-Diez, Ainhoa

    2011-01-01

    Here we describe a new population of NK cells that reside in the normal, un-inflamed peritoneal cavity. Phenotypically, they share some similarities with the small population of CD49b negative, CD27 positive immature splenic NK cells, and liver NK cells but differ in their expression of CD62L, TRAIL and EOMES. Functionally, the peritoneal NK cells resemble the immature splenic NK cells in their production of IFN-γ, GM-CSF and TNF-α and in the killing of YAC-1 target cells. We also found that the peritoneum induces different behavior in mature and immature splenic NK cells. When transferred intravenously into RAGγcKO mice, both populations undergo homeostatic proliferation in the spleen, but only the immature splenic NK cells, are able to reach the peritoneum. When transferred directly into the peritoneum, the mature NK cells survive but do not divide, while the immature NK cells proliferate profusely. These data suggest that the peritoneum is not only home to a new subset of tissue resident NK cells but that it differentially regulates the migration and homeostatic proliferation of immature versus mature NK cells. PMID:22079985

  7. Exercise-Dependent Regulation of NK Cells in Cancer Protection

    DEFF Research Database (Denmark)

    Idorn, Manja; Hojman, Pernille

    2016-01-01

    Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we...... a mechanistic explanation for the protective effect of exercise on cancer, and we propose that exercise represents a potential strategy as adjuvant therapy in cancer, by improving NK cell recruitment and infiltration in solid tumors....... review the link between exercise and NK cell function, focusing on circulating exercise factors and additional effects, including vascularization, hypoxia, and body temperature in mediating the effects on NK cell functionality. Exercise-dependent mobilization and activation of NK cells provides...

  8. NK cell-derived IL-10 is critical for DC-NK cell dialogue at the maternal-fetal interface.

    Science.gov (United States)

    Blois, Sandra M; Freitag, Nancy; Tirado-González, Irene; Cheng, Shi-Bin; Heimesaat, Markus M; Bereswill, Stefan; Rose, Matthias; Conrad, Melanie L; Barrientos, Gabriela; Sharma, Surendra

    2017-05-19

    DC-NK cell interactions are thought to influence the development of maternal tolerance and de novo angiogenesis during early gestation. However, it is unclear which mechanism ensures the cooperative dialogue between DC and NK cells at the feto-maternal interface. In this article, we show that uterine NK cells are the key source of IL-10 that is required to regulate DC phenotype and pregnancy success. Upon in vivo expansion of DC during early gestation, NK cells expressed increased levels of IL-10. Exogenous administration of IL-10 was sufficient to overcome early pregnancy failure in dams treated to achieve simultaneous DC expansion and NK cell depletion. Remarkably, DC expansion in IL-10 -/- dams provoked pregnancy loss, which could be abrogated by the adoptive transfer of IL-10 +/+ NK cells and not by IL-10 -/- NK cells. Furthermore, the IL-10 expressing NK cells markedly enhanced angiogenic responses and placental development in DC expanded IL-10 -/- dams. Thus, the capacity of NK cells to secrete IL-10 plays a unique role facilitating the DC-NK cell dialogue during the establishment of a healthy gestation.

  9. Identification of an elaborate NK-specific system regulating HLA-C expression.

    Directory of Open Access Journals (Sweden)

    Hongchuan Li

    2018-01-01

    Full Text Available The HLA-C gene appears to have evolved in higher primates to serve as a dominant source of ligands for the KIR2D family of inhibitory MHC class I receptors. The expression of NK cell-intrinsic MHC class I has been shown to regulate the murine Ly49 family of MHC class I receptors due to the interaction of these receptors with NK cell MHC in cis. However, cis interactions have not been demonstrated for the human KIR and HLA proteins. We report the discovery of an elaborate NK cell-specific system regulating HLA-C expression, indicating an important role for HLA-C in the development and function of NK cells. A large array of alternative transcripts with differences in intron/exon content are generated from an upstream NK-specific HLA-C promoter, and exon content varies between HLA-C alleles due to SNPs in splice donor/acceptor sites. Skipping of the first coding exon of HLA-C generates a subset of untranslatable mRNAs, and the proportion of untranslatable HLA-C mRNA decreases as NK cells mature, correlating with increased protein expression by mature NK cells. Polymorphism in a key Ets-binding site of the NK promoter has generated HLA-C alleles that lack significant promoter activity, resulting in reduced HLA-C expression and increased functional activity. The NK-intrinsic regulation of HLA-C thus represents a novel mechanism controlling the lytic activity of NK cells during development.

  10. NK cell-based cancer immunotherapy: from basic biology to clinical application.

    Science.gov (United States)

    Li, Yang; Yin, Jie; Li, Ting; Huang, Shan; Yan, Han; Leavenworth, JianMei; Wang, Xi

    2015-12-01

    Natural killer (NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex (MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor (CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.

  11. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    Science.gov (United States)

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  12. EBI3 regulates the NK cell response to mouse cytomegalovirus infection

    DEFF Research Database (Denmark)

    Jensen, Helle; Chen, Shih-Yu; Folkersen, Lasse Westergaard

    2017-01-01

    Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection. The induc......Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection....... The induction of EBI3 protein expression in mouse NK cells is a late activation event. Thus, early activation events of NK cells, such as IFNγ production and CD69 expression, were not affected in EBI3-deficient (Ebi3-/-) C57BL/6 (B6) mice during MCMV infection. Furthermore, comparable levels of early viral...... replication in spleen and liver were observed in MCMV-infected Ebi3-/- and wild-type (WT) B6 mice. Interestingly, the viral load in salivary glands and oral lavage was strongly decreased in the MCMV-infected Ebi3-/- B6 mice, suggesting that EBI3 plays a role in the establishment of MCMV latency. We detected...

  13. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells

    Science.gov (United States)

    Sojka, Dorothy K; Plougastel-Douglas, Beatrice; Yang, Liping; Pak-Wittel, Melissa A; Artyomov, Maxim N; Ivanova, Yulia; Zhong, Chao; Chase, Julie M; Rothman, Paul B; Yu, Jenny; Riley, Joan K; Zhu, Jinfang; Tian, Zhigang; Yokoyama, Wayne M

    2014-01-01

    Natural killer (NK) cells belong to the innate immune system; they can control virus infections and developing tumors by cytotoxicity and producing inflammatory cytokines. Most studies of mouse NK cells, however, have focused on conventional NK (cNK) cells in the spleen. Recently, we described two populations of liver NK cells, tissue-resident NK (trNK) cells and those resembling splenic cNK cells. However, their lineage relationship was unclear; trNK cells could be developing cNK cells, related to thymic NK cells, or a lineage distinct from both cNK and thymic NK cells. Herein we used detailed transcriptomic, flow cytometric, and functional analysis and transcription factor-deficient mice to determine that liver trNK cells form a distinct lineage from cNK and thymic NK cells. Taken together with analysis of trNK cells in other tissues, there are at least four distinct lineages of NK cells: cNK, thymic, liver (and skin) trNK, and uterine trNK cells. DOI: http://dx.doi.org/10.7554/eLife.01659.001 PMID:24714492

  14. Location and cellular stages of NK cell development

    Science.gov (United States)

    Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A

    2013-01-01

    The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to better harness NK cell functions in multiple clinical settings as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice. PMID:24055329

  15. Regulation of NKG2D-Dependent NK Cell Functions: The Yin and the Yang of Receptor Endocytosis

    Directory of Open Access Journals (Sweden)

    Rosa Molfetta

    2017-08-01

    Full Text Available Natural-killer receptor group 2, member D (NKG2D is a well characterized natural killer (NK cell activating receptor that recognizes several ligands poorly expressed on healthy cells but up-regulated upon stressing stimuli in the context of cancer or viral infection. Although NKG2D ligands represent danger signals that render target cells more susceptible to NK cell lysis, accumulating evidence demonstrates that persistent exposure to ligand-expressing cells causes the decrease of NKG2D surface expression leading to a functional impairment of NKG2D-dependent NK cell functions. Upon ligand binding, NKG2D is internalized from the plasma membrane and sorted to lysosomes for degradation. However, receptor endocytosis is not only a mechanism of receptor clearance from the cell surface, but is also required for the proper activation of signalling events leading to the functional program of NK cells. This review is aimed at providing a summary of current literature relevant to the molecular mechanisms leading to NKG2D down-modulation with particular emphasis given to the role of NKG2D endocytosis in both receptor degradation and signal propagation. Examples of chronic ligand-induced down-regulation of NK cell activating receptors other than NKG2D, including natural cytotoxicity receptors (NCRs, DNAX accessory molecule-1 (DNAM1 and CD16, will be also discussed.

  16. NK cell autoreactivity and autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Alessandro ePoggi

    2014-02-01

    Full Text Available Increasing evidences have pointed out the relevance of Natural Killer (NK cells in organ specific and systemic autoimmune diseases. NK cells bear a plethora of activating and inhibiting receptors that can play a role in regulating reactivity with autologous cells. The activating receptors recognize natural ligands upregulated on virus-infected or stressed or neoplastic cells. Of note, several autoimmune diseases are thought to be linked to viral infections as one of the first event in inducing autoimmunity. Also, it is conceivable that autoimmunity can be triggered when a dysregulation of innate immunity occurs, activating T and B lymphocytes to react with self-components. This would imply that NK cells can play a regulatory role during adaptive immunity; indeed, innate lymphoid cells (ILC, comprising the classical CD56+ NK cells, have a role in maintaining or alterating tissue homeostasis secreting protective and/or proinflammatory cytokines. In addition, NK cells display activating receptors involved in natural cytotoxicity and the activating isoforms of receptors for HLA class I that can interact with healthy host cells and induce damage without any evidence of viral infection or neoplastic-induced alteration. In this context, the interrelationship among ILC, extracellular matrix components and mesenchymal stromal cells can be considered a key point for the control of homeostasis. Herein, we summarize evidences for a role of NK cells in autoimmune diseases and will give a point of view of the interplay between NK cells and self-cells in triggering autoimmunity.

  17. Cysteine Cathepsins as Regulators of the Cytotoxicity of NK and T Cells

    Science.gov (United States)

    Perišić Nanut, Milica; Sabotič, Jerica; Jewett, Anahid; Kos, Janko

    2014-01-01

    Cysteine cathepsins are lysosomal peptidases involved at different levels in the processes of the innate and adaptive immune responses. Some, such as cathepsins B, L, and H are expressed constitutively in most immune cells. In cells of innate immunity they play a role in cell adhesion and phagocytosis. Other cysteine cathepsins are expressed more specifically. Cathepsin X promotes dendritic cell maturation, adhesion of macrophages, and migration of T cells. Cathepsin S is implicated in major histocompatibility complex class II antigen presentation, whereas cathepsin C, expressed in cytotoxic T lymphocytes and natural killer (NK) cells, is involved in processing pro-granzymes into proteolytically active forms, which trigger cell death in their target cells. The activity of cysteine cathepsins is controlled by endogenous cystatins, cysteine protease inhibitors. Of these, cystatin F is the only cystatin that is localized in endosomal/lysosomal vesicles. After proteolytic removal of its N-terminal peptide, cystatin F becomes a potent inhibitor of cathepsin C with the potential to regulate pro-granzyme processing and cell cytotoxicity. This review is focused on the role of cysteine cathepsins and their inhibitors in the molecular mechanisms leading to the cytotoxic activity of T lymphocytes and NK cells in order to address new possibilities for regulation of their function in pathological processes. PMID:25520721

  18. Salivary gland NK cells are phenotypically and functionally unique.

    Directory of Open Access Journals (Sweden)

    Marlowe S Tessmer

    2011-01-01

    Full Text Available Natural killer (NK cells and CD8(+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV. However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or T(reg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells.

  19. NK Cell-Mediated Regulation of Protective Memory Responses against Intracellular Ehrlichial Pathogens.

    Directory of Open Access Journals (Sweden)

    Samar Habib

    Full Text Available Ehrlichiae are gram-negative obligate intracellular bacteria that cause potentially fatal human monocytic ehrlichiosis. We previously showed that natural killer (NK cells play a critical role in host defense against Ehrlichia during primary infection. However, the contribution of NK cells to the memory response against Ehrlichia remains elusive. Primary infection of C57BL/6 mice with Ehrlichia muris provides long-term protection against a second challenge with the highly virulent Ixodes ovatus Ehrlichia (IOE, which ordinarily causes fatal disease in naïve mice. Here, we show that the depletion of NK cells in E. muris-primed mice abrogates the protective memory response against IOE. Approximately, 80% of NK cell-depleted E. muris-primed mice succumbed to lethal IOE infection on days 8-10 after IOE infection, similar to naïve mice infected with the same dose of IOE. The lack of a recall response in NK cell-depleted mice correlated with an increased bacterial burden, extensive liver injury, decreased frequency of Ehrlichia-specific IFN-γ-producing memory CD4+ and CD8+ T-cells, and a low titer of Ehrlichia-specific antibodies. Intraperitoneal infection of mice with E. muris resulted in the production of IL-15, IL-12, and IFN-γ as well as an expansion of activated NKG2D+ NK cells. The adoptive transfer of purified E. muris-primed hepatic and splenic NK cells into Rag2-/-Il2rg-/- recipient mice provided protective immunity against challenge with E. muris. Together, these data suggest that E. muris-induced memory-like NK cells, which contribute to the protective, recall response against Ehrlichia.

  20. NK cell-released exosomes

    Science.gov (United States)

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool. PMID:23482694

  1. Induced Human Decidual NK-Like Cells Improve Utero-Placental Perfusion in Mice.

    Directory of Open Access Journals (Sweden)

    Ricardo C Cavalli

    Full Text Available Decidual NK (dNK cells, a distinct type of NK cell, are thought to regulate uterine spiral artery remodeling, a process that allows for increased blood delivery to the fetal-placental unit. Impairment of uterine spiral artery remodeling is associated with decreased placental perfusion, increased uterine artery resistance, and obstetric complications such as preeclampsia and intrauterine growth restriction. Ex vivo manipulation of human peripheral blood NK (pNK cells by a combination of hypoxia, TGFß-1 and 5-aza-2'-deoxycytidine yields cells with phenotypic and in vitro functional similarities to dNK cells, called idNK cells. Here, gene expression profiling shows that CD56Bright idNK cells derived ex vivo from human pNK cells, and to a lesser extent CD56Dim idNK cells, are enriched in the gene expression signature that distinguishes dNK cells from pNK cells. When injected into immunocompromised pregnant mice with elevated uterine artery resistance, idNK cells homed to the uterus and reduced the uterine artery resistance index, suggesting improved placental perfusion.

  2. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire.

    Science.gov (United States)

    Feyaerts, D; Kuret, T; van Cranenbroek, B; van der Zeeuw-Hingrez, S; van der Heijden, O W H; van der Meer, A; Joosten, I; van der Molen, R G

    2018-02-13

    Is the natural killer (NK) cell receptor repertoire of endometrial NK (eNK) cells tissue-specific? The NK cell receptor (NKR) expression profile in pre-pregnancy endometrium appears to have a unique tissue-specific phenotype, different from that found in NK cells in peripheral blood, suggesting that these cells are finely tuned towards the reception of an allogeneic fetus. NK cells are important for successful pregnancy. After implantation, NK cells encounter extravillous trophoblast cells and regulate trophoblast invasion. NK cell activity is amongst others regulated by C-type lectin heterodimer (CD94/NKG2) and killer cell immunoglobulin-like (KIR) receptors. KIR expression on decidual NK cells is affected by the presence of maternal HLA-C and biased towards KIR2D expression. However, little is known about NKR expression on eNK cells prior to pregnancy. In this study, matched peripheral and menstrual blood (a source of endometrial cells) was obtained from 25 healthy females with regular menstrual cycles. Menstrual blood was collected during the first 36 h of menstruation using a menstrual cup, a non-invasive technique to obtain endometrial cells. KIR and NKG2 receptor expression on eNK cells was characterized by 10-color flow cytometry, and compared to matched pbNK cells of the same female. KIR and HLA-C genotypes were determined by PCR-SSOP techniques. Anti-CMV IgG antibodies in plasma were measured by chemiluminescence immunoassay. KIR expression patterns of eNK cells collected from the same female do not differ over consecutive menstrual cycles. The percentage of NK cells expressing KIR2DL2/L3/S2, KIR2DL3, KIR2DL1, LILRB1 and/or NKG2A was significantly higher in eNK cells compared to pbNK cells, while no significant difference was observed for NKG2C, KIR2DL1/S1, and KIR3DL1. The NKR repertoire of eNK cells was clearly different from pbNK cells, with eNK cells co-expressing more than three NKR simultaneously. In addition, outlier analysis revealed 8 and 15 NKR

  3. Exogenous activated NK cells enhance trafficking of endogenous NK cells to endometriotic lesions.

    Science.gov (United States)

    Montenegro, Mary Lourdes; Ferriani, Rui Alberto; Basse, Per H

    2015-08-29

    Endometriosis is defined as the presence of endometrial glands and stroma at ectopic locations. Although the prevalence of endometriosis is as high as 35%-50%, its pathogenesis remains controversial. An increasing number of studies suggest that changes in immune reactivity may be primarily involved in the development of endometriosis development. In this sense, it has been strongly suggested that a fundamental part of immunologic system, the natural killer cells (NK cells), are an important part of this process. NK cells, a component of the innate immune system, have been extensively studied for their ability to defend the organism against infections and malignancy. Recent studies have shown that IL-2-activated NK (A-NK) cells are able to attack and destroy tumors in lungs and livers of mice, demonstrating the therapeutic potential of these cells. Similarly to metastatic tumor cells, endometrial cells are able to adhere, infiltrate and proliferate at ectopic locations. Therefore, in this study, we evaluated the ability of adoptively transferred and endogenous NK cells to infiltrate endometriosis lesions. As NK cells donors were used C57BL/6 B6. PL- Thy 1.1 female mice. As uterine horns donors were used C57/BL6+GFP female mice and as endometriosis recipients C57BL/6 Thy1.2 female mice. Endometriosis induction was made by injection of endometrial tissue fragments. After 4 weeks, necessary for endometriosis lesions establishment the animals were divided in 3 experimental groups with 10 animals each. Group 1 received i.v doses of 5x106 A-NK in 200μl RPMI; Group 2 received i.p dose of 5x106 A-NK in 200μl RPMI and Group 3 received i.p dose of IL2 (0.5 mL RPMI containing 5.000U of IL2). Our data show that exogenous A-NK cells injected via ip combined with endogenous A-NK cells seems to be the most efficient way for activated NK cells track and infiltrate endometriosis. For the first time, it was shown that both endogenous as exogenous A-NK cells are able to track

  4. A Modified NK Cell Degranulation Assay Applicable for Routine Evaluation of NK Cell Function

    Directory of Open Access Journals (Sweden)

    Snehal Shabrish

    2016-01-01

    Full Text Available Natural killer (NK cells play important role in innate immunity against tumors and viral infections. Studies show that lysosome-associated membrane protein-1 (LAMP-1, CD107a is a marker for degranulation of NK and cytotoxic T cells and its expression is a sensitive marker for the cytotoxic activity determination. The conventional methods of determination of CD107a on NK cells involve use of peripheral blood mononuclear cells (PBMC or pure NK cells and K562 cells as stimulants. Thus, it requires large volume of blood sample which is usually difficult to obtain in pediatric patients and patients with cytopenia and also requires specialized laboratory for maintaining cell line. We have designed a flow cytometric assay to determine CD107a on NK cells using whole blood, eliminating the need for isolation of PBMC or isolate NK cells. This assay uses phorbol-12-myristate-13-acetate (PMA and calcium ionophore (Ca2+-ionophore instead of K562 cells for stimulation and thus does not require specialized cell culture laboratory. CD107a expression on NK cells using modified NK cell degranulation assay compared to the conventional assay was significantly elevated (p<0.0001. It was also validated by testing patients diagnosed with familial hemophagocytic lymphohistiocytosis (FHL with defect in exocytosis. This assay is rapid, cost effective, and reproducible and requires significantly less volume of blood which is important for clinical evaluation of NK cells.

  5. NK cell-like behavior of Valpha14i NK T cells during MCMV infection.

    Directory of Open Access Journals (Sweden)

    Johnna D Wesley

    2008-07-01

    Full Text Available Immunity to the murine cytomegalovirus (MCMV is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/- mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/- mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.

  6. Intrinsic Contribution of Perforin to NK-Cell Homeostasis during Mouse Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    Maja eArapovic

    2016-04-01

    Full Text Available In addition to their role as effector cells in virus control, natural killer (NK cells have an immunoregulatory function in shaping the antiviral T-cell response. This function is further pronounced in perforin-deficient mice that show the enhanced NK-cell proliferation and cytokine secretion upon mouse cytomegalovirus (MCMV infection. Here we confirmed that stronger activation and maturation of NK cells in perforin-deficient mice correlates with higher MCMV load. To further characterize the immunoregulatory potential of perforin, we compared the response of NK cells that express or do not express perforin using bone-marrow chimeras. Our results demonstrated that the enhanced proliferation and maturation of NK cells in MCMV-infected bone-marrow chimeras is an intrinsic property of perforin-deficient NK cells. Thus, in addition to confirming that NK-cell proliferation is virus load dependent, our data extend this notion demonstrating that perforin plays an intrinsic role as a feedback mechanism in regulation of NK-cell proliferation during viral infections.

  7. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Christensen, Hanne

    2007-01-01

    Lactic acid bacteria (LAB) are abundant in the gastrointestinal tract where they continuously regulate the immune system. NK cells are potently activated by dendritic cells (DCs) matured by inflammatory stimuli, and NK cells are present in the gut epithelium and in mesenteric lymph nodes......, but it is not known how NK-DC interactions are affected by the predominantly non-pathogenic LAB. We demonstrate that human DCs exposed to different strains of gut-derived LAB consistently induce proliferation, cytotoxicity and activation markers in autologous NK cells. On the contrary, strains of LAB differ greatly...... in their ability to induce DC-dependent IFN-gamma production by NK cells. This suggests that DCs stimulated by gut LAB may expand the pool of NK cells and increase their cytotoxic potential. Specific LAB, inducing high levels of IL-12 in DCs, may promote amplification of a type-1 response via potent stimulation...

  8. Tributyltin (TBT) and Dibutyltin (DBT) Alter Secretion of Tumor Necrosis Factor Alpha (TNFα) from Human Natural Killer (NK) Cells and a Mixture of T cells and NK Cells

    Science.gov (United States)

    Hurt, Kelsi; Hurd-Brown, Tasia; Whalen, Margaret

    2012-01-01

    Butyltins (BTs) have been in widespread use. Tributyltin (TBT) has been used as a biocide in a variety of applications and is found in human blood samples. Dibutyltin (DBT) has been used as a stabilizer in polyvinyl chloride plastics and as a de-worming agent in poultry. DBT, like TBT, is found in human blood. Human natural killer (NK) cells are the earliest defense against tumors and viral infections and secrete the cytokine tumor necrosis factor (TNF) alpha (α). TNFα is an important regulator of adaptive and innate immune responses. TNFα promotes inflammation and an association between malignant transformation and inflammation has been established. Previously, we have shown that TBT and DBT were able to interfere with the ability of NK cells to lyse tumor target cells. Here we show that BTs alter cytokine secretion by NK cells as well as a mixture of T and NK lymphocytes (T/NK cells). We examined 24 h, 48 h, and 6 day exposures to TBT (200- 2.5 nM) and DBT (5- 0.05 µM) on TNFα secretion by highly enriched human NK cells and T/NK cells. The results indicate that TBT (200 - 2.5 nM) decreased TNFα secretion from NK cells. In the T/NK cells 200 nM TBT decreased secretion while 100-5 nM TBT increased secretion of TNFα. NK cells or T/NK cells exposed to higher concentrations of DBT showed decreased TNFα secretion while lower concentrations showed increased secretion. The effects of BTs on TNFα secretion are seen at concentrations present in human blood. PMID:23047847

  9. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    Science.gov (United States)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  10. The utility of flow cytometry in differentiating NK/T cell lymphoma from indolent and reactive NK cell proliferations.

    Science.gov (United States)

    de Mel, Sanjay; Li, Jenny Bei; Abid, Muhammad Bilal; Tang, Tiffany; Tay, Hui Ming; Ting, Wen Chang; Poon, Li Mei; Chung, Tae Hoon; Mow, Benjamin; Tso, Allison; Ong, Kiat Hoe; Chng, Wee Joo; Liu, Te Chih

    2018-01-01

    The WHO defines three categories of NK cell malignancies; extra nodal NK/T cell lymphoma (NKTCL), aggressive NK cell leukemia, and the provisional entity chronic lymphoproliferative disorder of NK cells (CLPD-NK). Although the flow cytometric (FC) phenotype of CLPD-NK has been described, studies on FC phenotype of NKTCL are limited. To the best of our knowledge ours is the first study to compare the phenotype of NKTCL, CLPD-NK, reactive NK lymphocytosis (RNKL), and normal NK cells using eight color (8C) FC. Specimens analyzed using the Euroflow8C NK Lymphoproliferative Disorder (NKLPD) panel between 2011 and 2014 were identified from our database. All samples were analyzed on the FACSCantoII cytometer. NK cells were identified as CD45+, smCD3-, CD19-, CD56+ and normal T-cells served as internal controls. The majority of NKTCL were CD56 bright, CD16 dim, CD57-, and CD94+. CLPD-NK and RNKL were predominantly CD56+ or dim with positive expression of CD16 and CD57 and weak CD94 expression. Antigen based statistical analyses showed robust division of samples along the NKTCL/normal CD56 bright NK cell and CLPD-NK/RNKL/normal CD56 positive NK cell groups. It was concluded that FC can reliably distinguish NKTCL from CLPD-NK, normal NK cells of CD56+ phenotype, and RNKL. It was proposed that the typical phenotype for NKTCL is: CD56 bright, CD16 dim with positive CD2, CD7, CD94, HLADR, CD25, CD26, and absent CD57. This resembles the phenotype of the CD56 bright immunoregulatory subset of NK cells which we therefore hypothesize is the cell of origin of NKTCL. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.

  11. Genetic deletion of Cxcl14 in mice alters uterine NK cells

    International Nuclear Information System (INIS)

    Cao, Qichen; Chen, Hua; Deng, Zhili; Yue, Jingwen; Chen, Qi; Cao, Yujing; Ning, Lina; Lei, Xiaohua; Duan, Enkui

    2013-01-01

    Highlights: •We first examined the expression of Cxcl14 in MLAp and DB of uterus. •We found the uNK cells in MLAp and decidua express Cxcl14. •In Cxcl14 −/− placenta, we found significantly decreased uNK cells. •We first performed microarray to compare the gene expression in MLAp and DB. -- Abstract: The uterine natural killer cells (uNK cells) are the major immune cells in pregnant uterus and the number of uNK cells is dramatically increased during placentation and embryo development. The uNK cells are necessary for the immune tolerance, cytokine secretion and angiogenesis of placenta. Former studies indicated that the population expansion of uNK cells was accomplished through recruitment of NK cell precursors from the spleen and bone marrow, but not proliferation of NK cells. However, the necessary molecules within this process were little understood. Here in our study, we found the co-localized expression of Cxcl14 protein with uNK cells in E13.5 pregnant uterus. Moreover, we used Cxcl14 knockout mice to examine uNK cells in mesometrial lymphoid aggregate of pregnancy (MLAp) and decidua basalis (DB) of E13.5 pregnant uterus and found significantly decreased uNK cells in Cxcl14 −/− pregnant uteri compared with Cxcl14 +/− pregnant uteri. To further explorer the molecular change in MLAp and DB after Cxcl14 knockout, we isolated the MLAp and DB from Cxcl14 +/+ and Cxcl14 −/− pregnant uteri and performed microarray analysis. We found many genes were up and down regulated after Cxcl14 knockout. In conclusion, our results suggested the important function of Cxcl14 in uNK cells and the proper level of Cxcl14 protein were required to recruit NK cells to pregnant uterus

  12. Genetic deletion of Cxcl14 in mice alters uterine NK cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qichen [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049 (China); Chen, Hua [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Deng, Zhili [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049 (China); Yue, Jingwen; Chen, Qi; Cao, Yujing; Ning, Lina; Lei, Xiaohua [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Duan, Enkui, E-mail: duane@ioz.ac.cn [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China)

    2013-06-14

    Highlights: •We first examined the expression of Cxcl14 in MLAp and DB of uterus. •We found the uNK cells in MLAp and decidua express Cxcl14. •In Cxcl14{sup −/−} placenta, we found significantly decreased uNK cells. •We first performed microarray to compare the gene expression in MLAp and DB. -- Abstract: The uterine natural killer cells (uNK cells) are the major immune cells in pregnant uterus and the number of uNK cells is dramatically increased during placentation and embryo development. The uNK cells are necessary for the immune tolerance, cytokine secretion and angiogenesis of placenta. Former studies indicated that the population expansion of uNK cells was accomplished through recruitment of NK cell precursors from the spleen and bone marrow, but not proliferation of NK cells. However, the necessary molecules within this process were little understood. Here in our study, we found the co-localized expression of Cxcl14 protein with uNK cells in E13.5 pregnant uterus. Moreover, we used Cxcl14 knockout mice to examine uNK cells in mesometrial lymphoid aggregate of pregnancy (MLAp) and decidua basalis (DB) of E13.5 pregnant uterus and found significantly decreased uNK cells in Cxcl14{sup −/−} pregnant uteri compared with Cxcl14{sup +/−} pregnant uteri. To further explorer the molecular change in MLAp and DB after Cxcl14 knockout, we isolated the MLAp and DB from Cxcl14{sup +/+} and Cxcl14{sup −/−} pregnant uteri and performed microarray analysis. We found many genes were up and down regulated after Cxcl14 knockout. In conclusion, our results suggested the important function of Cxcl14 in uNK cells and the proper level of Cxcl14 protein were required to recruit NK cells to pregnant uterus.

  13. NK cells and T cells: mirror images?

    NARCIS (Netherlands)

    Versteeg, R.

    1992-01-01

    The expression of MHC class I molecules protects cells against lysis by natural killer (NK) cells. It is possible that NK cells are 'educated' to recognize self MHC class I molecules and that the combination of self peptide and MHC class I molecule blocks NK-mediated lysis. Here, Rogier Versteeg

  14. IL-15 inhibits pre-B cell proliferation by selectively expanding Mac-1+B220+ NK cells

    International Nuclear Information System (INIS)

    Nakajima, Shinsuke; Hida, Shigeaki; Taki, Shinsuke

    2008-01-01

    Natural killer (NK) cells are the cells critical for inhibition of repopulation of allogenic bone marrow cells. However, it is not well known if NK cells affect autologous lymphopoiesis. Here, we observed that NK cells could inhibit pre-B cell proliferation in vitro driven by interleukin (IL)-7 in a manner dependent on IL-15. Interestingly, the great majority of expanding NK cells were Mac-1 + B220 + , a recently identified potent interferon (IFN)-γ producer. Indeed, IFN-γ was produced in those cultures, and pre-B cells lacking IFN-γ receptors, but not those lacking type I IFN receptors, were resistant to such an inhibition. Furthermore, even NK cells from mice lacking β2-microglobulin, which were known to be functionally dampened, inhibited pre-B cell proliferation as well. Thus, activated NK cells, which were expanded selectively by IL-15, could potentially regulate B lymphopoiesis through IFN-γ beyond the selection imposed upon self-recognition

  15. Differential pulmonic NK and NKT cell responses in Schistosoma japonicum-infected mice.

    Science.gov (United States)

    Cha, Hefei; Qin, Wenjuan; Yang, Quan; Xie, Hongyan; Qu, Jiale; Wang, Mei; Chen, Daixiong; Wang, Fang; Dong, Nuo; Chen, Longhua; Huang, Jun

    2017-02-01

    Natural killer cells (NK cells) and natural killer T cells (NKT cells) play a role in anti-infection, anti-tumor, transplantation immunity, and autoimmune regulation. However, the role of NK and NKT cells during Schistosoma japonicum (S. japonicum) infection has not been widely reported, especially regarding lung infections. The aim of this study was to research the NK and NKT cell response to S. japonicum infection in the lungs of mice. Using immunofluorescent histological analysis, NK and NKT cells were found near pulmonary granulomas. Moreover, flow cytometry revealed that the percentage and number of pulmonic NK cells in S. japonicum-infected mice were significantly increased (P cell number of NKT cells were decreased compared to those of normal mice (P NKT cells was increased after infection (P NKT cells (P cells (P NKT cells significantly increased (P NKT cells (P NKT cell activation during S. japonicum infection.

  16. Distinct requirements for activation of NKT and NK cells during viral infection.

    Science.gov (United States)

    Tyznik, Aaron J; Verma, Shilpi; Wang, Qiao; Kronenberg, Mitchell; Benedict, Chris A

    2014-04-15

    NK cells are key regulators of innate defense against mouse CMV (MCMV). Like NK cells, NKT cells also produce high levels of IFN-γ rapidly after MCMV infection. However, whether similar mechanisms govern activation of these two cell types, as well as the significance of NKT cells for host resistance, remain unknown. In this article, we show that, although both NKT and NK cells are activated via cytokines, their particular cytokine requirements differ significantly in vitro and in vivo. IL-12 is required for NKT cell activation in vitro but is not sufficient, whereas NK cells have the capacity to be activated more promiscuously in response to individual cytokines from innate cells. In line with these results, GM-CSF-derived dendritic cells activated only NK cells upon MCMV infection, consistent with their virtual lack of IL-12 production, whereas Flt3 ligand-derived dendritic cells produced IL-12 and activated both NK and NKT cells. In vivo, NKT cell activation was abolished in IL-12(-/-) mice infected with MCMV, whereas NK cells were still activated. In turn, splenic NK cell activation was more IL-18 dependent. The differential requirements for IL-12 and IL-18 correlated with the levels of cytokine receptor expression by NK and NKT cells. Finally, mice lacking NKT cells showed reduced control of MCMV, and depleting NK cells further enhanced viral replication. Taken together, our results show that NKT and NK cells have differing requirements for cytokine-mediated activation, and both can contribute nonredundantly to MCMV defense, revealing that these two innate lymphocyte subsets function together to fine-tune antiviral responses.

  17. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications.

    Science.gov (United States)

    Carlsten, Mattias; Childs, Richard W

    2015-01-01

    Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) cells represent a unique immune cell to genetically reprogram in an effort to improve the outcome of cell-based cancer immunotherapy. However, technical and biological challenges associated with gene delivery into NK cells have significantly tempered this approach. Recent advances in viral transduction and electroporation have now allowed detailed characterization of genetically modified NK cells and provided a better understanding for how these cells can be utilized in the clinic to optimize their capacity to induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent approaches that hold promise in preclinical studies. This review focuses on available methods for genetic reprograming of NK cells and the advantages and challenges associated with each method. It also gives an overview of strategies for genetic reprograming of NK cells that have been evaluated to date and an outlook on how these strategies may be best utilized in clinical protocols. With the recent advances in our understanding of the complex biological networks that regulate the ability of NK cells to target and kill tumors in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the full potential of NK-cell based immunotherapy in the clinic.

  18. Liver-resident NK cells and their potential functions.

    Science.gov (United States)

    Peng, Hui; Sun, Rui

    2017-09-18

    Natural killer (NK) cells represent a heterogeneous population of innate lymphocytes with phenotypically and functionally distinct subsets. In particular, recent studies have identified a unique subset of NK cells residing within the liver that are maintained as tissue-resident cells, confer antigen-specific memory responses and exhibit different phenotypical and developmental characteristics compared with conventional NK (cNK) cells. These findings have encouraged researchers to uncover tissue-resident NK cells at other sites, and detailed analyses have revealed that these tissue-resident NK cells share many similarities with liver-resident NK cells and tissue-resident memory T cells. Here, we present a brief historical perspective on the discovery of liver-resident NK cells and discuss their relationship to cNK cells and other emerging NK cell subsets and their potential functions.Cellular &Molecular Immunology advance online publication, 18 September 2017; doi:10.1038/cmi.2017.72.

  19. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma.

    Science.gov (United States)

    Kremer, Veronika; Ligtenberg, Maarten A; Zendehdel, Rosa; Seitz, Christina; Duivenvoorden, Annet; Wennerberg, Erik; Colón, Eugenia; Scherman-Plogell, Ann-Helén; Lundqvist, Andreas

    2017-09-19

    Adoptive natural killer (NK) cell transfer is being increasingly used as cancer treatment. However, clinical responses have so far been limited to patients with hematological malignancies. A potential limiting factor in patients with solid tumors is defective homing of the infused NK cells to the tumor site. Chemokines regulate the migration of leukocytes expressing corresponding chemokine receptors. Various solid tumors, including renal cell carcinoma (RCC), readily secrete ligands for the chemokine receptor CXCR2. We hypothesize that infusion of NK cells expressing high levels of the CXCR2 chemokine receptor will result in increased influx of the transferred NK cells into tumors, and improved clinical outcome in patients with cancer. Blood and tumor biopsies from 14 primary RCC patients were assessed by flow cytometry and chemokine analysis. Primary NK cells were transduced with human CXCR2 using a retroviral system. CXCR2 receptor functionality was determined by Calcium flux and NK cell migration was evaluated in transwell assays. We detected higher concentrations of CXCR2 ligands in tumors compared with plasma of RCC patients. In addition, CXCL5 levels correlated with the intratumoral infiltration of CXCR2-positive NK cells. However, tumor-infiltrating NK cells from RCC patients expressed lower CXCR2 compared with peripheral blood NK cells. Moreover, healthy donor NK cells rapidly lost their CXCR2 expression upon in vitro culture and expansion. Genetic modification of human primary NK cells to re-express CXCR2 improved their ability to specifically migrate along a chemokine gradient of recombinant CXCR2 ligands or RCC tumor supernatants compared with controls. The enhanced trafficking resulted in increased killing of target cells. In addition, while their functionality remained unchanged compared with control NK cells, CXCR2-transduced NK cells obtained increased adhesion properties and formed more conjugates with target cells. To increase the success of NK

  20. KHYG-1 and NK-92 represent different subtypes of LFA-1-mediated NK cell adhesiveness.

    Science.gov (United States)

    Suck, Garnet; Tan, Suet-Mien; Chu, Sixian; Niam, Madelaine; Vararattanavech, Ardcharaporn; Lim, Tsyr Jong; Koh, Mickey B C

    2011-01-01

    Novel cancer cellular therapy approaches involving long-term ex vivo IL-2 stimulated highly cytotoxic natural killer (NK) cells are emerging. However, adhesion properties of such NK cells are not very well understood. Herein, we describe the novel observation of permanently activated alphaLbeta2 integrin leukocyte function-associated antigen (LFA)-1 adhesion receptor in long-term IL-2 activated NK cells and the permanent NK cell lines KHYG-1 and NK-92. We show that such cytokine activated NK effectors constitutively adhered to the LFA-1-ligand ICAM-1, whereas binding to the lower affinity ligand ICAM-3 required additional exogenous activating conditions. The results demonstrate an extended conformation and an intermediate affinity state for the LFA-1 population expressed by the NK cells. Interestingly, adhesion to ICAM-1 or K562 induced pronounced cell spreading in KHYG-1, but not in NK-92, and partially in long-term IL-2 stimulated primary NK cells. It is conceivable that such differential adhesion characteristics may impact motility potential of such NK effectors with relevance to clinical tumor targeting. KHYG-1 could be a useful model in planning future targeted therapeutic approaches involving NK effectors with augmented functions.

  1. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become c...... NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them....

  2. In vivo IFN-γ secretion by NK cells in response to Salmonella typhimurium requires NLRC4 inflammasomes.

    Directory of Open Access Journals (Sweden)

    Andreas Kupz

    Full Text Available Natural killer (NK cells are a critical part of the innate immune defense against viral infections and for the control of tumors. Much less is known about how NK cells contribute to anti-bacterial immunity. NK cell-produced interferon gamma (IFN-γ contributes to the control of early exponential replication of bacterial pathogens, however the regulation of these events remains poorly resolved. Using a mouse model of invasive Salmonellosis, here we report that the activation of the intracellular danger sensor NLRC4 by Salmonella-derived flagellin within CD11c+ cells regulates early IFN-γ secretion by NK cells through the provision of interleukin 18 (IL-18, independently of Toll-like receptor (TLR-signaling. Although IL18-signalling deficient NK cells improved host protection during S. Typhimurium infection, this increased resistance was inferior to that provided by wild-type NK cells. These findings suggest that although NLRC4 inflammasome-driven secretion of IL18 serves as a potent activator of NK cell mediated IFN-γ secretion, IL18-independent NK cell-mediated mechanisms of IFN-γ secretion contribute to in vivo control of Salmonella replication.

  3. Role of type I interferon receptor signaling on NK cell development and functions.

    Directory of Open Access Journals (Sweden)

    Jean Guan

    Full Text Available Type I interferons (IFN are unique cytokines transcribed from intronless genes. They have been extensively studied because of their anti-viral functions. The anti-viral effects of type I IFN are mediated in part by natural killer (NK cells. However, the exact contribution of type I IFN on NK cell development, maturation and activation has been somewhat difficult to assess. In this study, we used a variety of approaches to define the consequences of the lack of type I interferon receptor (IFNAR signaling on NK cells. Using IFNAR deficient mice, we found that type I IFN affect NK cell development at the pre-pro NK stage. We also found that systemic absence of IFNAR signaling impacts NK cell maturation with a significant increase in the CD27+CD11b+ double positive (DP compartment in all organs. However, there is tissue specificity, and only in liver and bone marrow is the maturation defect strictly dependent on cell intrinsic IFNAR signaling. Finally, using adoptive transfer and mixed bone marrow approaches, we also show that cell intrinsic IFNAR signaling is not required for NK cell IFN-γ production in the context of MCMV infection. Taken together, our studies provide novel insights on how type I IFN receptor signaling regulates NK cell development and functions.

  4. Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity.

    Science.gov (United States)

    Schmidt, Stanislaw; Tramsen, Lars; Perkhofer, Susanne; Lass-Flörl, Cornelia; Hanisch, Mitra; Röger, Frauke; Klingebiel, Thomas; Koehl, Ulrike; Lehrnbecher, Thomas

    2013-07-01

    Mucormycosis has a high mortality and is increasingly diagnosed in hematopoietic stem cell transplant (HSCT) recipients. In this setting, there is a growing interest to restore host defense to combat infections by adoptively transferring donor-derived immunocompetent cells. Natural killer (NK) cells exhibit antitumor and antiinfective activity, but the interaction with Mucormycetes is unknown. Our data demonstrate that both unstimulated and IL-2 prestimulated human NK cells damage Rhizopus oryzae hyphae, but do not affect resting conidia. The damage of the fungus is mediated, at least in part, by perforin. R. oryzae hyphae decrease the secretion of immunoregulatory molecules by NK cells, such as IFN-γ and RANTES, indicating an immunosuppressive effect of the fungus. Our data indicate that NK cells exhibit activity against Mucormycetes and future research should evaluate NK cells as a potential tool for adoptive immunotherapy in HSCT. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections.

    Science.gov (United States)

    Crespo, Ângela C; van der Zwan, Anita; Ramalho-Santos, João; Strominger, Jack L; Tilburgs, Tamara

    2017-02-01

    To establish a healthy pregnancy the maternal immune system must tolerate fetal allo-antigens, yet remain competent to respond to infections. The ability of decidual NK cells (dNK) to promote migration of fetal extravillous trophoblasts (EVT) and placental growth as well as the capacity of EVT to promote immune tolerance are topics of high interest and extensive research. However, the problem of how dNK and decidual CD8+ T cells (CD8+ dT) provide immunity to infections of the placenta and the mechanisms that regulate their cytolytic function has thus far largely been ignored. Fetal EVT are the most invasive cells of the placenta and directly interact with maternal decidual immune cells at this maternal-fetal interface. Besides the expression of non-polymorphic HLA-E and HLA-G molecules that are associated with immune tolerance, EVT also express highly polymorphic HLA-C molecules that can serve as targets for maternal dNK and CD8+ dT responses. HLA-C expression by EVT has a dual role as the main molecule to which immune tolerance needs to be established and as the only molecule that can present pathogen-derived peptides and provide protective immunity when EVT are infected. The focus of this review is to address the regulation of cytotoxicity of dNK and CD8+ dT, which is essential for maternal-fetal immune tolerance as well as recent evidence that both cell types can provide immunity to infections at the maternal-fetal interface. A particular emphasis is given to the role of HLA-C expressed by EVT and its capacity to elicit dNK and CD8+ dT responses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. The Adhesion G Protein-Coupled Receptor GPR56/ADGRG1 Is an Inhibitory Receptor on Human NK Cells

    Directory of Open Access Journals (Sweden)

    Gin-Wen Chang

    2016-05-01

    Full Text Available Natural killer (NK cells possess potent cytotoxic mechanisms that need to be tightly controlled. Here, we explored the regulation and function of GPR56/ADGRG1, an adhesion G protein-coupled receptor implicated in developmental processes and expressed distinctively in mature NK cells. Expression of GPR56 was triggered by Hobit (a homolog of Blimp-1 in T cells and declined upon cell activation. Through studying NK cells from polymicrogyria patients with disease-causing mutations in ADGRG1, encoding GPR56, and NK-92 cells ectopically expressing the receptor, we found that GPR56 negatively regulates immediate effector functions, including production of inflammatory cytokines and cytolytic proteins, degranulation, and target cell killing. GPR56 pursues this activity by associating with the tetraspanin CD81. We conclude that GPR56 inhibits natural cytotoxicity of human NK cells.

  7. Microchip screening platform for single cell assessment of NK cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karolin eGuldevall

    2016-04-01

    Full Text Available Here we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK cells within larger populations. Human primary NK cells were distributed across a silicon-glass microchip containing 32 400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75% were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3 target cells within the 12 hours long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g. in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy.

  8. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    Science.gov (United States)

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  9. Differential inhibitory and activating NK cell receptor levels and NK/NKT-like cell functionality in chronic and recovered stages of chikungunya.

    Science.gov (United States)

    Thanapati, Subrat; Ganu, Mohini A; Tripathy, Anuradha S

    2017-01-01

    The role of natural killer (NK; CD3-CD56+)/NKT (CD3+CD56+)-like cells in chikungunya virus (CHIKV) disease progression/recovery remains unclear. Here, we investigated the expression profiles and function of NK and NKT-like cells from 35 chronic chikungunya patients, 30 recovered individuals, and 69 controls. Percentage of NKT-like cells was low in chronic chikungunya patients. NKp30+, CD244+, DNAM-1+, and NKG2D+ NK cell percentages were also lower (MFI and/or percentage), while those of CD94+ and NKG2A+ NKT-like cells were higher (MFI and/or percentage) in chronic patients than in recovered subjects. IFN-γ and TNF-α expression on NKT-like cells was high in the chronic patients, while only IFN-γ expression on NK cells was high in the recovered individuals. Furthermore, percentage of perforin+NK cells was low in the chronic patients. Lower cytotoxic activity was observed in the chronic patients than in the controls. CD107a expression on NK and NKT-like cells post anti-CD94/anti-NKG2A blocking was comparable among the patients and controls. Upregulated inhibitory and downregulated activating NK receptor expressions on NK/NKT-like cells, lower perforin+ and CD107a+NK cells are likely responsible for inhibiting the NK and NKT-like cell function in the chronic stage of chikungunya. Therefore, deregulation of NKR expression might underlie CHIKV-induced chronicity.

  10. Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol

    Directory of Open Access Journals (Sweden)

    Ulrike eKoehl

    2013-05-01

    Full Text Available Allogeneic Natural Killer (NK cells are used for adoptive immunotherapy after stem cell transplantation. In order to overcome technical limitations in NK cell purification and activation, the following study investigates the impact of different variables on NK cell recovery, cytotoxicity and T cell depletion during GMP-grade NK cell selection. 40 NK cell products were derived from 54 unstimulated donor leukaphereses using immunomagnetic CD3 T-cell depletion, followed by a CD56 cell enrichment step. For T cell depletion, either the depletion 2.1 program in single or double procedure (D2.1 1depl, n=18; D2.1 2depl, n=13 or the faster depletion 3.1 (D3.1, n=9 was used on the CliniMACS instrument. 17 purified NK cell products were activated in vitro by IL-2 for 12 days. The whole process resulted in a median number of 7.59x10e8 CD56+CD3- cells with both purity and viability of 94%, respectively. The T-cell depletion was significantly better using D2.1 1depl/2depl compared to D3.1 (log 4.6/log 4.9 vs. log 3.7; p<0.01 and double procedure in two stages led always to residual T cells below 0.1%. In contrast D3.1 was superior to D2.1 1depl/2depl with regard to recovery of CD56+CD3- NK cells (68% vs 41%/38%. Concomitant monocytes and especially IL-2 activation led to increased NK cell activity against malignant target cells compared to unstimulated NK cells, which correlated with both up-regulation of natural cytotoxicity receptors and intracellular signaling. Overall, wide variations in the NK cell expansion rate and the distribution of NK cell subpopulations were found. In conclusion, our results indicate that GMP-grade purification of NK cells might be improved by a sequential processing of T cell depletion program D2.1 and D3.1. In addition NK cell expansion protocols need to be further optimized.

  11. NK cell-released exosomes: Natural nanobullets against tumors.

    Science.gov (United States)

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool.

  12. Constitutively polarized granules prime KHYG-1 NK cells.

    Science.gov (United States)

    Suck, Garnet; Branch, Donald R; Aravena, Paola; Mathieson, Mark; Helke, Simone; Keating, Armand

    2006-09-01

    The major mechanism for NK cell lysis of tumor cells is granule-mediated cytotoxicity. Polarization of granules is a prelude to the release of their cytotoxic contents in response to target-cell binding. We describe the novel observation of constitutive granule polarization in the cytotoxic NK cell line, KHYG-1. Continuous degranulation of KHYG-1 cells, however, does not occur and still requires target-cell contact. Disruption of microtubules with colcemid is sufficient to disperse the granules in KHYG-1 and significantly decreases cytotoxicity. A similar effect is not obtained by inhibiting extracellular signal-related kinase 2 (ERK2), the most distal kinase investigated in the cytolytic pathway. Disruption of microtubules significantly down-regulates activation receptors, NKp44 and NKG2D, implicating them as potential microtubule-trafficking receptors. Such changes in upstream receptor expression may have caused deactivation of ERK2, since NKG2D cross-linking also leads to receptor down-regulation and diminished ERK phosphorylation. Thus, a functional role for NKG2D in KHYG-1 cytotoxicity is demonstrated. Moreover, the novel primed state may contribute to the high cytotoxicity exhibited by KHYG-1.

  13. Reduction of the CD16(-CD56bright NK cell subset precedes NK cell dysfunction in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kyo Chul Koo

    Full Text Available BACKGROUND: Natural cytotoxicity, mediated by natural killer (NK cells plays an important role in the inhibition and elimination of malignant tumor cells. To investigate the immunoregulatory role of NK cells and their potential as diagnostic markers, NK cell activity (NKA was analyzed in prostate cancer (PCa patients with particular focus on NK cell subset distribution. METHODS: Prospective data of NKA and NK cell subset distribution patterns were measured from 51 patients initially diagnosed with PCa and 54 healthy controls. NKA was represented by IFN-γ levels after stimulation of the peripheral blood with Promoca®. To determine the distribution of NK cell subsets, PBMCs were stained with fluorochrome-conjugated monoclonal antibodies. Then, CD16(+CD56(dim and CD16(-CD56(bright cells gated on CD56(+CD3(- cells were analyzed using a flow-cytometer. RESULTS: NKA and the proportion of CD56(bright cells were significantly lower in PCa patients compared to controls (430.9 pg/ml vs. 975.2 pg/ml and 2.3% vs. 3.8%, respectively; p<0.001. Both tended to gradually decrease according to cancer stage progression (p for trend = 0.001. A significantly higher CD56(dim-to-CD56(bright cell ratio was observed in PCa patients (41.8 vs. 30.3; p<0.001 along with a gradual increase according to cancer stage progression (p for trend = 0.001, implying a significant reduction of CD56(bright cells in relation to the alteration of CD56(dim cells. The sensitivity and the specificity of NKA regarding PCa detection were 72% and 74%, respectively (best cut-off value at 530.9 pg/ml, AUC = 0.786. CONCLUSIONS: Reduction of CD56(bright cells may precede NK cell dysfunction, leading to impaired cytotoxicity against PCa cells. These observations may explain one of the mechanisms behind NK cell dysfunction observed in PCa microenvironment and lend support to the development of future cancer immunotherapeutic strategies.

  14. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy

    Science.gov (United States)

    Sun, Cheng; Sun, Hao-yu; Xiao, Wei-hua; Zhang, Cai; Tian, Zhi-gang

    2015-01-01

    The mechanisms linking hepatitis B virus (HBV) and hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) remain largely unknown. Natural killer (NK) cells account for 25%–50% of the total number of liver lymphocytes, suggesting that NK cells play an important role in liver immunity. The number of NK cells in the blood and tumor tissues of HCC patients is positively correlated with their survival and prognosis. Furthermore, a group of NK cell-associated genes in HCC tissues is positively associated with the prolonged survival. These facts suggest that NK cells and HCC progression are strongly associated. In this review, we describe the abnormal NK cells and their functional impairment in patients with chronic HBV and HCV infection, which contribute to the progression of HCC. Then, we summarize the association of NK cells with HCC based on the abnormalities in the numbers and phenotypes of blood and liver NK cells in HCC patients. In particular, the exhaustion of NK cells that represents lower cytotoxicity and impaired cytokine production may serve as a predictor for the occurrence of HCC. Finally, we present the current achievements in NK cell immunotherapy conducted in mouse models of liver cancer and in clinical trials, highlighting how chemoimmunotherapy, NK cell transfer, gene therapy, cytokine therapy and mAb therapy improve NK cell function in HCC treatment. It is conceivable that NK cell-based anti-HCC therapeutic strategies alone or in combination with other therapies will be great promise for HCC treatment. PMID:26073325

  15. IL-15 Overcomes Hepatocellular Carcinoma-Induced NK Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Nicholas J. W. Easom

    2018-05-01

    Full Text Available NK cells have potent antitumor capacity. They are enriched in the human liver, with a large subset specialized for tissue-residence. The potential for liver-resident versus liver-infiltrating NK cells to populate, and exert antitumor functions in, human liver tumors has not been studied. We examined liver-resident and liver-infiltrating NK cells directly ex vivo from human hepatocellular carcinomas (HCCs and liver colorectal (CRC metastases, compared with matched uninvolved liver tissue. We found that NK cells were highly prevalent in both HCC and liver CRC metastases, although at lower frequencies than unaffected liver. Up to 79% of intratumoral NK cells had the CXCR6+CD69+ liver-resident phenotype. Direct ex vivo staining showed that liver-resident NK cells had increased NKG2D expression compared to their non-resident counterparts, but both subsets had NKG2D downregulation within liver tumors compared to uninvolved liver. Proliferation of intratumoral NK cells (identified by Ki67 was selectively impaired in those with the most marked NKG2D downregulation. Human liver tumor NK cells were functionally impaired, with reduced capacity for cytotoxicity and production of cytokines, even when compared to the hypo-functional tissue-resident NK cells in unaffected liver. Coculture of human liver NK cells with the human hepatoma cell line PLC/PRF/5, or with autologous HCC, recapitulated the defects observed in NK cells extracted from tumors, with downmodulation of NKG2D, cytokine production, and target cell cytotoxicity. Transwells and conditioned media confirmed a requirement for cell contact with PLC/PRF/5 to impose NK cell inhibition. IL-15 was able to recover antitumor functionality in NK cells inhibited by in vitro exposure to HCC cell lines or extracted directly from HCC. In summary, our data suggest that the impaired antitumor function of local NK cells reflects a combination of the tolerogenic features inherent to liver-resident NK cells

  16. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab.

    Science.gov (United States)

    Fujii, Rika; Schlom, Jeffrey; Hodge, James W

    2018-05-01

    OBJECTIVE Chordoma is a rare bone tumor derived from the notochord and is resistant to conventional therapies such as chemotherapy, radiotherapy, and targeting therapeutics. Expression of epidermal growth factor receptor (EGFR) in a large proportion of chordoma specimens indicates a potential target for therapeutic intervention. In this study the authors investigated the potential role of the anti-EGFR antibody cetuximab in immunotherapy for chordoma. METHODS Since cetuximab is a monoclonal antibody of the IgG1 isotype, it has the potential to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) employing natural killer (NK) cells as effectors. Polymorphisms in the CD16 allele expressed on NK cells have been shown to influence the degree of ADCC of tumor cells, with the high-affinity valine (V)/V allele being responsible for more lysis than the V/phenylalanine (F) or FF allele. Unfortunately, however, only approximately 10% of the population expresses the VV allele on NK cells. An NK cell line, NK-92, has now been engineered to endogenously express IL-2 and the high-affinity CD16 allele. These irradiated high-affinity (ha)NK cells were analyzed for lysis of chordoma cells with and without cetuximab, and the levels of lysis observed in ADCC were compared with those of NK cells from donors expressing the VV, VF, and FF alleles. RESULTS Here the authors demonstrate for the first time 1) that cetuximab in combination with NK cells can mediate ADCC of chordoma cells; 2) the influence of the NK CD16 polymorphism in cetuximab-mediated ADCC for chordoma cell lysis; 3) that engineered haNK cells-that is, cells transduced to express the CD16 V158 FcγRIIIa receptor-bind cetuximab with similar affinity to normal NK cells expressing the high-affinity VV allele; and 4) that irradiated haNK cells induce ADCC with cetuximab in chordoma cells. CONCLUSIONS These studies provide rationale for the use of cetuximab in combination with irradiated haNK cells for therapy for

  17. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity.

    Science.gov (United States)

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M; Tinder, Teresa L; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J; Mukherjee, Pinku

    2012-11-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo.

  18. Bystander cells enhance NK cytotoxic efficiency by reducing search time.

    Science.gov (United States)

    Zhou, Xiao; Zhao, Renping; Schwarz, Karsten; Mangeat, Matthieu; Schwarz, Eva C; Hamed, Mohamed; Bogeski, Ivan; Helms, Volkhard; Rieger, Heiko; Qu, Bin

    2017-03-13

    Natural killer (NK) cells play a central role during innate immune responses by eliminating pathogen-infected or tumorigenic cells. In the microenvironment, NK cells encounter not only target cells but also other cell types including non-target bystander cells. The impact of bystander cells on NK killing efficiency is, however, still elusive. In this study we show that the presence of bystander cells, such as P815, monocytes or HUVEC, enhances NK killing efficiency. With bystander cells present, the velocity and persistence of NK cells were increased, whereas the degranulation of lytic granules remained unchanged. Bystander cell-derived H 2 O 2 was found to mediate the acceleration of NK cell migration. Using mathematical diffusion models, we confirm that local acceleration of NK cells in the vicinity of bystander cells reduces their search time to locate target cells. In addition, we found that integrin β chains (β1, β2 and β7) on NK cells are required for bystander-enhanced NK migration persistence. In conclusion, we show that acceleration of NK cell migration in the vicinity of H 2 O 2 -producing bystander cells reduces target cell search time and enhances NK killing efficiency.

  19. NKG2D is a key receptor for recognition of bladder cancer cells by IL-2-activated NK cells and BCG promotes NK cell activation

    Directory of Open Access Journals (Sweden)

    Eva María García-Cuesta

    2015-06-01

    Full Text Available Intravesical instillation of Bacillus Calmette-Guérin (BCG is used to treat superficial bladder cancer, either papillary tumors (after trans-urethral resection or high-grade flat carcinomas (carcinoma in situ, reducing recurrence in about 70% of patients. Initially, BCG was proposed to work through an inflammatory response, mediated by phagocytic uptake of mycobacterial antigens and cytokine release. More recently, other immune effectors such as monocytes, Natural Killer (NK and NKT cells have been suggested to play a role in this immune response. Here, we provide a comprehensive study of multiple bladder cancer cell lines as putative targets for immune cells and evaluated their recognition by NK cells in the presence and absence of BCG. We describe that different bladder cancer cells can express multiple activating and inhibitory ligands for NK cells. Recognition of bladder cancer cells depended mainly on NKG2D, with a contribution from NKp46. Surprisingly, exposure to BCG did not affect the immune phenotype of bladder cells nor increased NK cell recognition of purified IL-2-activated cell lines. However, NK cells were activated efficiently when BCG was included in mixed lymphocyte cultures, suggesting that NK activation after mycobacteria treatment requires the collaboration of various immune cells. We also analyzed the percentage of NK cells in peripheral blood of a cohort of bladder cancer patients treated with BCG. The total numbers of NK cells did not vary during treatment, indicating that a more detailed study of NK cell activation in the tumor site will be required to evaluate the response in each patient.

  20. The role of the transcription factor Tcf-1 for the development and the function of NK cells

    OpenAIRE

    Gehrig, J.

    2014-01-01

    Natural Killer (NK) cells are innate immune cells that can eliminate malignant and foreign cells and that play an important role for the early control of viral and fungal infections. Further, they are important regulators of the adaptive and innate immune responses. During their development in the bone marrow (BM) NK cells undergo several maturation steps that directly establish an effector program. The transcriptional network that controls NK cell development and maturation is still incomple...

  1. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells

    Science.gov (United States)

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach. PMID:25949869

  2. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells.

    Science.gov (United States)

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach.

  3. Activated Allogeneic NK Cells Preferentially Kill Poor Prognosis B-Cell Chronic Lymphocytic Leukemia Cells.

    Science.gov (United States)

    Sánchez-Martínez, Diego; Lanuza, Pilar M; Gómez, Natalia; Muntasell, Aura; Cisneros, Elisa; Moraru, Manuela; Azaceta, Gemma; Anel, Alberto; Martínez-Lostao, Luis; Villalba, Martin; Palomera, Luis; Vilches, Carlos; García Marco, José A; Pardo, Julián

    2016-01-01

    Mutational status of TP53 together with expression of wild-type (wt) IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL) patients. Adoptive cell therapy using allogeneic HLA-mismatched Natural killer (NK) cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs) the most effective stimulus to activate NK cells. Here, we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell-activating receptors (NKG2D and NCRs) and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV ) are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells, and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.

  4. Treatment of Aggressive NK-Cell Leukemia

    DEFF Research Database (Denmark)

    Boysen, Anders Kindberg; Jensen, Paw; Johansen, Preben

    2011-01-01

    Aggressive NK-cell leukemia is a rare malignancy with neoplastic proliferation of natural killer cells. It often presents with constitutional symptoms, a rapid declining clinical course, and a poor prognosis with a median survival of a few months. The disease is usually resistant to cytotoxic...... literature concerning treatment of aggressive NK-cell leukemia....

  5. NK and NKT Cell Depletion Alters the Outcome of Experimental Pneumococcal Pneumonia: Relationship with Regulation of Interferon-γ Production

    Directory of Open Access Journals (Sweden)

    Eirini Christaki

    2015-01-01

    Full Text Available Background. Natural killer (NK and natural killer T (NKT cells contribute to the innate host defense but their role in bacterial sepsis remains controversial. Methods. C57BL/6 mice were infected intratracheally with 5 × 105 cfu of Streptococcus pneumoniae. Animals were divided into sham group (Sham; pretreated with isotype control antibody (CON group; pretreated with anti-asialo GM1 antibody (NKd group; and pretreated with anti-CD1d monoclonal antibody (NKTd group before bacterial challenge. Serum and tissue samples were analyzed for bacterial load, cytokine levels, splenocyte apoptosis rates, and cell characteristics by flow cytometry. Splenocyte miRNA expression was also analyzed and survival was assessed. Results. NK cell depletion prolonged survival. Upon inhibition of NKT cell activation, spleen NK (CD3−/NK1.1+ cells increased compared to all other groups. Inhibition of NKT cell activation led to higher bacterial loads and increased levels of serum and splenocyte IFN-γ. Splenocyte miRNA analysis showed that miR-200c and miR-29a were downregulated, while miR-125a-5p was upregulated, in anti-CD1d treated animals. These changes were moderate after NK cell depletion. Conclusions. NK cells appear to contribute to mortality in pneumococcal pneumonia. Inhibition of NKT cell activation resulted in an increase in spleen NK (CD3−/NK1.1+ cells and a higher IFN-γ production, while altering splenocyte miRNA expression.

  6. Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression.

    Directory of Open Access Journals (Sweden)

    Irene Tirado-González

    Full Text Available Dendritic cell (DC and natural killer (NK cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression.

  7. Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression.

    Science.gov (United States)

    Tirado-González, Irene; González, Irene Tirado; Barrientos, Gabriela; Freitag, Nancy; Otto, Teresa; Thijssen, Victor L J L; Moschansky, Petra; von Kwiatkowski, Petra; Klapp, Burghard F; Winterhager, Elke; Bauersachs, Stefan; Blois, Sandra M

    2012-01-01

    Dendritic cell (DC) and natural killer (NK) cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression.

  8. Activated allogeneic NK cells preferentially kill poor prognosis B-cell chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Diego Sanchez-Martinez

    2016-10-01

    Full Text Available Mutational status of TP53 together with expression of wild type (wt IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL patients. Adoptive cell therapy using allogeneic HLA mismatched Natural Killer (NK cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs the most effective stimulus to activate NK cells. Here we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell activating receptors (NKG2D and NCRs and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.□

  9. Increased Numbers of NK Cells, NKT-Like Cells, and NK Inhibitory Receptors in Peripheral Blood of Patients with Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Ying Tang

    2013-01-01

    Full Text Available T cells and B cells participate in the pathogenesis of COPD. Currently, NK cells and NKT cells have gained increasing attention. In the present study, 19 COPD patients and 12 healthy nonsmokers (HNS were recruited, and their pulmonary function was assessed. The frequencies of CD3+ T, CD4+ T, CD8+ T, B, NK, and NKT-like cells were determined using flow cytometry. The frequencies of spontaneous and inducible IFN-γ+ or CD107a+ NK and NKT-like cells as well as activating or inhibitory receptors were also detected. The potential association of lymphocyte subsets with disease severity was further analyzed. Significantly decreased numbers of CD3+ and CD4+ T cells, and the CD4+/CD8+ ratio, but increased numbers of CD3−CD56+ NK and CD3+CD56+ NKT-like cells were observed in COPD patients compared to HNS. The frequencies of inducible IFN-γ-secreting NK and NKT-like cells were less in COPD patients. The frequencies of CD158a and CD158b on NK cells and CD158b on NKT-like cells were greater. The frequency of CD158b+ NK cells was negatively correlated with FEV1% prediction and FEV1/FVC. Our data indicate that COPD patients have immune dysfunction, and higher frequencies of inhibitory NK cells and NKT-like cells may participate in the pathogenesis of COPD.

  10. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  11. Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells.

    Science.gov (United States)

    Blois, Sandra M; Klapp, Burghard F; Barrientos, Gabriela

    2011-03-01

    Differentiation of endometrial stromal cells and formation of new maternal blood vessels at the time of embryo implantation are critical for the establishment and maintenance of gestation. The regulatory functions of decidual leukocytes during early pregnancy, particularly dendritic cells (DC) and NK cells, may be important not only for the generation of maternal immunological tolerance but also in the regulation of stromal cell differentiation and the vascular responses associated with the implantation process. However, the specific contributions of DC and NK cells during implantation are still difficult to dissect mainly due to reciprocal regulatory interactions established between them within the decidualizing microenvironment. The present review article discusses current evidence on the regulatory pathways driving decidualization in mice, suggesting that NK cells promote uterine vascular modifications that assist decidual growth but DC directly control stromal cell proliferation, angiogenesis and the homing and maturation of NK cell precursors in the pregnant uterus. Thus, successful implantation appears to result from an interplay between cellular components of the decidualizing endometrium involving immunoregulatory and pro-angiogenic functions of DC and NK cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Models to Study NK Cell Biology and Possible Clinical Application.

    Science.gov (United States)

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  13. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  14. Regulation of Murine Natural Killer Cell Commitment

    Directory of Open Access Journals (Sweden)

    Nicholas D Huntington

    2013-01-01

    Full Text Available NK cells can derive from the same precursors as B and T cells, however to achieve lineage specificity, several transcription factors need to be activated or annulled. While a few important transcription factors have identified for NK genesis the mechanisms of how this is achieved is far from resolved. Adding to the complexity of this, NK cells are found and potentially develop in diverse locations in vivo and it remains to be addressed if a common NK cell precursor seeds diverse niches and how transcription factors may differentially regulate NK cell commitment in distinct microenvironments. Here we will summarise some recent findings in NK cell commitment and discuss how a NK cell transcriptional network might be organised, while addressing some misconceptions and anomalies along the way.

  15. DNAM-1 Expression Marks an Alternative Program of NK Cell Maturation

    Directory of Open Access Journals (Sweden)

    Ludovic Martinet

    2015-04-01

    Full Text Available Natural killer (NK cells comprise a heterogeneous population of cells important for pathogen defense and cancer surveillance. However, the functional significance of this diversity is not fully understood. Here, we demonstrate through transcriptional profiling and functional studies that the activating receptor DNAM-1 (CD226 identifies two distinct NK cell functional subsets: DNAM-1+ and DNAM-1− NK cells. DNAM-1+ NK cells produce high levels of inflammatory cytokines, have enhanced interleukin 15 signaling, and proliferate vigorously. By contrast, DNAM-1− NK cells that differentiate from DNAM-1+ NK cells have greater expression of NK-cell-receptor-related genes and are higher producers of MIP1 chemokines. Collectively, our data reveal the existence of a functional program of NK cell maturation marked by DNAM-1 expression.

  16. Candida albicans induces Metabolic Reprogramming in human NK cells and responds to Perforin with a Zinc Depletion Response

    Directory of Open Access Journals (Sweden)

    Daniela eHellwig

    2016-05-01

    Full Text Available As part of the innate immune system, natural killer (NK cells are directly involved in the response to fungal infections. Perforin has been identified as the major effector molecule acting against many fungal pathogens. While several studies have shown that perforin mediated fungicidal effects can contribute to fungal clearance, neither the activation of NK cells by fungal pathogens nor the effects of perforin on fungal cells are well understood. In a dual approach, we have studied the global gene expression pattern of primary and cytokine activated NK cells after co-incubation with C. albicans and the transcriptomic adaptation of C. albicans to perforin exposure. NK cells responded to the fungal pathogen with an up-regulation of genes involved in immune signaling and release of cytokines. Furthermore, we observed a pronounced increase of genes involved in glycolysis and glycolysis inhibitor 2-deoxy-D-glucose impaired C. albicans induced NK cell activation. This strongly indicates that metabolic adaptation is a major part of the NK cell response to C. albicans infections. In the fungal pathogen, perforin induced a strong up-regulation of several fungal genes involved in the zinc depletion response, such as PRA1 and ZRT1. These data suggest that fungal zinc homeostasis is linked to the reaction to perforin secreted by NK cells. However, deletion mutants in PRA1 and ZRT1 did not show altered susceptibility to perforin.

  17. Memory NK cells: why do they reside in the liver?

    Science.gov (United States)

    Jiang, Xiaojun; Chen, Yonglin; Peng, Hui; Tian, Zhigang

    2013-05-01

    Immune memory is the hallmark of adaptive immunity. However, recent studies have shown that natural killer (NK) cells, key components of the innate immune system, also mediate memory responses in mice and humans. Strikingly, memory NK cells were liver-resident in some models, raising the question as to whether the liver is a special organ for the acquisition of NK cell memory. Here, we review the characteristics of NK cell memory by summarizing recent progress and discuss how the liver may generate both the initiation and the recall phase of memory. We propose that the liver may have unique precursors for memory NK cells, which are developmentally distinct from NK cells derived from bone marrow.

  18. The diagnosis and management of NK/T-cell lymphomas

    Directory of Open Access Journals (Sweden)

    Eric Tse

    2017-04-01

    Full Text Available Abstract Extranodal natural killer (NK/T-cell lymphoma is an aggressive malignancy of putative NK-cell origin, with a minority deriving from the T-cell lineage. Pathologically, the malignancy occurs in two forms, extranodal NK/T-cell lymphoma, nasal type; and aggressive NK-cell leukaemia. Lymphoma occur most commonly (80% in the nose and upper aerodigestive tract, less commonly (20% in non-nasal areas (skin, gastrointestinal tract, testis, salivary gland, and rarely as disseminated disease with a leukemic phase. Genetic analysis showed mutations of genes involved in the JAK/STAT pathway, RNA assembly, epigenetic regulation, and tumor suppression. In initial clinical evaluation, positron emission tomography computed tomography, and quantification of plasma EBV DNA are mandatory as they are useful for response monitoring and prognostication. In stage I/II diseases, combined chemotherapy and radiotherapy (sequentially or concurrently is the best approach. Conventional anthracycline-containing regimens are ineffective and should be replaced by non-anthracycline-containing regimens, preferably including L-asparaginase. Radiotherapy alone is associated with high systemic relapse rates and should be avoided. In stage III/IV diseases, non-anthracycline-regimens-containing L-asparaginase are the standard. In relapsed/refractory cases, blockade of the programmed death protein 1 has recently shown promising results with high response rates. In the era of effective non-anthracycline-containing regimens, autologous haematopoietic stem cell transplantation (HSCT has not been shown to be beneficial. However, allogeneic HSCT may be considered for high-risk or advanced-stage patients in remission or relapsed/refractory patients responding to salvage therapy. Prognostic models taking into account presentation, interim, and end-of-treatment parameters are useful in triaging patients to different treatment strategies.

  19. PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells.

    Science.gov (United States)

    Miranda, Dante; Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra; Montoya, Margarita

    2016-01-01

    Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2.

  20. Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression.

    Science.gov (United States)

    Lanuza, Pilar M; Vigueras, Alan; Olivan, Sara; Prats, Anne C; Costas, Santiago; Llamazares, Guillermo; Sanchez-Martinez, Diego; Ayuso, José María; Fernandez, Luis; Ochoa, Ignacio; Pardo, Julián

    2018-01-01

    Haploidentical Natural Killer (NK) cells have been shown as an effective and safe alternative for the treatment of haematological malignancies with poor prognosis for which traditional therapies are ineffective. In contrast to haematological cancer cells, that mainly grow as single suspension cells, solid carcinomas are characterised by a tridimensional (3D) architecture that provide specific surviving advantages and resistance against chemo- and radiotherapy. However, little is known about the impact of 3D growth on solid cancer immunotherapy especially adoptive NK cell transfer. We have recently developed a protocol to activate ex vivo human primary NK cells using B lymphoblastic cell lines, which generates NK cells able to overcome chemoresistance in haematological cancer cells. Here we have analysed the activity of these allogeneic NK cells against colorectal (CRC) human cell lines growing in 3D spheroid culture and correlated with the expression of some of the main ligands regulating NK cell activity. Our results indicate that activated NK cells efficiently kill colorectal tumour cell spheroids in both 2D and 3D cultures. Notably, although 3D CRC cell cultures favoured the expression of the inhibitory immune checkpoint PD-L1, it did not correlate with increased resistance to NK cells. Finally, we have analysed in detail the infiltration of NK cells in 3D spheroids by microscopy and found that at low NK cell density, cell death is not observed although NK cells are able to infiltrate into the spheroid. In contrast, higher densities promote tumoural cell death before infiltration can be detected. These findings show that highly dense activated human primary NK cells efficiently kill colorectal carcinoma cells growing in 3D cultures independently of PD-L1 expression and suggest that the use of allogeneic activated NK cells could be beneficial for the treatment of colorectal carcinoma.

  1. IL-21 augments NK effector functions in chronically HIV-infected individuals

    Science.gov (United States)

    Strbo, Natasa; de Armas, Lesley; Liu, Huanliang; Kolber, Michael A.; Lichtenheld, Mathias; Pahwa, Savita

    2009-01-01

    Objective This study addresses the interleukin (IL)-21 effects on resting peripheral blood NK cells in chronically HIV-infected individuals. Design The effects of IL-21 on perforin expression, proliferation, degranulation, IFN-γ production, cytotoxicity and induction of STAT phosphorylation in NK cells were determined in vitro. Methods Peripheral blood mononuclear cells from HIV-infected and healthy individuals were incubated in vitro for 6h, 24h or 5 days with IL-21 or IL-15. Percentages of perforin, IFN-γ, CD107a, NKG2D and STAT3-5 positive cells were determined within NK cell populations. K562 cells were used as target cells in NK cytotoxicity assay. Results Frequency of CD56dim cells in chronically HIV-infected individuals was diminished. Perforin expression in CD56dim and CD56bright was comparable in healthy and HIV-infected individuals. IL-15 up-regulated perforin expression primarily in CD56bright NK cells while IL-21 up-regulated perforin in both NK subsets. IL-21 and IL- 15 up-regulated CD107a and IFN-γ as well as NK cytotoxicity. IL-15 predominantly activated STAT5, while IL-21 activated STAT5 and STAT3. IL-15, but not IL-21 increased NK cell proliferation in uninfected and HIV-infected individuals. Conclusion IL-21 augments NK effector functions in chronically HIV-infected individuals and due to its perforin enhancing properties it has potential for immunotherapy or as a vaccine adjuvant. PMID:18670213

  2. Immune surveillance properties of human NK cell-derived exosomes.

    Science.gov (United States)

    Lugini, Luana; Cecchetti, Serena; Huber, Veronica; Luciani, Francesca; Macchia, Gianfranco; Spadaro, Francesca; Paris, Luisa; Abalsamo, Laura; Colone, Marisa; Molinari, Agnese; Podo, Franca; Rivoltini, Licia; Ramoni, Carlo; Fais, Stefano

    2012-09-15

    Exosomes are nanovesicles released by normal and tumor cells, which are detectable in cell culture supernatant and human biological fluids, such as plasma. Functions of exosomes released by "normal" cells are not well understood. In fact, several studies have been carried out on exosomes derived from hematopoietic cells, but very little is known about NK cell exosomes, despite the importance of these cells in innate and adaptive immunity. In this paper, we report that resting and activated NK cells, freshly isolated from blood of healthy donors, release exosomes expressing typical protein markers of NK cells and containing killer proteins (i.e., Fas ligand and perforin molecules). These nanovesicles display cytotoxic activity against several tumor cell lines and activated, but not resting, immune cells. We also show that NK-derived exosomes undergo uptake by tumor target cells but not by resting PBMC. Exosomes purified from plasma of healthy donors express NK cell markers, including CD56+ and perforin, and exert cytotoxic activity against different human tumor target cells and activated immune cells as well. The results of this study propose an important role of NK cell-derived exosomes in immune surveillance and homeostasis. Moreover, this study supports the use of exosomes as an almost perfect example of biomimetic nanovesicles possibly useful in future therapeutic approaches against various diseases, including tumors.

  3. ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody.

    Science.gov (United States)

    Jochems, Caroline; Hodge, James W; Fantini, Massimo; Tsang, Kwong Y; Vandeveer, Amanda J; Gulley, James L; Schlom, Jeffrey

    2017-08-01

    NK-92 cells, and their derivative, designated aNK, were obtained from a patient with non-Hodgkin lymphoma. Prior clinical studies employing adoptively transferred irradiated aNK cells have provided evidence of clinical benefit and an acceptable safety profile. aNK cells have now been engineered to express IL-2 and the high affinity (ha) CD16 allele (designated haNK). Avelumab is a human IgG1 anti-PD-L1 monoclonal antibody, which has shown evidence of clinical activity in a range of human tumors. Prior in vitro studies have shown that avelumab has the ability to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) of human tumor cells when combined with NK cells. In the studies reported here, the ability of avelumab to enhance the lysis of a range of human carcinoma cells by irradiated haNK cells via the ADCC mechanism is demonstrated; this ADCC is shown to be inhibited by anti-CD16 blocking antibody and by concanamycin A, indicating the use of the granzyme/perforin pathway in tumor cell lysis. Studies also show that while NK cells have the ability to lyse aNK or haNK cells, the addition of NK cells to irradiated haNK cells does not inhibit haNK-mediated lysis of human tumor cells, with or without the addition of avelumab. Avelumab-mediated lysis of tumor cells by irradiated haNK cells is also shown to be similar to that of NK cells bearing the V/V Fc receptor high affinity allele. These studies thus provide the rationale for the clinical evaluation of the combined use of avelumab with that of irradiated adoptively transferred haNK cells. © 2017 UICC.

  4. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  5. Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon,delta proteins

    NARCIS (Netherlands)

    Phillips, J. H.; Hori, T.; Nagler, A.; Bhat, N.; Spits, H.; Lanier, L. L.

    1992-01-01

    Natural killer (NK) cells have been defined as CD3 epsilon-, CD16+ and/or CD56+ lymphocytes that mediate major histocompatibility complex (MHC)-unrestricted cytotoxicity against certain tumors and virus-infected cells. Unlike T lymphocytes, NK cells do not rearrange or productively express T cell

  6. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions

    International Nuclear Information System (INIS)

    Garcia-Iglesias, Trinidad; Daneri-Navarro, Adrian; Toro-Arreola, Alicia del; Albarran-Somoza, Benibelks; Toro-Arreola, Susana del; Sanchez-Hernandez, Pedro E; Ramirez-Dueñas, Maria Guadalupe; Balderas-Peña, Luz Ma. Adriana; Bravo-Cuellar, Alejandro; Ortiz-Lazareno, Pablo C

    2009-01-01

    Persistent high risk HPV infection can lead to cervical cancer, the second most common malignant tumor in women worldwide. NK cells play a crucial role against tumors and virus-infected cells through a fine balance between activating and inhibitory receptors. Expression of triggering receptors NKp30, NKp44, NKp46 and NKG2D on NK cells correlates with cytolytic activity against tumor cells, but these receptors have not been studied in cervical cancer and precursor lesions. The aim of the present work was to study NKp30, NKp46, NKG2D, NKp80 and 2B4 expression in NK cells from patients with cervical cancer and precursor lesions, in the context of HPV infection. NKp30, NKp46, NKG2D, NKp80 and 2B4 expression was analyzed by flow cytometry on NK cells from 59 patients with cervical cancer and squamous intraepithelial lesions. NK cell cytotoxicity was evaluated in a 4 hour CFSE/7-AAD flow cytometry assay. HPV types were identified by PCR assays. We report here for the first time that NK cell-activating receptors NKp30 and NKp46 are significantly down-regulated in cervical cancer and high grade squamous intraepithelial lesion (HGSIL) patients. NCRs down-regulation correlated with low cytolytic activity, HPV-16 infection and clinical stage. NKG2D was also down-regulated in cervical cancer patients. Our results suggest that NKp30, NKp46 and NKG2D down-regulation represent an evasion mechanism associated to low NK cell activity, HPV-16 infection and cervical cancer progression

  7. Synergistic Effects of Cabozantinib and EGFR-Specific CAR-NK-92 Cells in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2017-01-01

    Full Text Available The chimeric antigen receptor-modified immune effector cell (CAR-T and CAR-NK therapies are newly developed adoptive treatments of cancers. However, their therapeutic efficacy against solid tumors is limited. Combining CAR-T or CAR-NK cells with chemotherapeutic drugs to treat solid tumor may be a promising strategy. We developed an epidermal growth factor- (EGFR- specific third-generation CAR. NK-92 cells were modified with the CAR by lentivirus infection. The specific killing ability of the CAR-modified NK-92 cells (CAR-NK-92 against renal cell carcinoma (RCC cell lines was confirmed in vitro. The synergistic effects of cabozantinib and EGFR-specific CAR-NK-92 cells were investigated in vitro and in vivo. Our results showed that the CAR-NK-92 cells lyse RCC cells in an EGFR-specific manner. Treatment with cabozantinib could increase EGFR and decrease PD-L1 membrane surface expression in RCC cells and enhance the killing ability of CAR-NK-92 cells against the RCC cells in vitro. Furthermore, the CAR-NK-92 cells show synergistic therapeutic efficacy with cabozantinib against human RCC xenograft models. Our results provided the basis for combination with chemotherapy as a novel strategy for enhancing the therapeutic efficacy of CAR-modified immune effector cells for solid tumors.

  8. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  9. NK cells and other innate lymphoid cells in haematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Paola eVacca

    2016-05-01

    Full Text Available Natural Killer (NK cells play a major role in the T-cell depleted haploidentical haematopoietic stem cell transplantation (haplo-HSCT to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILC. At variance with NK cells, the other ILC populations (ILC1/2/3 are non-cytolytic, while they secrete different patterns of cytokines. ILC provide host defences against viruses, bacteria and parasites, drive lymphoid organogenesis, and contribute to tissue remodelling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defences that are reconstituted more rapidly than the adaptive ones. In this context, ILC may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodelling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILC. Of note, CD34+ cells isolated from different sources of HSC, may differentiate in vitro towards various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g. IL-1β may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  10. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Kory L. Alderson

    2011-01-01

    Full Text Available Natural killer (NK cells are powerful effector cells that can be directed to eliminate tumor cells through tumor-targeted monoclonal antibodies (mAbs. Some tumor-targeted mAbs have been successfully applied in the clinic and are included in the standard of care for certain malignancies. Strategies to augment the antitumor response by NK cells have led to an increased understanding of how to improve their effector responses. Next-generation reagents, such as molecularly modified mAbs and mAb-cytokine fusion proteins (immunocytokines, ICs designed to augment NK-mediated killing, are showing promise in preclinical and some clinical settings. Continued research into the antitumor effects induced by NK cells and tumor-targeted mAbs suggests that additional intrinsic and extrinsic factors may influence the antitumor response. Therefore more research is needed that focuses on evaluating which NK cell and tumor criteria are best predictive of a clinical response and which combination immunotherapy regimens to pursue for distinct clinical settings.

  11. Amelioration of NK cell function driven by Vα24+ invariant NKT cell activation in multiple myeloma.

    Science.gov (United States)

    Iyoda, Tomonori; Yamasaki, Satoru; Hidaka, Michihiro; Kawano, Fumio; Abe, Yu; Suzuki, Kenshi; Kadowaki, Norimitsu; Shimizu, Kanako; Fujii, Shin-Ichiro

    2018-02-01

    NK cells represent a first line of immune defense, but are progressively dysregulated in multiple myeloma (MM) patients. To restore and facilitate their antitumor effect, NK cells are required in sufficient quantities and must be stimulated. We initially assessed the proportions of NKT and NK cells in 34 MM patients. The frequencies of both in PBMC populations correlated with those in BMMNCs irrespective of low BMMNC numbers. We then assessed the adjunctive effect of stimulating NKT cells with CD1d and α-GalCer complexes on the NK cells. The expression of NKG2D on CD56 dim CD16 + NK cells and DNAM-1 on CD56 bright CD16 - NK cells increased after NKT cell activation. Apparently, NK cell-mediated anti-tumor effects were dependent on NKG2D and DNAM-1 ligands on myeloma cells. Thus, NK cell function in patients could be ameliorated, beyond the effect of immunosuppression, by NKT cell activation. This NKT-driven NK cell therapy could represent a potential new treatment modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Memory NK cells: why do they reside in the liver?

    OpenAIRE

    Jiang, Xiaojun; Chen, Yonglin; Peng, Hui; Tian, Zhigang

    2013-01-01

    Immune memory is the hallmark of adaptive immunity. However, recent studies have shown that natural killer (NK) cells, key components of the innate immune system, also mediate memory responses in mice and humans. Strikingly, memory NK cells were liver-resident in some models, raising the question as to whether the liver is a special organ for the acquisition of NK cell memory. Here, we review the characteristics of NK cell memory by summarizing recent progress and discuss how the liver may ge...

  13. NKp46 defines ovine cells that have characteristics corresponding to NK cells

    Directory of Open Access Journals (Sweden)

    Connelley Timothy

    2011-02-01

    Full Text Available Abstract Natural killer (NK cells are well recognized as playing a key role in innate immune defence through cytokine production and cytotoxic activity; additionally recent studies have identified several novel NK cell functions. The ability to study NK cells in the sheep has been restricted due to a lack of specific reagents. We report the generation of a monoclonal antibody specific for ovine NKp46, a receptor which in a number of mammals is expressed exclusively in NK cells. Ovine NKp46+ cells represent a population that is distinct from CD4+ and γδ+ T-cells, B-cells and cells of the monocytic lineage. The NKp46+ cells are heterogenous with respect to expression of CD2 and CD8 and most, but not all, express CD16 - characteristics consistent with NK cell populations in other species. We demonstrate that in addition to populations in peripheral blood and secondary lymphoid organs, ovine NKp46+ populations are also situated at the mucosal surfaces of the lung, gastro-intestinal tract and non-gravid uterus. Furthermore, we show that purified ovine NKp46+ populations cultured in IL-2 and IL-15 have cytotoxic activity that could be enhanced by ligation of NKp46 in re-directed lysis assays. Therefore we conclude that ovine NKp46+ cells represent a population that by phenotype, tissue distribution and function correspond to NK cells and that NKp46 is an activating receptor in sheep as in other species.

  14. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    Directory of Open Access Journals (Sweden)

    Deborah Frenkel

    2016-07-01

    Full Text Available After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/- retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK cell-mediated cytotoxicity: i B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/- and FcγRIIIa deficient (CD16-/- C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii administration of NK1.1 specific IgG2a (mAb PK136 but not irrelevant IgG2a (myeloma M9144 prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei

  15. The application of natural killer (NK cell immunotherapy for the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Rayne H Rouce

    2015-11-01

    Full Text Available Natural killer (NK cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo expanded, chimeric antigen receptor (CAR engineered or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated anti-tumor effect can be achieved in the absence of graft-versus-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer such as the failure of infused NK cells to expand and persist in vivo. Therefore efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next

  16. Lentiviral Vector-Mediated GFP/fluc gene introduction into primary mouse NK cells

    International Nuclear Information System (INIS)

    L, Thi Thanh Hoa; Tae, Seong Ho; Min, Jung Joon

    2007-01-01

    NK cell is a type of lymphocyte that has ability in defense against virus infection and some kinds of cancer diseases. Recently, using genetic engineering, studies about the roles and functions of NK cells have been developing. In this study, we used lentivirus-based vector encoding GFP/Fluc gene to transfer into primary mouse NK cells. This model is a tool in studying characteristics of NK cells. The lentivirus used in this study was a commercial one, named LentiM1.3-Fluc, encoding GFP and Flue reporter genes under the control of the murine cytomegalovirus (MCMV) promoter. LentiM1.3-Fluc was infected into freshly isolated mouse NK cells at 2 20 MOl by incubating or using spin infection. In the spin infection, we gently suspended NK cells in viral fluid, then centrifuged at 2000 rpm, 20 minutes at room temperature and incubated for 1 day. After 1 day, virus was discarded and NK cells were cultured in IL-2 with or without IL-12 supplemented media. Infected NK cells were monitored by using fluorescent microscope for GFP and IVIS machine for Fire-fly luciferase expression. The results showed that using spin infection had much effect on introducing lentiviral vector-mediated reporter gene into NK cells than the way without spin. Also, NK cells which were cultured in IL-2 and IL-12 added media expressed higher fluorescent and luminescent signals than those cultured in only IL-2 supplemented media. When these NK cells were injected subcutaneously in Balb/C mice, the imaging signal was observed transiently. Our study demonstrates that by using a simple method, mouse NK cells can be transfected by lentivirus. And this will be useful in studying biology and therapeutic potential of NK cells. However, we require developing alternative lentiviral vectors with different promoter for in vivo application

  17. Tumor Therapeutics Work as Stress Inducers to Enhance Tumor Sensitivity to Natural Killer (NK) Cell Cytolysis by Up-regulating NKp30 Ligand B7-H6.

    Science.gov (United States)

    Cao, Guoshuai; Wang, Jian; Zheng, Xiaodong; Wei, Haiming; Tian, Zhigang; Sun, Rui

    2015-12-11

    Immune cells are believed to participate in initiating anti-tumor effects during regular tumor therapy such as chemotherapy, radiation, hyperthermia, and cytokine injection. One of the mechanisms underlying this process is the expression of so-called stress-inducible immunostimulating ligands. Although the activating receptor NKG2D has been proven to play roles in tumor therapy through targeting its ligands, the role of NKp30, another key activating receptor, is seldom addressed. In this study, we found that the NKp30 ligand B7-H6 was widely expressed in tumor cells and closely correlated to their susceptibility to NK cell lysis. Further studies showed that treatment of tumor cells with almost all standard tumor therapeutics, including chemotherapy (cisplatin, 5-fluorouracil), radiation therapy, non-lethal heat shock, and cytokine therapy (TNF-α), could up-regulate the expression of B7-H6 in tumor cells and enhance tumor sensitivity to NK cell cytolysis. B7-H6 shRNA treatment effectively dampened sensitization of tumor cells to NK-mediated lysis. Our study not only reveals the possibility that tumor therapeutics work as stress inducers to enhance tumor sensitivity to NK cell cytolysis but also suggests that B7-H6 could be a potential target for tumor therapy in the future. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. TLR-Stimulated Eosinophils Mediate Recruitment and Activation of NK Cells In Vivo.

    Science.gov (United States)

    O'Flaherty, S M; Sutummaporn, K; Häggtoft, W L; Worrall, A P; Rizzo, M; Braniste, V; Höglund, P; Kadri, N; Chambers, B J

    2017-06-01

    Eosinophils like many myeloid innate immune cells can provide cytokines and chemokines for the activation of other immune cells upon TLR stimulation. When TLR-stimulated eosinophils were inoculated i.p. into wild-type mice, and NK cells were rapidly recruited and exhibited antitumour cytotoxicity. However, when mice depleted of CD11c + cells were used, a marked decrease in the number of recruited NK cells was observed. We postulated that CpG or LPS from the injected eosinophils could be transferred to host cells, which in turn could recruit NK cells. However, by inoculating mice deficient in TLR4 or TLR9 with LPS or CpG-stimulated eosinophils respectively, NK cell recruitment was still observed alongside cytotoxicity and IFNγ production. CpG stimulation of eosinophils produced the pro-inflammatory cytokine IL-12 and the chemokine CXCL10, which are important for NK cell activation and recruitment in vivo. To demonstrate the importance of CXCL10 in NK cell recruitment, we found that CpG-stimulated eosinophils pretreated with the gut microbial metabolite butyrate had reduced expression and production of CXCL10 and IL-12 and concomitantly were poor at recruitment of NK cells and inducing IFNγ in NK cells. Therefore, eosinophils like other innate immune cells of myeloid origin can conceivably stimulate NK cell activity. In addition, products of the gut microbiota can be potential inhibitors of NK cell. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  19. Early NK Cell Reconstitution Predicts Overall Survival in T-Cell Replete Allogeneic Hematopoietic Stem Cell Transplantation

    DEFF Research Database (Denmark)

    Minculescu, Lia; Marquart, Hanne Vibeke; Friis, Lone Smidstrups

    2016-01-01

    Early immune reconstitution plays a critical role in clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Natural killer (NK) cells are the first lymphocytes to recover after transplantation and are considered powerful effector cells in HSCT. We aimed to evaluate...... the clinical impact of early NK cell recovery in T-cell replete transplant recipients. Immune reconstitution was studied in 298 adult patients undergoing HSCT for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS) from 2005 to 2013. In multivariate analysis NK...... cell numbers day 30 (NK30) >150cells/µL were independently associated with superior overall survival (hazard ratio 0.79, 95% confidence interval 0.66-0.95, p=0.01). Cumulative incidence analyses showed that patients with NK30 >150cells/µL had significantly less transplant related mortality (TRM), p=0...

  20. DX5+NKT cells display phenotypical and functional differences between spleen and liver as well as NK1.1-Balb/c and NK1.1+ C57Bl/6 mice.

    Science.gov (United States)

    Werner, Jens M; Busl, Elisabeth; Farkas, Stefan A; Schlitt, Hans J; Geissler, Edward K; Hornung, Matthias

    2011-04-29

    Natural killer T cells represent a linkage between innate and adaptive immunity. They are a heterogeneous population of specialized T lymphocytes composed of different subsets. DX5+NKT cells are characterized by expression of the NK cell marker DX5 in the context of CD3. However, little is known about the phenotype and functional capacity of this unique cell population. Therefore, we investigated the expression of several T cell and NK cell markers, as well as functional parameters in spleen and liver subsets of DX5+NKT cells in NK1.1- Balb/c mice and compared our findings to NK1.1+ C57Bl/6 mice. In the spleen 34% of DX5+NKT cells expressed CD62L and they up-regulated the functional receptors CD154 as well as CD178 upon activation. In contrast, only a few liver DX5+NKT cells expressed CD62L, and they did not up-regulate CD154 upon activation. A further difference between spleen and liver subsets was observed in cytokine production. Spleen DX5+NKT cells produced more Th1 cytokines including IL-2, IFN-γ and TNF-α, while liver DX5+NKT cells secreted more Th2 cytokines (e.g. IL-4) and even the Th17 cytokine, IL-17a. Furthermore, we found inter-strain differences. In NK1.1+ C57Bl/6 mice DX5+NKT cells represented a distinct T cell population expressing less CD4 and more CD8. Accordingly, these cells showed a CD178 and Th2-type functional capacity upon activation. These results show that DX5+NKT cells are a heterogeneous population, depending on the dedicated organ and mouse strain, that has diverse functional capacity.

  1. NK-cell activity in immunotoxicity drug evaluation

    International Nuclear Information System (INIS)

    Cederbrant, Karin; Marcusson-Staaahl, Maritha; Condevaux, Fabienne; Descotes, Jacques

    2003-01-01

    NK-cell activity as a tool for detection of immunotoxic effects of new human drugs has gained further attention when the recent European note for guidance CPMP/SWP/1042/99 was adopted. The inclusion of NK-cell activity plus distribution of lymphocyte subsets were suggested as an alternative to the primary antibody response to a T-cell dependent antigen. Either of the two test alternatives should be included as a routine parameter in at least one repeated dose-toxicity study, rats or mice being the species of choice. The standard procedure for measuring NK-cell activity is the 51 Cr-release assay. However, a new flow-cytometric assay, adapted for rat peripheral blood, does not require dedicated groups of animals, offers the possibility of repeated testing, and shows at least as sensitive as the conventional 51 Cr-release assay

  2. Expression of cytoplasmic CD3 epsilon proteins in activated human adult natural killer (NK) cells and CD3 gamma, delta, epsilon complexes in fetal NK cells. Implications for the relationship of NK and T lymphocytes

    NARCIS (Netherlands)

    Lanier, L. L.; Chang, C.; Spits, H.; Phillips, J. H.

    1992-01-01

    NK cells have been defined as CD3-, CD16+, and/or CD56+ lymphocytes that mediate MHC-unrestricted cytotoxicity against certain tumors and virus-infected cells. Although CD3 epsilon transcripts have been detected in some NK clones, it has generally been thought that NK cells do not express CD3

  3. Sub-apoptotic dosages of pro-oxidant vitamin cocktails sensitize human melanoma cells to NK cell lysis.

    Science.gov (United States)

    Tremante, Elisa; Santarelli, Lory; Lo Monaco, Elisa; Sampaoli, Camilla; Ingegnere, Tiziano; Guerrieri, Roberto; Tomasetti, Marco; Giacomini, Patrizio

    2015-10-13

    Alpha-tocopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 μM αTOS/20 μM AA/0.2 μM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention.

  4. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection.

    Science.gov (United States)

    Li, Haijun; Zhai, Naicui; Wang, Zhongfeng; Song, Hongxiao; Yang, Yang; Cui, An; Li, Tianyang; Wang, Guangyi; Niu, Junqi; Crispe, Ian Nicholas; Su, Lishan; Tu, Zhengkun

    2017-09-12

    HBV infection represents a major health problem worldwide, but the immunological mechanisms by which HBV causes chronic persistent infection remain only partly understood. Recently, cell subsets with suppressive features have been recognised among monocytes and natural killer (NK) cells. Here we examine the effects of HBV on monocytes and NK cells. Monocytes and NK cells derived from chronic HBV-infected patients and healthy controls were purified and characterised for phenotype, gene expression and cytokines secretion by flow cytometry, quantitative real-time (qRT)-PCR, ELISA and western blotting. Culture and coculture of monocytes and NK cells were used to determine NK cell activation, using intracellular cytokines staining. In chronic HBV infection, monocytes express higher levels of PD-L1, HLA-E, interleukin (IL)-10 and TGF-β, and NK cells express higher levels of PD-1, CD94 and IL-10, compared with healthy individuals. HBV employs hepatitis B surface antigen (HBsAg) to induce suppressive monocytes with HLA-E, PD-L1, IL-10 and TGF-β expression via the MyD88/NFκB signalling pathway. HBV-treated monocytes induce NK cells to produce IL-10, via PD-L1 and HLA-E signals. Such NK cells inhibit autologous T cell activation. Our findings reveal an immunosuppressive cascade, in which HBV generates suppressive monocytes, which initiate regulatory NK cells differentiation resulting in T cell inhibition. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Generation of a novel regulatory NK cell subset from peripheral blood CD34+ progenitors promoted by membrane-bound IL-15.

    Directory of Open Access Journals (Sweden)

    Massimo Giuliani

    Full Text Available BACKGROUND: NK cells have been long time considered as cytotoxic lymphocytes competent in killing virus-infected cells and tumors. However, NK cells may also play essential immuno-regulatory functions. In this context, the real existence of a defined NK subset with negative regulatory properties has been hypothesized but never clearly demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we show the in vitro generation from human peripheral blood haematopoietic progenitors (PB-HP, of a novel subset of non-cytolytic NK cells displaying a mature phenotype and remarkable immuno-regulatory functions (NK-ireg. The main functional hallmark of these NK-ireg cells is represented by the surface expression/release of HLA-G, a major immunosuppressive molecule. In addition, NK-ireg cells secrete two powerful immuno-regulatory factors: IL-10 and IL-21. Through these factors, NK-ireg cells act as effectors of the down-regulation of the immune response: reconverting mature myeloid DC (mDC into immature/tolerogenic DC, blocking cytolytic functions on conventional NK cells and inducing HLA-G membrane expression on PB-derived monocytes. The generation of "NK-ireg" cells is obtained, by default, in culture conditions favouring cell-to-cell contacts, and it is strictly dependent on reciprocal trans-presentation of membrane-bound IL-15 forms constitutively and selectively expressed by human CD34(+ PB-HP. Finally, a small subset of NKp46(+ HLA-G(+ IL-10(+ is detected within freshly isolated decidual NK cells, suggesting that these cells could represent an in vivo counterpart of the NK-ireg cells. CONCLUSIONS/SIGNIFICANCE: In conclusion, NK-ireg cells represent a novel truly differentiated non-cytolytic NK subset with a self-sustainable phenotype (CD56(+ CD16(+ NKp30(+ NKp44(+ NKp46(+ CD94(+ CD69(+ CCR7(+ generated from specific pSTAT6(+ GATA3(+ precursors. NK-ireg cells could be employed to develop new immuno-suppressive strategies in autoimmune diseases, transplant

  6. HIV-1 adaptation to NK cell-mediated immune pressure

    DEFF Research Database (Denmark)

    Elemans, Marjet; Boelen, Lies; Rasmussen, Michael

    2017-01-01

    The observation, by Alter et al., of the enrichment of NK cell “escape” variants in individuals carrying certain Killer-cell Immunoglobulin-like Receptor (KIR) genes is compelling evidence that natural killer (NK) cells exert selection pressure on HIV-1. Alter et al hypothesise that variant pepti...

  7. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction

    Science.gov (United States)

    Yang, Yinli; Han, Qiuju; Hou, Zhaohua; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2017-01-01

    Evidence suggests that exosomes can transfer genetic material between cells. However, their roles in hepatitis B virus (HBV) infection remain unclear. Here, we report that exosomes present in the sera of chronic hepatitis B (CHB) patients contained both HBV nucleic acids and HBV proteins, and transferred HBV to hepatocytes in an active manner. Notably, HBV nucleic acids were detected in natural killer (NK) cells from both CHB patients and healthy donors after exposure to HBV-positive exosomes. Through real-time fluorescence microscopy and flow cytometry, 1,1'-dioctadecyl-3,3,3',3',-tetramethylindodicarbocyanine, 4-chlorobenzenesulfnate salt (DiD)-labeled exosomes were observed to interact with NK cells and to be taken up by NK cells, which was enhanced by transforming growth factor-β treatment. Furthermore, HBV-positive exosomes impaired NK-cell functions, including interferon (IFN)-γ production, cytolytic activity, NK-cell proliferation and survival, as well as the responsiveness of the cells to poly (I:C) stimulation. HBV infection suppressed the expression of pattern-recognition receptors, especially retinoic acid inducible gene I (RIG-I), on NK cells, resulting in the dampening of the nuclear factor κB(NF-κB) and p38 mitogen-activated protein kinase pathways. Our results highlight a previously unappreciated role of exosomes in HBV transmission and NK-cell dysfunction during CHB infection. PMID:27238466

  8. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function.

    Science.gov (United States)

    Parrish-Novak, J; Dillon, S R; Nelson, A; Hammond, A; Sprecher, C; Gross, J A; Johnston, J; Madden, K; Xu, W; West, J; Schrader, S; Burkhead, S; Heipel, M; Brandt, C; Kuijper, J L; Kramer, J; Conklin, D; Presnell, S R; Berry, J; Shiota, F; Bort, S; Hambly, K; Mudri, S; Clegg, C; Moore, M; Grant, F J; Lofton-Day, C; Gilbert, T; Rayond, F; Ching, A; Yao, L; Smith, D; Webster, P; Whitmore, T; Maurer, M; Kaushansky, K; Holly, R D; Foster, D

    2000-11-02

    Cytokines are important in the regulation of haematopoiesis and immune responses, and can influence lymphocyte development. Here we have identified a class I cytokine receptor that is selectively expressed in lymphoid tissues and is capable of signal transduction. The full-length receptor was expressed in BaF3 cells, which created a functional assay for ligand detection and cloning. Conditioned media from activated human CD3+ T cells supported proliferation of the assay cell line. We constructed a complementary DNA expression library from activated human CD3+ T cells, and identified a cytokine with a four-helix-bundle structure using functional cloning. This cytokine is most closely related to IL2 and IL15, and has been designated IL21 with the receptor designated IL21 R. In vitro assays suggest that IL21 has a role in the proliferation and maturation of natural killer (NK) cell populations from bone marrow, in the proliferation of mature B-cell populations co-stimulated with anti-CD40, and in the proliferation of T cells co-stimulated with anti-CD3.

  9. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk--a pivotal role of HMGB1.

    Directory of Open Access Journals (Sweden)

    Marie-Thérèse Melki

    2010-04-01

    Full Text Available Early stages of Human Immunodeficiency Virus-1 (HIV-1 infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK cells and dendritic cells (DCs. Immature DCs (iDCs capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them ("editing process" at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL-Death Receptor 4 (DR4 pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DC(HIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DC(HIV. The escape of DC(HIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP and the cellular inhibitor of apoptosis 2 (c-IAP2, induced by NK-DC(HIV cognate interaction. High-mobility group box 1 (HMGB1, an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DC(HIV. Finally, we demonstrate that restoration of DC(HIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific

  10. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT).

    Science.gov (United States)

    Foley, Bree; Felices, Martin; Cichocki, Frank; Cooley, Sarah; Verneris, Michael R; Miller, Jeffrey S

    2014-03-01

    Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Advances in clinical NK cell studies: Donor selection, manufacturing and quality control

    OpenAIRE

    Koehl, U.; Kalberer, C.; Spanholtz, J.; Lee, D. A.; Miller, J. S.; Cooley, S.; Lowdell, M.; Uharek, L.; Klingemann, H.; Curti, A.; Leung, W.; Alici, E.

    2015-01-01

    ABSTRACT Natural killer (NK) cells are increasingly used in clinical studies in order to treat patients with various malignancies. The following review summarizes platform lectures and 2013?2015 consortium meetings on manufacturing and clinical use of NK cells in Europe and United States. A broad overview of recent pre-clinical and clinical results in NK cell therapies is provided based on unstimulated, cytokine-activated, as well as genetically engineered NK cells using chimeric antigen rece...

  12. Regulatory role of NKG2D+ NK cells in intestinal lamina propria by secreting double-edged Th1 cytokines in ulcerative colitis.

    Science.gov (United States)

    Wang, Fan; Peng, Pai-Lan; Lin, Xue; Chang, Ying; Liu, Jing; Zhou, Rui; Nie, Jia-Yan; Dong, Wei-Guo; Zhao, Qiu; Li, Jin

    2017-11-17

    The role of intestinal lamina propria (LP) NKG2D+ NK cells is unclear in regulating Th1/Th2 balance in ulcerative colitis (UC). In this study, we investigated the frequency of LP NKG2D+ NK cells in DSS-induced colitis model and intestinal mucosal samples of UC patients, as well as the secretion of Th1/Th2/Th17 cytokines in NK cell lines after MICA stimulation. The role of Th1 cytokines in UC was validated by bioinformatics analysis. We found that DSS-induced colitis in mice was characterized by a Th2-mediated process. In acute phrase, the frequency of LP NKG2D+ lymphocytes increased significantly and decreased in remission, while the frequency of LP NKG2D+ NK cells decreased significantly in acute phase and increased in remission. No obvious change was found in the frequency of total LP NK cells. Similarly, severe UC patients had a higher expression of mucosal NKG2D and a lower number of NKG2D+ NK cells than mild to moderate UC. In NK cell lines, the MICA stimulation could induce a predominant secretion of Th1 cytokines (TNF, IFN-γ). Furthermore, in bioinformatics analysis, mucosal Th1 cytokine of TNF, showed a double-edged role in UC when compared to the Th1-mediated disease of Crohn's colitis. In conclusion, LP NKG2D+ NK cells partially played a regulatory role in UC through secreting Th1 cytokines to regulate the Th2-predominant Th1/Th2 imbalance, despite of the concomitant pro-inflammatory effects of Th1 cytokines.

  13. Activation of NK Cells in Mixed Cultures of Wharton's Jelly Mesenchymal Stromal Cells and Peripheral Blood Lymphocytes.

    Science.gov (United States)

    Svirshchevskaya, E V; Poltavtsev, A M; Os'mak, G Zh; Poltavtseva, R A

    2018-01-01

    Mesenchymal stromal cells possess immunosuppressive properties that might be used for the therapy of inflammatory diseases of various geneses. The effects of mesenchymal stromal cells depend on their lifetime in the recipient tissues. During heterologous transplantation, mesenchymal stromal cells are eliminated by NK cells. We studied NK cell formation in mixed cultures of Wharton's jelly mesenchymal stromal cells and peripheral blood lymphocytes from an autologous donor. Lymphocytes were activated by a mitogen or IL-2. The lifetime of mesenchymal stromal cells was estimated by MTT test. Cytotoxic activity and phenotype of NK cells were evaluated by flow cytometry. It was found that activation of NK cells depended on IL-2 and was registered on day 2 of incubation with IL-2. In cultures with mitogen-activated lymphocytes, cytotoxicity was observed after 5-6 days. Cytotoxicity of NK correlated with significant decrease in CD16+ and increase in CD56+ NK and with reduction of mesenchymal stromal cell viability. Thus, the main mechanism of elimination of mesenchymal stromal cells is cytotoxicity of NK cells that depended on IL-2 production.

  14. Targeting NK cells for anti-cancer immunotherapy: clinical and pre-clinical approaches

    Directory of Open Access Journals (Sweden)

    Sebastian eCarotta

    2016-04-01

    Full Text Available The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. While the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune-surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer cells are the body’s first line of defense against infected or transformed cells as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer-immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell based anti-cancer therapies, which has lead to a steady increase of NK cell based clinical and pre-clinical trials. Here, the role of NK cells in cancer immunesurveillance is summarized and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.

  15. NK cells and missing self recognition : genetic control, mhc class i dependent education and potential use in cancer therapy

    OpenAIRE

    Wickström, Stina L

    2015-01-01

    NK cells belong to the innate immune system and are important in the defense against virus infections and malignant cells. They mediate their effector functions via release of cytotoxic granules and by cytokine production which can influence the status of other (immune) cells. NK cells are regulated by germline encoded receptors, both activating and inhibitory, recognizing molecules that are induced upon infection or cellular stress and self ligands respectively. Ly49 receptors (Ly49r) make u...

  16. Novel microchip-based tools facilitating live cell imaging and assessment of functional heterogeneity within NK cell populations

    Directory of Open Access Journals (Sweden)

    Elin eForslund

    2012-10-01

    Full Text Available Each individual has a heterogeneous pool of NK cells consisting of cells that may be specialized towards specific functional responses such as secretion of cytokines or killing of tumor cells. Many conventional methods are not fit to characterize heterogeneous populations as they measure the average response of all cells. Thus, there is a need for experimental platforms that provide single cell resolution. In addition, there are also transient and stochastic variations in functional responses at the single cell level, calling for methods that allow studies of many events over extended times. This paper presents a versatile microchip platform enabling long-term microscopic studies of individual NK cells interacting with target cells. Each microchip contains an array of microwells, optimized for medium or high-resolution time-lapse imaging of single or multiple NK and target cells, or for screening of thousands of isolated NK-target cell interactions. Individual NK cells confined with target cells in small microwells is a suitable setup for high-content screening and rapid assessment of heterogeneity within populations, while microwells of larger dimensions are appropriate for studies of NK cell migration and sequential interactions with multiple target cells. By combining the chip technology with ultrasonic manipulation, NK and target cells can be forced to interact and positioned with high spatial accuracy within individual microwells. This setup effectively and synchronously creates NK-target conjugates at hundreds of parallel positions in the microchip. Thus, this facilitates assessment of temporal aspects of NK-target cell interactions, e.g. conjugation, immune synapse formation and cytotoxic events. The microchip platform presented here can be used to effectively address questions related to fundamental functions of NK cells that can lead to better understanding of how the behavior of individual cells add up to give a functional response at

  17. T cells but not NK cells are associated with a favourable outcome for resected colorectal liver metastases

    International Nuclear Information System (INIS)

    Pugh, Siân A; Harrison, Rebecca J; Primrose, John N; Khakoo, Salim I

    2014-01-01

    The adaptive immune response to colorectal cancer is important for survival. Less is understood about the role of innate lymphocytes, such as Natural Killer (NK) cells, which are abundant in human liver. Samples of fresh liver (n = 21) and tumour (n = 11) tissue were obtained from patients undergoing surgical resection of colorectal liver metastases. Flow cytometry was used to analyse the presence and phenotype of NK cells, as compared to T cells, in the tumour and liver tissue. Results were correlated with survival. NK cells were poorly recruited to the tumours (distant liver tissue 38.3%, peritumoural liver 34.2%, tumour 12.9%, p = 0.0068). Intrahepatic and intratumoural NK cells were KIR (killer immunoglobulin-like receptor) lo NKG2A hi whereas circulating NK cells were KIR hi NKG2A lo . By contrast T cells represented 65.7% of the tumour infiltrating lymphocytes. Overall survival was 43% at 5 years, with the 5-year survival for individuals with a T cell rich infiltrate being 60% (95% CI 17-93%) and for those with a low T cell infiltrate being 0% (95% CI 0-48%). Conversely individuals with higher levels of NK cells in the tumour had an inferior outcome, although there were insufficient numbers to reach significance (median survivals: NK Hi 1.63 years vs NK Lo 3.92 years). T cells, but not NK cells, are preferentially recruited to colorectal liver metastases. NK cells within colorectal metastases have an intrahepatic and potentially tolerogenic, rather than a peripheral, phenotype. Similar to primary tumours, the magnitude of the T cell infiltrate in colorectal metastases is positively associated with survival

  18. Altered ganglioside GD3 in HeLa cells might influence the cytotoxic abilities of NK cells

    OpenAIRE

    Lee, Wen-Chi; Lee, Wen-Ling; Shyong, Wen-Yuann; Yang, Lin-Wei; Ko, Min-Chun; Yeh, Chang-Ching; Edmond Hsieh, Shie-Liang; Wang, Peng-Hui

    2012-01-01

    Objective: Previously, we found that altered sialidases in HeLa cells in a natural killer-HeLa (NK-HeLa) coculture system contributed to the decreased cytotoxic ability of NK cells. However, changes that occur in the glycosylation of the HeLa cells in the NK-HeLa coculture system remain unknown. Materials and Methods: An NK-HeLa coculture system was used to examine the changes that occur in the gangliosides of HeLa cells. Results: GD3 expression in HeLa cells was significantly increased...

  19. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    Science.gov (United States)

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34 +  cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in

  20. Serotonin Shapes the Migratory Potential of NK Cells - An in vitro Approach.

    Science.gov (United States)

    Zimmer, Philipp; Bloch, Wilhelm; Kieven, Markus; Lövenich, Lukas; Lehmann, Jonas; Holthaus, Michelle; Theurich, Sebastian; Schenk, Alexander

    2017-10-01

    Increased serotonin (5-HT) levels have been shown to influence natural killer cell (NK cell) function. Acute exercise mobilizes and activates NK cells and further increases serum 5-HT concentrations in a dose-dependent manner. The aim of this study was to investigate the impact of different serum 5-HT concentrations on NK cell migratory potential and cytotoxicity. The human NK cell line KHYG-1 was assigned to 4 conditions, including 3 physiological concentrations of 5-HT (100, 130 or 170 µg/l 5-HT) and one control condition. NK cells were analyzed regarding cytotoxicity, migratory potential and expression of adhesion molecules. No treatment effect on NK cell cytotoxicity and expression of integrin subunits was detected. Migratory potential was increased in a dose dependent manner, indicating the highest protease activity in cells that were incubated with 170 µg/l 5-HT (170 µg/l vs. control, p<0.001, 170 µg/l vs. 100 µg/l, p<0.001; 170 µg/l vs. 130 µg/l, p=0.003; 130 µg/l vs. control, p<0.001, 130 µg/l vs. 100 µg/l, p<0.001). These results suggest that elevated 5-HT serum levels play a mediating role in NK cell function. As exercise has been shown to be involved in NK cell mobilization and redistribution, the influence of 5-HT should be investigated in ex vivo and in vivo experiments. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Primary NK/T cell lymphoma nasal type of the colon

    Directory of Open Access Journals (Sweden)

    Ana María Chirife

    2013-02-01

    Full Text Available Since nasal NK/T-cell lymphoma and NK/T-cell lymphoma nasal type are rare diseases, colonic involvement has seldom been seen. We report a case of a patient with a primary NK/T-cell lymphoma nasal type of the colon. The patient had no history of malignant diseases and was diagnosed after exhaustive study in the context of fever of unknown origin. The first therapeutic approach followed the DAEPOCH-protocol: etoposide, prednisone, doxor-rubicin, vincristine and cyclophosphamide. The persistence of constitutional symptoms after the first treatment course motivated the switch to a second line following the SMILE-protocol: dexamethasone, metotrexate, ifosfamide, E.coli L-asparaginase, and etoposide. Despite intensive chemotherapy, the patient died 2 months after the diagnose of an extranodal NK/T-cell lymphoma of the colon and 4 months after the first symptomatic appearance of disease.

  2. Sorafenib paradoxically activates the RAS/RAF/ERK pathway in polyclonal human NK cells during expansion and thereby enhances effector functions in a dose- and time-dependent manner.

    Science.gov (United States)

    Lohmeyer, J; Nerreter, T; Dotterweich, J; Einsele, H; Seggewiss-Bernhardt, R

    2018-03-24

    Natural killer (NK) cells play a major role in host immunity against leukaemia and lymphoma. However, clinical trials applying NK cells have not been as efficient as hoped for. Patients treated with rapidly accelerated fibrosarcoma (RAF) inhibitors exhibit increased tumour infiltration by immune cells, suggesting that a combination of RAF inhibitors with immunotherapy might be beneficial. As mitogen-activated protein kinases (MAPKs) such as raf-1 proto-oncogene, serine/threonine kinase (CRAF) regulate NK cell functions, we performed an in-vitro investigation on the potential of clinically relevant short-acting tyrosine kinase inhibitors (TKIs) as potential adjuvants for NK cell therapy: NK cells from healthy human blood donors were thus treated with sorafenib, sunitinib or the pan-RAF inhibitor ZM336372 during ex-vivo expansion. Functional outcomes assessed after washout of the drugs included cytokine production, degranulation, cytotoxicity, apoptosis induction and signal transduction with/without target cell contact. Paradoxically, sorafenib enhanced NK cell effector functions in a time- and dose-dependent manner by raising the steady-state activation level. Of note, this did not lead to NK cell exhaustion, but enhanced activity against target cells such as K562 or Daudis mediated via the RAS/RAF/extracellular-regulated kinase (ERK) pathway, but not via protein kinase B (AKT). Our data will pave the path to develop a rationale for the considered use of RAF inhibitors such as sorafenib for pre-activation in NK cell-based adoptive immune therapy. © 2018 British Society for Immunology.

  3. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92

    International Nuclear Information System (INIS)

    Li Ang; He Meilan; Wang Hui; Qiao Bin; Chen Ping; Gu Hua; Zhang Mengjie; He Shengxiang

    2007-01-01

    NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-α, IFN-γ), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-κB pathways related with immune response. Our results demonstrated that ATRA suppressed NF-κB activity and prevented IκBα degradation in a dose-dependent way, inhibited IFN-γ production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo

  4. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells.

    Science.gov (United States)

    Gornalusse, Germán G; Hirata, Roli K; Funk, Sarah E; Riolobos, Laura; Lopes, Vanda S; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G; Hanafi, Laïla-Aïcha; Clegg, Dennis O; Turtle, Cameron; Russell, David W

    2017-08-01

    Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this 'missing-self' response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8 + T cells, do not bind anti-HLA antibodies and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression.

  5. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells

    Science.gov (United States)

    Gornalusse, Germán G.; Hirata, Roli K.; Funk, Sarah; Riolobos, Laura; Lopes, Vanda S.; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G.; Hanafi, Laïla-Aïcha; Clegg, Dennis O.; Turtle, Cameron; Russell, David W.

    2017-01-01

    Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this ‘missing self’ response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8+ T cells, do not bind anti-HLA antibodies, and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression. PMID:28504668

  6. Effect of tributyltin (TBT) on ATP levels in human natural killer (NK) cells: relationship to TBT-induced decreases in NK function.

    Science.gov (United States)

    Dudimah, Fred D; Odman-Ghazi, Sabah O; Hatcher, Frank; Whalen, Margaret M

    2007-01-01

    The purpose of this study was to investigate the role that tributyltin (TBT)-induced decreases in ATP levels may play in TBT-induced decreases in the tumor lysing (lytic) function of natural killer (NK) cells. NK cells are a subset of lymphocytes that act as an initial immune defense against tumor cells and virally infected cells. TBT is an environmental contaminant that has been detected in human blood, which has been shown to interfere with ATP synthesis. Previous studies have shown that TBT is able to decrease very significantly the lytic function of NK cells. In this study NK cells were exposed to various concentrations of TBT and to two other compounds that interfere with ATP synthesis (rotenone a complex I inhibitor and oligomycin an ATP synthase inhibitor) for various lengths of time before determining the levels of ATP and lytic function. Exposures of NK cells to 10, 25, 50 and 100 nm TBT did not significantly reduce ATP levels after 24 h. However, these same exposures caused significant decreases in cytotoxic function. Studies of brief 1 h exposures to a range of TBT, rotenone and oligomycin concentrations followed by 24 h, 48 h and 6 day periods in compound-free media prior to assaying for ATP levels or cytotoxic function showed that each of the compounds caused persistent decreases in ATP levels and lytic function of NK cells. Exposures to 0.05-5 microm rotenone or oligomycin for 1 h reduced ATP levels by 20-25% but did not have any measurable effect on the ability of NK cells to lyse tumor cells. ATP levels were also decreased by about 20-25% after 24 h or 48 h exposures to rotenone or oligomycin (0.5 microm ), and the lytic function was decreased by about 50%. The results suggest that TBT-induced decreases in ATP levels were not responsible for the loss of cytotoxic function seen at 1 h and 24 h. However, TBT-induced decreases of NK-ATP levels may be at least in part responsible for losses of NK-cytotoxic function seen after 48 h and 6 day exposures

  7. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules.

    Science.gov (United States)

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer

    2017-11-15

    NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus

  8. CHARACTERISTICS OF SIGNALING PATHWAYS MEDIATING A CYTOTOXIC EFFECT OF DENDRITIC CELLS UPON ACTIVATED Т LYMPHOCYTES AND NK CELLS

    Directory of Open Access Journals (Sweden)

    T. V. Tyrinova

    2012-01-01

    Full Text Available Abstract. Cytotoxic/pro-apoptogenic effects of IFNα-induced dendritic cells (IFN-DCs directed against Т-lymphocytes and NK cells were investigated in healthy donors. Using an allogenic MLC system, it was revealed that IFN-DCs induce apoptosis of both activated CD4+ and CD8+ T-lymphocytes, and NK cells. Apoptosis of CD4+ and CD8+ T-lymphocytes induced by their interaction with IFN-DCs was mediated by various signaling pathways. In particular, activated CD4+Т-lymphocytes were most sensitive to TRAIL- и Fas/ FasL-transduction pathways, whereas activated CD8+ T-lymphocytes were induced to apoptosis via TNFα-mediated pathway. PD-1/B7-H1-signaling pathway also played a distinct role in cytotoxic activity of IFNDCs towards both types of T lymphocytes and activated NK cells. The pro-apoptogenic/cytotoxic activity of IFN-DC against activated lymphocytes may be regarded as a mechanism of a feedback regulation aimed at restriction of immune response and maintenance of immune homeostasis. Moreover, upregulation of proapoptogenic molecules on DCs under pathological conditions may lead to suppression of antigen-specific response, thus contributing to the disease progression.

  9. Actin retrograde flow controls natural killer cell response by regulating the conformation state of SHP-1.

    Science.gov (United States)

    Matalon, Omri; Ben-Shmuel, Aviad; Kivelevitz, Jessica; Sabag, Batel; Fried, Sophia; Joseph, Noah; Noy, Elad; Biber, Guy; Barda-Saad, Mira

    2018-03-01

    Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin-myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between β-actin and the SH2-domain-containing protein tyrosine phosphatase-1 (SHP-1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP-1 in additional cellular systems. © 2018 The Authors.

  10. Natural killer (NK) cells inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against glioblastomas in the brain.

    Science.gov (United States)

    Lee, Se Jeong; Kang, Won Young; Yoon, Yeup; Jin, Ju Youn; Song, Hye Jin; Her, Jung Hyun; Kang, Sang Mi; Hwang, Yu Kyeong; Kang, Kyeong Jin; Joo, Kyeung Min; Nam, Do-Hyun

    2015-12-24

    Glioblastoma multiforme (GBM) is characterized by extensive local invasion, which is in contrast with extremely rare systemic metastasis of GBM. Molecular mechanisms inhibiting systemic metastasis of GBM would be a novel therapeutic candidate for GBM in the brain. Patient-derived GBM cells were primarily cultured from surgical samples of GBM patients and were inoculated into the brains of immune deficient BALB/c-nude or NOD-SCID IL2Rgamma(null) (NSG) mice. Human NK cells were isolated from peripheral blood mononucleated cells and expanded in vitro. Patient-derived GBM cells in the brains of NSG mice unexpectedly induced spontaneous lung metastasis although no metastasis was detected in BALB/c-nude mice. Based on the difference of the innate immunity between two mouse strains, NK cell activities of orthotopic GBM xenograft models based on BALB/c-nude mice were inhibited. NK cell inactivation induced spontaneous lung metastasis of GBM cells, which indicated that NK cells inhibit the systemic metastasis. In vitro cytotoxic activities of human NK cells against GBM cells indicated that cytotoxic activity of NK cells against GBM cells prevents systemic metastasis of GBM and that NK cells could be effective cell therapeutics against GBM. Accordingly, NK cells transplanted into orthotopic GBM xenograft models intravenously or intratumorally induced apoptosis of GBM cells in the brain and showed significant therapeutic effects. Our results suggest that innate NK immunity is responsible for rare systemic metastasis of GBM and that sufficient supplementation of NK cells could be a promising immunotherapeutic strategy for GBM in the brain.

  11. Preventing surgery-induced NK cell dysfunction and cancer metastases with influenza vaccination

    Science.gov (United States)

    Tai, Lee-Hwa; Zhang, Jiqing; Auer, Rebecca C

    2013-01-01

    Surgical resection is the mainstay of treatment for solid tumors, but the postoperative period is uniquely inclined to the formation of metastases, largely due to the suppression of natural killer (NK) cells. We found that preoperative influenza vaccination prevents postoperative NK-cell dysfunction, attenuating tumor dissemination in murine models and promoting the activation of NK cells in cancer patients. PMID:24404430

  12. A Developed NK-92MI Cell Line with Siglec-7neg Phenotype Exhibits High and Sustainable Cytotoxicity against Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Chin-Han Huang

    2018-04-01

    Full Text Available Altered sialic acid processing that leads to upregulation of cell surface sialylation is recognized as a key change in malignant tissue glycosylation. This cancer-associated hypersialylation directly impacts the signaling interactions between tumor cells and their surrounding microenvironment, especially the interactions mediated by immune cell surface sialic acid-binding immunoglobulin-like lectins (Siglecs to relay inhibitory signals for cytotoxicity. First, we obtained a Siglec-7neg NK-92MI cell line, NK-92MI-S7N, by separating a group of Siglec-7neg cell population from an eight-month-long-term NK-92MI in vitro culture by fluorescence-activated cell sorting (FACS. The effect of Siglec-7 loss on NK-92MI-S7N cells was characterized by the cell morphology, proliferation, and cytotoxic activity via FACS, MTS assay, cytotoxic assay, and natural killer (NK degranulation assay. We found the expression levels of Siglec-7 in NK-92MI were negatively correlated with NK cytotoxicity against leukemia cells. This NK-92MI-S7N cell not only shared very similar phenotypes with its parental cells but also possessed a high and sustainable killing activity. Furthermore, this Siglec-7neg NK line was unexpectedly capable of eliminating a NK-92MI-resistant leukemia cell, THP-1, through enhancing the effector-target interaction. In this study, a NK cell line with high and sustainable cytotoxicity was established and this cell may provide a potential application in NK-based treatment for leukemia patients.

  13. Low baseline levels of NK cells may predict a positive response to ipilimumab in melanoma therapy.

    Science.gov (United States)

    Tietze, Julia K; Angelova, Daniela; Heppt, Markus V; Ruzicka, Thomas; Berking, Carola

    2017-07-01

    The introduction of immune checkpoint blockade (ICB) has been a breakthrough in the therapy of metastatic melanoma. The influence of ICB on T-cell populations has been studied extensively, but little is known about the effect on NK cells. In this study, we analysed the relative and absolute amounts of NK cells and of the subpopulations of CD56 dim and CD56 bright NK cells among the peripheral blood mononuclear cells (PBMCs) of 32 patients with metastatic melanoma before and under treatment with ipilimumab or pembrolizumab by flow cytometry. In 15 (47%) patients, an abnormal low amount of NK cells was found at baseline. Analysis of the subpopulations showed also low or normal baseline levels for CD56 dim NK cells, whereas the baseline levels of CD56 bright NK cells were either normal or abnormally high. The relative and absolute amounts of NK cells and of CD56 dim and CD56 bright NK cell subpopulations in patients with a normal baseline did not change under treatment. However, patients with a low baseline of NK cells and CD56 dim NK cells showed a significant increase in these immune cell subsets, but the amounts remained to be lower than the normal baseline. The amount of CD56 bright NK cells was unaffected by treatment. The baseline levels of NK cells were correlated with the number of metastatic organs. Their proportion increased, whereas the expression of NKG2D decreased significantly when more than one organ was affected by metastases. Low baseline levels of NK cells and CD56 dim NK cells as well as normal baseline levels of CD56 bright NK cells correlated significantly with a positive response to ipilimumab but not to pembrolizumab. Survival curves of patients with low amounts of CD56 dim NK cells treated with ipilimumab showed a trend to longer survival. Normal baseline levels of CD56 bright NK cells were significantly correlated with longer survival as compared to patients with high baseline levels. In conclusion, analysis of the amounts of total NK cells

  14. NK cell recruitment and exercise: Potential immunotherapeutic role of shear stress and endothelial health.

    Science.gov (United States)

    Evans, William

    2017-11-01

    Positive cancer patient outcomes, including increased time to recurrent events, have been associated with increased counts and function of natural killer (NK) cells. NK cell counts and function are elevated following acute exercise, and the generally accepted mechanism of increased recruitment suggests that binding of epinephrine releases NK cells from endothelial tissue via decreases in adhesion molecules following. I propose that blood flow-induced shear stress may also play a role in NK cell recruitment from the endothelium. Additionally, shear stress may play a role in improving NK cell function by decreasing oxidative stress. The relationship between shear stress and NK cell count and function can be tested by utilizing exercise and local heating with cuff inflation. If shear stress does play an important role, NK cell count and function will be improved in the non-cuffed exercise group, but not the cuffed limb. This paper will explore the mechanisms potentially explaining exercise-induced improvements in NK cell count and function, and propose a model for investigating these mechanisms. This mechanistic insight could aid in providing a novel, safe, relatively inexpensive, and non-invasive target for immunotherapy in cancer patients. Copyright © 2017. Published by Elsevier Ltd.

  15. Effect of fractalkine, IP-10 and different signal pathway inhibitors on NK cells in the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Zhao-zhen WU

    2015-07-01

    Full Text Available Objective To investigate the inducing effects of chemokines [fractalkine (FKN, IP-10] and different signal pathway inhibitors on NK cells in the tumor microenvironment (TME. Methods Immunohistochemistry was performed using antibodies for CD56 and DAP10 respectively on human breast carcinoma. Murine macrophages (RAW 264.7 and breast cancer cells (4T1 were co-cultivated at a 1:4 ratio to imitate the TME with NK cells (KY-1 set as the object. RT-PCR was used to determine the mRNA expressions of CD16, NKG2D and NK1.1, and the content of CD107a in the supernatants was determined by ELISA. 10ng/ml FKN and 10ng/ml IP-10 were added into the TME, NK1.1+CD16+KY-1 cells were counted with flow cytometry, migration and adhesion assays were used to assess the related function of KY-1 cells. 4T1 cells were incubated in 10nmol/L of rapamycin, 30μmol/L of LY294002, 500ng/μl of andrographolide and 2mmol/L of wortmannin, the 4T1 tumor supernatants (TSNs were harvested separately and used to incubate RAW 264.7 for 48h, then the expressions of Rae1α and H60a mRNA in 4T1, RAW 264.7 and their mixture were determined by RT-PCR. Results The related indicators of KY-1 cells such as NK1.1+ number, chemotaxis rate, and adhesion function decreased obviously in TME, and the above indices increased after the addition of FKN and IP-10, and some signal pathway inhibitors indirectly promoted NK cells' function in TME, and among them rapamycin was the most efficient one (P<0.05. Conclusion FKN and IP-10 may up-regulate the number and function of NK cells in TME, and rapamycin can promote NK cells' killing function by inducing high expression of NKG2DLs (Rae1, H60a on tumor cells. DOI: 10.11855/j.issn.0577-7402.2015.07.07

  16. Células NK: generalidades y papel durante la infección por el virus de la inmunodeficiencia humana tipo 1 (VIH-1 NK cells: characteristics and role during the infection by type-1 human immunodeficiency virus (HIV-1

    Directory of Open Access Journals (Sweden)

    María Teresa Rugeles López

    2007-03-01

    Full Text Available Las células NK exhiben actividad espontánea contra células tumorales o células infectadas, particularmente por virus. Ellas se caracterizan por la expresión de las moléculas CD16 y CD56, y se subdividen en dos poblaciones, CD16Low/CD56Hi y CD16Hi/CD56Low, que difieren en las citoquinas que producen y en la capacidad citotóxica. La activación de las células NK está regulada por la expresión de receptores inhibidores y activadores que interactúan con diferentes ligandos de las células blanco. La actividad efectora de estas células incluye la lisis de las células blanco por diferentes mecanismos y la producción de citoquinas; las células NK participan por medio de estos factores solubles en diversos procesos fisiológicos, como la hematopoyesis y la regulación de otras células del sistema inmune. Durante la infección por el VIH-1, las células NK ayudan al control de la replicación viral tanto por mecanismos citotóxicos como por la producción de citoquinas, particularmente -quimoquinas. Sin embargo, el VIH- 1 ha desarrollado mecanismos para evadir la respuesta antiviral mediada por las células NK. Adicionalmente, esta infección induce anormalidades cuantitativas y funcionales en estas células que pueden presentarse muy temprano en la evolución de la enfermedad y que hacen parte de la inmunosupresión severa característica del SIDA. NK cells exhibit spontaneous activity against tumor and infected cells, particularly with virus. They are characterized by the expression of the CD16 and CD56 molecules. Two NK cell subpopulations have been described: CD16Low/CD56Hi and CD16Hi/ CD56Low that differ in the cytokines produced and their cytotoxic ability. NK cell activation is regulated by the expression of inhibition and activation receptors, which interact with different ligands on the target cells. The effector activity of these cells includes lysis of target cells by different mechanisms and the production of cytokines

  17. Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets

    Science.gov (United States)

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-01-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation [Thr428Ile] in the SH2 domain of Slp-76—a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele—while no major defects were observed in conventional T cell development/function, a marked defect in NK cell-mediated elimination of β2-Microglobulin (β2M)-deficient target cells was observed. Further studies revealed Slp-76 to control NK cell receptor expression and maturation, however, activation of Slp-76ace/ace NK cells through ITAM-containing NK cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M−/− target cell synapse, revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76ace/ace NK cells. Overall these studies establish Slp-76 as a critical determinant of NK cell development and NK cell-mediated elimination of missing-self target cells. PMID:25929249

  18. Slp-76 is a critical determinant of NK-cell mediated recognition of missing-self targets.

    Science.gov (United States)

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-07-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying "missing-self" recognition, including the involvement of activating receptors, remain poorly understood. Using ethyl-N-nitrosourea mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell mediated recognition and elimination of "missing-self" targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation (Thr428Ile) in the SH2 domain of Slp-76-a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele-while no major defects were observed in conventional T-cell development/function, a marked defect in NK cell mediated elimination of β2-microglobulin (β2M) deficient target cells was observed. Further studies revealed Slp-76 to control NK-cell receptor expression and maturation; however, activation of Slp-76(ace/ace) NK cells through ITAM-containing NK-cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M(-/-) target cell synapse revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76(ace/ace) NK cells. Overall these studies establish Slp-76 as a critical determinant of NK-cell development and NK cell mediated elimination of missing-self target cells in mice. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Murine Natural Cytotoxic Receptor NKp46/NCR1 Controls TRAIL Protein Expression in NK Cells and ILC1s

    Directory of Open Access Journals (Sweden)

    Sam Sheppard

    2018-03-01

    Full Text Available Summary: TRAIL is an apoptosis-inducing ligand constitutively expressed on liver-resident type 1 innate lymphoid cells (ILC1s and a subset of natural killer (NK cells, where it contributes to NK cell anti-tumor, anti-viral, and immunoregulatory functions. However, the intrinsic pathways involved in TRAIL expression in ILCs remain unclear. Here, we demonstrate that the murine natural cytotoxic receptor mNKp46/NCR1, expressed on ILC1s and NK cells, controls TRAIL protein expression. Using NKp46-deficient mice, we show that ILC1s lack constitutive expression of TRAIL protein and that NK cells activated in vitro and in vivo fail to upregulate cell surface TRAIL in the absence of NKp46. We show that NKp46 regulates TRAIL expression in a dose-dependent manner and that the reintroduction of NKp46 in mature NK cells deficient for NKp46 is sufficient to restore TRAIL surface expression. These studies uncover a link between NKp46 and TRAIL expression in ILCs with potential implications in pathologies involving NKp46-expressing cells. : Sheppard et al. find that mice deficient in the activating receptor NCR1/NKp46 (Ncr1−/− fail to express the apoptosis-inducing ligand TRAIL at the surface of group 1 innate lymphoid cells (ILC1s. Keywords: NK cell, natural killer cell, NKp46, ILC1, TRAIL, IL-15, IL-2

  20. The role of NK cells in HIV-1 protection: autologous, allogeneic or both?

    Science.gov (United States)

    Hens, Jef; Jennes, Wim; Kestens, Luc

    2016-01-01

    Natural killer (NK) cells specialize in killing virally infected- or tumor cells and are part of the innate immune system. The activational state of NK cells is determined by the balance of incoming activating and inhibitory signals mediated by receptor-ligand binding with the target cell. These receptor-ligand bonds mainly consist of the killer immunoglobulin-like receptors (KIR), which are expressed at the cell surface of NK cells, and their ligands: the highly variable human leukocyte antigen -class I molecules (HLA). Absence of an inhibitory receptor-ligand bond lowers the NK cell activation threshold, whereas an activating receptor-ligand bond stimulates the cell, potentially overcoming this threshold and triggering NK cell activation. NK cells influence the course of infection as well as the acquisition of HIV-1. Several lines of evidence relate the activating NK cell receptor KIR3DS1, in the presence or absence of its putative ligand HLA-Bw4, with slower disease progression as well as resistance to HIV-1 infection. Overall, resistance to HIV-1 infection predominantly correlates with activating KIR/HLA profiles, consisting of e.g. activating KIRs, group B haplotypes, or inhibitory KIRs in absence of their ligands. Such a conclusion is less evident for studies of HIV-1 disease progression, with studies reporting beneficial as well as detrimental effects of activating KIR/HLA genotypes. It is likely that KIR/HLA association studies are complicated by the complexity of the KIR and HLA loci and their mutual interactions, as well as by additional factors like route of HIV exposure, immune activation, presence of co-infections, and the effect of anti-HIV-1 antibodies. One newly discovered NK cell activation pathway associated with resistance to HIV-1 infection involves the presence of an iKIR/HLA mismatch between partners. The absence of such an iKIR/HLA bond renders donor-derived allogeneic HIV-1 infected cells vulnerable to NK cell responses during HIV-1

  1. Two photon microscopy intravital study of DC-mediated anti-tumor response of NK cells

    Science.gov (United States)

    Caccia, Michele; Gorletta, Tatiana; Sironi, Laura; Zanoni, Ivan; Salvetti, Cristina; Collini, Maddalena; Granucci, Francesca; Chirico, Giuseppe

    2010-02-01

    Recent studies have demonstrated that dendritic cells (DCs) play a crucial role in the activation of Natural Killer cells (NKs) that are responsible for anti-tumor innate immune responses. The focus of this report is on the role of pathogen associated molecular pattern (PAMP) activated-DCs in inducing NK cell-mediated anti-tumor responses. Mice transplanted sub-cute (s.c.) with AK7 cells, a mesothelioma cell line sensitive to NK cell responses, are injected with fluorescent NK cells and DC activation is then induced by s.c. injection of Lipopolysaccharide (LPS). Using 4 dimensional tracking we follow the kinetic behavior of NK cells at the Draining Lymph-Node (DLN). As control, noninflammatory conditions are also evaluated. Our data suggest that NK cells are recruited to the DLN where they can interact with activated-DCs with a peculiar kinetic behavior: short lived interactions interleaved by rarer longer ones. We also found that the changes in the NK dynamic behavior in inflammatory conditions clearly affect relevant motility parameters such as the instantaneous and average velocity and the effective diffusion coefficient. This observation suggests that NK cells and activated-DCs might efficiently interact in the DLN, where cells could be activated. Therefore the interaction between activated-DCs and NK cells in DLN is not only a reality but it may be also crucial for the start of the immune response of the NKs.

  2. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    Directory of Open Access Journals (Sweden)

    Héla Saïdi

    2016-02-01

    Full Text Available Plasmacytoid dendritic cells (pDCs are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7 and 9 (TLR9 ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  3. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    Science.gov (United States)

    Saïdi, Héla; Bras, Marlène; Formaglio, Pauline; Melki, Marie-Thérèse; Charbit, Bruno; Herbeuval, Jean-Philippe; Gougeon, Marie-Lise

    2016-02-01

    Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  4. NK and NKT-Like Cells in Patients with Recurrent Furunculosis.

    Science.gov (United States)

    Nowicka, Danuta; Grywalska, Ewelina; Fitas, Elżbieta; Mielnik, Michał; Roliński, Jacek

    2017-12-13

    To analyze changes in the number and percentage of NK and NKT-like cells in relation to other immune cells as well as to examine associations between increased susceptibility to infections and NK and NKT-like status in patients with recurrent furunculosis (RF) and healthy controls. Thirty patients with RF and 20 healthy age- and sex-matched volunteers were recruited. Blood samples were examined. Lymphocyte count and cytometric analyses were conducted. For statistical analysis, the Student's t test, F test, and Brown-Forsythe test were used for comparison between groups of variables. Associations were assessed with Pearson coefficient. Patients with RF had lower lymphocyte count than controls. Additionally, they presented with the following changes in the blood picture: a significant increase in the number of NK cells with a CD3 + CD16 + CD56 + phenotype; a proportional increase in the number and percentage of NKT-like cells with a CD3 + CD16 + CD56 + phenotype; a significant decrease in the number and percentage of T CD3 + cells. The number of NK cells was strongly positively correlated with the number of CD3 cells (r = 0.6162). The number of NKT cells was strongly positively correlated with CD3 cells (r = 0.6885) and CD3CD8 cells (r = 0.5465). Periodic exacerbations in RF are associated with the development of furuncles, which are a result of many already discovered as well as just being examined mechanisms. One of them is a significant increase in the number and most likely activation of NK and NKT-like cells during the formation of the inflammatory process and furuncles.

  5. Detection of (Leu-7)-positive cells with NK activity in human gingival tissues from patients with periodontitis

    International Nuclear Information System (INIS)

    Komiyama, K.; Hirsch, H.Z.; Mestecky, J.; Moro, I.

    1986-01-01

    Natural killer (NK) cells have been identified in peripheral blood, lymphoid tissue and more recently in gut mucosa and may be involved in the regulation of immunoglobulin synthesis. They have assayed gingival tissues obtained from 25 periodontitis patients, for the presence and activity of NK cells. Routine histological techniques demonstrated an inflammatory infiltrate dominated by plasma cells and B lymphocytes. Indirect staining procedures with a biotin-labeled mouse anti-human, Leu-7 antibody revealed the presence of numerous positive cells accompanying the inflammatory cellular infiltrate in perivascular areas. Several specimens demonstrated positive-staining cells in the epithelium as well. Few cells were observed in histologically uninflammed areas. Single cell suspension obtained by collagenase digestion of 5 gingival samples were used in 51 Cr release cytotoxicity assay against K562 cells. Three of the five samples were positive in this assay. The finding of Leu-7-positive cells in areas of intense plasma cell foci but not in uninflammed areas, may support a role for these cells in the regulation of immunoglobulin synthesis in oral mucosal tissues

  6. Detection of (Leu-7)-positive cells with NK activity in human gingival tissues from patients with periodontitis

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, K.; Hirsch, H.Z.; Mestecky, J.; Moro, I.

    1986-03-05

    Natural killer (NK) cells have been identified in peripheral blood, lymphoid tissue and more recently in gut mucosa and may be involved in the regulation of immunoglobulin synthesis. They have assayed gingival tissues obtained from 25 periodontitis patients, for the presence and activity of NK cells. Routine histological techniques demonstrated an inflammatory infiltrate dominated by plasma cells and B lymphocytes. Indirect staining procedures with a biotin-labeled mouse anti-human, Leu-7 antibody revealed the presence of numerous positive cells accompanying the inflammatory cellular infiltrate in perivascular areas. Several specimens demonstrated positive-staining cells in the epithelium as well. Few cells were observed in histologically uninflammed areas. Single cell suspension obtained by collagenase digestion of 5 gingival samples were used in /sup 51/Cr release cytotoxicity assay against K562 cells. Three of the five samples were positive in this assay. The finding of Leu-7-positive cells in areas of intense plasma cell foci but not in uninflammed areas, may support a role for these cells in the regulation of immunoglobulin synthesis in oral mucosal tissues.

  7. Identification of genuine primary pulmonary NK cell lymphoma via clinicopathologic observation and clonality assay.

    Science.gov (United States)

    Gong, Li; Wei, Long-Xiao; Huang, Gao-Sheng; Zhang, Wen-Dong; Wang, Lu; Zhu, Shao-Jun; Han, Xiu-Juan; Yao, Li; Lan, Miao; Li, Yan-Hong; Zhang, Wei

    2013-08-19

    Extranodal natural killer (NK)/T-cell lymphoma, nasal type, is an uncommon lymphoma associated with the Epstein-Barr virus (EBV). It most commonly involves the nasal cavity and upper respiratory tract. Primary pulmonary NK/T cell lymphoma is extremely rare. If a patient with a NK or T-cell tumor has an unusual reaction to treatment or an unusual prognosis, it is wise to differentiate NK from T-cell tumors. The clinicopathologic characteristics, immunophenotype, EBV in situ hybridization, and T cell receptor (TCR) gene rearrangement of primary pulmonary NK cell lymphoma from a 73-year-old Chinese woman were investigated and the clonal status was determined using female X-chromosomal inactivation mosaicism and polymorphisms at the phosphoglycerate kinase (PGK) gene. The lesion showed the typical histopathologic characteristics and immunohistochemical features of NK/T cell lymphoma. However, the sample was negative for TCR gene rearrangement. A clonality assay demonstrated that the lesion was monoclonal. It is concluded that this is the first recorded case of genuine primary pulmonary NK cell lymphoma. The purpose of the present work is to recommend that pathologists carefully investigate the whole lesion to reduce the likelihood that primary pulmonary NK cell lymphoma will be misdiagnosed as an infectious lesion. In addition, TCR gene rearrangement and clonal analysis, which is based on female X-chromosomal inactivation mosaicism and polymorphisms at PGK and androgen receptor (AR) loci, were found to play important roles in differentiating NK cell lymphoma from T cell lymphoma. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5205300349457729.

  8. CD4(+) NKG2D(+) T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice.

    Science.gov (United States)

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-03-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4(+) NKG2D(+) T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. © 2013 John Wiley & Sons Ltd.

  9. Mechanisms by Which Interleukin-12 Corrects Defective NK Cell Anticryptococcal Activity in HIV-Infected Patients

    Directory of Open Access Journals (Sweden)

    Stephen K. Kyei

    2016-08-01

    Full Text Available Cryptococcus neoformans is a pathogenic yeast and a leading cause of life-threatening meningitis in AIDS patients. Natural killer (NK cells are important immune effector cells that directly recognize and kill C. neoformans via a perforin-dependent cytotoxic mechanism. We previously showed that NK cells from HIV-infected patients have aberrant anticryptococcal killing and that interleukin-12 (IL-12 restores the activity at least partially through restoration of NKp30. However, the mechanisms causing this defect or how IL-12 restores the function was unknown. By examining the sequential steps in NK cell killing of Cryptococcus, we found that NK cells from HIV-infected patients had defective binding of NK cells to C. neoformans. Moreover, those NK cells that bound to C. neoformans failed to polarize perforin-containing granules to the microbial synapse compared to healthy controls, suggesting that binding was insufficient to restore a defect in perforin polarization. We also identified lower expression of intracellular perforin and defective perforin release from NK cells of HIV-infected patients in response to C. neoformans. Importantly, treatment of NK cells from HIV-infected patients with IL-12 reversed the multiple defects in binding, granule polarization, perforin content, and perforin release and restored anticryptococcal activity. Thus, there are multiple defects in the cytolytic machinery of NK cells from HIV-infected patients, which cumulatively result in defective NK cell anticryptococcal activity, and each of these defects can be reversed with IL-12.

  10. Interferon-alpha subtype 11 activates NK cells and enables control of retroviral infection.

    Directory of Open Access Journals (Sweden)

    Kathrin Gibbert

    Full Text Available The innate immune response mediated by cells such as natural killer (NK cells is critical for the rapid containment of virus replication and spread during acute infection. Here, we show that subtype 11 of the type I interferon (IFN family greatly potentiates the antiviral activity of NK cells during retroviral infection. Treatment of mice with IFN-α11 during Friend retrovirus infection (FV significantly reduced viral loads and resulted in long-term protection from virus-induced leukemia. The effect of IFN-α11 on NK cells was direct and signaled through the type I IFN receptor. Furthermore, IFN-α11-mediated activation of NK cells enabled cytolytic killing of FV-infected target cells via the exocytosis pathway. Depletion and adoptive transfer experiments illustrated that NK cells played a major role in successful IFN-α11 therapy. Additional experiments with Mouse Cytomegalovirus infections demonstrated that the therapeutic effect of IFN-α11 is not restricted to retroviruses. The type I IFN subtypes 2 and 5, which bind the same receptor as IFN-α11, did not elicit similar antiviral effects. These results demonstrate a unique and subtype-specific activation of NK cells by IFN-α11.

  11. The peripheral NK cell repertoire after kidney transplantation is modulated by different immunosuppressive drugs

    Directory of Open Access Journals (Sweden)

    Christine eNeudoerfl

    2013-02-01

    Full Text Available In the context of kidney transplantation, little is known about the involvement of NK cells in the immune reaction leading to either rejection or immunological tolerance under immunosuppression. Therefore, the peripheral NK cell repertoire of patients after kidney transplantation was investigated in order to identify NK cell subsets that may be associated with the individual immune status at the time of their protocol biopsies for histopathological evaluation of the graft. Alterations in the peripheral NK cell repertoire could be correlated to the type of immunosuppression, i.e. calcineurin-inhibitors like CyclosporinA vs. Tacrolimus with or without addition of mTOR inhibitors. Here, we could demonstrate that the NK cell repertoire in peripheral blood of kidney transplant patients differs significantly from healthy individuals. The presence of donor-specific antibodies was associated with reduced numbers of CD56dim NK cells. Moreover, in patients, down-modulation of CD16 and CD6 on CD56dim NK cells was observed with significant differences between CyclosporinA- and Tac-treated patients. Tac-treatment was associated with decreased CD69, HLA-DR and increased CD94/NKG2A expression in CD56dim NK cells indicating that the quality of the immunosuppressive treatment impinges on the peripheral NK cell repertoire. In vitro studies with PBMC of healthy donors showed that this modulation of CD16, CD6, CD69, and HLA-DR could also be induced experimentally. The presence of calcineurin or mTOR inhibitors had also functional consequences regarding degranulation and IFN--production against K562 target cells, respectively. In summary, we postulate that the NK cell composition in peripheral blood of kidney transplanted patients represents an important hallmark of the efficacy of immunosuppression and may be even informative for the immune status after transplantation in terms of rejection vs. drug-induced allograft tolerance. Thus,NK cells can serve as sensors

  12. Effect of low dose radiation (LDR) on biological activity of NK cell

    International Nuclear Information System (INIS)

    Yang Liyun; Lin Meixiong; Luo Min; Ran Min; Liang Xuefei

    2006-01-01

    Objective: To study the in vitro and in vivo effect of LDR on the proliferation and killing activity of mouse NK cells with exploitation of the related mechanism of signal transduction. The effect of infused NK cells on inhibiton of oncogenesis and tumor burden regression was also studied. Methods: Mononuclear cells extracted from mouse spleen were treated with immunomagnetic bead for the isolation of CD3 - /CD16 + , CD56 + cells. After verified with flowcytometry, these NK cells were cultured with mice splenic cells (irradiated with 20Gy 60 Co gamma ray) as feeder cells and rhIL-2 as induction factor for 3 rounds (5 days each round). Specimens of cultured NK cells were treated with different doses of radiation (25mGy, 75mGy, 200mGy, 500mGy), the proliferation index (PI) with tumoreidal activity on K562 cells (with 3 H-TdR) incorporation was examined at 4h, 24h, 48h, 72h after irradiation respectively. The role of P38MAPK signal pathway in the LDR effect was examined with adding either inhibitor (SB203580) or activator (P79350) of P38MAPK into the culture and measuring the PI, Killing activity (as expression of the related factors IFN-gamma, FasL, perforin) of NK cells thereafter. The in vivo test involved exposing mice to whole body 25mGy irradiation, harvesting splenic NK cells at 4h, 24h, 48h, 72h later respectively and performing the above-described in vitro procedures. Inhibition of oncogenesis was examined in vivo with infusion of cultured NK cells (LDR treated vs LDR non-treated) 10 days after infusion of K562 cells into mice and examination of hepatic/splenic CD 13+ , S-stage cells and peripheral blood tumor cells in the sacrificed animal another 10 days later. Also, K562 cells were innoculated subcutaneously into mice. After tumor nodule formation (2.0 x 2.0 mm), NK cells (LDR treated vs non-treated) were infused and regression of the tumor nodule with the weight of hepatic tumor mass was noticed in sacrificed animals on d 8 and the survival rate on d 40

  13. A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates

    Science.gov (United States)

    Rosner, Cornelia; Neff, Jennifer; Roos, Christian; Eberle, Manfred; Aujard, Fabienne; Münch, Claudia; Schempp, Werner; Carrington, Mary; Shiina, Takashi; Inoko, Hidetoshi; Knaust, Florian; Coggill, Penny; Sehra, Harminder; Beck, Stephan; Abi-Rached, Laurent; Reinhardt, Richard; Walter, Lutz

    2009-01-01

    There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire. PMID:19834558

  14. Changes in NK and NKT cells in mesenteric lymph nodes after a Schistosoma japonicum infection.

    Science.gov (United States)

    Luo, Xueping; Xie, Hongyan; Chen, Dianhui; Yu, Xiuxue; Wu, Fan; Li, Lu; Wu, Changyou; Huang, Jun

    2014-03-01

    The mesenteric lymph node (MLN) is the main draining lymph node in mouse enterocoelia, which contains many types of immune cells. Among these cells, natural killer (NK) and natural killer T (NKT) cells belong to innate lymphoid cells (ILCs), which have potent activities for controlling a variety of pathogenic infections. In this study, C57BL/6 mice were infected with Schistosoma japonicum for 5-7 weeks. Lymphocytes were isolated from the MLN to detect changes in the phenotype and function of NK and NKT cells using a fluorescence activating cell sorter (FACS). These results demonstrated that a S. japonicum infection could significantly increase the percentage of NK cells in the mouse MLN, (P cell number of both NK and NKT cells. In addition, we found that NK and NKT cells from infected mice expressed higher levels of CD69 compared to normal mice (P NKT cell activation. Moreover, we found that the expression of CD4 was increased in infected MLN NK cells (P NKT cells of infected mice after phorbol 12-myristate 13-acetate (PMA) and ionomycin stimulation (P NKT cells might play roles in modulating the classical T cell response. Finally, our results indicated that the expression of CD94 was decreased in NK cells, suggesting that the downregulation of CD94 expression might served as a mechanism in NK cell activation.

  15. Effect of radiotherapy on the natural killer (NK)-cell activity of cancer patients

    International Nuclear Information System (INIS)

    McGinnes, K.; Florence, J.; Penny, R.

    1987-01-01

    The aim of this study was to determine the effect of radiotherapy on peripheral blood natural killer (NK)-cell number and activity in 15 patients with cancer, prior to the commencement and at the completion of radiotherapy. The following observations were made. Prior to radiotherapy NK activity could not be correlated with the stage of malignancy. In all patients with advanced disease and with subnormal baseline NK activity, the outcome of radiotherapy was unfavorable. Following radiotherapy to sites including the mediastinum, patients had decreased NK activity compared with those receiving treatment to other sites. This decrease was not related to the dose of radiotherapy or stage of malignancy. The tumor response was favorable in most patients whose NK activity decreased as a result of radiotherapy. The decrease in NK activity may be associated with a decrease in the percentage of NK (N901) cells in the peripheral blood. The reduction in NK activity in those patients receiving mediastinal irradiation may be due to the large volume of blood which transits the field, so that the NK cells, or their more radiosensitive precursors, may be damaged and/or differentiation inhibited. Thus, these new observations show that radiotherapy does indeed affect the NK activity in cancer patients predominantly when the irradiation site includes the mediastinum

  16. CD4+ NKG2D+ T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice

    Science.gov (United States)

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-01-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4+ NKG2D+ T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. PMID:24708417

  17. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ying [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Liu, Jin; Liu, Yang; Qin, Yaru [Beijing Institute of Radiation Medicine, Beijing (China); Luo, Qun [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Wang, Quanli, E-mail: 13691110351@163.com [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Duan, Haifeng, E-mail: duanhf0720@163.com [Beijing Institute of Radiation Medicine, Beijing (China)

    2015-08-21

    Mesenchymal stem cells (MSC) are a kind of stromal cell within the tumor microenvironment. In our research, MSC derived from acute myeloid leukemia patients' bone marrow (AML-MSC) and lung cancer tissues (LC-MSC) as well as normal bone marrow-derived MSC (BM-MSC) cultured in conditioned medium of HeLa cells were found to have higher expressions of Toll-like receptor (TLR4) mRNA compared with BM-MSC. The sorted TLR4-positive MSC (TLR4+ MSC) differed in cytokine (interleukin-6, interleukin-8, and monocyte chemoattractant protein-1) secretion from those of unsorted MSC. MSC was reported to inhibit natural killer (NK) cell proliferation and function. In this research, we confirmed that TLR4+ MSC aggravate this suppression. Furthermore, when TLR4 in the sorted cells were stimulated by LPS or following blocked by antibody, the suppression on NK cell proliferation and cytotoxicity were more intensive or recovered respectively. Compared to unsorted MSC, NKG2D receptor expression on NK cells were also inhibited by TLR4+ MSC. These findings suggest that activation of TLR4 pathway is important for TLR4+ MSC and MSC to obstruct anti-tumor immunity by inhibiting NK cell function, which may provide a potential stroma-targeted tumor therapy. - Highlights: • TLR4+ MSC inhibit NK cell proliferation in vivo and in vitro. • TLR4+ MSC inhibit NKG2D expression on NK cells and NK cell cytotoxicity. • The distinguished cytokine expression of TLR4+ MSC may contribute to the inhibition on NK cell function.

  18. CD70 reverse signaling enhances NK cell function and immunosurveillance in CD27-expressing B-cell malignancies.

    Science.gov (United States)

    Al Sayed, Mohamad F; Ruckstuhl, Carla A; Hilmenyuk, Tamara; Claus, Christina; Bourquin, Jean-Pierre; Bornhauser, Beat C; Radpour, Ramin; Riether, Carsten; Ochsenbein, Adrian F

    2017-07-20

    The interaction of the tumor necrosis factor receptor (TNFR) CD27 with its ligand CD70 is an emerging target to treat cancer. CD27 signaling provides costimulatory signals to cytotoxic T cells but also increases the frequency of regulatory T cells. Similar to other TNFR ligands, CD70 has been shown to initiate intracellular signaling pathways (CD70 reverse signaling). CD27 is expressed on a majority of B-cell non-Hodgkin lymphoma, but its role in the immune control of lymphoma and leukemia is unknown. We therefore generated a cytoplasmic deletion mutant of CD27 (CD27-trunc) to study the role of CD70 reverse signaling in the immunosurveillance of B-cell malignancies in vivo. Expression of CD27-trunc on malignant cells increased the number of tumor-infiltrating interferon γ-producing natural killer (NK) cells. In contrast, the antitumoral T-cell response remained largely unchanged. CD70 reverse signaling in NK cells was mediated via the AKT signaling pathway and increased NK cell survival and effector function. The improved immune control by activated NK cells prolonged survival of CD27-trunc-expressing lymphoma-bearing mice. Finally, CD70 reverse signaling enhanced survival and effector function of human NK cells in a B-cell acute lymphoblastic leukemia xenotransplants model. Therefore, CD70 reverse signaling in NK cells contributes to the immune control of CD27-expressing B-cell lymphoma and leukemia. © 2017 by The American Society of Hematology.

  19. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Science.gov (United States)

    Quoc Trung, Ly; Espinoza, J Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  20. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Directory of Open Access Journals (Sweden)

    Ly Quoc Trung

    Full Text Available Natural killer (NK cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  1. NKL homeobox gene MSX1 acts like a tumor suppressor in NK-cell leukemia.

    Science.gov (United States)

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; MacLeod, Roderick A F; Drexler, Hans G

    2017-09-15

    NKL homeobox gene MSX1 is physiologically expressed in lymphoid progenitors and subsequently downregulated in developing T- and B-cells. In contrast, elevated expression levels of MSX1 persist in mature natural killer (NK)-cells, indicating a functional role in this compartment. While T-cell acute lymphoblastic leukemia (T-ALL) subsets exhibit aberrant overexpression of MSX1, we show here that in malignant NK-cells the level of MSX1 transcripts is aberrantly downregulated. Chromosomal deletions at 4p16 hosting the MSX1 locus have been described in NK-cell leukemia patients. However, NK-cell lines analyzed here showed normal MSX1 gene configurations, indicating that this aberration might be uncommon. To identify alternative MSX1 regulatory mechanisms we compared expression profiling data of primary normal NK-cells and malignant NK-cell lines. This procedure revealed several deregulated genes including overexpressed IRF4, MIR155HG and MIR17HG and downregulated AUTS2, EP300, GATA3 and HHEX. As shown recently, chromatin-modulator AUTS2 is overexpressed in T-ALL subsets where it mediates aberrant transcriptional activation of MSX1. Here, our data demonstrate that in malignant NK-cell lines AUTS2 performed MSX1 activation as well, but in accordance with downregulated MSX1 transcription therein we detected reduced AUTS2 expression, a small genomic deletion at 7q11 removing exons 3 and 4, and truncating mutations in exon 1. Moreover, genomic profiling and chromosomal analyses of NK-cell lines demonstrated amplification of IRF4 at 6p25 and deletion of PRDM1 at 6q21, highlighting their potential oncogenic impact. Functional analyses performed via knockdown or forced expression of these genes revealed regulatory network disturbances effecting downregulation of MSX1 which may underlie malignant development in NK-cells.

  2. NK cell imaging by in vitro and in vivo labelling approaches

    International Nuclear Information System (INIS)

    Galli, F.; Histed, S. N.; Aras, O.

    2014-01-01

    Natural killer (NK) cells are a particular lymphocyte subset with a documented cytotoxic activity against cancer cells. Evidence of NK antitumoral effect led researchers to focus on the development of immunotherapies aimed at augmenting NK recruitment and infiltration into tumor and their anti-cancer functions. Studies in animal models proved that the right combination of drugs, cytokines, chemokines and other factors might be used to enhance or suppress tumor targeting by NK cells. Therefore, it would be necessary to have a tool to non-invasively monitor the efficacy of such novel therapies. Available imaging techniques comprise magnetic resonance, optical and nuclear medicine imaging with a pool of compounds that ranges from radiolabelled nanoparticles and radiopharmaceuticals to fluorescent probes. Each tracer and technique has its own pros and cons, but till now, no one emerged as superior among the others.

  3. Beyond NK cells: the expanding universe of innate lymphoid cells.

    Science.gov (United States)

    Cella, Marina; Miller, Hannah; Song, Christina

    2014-01-01

    For a long time, natural killer (NK) cells were thought to be the only innate immune lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different innate lymphoid cell (ILC) populations found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. These ILC populations closely mirror the phenotype of adaptive T helper subsets in their repertoire of secreted soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response that is appropriate for the incoming insult. Here, we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  4. Beyond NK cells: the expanding universe of Innate Lymphoid Cells.

    Directory of Open Access Journals (Sweden)

    Marina eCella

    2014-06-01

    Full Text Available For a long time NK cells were thought to be the only immune innate lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different Innate Lymphoid Cells found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. ILC populations closely mirror the phenotype of adaptive Thelper subsets in their ability to secrete soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response appropriate to the incoming insult. Here we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  5. [Phenotypic and functional features of NK and NKT cells in chronic hepatitis B].

    Science.gov (United States)

    Wu, Shaofei; Li, Man; Sun, Xuehua; Zhou, Zhenhua; Zhu, Xiaojun; Zhang, Xin; Gao, Yueqiu

    2015-06-01

    To detect the ratio of natural killer (NK)/natural killer T (NKT) cells in peripheral blood, the levels of NKG2D/NKG2A, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) in patients with chronic hepatitis B (CHB). Peripheral blood mononuclear cells (PBMCs) were harvested from CHB patients. The ratio of NK/NKT cells in PBMCs and the levels of NKG2D and NKG2A were detected by flow cytometry. The expressions of intracellular IFN-γ and TNF-α were analyzed by flow cytometry after the treatment with phorbol 12-myristate 13-acetate (PMA), brefeldin A (BFA) or ionomycin in vitro. The comparison between two groups was performed by independent sample t-test. The relationship of each index to hepatitis B virus load and serum alanine aminotransferase was analyzed by Pearson correlation analysis. Compared with healthy controls, CHB patients presented with significantly decreased peripheral blood NK/NKT cell ratio and significantly elevated proportions of NKG2A+ NK and NKG2A+NKT cells, and after the treatment with PMA/BFA/ionomycin, IFN-γ+ NK and IFN-γ+ NKT cells were significantly reduced in CHB patients. NK and NKT cells showed a reduced ratio, disordered receptor expressions and decreased cytokine secretion capacity in CHB patients.

  6. NK-cell-dependent killing of colon carcinoma cells is mediated by natural cytotoxicity receptors (NCRs) and stimulated by parvovirus infection of target cells

    International Nuclear Information System (INIS)

    Bhat, Rauf; Rommelaere, Jean

    2013-01-01

    Investigating how the immune system functions during malignancies is crucial to developing novel therapeutic strategies. Natural killer (NK) cells, an important component of the innate immune system, play a vital role in immune defense against tumors and virus-infected cells. The poor survival rate in colon cancer makes it particularly important to develop novel therapeutic strategies. Oncolytic viruses, in addition to lysing tumor cells, may have the potential to augment antitumor immune responses. In the present study, we investigate the role of NK cells and how parvovirus H-1PV can modulate NK-cell mediated immune responses against colon carcinoma. Human NK cells were isolated from the blood of healthy donors. The cytotoxicity and antibody-mediated inhibition of NK cells were measured in chromium release assays. Phenotypic assessment of colon cancer and dendritic cells was done by FACS. The statistical significance of the results was calculated with Student’s t test (*p <0.05; **, p < 0.01; ***, p < 0.001). We show that IL-2-activated human NK cells can effectively kill colon carcinoma cells. Killing of colon carcinoma cells by NK cells was further enhanced upon infection of the former cells with parvovirus H-1PV. H-1PV has potent oncolytic activity against various tumors, yet its direct killing effect on colon carcinoma cells is limited. The cytotoxicity of NK cells towards colon carcinoma cells, both mock- and H-1PV-infected, was found to be mostly mediated by a combination of natural cytotoxicity receptors (NCRs), namely NKp30, 44, and 46. Colon carcinoma cells displayed low to moderate expression of NK cell ligands, and this expression was modulated upon H-1PV infection. Lysates of H-1PV-infected colon carcinoma cells were found to increase MHC class II expression on dendritic cells. Altogether, these data suggest that IL-2-activated NK cells actively kill colon carcinoma cells and that this killing is mediated by several natural cytotoxicity receptors

  7. Transcription factors involved in the regulation of natural killer cell development and function: an update

    Directory of Open Access Journals (Sweden)

    Martha Elia Luevano

    2012-10-01

    Full Text Available Natural Killer (NK cells belong to the innate immune system and are key effectors in the immune response against cancer and infection. Recent studies have contributed to the knowledge of events controlling NK cell fate. The use of knockout mice has enabled the discovery of key transcription factors (TFs essential for NK cell development and function. Yet, unwrapping the downstream targets of these TFs and their influence on NK cells remains a challenge. In this review we discuss the latest TFs described to be involved in the regulation of NK cell development and maturation.

  8. HIV-Specific ADCC Improves After Antiretroviral Therapy and Correlates With Normalization of the NK Cell Phenotype

    DEFF Research Database (Denmark)

    Jensen, Sanne S; Hartling, Hans J; Tingstedt, Jeanette L

    2015-01-01

    analyzed. RESULTS: The ability of NK cells to mediate ADCC was significantly increased after only 6 months of HAART and was not explained by a normalization of NK cell subsets (CD56 CD16 and CD56 CD16 NK cells) but rather by normalization in the frequency of NK cells expressing CCR7 and CD27...

  9. Chemotherapy changes cytotoxic activity of NK-cells in cancer patients

    Science.gov (United States)

    Stakheyeva, M.; Yunusova, N.; Patysheva, M.; Mitrofanova, I. V.; Faltin, V.; Tuzikov, S.; Slonimskaya, E.

    2017-09-01

    In recent years, it has been shown that under certain conditions cytostatic agents (chemotherapy and radiotherapy) can restore the functioning of the immune system impaired by malignancy burden. The modifications of biological properties by cytostatics acting make cancer cells visible for the immune system recognition and elimination. Eighteen patients diagnosed with primary local breast (8) and gastric (10) cancer between 2014 and 2016 were enrolled in the investigation. The phenotypic features of NK were assessed by flow cytometry using mAb (BD Pharmingen) against CD45 (common leukocyte antigen) and CD56 (NK-marker) for surface staining, CD107a (LAMP-1), Perforin (PF) and Gransime B (GB) for intracellular staining. We examined NK populations in the peripheral blood of cancer patients before treatment and in 5 days after second course of NACT. We found that NK populations produced PF in cancer patents, which were absent before treatment, increased after NACT. Their emergence can be associated with the immunoactivating effects of chemotherapy, realized by the modification of tumor cells or elimination of immunosuppressive cells.

  10. HUMAN NK CELLS: FROM SURFACE RECEPTORS TO THE THERAPY OF LEUKEMIAS AND SOLID TUMORS

    Directory of Open Access Journals (Sweden)

    LORENZO eMORETTA

    2014-03-01

    Full Text Available Natural Killer (NK cells are major effector cells of the innate immunity. The discovery, over two decades ago, of MHC-class I specific NK receptors and subsequently of activating receptors, recognizing ligands expressed by tumor or virus-infected cells, paved the way to our understanding of the mechanisms of selective recognition and killing of tumor cells. Although NK cells can efficiently kill tumor cells of different histotypes in vitro, their activity may be limited in vivo by their inefficient trafficking to tumor lesions and by the inhibition of their function induced by tumor cells themselves and by the tumor microenvironment. On the other hand, the important role of NK cells has been clearly demonstrated in the therapy of high risk leukemias in the haploidentical hematopoietic cell (HSC transplantation setting. NK cells derived from donor HSC kill leukemic cells residual after the conditioning regimen, thus preventing leukemia relapses. In addition, they also kill residual dendritic cells and T lymphocytes, thus preventing both GvHD and graft rejection.

  11. Mesenchymal Stromal Cells Prevent Allostimulation In Vivo and Control Checkpoints of Th1 Priming: Migration of Human DC to Lymph Nodes and NK Cell Activation.

    Science.gov (United States)

    Consentius, C; Akyüz, L; Schmidt-Lucke, J A; Tschöpe, C; Pinzur, L; Ofir, R; Reinke, P; Volk, H-D; Juelke, K

    2015-10-01

    Although the immunomodulatory potency of mesenchymal stromal cells (MSC) is well established, the mechanisms behind are still not clear. The crosstalk between myeloid dendritic cells (mDC) and natural killer (NK) cells and especially NK cell-derived interferon-gamma (IFN-γ) play a pivotal role in the development of type 1 helper (Th1) cell immune responses. While many studies explored the isolated impact of MSC on either in vitro generated DC, NK, or T cells, there are only few data available on the complex interplay between these cells. Here, we investigated the impact of MSC on the functionality of human mDC and the consequences for NK cell and Th1 priming in vitro and in vivo. In critical limb ischemia patients, who have been treated with allogeneic placenta-derived mesenchymal-like stromal cells (PLX-PAD), no in vivo priming of Th1 responses toward the major histocompatibility complex (MHC) mismatches could be detected. Further in vitro studies revealed that mDC reprogramming could play a central role for these effects. Following crosstalk with MSC, activated mDC acquired a tolerogenic phenotype characterized by reduced migration toward CCR7 ligand and impaired ability to stimulate NK cell-derived IFN-γ production. These effects, which were strongly related to an altered interleukin (IL)-12/IL-10 production by mDC, were accompanied by an effective prevention of Th1 priming in vivo. Our findings provide novel evidence for the regulation of Th1 priming by MSC via modulation of mDC and NK cell crosstalk and show that off-the-shelf produced MHC-mismatched PLX-PAD can be used in patients without any sign of immunogenicity. © 2015 AlphaMed Press.

  12. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    Directory of Open Access Journals (Sweden)

    Irene Veneziani

    2018-01-01

    Full Text Available Neuroblastoma (NB, the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR, triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted.

  13. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    Science.gov (United States)

    Veneziani, Irene; Brandetti, Elisa; Ognibene, Marzia; Pezzolo, Annalisa; Pistoia, Vito

    2018-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR), triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS) in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted. PMID:29805983

  14. Effect of Pemetrexed combined with cis-platinum chemotherapy on matrix metalloproteinase VEGF, NK cells and immune function in patients with non-squamous non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Feng Wen

    2017-07-01

    Full Text Available Objective: To explore effect of Pemetrexed combined with cis-platinum chemotherapy on matrix metalloproteinase (MMPs, vascular esandothelial growth factor (VEGF, NK cells and immune function in patients with non-squamous non-small cell lung cancer. Method: A total of 86 cases of non-squamous non-small cell lung cancer patients were divided into control group (n=44 and observation group (n=42, control group was given docetaxel combined cisplatinum chemotherapy, pemetrexed combined cis-platinum chemotherapy, was applied for observation group. Compared MMP-2, MMP-9, VEGF, NK cells and immune function level before and after treatment in both groups. Results: MMP-2, MMP-9, VEGF, NK cells, CD3+, CD4+, CD8+, CD4+/CD8+ level in both groups before treatment was no significant difference. After treatment, MMP-2, MMP-9, VEGF, CD8+level in both groups was significant lower than before treatment intra-group, and observation was lower than control group, there was significant difference. After treatment, NK cells, CD3+, CD4+, CD8+, CD4+/CD8+ level in both groups was increased dramatically than before treatment of intra-group, moreover, NK cells, CD3+, CD4+, CD8+, CD4+/CD8+level in observation group after treatment was obvious higher than in control group after treatment, there was significant difference. Conclusion: Pemetrexed combined with cis-platinum chemotherapy for non-squamous non-small cell lung cancer could effectively decrease serum MMPs, VEGF level and increase NK cell level, regulate immune function, with definite clinical significance.

  15. A high-throughput assay of NK cell activity in whole blood and its clinical application

    International Nuclear Information System (INIS)

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung; Yoon, Joo Chun; Lee, Hyo Joon; Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan; Lee, Jae Myun; Lee, Kang Young; Kim, Jongsun

    2014-01-01

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as 51 Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer

  16. A high-throughput assay of NK cell activity in whole blood and its clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Saet-byul [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cha, Junhoe [ATGen Co. Ltd., Sungnam (Korea, Republic of); Kim, Im-kyung [Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Yoon, Joo Chun [Department of Microbiology, Ewha Womans University School of Medicine, Seoul (Korea, Republic of); Lee, Hyo Joon [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan [ATGen Co. Ltd., Sungnam (Korea, Republic of); Lee, Jae Myun [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Kang Young, E-mail: kylee117@yuhs.ac [Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Jongsun, E-mail: jkim63@yuhs.ac [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.

  17. Involvement of Activating NK Cell Receptors and Their Modulation in Pathogen Immunity

    Directory of Open Access Journals (Sweden)

    Francesco Marras

    2011-01-01

    Full Text Available Natural Killer (NK cells are endowed with cell-structure-sensing receptors providing inhibitory protection from self-destruction (inhibitory NK receptors, iNKRs, including killer inhibitory receptors and other molecules and rapid triggering potential leading to functional cell activation by Toll-like receptors (TLRs, cytokine receptors, and activating NK cell receptors including natural cytotoxicity receptors (NCRs, i.e., NKp46, NKp46, and NKp44. NCR and NKG2D recognize ligands on infected cells which may be endogenous or may directly bind to some structures derived from invading pathogens. In this paper, we address the known direct or indirect interactions between activating receptors and pathogens and their expression during chronic HIV and HCV infections.

  18. NK cell receptor/H2-Dk-dependent host resistance to viral infection is quantitatively modulated by H2q inhibitory signals.

    Science.gov (United States)

    Fodil-Cornu, Nassima; Loredo-Osti, J Concepción; Vidal, Silvia M

    2011-04-01

    The cytomegalovirus resistance locus Cmv3 has been linked to an epistatic interaction between two loci: a Natural Killer (NK) cell receptor gene and the major histocompatibility complex class I (MHC-I) locus. To demonstrate the interaction between Cmv3 and H2(k), we generated double congenic mice between MA/My and BALB.K mice and an F(2) cross between FVB/N (H-2(q)) and BALB.K (H2(k)) mice, two strains susceptible to mouse cytomegalovirus (MCMV). Only mice expressing H2(k) in conjunction with Cmv3(MA/My) or Cmv3(FVB) were resistant to MCMV infection. Subsequently, an F(3) cross was carried out between transgenic FVB/H2-D(k) and MHC-I deficient mice in which only the progeny expressing Cmv3(FVB) and a single H2-D(k) class-I molecule completely controlled MCMV viral loads. This phenotype was shown to be NK cell-dependent and associated with subsequent NK cell proliferation. Finally, we demonstrated that a number of H2(q) alleles influence the expression level of H2(q) molecules, but not intrinsic functional properties of NK cells; viral loads, however, were quantitatively proportional to the number of H2(q) alleles. Our results support a model in which H-2(q) molecules convey Ly49-dependent inhibitory signals that interfere with the action of H2-D(k) on NK cell activation against MCMV infection. Thus, the integration of activating and inhibitory signals emanating from various MHC-I/NK cell receptor interactions regulates NK cell-mediated control of viral load.

  19. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk.

    Science.gov (United States)

    Gabrielli, Sara; Ortolani, Claudio; Del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Buccella, Flavia; Artico, Marco; Papa, Stefano; Zamai, Loris

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  20. [Change of CD4(+) CD25(+) regulatory T cells and NK Cells in peripheral blood of children with acute leukemia and its possible significance in tumor immunity].

    Science.gov (United States)

    Wu, Ze-Lin; Hu, Guan-Yu; Chen, Fu-Xiong; Lu, Hui-Min; Wu, Zi-Liang; Li, Hua-Mei; Wei, Feng-Gui; Guan, Jing-Ming; Wu, Li-Ping

    2010-06-01

    This study was purposed to investigate the changes of CD4(+) CD25(+) regulatory T cells and NK cells in peripheral blood of acute leukemia children at different stages, the function of immune system and the possible roles of the CD4(+) CD25(+) regulatory T cells as well as NK cells in leukemia immunity. The number and proportion of CD4(+) CD25(+) regulatory T cells and NK cells were detected by flow cytometry in the peripheral blood of 53 acute leukemia children, including 25 patients in new diagnosis and 28 patients in continuous complete remission (CCR), and were compared with that of 20 normal children. The results indicated that the mean proportion of CD4(+) CD25(+) CD127(+) in CD4(+) T cells of peripheral blood in newly diagnosed patients, patients with CCR and normal children were (9.55 +/- 2.41)%, (8.54 +/- 2.51)% and (6.25 +/- 0.85)% respectively, the mean proportions of CD4(+)CD25(+)CD127(+) in newly diagnosed patients and patients with CCR were higher than that in normal children, the mean proportion of CD4(+)CD25(+)CD127(+) in newly diagnosed patients were higher than that in patients with CCR (p cell count in patients with acute leukaemia decreased as compared with normal control, while after achieving CCR, the NK cell count in patients were also less than that in normal control (4.11 +/- 3.87% and 10.41 +/- 7.20% vs 14.06 +/- 5.95%, p regulatory T cells is a simple, reproductive and accurate method, and the CD4(+) CD25(+) CD127(+) T cells can better reflect the proportion of CD4(+)CD25(+) regulatory T cells. The increase of regulatory T cells and decrease of NK cells in pediatric patients with acute leukemia indicate that the function of NK cells may be depressed. Treg T cells play a role in occurrence and development of leukemia, and are involved in down-regulating NK cell function.

  1. NKT cells act through third party bone marrow-derived cells to suppress NK cell activity in the liver and exacerbate hepatic melanoma metastases.

    Science.gov (United States)

    Sadegh, Leila; Chen, Peter W; Brown, Joseph R; Han, Zhiqiang; Niederkorn, Jerry Y

    2015-09-01

    Uveal melanoma (UM) is the most common intraocular tumor in adults and liver metastasis is the leading cause of death in UM patients. We have previously shown that NKT cell-deficient mice develop significantly fewer liver metastases from intraocular melanomas than do wild-type (WT) mice. Here, we examine the interplay between liver NKT cells and NK cells in resistance to liver metastases from intraocular melanomas. NKT cell-deficient CD1d(-/-) mice and WT C57BL/6 mice treated with anti-CD1d antibody developed significantly fewer liver metastases than WT mice following either intraocular or intrasplenic injection of B16LS9 melanoma cells. The increased number of metastases in WT mice was associated with reduced liver NK cytotoxicity and decreased production of IFN-γ. However, liver NK cell-mediated cytotoxic activity was identical in non-tumor bearing NKT cell-deficient mice and WT mice, indicating that liver metastases were crucial for the suppression of liver NK cells. Depressed liver NK cytotoxicity in WT mice was associated with production of IL-10 by bone marrow-derived liver cells that were neither Kupffer cells nor myeloid-derived suppressor cells and by increased IL-10 receptor expression on liver NK cells. IL-10(-/-) mice had significantly fewer liver metastases than WT mice, but were not significantly different from NKT cell-deficient mice. Thus, development of melanoma liver metastases is associated with upregulation of IL-10 in the liver and an elevated expression of IL-10 receptor on liver NK cells. This impairment of liver NK activity is NKT cell-dependent and only occurs in hosts with melanoma liver metastases. © 2015 UICC.

  2. Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class i molecules

    KAUST Repository

    Tallerico, Rossana

    2013-01-23

    Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the "differentiated" cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma- derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the "differentiated" tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors. Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved.

  3. Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class i molecules

    KAUST Repository

    Tallerico, Rossana; Todaro, Matilde; Di Franco, Simone; MacCalli, Cristina; Garofalo, Cinzia; Sottile, Rosa; Palmieri, Camillo; Tirinato, Luca; Pangigadde, Pradeepa N.; La Rocca, Rosanna; Mandelboim, Ofer; Stassi, Giorgio; Di Fabrizio, Enzo M.; Parmiani, Giorgio; Moretta, Alessandro; Dieli, Francesco; Kã rre, Klas; Carbone, Ennio

    2013-01-01

    Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the "differentiated" cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma- derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the "differentiated" tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors. Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved.

  4. NK Cell Receptor/H2-Dk–Dependent Host Resistance to Viral Infection Is Quantitatively Modulated by H2 q Inhibitory Signals

    Science.gov (United States)

    Fodil-Cornu, Nassima; Loredo-Osti, J. Concepción; Vidal, Silvia M.

    2011-01-01

    The cytomegalovirus resistance locus Cmv3 has been linked to an epistatic interaction between two loci: a Natural Killer (NK) cell receptor gene and the major histocompatibility complex class I (MHC-I) locus. To demonstrate the interaction between Cmv3 and H2k, we generated double congenic mice between MA/My and BALB.K mice and an F2 cross between FVB/N (H-2q) and BALB.K (H2k) mice, two strains susceptible to mouse cytomegalovirus (MCMV). Only mice expressing H2k in conjunction with Cmv3MA/My or Cmv3FVB were resistant to MCMV infection. Subsequently, an F3 cross was carried out between transgenic FVB/H2-Dk and MHC-I deficient mice in which only the progeny expressing Cmv3FVB and a single H2-Dk class-I molecule completely controlled MCMV viral loads. This phenotype was shown to be NK cell–dependent and associated with subsequent NK cell proliferation. Finally, we demonstrated that a number of H2q alleles influence the expression level of H2q molecules, but not intrinsic functional properties of NK cells; viral loads, however, were quantitatively proportional to the number of H2q alleles. Our results support a model in which H-2q molecules convey Ly49-dependent inhibitory signals that interfere with the action of H2-Dk on NK cell activation against MCMV infection. Thus, the integration of activating and inhibitory signals emanating from various MHC-I/NK cell receptor interactions regulates NK cell–mediated control of viral load. PMID:21533075

  5. Differential expression of NK receptors CD94 and NKG2A by T cells in rheumatoid arthritis patients in remission compared to active disease.

    LENUS (Irish Health Repository)

    Walsh, Ceara E

    2011-01-01

    TNF inhibitors (TNFi) have revolutionised the treatment of rheumatoid arthritis (RA). Natural killer (NK) cells and Natural Killer Cell Receptor+ T (NKT) cells comprise important effector lymphocytes whose activity is tightly regulated through surface NK receptors (NKRs). Dysregulation of NKRs in patients with autoimmune diseases has been shown, however little is known regarding NKRs expression in patients with TNFi-induced remission and in those who maintain remission vs disease flare following TNFi withdrawal.

  6. Characterization of NCR1+ cells residing in lymphoid tissues in the gut of lambs indicates that the majority are NK cells.

    Science.gov (United States)

    Olsen, Line; Boysen, Preben; Åkesson, Caroline Piercey; Gunnes, Gjermund; Connelley, Timothy; Storset, Anne K; Espenes, Arild

    2013-11-13

    Natural killer (NK) cells are important for immune protection of the gut mucosa. Previous studies have shown that under pathologic conditions NK cells, T cells and dendritic cells are found co-localised in secondary lymphoid organs where their interaction coordinates immune responses. However, in the gut-associated lymphoid tissues (GALTs), there are few detailed reports on the distribution of NK cells. Sheep harbour several types of organised lymphoid tissues in the gut that have different functions. The ileal Peyer's patch (IPP) functions as a primary lymphoid tissue for B cell generation, while the jejunal Peyer's patches (JPPs) and colon patches (CPs) are considered secondary lymphoid tissues. In the present study, we analysed tissues from healthy lambs by flow cytometry and in situ multicolour immunofluorescence, using recently described NCR1 antibodies to identify ovine NK cells. Most NCR1+ cells isolated from all tissues were negative for the pan T cell marker CD3, and thus comply with the general definition of NK cells. The majority of NCR1+ cells in blood as well as secondary lymphoid organs expressed CD16, but in the GALT around half of the NCR1+ cells were negative for CD16. A semi-quantitative morphometric study on tissue sections was used to compare the density of NK cells in four compartments of the IPPs, JPP and CPs. NCR1+ cells were found in all gut segments. Statistical analysis revealed significant differences between compartments of the primary lymphoid organ IPP and the secondary lymphoid organs of the JPPs and CP. NK cells co-localised and made close contact with T cells, dendritic cells and other NK cells, but did not show signs of proliferation. We conclude that NK cells are present in all investigated segments of the sheep gut, but that presence of other innate lymphoid cells expressing NCR1 cannot be excluded.

  7. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    Directory of Open Access Journals (Sweden)

    Sara Gabrielli

    2016-01-01

    Full Text Available Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  8. NK1.1+ cells promote sustained tissue injury and inflammation after trauma with hemorrhagic shock.

    Science.gov (United States)

    Chen, Shuhua; Hoffman, Rosemary A; Scott, Melanie; Manson, Joanna; Loughran, Patricia; Ramadan, Mostafa; Demetris, Anthony J; Billiar, Timothy R

    2017-07-01

    Various cell populations expressing NK1.1 contribute to innate host defense and systemic inflammatory responses, but their role in hemorrhagic shock and trauma remains uncertain. NK1.1 + cells were depleted by i.p. administration of anti-NK1.1 (or isotype control) on two consecutive days, followed by hemorrhagic shock with resuscitation and peripheral tissue trauma (HS/T). The plasma levels of IL-6, MCP-1, alanine transaminase (ALT), and aspartate aminotransferase (AST) were measured at 6 and 24 h. Histology in liver and gut were examined at 6 and 24 h. The number of NK cells, NKT cells, neutrophils, and macrophages in liver, as well as intracellular staining for TNF-α, IFN-γ, and MCP-1 in liver cell populations were determined by flow cytometry. Control mice subjected to HS/T exhibited end organ damage manifested by marked increases in circulating ALT, AST, and MCP-1 levels, as well as histologic evidence of hepatic necrosis and gut injury. Although NK1.1 + cell-depleted mice exhibited a similar degree of organ damage as nondepleted animals at 6 h, NK1.1 + cell depletion resulted in marked suppression of both liver and gut injury by 24 h after HS/T. These findings indicate that NK1.1 + cells contribute to the persistence of inflammation leading to end organ damage in the liver and gut. © Society for Leukocyte Biology.

  9. Cystatin F as a regulator of immune cell cytotoxicity.

    Science.gov (United States)

    Kos, Janko; Nanut, Milica Perišić; Prunk, Mateja; Sabotič, Jerica; Dautović, Esmeralda; Jewett, Anahid

    2018-05-10

    Cysteine cathepsins are lysosomal peptidases involved in the regulation of innate and adaptive immune responses. Among the diverse processes, regulation of granule-dependent cytotoxicity of cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells during cancer progression has recently gained significant attention. The function of cysteine cathepsins is regulated by endogenous cysteine protease inhibitors-cystatins. Whereas other cystatins are generally cytosolic or extracellular proteins, cystatin F is present in endosomes and lysosomes and is thus able to regulate the activity of its target directly. It is delivered to endosomal/lysosomal vesicles as an inactive, disulphide-linked dimer. Proteolytic cleavage of its N-terminal part leads to the monomer, the only form that is a potent inhibitor of cathepsins C, H and L, involved in the activation of granzymes and perforin. In NK cells and CTLs the levels of active cathepsin C and of granzyme B are dependent on the concentration of monomeric, active cystatin F. In tumour microenvironment, inactive dimeric cystatin F can be secreted from tumour cells or immune cells and further taken up by the cytotoxic cells. Subsequent monomerization and inhibition of cysteine cathepsins within the endosomal/lysosomal vesicles impairs granzyme and perforin activation, and provokes cell anergy. Further, the glycosylation pattern has been shown to be important in controlling secretion of cystatin F from target cells, as well as internalization by cytotoxic cells and trafficking to endosomal/lysosomal vesicles. Cystatin F is therefore an important mediator used by bystander cells to reduce NK and T-cell cytotoxicity.

  10. Dose intensification of TRAIL-inducing ONC201 inhibits metastasis and promotes intratumoral NK cell recruitment.

    Science.gov (United States)

    Wagner, Jessica; Kline, C Leah; Zhou, Lanlan; Campbell, Kerry S; MacFarlane, Alexander W; Olszanski, Anthony J; Cai, Kathy Q; Hensley, Harvey H; Ross, Eric A; Ralff, Marie D; Zloza, Andrew; Chesson, Charles B; Newman, Jenna H; Kaufman, Howard; Bertino, Joseph; Stein, Mark; El-Deiry, Wafik S

    2018-06-01

    ONC201 is a first-in-class, orally active antitumor agent that upregulates cytotoxic TRAIL pathway signaling in cancer cells. ONC201 has demonstrated safety and preliminary efficacy in a first-in-human trial in which patients were dosed every 3 weeks. We hypothesized that dose intensification of ONC201 may impact antitumor efficacy. We discovered that ONC201 exerts dose- and schedule-dependent effects on tumor progression and cell death signaling in vivo. With dose intensification, we note a potent anti-metastasis effect and inhibition of cancer cell migration and invasion. Our preclinical results prompted a change in ONC201 dosing in all open clinical trials. We observed accumulation of activated NK+ and CD3+ cells within ONC201-treated tumors and that NK cell depletion inhibits ONC201 efficacy in vivo, including against TRAIL/ONC201-resistant Bax-/- tumors. Immunocompetent NCR1-GFP mice, in which NK cells express GFP, demonstrated GFP+ NK cell infiltration of syngeneic MC38 colorectal tumors. Activation of primary human NK cells and increased degranulation occurred in response to ONC201. Coculture experiments identified a role for TRAIL in human NK-mediated antitumor cytotoxicity. Preclinical results indicate the potential utility for ONC201 plus anti-PD-1 therapy. We observed an increase in activated TRAIL-secreting NK cells in the peripheral blood of patients after ONC201 treatment. The results offer what we believe to be a unique pathway of immune stimulation for cancer therapy.

  11. Chronic In Vivo Interaction of Dendritic Cells Expressing the Ligand Rae-1ε with NK Cells Impacts NKG2D Expression and Function.

    Science.gov (United States)

    Morvan, Maelig G; Champsaur, Marine; Reizis, Boris; Lanier, Lewis L

    2017-05-01

    To investigate how dendritic cells (DCs) interact with NK cells in vivo, we developed a novel mouse model in which Rae-1ε, a ligand of the NKG2D receptor, is expressed in cells with high levels of CD11c. In these CD11c-Rae1 mice, expression of Rae-1 was confirmed on all subsets of DCs and a small subset of B and T cells, but not on NK cells. DC numbers and activation status were unchanged, and NK cells in these CD11c-Rae1 mice presented the same Ly49 repertoire and maturation levels as their littermate wildtype controls. Early NK cell activation after mouse CMV infection was slightly lower than in wildtype mice, but NK cell expansion and viral control were comparable. Notably, we demonstrate that chronic interaction of NK cells with NKG2D ligand-expressing DCs leads to a reversible NKG2D down-modulation, as well as impaired NKG2D-dependent NK cell functions, including tumor rejection. In addition to generating a useful mouse model, our studies reveal in vivo the functional importance of the NK cell and DC cross-talk.

  12. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Congcong Zhang

    2017-05-01

    Full Text Available Significant progress has been made in recent years toward realizing the potential of natural killer (NK cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future

  13. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK cells

    Directory of Open Access Journals (Sweden)

    Maria A Johansson

    2016-07-01

    Full Text Available Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulato-ry in vitro. In contrast, Staphylococcus aureus (S. aureus is known to induce excessive T cell activation. In this study we aimed to investigate S. aureus-induced activation of human muco-sal associated invariant T cells (MAIT cells, γδ T cells, NK cells, as well as of conventional CD4+ and CD8+ T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation.PBMC were cultured with S. aureus 161:2 cell free supernatant (CFS, staphylococcal en-terotoxin A or CD3/CD28-beads alone or in combination with Lactobacillus rhamnosus (L. rhamnosus GG-CFS or Lactobacillus reuteri (L. reuteri DSM 17938-CFS, and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Co-stimulation with lactobacilli-CFS dampened lymphocyte activation in all cell types analysed. Pre-incubation with lactobacilli-CFS was enough to reduce subsequent activation and the ab-sence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Final-ly, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in modulation of induced T and NK cell activation.

  14. Multiparametric analysis of host response to murine cytomegalovirus in MHC class I-disparate mice reveals primacy of Dk-licensed Ly49G2+ NK cells in viral control.

    Science.gov (United States)

    Prince, Jessica; Lundgren, Alyssa; Stadnisky, Michael D; Nash, William T; Beeber, Amira; Turner, Stephen D; Brown, Michael G

    2013-11-01

    MHC class I D(k) and Ly49G2 (G2) inhibitory receptor-expressing NK cells are essential to murine CMV (MCMV) resistance in MA/My mice. Without D(k), G2(+) NK cells in C57L mice fail to protect against MCMV infection. As a cognate ligand of G2, D(k) licenses G2(+) NK cells for effector activity. These data suggested that D(k)-licensed G2(+) NK cells might recognize and control MCMV infection. However, a role for licensed NK cells in viral immunity is uncertain. We combined classical genetics with flow cytometry to visualize the host response to MCMV. Immune cells collected from individuals of a diverse cohort of MA/My × C57L offspring segregating D(k) were examined before infection and postinfection, including Ly49(+) NK subsets, receptor expression features, and other phenotypic traits. To identify critical NK cell features, automated analysis of 110 traits was performed in R using the Pearson correlation, followed with a Bonferroni correction for multiple tests. Hierarchical clustering of trait associations and principal component analyses were used to discern shared immune response and genetic relationships. The results demonstrate that G2 expression on naive blood NK cells was predictive of MCMV resistance. However, rapid G2(+) NK cell expansion following viral exposure occurred selectively in D(k) offspring; this response was more highly correlated with MCMV control than all other immune cell features. We infer that D(k)-licensed G2(+) NK cells efficiently detected missing-self MHC cues on viral targets, which elicited cellular expansion and target cell killing. Therefore, MHC polymorphism regulates licensing and detection of viral targets by distinct subsets of NK cells required in innate viral control.

  15. Diet-Induced Obesity Is Associated with an Impaired NK Cell Function and an Increased Colon Cancer Incidence

    Directory of Open Access Journals (Sweden)

    Ina Bähr

    2017-01-01

    Full Text Available Obesity is associated with an increased colon cancer incidence, but underlying mechanisms remained unclear. Previous studies showed altered Natural killer (NK cell functions in obese individuals. Therefore, we studied the impact of an impaired NK cell functionality on the increased colon cancer risk in obesity. In vitro investigations demonstrated a decreased IFN-γ secretion and cytotoxicity of human NK cells against colon tumor cells after NK cell preincubation with the adipokine leptin. In addition, leptin incubation decreased the expression of activating NK cell receptors. In animal studies, colon cancer growth was induced by injection of azoxymethane (AOM in normal weight and diet-induced obese rats. Body weight and visceral fat mass were increased in obese animals compared to normal weight rats. AOM-treated obese rats showed an increased quantity, size, and weight of colon tumors compared to the normal weight tumor group. Immunohistochemical analyses demonstrated a decreased number of NK cells in spleen and liver in obesity. Additionally, the expression levels of activating NK cell receptors were lower in spleen and liver of obese rats. The results show for the first time that the decreased number and impaired NK cell function may be one cause for the higher colon cancer risk in obesity.

  16. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity

    OpenAIRE

    Jansen, C.A.; de Geus, E.D.; van Haarlem, D.A.; van de Haar, P.M.; Löndt, B.Z; Graham, S.P.; Göbel, T.W.; van Eden, W.; Brookes, S.M.; Vervelde, L.

    2013-01-01

    Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36–48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next...

  17. NK sensitivity of neuroblastoma cells determined by a highly sensitive coupled luminescent method

    International Nuclear Information System (INIS)

    Ogbomo, Henry; Hahn, Anke; Geiler, Janina; Michaelis, Martin; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2006-01-01

    The measurement of natural killer (NK) cells toxicity against tumor or virus-infected cells especially in cases with small blood samples requires highly sensitive methods. Here, a coupled luminescent method (CLM) based on glyceraldehyde-3-phosphate dehydrogenase release from injured target cells was used to evaluate the cytotoxicity of interleukin-2 activated NK cells against neuroblastoma cell lines. In contrast to most other methods, CLM does not require the pretreatment of target cells with labeling substances which could be toxic or radioactive. The effective killing of tumor cells was achieved by low effector/target ratios ranging from 0.5:1 to 4:1. CLM provides highly sensitive, safe, and fast procedure for measurement of NK cell activity with small blood samples such as those obtained from pediatric patients

  18. Estudo-piloto: células NK nas gestantes com LES NK cells in pregnant patients with SLE: a preliminary study

    Directory of Open Access Journals (Sweden)

    Alessandra Cardoso Pereira

    2009-08-01

    Full Text Available O sistema imune inato desempenha papel central na reprodução, tendo as células NK participação marcante. Durante a gravidez, seu comportamento pode esclarecer pontos cruciais na patogênese das complicações que podem ocorrer em gestantes com LES. OBJETIVO: Quantificar as células NK circulantes e sua viabilidade em gestantes com LES. MATERIAL E MÉTODOS: Avaliaram-se amostras de sangue de quatro grupos de dez pacientes cada: 1 GLES: Gestantes com LES; 2 PLES: Pacientes com LES não gestantes; 3 Gcontroles: Gestantes controles; 4 Controles: Mulheres não gestantes saudáveis. Em todas as pacientes, a quantidade e a viabilidade das células NK foram medidas por citometria de fluxo, assim como por apoptose total por coloração para anexina V e iodeto de propidium. RESULTADOS: Devido à variabilidade dos resultados, a mediana de cada grupo foi utilizada para avaliar: porcentagem CD56+ [GLES (0,10, PLES (0,12, Gcontroles (0,15, Controles (0,08]; apoptose total [GLES (0,06, PLES (0,04, Gcontroles (0,11, Controles (0,11]. Os resultados da contagem de células vivas tiveram baixa variabilidade, por isso média e desvio-padrão foram utilizados para comparação: [GLES (0,91 ± 0,06, PLES (0,95 ± 0,03, Gcontroles (0,86 ± 0,11, Controles (0,88 ± 0,08. CONCLUSÃO: Apesar de não terem alcançado valor de significância estatística, o percentual de apoptose total nos grupos com LES foi menor que o dos controles, e a porcentagem de células vivas foi maior. Isso sugere que, em pacientes com LES, grávidas ou não, as células NK têm vida útil prolongada (ou tem turnover menor/diferente, o que indica um maior estímulo imune, fazendo com que as células NK levem mais tempo para ativar o processo de apoptose.The innate immune system plays an important role in reproduction, with marked involvement of NK cells. These cells behavior during pregnancy may clarify crucial points in the pathogenesis of complications that may occur in pregnant women with

  19. Tonsillar CD56brightNKG2A+ NK cells restrict primary Epstein-Barr virus infection in B cells via IFN-γ.

    Science.gov (United States)

    Jud, Aurelia; Kotur, Monika; Berger, Christoph; Gysin, Claudine; Nadal, David; Lünemann, Anna

    2017-01-24

    Natural killer (NK) cells constitute the first line of defense against viruses and cancers cells. Epstein-Barr virus (EBV) was the first human virus to be directly implicated in carcinogenesis, and EBV infection is associated with a broad spectrum of B cell lymphomas. How NK cells restrict EBV-associated oncogenesis is not understood. Here, we investigated the efficacies and mechanisms of distinct NK cell subsets from tonsils, the portal of entry of EBV, in limiting EBV infection in naïve, germinal center-associated and memory B cells. We found that CD56bright and NKG2A expression sufficiently characterizes the potent anti-EBV capacity of tonsillar NK cells. We observed restriction of EBV infection in B cells as early as 18 hours after infection. The restriction was most efficient in naïve B cells and germinal center-associated B cells, the B cell subsets that exhibited highest susceptibility to EBV infection in vitro. IFN-γ release by and partially NKp44 engagement of CD56bright and NKG2A positive NK cells mediated the restriction that eventually inhibited B-cell transformation. Thus, harnessing CD56brightNKG2A+ NK cell function might be promising to improve treatment strategies that target EBV-associated B cell lymphomas.

  20. The Effects of Age and Latent Cytomegalovirus Infection on NK-Cell Phenotype and Exercise Responsiveness in Man

    Directory of Open Access Journals (Sweden)

    Austin B. Bigley

    2015-01-01

    Full Text Available The redeployment of NK-cells in response to an acute bout of exercise is thought to be an integral component of the “fight-or-flight” response, preparing the body for potential injury or infection. We showed previously that CMV seropositivity impairs the redeployment of NK-cells with exercise in the young. In the current study, we examined the effect of aging on the redeployment of NK-cells with exercise in the context of CMV. We show here that CMV blunts the exercise-induced redeployment of NK-cells in both younger (23–39 yrs and older (50–64 yrs subjects with older CMVneg subjects showing the largest postexercise mobilization and 1 h postexercise egress of NK-cells. The blunted exercise response in CMVpos individuals was associated with a decreased relative redeployment of the CD158a+ and CD57+ NK-cell subsets in younger and older individuals. In addition, we show that aging is associated with a CMV-independent increase in the proportion of NK-cells expressing the terminal differentiation marker CD57, while CMV is associated with an age-dependent decrease in the proportion of NK-cells expressing the inhibitory receptors KLRG1 (in the younger group and CD158a (in the older group. Collectively, these data suggest that CMV may decrease NK-cell mediated immunosurveillance after exercise in both younger and older individuals.

  1. SENYAWA BIOAKTIF RIMPANG JAHE (Zingiber officinale Roscue MENINGKATKAN RESPON SITOLITIK SEL NK TERHADAP SEL KANKER DARAH K-562 IN VITRO [Ginger Root Bioactive Compounds Increased Cytolitic Response of Natural Killer (NK Cells Against Leucemic Cell Line K-562 In Vitro

    Directory of Open Access Journals (Sweden)

    Fransiska Rungkat Zakaria 2

    2006-08-01

    Full Text Available Natural killer (NK cell, a kind of lymphocyte cells, plays an important role in attacking infectious, immature, and cancer cell. Its function could be modulated by food bioactive compounds. This experiment was conducted to investigate the effects of ginger root bioactive compounds such as oleoresin, gingerol, and shogaol on cytolitic response of NK cell in vitro. Lymphocyte cells were isolated by centrifugation on ficoll-hypaque density (1,77 ?0,001 g/ml method. Leukemic cells line K-562 as target cells(TC labelled by [3H]-timidin, together with lymphocyte as effector cell (EC were cultured in two ratio levels of EC : TC equal to 1:50 and 1:100, and two culture conditions, for 4 hours, respectively. Paraquate dichloride (1,1-dimethyl-4,4-bipyridilium dichloride 3 mM was used to induce stress oxidative circumstance. Cytolytic capacity of NK cells was determined by percentage of TC lysed by NK cells, in normal and oxidative stress conditions. Statistical analysis showed that the effects of ginger bioactive compounds on cytolytic response of NK cell depended on the culture conditions, as shown by cultures in the presence of oleoresin, and gingerol, but not shogaol. In the lymphocyte culture without stress oxidative, oleoresin, gingerol and shogaol compounds increased significantly cytolytic response of NK cells cultured at a ratio of TC : EC equal to 1:50, with the highest increament of 65 % at oleoresin concentration of 50 ?g/ml. However, in culture at a ratio of TC : EC equals to 1:100, only oleoresin at a concentration of 50 ?g/ml increased significantly cytolytic response of NK cells with the highest increament of 8 %. Shogaol did not affect significantly NK cells cytolytic response. Under stress oxidative conditions, shogaol increased significantly cytolytic response of NK cells cultured at a ratio of TC:EC equal to 1:50, but the highest increament of 56 % , was by oleoresin at concentration of 50 ?g/ml. Meanwhile, oleoresin and gingerol did

  2. Interleukin-16-producing NK cells and T-cells in the blood of tobacco smokers with and without COPD

    Directory of Open Access Journals (Sweden)

    Andersson A

    2016-09-01

    Full Text Available Anders Andersson,1,* Carina Malmhäll,2,* Birgitta Houltz,1 Sara Tengvall,1 Margareta Sjöstrand,2 Ingemar Qvarfordt,1 Anders Lindén,3 Apostolos Bossios2 1Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; 2Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; 3Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden *These authors contributed equally to this work Background: Long-term exposure to tobacco smoke causes local inflammation in the airways that involves not only innate immune cells, including NK cells, but also adaptive immune cells such as cytotoxic (CD8+ and helper (CD4+ T-cells. We have previously demonstrated that long-term tobacco smoking increases extracellular concentration of the CD4+-recruiting cytokine interleukin (IL-16 locally in the airways. Here, we hypothesized that tobacco smoking alters IL-16 biology at the systemic level and that this effect involves oxygen free radicals (OFR.Methods: We quantified extracellular IL-16 protein (ELISA and intracellular IL-16 in NK cells, T-cells, B-cells, and monocytes (flow cytometry in blood samples from long-term tobacco smokers with and without chronic obstructive pulmonary disease (COPD and in never-smokers. NK cells from healthy blood donors were stimulated with water-soluble tobacco smoke components (cigarette smoke extract with or without an OFR scavenger (glutathione in vitro and followed by quantification of IL-16 protein.Results: The extracellular concentrations of IL-16 protein in blood did not display any substantial differences between groups. Notably, intracellular IL-16 protein was detected in all types of blood leukocytes. All long-term smokers displayed

  3. Complement-Opsonized HIV-1 Alters Cross Talk Between Dendritic Cells and Natural Killer (NK Cells to Inhibit NK Killing and to Upregulate PD-1, CXCR3, and CCR4 on T Cells

    Directory of Open Access Journals (Sweden)

    Rada Ellegård

    2018-04-01

    Full Text Available Dendritic cells (DCs, natural killer (NK cells, and T cells play critical roles during primary HIV-1 exposure at the mucosa, where the viral particles become coated with complement fragments and mucosa-associated antibodies. The microenvironment together with subsequent interactions between these cells and HIV at the mucosal site of infection will determine the quality of immune response that ensues adaptive activation. Here, we investigated how complement and immunoglobulin opsonization influences the responses triggered in DCs and NK cells, how this affects their cross talk, and what T cell phenotypes are induced to expand following the interaction. Our results showed that DCs exposed to complement-opsonized HIV (C-HIV were less mature and had a poor ability to trigger IFN-driven NK cell activation. In addition, when the DCs were exposed to C-HIV, the cytotolytic potentials of both NK cells and CD8 T cells were markedly suppressed. The expression of PD-1 as well as co-expression of negative immune checkpoints TIM-3 and LAG-3 on PD-1 positive cells were increased on both CD4 as well as CD8 T cells upon interaction with and priming by NK–DC cross talk cultures exposed to C-HIV. In addition, stimulation by NK–DC cross talk cultures exposed to C-HIV led to the upregulation of CD38, CXCR3, and CCR4 on T cells. Together, the immune modulation induced during the presence of complement on viral surfaces is likely to favor HIV establishment, dissemination, and viral pathogenesis.

  4. Role of NKG2D-Expressing NK Cells and sMICA in Immune Surveillance of Advanced Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jing LIANG

    2009-01-01

    Full Text Available Background and objective NKG2D-expressing NK cells and soluble major histocompatibility complex class Ⅰ-related chain A (sMICA is one of aroused general interests in tumor research area recently. The aimof the study is to investigate the levels of NKG2D-expressing NK cells and sMICA in peripheral blood of advanced lung cancer which are remarkably related to clinical significance and analyse the role of NKG2D-expressing NK cells and sMICA in immune surveillance. Methods Flow cytometry was used to determine the percentage of NKG2D-expressing NK cells, T cell subsets, NK cells, and ELISA was used to mesure the levels of sMICA in peripheral blood of 115 advanced lung cancer patients and 50 healthy controls. Results Compared with control group, the levels of sMICA、CD8+T cells, NK cells increased, while the levels of NKG2D-expressing NK cells, CD3+ T cells, CD4+ T cells, CD4+ T/CD8+ T in experimental group decreased. NKG2D-expressing NK cells had a perfect negative correlation with sMICA (r =-0.319, P <0.05. NKG2D-expressing NK cells had positive correlation with CD4+ T cells, CD4+ T/CD8+ T and negative correlationwith CD8+ T cells (P <0.05, sMICA had negative correlation with CD4+ T cells, CD4+ T/CD8+ T and positive correlation with CD8+ T cells (P <0.05, they had no significant correlation with CD3+ T cells, NK cells respectively (P <0.05. Conclusion Accumulation of sMICA in serum may lead to the down-modulation of NKG2D-expressing NK which has been proposed to be a novel mechanism used by cancer cells to evade the tumor immunosurveillance. They may be potential indicators investigating immune functions and helpful in the evaluation of their happening and proceeding.

  5. [Detection of NK and NKT cells in peripheral blood of patients with cGVHD and its significance].

    Science.gov (United States)

    Zhou, Mao-Hua; Wang, Chun-Miao; Gong, Cai-Ping; Luo, Yin; Zhang, Min

    2012-10-01

    The aim of this study was to investigate the correlation of NK and NKT cells in peripheral blood of patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) with chronic graft-versus-host disease (cGVHD). 64 patients undergoing allo-HSCT in Guangdong Provincial People Hospital were studied retrospectively. Among 64 cases, 21 cases were did not develop with cGVHD, 43 cases (mild 15, moderate 18, severe 10) were recorded with cGVHD. The frequency of NK and NKT cells in peripheral blood of patients were measured by flow cytometry. The counts of NK and NKT cells were measured by automatic five sort hematology cyto-analyser (LH-750). The frequency and counts of NK and NKT cells between patients with non-cGVHD and patients with different status of cGVHD were analysed. The results indicated that as compared with the non-cGVHD patients, the frequency and counts of NK cells in patients with cGVHD obviously reduced (P NKT cells were did not changed significantly. The frequency and counts of NK cells gradually decreased within the different status of cGVHD, the frequency and counts of NK cells in severe-cGVHD were significantly lower than that in mild-cGVHD. It is concluded that NK cells may play an important role in the incidence and development of cGVHD. The detection of frequency and counts of NK cells should be helpful to early diagnose cGVHD and provide valuable clues for assessing the severity of illnesses. NKT cells may have little effect on the incidence and development of cGVHD.

  6. Iron overload may promote alteration of NK cells and hematopoietic stem/progenitor cells by JNK and P38 pathway in myelodysplastic syndromes.

    Science.gov (United States)

    Hua, Yanni; Wang, Chaomeng; Jiang, Huijuan; Wang, Yihao; Liu, Chunyan; Li, Lijuan; Liu, Hui; Shao, Zonghong; Fu, Rong

    2017-08-01

    The objective of the study was to examine levels of intracellular iron, reactive oxygen species (ROS) and the expression of JNK and p38MAPK in NK cells and hematopoietic stem/progenitor cells (HSPCs) in MDS patients, and explore potential mechanisms by which iron overload (IOL) promotes MDS progression. Thirty-four cases of MDS and six cases of AML transformed from MDS (MDS/AML) were included. HSPCs and NK cells were isolated by magnetic absorption cell sorting. We used flow cytometry to detect the levels of ROS and intracellular JNK and P38 in NK cells and HSPCs. Total RNA and protein were extracted from NK cells and CD34 + cells to examine the expression of JNK and p38MAPK using RT-PCR and Western blotting. Intracellular iron concentration was detected. Data were analyzed by SPSS 21 statistical software. Intracellular iron concentration and ROS were increased in both NK cells and HSPCs in MDS patients with iron overload (P overload had higher JNK expression and lower p38 expression in NK cells, and higher p38 expression in HSPCs compared with non-iron overload group. IOL may cause alterations in NK cells and HSPCs through the JNK and p38 pathways, and play a role in the transformation to AML from MDS.

  7. Persistence of Activated and Adaptive-Like NK Cells in HIV+ Individuals despite 2 Years of Suppressive Combination Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Anna C. Hearps

    2017-06-01

    Full Text Available Innate immune dysfunction persists in HIV+ individuals despite effective combination antiretroviral therapy (cART. We recently demonstrated that an adaptive-like CD56dim NK cell population lacking the signal transducing protein FcRγ is expanded in HIV+ individuals. Here, we analyzed a cohort of HIV+ men who have sex with men (MSM, n = 20 at baseline and following 6, 12, and 24 months of cART and compared them with uninfected MSM (n = 15 to investigate the impact of cART on NK cell dysfunction. Proportions of NK cells expressing markers of early (CD69+ and late (HLA-DR+/CD38+ activation were elevated in cART-naïve HIV+ MSM (p = 0.004 and 0.015, respectively, as were FcRγ− NK cells (p = 0.003. Using latent growth curve modeling, we show that cART did not reduce levels of FcRγ− NK cells (p = 0.115 or activated HLA-DR+/CD38+ NK cells (p = 0.129 but did reduce T cell and monocyte activation (p < 0.001 for all. Proportions of FcRγ− NK cells were not associated with NK cell, T cell, or monocyte activation, suggesting different factors drive CD56dim FcRγ− NK cell expansion and immune activation in HIV+ individuals. While proportions of activated CD69+ NK cells declined significantly on cART (p = 0.003, the rate was significantly slower than the decline of T cell and monocyte activation, indicating a reduced potency of cART against NK cell activation. Our findings indicate that 2 years of suppressive cART have no impact on CD56dim FcRγ− NK cell expansion and that NK cell activation persists after normalization of other immune parameters. This may have implications for the development of malignancies and co-morbidities in HIV+ individuals on cART.

  8. Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus.

    Science.gov (United States)

    Vermeulen, Ben L; Devriendt, Bert; Olyslaegers, Dominique A; Dedeurwaerder, Annelike; Desmarets, Lowiese M; Favoreel, Herman W; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-05-31

    A strong cell-mediated immunity (CMI) is thought to be indispensable for protection against infection with feline infectious peritonitis virus (FIPV) in cats. In this study, the role of natural killer (NK) cells and regulatory T cells (Tregs), central players in the innate and adaptive CMI respectively, was examined during natural FIPV infection. When quantified, both NK cells and Tregs were drastically depleted from the peripheral blood, mesenteric lymph node (LN) and spleen in FIP cats. In contrast, mesentery and kidney from FIP cats did not show any difference when compared to healthy non-infected control animals. In addition, other regulatory lymphocytes (CD4+CD25-Foxp3+ and CD3+CD8+Foxp3+) were found to be depleted from blood and LN as well. Phenotypic analysis of blood-derived NK cells in FIP cats revealed an upregulation of activation markers (CD16 and CD25) and migration markers (CD11b and CD62L) while LN-derived NK cells showed upregulation of only CD16 and CD62L. LN-derived NK cells from FIPV-infected cats were also significantly less cytotoxic when compared with healthy cats. This study reveals for the first time that FIPV infection is associated with severe suppression of NK cells and Tregs, which is reflected by cell depletion and lowered cell functionality (only NK cells). This will un-doubtfully lead to a reduced capacity of the innate immune system (NK cells) to battle FIPV infection and a decreased capacity (Tregs) to suppress the immunopathology typical for FIP. However, these results will also open possibilities for new therapies targeting specifically NK cells and Tregs to enhance their numbers and/or functionality during FIPV infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells.

    Science.gov (United States)

    Klöß, Stephan; Oberschmidt, Olaf; Morgan, Michael; Dahlke, Julia; Arseniev, Lubomir; Huppert, Volker; Granzin, Markus; Gardlowski, Tanja; Matthies, Nadine; Soltenborn, Stephanie; Schambach, Axel; Koehl, Ulrike

    2017-10-01

    The administration of ex vivo expanded natural killer (NK) cells as potential antitumor effector cells appears to be suitable for effector cell-based immunotherapies in high-risk cancer patients. However, good manufacturing practice (GMP)-compliant manufacturing of clinical-grade NK cells at sufficiently high numbers represents a great challenge. Therefore, previous expansion protocols for those effector cells were improved and optimized by using newly developed culture medium, interleukin (IL)-21, and autologous feeder cells (FCs). Separation of primary human NK cells (CD56 + CD3 - ) was carried out with the CliniMACS Prodigy ® in a single process, starting with approximately 1.2 × 10 9 leukocytes collected by small-scale lymphapheresis or from buffy coats. Enriched NK cells were adjusted to starting cell concentrations within approximately 1 × 10 6 effector cells/mL and cultured in comparative expansion experiments for 14 days with IL-2 (1,000 IU/mL) in different GMP-compliant media (X-VIVO ™ 10, CellGro ® , TexMACS ™ , and NK MACS ® ). After medium optimization, beneficial effects for functionality and phenotype were investigated at the beginning of cell expansion with irradiated (25 Gy) autologous FCs at a ratio of 20:1 (feeder: NK) in the presence or absence of IL-21 (100 ng/mL). Additionally, expanded NK cells were gene modified to express chimeric antigen receptors (CARs) against CD123, a common marker for acute myeloid leukemia (AML). Cytotoxicity, degranulation, and cytokine release of transduced NK cells were determined against KG1a cells in flow cytometric analysis and fluorescent imaging. The Prodigy manufacturing process revealed high target cell viabilities (median 95.4%), adequate NK cell recovery (median 60.4%), and purity of 95.4% in regard to CD56 + CD3 - target cells. The process in its early phase of development led to a median T-cell depletion of log 3.5 after CD3 depletion and log 3.6 after the whole process, including CD3

  10. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets.

    Science.gov (United States)

    Gleason, Michelle K; Ross, Julie A; Warlick, Erica D; Lund, Troy C; Verneris, Michael R; Wiernik, Andres; Spellman, Stephen; Haagenson, Michael D; Lenvik, Alexander J; Litzow, Mark R; Epling-Burnette, Pearlie K; Blazar, Bruce R; Weiner, Louis M; Weisdorf, Daniel J; Vallera, Daniel A; Miller, Jeffrey S

    2014-05-08

    Myelodysplastic syndromes (MDS) are stem cell disorders that can progress to acute myeloid leukemia. Although hematopoietic cell transplantation can be curative, additional therapies are needed for a disease that disproportionally afflicts the elderly. We tested the ability of a CD16xCD33 BiKE to induce natural killer (NK) cell function in 67 MDS patients. Compared with age-matched normal controls, CD7(+) lymphocytes, NK cells, and CD16 expression were markedly decreased in MDS patients. Despite this, reverse antibody-dependent cell-mediated cytotoxicity assays showed potent degranulation and cytokine production when resting MDS-NK cells were triggered with an agonistic CD16 monoclonal antibody. Blood and marrow MDS-NK cells treated with bispecific killer cell engager (BiKE) significantly enhanced degranulation and tumor necrosis factor-α and interferon-γ production against HL-60 and endogenous CD33(+) MDS targets. MDS patients had a significantly increased proportion of immunosuppressive CD33(+) myeloid-derived suppressor cells (MDSCs) that negatively correlated with MDS lymphocyte populations and CD16 loss on NK cells. Treatment with the CD16xCD33 BiKE successfully reversed MDSC immunosuppression of NK cells and induced MDSC target cell lysis. Lastly, the BiKE induced optimal MDS-NK cell function irrespective of disease stage. Our data suggest that the CD16xCD33 BiKE functions against both CD33(+) MDS and MDSC targets and may be therapeutically beneficial for MDS patients.

  11. Circadian variations of interferon-induced enhancement of human natural killer (NK) cell activity.

    Science.gov (United States)

    Gatti, G; Cavallo, R; Sartori, M L; Carignola, R; Masera, R; Delponte, D; Salvadori, A; Angeli, A

    1988-01-01

    We searched for circadian changes in the enhancement of the NK activity after exposure to IFN-gamma of peripheral blood mononuclear (PBM) cells obtained serially throughout the 24-h cycle. In August-October 1986, blood was drawn from 7 healthy, diurnally active and nocturnally resting male volunteers (22-34 yr) at 4-h intervals for 24 h starting at 08:00. PBM cells were immediately separated and assayed for NK cell activity, using K 562 cultured cells as a target in a 4-h 51Cr release assay after prior incubation for 20 h with buffer or 300 IU rIFN-gamma. Circadian variations of the spontaneous NK cell cytotoxicity were apparent; the activity was at its maximum at the end of the night or in the early morning and then declined in the afternoon. The 24-h rhythmic pattern was validated with statistical significance by the Cosinor method (p less than 0.02; acrophase 04:22). Maximum enhancement by IFN-gamma was attained in the second part of the night or in the early morning, i.e. in phase with the peak of the spontaneous NK cell activity. A significant circadian rhythm of the percent increase above control levels was validated by the Cosinor method (p less than 0.01; acrophase 04:03). Our findings may be of relevance to a better understanding of the mechanisms of control of human NK activity and warrant consideration as an approach to improve the effectiveness of time-qualified immunotherapy.

  12. Imatinib and Nilotinib Off-Target Effects on Human NK Cells, Monocytes, and M2 Macrophages.

    Science.gov (United States)

    Bellora, Francesca; Dondero, Alessandra; Corrias, Maria Valeria; Casu, Beatrice; Regis, Stefano; Caliendo, Fabio; Moretta, Alessandro; Cazzola, Mario; Elena, Chiara; Vinti, Luciana; Locatelli, Franco; Bottino, Cristina; Castriconi, Roberta

    2017-08-15

    Tyrosine kinase inhibitors (TKIs) are used in the clinical management of hematological neoplasms. Moreover, in solid tumors such as stage 4 neuroblastomas (NB), imatinib showed benefits that might depend on both on-target and immunological off-target effects. We investigated the effects of imatinib and nilotinib on human NK cells, monocytes, and macrophages. High numbers of monocytes died upon exposure to TKI concentrations similar to those achieved in patients. Conversely, NK cells were highly resistant to the TKI cytotoxic effect, were properly activated by immunostimulatory cytokines, and degranulated in the presence of NB cells. In NB, neither drug reduced the expression of ligands for activating NK receptors or upregulated that of HLA class I, B7-H3, PD-L1, and PD-L2, molecules that might limit NK cell function. Interestingly, TKIs modulated the chemokine receptor repertoire of immune cells. Acting at the transcriptional level, they increased the surface expression of CXCR4, an effect observed also in NK cells and monocytes of patients receiving imatinib for chronic myeloid leukemia. Moreover, TKIs reduced the expression of CXCR3 (in NK cells) and CCR1 (in monocytes). Monocytes also decreased the expression of M-CSFR, and low numbers of cells underwent differentiation toward macrophages. M0 and M2 macrophages were highly resistant to TKIs and maintained their phenotypic and functional characteristics. Importantly, also in the presence of TKIs, the M2 immunosuppressive polarization was reverted by TLR engagement, and M1-oriented macrophages fully activated autologous NK cells. Our results contribute to better interpreting the off-target efficacy of TKIs in tumors and to envisaging strategies aimed at facilitating antitumor immune responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Adiponectin deficiency suppresses lymphoma growth in mice by modulating NK cells, CD8 T cells, and myeloid-derived suppressor cells.

    Science.gov (United States)

    Han, Sora; Jeong, Ae Lee; Lee, Sunyi; Park, Jeong Su; Kim, Kwang Dong; Choi, Inpyo; Yoon, Suk Ran; Lee, Myung Sok; Lim, Jong-Seok; Han, Seung Hyun; Yoon, Do Young; Yang, Young

    2013-05-01

    Previously, we found that adiponectin (APN) suppresses IL-2-induced NK cell activation by downregulating the expression of the IFN-γ-inducible TNF-related apoptosis-inducing ligand and Fas ligand. Although the antitumor function of APN has been reported in several types of solid tumors, with few controversial results, no lymphoma studies have been conducted. In this study, we assessed the role of APN in immune cell function, including NK cells, CTLs, and myeloid-derived suppressor cells, in EL4 and B16F10 tumor-bearing APN knockout (KO) mice. We observed attenuated EL4 growth in the APNKO mice. Increased numbers of splenic NK cells and splenic CTLs were identified under naive conditions and EL4-challenged conditions, respectively. In APNKO mice, splenic NK cells showed enhanced cytotoxicity with and without IL-2 stimulation. Additionally, there were decreased levels of myeloid-derived suppressor cell accumulation in the EL4-bearing APNKO mice. Enforced MHC class I expression on B16F10 cells led to attenuated growth of these tumors in APNKO mice. Thus, our results suggest that EL4 regression in APNKO mice is not only due to an enhanced antitumor immune response but also to a high level of MHC class I expression.

  14. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2014-12-01

    Full Text Available Yin Zhu,1,* Ming Cheng,2,* Zhen Yang,3 Chun-Yan Zeng,3 Jiang Chen,3 Yong Xie,3 Shi-Wen Luo,3 Kun-He Zhang,3 Shu-Feng Zhou,4 Nong-Hua Lu1,31Department of Gastroenterology, 2Department of Orthopedics, 3Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China; 4Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA*These authors contributed equally to this workAbstract: Mesenchymal stem cells (MSCs have been recognized as promising delivery vehicles for gene therapy of tumors. Gastric cancer is the third leading cause of worldwide cancer mortality, and novel treatment modalities are urgently needed. NK4 is an antagonist of hepatocyte growth factor receptors (Met which are often aberrantly activated in gastric cancer and thus represent a useful candidate for targeted therapies. This study investigated MSC-delivered NK4 gene therapy in nude mice bearing gastric cancer xenografts. MSCs were transduced with lentiviral vectors carrying NK4 complementary DNA or enhanced green fluorescent protein (GFP. Such transduction did not change the phenotype of MSCs. Gastric cancer xenografts were established in BALB/C nude mice, and the mice were treated with phosphate-buffered saline (PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4. The tropism of MSCs toward gastric cancer cells was determined by an in vitro migration assay using MKN45 cells, GES-1 cells and human fibroblasts and their presence in tumor xenografts. Tumor growth, tumor cell apoptosis and intratumoral microvessel density of tumor tissue were measured in nude mice bearing gastric cancer xenografts treated with PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4 via tail vein injection. The results showed that MSCs migrated preferably to gastric cancer cells in vitro. Systemic MSCs-NK4 injection significantly suppressed the growth of gastric cancer xenografts. MSCs-NK4 migrated and accumulated in tumor

  15. A relevância das células natural killer (NK e killer immunoglobulin-like receptors (KIR no transplante de células-tronco hematopoéticas (TCTH The relevance of natural killer (NK cells and killer immunoglobulin-like receptors (KIR in hematopoietic stem cell transplantation (HSCT

    Directory of Open Access Journals (Sweden)

    Aline Almeida-Oliveira

    2008-08-01

    Full Text Available As células natural killer (NK foram identificadas há mais de 30 anos por sua capacidade de matar células tumorais e infectadas por vírus sem precisar de sensibilização prévia. No entanto, a forma como as células NK matam seus alvos ficou desconhecida por muito tempo. Na década de 90, a partir de várias observações, foi proposto que as células NK matariam células com a expressão diminuída de antígeno leucocitário humano (HLA, protegendo as células autólogas normais, o que ficou conhecido como hipótese do missing-self. Esta teoria foi confirmada através da descoberta de vários receptores, principalmente os da família killer immunoglobulin-like receptors (KIR, que reconhecem moléculas de HLA de classe I. Estes novos conceitos levaram à busca da importância dos receptores KIR no transplante de células-tronco hematopoéticas (TCTH. Foi sugerido que as disparidades de HLA entre o doador e o paciente poderiam ser reconhecidas por células NK levando à aloreatividade, o que ajudaria no efeito enxerto contra leucemia. No entanto, apesar de alguns resultados promissores, até hoje, os diferentes estudos sobre o assunto não chegaram a um consenso. Nesta revisão, será abordada a relevância das células NK e dos receptores KIR nos diferentes tipos de TCTH.Natural killer (NK cells were identified over 30 years ago by their ability to kill cancer and virally infected cells without prior sensitization. For years the recognition mechanisms of target cells were unknown, until the 1990s when the "missing-self" hypothesis was proposed. According to this theory, although tolerant to normal autologous cells, NK cells can recognize and attack cells that have down-regulated human leukocyte antigen (HLA class I molecules. The discovery of killer immunoglobulin-like receptors (KIR that specifically recognize HLA class I molecules corroborated this hypothesis. These new concepts point to the importance of studying KIR in hematopoietic stem

  16. Ex-vivo expanded human NK cells express activating receptors that mediate cytotoxicity of allogeneic and autologous cancer cell lines by direct recognition and antibody directed cellular cytotoxicity

    Directory of Open Access Journals (Sweden)

    Campana Dario

    2010-10-01

    Full Text Available Abstract Background The possibility that autologous NK cells could serve as an effective treatment modality for solid tumors has long been considered. However, implementation is hampered by (i the small number of NK cells in peripheral blood, (ii the difficulties associated with large-scale production of GMP compliant cytolytic NK cells, (iii the need to activate the NK cells in order to induce NK cell mediated killing and (iv the constraints imposed by autologous inhibitory receptor-ligand interactions. To address these issues, we determined (i if large numbers of NK cells could be expanded from PBMC and GMP compliant cell fractions derived by elutriation, (ii their ability to kill allogeneic and autologous tumor targets by direct cytotoxitiy and by antibody-mediated cellular cytotoxicity and (iii defined NK cell specific receptor-ligand interactions that mediate tumor target cell killing. Methods Human NK cells were expanded during 14 days. Expansion efficiency, NK receptor repertoire before and after expansion, expression of NK specific ligands, cytolytic activity against allogeneic and autologous tumor targets, with and without the addition of chimeric EGFR monoclonal antibody, were investigated. Results Cell expansion shifted the NK cell receptor repertoire towards activation and resulted in cytotoxicity against various allogeneic tumor cell lines and autologous gastric cancer cells, while sparing normal PBMC. Blocking studies confirmed that autologous cytotoxicity is established through multiple activating receptor-ligand interactions. Importantly, expanded NK cells also mediated ADCC in an autologous and allogeneic setting by antibodies that are currently being used to treat patients with select solid tumors. Conclusion These data demonstrate that large numbers of cytolytic NK cells can be generated from PBMC and lymphocyte-enriched fractions obtained by GMP compliant counter current elutriation from PBMC, establishing the preclinical

  17. Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay.

    Science.gov (United States)

    Abruzzese, Maria Pia; Bilotta, Maria Teresa; Fionda, Cinzia; Zingoni, Alessandra; Soriani, Alessandra; Vulpis, Elisabetta; Borrelli, Cristiana; Zitti, Beatrice; Petrucci, Maria Teresa; Ricciardi, Maria Rosaria; Molfetta, Rosa; Paolini, Rossella; Santoni, Angela; Cippitelli, Marco

    2016-12-01

    Anti-cancer immune responses may contribute to the control of tumors after conventional chemotherapy, and different observations have indicated that chemotherapeutic agents can induce immune responses resulting in cancer cell death and immune-stimulatory side effects. Increasing experimental and clinical evidence highlight the importance of natural killer (NK) cells in immune responses toward multiple myeloma (MM), and combination therapies able to enhance the activity of NK cells against MM are showing promise in treating this hematologic cancer. The epigenetic readers of acetylated histones bromodomain and extra-terminal (BET) proteins are critical regulators of gene expression. In cancer, they can upregulate transcription of key oncogenes such as cMYC, IRF4, and BCL-2. In addition, the activity of these proteins can regulate the expression of osteoclastogenic cytokines during cancer progression. Here, we investigated the effect of BET bromodomain protein inhibition, on the expression of NK cell-activating ligands in MM cells. Five MM cell lines [SKO-007(J3), U266, RPMI-8226, ARP-1, JJN3] and CD138 + MM cells isolated from MM patients were used to investigate the activity of BET bromodomain inhibitors (BETi) (JQ1 and I-BET151) and of the selective BRD4-degrader proteolysis targeting chimera (PROTAC) (ARV-825), on the expression and function of several NK cell-activating ligands (NKG2DLs and DNAM-1Ls), using flow cytometry, real-time PCR, transient transfections, and degranulation assays. Our results indicate that inhibition of BET proteins via small molecule inhibitors or their degradation via a hetero-bifunctional PROTAC probe can enhance the expression of MICA, a ligand of the NKG2D receptor, in human MM cell lines and primary malignant plasma cells, rendering myeloma cells more efficient to activate NK cell degranulation. Noteworthy, similar results were obtained using selective CBP/EP300 bromodomain inhibition. Mechanistically, we found that BETi

  18. IL-15 Superagonist–Mediated Immunotoxicity: Role of NK Cells and IFN-γ

    Science.gov (United States)

    Guo, Yin; Luan, Liming; Rabacal, Whitney; Bohannon, Julia K.; Fensterheim, Benjamin A.; Hernandez, Antonio

    2015-01-01

    IL-15 is currently undergoing clinical trials to assess its efficacy for treatment of advanced cancers. The combination of IL-15 with soluble IL-15Rα generates a complex termed IL-15 superagonist (IL-15 SA) that possesses greater biological activity than IL-15 alone. IL-15 SA is considered an attractive antitumor and antiviral agent because of its ability to selectively expand NK and memory CD8+ T (mCD8+ T) lymphocytes. However, the adverse consequences of IL-15 SA treatment have not been defined. In this study, the effect of IL-15 SA on physiologic and immunologic functions of mice was evaluated. IL-15 SA caused dose- and time-dependent hypothermia, weight loss, liver injury, and mortality. NK (especially the proinflammatory NK subset), NKT, and mCD8+ T cells were preferentially expanded in spleen and liver upon IL-15 SA treatment. IL-15 SA caused NK cell activation as indicated by increased CD69 expression and IFN-γ, perforin, and granzyme B production, whereas NKT and mCD8+ T cells showed minimal, if any, activation. Cell depletion and adoptive transfer studies showed that the systemic toxicity of IL-15 SA was mediated by hyperproliferation of activated NK cells. Production of the proinflammatory cytokine IFN-γ, but not TNF-α or perforin, was essential to IL-15 SA–induced immunotoxicity. The toxicity and immunological alterations shown in this study are comparable to those reported in recent clinical trials of IL-15 in patients with refractory cancers and advance current knowledge by providing mechanistic insights into IL-15 SA–mediated immunotoxicity. PMID:26216888

  19. Fine tuning a well-oiled machine: Influence of NK1.1 and NKG2D on NKT cell development and function.

    Science.gov (United States)

    Joshi, Sunil K; Lang, Mark L

    2013-10-01

    Natural killer T cells (NKT) represent a group of CD1d-restricted T-lineage cells that provide a functional interface between innate and adaptive immune responses in infectious disease, cancer, allergy and autoimmunity. There have been remarkable advances in understanding the molecular events that underpin NKT development in the thymus and in the complex array of functions in the periphery. Most functional studies have focused on activation of T cell antigen receptors expressed by NKT cells and their responses to CD1d presentation of glycolipid and related antigens. Receiving less attention has been several molecules that are hallmarks of Natural Killer (NK) cells, but nonetheless expressed by NKT cells. These include several activating and inhibitory receptors that may fine-tune NKT development and survival, as well as activation via antigen receptors. Herein, we review the possible roles of the NK1.1 and NKG2D receptors in regulating development and function of NKT cells in health and disease. We suggest that pharmacological alteration of NKT activity should consider the potential complexities commensurate with NK1.1 and NKG2D expression. Published by Elsevier B.V.

  20. Selective Inhibition of Tumor Growth by Clonal NK Cells Expressing an ErbB2/HER2-Specific Chimeric Antigen Receptor

    Science.gov (United States)

    Schönfeld, Kurt; Sahm, Christiane; Zhang, Congcong; Naundorf, Sonja; Brendel, Christian; Odendahl, Marcus; Nowakowska, Paulina; Bönig, Halvard; Köhl, Ulrike; Kloess, Stephan; Köhler, Sylvia; Holtgreve-Grez, Heidi; Jauch, Anna; Schmidt, Manfred; Schubert, Ralf; Kühlcke, Klaus; Seifried, Erhard; Klingemann, Hans G; Rieger, Michael A; Tonn, Torsten; Grez, Manuel; Wels, Winfried S

    2015-01-01

    Natural killer (NK) cells are an important effector cell type for adoptive cancer immunotherapy. Similar to T cells, NK cells can be modified to express chimeric antigen receptors (CARs) to enhance antitumor activity, but experience with CAR-engineered NK cells and their clinical development is still limited. Here, we redirected continuously expanding and clinically usable established human NK-92 cells to the tumor-associated ErbB2 (HER2) antigen. Following GMP-compliant procedures, we generated a stable clonal cell line expressing a humanized CAR based on ErbB2-specific antibody FRP5 harboring CD28 and CD3ζ signaling domains (CAR 5.28.z). These NK-92/5.28.z cells efficiently lysed ErbB2-expressing tumor cells in vitro and exhibited serial target cell killing. Specific recognition of tumor cells and antitumor activity were retained in vivo, resulting in selective enrichment of NK-92/5.28.z cells in orthotopic breast carcinoma xenografts, and reduction of pulmonary metastasis in a renal cell carcinoma model, respectively. γ-irradiation as a potential safety measure for clinical application prevented NK cell replication, while antitumor activity was preserved. Our data demonstrate that it is feasible to engineer CAR-expressing NK cells as a clonal, molecularly and functionally well-defined and continuously expandable cell therapeutic agent, and suggest NK-92/5.28.z cells as a promising candidate for use in adoptive cancer immunotherapy. PMID:25373520

  1. The Prognostic Impact of NK/NKT Cell Density in Periampullary Adenocarcinoma Differs by Morphological Type and Adjuvant Treatment.

    Science.gov (United States)

    Lundgren, Sebastian; Warfvinge, Carl Fredrik; Elebro, Jacob; Heby, Margareta; Nodin, Björn; Krzyzanowska, Agnieszka; Bjartell, Anders; Leandersson, Karin; Eberhard, Jakob; Jirström, Karin

    2016-01-01

    Natural killer (NK) cells and NK T cells (NKT) are vital parts of tumour immunosurveillance. However, their impact on prognosis and chemotherapy response in periampullary adenocarcinoma, including pancreatic cancer, has not yet been described. Immune cell-specific expression of CD56, CD3, CD68 and CD1a was analysed by immunohistochemistry on tissue microarrays with tumours from 175 consecutive cases of periampullary adenocarcinoma, 110 of pancreatobiliary type (PB-type) and 65 of intestinal type (I-type) morphology. Kaplan-Meier and Cox regression analysis were applied to determine the impact of CD56+ NK/NKT cells on 5-year overall survival (OS). High density of CD56+ NK/NKT cells correlated with low N-stage and lack of perineural, lymphatic vessel and peripancreatic fat invasion. High density of CD56+ NK/NKT cells was associated with prolonged OS in Kaplan-Meier analysis (p = 0.003), and in adjusted Cox regression analysis (HR = 0.49; 95% CI 0.29-0.86). The prognostic effect of high CD56+ NK/NKT cell infiltration was only evident in cases not receiving adjuvant chemotherapy in PB-type tumours (p for interaction = 0.014). This study demonstrates that abundant infiltration of CD56+ NK/NKT cells is associated with a prolonged survival in periampullary adenocarcinoma. However, the negative interaction with adjuvant treatment is noteworthy. NK cell enhancing strategies may prove to be successful in the management of these cancers.

  2. NK cell activite in C157BL/Ka mice during the development of radiation induced thymic lymphomas

    International Nuclear Information System (INIS)

    Noel, A.; Schaaf-Lafontaine, N.; Defresne, M.P.; Boniver, J.

    1985-01-01

    Treatment of C57BL/Ka mice with a split dose whole-body irradiation (four weekly irradiations of 1,75 Gy) induces the development of thymic lymphomas. NK activity of spleen cells has been determined at several internals after leukemogenic treatment. Two days after irradiations, NK activity is normal and decreases strongly after one week. This period of decline persists during about one month. Then, NK activity restores and reaches control values. Lymphomas appear in spite of NK activity restauration. The diminution of NK activity during the preleukemic period could favour preleukemic cells apparition [fr

  3. NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  4. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells.

    Directory of Open Access Journals (Sweden)

    Honami Takada

    Full Text Available Epstein-Barr virus (EBV has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV. However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells.

  5. DNA damage response and evasion from immunosurveillance in CLL: New options for NK cell-based immunotherpies.

    Directory of Open Access Journals (Sweden)

    Olga M. Shatnyeva

    2015-02-01

    Full Text Available Chronic lymphocytic leukemia (CLL is the most prominent B cell malignancy among adults in the Western world and characterized by a clonal expansion of B cells. The patients suffer from severe immune defects resulting in increased susceptibility to infections and failure to generate an antitumor immune response. Defects in both, DNA damage response (DDR pathway and crosstalk with the tissue microenvironment have been reported to play a crucial role for the survival of CLL cells, therapy resistance and impaired immune response. To this end, major advances over the past years have highlighted several T cell immune evasion mechanisms in CLL. Here, we discuss the consequences of an impaired DDR pathway for detection and elimination of CLL cells by Natural killer (NK cells. NK cells are considered to be a major component of the immunosurveillance in leukemia but NK cell activity is impaired in CLL. Restoration of NK cell activity using immunoligands and immunoconstructs in combination with the conventional chemotherapy may provide a future perspective for CLL treatment.

  6. Irradiation-induced up-regulation of HLA-E on macrovascular endothelial cells confers protection against killing by activated natural killer cells.

    Directory of Open Access Journals (Sweden)

    Isabelle Riederer

    -induced, transient up-regulation of HLA-E on macrovascular ECs might confer protection against NK cell-mediated vascular injury.

  7. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells

    Science.gov (United States)

    Romain, Gabrielle; Senyukov, Vladimir; Rey-Villamizar, Nicolas; Merouane, Amine; Kelton, William; Liadi, Ivan; Mahendra, Ankit; Charab, Wissam; Georgiou, George; Roysam, Badrinath; Lee, Dean A.

    2014-01-01

    The efficacy of most therapeutic monoclonal antibodies (mAbs) targeting tumor antigens results primarily from their ability to elicit potent cytotoxicity through effector-mediated functions. We have engineered the fragment crystallizable (Fc) region of the immunoglobulin G (IgG) mAb, HuM195, targeting the leukemic antigen CD33, by introducing the triple mutation Ser293Asp/Ala330Leu/Ile332Glu (DLE), and developed Time-lapse Imaging Microscopy in Nanowell Grids to analyze antibody-dependent cell-mediated cytotoxicity kinetics of thousands of individual natural killer (NK) cells and mAb-coated target cells. We demonstrate that the DLE-HuM195 antibody increases both the quality and the quantity of NK cell-mediated antibody-dependent cytotoxicity by endowing more NK cells to participate in cytotoxicity via accrued CD16-mediated signaling and by increasing serial killing of target cells. NK cells encountering targets coated with DLE-HuM195 induce rapid target cell apoptosis by promoting simultaneous conjugates to multiple target cells and induce apoptosis in twice the number of target cells within the same period as the wild-type mAb. Enhanced target killing was also associated with increased frequency of NK cells undergoing apoptosis, but this effect was donor-dependent. Antibody-based therapies targeting tumor antigens will benefit from a better understanding of cell-mediated tumor elimination, and our work opens further opportunities for the therapeutic targeting of CD33 in the treatment of acute myeloid leukemia. PMID:25232058

  8. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine

    2010-01-01

    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  9. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib.

    Science.gov (United States)

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S

    2015-09-01

    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8 + T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses.

  10. Orbital involvement by non-Hodgkin lymphoma NK T cells.

    Science.gov (United States)

    Hervás-Ontiveros, A; España-Gregori, E; Hernández-Martínez, P; Vera-Sempere, F J; Díaz-Llopis, M

    2014-11-01

    The case is presented of 37 year-old male with a history of nasal obstruction with right rhinorrhea, headache, hearing loss and right exophthalmos of 4 months progression. The MRI revealed that the ethmoidal and maxillary sinuses contained inflammatory tissue extending into the orbital region. The biopsy confirmed a non-Hodgkin lymphoma of natural killer (NK) T cells. Non-Hodgkin's T NK lymphoma is a rare tumor in the orbital area that requires an early detection and multi-disciplinary care to ensure appropriate monitoring and treatment. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  11. Ly49Q, an ITIM-bearing NK receptor, positively regulates osteoclast differentiation

    International Nuclear Information System (INIS)

    Hayashi, Mikihito; Nakashima, Tomoki; Kodama, Tatsuhiko; Makrigiannis, Andrew P.; Toyama-Sorimachi, Noriko; Takayanagi, Hiroshi

    2010-01-01

    Osteoclasts, multinucleated cells that resorb bone, play a key role in bone remodeling. Although immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling is critical for osteoclast differentiation, the significance of immunoreceptor tyrosine-based inhibitory motif (ITIM) has not been well understood. Here we report the function of Ly49Q, an Ly49 family member possessing an ITIM motif, in osteoclastogenesis. Ly49Q is selectively induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) stimulation in bone marrow-derived monocyte/macrophage precursor cells (BMMs) among the Ly49 family of NK receptors. The knockdown of Ly49Q resulted in a significant reduction in the RANKL-induced formation of tartrate-resistance acid phosphatase (TRAP)-positive multinucleated cells, accompanied by a decreased expression of osteoclast-specific genes such as Nfatc1, Tm7sf4, Oscar, Ctsk, and Acp5. Osteoclastogenesis was also significantly impaired in Ly49Q-deficient cells in vitro. The inhibitory effect of Ly49Q-deficiency may be explained by the finding that Ly49Q competed for the association of Src-homology domain-2 phosphatase-1 (SHP-1) with paired immunoglobulin-like receptor-B (PIR-B), an ITIM-bearing receptor which negatively regulates osteoclast differentiation. Unexpectedly, Ly49Q deficiency did not lead to impaired osteoclast formation in vivo, suggesting the existence of a compensatory mechanism. This study provides an example in which an ITIM-bearing receptor functions as a positive regulator of osteoclast differentiation.

  12. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections.

    Science.gov (United States)

    Cimini, Eleonora; Viola, Domenico; Cabeza-Cabrerizo, Mar; Romanelli, Antonella; Tumino, Nicola; Sacchi, Alessandra; Bordoni, Veronica; Casetti, Rita; Turchi, Federica; Martini, Federico; Bore, Joseph A; Koundouno, Fara Raymond; Duraffour, Sophie; Michel, Janine; Holm, Tobias; Zekeng, Elsa Gayle; Cowley, Lauren; Garcia Dorival, Isabel; Doerrbecker, Juliane; Hetzelt, Nicole; Baum, Jonathan H J; Portmann, Jasmine; Wölfel, Roman; Gabriel, Martin; Miranda, Osvaldo; Díaz, Graciliano; Díaz, José E; Fleites, Yoel A; Piñeiro, Carlos A; Castro, Carlos M; Koivogui, Lamine; Magassouba, N'Faly; Diallo, Boubacar; Ruibal, Paula; Oestereich, Lisa; Wozniak, David M; Lüdtke, Anja; Becker-Ziaja, Beate; Capobianchi, Maria R; Ippolito, Giuseppe; Carroll, Miles W; Günther, Stephan; Di Caro, Antonino; Muñoz-Fontela, César; Agrati, Chiara

    2017-05-01

    Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014-2015 occurred in West Africa, and to assess their association with the clinical outcome. Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome. Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells.

  13. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections.

    Directory of Open Access Journals (Sweden)

    Eleonora Cimini

    2017-05-01

    Full Text Available Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014-2015 occurred in West Africa, and to assess their association with the clinical outcome.Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome.Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells.

  14. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma.

    Science.gov (United States)

    Komabayashi, Yuki; Kishibe, Kan; Nagato, Toshihiro; Ueda, Seigo; Takahara, Miki; Harabuchi, Yasuaki

    2014-01-01

    Nasal NK/T-cell lymphoma (NNKTL) is an Epstein-Barr virus (EBV)-associated malignancy and has distinct clinical and histological features. However, its genetic features are hitherto unclear. MicroRNAs (miRNAs) play a crucial role in the pathogenesis of several malignancies via regulating gene expression. In this study, we investigated whether the specific microRNAs were related to the tumor behaviors in NNKTL. MiRNA array and Quantitative RT-PCR analyses revealed that miR-15a was expressed at a much lower level in NNKTL cells (SNK-1, SNK-6, and SNT-8) than in normal peripheral NK cells and EBV-negative NK cell line KHYG-1. Quantitative PCR and western blot analyses showed that the expression of MYB and cyclin D1, which are validated targets of miR-15a, was higher in NNKTL cells. Transfection of NNKTL cells (SNK-6 and SNT-8) with a miR-15a precursor decreased MYB and cyclin D1 levels, thereby blocking G1/S transition and cell proliferation. Knockdown of EBV-encoded latent membrane protein 1 (LMP1) significantly increased miR-15a expression in SNK-6 cells. In NNKTL tissues, we found that reduced miR-15a expression, which correlated with MYB and cyclin D1 expression, was associated with poor prognosis of NNKTL patients. These data suggest that downregulation of miR-15a, possibly due to LMP1, implicates in the pathogenesis of NNKTL by inducing cell proliferation via MYB and cyclin D1. Thus, miR-15a could be a potential target for antitumor therapy and a prognostic predictor for NNKTL. Copyright © 2013 Wiley Periodicals, Inc.

  15. Novel Immunotherapy Options for Extranodal NK/T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Boyu Hu

    2018-04-01

    Full Text Available Extranodal NK/T-cell lymphoma (ENKTCL is a highly aggressive mature NK/T-cell neoplasm marked by NK-cell phenotypic expression of CD3ε and CD56. While the disease is reported worldwide, there is a significant geographic variation with its highest incidence in East Asian countries possibly related to the frequent early childhood exposure of Epstein–Barr virus (EBV and specific ethnic–genetical background, which contributes to the tumorigenesis. Historically, anthracycline-based chemotherapy such as CHOP (cyclophosphamide, adriamycin, vincristine, and prednisone was used, but resulted in poor outcomes. This is due in part to intrinsic ENKTCL resistance to anthracycline caused by high expression levels of P-glycoprotein. The recent application of combined modality therapy with concurrent or sequential radiation therapy for early stage disease, along with non-anthracycline-based chemotherapy regimens consisting of drugs independent of P-glycoprotein have significantly improved clinical outcomes. Particularly, this neoplasm shows high sensitivity to l-asparaginase as NK-cells lack asparagine synthase activity. Even still, outcomes of patients with advanced stage disease or those with relapsed/recurrent disease are dismal with overall survival of generally a few months. Thus, novel therapies are needed for this population. Clinical activity of targeted antibodies along with antibody–drug conjugates, such as daratumumab (naked anti-CD38 antibody and brentuximab vedotin (anti-CD30 antibody conjugated with auristatin E, have been reported. Further promising data have been shown with checkpoint inhibitors as high levels of programmed death-ligand 1 expression are observed in ENKTCL due to EBV-driven overexpression of the latent membrane proteins [latent membrane protein 1 (LMP1 and LMP2] with activation of the NF-κB/MAPK pathways. Initial case series with programmed death 1 inhibitors showed an overall response rate of 100% in seven relapsed

  16. Primary NK/T cell lymphoma nasal type of the stomach with skin involvement: a case report

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2009-12-01

    Full Text Available Since nasal NK/T cell lymphoma and NK/T cell lymphoma nasal type are rare diseases, gastric involvement has seldom been seen. We report a unique case of a patient with a primary NK/T cell lymphoma nasal type of the stomach with skin involvement. The patient had no history of malignant diseases and was diagnosed with hematemesis and intense bleeding from his gastric primary site. Shortly after this event, exanthemic skin lesions appeared with concordant histology to the primary site. Despite chemotherapy, the patient died one month after the first symptomatic appearance of disease.

  17. Statins reduce the expressions of Tim-3 on NK cells and NKT cells in atherosclerosis.

    Science.gov (United States)

    Zhang, Na; Zhang, Min; Liu, Ru-Tao; Zhang, Peng; Yang, Chun-Lin; Yue, Long-Tao; Li, Heng; Li, Yong-Kang; Duan, Rui-Sheng

    2018-02-15

    3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors (statins) have an immuno-regulatory effect in addition to lowing-lipids. Accumulated evidence showed that the expressions of T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) on natural killer (NK) cells increased in atherosclerotic patients and animal models. In this study, 14 patients treated with rosuvastatin and 12 patients with atorvastatin for more than 3 months were included and 20 patients without statins treatment as control. Both statins treatment reduced the expressions of Tim-3 on NK cells and their subtypes, natural killer T (NKT) cells and CD3 + T cells, and increased the proportions of NKT cells among peripheral blood mononuclear cells, accompanied by the decreased levels of total cholesterol, low density lipoprotein, and increased ratios of high density lipoprotein to cholesterol. These may contribute to the functions of statins in the treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. ADCC-Mediated CD56DIM NK Cell Responses Are Associated with Early HBsAg Clearance in Acute HBV Infection.

    Science.gov (United States)

    Yu, Wen-Han; Cosgrove, Cormac; Berger, Christoph T; Cheney, Patrick C; Krykbaeva, Marina; Kim, Arthur Y; Lewis-Ximenez, Lia; Lauer, Georg M; Alter, Galit

    2018-01-01

    Hepatitis B virus (HBV) affects up to 400 million people worldwide and accounts for approximately one million deaths per year from liver pathologies. Current treatment regimens are effective in suppressing viremia but usually have to be taken indefinitely, warranting research into new therapeutic approaches. Acute HBV infection in adults almost universally results in resolution of viremia, with the exception of immunocompromised persons, suggesting that the immune response can functionally cure or even eradicate HBV infection. Because immunophenotypic and functional studies have implicated a role for Natural Killer (NK) cells in HBV clearance during acute infection, we hypothesized that a distinct NK-cell profile exists in acute HBV infection that could provide information for the mechanism of HBV clearance. Using multivariate flow cytometry, we evaluated the expression of key activating and inhibitory receptors on NK cells, and their ability to respond to classic target cell lines. Multivariate analysis revealed selective perturbation of the CD56 dim NK-cell subset during acute infection, displaying low levels of NKp46+, NKp30+, CD160+ and CD161+ cells. Intriguingly, the CD56 dim NK-cell profile predicted time to HBV surface antigen (HBsAg) clearance from the blood, and distinct NK-cell profiles predicted early (NKp30, CD94, CD161) and late clearance (KIR3DL1, CD158a, perforin, NKp46). Finally, functional analysis demonstrated that early and late clearance tracked with elevated degranulation (CD107a) or IFNγ production, respectively, in response to ADCC-mediated activation. The cytolytic CD56 dim NK-cell subset is selectively activated in acute HBV infection and displays distinct phenotypic and functional profiles associated with efficient and early control of HBV, implicating antibody-mediated cytolytic NK-cell responses in the early control and functional cure of HBV infection.

  19. Regulation of development and function of different T cell subtypes by Rel/NF-κB family members

    International Nuclear Information System (INIS)

    Vallabhapurapu, S.

    2004-09-01

    This study reveals the requirement of distinct members of the Rel/NF-κB family in both hematopoietic and non-hematopoietic cells for the development of thymic NKT cells. Activation of NF-κB via the classical IκBα-regulated pathway is required within the NKT precursors for their efficient maturation from NK1.1 - precursors to mature NK1.1 + NKT cells. The Rel/NF-κB family member RelB, on the other hand, is required in thymic stromal cells for the generation of very early NK1.1 - precursors. NF-κB-inducing kinase (NIK) has also been shown to be required in thymic stromal cells for NKT cell development and this study demonstrates that NIK specifically regulates both constitutive and signal-induced DNA binding of RelB, but not RelA. Moreover, NIK-induced DNA binding of RelB depends on the processing of inhibitory p100 to p52, revealing an alternate pathway of NF-κB induction. Thus, Rel/NF-κB complexes activated by the classical IκBα-regulated pathway in NKT precursors and an alternate NIK/p100/RelB pathway in thymic stromal cells regulate different stages of NKT cell development. (orig.)

  20. Regulation of development and function of different T cell subtypes by Rel/NF-{kappa}B family members

    Energy Technology Data Exchange (ETDEWEB)

    Vallabhapurapu, S.

    2004-09-01

    This study reveals the requirement of distinct members of the Rel/NF-{kappa}B family in both hematopoietic and non-hematopoietic cells for the development of thymic NKT cells. Activation of NF-{kappa}B via the classical I{kappa}B{alpha}-regulated pathway is required within the NKT precursors for their efficient maturation from NK1.1{sup -} precursors to mature NK1.1{sup +} NKT cells. The Rel/NF-{kappa}B family member RelB, on the other hand, is required in thymic stromal cells for the generation of very early NK1.1{sup -} precursors. NF-{kappa}B-inducing kinase (NIK) has also been shown to be required in thymic stromal cells for NKT cell development and this study demonstrates that NIK specifically regulates both constitutive and signal-induced DNA binding of RelB, but not RelA. Moreover, NIK-induced DNA binding of RelB depends on the processing of inhibitory p100 to p52, revealing an alternate pathway of NF-{kappa}B induction. Thus, Rel/NF-{kappa}B complexes activated by the classical I{kappa}B{alpha}-regulated pathway in NKT precursors and an alternate NIK/p100/RelB pathway in thymic stromal cells regulate different stages of NKT cell development. (orig.)

  1. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    OpenAIRE

    Héla Saïdi; Marlène Bras; Pauline Formaglio; Marie-Thérèse Melki; Bruno Charbit; Jean-Philippe Herbeuval; Marie-Lise Gougeon

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-?. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-? as well as cell?cell contact is requ...

  2. Rapamycin Synergizes with Cisplatin in Antiendometrial Cancer Activation by Improving IL-27–Stimulated Cytotoxicity of NK Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jie Zhou

    2018-01-01

    Full Text Available Natural killer (NK cell function is critical for controlling initial tumor growth and determining chemosensitivity of the tumor. A synergistic relationship between rapamycin and cisplatin in uterine endometrial cancer (UEC in vitro has been reported, but the mechanism and the combined therapeutic strategy for endometrial cancer (EC are still unknown. We found a positive correlation between the level of IL-27 and the differentiated stage of UEC. The increase of IL-27 in uterine endometrial cancer cell (UECC lines (Ishikawa, RL95-2 and KLE led to a high cytotoxic activity of NK cells to UECC in the co-culture system. Exposure with rapamycin enhanced the cytotoxicity of NK cells by upregulating the expression of IL-27 in UECC and IL-27 receptors (IL-27Rs: WSX-1 and gp130 on NK cells and further restricted the growth of UEC in Ishikawa-xenografted nude mice. In addition, treatment with rapamycin resulted in an increased autophagy level of UECC, and IL-27 enhanced this ability of rapamycin. Cisplatin-mediated NK cells' cytotoxic activity and anti-UEC activation were independent of IL-27; however, the combination of rapamycin and cisplatin led to a higher cytotoxic activity of NK cells, smaller UEC volume and longer survival rate in vivo. These results suggest that rapamycin and cisplatin synergistically activate the cytotoxicity of NK cells and inhibit the progression of UEC in both an IL-27–dependent and –independent manner. This provides a scientific basis for potential rapamycin-cisplatin combined therapeutic strategies targeted to UEC, especially for the patients with low differentiated stage or abnormally low level of IL-27.

  3. Splenocytes cultured in low concentrations of IL-2 generate NK cell specificities toward syngenic and allogenic targets

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Jeppesen, M; Claesson, M H

    2000-01-01

    Splenocytes cultured in the presence of 30-60 units/ml IL-2 for 5 days develop natural killer activity toward syngeneic and allogeneic tumor cell targets. The IL-2 activated splenocytes, themselves, are partially resistant, whereas concanavalin A-activated T blast cells are completely resistant...... to killing. Surprisingly, major histocompatibility complex (MHC)-I-negative target cells are also resistant to natural killer (NK)-cell-mediated killing. Cells resistant to killing were unable to block NK-cell-mediated killing of sensitive targets as judged from cold target cell inhibition experiments......, and one type of target cells sensitive to killing did generally not cross-block killing of other killing-sensitive target cell types. Alloantigen exposure of splenocytes, i.e., one-way mixed lymphocyte cultures, partially prevents the development of NK-cell activity. Our data suggest that target...

  4. The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity.

    Science.gov (United States)

    Zhang, Bing; Zhou, Wen-Jie; Gu, Chun-Jie; Wu, Ke; Yang, Hui-Li; Mei, Jie; Yu, Jia-Jun; Hou, Xiao-Fan; Sun, Jian-Song; Xu, Feng-Yuan; Li, Da-Jin; Jin, Li-Ping; Li, Ming-Qing

    2018-05-14

    Endometriosis (EMS) is an estrogen-dependent gynecological disease with a low autophagy level of ectopic endometrial stromal cells (eESCs). Impaired NK cell cytotoxic activity is involved in the clearance obstruction of the ectopic endometrial tissue in the abdominopelvic cavity. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides, which have profound biological functions, such as anti-cancer activities. However, the role and mechanism of ginsenosides and metabolites in endometriosis are completely unknown. Here, we found that the compounds PPD, PPT, ginsenoside-Rg3 (G-Rg3), ginsenoside-Rh2 (G-Rh2), and esculentoside A (EsA) led to significant decreases in the viability of eESCs, particularly PPD (IC50 = 30.64 µM). In vitro and in vivo experiments showed that PPD promoted the expression of progesterone receptor (PR) and downregulated the expression of estrogen receptor α (ERα) in eESCs. Treatment with PPD obviously induced the autophagy of eESCs and reversed the inhibitory effect of estrogen on eESC autophagy. In addition, eESCs pretreated with PPD enhanced the cytotoxic activity of NK cells in response to eESCs. PPD decreased the numbers and suppressed the growth of ectopic lesions in a mouse EMS model. These results suggest that PPD plays a role in anti-EMS activation, possibly by restricting estrogen-mediated autophagy regulation and enhancing the cytotoxicity of NK cells. This result provides a scientific basis for potential therapeutic strategies to treat EMS by PPD or further structural modification.

  5. Aggressive NK-cell leukemia: A rare entity with diagnostic and therapeutic challenge

    Directory of Open Access Journals (Sweden)

    Alia Nazarullah

    2016-06-01

    Full Text Available Aggressive natural killer cell leukemia (ANKL is a rare neoplasm of mature natural killer cells, with an extremely poor overall survival, which is almost always EBV related, with majority of cases reported in East Asia. Here we report the case of an ANKL presenting in a young Hispanic male with secondary hemophagocytosis. Aggressive clinical course, high EBV DNA levels and leukemic presentation, often with associated hemophagocytosis, should raise suspicion of an NK/T-cell neoplasm like ANKL. Due to significant diagnostic overlap with extranodal NK/T-cell lymphoma, nasal type (ENKL, accurate diagnostic classification is crucial due to differing treatment and prognosis. L-asparaginase including chemotherapy followed by allogeneic stem cell transplantation appears to slightly prolong overall survival, but relapse is almost inevitable. Clinical monitoring of EBV DNA levels shows good correlation with disease activity.

  6. Whole blood assay for NK activity in splenectomized and non-splenectomized hairy cell leukemia patients during IFN-alpha-2b treatment

    DEFF Research Database (Denmark)

    Nielsen, B; Hokland, P; Ellegaard, J

    1989-01-01

    Natural killer cell (NK) activity in peripheral blood (PB) was followed longitudinally for up to 2 yr after initiation of low-dose IFN-alpha-2b therapy in nine hairy cell leukemia (HCL) patients. A whole blood NK (WB-NK) assay was employed in order to measure the NK activity per unit blood. The p...

  7. Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets

    OpenAIRE

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-01-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a mi...

  8. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells.

    Science.gov (United States)

    Haas, Jan D; González, Frano H Malinarich; Schmitz, Susanne; Chennupati, Vijaykumar; Föhse, Lisa; Kremmer, Elisabeth; Förster, Reinhold; Prinz, Immo

    2009-12-01

    Gammadelta T cells are a potent source of innate IL-17A and IFN-gamma, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24(low) CD44(high) effector gammadelta T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ gammadelta T cells produced IL-17A, while NK1.1+ gammadelta T cells were efficient producers of IFN-gamma but not of IL-17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ gammadelta T cells. Accordingly, both gammadelta T-cell subsets were rare in gut-associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL-17A and IFN-gamma in response to TCR-specific and TCR-independent stimuli. IL-12 and IL-18 induced IFN-gamma and IL-23 induced IL-17A production by NK1.1+ or CCR6+ gammadelta T cells, respectively. Importantly, we show that CCR6+ gammadelta T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL-17A-producing gammadelta T cells derive from less TCR-dependent selection events than IFN-gamma-producing NK1.1+ gammadelta T cells.

  9. Characterization of NK cells in mouse models of systemic lupus erythematosus and of the role of the p85β pi3k subunit in NKG2D signaling in NK cells

    OpenAIRE

    Spada, Roberto

    2013-01-01

    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 22-11-2013 Natural killer (NK) cells are large granular lymphocytes that play an important part as a link between the innate and adaptive immune systems. Various autoimmune diseases are correlated with alterations in the activity of NK cells; nonetheless, their role in the pathogenesis of systemic lupus erythematosus (SLE), a complex multi-factorial...

  10. Simultaneous development of antibody-dependent cellular cytotoxicity (ADCC) and natural killer (NK) activity in irradiated mice reconstituted with bone marrow cells

    International Nuclear Information System (INIS)

    Sihvola, M.; Hurme, M.

    1987-01-01

    Spleen cells from irradiated, bone marrow-reconstituted mice were tested for their ability to mediate antibody-dependent cellular cytotoxicity against P815 target (ADCC-P815), ADCC against sheep red blood cells (ADCC-SRBC), and natural killer (NK) activity judged as YAC-1 lysis at different times after bone marrow reconstitution. Donor-derived ADCC-P815 effectors were found to appear in the spleens 10-12 days after bone marrow reconstitution simultaneously with the appearance of donor-derived NK cells. NK cells recently derived from bone marrow are known to express the Thy-1 antigen; the phenotype of the ''early'' ADCC-P815 effectors was found to be the same as that of NK cells, i.e., Thy-1+, asialo-GM1+. These data suggest that ADCC-P815 effector cells belong to the NK cell population. ADCC-SRBC, in contrast to ADCC-P815 and NK activity, was already high on Day 7 after bone marrow reconstitution. However, it was mediated partly by recipient-derived effectors. ADCC-SRBC effectors were characterized to be different from ADCC-P815 effectors

  11. TGF-β1 Downregulates the Expression of CX3CR1 by Inducing miR-27a-5p in Primary Human NK Cells.

    Science.gov (United States)

    Regis, Stefano; Caliendo, Fabio; Dondero, Alessandra; Casu, Beatrice; Romano, Filomena; Loiacono, Fabrizio; Moretta, Alessandro; Bottino, Cristina; Castriconi, Roberta

    2017-01-01

    Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-β1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-β1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX 3 CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-β1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX 3 CR1. We demonstrated the functional interaction of miR-27a-5p with the 3' untranslated region (3'UTR) of CX 3 CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX 3 CR1 3'UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-β1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX 3 CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX 3 CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-β1-induced regulator of CX 3 CR1 expression.

  12. A Case Report of NK-Cell Lymphoproliferative Disease With a Wide Involvement of Digestive Tract Develop Into Epstein-Barr Virus Associated NK/T Cell Lymphoma in an Immunocompetent Patient.

    Science.gov (United States)

    Chen, Haotian; Zhang, Yu; Jiang, Zhinong; Zhou, Wei; Cao, Qian

    2016-03-01

    Epstein-Barr virus (EBV) plays an important role in various diseases. EBV-associated lymphoproliferative disease (LPD) is a rare disease with a canceration tendency. It is difficult to differentiate LPD with involvement of digestive tract from Crohn disease due to similar clinical and endoscopic manifestations. We present a case report of multiple ulcers with esophagus, small bowel and the entire colon involved, proved to be NK-Cell LPD, developed into EBV-associated NK/T Cell lymphoma, in an immunocompetent man who was initially misdiagnosed as Crohn disease.This report underscores that intestinal ulcers should be cautiously diagnosed, for it sometimes could be a precancerous lesion.

  13. Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis

    Science.gov (United States)

    Putz, Eva M.; Guillerey, Camille; Kos, Kevin; Stannard, Kimberley; Miles, Kim; Delconte, Rebecca B.; Nicholson, Sandra E.; Huntington, Nicholas D.; Smyth, Mark J.

    2017-01-01

    ABSTRACT The cytokine-induced SH2-containing protein CIS belongs to the suppressor of cytokine signaling (SOCS) protein family. Here, we show the critical role of CIS in suppressing natural killer (NK) cell control of tumor initiation and metastasis. Cish-deficient mice were highly resistant to methylcholanthrene-induced sarcoma formation and protected from lung metastasis of B16F10 melanoma and RM-1 prostate carcinoma cells. In contrast, the growth of primary subcutaneous tumors, including those expressing the foreign antigen OVA, was unchanged in Cish-deficient mice. The combination of Cish deficiency and relevant targeted and immuno-therapies such as combined BRAF and MEK inhibitors, immune checkpoint blockade antibodies, IL-2 and type I interferon revealed further improved control of metastasis. The data clearly indicate that targeting CIS promotes NK cell antitumor functions and CIS holds great promise as a novel target in NK cell immunotherapy. PMID:28344878

  14. Natural Killer (NK- and T-Cell Engaging Antibody-Derived Therapeutics

    Directory of Open Access Journals (Sweden)

    Christoph Stein

    2012-06-01

    Full Text Available Unmodified antibodies (abs have been successful in the treatment of hematologic malignancies, but less so for the treatment of solid tumors. They trigger anti-tumor effects through their Fc-domains, and one way to improve their efficacy is to optimize their interaction with the effectors through Fc-engineering. Another way to empower abs is the design of bispecific abs and related fusion proteins allowing a narrower choice of effector cells. Here we review frequently chosen classes of effector cells, as well as common trigger molecules. Natural Killer (NK- and T-cells are the most investigated populations in therapeutical approaches with bispecific agents until now. Catumaxomab, the first bispecific ab to receive drug approval, targets the tumor antigen Epithelial Cell Adhesion Molecule (EpCAM and recruits T-cells via a binding site for the cell surface protein CD3. The next generation of recombinant ab-derivatives replaces the broadly reactive Fc-domain by a binding domain for a single selected trigger. Blinatumomab is the first clinically successful member of this class, targeting cancer cells via CD19 and engaging T-cells by CD3. Other investigators have developed related recombinant fusion proteins to recruit effectors, such as NK-cells and macrophages. The first such agents currently in preclinical and clinical development will be discussed.

  15. Natural killer cells regulate Th1/Treg and Th17/Treg balance in chlamydial lung infection.

    Science.gov (United States)

    Li, Jing; Dong, Xiaojing; Zhao, Lei; Wang, Xiao; Wang, Yan; Yang, Xi; Wang, Hong; Zhao, Weiming

    2016-07-01

    Natural killer (NK) cell is an important component in innate immunity, playing a critical role in bridging innate and adaptive immunity by modulating the function of other immune cells including T cells. In this study, we focused on the role of NK cells in regulating Th1/Treg and Th17/Treg balance during chlamydial lung infection. We found that NK cell-depleted mice showed decreased Th1 and Th17 cells, which was correlated with reduced interferon-γ, interleukin (IL)-12, IL-17 and IL-22 production as well as T-bet and receptor-related orphan receptor gamma t expression compared with mice treated with the isotype control antibody. In contrast, NK cell depletion significantly increased Treg in cell number and related transcription factor (Foxp3) expression. The opposite trends of changes of Th1/Th17 and Treg led to significant reduction in the Th1/Treg and Th17/Treg ratios. The data implicate that NK cells play an important role in host defence against chlamydial lung infection, mainly through maintaining Th1/Treg and Th17/Treg balance. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. The effect of lysate of spleen cells after low dose radiation (LDR) on NK activity

    International Nuclear Information System (INIS)

    Lu Duicai; Su Liaoyuan

    2003-01-01

    To find effect of lysate of spleen cells after LDR on NK activity of CD 57 cells or non-CD 57 cells, lysate of spleen cells after LDR were extracted. McAb (anti CD 57 cells) was used to separate CD 57 cells from human peripheral blood by Panning direct method. The CD 57 cells and non-CD 57 cells were used as effective cells. K 562 cells labelled by 3 H-TdR were used as target cells. The ratio of effect cells to target cells was 10:1. NK activity of CD 57 cells or non-CD 5 -7 cells with the lysate of spleen cells after LDR was reflected by the efficiency of anti tumor cells. The 3 H-TdR incorporation in K 562 cells cultured with non-CD 57 cells was significantly lower than that with CD 57 cells. After use of the lysate of spleen cells after LDR, NK activities of CD 57 cells and non-CD 57 cells were 1.24 and 1.58 respectively. They were both increased obviously compared with control groups. The effect of anti K 562 cells of non-CD 57 cells is even greater than that of CD 57 cells. The lysate of spleen cells after LDR can enhance the effect of both non-CD 57 cells and CD 57 cells

  17. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules.

    Science.gov (United States)

    Miah, S M Shahjahan; Hughes, Tracey L; Campbell, Kerry S

    2008-03-01

    KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.

  18. Co-culture with NK-92MI cells enhanced the anti-cancer effect of bee venom on NSCLC cells by inactivation of NF-κB.

    Science.gov (United States)

    Kollipara, Pushpa Saranya; Kim, Jung Hyun; Won, Dohee; Lee, Sang Min; Sung, Ha Chang; Chang, Hyun Sok; Lee, Kang Tae; Lee, Kang Sik; Park, Mi Hee; Song, Min Jong; Song, Ho Sueb; Hong, Jin Tae

    2014-03-01

    In the present study we experimented on a multimodal therapeutic approach, such as combining chemotherapy agent (Bee venom) with cellular (NK-92MI) immunotherapy. Previously bee venom has been found to show anti-cancer effect in various cancer cell lines. In lung cancer cells bee venom showed an IC(50) value of 3 μg/ml in both cell lines. The co-culture of NK-92MI cell lines with lung cancer cells also show a decrease in viability upto 50 % at 48 h time point. Hence we used bee venom treated NK-92MI cells to co-culture with NSCLC cells and found that there is a further decrease in cell viability upto 70 and 75 % in A549 and NCI-H460 cell lines respectively. We further investigated the expression of various apoptotic and anti-apoptotic proteins and found that Bax, cleaved caspase-3 and -8 were increasing where as Bcl-2 and cIAP-2 was decreasing. The expression of various death receptor proteins like DR3, DR6 and Fas was also increasing. Concomitantly the expression of various death receptor ligands (TNFalpha, Apo3L and FasL) was also increasing of NK-92MI cells after co-culture. Further the DNA binding activity and luciferase activity of NF-κB was also inhibited after co-culture with bee venom treated NK-92MI cell lines. The knock down of death receptors with si-RNA has reversed the decrease in cell viability and NF-κB activity after co-culture with bee venom treated NK-92MI cells. Thus this new approach can enhance the anti-cancer effect of bee venom at a much lower concentration.

  19. Selective, autoantibody-immune complex mediated proportional and functional changes of specific NK-cell subsets in early seropositive but not seronegative rheumatoid arthritis

    NARCIS (Netherlands)

    Chalan, P.; Brouwer, Liesbeth; Bijzet, J.; Kroesen, B.-J.; Boots, Annemieke

    2015-01-01

    Background: Despite substantial data demonstrating NK-cell impairment in rheumatoid arthritis (RA), the exact role of NK-cells in RA immunopathogenesis remains unclear. Objectives: We studied the involvement of CD56dim and CD56bright NK-cells in the early stages of RA development to elucidate their

  20. A high frequency of peripheral blood NKG2D+NK and NKT cells in euthyroid patients with new onset hashimoto's thyroiditis--a pilot study.

    Science.gov (United States)

    Guo, Hui; Xu, Bingchuan; Yang, Xige; Wang, Ye; Liu, Xiaobo; Cui, Chengri; Jiang, Yanfang

    2014-01-01

    Hashimoto's thyroiditis (HT) is a T cell-mediated autoimmune disease. However, little is known about the role of different subsets of natural killer (NK) and natural killer T (NKT) cells at the early stage of the HT process. A total of 45 euthyroid patients with new onset HT and 40 age/gender-matched healthy controls (HC) were examined for the frequency of different subsets of NK and NKT cells and their function by flow cytometry. In comparison with that in HC, significantly higher percentages of peripheral blood CD3-CD56+ NK, NKG2D+, NKp30+ NK and NKT cells, but significantly lower percentages of NKG2A+, KIR2DL3+ inhibitory NK and NKT cells were detected in the HT patients. Furthermore, the percentages of NKG2D+ NK cells were correlated positively with the concentrations of serum anti-thyroid peroxidase antibody (TPOAb) in the HT patients. Moreover, the percentages of inducible IFN-γ and CD107a+ NK cells in the HT patients were significantly higher than those in HC. Our data suggest that activated NK cells may participate in the early pathogenic process of HT.

  1. Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques

    NARCIS (Netherlands)

    Boer, R.J. de; Mohri, H.; Ho, D.D.; Perelson, A.S.

    2003-01-01

    We determined average cellular turnover rates by fitting mathematical models to 5-bromo-2'-deoxyuridine measurements in SIV-infected and uninfected rhesus macaques. The daily turnover rates of CD4(+) T cells, CD4(-) T cells, CD20(+) B cells, and CD16(+) NK cells in normal uninfected rhesus macaques

  2. Expression of NK cell and monocyte receptors in critically ill patients - potential biomarkers of sepsis

    DEFF Research Database (Denmark)

    Kjaergaard, A G; Nielsen, Jeppe Sylvest; Tønnesen, Else

    2015-01-01

    UNLABELLED: Sepsis is characterized by activation of both the innate and adaptive immune systems as a response to infection. During sepsis, the expression of surface receptors expressed on immune competent cells, such as NKG2D and NKp30 on NK cells and TLR4 and CD14 on monocytes, is partly...... regulated by pro- and anti-inflammatory mediators. In this observational study, we aimed to explore whether the expression of these receptors could be used as diagnostic and/or prognostic biomarkers in sepsis. Patients with severe sepsis or septic shock (n = 21) were compared with critically ill non...... were higher in the septic patients compared with the non-septic patients (P sepsis...

  3. Antibody-dependent NK cell activation is associated with late kidney allograft dysfunction and the complement-independent alloreactive potential of donor-specific antibodies

    Directory of Open Access Journals (Sweden)

    Tristan Legris

    2016-08-01

    Full Text Available Although kidney transplantation remains the best treatment for end-stage renal failure, it is limited by chronic humoral aggression of the graft vasculature by donor-specific antibodies (DSAs. The complement-independent mechanisms that lead to the antibody-mediated rejection (ABMR of kidney allografts remain poorly understood. Increasing lines of evidence have revealed the relevance of natural killer (NK cells as innate immune effectors of antibody-dependent cellular cytotoxicity, but few studies have investigated their alloreactive potential in the context of solid organ transplantation. Our study aimed to investigate the potential contribution of the antibody-dependent alloreactive function of NK cells to kidney graft dysfunction. We first conducted an observational study to investigate whether the cytotoxic function of NK cells is associated with chronic allograft dysfunction. The NK-Cellular Humoral Activation Test (NK-CHAT was designed to evaluate the recipient and antibody-dependent reactivity of NK cells against allogeneic target cells. The release of CD107a/Lamp1+ cytotoxic granules, resulting from the recognition of rituximab-coated B cells by NK cells, was analyzed in 148 kidney transplant recipients (KTRs, mean graft duration: 6.2 years. Enhanced ADCC responsiveness was associated with reduced graft function and identified as an independent risk factor predicting a decline in the estimated glomerular filtration rate (eGFR over a 1-year period (hazard ratio: 2.83. In a second approach, we used the NK-CHAT to reveal the cytotoxic potential of circulating alloantibodies in vitro. The level of CD16 engagement resulting from the in vitro recognition of serum-coated allogeneic B cells or splenic cells was further identified as a specific marker of DSA-induced ADCC. The NK-CHAT scoring of sera obtained from 40 patients at the time of transplant biopsy was associated with ABMR diagnosis. Our findings indicate that despite the administration

  4. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation.

    Directory of Open Access Journals (Sweden)

    Marion eDuriez

    2014-07-01

    Full Text Available Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis, where maternal and fetal cells are in close contact. Toll-like receptors (TLRs may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs and NK cells (dNKs, the major decidual immune cell populations.We report for the first time that both human dMs and dNK cells express mRNAs encoding TLRs 1-9, albeit with a higher expression level in dMs. TLR2, TLR3 and TLR4 protein expression checked by flow cytometry was positive for both dMs and dNK cells. In vitro treatment of primary dMs and dNK cells with specific TLR2, TLR3, TLR4, TLR7/8 and TLR9 agonists enhanced their secretion of pro- and anti-inflammatory cytokines, as well as cytokines and chemokines involved in immune cell crosstalk. Only dNK cells released IFN-γ, whereas only dMs released IL-1β, IL-10 and IL-12. TLR9 activation of dMs resulted in a distinct pattern of cytokine expression compared to the other TLRs. The cytokine profiles expressed by dMs and dNK cells upon TLR activation are compatible with maintenance of the fetotolerant immune environment during initiation of immune responses to pathogens at the maternofetal interface.

  5. Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade.

    Directory of Open Access Journals (Sweden)

    Erdenebileg Uyangaa

    Full Text Available Type I interferon (IFN-I-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV. However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I-dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I-dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident-to-hematopoietic-to-resident cells that drives cytokine-to-chemokine-to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.

  6. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad

    Science.gov (United States)

    Iwabuchi, Chikako; Iwabuchi, Kazuya; Nakagawa, Ken-ichi; Takayanagi, Toshiaki; Nishihori, Hiroki; Tone, Saori; Ogasawara, Kazumasa; Good, Robert A.; Onoé, Kazunori

    1998-01-01

    Generation and negative selection of NK1.1+α/β T cell receptor (TCR)+ thymocytes were analyzed using TCR-transgenic (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice and Rag-1−/−/DO10 mice, which had been established by breeding and backcrossing between Rag-1−/− and DO10 mice. Almost all T cells from these mice were shown to bear Vα13/Vβ8.2 that is specific for chicken ovalbumin (cOVA) and restricted to I-Ad. A normal proportion of the NK1.1+ Vα13/Vβ8.2+ thymocytes was generated in these mice. However, the actual cell number of both NK1.1+ and NK1.1− thymocytes in I-Ad/d mice (positive selecting background) was larger than that in I-Ab/d mice (negative selecting background). Markedly low but significant proportions of NK1.1+ Vα13/Vβ8.2+ cells were detected in the spleens from I-Ad/d and I-Ab/d mice. It was shown that the splenic NK1.1+ T cells of the I-Ab/d mice were anergized against stimulation through TCR. When (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice were given cOVA, extensive or intermediate elimination of NK1.1+α/βTCR+ thymocytes was induced in I-Ad/d or I-Ab/d mice, respectively. However, the clonal elimination was not as complete as that seen in the major NK1.1− thymocyte population. The present findings indicate that normal generation of NK1.1+α/βTCR+ thymocytes occurs in the absence of Vα14-Jα281 and that substantial negative selection operates on the NK1.1+α/βTCR+ cells. PMID:9653164

  7. HMGB1-dependent triggering of HIV-1 replication and persistence in dendritic cells as a consequence of NK-DC cross-talk.

    Directory of Open Access Journals (Sweden)

    Héla Saïdi

    Full Text Available HIV-1 has evolved ways to exploit DCs, thereby facilitating viral dissemination and allowing evasion of antiviral immunity. Recently, the fate of DCs has been found to be extremely dependent on the interaction with autologous NK cells, but the mechanisms by which NK-DC interaction controls viral infections remain unclear. Here, we investigate the impact of NK-DC cross-talk on maturation and functions of HIV-infected immature DCs.Immature DCs were derived from primary monocytes, cultured in the presence of IL-4 and GM-CSF. In some experiments, DCs were infected with R5-HIV-1(BaL or X4-HIV-1(NDK, and viral replication, proviral HIV-DNA and the frequency of infected DCs were measured. Autologous NK cells were sorted and either kept unstimulated in the presence of suboptimal concentration of IL-2, or activated by a combination of PHA and IL-2. The impact of 24 h NK-DC cross-talk on the fate of HIV-1-infected DCs was analyzed. We report that activated NK cells were required for the induction of maturation of DCs, whether uninfected or HIV-1-infected, and this process involved HMGB1. However, the cross-talk between HIV-1-infected DCs and activated NK cells was functionally defective, as demonstrated by the strong impairment of DCs to induce Th1 polarization of naïve CD4 T cells. This was associated with the defective production of IL-12 and IL-18 by infected DCs. Moreover, the crosstalk between activated NK cells and HIV-infected DCs resulted in a dramatic increase in viral replication and proviral DNA expression in DCs. HMGB1, produced both by NK cells and DCs, was found to play a pivotal role in this process, and inhibition of HMGB1 activity by glycyrrhizin, known to bind specifically to HMGB1, or blocking anti-HMGB1 antibodies, abrogated NK-dependent HIV-1 replication in DCs.These observations provide evidence for the crucial role of NK-DC cross-talk in promoting viral dissemination, and challenge the question of the in vivo involvement of HMGB1

  8. Changes in the Ratio of Tc1/Tc2 and Th1/Th2 Cells but Not in Subtypes of NK-Cells in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Yayi Hou

    2007-06-01

    Full Text Available It has been suggested that natural killer (NK cell activity and Th1 immunitymay be involved in the pathogenesis of preeclampsia. This study aimed to investigate theimmunophenotypes of NK cells and type 1/type 2 immunity in both decidua and maternalperipheral blood between normal (n=11 and preeclamptic pregnant women (n=20 by flowcytometry. The results showed that no significant difference was observed between patientsand controls by detecting CD56+ CD69+ and CD56+ CD94+ NK cells in both peripheralblood and decidua. Moreover, in preeclamptic patients, decreased percentages of Tc2 andTh2 cells and the increased ratios of Tc1/Tc2 were determined in both decidua andmaternal peripheral blood. In addition, the ratio of Th1/Th2 in peripheral blood alsoincreased. There was no significant difference of immunophenotypes of uNK cells betweenpreeclampsia and normal pregnancy. Local decidua and systematic immunity did notcorrelate with each other. These results suggest that the type 1/type 2 immunity shifted totype 1 immunity including Th1 and Tc1 cells may contribute to the patho-genesis ofpreeclampsia.

  9. Analysis on the change of T lymphocyte subsets and NK cells in patients with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Yao Yanhua; Chen Zhiwei; Deng Yingsu; Gu Guohao; Gao Chun; Yu Yunxia

    2006-01-01

    Objective: To investigate the relationship between the peripheral blood lymphocyte subsets, disease activity and renal impairment in patients with systemic lupus erythematosus (SLE). Methods: T lymphocyte subsets and NK cells from the peripheral blood of 78 patients who suffered SLE were measured, and then the relationship between disease activity, renal symptoms and the states of cellular immunology were analysed. Results: CD 8 + and CD 3 + cells were significantly decreased in the peripheral blood from those patients with active stage of SLE compared to remission phase, while the CD 4 + cells and CD 4 + /CD 8 + ratio did not. And NK cells, but not CD 3 + , CD 8 + cells or CD 4 + /CD 8 + and CD 8 + cells may correlate the the disease activity of SLE patients, but CD 4 + and ratio CD 4 + CD 8 + can not reflect disease activity. While the reduction of NK cells may have relationship with renal suffering. (authors)

  10. Mouse NK cell-mediated rejection of bone marrow allografts exhibits patterns consistent with Ly49 subset licensing.

    Science.gov (United States)

    Sun, Kai; Alvarez, Maite; Ames, Erik; Barao, Isabel; Chen, Mingyi; Longo, Dan L; Redelman, Doug; Murphy, William J

    2012-02-09

    Natural killer (NK) cells can mediate the rejection of bone marrow allografts and exist as subsets based on expression of inhibitory/activating receptors that can bind MHC. In vitro data have shown that NK subsets bearing Ly49 receptors for self-MHC class I have intrinsically higher effector function, supporting the hypothesis that NK cells undergo a host MHC-dependent functional education. These subsets also play a role in bone marrow cell (BMC) allograft rejection. Thus far, little in vivo evidence for this preferential licensing across mouse strains with different MHC haplotypes has been shown. We assessed the intrinsic response potential of the different Ly49(+) subsets in BMC rejection by using β2-microglobulin deficient (β2m(-/-)) mice as donors. Using congenic and allogeneic mice as recipients and depleting the different Ly49 subsets, we found that NK subsets bearing Ly49s, which bind "self-MHC" were found to be the dominant subset responsible for β2m(-/-) BMC rejection. This provides in vivo evidence for host MHC class I-dependent functional education. Interestingly, all H2(d) strain mice regardless of background were able to resist significantly greater amounts of β2m(-/-), but not wild-type BMC than H2(b) mice, providing evidence that the rheostat hypothesis regarding Ly49 affinities for MHC and NK-cell function impacts BMC rejection capability.

  11. Synergy between Common γ Chain Family Cytokines and IL-18 Potentiates Innate and Adaptive Pathways of NK Cell Activation.

    Science.gov (United States)

    Nielsen, Carolyn M; Wolf, Asia-Sophia; Goodier, Martin R; Riley, Eleanor M

    2016-01-01

    Studies to develop cell-based therapies for cancer and other diseases have consistently shown that purified human natural killer (NK) cells secrete cytokines and kill target cells after in vitro culture with high concentrations of cytokines. However, these assays poorly reflect the conditions that are likely to prevail in vivo in the early stages of an infection and have been carried out in a wide variety of experimental systems, which has led to contradictions within the literature. We have conducted a detailed kinetic and dose-response analysis of human NK cell responses to low concentrations of IL-12, IL-15, IL-18, IL-21, and IFN-α, alone and in combination, and their potential to synergize with IL-2. We find that very low concentrations of both innate and adaptive common γ chain cytokines synergize with equally low concentrations of IL-18 to drive rapid and potent NK cell CD25 and IFN-γ expression; IL-18 and IL-2 reciprocally sustain CD25 and IL-18Rα expression in a positive feedback loop; and IL-18 synergizes with FcγRIII (CD16) signaling to augment antibody-dependent cellular cytotoxicity. These data indicate that NK cells can be rapidly activated by very low doses of innate cytokines and that the common γ chain cytokines have overlapping but distinct functions in combination with IL-18. Importantly, synergy between multiple signaling pathways leading to rapid NK cell activation at very low cytokine concentrations has been overlooked in prior studies focusing on single cytokines or simple combinations. Moreover, although the precise common γ chain cytokines available during primary and secondary infections may differ, their synergy with both IL-18 and antigen-antibody immune complexes underscores their contribution to NK cell activation during innate and adaptive responses. IL-18 signaling potentiates NK cell effector function during innate and adaptive immune responses by synergy with IL-2, IL-15, and IL-21 and immune complexes.

  12. Ganoderma lucidum stimulates NK cell cytotoxicity by inducing NKG2D/NCR activation and secretion of perforin and granulysin.

    Science.gov (United States)

    Chang, Chih-Jung; Chen, Yi-Yuan M; Lu, Chia-Chen; Lin, Chuan-Sheng; Martel, Jan; Tsai, Sheng-Hui; Ko, Yun-Fei; Huang, Tsung-Teng; Ojcius, David M; Young, John D; Lai, Hsin-Chih

    2014-04-01

    Ganoderma lucidum (G. lucidum) is a medicinal mushroom long used in Asia as a folk remedy to promote health and longevity. Recent studies indicate that G. lucidum activates NK cells, but the molecular mechanism underlying this effect has not been studied so far. To address this question, we prepared a water extract of G. lucidum and examined its effect on NK cells. We observed that G. lucidum treatment increases NK cell cytotoxicity by stimulating secretion of perforin and granulysin. The mechanism of activation involves an increased expression of NKG2D and natural cytotoxicity receptors (NCRs), as well as increased phosphorylation of intracellular MAPKs. Our results indicate that G. lucidum induces NK cell cytotoxicity against various cancer cell lines by activating NKG2D/NCR receptors and MAPK signaling pathways, which together culminate in exocytosis of perforin and granulysin. These observations provide a cellular and molecular mechanism to account for the reported anticancer effects of G. lucidum extracts in humans.

  13. Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy

    Directory of Open Access Journals (Sweden)

    Caminade Anne-Marie

    2009-09-01

    Full Text Available Abstract Background Adoptive cell therapy with allogenic NK cells constitutes a promising approach for the treatment of certain malignancies. Such strategies are currently limited by the requirement of an efficient protocol for NK cell expansion. We have developed a method using synthetic nanosized phosphonate-capped dendrimers allowing such expansion. We are showing here that this is due to a specific inhibitory activity towards CD4+ T cell which could lead to further medical applications of this dendrimer. Methods Mononuclear cells from human peripheral blood were used to investigate the immunomodulatory effects of nanosized phosphonate-capped dendrimers on interleukin-2 driven CD4+T cell expansion. Proliferation status was investigated using flow cytometry analysis of CFSE dilution and PI incorporation experiments. Magnetic bead cell sorting was used to address activity towards individual or mixed cell sub-populations. We performed equilibrium binding assay to assess the interaction of fluorescent dendrimers with pure CD4+ T cells. Results Phosphonate-capped dendrimers are inhibiting the activation, and therefore the proliferation; of CD4+ T cells in IL-2 stimulated PBMCs, without affecting their viability. This allows a rapid enrichment of NK cells and further expansion. We found that dendrimer acts directly on T cells, as their regulatory property is maintained when stimulating purified CD4+ T cells with anti-CD3/CD28 microbeads. Performing equilibrium binding assays using a fluorescent analogue, we show that the phosphonate capped-dendrimers are specifically interacting with purified CD4+ T cells. Ultimately, we found that our protocol prevents the IL-2 related expansion of regulatory T cells that would be deleterious for the activity of infused NK cells. Conclusion High yield expansion of NK cells from human PBMCs by phosphonate-capped dendrimers and IL-2 occurs through the specific inhibition of the CD4+ lymphocyte compartment. Given the

  14. The NK-1 Receptor Antagonist L-732,138 Induces Apoptosis and Counteracts Substance P-Related Mitogenesis in Human Melanoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Miguel Muñoz

    2010-04-01

    Full Text Available It has been recently demonstrated that substance P (SP and neurokinin-1 (NK-1 receptor antagonists induce cell proliferation and cell inhibition in human melanoma cells, respectively. However, the antitumor action of the NK-1 receptor antagonist L-732,138 on such cells is unknown. The aim of this study was to demonstrate an antitumor action of L-732,138 against three human melanoma cell lines (COLO 858, MEL HO, COLO 679. We found that L-732,138 elicits cell growth inhibition in a concentration dependent manner in the melanoma cells studied. Moreover, L-732,138 blocks SP mitogen stimulation. The specific antitumor action of L-732,138 occurred through the NK-1 receptor and melanoma cell death was by apoptosis. These findings indicate that the NK-1 receptor antagonist L-732,138 could be a new antitumor agent in the treatment of human melanoma.

  15. The NK-1 Receptor Antagonist L-732,138 Induces Apoptosis and Counteracts Substance P-Related Mitogenesis in Human Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Miguel, E-mail: mmunoz@cica.es; Rosso, Marisa; González-Ortega, Ana [Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla (Spain); Coveñas, Rafael [Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Laboratory 14), Salamanca (Spain)

    2010-04-20

    It has been recently demonstrated that substance P (SP) and neurokinin-1 (NK-1) receptor antagonists induce cell proliferation and cell inhibition in human melanoma cells, respectively. However, the antitumor action of the NK-1 receptor antagonist L-732,138 on such cells is unknown. The aim of this study was to demonstrate an antitumor action of L-732,138 against three human melanoma cell lines (COLO 858, MEL HO, COLO 679). We found that L-732,138 elicits cell growth inhibition in a concentration dependent manner in the melanoma cells studied. Moreover, L-732,138 blocks SP mitogen stimulation. The specific antitumor action of L-732,138 occurred through the NK-1 receptor and melanoma cell death was by apoptosis. These findings indicate that the NK-1 receptor antagonist L-732,138 could be a new antitumor agent in the treatment of human melanoma.

  16. The substance P/NK-1 receptor system

    Indian Academy of Sciences (India)

    2015-04-27

    Apr 27, 2015 ... NK-1 receptor may be a promising target in the treatment of cancer; NK-1 ... the contribution of chemotherapy for adult malignancies .... nisms that regulate cellular excitability and function. ..... positive expression of Ki-67 in dysplastic epithelium ..... emotional behaviour (behaviour traits, such as depression),.

  17. Activation of p44/42 MAPK plays a role in the TBT-induced loss of human natural killer (NK) cell function.

    Science.gov (United States)

    Dudimah, Fred D; Griffey, Denisha; Wang, Xiaofei; Whalen, Margaret M

    2010-10-01

    Natural killer (NK) cells destroy (lyse) tumor cells, virally infected cells, and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen-activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen Toxicology 209:263-277, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function ((51)Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1-h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1-h exposure to 5 nM PMA caused a sixfold increase in phospho-p44/42 levels. Previous studies showed a fivefold increase in phospho-p44/42 in response to a 1-h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function.

  18. Activation of p44/42 MAPK Plays a Role in the TBT-induced Loss of Human Natural Killer (NK) Cell Function

    Science.gov (United States)

    Dudimah, Fred D.; Griffey, Denisha; Wang, Xiaofei; Whalen, Margaret M.

    2009-01-01

    Natural Killer (NK) cells destroy (lyse) tumor cells, virally infected cells and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as Phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function (51Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1 h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1 h exposure to 5 nM PMA caused a 6 fold increase in phospho-p44/42 levels. Previous studies showed a 5 fold increase in phospho-p44/42 in response to a 1 h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function. PMID:20213532

  19. CD8(+)NKT-like cells regulate the immune response by killing antigen-bearing DCs.

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-09-15

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8(+)NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8(+)NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8(+)NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8(+)NKT-like cell development is normal in CD1d(-/-) mice, which suggests that CD8(+)NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8(+)NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8(+)NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8(+)NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens.

  20. CD8+NKT-like cells regulate the immune response by killing antigen-bearing DCs

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-01-01

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8+NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8+NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8+NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8+NKT-like cell development is normal in CD1d−/− mice, which suggests that CD8+NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8+NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8+NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8+NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens. PMID:26369936

  1. Developmental changes in intraepithelial T lymphocytes and NK cells in the small intestine of neonatal rats.

    Science.gov (United States)

    Pérez-Cano, Francisco J; Castellote, Cristina; González-Castro, Ana M; Pelegrí, Carme; Castell, Margarida; Franch, Angels

    2005-11-01

    The main objective of this study was to characterize developmental changes in small intestinal intraepithelial lymphocyte (IEL) subpopulations during the suckling period, thus contributing to the understanding of the development of diffuse gut-associated lymphoid tissue (GALT) and to the identification of early mechanisms that protect the neonate from the first contact with diet and gut microbial antigens. The study was performed by double labeling and flow cytometry in IEL isolated from the proximal and distal small intestine of 1- to 21-d-old Lewis rats. During the suckling period, intraepithelial natural killer (NK) cells changed from a typical systemic phenotype, CD8+, to a specific intestinal phenotype, CD8-. Analysis of CD8+ IEL revealed a progressive increase in the relative number of CD8+ IEL co-expressing TCRalphabeta, cells associated with acquired immunity, whereas the percentage of CD8+ cells expressing the NK receptor, i.e. cells committed to innate immunity, decreased. At weaning, IEL maturity was still not achieved, as revealed by a phenotypic pattern that differed from that of adult rats. Thus, late after weaning, the regulatory CD8+CD4+ T IEL population appeared and the NK population declined. In summary, the intestinal intraepithelial compartment undergoes changes in its lymphocyte composition associated with the first ingestion of food. These changes are focused on a relatively high proportion of NK cells during the suckling period, and after weaning, an expansion of the regulatory CD8+CD4+ T cells.

  2. Chicken C-type lectin-like receptor B-NK, expressed on NK and T cell subsets, binds to a ligand on activated splenocytes

    Czech Academy of Sciences Publication Activity Database

    Viertiboeck, B.C.; Wortmann, A.; Schmitt, R.; Plachý, Jiří; Gobel, T.W.

    2008-01-01

    Roč. 45, č. 5 (2008), s. 1398-1404 ISSN 0161-5890 Institutional research plan: CEZ:AV0Z50520514 Keywords : Chicken NK cell receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.555, year: 2008

  3. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma.

    OpenAIRE

    駒林, 優樹; 岸部, 幹; 長門, 利純; 上田, 征吾; 高原, 幹; 原渕, 保明

    2014-01-01

    Nasal NK/T-cell lymphoma (NNKTL) is an Epstein-Barr virus (EBV)-associated malignancy and has distinct clinical and histological features. However, its genetic features are hitherto unclear. MicroRNAs (miRNAs) play a crucial role in the pathogenesis of several malignancies via regulating gene expression. In this study, we investigated whether the specific microRNAs were related to the tumor behaviors in NNKTL. MiRNA array and Quantitative RT-PCR analyses revealed that miR-15a was expressed at...

  4. Effects of butyltin exposures on MAP kinase dependent transcription regulators in human natural killer cells

    Science.gov (United States)

    Person, Rachel J.; Whalen, Margaret M.

    2010-01-01

    Natural Killer (NK) cells are a major immune defense mechanism against cancer development and viral infection. The butyltins (BTs), tributyltin (TBT) and dibutyltin (DBT) have been widely used in industrial and other applications and significantly contaminate the environment. Both TBT and DBT have been detected in human blood. These compounds inhibit the lytic and binding function of human NK cells and thus could increase the incidence of cancer and viral infections. Butyltin (BT)-induced loss of NK function is accompanied by activation of mitogen activated protein kinases (MAPKs) and decreases in expression of cell-surface and cytolytic proteins. MAPKs activate components of the transcription regulator AP-1 and activate the transcription regulator Elk-1. Based on the fact that BTs activate MAPKs and alter protein expression, the current study examined the effect of BT exposures on the levels and phosphorylation states of the components of AP-1 and the phosphorylation state of Elk-1. Exposure to 300 nM TBT for 10 min increased the phosphorylation of c-Jun in NK cells. 1 h exposures to 300 nM and 200 nM TBT increased the phosphorylation and overall level of c-Jun. During a 300 nM treatment with TBT for 1 h the binding activity of AP-1 was significantly decreased. There were no significant alterations of AP-1 components or of Elk-1 with DBT exposures. Thus, it appears that TBT-induced alterations on phosphorylation, total levels and binding activity of c-Jun might contribute to, but are not fully responsible for, TBT-induced alterations of NK protein expression. PMID:20370538

  5. Differential requirement for the CD45 splicing regulator hnRNPLL for accumulation of NKT and conventional T cells.

    Directory of Open Access Journals (Sweden)

    Mehmet Yabas

    Full Text Available Natural killer T (NKT cells represent an important regulatory T cell subset that develops in the thymus and contains immature (NK1.1(lo and mature (NK1.1(hi cell subsets. Here we show in mice that an inherited mutation in heterogeneous ribonucleoprotein L-like protein (hnRNPLL(thunder, that shortens the survival of conventional T cells, has no discernible effect on NKT cell development, homeostasis or effector function. Thus, Hnrpll deficiency effectively increases the NKT∶T cell ratio in the periphery. However, Hnrpll mutation disrupts CD45RA, RB and RC exon silencing of the Ptprc mRNA in both NKT and conventional T cells, and leads to a comparably dramatic shift to high molecular weight CD45 isoforms. In addition, Hnrpll mutation has a cell intrinsic effect on the expression of the developmentally regulated cell surface marker NK1.1 on NKT cells in the thymus and periphery but does not affect cell numbers. Therefore our results highlight both overlapping and divergent roles for hnRNPLL between conventional T cells and NKT cells. In both cell subsets it is required as a trans-acting factor to regulate alternative splicing of the Ptprc mRNA, but it is only required for survival of conventional T cells.

  6. Prednisolone Trial: Study protocol for a randomised controlled trial of prednisolone for women with idiopathic recurrent miscarriage and raised levels of uterine natural killer (uNK cells in the endometrium

    Directory of Open Access Journals (Sweden)

    Drury Jo

    2009-11-01

    Full Text Available Abstract Background Idiopathic recurrent miscarriage is defined as 3 consecutive pregnancy losses with no contributing features found on investigations. At present there are no treatments of proven efficacy for idiopathic recurrent miscarriage. Uterine natural killer (uNK cells, the most predominant leucocyte in the endometrium are adjacent to foetal trophoblast cells and thought to be involved in implantation. The exact mechanisms of how uNK cells affect implantation are not clear but are probably through the regulation of angiogenesis. Multiple studies have shown an association between high density of uterine natural killer cells and recurrent miscarriage. We have shown that prednisolone reduces the number of uNK cells in the endometrium. The question remains as to whether reducing the number of uNK cells improves pregnancy outcome. Methods We propose a randomised, double-blind, placebo controlled trial of prednisolone with a pilot phase to assess feasibility of recruitment, integrity of trial procedures, and to generate data to base future power calculations. The primary aim is to investigate whether prednisolone therapy during the first trimester of pregnancy is able to improve live birth rates in patients with idiopathic recurrent miscarriage and raised uNK cells in the endometrium. Secondary outcomes include conception rate, karyotype of miscarriage, miscarriages (first and second trimester, stillbirths, pregnancy complications, gestational age at delivery, congenital abnormality and side effects of steroids. The trial has 2 stages: i screening of non-pregnant women and ii randomisation of the pregnant cohort. All patients who fit the inclusion criteria ( Trial Registration Current Controlled Trials ISRCTN28090716

  7. Monosodium Urate Crystals Induce Upregulation of NK1.1-Dependent Killing by Macrophages and Support Tumor-Resident NK1.1+ Monocyte/Macrophage Populations in Antitumor Therapy.

    Science.gov (United States)

    Steiger, Stefanie; Kuhn, Sabine; Ronchese, Franca; Harper, Jacquie L

    2015-12-01

    Macrophages display phenotypic and functional heterogeneity dependent on the changing inflammatory microenvironment. Under some conditions, macrophages can acquire effector functions commonly associated with NK cells. In the current study, we investigated how the endogenous danger signal monosodium urate (MSU) crystals can alter macrophage functions. We report that naive, primary peritoneal macrophages rapidly upregulate the expression of the NK cell-surface marker NK1.1 in response to MSU crystals but not in response to LPS or other urate crystals. NK1.1 upregulation by macrophages was associated with mechanisms including phagocytosis of crystals, NLRP3 inflammasome activation, and autocrine proinflammatory cytokine signaling. Further analysis demonstrated that MSU crystal-activated macrophages exhibited NK cell-like cytotoxic activity against target cells in a perforin/granzyme B-dependent manner. Furthermore, analysis of tumor hemopoietic cell populations showed that effective, MSU-mediated antitumor activity required coadministration with Mycobacterium smegmatis to induce IL-1β production and significant accumulation of monocytes and macrophages (but not granulocytes or dendritic cells) expressing elevated levels of NK1.1. Our findings provide evidence that MSU crystal-activated macrophages have the potential to develop tumoricidal NK cell-like functions that may be exploited to boost antitumor activity in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  8. Increase of NK-T cells in aged depressed patients not treated with antidepressive drugs

    NARCIS (Netherlands)

    Flentge, F; van den Berg, MD; Bouhuys, AL; The, HT

    2000-01-01

    Background: A change in number and/or activity of natural killer cells has repeatedly been reported in depressive illness. Much less attention has yet been given to the subgroup of natural killer cells that are positive Sor the T-cell marker CD3 (NK-T cells). These cells possibly have important

  9. In vitro effects of PCDDs/Fs on NK-like cell activity of Eisenia andrei earthworms

    Directory of Open Access Journals (Sweden)

    Hayet Belmeskine

    2012-02-01

    Full Text Available In this study, we assessed in vitro the effects of PCDD/Fs on the NK-like cell activity in Eisenia andrei earthworms using flow cytometry for analysis. NK-like coelomocytes isolated from E. andrei and used as effectors were exposed to various concentrations of PCDDs/Fs mixture, C1 (6.25x10-3 ng 2378- TCDD/mL, C2 (12.5x10-3 ng 2378-TCDD/mL and C3 (25x10-3 ng 2378-TCDD/mL, before adding them to human tumoral cells (K562 used as targets. We evaluated the percentage of targets lysed by Nk-like cells. The results showed a significant stimulation of the NKlike activity at C3 when PCDD/Fs were not removed from effectors before contact with targets, while no effects were noted when the effectors were washed (PCDD/Fs removed or fixed. Assessment of the viability of the targets (K562, exposed alone and separately from effectors, to the three concentrations of PCDD/Fs, C1, C2 and C3, showed that all these concentrations were cytotoxic for K562. Results suggest that PCDD/Fs concentrations tested in this assay may be considered too low to induce suppressive effects on the immune function such as the NK-like activity in E. andrei earthworms.

  10. Physiology of natural killer cells. In vivo regulation of progenitors by interleukin 3

    International Nuclear Information System (INIS)

    Kalland, T.

    1987-01-01

    Adoptive transfer of bone marrow cells to syngeneic lethally irradiated C57BL/6 mice was used to study the maturation of natural killer (NK) cells from their progenitors. The NK progenitor cell was found to be asialomonoganglioside-negative, (aGM1-) Thy-1-, NK-1-, Ly-1-, Ly-2-, and L3T4-. The NK cells emerging from the bone marrow grafts were aGM1+, NK-1+, Thy-1+/-, Ly-1-, Ly-2-, and L3T4- and to have a target specter similar to that of NK cells isolated from the spleen of normal mice. The regulatory role of interleukin 2 (IL-2) and interleukin 3 (IL-3) for the maturation of NK cells was examined by exposure of the bone marrow cells to the lymphokines in vitro before bone marrow grafting or by treatment of bone marrow-grafted mice with lymphokines through s.c. implanted miniosmotic pumps. IL-3 antagonized the IL-2-induced maturation of NK cells in vitro and strongly inhibited the generation of NK cells after adoptive transfer of bone marrow cells in vivo. The suppressive effect of IL-3 was evident throughout the treatment period (8 or 16 days) but was apparently reversible because NK activity returned to control levels within 8 days after cessation of treatment. The inhibition of cytotoxic activity was accompanied by a reduced appearance of cells with the NK phenotypic markers aGM1 or NK-1, indicating that not only the cytotoxic activity of NK cells but also their actual formation was inhibited. Concomitantly, a moderate increase in cells expressing the T cell marker L3T4 and an increased proliferative response to the T cell mitogen concanavalin A was observed. A direct estimate of the effect of IL-3 on the frequency of NK cell progenitors was obtained by limiting dilution analysis of bone marrow cells at day 8 after bone marrow transplantation

  11. The anti-lung cancer activity of SEP is mediated by the activation and cytotoxicity of NK cells via TLR2/4 in vivo.

    Science.gov (United States)

    Ke, Mengyun; Wang, Hui; Zhang, Min; Tian, Yuwei; Wang, Yizhou; Li, Bing; Yu, Jie; Dou, Jie; Xi, Tao; Zhou, Changlin

    2014-05-01

    Strongylocentrotus nudus egg polysaccharide (SEP) has been reported to display antitumor activity. However, the effects of SEP and its underlying mechanism in the treatment of lung cancer remain unclear, particularly with an immunodeficient mouse model of human non-small cell lung cancer (NSCLC). In the present study, we investigated the anti-lung cancer effects of SEP and its underlying mechanism of action in both Lewis lung cancer (LLC)-bearing C57/BL6J mice and human NSCLC H460-bearing nude mice. Although SEP showed no inhibitory effects on tumor cells in vitro, it markedly stimulated the percentage of CD3-NK1.1(+) cells and natural killer (NK) cell cytotoxicity in the spleens of nude mice and C57/BL6J mice. In LLC-bearing mice, SEP not only inhibited tumor growth but also promoted NK-mediated cytotoxicity, the NK1.1(+) cell population, and IL-2 and IFN-γ secretion. SEP significantly suppressed H460 growth in nude mice, which was abrogated by the selective depletion of NK cells via the intraperitoneal injection of anti-asialo GM-1 antibodies. Furthermore, anti-TLR2/4 antibodies blocked both SEP and NK cell binding and SEP-induced perforin secretion. SEP-induced proliferation and IFN-γ secretion by NK cells in wild type mice were partially impaired in TLR2 or TLR4 knockout mice. These results suggest that SEP-promoted NK cytotoxicity, which was partially mediated via TLR2 and TLR4, was the main contributing factor to lung cancer inhibition in vivo and that SEP may be a potential immunotherapy candidate for the treatment of lung cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Uveitis and Myositis as Immune Complications in Chemorefractory NK/T-Cell Nasal-Type Lymphoma Successfully Treated with Allogeneic Stem-Cell Transplant

    Directory of Open Access Journals (Sweden)

    Maria José Gómez-Crespo

    2016-01-01

    Full Text Available NK/T-cell lymphomas are a group of clonal proliferations of NK- or, rarely, T-cell types and have peculiar clinicopathologic features. Most common site of involvement is the upper aerodigestive tract (nasal cavity, nasopharynx, paranasal sinuses, and palate. Association of autoimmune paraneoplastic disorders with NK/T-cell lymphomas is not well studied. Our patient was diagnosed with NK/T-cell lymphoma stage IV with skin involvement and treated frontline with CHOEP regimen. While he was under treatment, two immune complications presented: anterior uveitis of autoimmune origin refractory to steroids and myositis in lower limbs muscles. Autologous transplantation was rejected due to confirmed early relapse after first-line treatment, and the patient received second-line treatment according to the SMILE scheme, reaching complete response after four cycles. The patient underwent allogeneic transplantation and at the time of manuscript preparation is alive despite multiple complications. The disease should be suspected in patients with rhinitis or recurrent sinusitis, and early biopsy is recommended for all patients to avoid a delay in diagnosis. Our patient also presented symptoms of disease progression after first-line treatment, representing a paraneoplastic process, a very rare phenomenon in T-type lymphomas. This case is novel for the appearance of an inflammatory myositis, a histologically verified paraneoplastic phenomenon that responded to treatment for lymphoma.

  13. Simultaneous detection of decidual Th1/Th2 and NK1/NK2 immunophenotyping in unknown recurrent miscarriage using 8-color flow cytometry with FSC/Vt extended strategy.

    Science.gov (United States)

    Dong, Peng; Wen, Xi; Liu, Jia; Yan, Cui-Yan; Yuan, Jing; Luo, Lan-Rong; Hu, Qiao-Fei; Li, Jian

    2017-06-30

    Th1/Th2 imbalance is considered as a mechanism for recurrent miscarriage. The NK1/NK2 paradigm is hypothesised to play an important role in pregnancy. However, few results showed simultaneous changes of these subsets in vivo in decidual tissues. The present study aimed to detect the decidual mononuclear cells (dMo), and the Th1/Th2, and NK1/NK2 paradigm simultaneously using multiparametric flow cytometry (MFC) in unexplained recurrent miscarriages (URM). Mononuclear cells were isolated from the decidual tissues of URM cases and early pregnant women. The mononuclear cell percent was demonstrated by detecting the expression of CD3, CD4, CD8, CD56, and CD16 extracellular markers, interferon (IFN)-γ, and interleukin (IL)-4 intracellular markers in live cells using 8-color flow cytometry with forward scatter (FSC)/side scatter (SSC) and FSC/viability (Vt) initial gating strategies, and the ratios of Th1/Th2 and decidual NK1 (dNK1)/decidual NK2 (dNK2) cells were compared between the subject groups. Two initial gating strategies of the FSC/SSC or FSC/Vt, with central or extended gating scales, were adapted, and there was no main effect or interaction for the cell proportions, except for the type 1 and type 2 subsets in the FSC/Vt extended gating strategy. There was no significant difference of the proportions of the decidual T, dNK, NKT-like, Th, and Tc cells between the two groups. However, the Th1/Th2 and dNK1/dNK2 ratios in the URM patients were higher compared with the normal group when using the FSC/Vt extended gating strategy. The present study provides means to detect Th1/Th2 and dNK1/dNK2 simultaneously in URM patients for large sample investigations in the future. © 2017 The Author(s).

  14. Role of latent membrane protein 1 in chronic active Epstein–Barr virus infection-derived T/NK-cell proliferation

    International Nuclear Information System (INIS)

    Ito, Takuto; Kawazu, Hidetaka; Murata, Takayuki; Iwata, Seiko; Arakawa, Saki; Sato, Yoshitaka; Kuzushima, Kiyotaka; Goshima, Fumi; Kimura, Hiroshi

    2014-01-01

    Epstein–Barr virus (EBV) predominantly infects B cells and causes B-cell lymphomas, such as Burkitt lymphoma and Hodgkin lymphoma. However, it also infects other types of cells, including T and natural killer (NK) cells, and causes disorders, such as chronic active EBV infection (CAEBV) and T/NK-cell lymphoma. The CAEBV is a lymphoproliferative disease with poor prognosis, where EBV-positive T or NK cells grow rapidly, although the molecular mechanisms that cause the cell expansion still remain to be elucidated. EBV-encoded latent membrane protein 1 (LMP1) is an oncogene that can transform some cell types, such as B cells and mouse fibroblasts, and thus may stimulate cell proliferation in CAEBV. Here, we examined the effect of LMP1 on EBV-negative cells using the cells conditionally expressing LMP1, and on CAEBV-derived EBV-positive cells by inhibiting the function of LMP1 using a dominant negative form of LMP1. We demonstrated that LMP1 was responsible for the increased cell proliferation in the cell lines derived from CAEBV, while LMP1 did not give any proliferative advantage to the EBV-negative cell line

  15. Complement Receptor 3 Has Negative Impact on Tumor Surveillance through Suppression of Natural Killer Cell Function

    Directory of Open Access Journals (Sweden)

    Cheng-Fei Liu

    2017-11-01

    Full Text Available Complement receptor 3 (CR3 is expressed abundantly on natural killer (NK cells; however, whether it plays roles in NK cell-dependent tumor surveillance is largely unknown. Here, we show that CR3 is an important negative regulator of NK cell function, which has negative impact on tumor surveillance. Mice deficient in CR3 (CD11b−/− mice exhibited a more activated NK phenotype and had enhanced NK-dependent tumor killing. In a B16-luc melanoma-induced lung tumor growth and metastasis model, mice deficient in CR3 had reduced tumor growth and metastases, compared with WT mice. In addition, adaptive transfer of NK cells lacking CR3 (into NK-deficient mice mediated more efficient suppression of tumor growth and metastases, compared with the transfer of CR3 sufficient NK cells, suggesting that CR3 can impair tumor surveillance through suppression of NK cell function. In vitro analyses showed that engagement of CR3 with iC3b (classical CR3 ligand on NK cells negatively regulated NK cell activity and effector functions (i.e. direct tumor cell killing, antibody-dependent NK-mediated tumor killing. Cell signaling analyses showed that iC3b stimulation caused activation of Src homology 2 domain-containing inositol-5-phosphatase-1 (SHIP-1 and JNK, and suppression of ERK in NK cells, supporting that iC3b mediates negative regulation of NK cell function through its effects on SHIP-1, JNK, and ERK signal transduction pathways. Thus, our findings demonstrate a previously unknown role for CR3 in dysregulation of NK-dependent tumor surveillance and suggest that the iC3b/CR3 signaling is a critical negative regulator of NK cell function and may represent a new target for preserving NK cell function in cancer patients and improving NK cell-based therapy.

  16. NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation

    Directory of Open Access Journals (Sweden)

    Stephan eMeinke

    2013-01-01

    Full Text Available 2B4 (CD244 and NK-T-B-antigen (NTB-A, CD352 are activating receptors on human NK cells and belong to the family of SLAM-related receptors. Engagement of these receptors leads to phosphorylation of their cytoplasmic tails and recruitment of the adapter proteins SAP and EAT-2. X-linked lymphoproliferative syndrome (XLP is a severe immunodeficiency that results from mutations in the SAP gene. 2B4 and NTB-A-mediated cytotoxicity are abrogated in XLP NK cells. To elucidate the molecular basis for this defect we analyzed early signaling events in SAP knockdown cells. Similar to XLP NK cells, knockdown of SAP in primary human NK cells leads to a reduction of 2B4 and NTB-A-mediated cytotoxicity. We found that early signaling events such as raft recruitment and receptor phosphorylation are not affected by the absence of SAP, indicating the defect in the absence of SAP is downstream of these events. In addition, knockdown of EAT-2 does not impair 2B4 or NTB-A-mediated cytotoxicity. Surprisingly, EAT-2 recruitment to both receptors is abrogated in the absence of SAP, revealing a novel cooperativity between these adapters.

  17. Lower numbers of circulating natural killer T (NK T) cells in individuals with human T lymphotropic virus type 1 (HTLV-1) associated neurological disease

    Science.gov (United States)

    Ndhlovu, L C; Snyder-Cappione, J E; Carvalho, K I; Leal, F E; Loo, C P; bruno, F R; Jha, A R; Devita, D; Hasenkrug, A M; Barbosa, H M R; Segurado, A C; Nixon, D F; Murphy, E L; Kallas, E G

    2009-01-01

    Human T lymphotropic virus type 1 (HTLV-1) infects 10–20 million people worldwide. The majority of infected individuals are asymptomatic; however, approximately 3% develop the debilitating neurological disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is also currently no cure, vaccine or effective therapy for HTLV-1 infection, and the mechanisms for progression to HAM/TSP remain unclear. NK T cells are an immunoregulatory T cell subset whose frequencies and effector functions are associated critically with immunity against infectious diseases. We hypothesized that NK T cells are associated with HAM/TSP progression. We measured NK T cell frequencies and absolute numbers in individuals with HAM/TSP infection from two cohorts on two continents: São Paulo, Brazil and San Francisco, CA, USA, and found significantly lower levels when compared with healthy subjects and/or asymptomatic carriers. Also, the circulating NK T cell compartment in HAM/TSP subjects is comprised of significantly more CD4+ and fewer CD8+ cells than healthy controls. These findings suggest that lower numbers of circulating NK T cells and enrichment of the CD4+ NK T subset are associated with HTLV-1 disease progression. PMID:19778295

  18. Increased expressions of NKp44, NKp46 on NK/NKT-like cells are associated with impaired cytolytic function in self-limiting hepatitis E infection.

    Science.gov (United States)

    Das, Rumki; Tripathy, Anuradha

    2014-10-01

    We have characterized the NK/NKT-like cells in patients with self-limiting hepatitis E infection. The distribution of peripheral NK/NKT-like cells, expressions of activation receptors, cytotoxic potential and effector function of NK/NKT-like cells from fresh peripheral blood mononuclear cells of 86 acute patients, 101 recovered and 54 control individuals were assessed. Activated NKT-like (CD16(+) CD56(+) CD3(+)) cells were high in the patient groups. On CD56(+) CD3(-) cells, NKp44 and NKp46 expressions were high in the acute patients, whereas NKp30, NKp44, NKp46 and NKG2D were high in the recovered individuals. On CD56(+) CD3(+) cells, NKp44, NKp46 and NKG2D expressions were high in the recovered but NKp30 was low in both the patient groups. Collectively, the current study elucidates the role of NK/NKT-like cells demonstrating phenotypic alterations of activated NKT-like cells and activation receptors, lack of CD107a expression and functional impairment of peripheral NK/NKT-like cells in self-limiting hepatitis E infection.

  19. HIV-1 Control by NK Cells via Reduced Interaction between KIR2DL2 and HLA-C∗12:02/C∗14:03.

    Science.gov (United States)

    Lin, Zhansong; Kuroki, Kimiko; Kuse, Nozomi; Sun, Xiaoming; Akahoshi, Tomohiro; Qi, Ying; Chikata, Takayuki; Naruto, Takuya; Koyanagi, Madoka; Murakoshi, Hayato; Gatanaga, Hiroyuki; Oka, Shinichi; Carrington, Mary; Maenaka, Katsumi; Takiguchi, Masafumi

    2016-11-22

    Natural killer (NK) cells control viral infection in part through the interaction between killer cell immunoglobulin-like receptors (KIRs) and their human leukocyte antigen (HLA) ligands. We investigated 504 anti-retroviral (ART)-free Japanese patients chronically infected with HIV-1 and identified two KIR/HLA combinations, KIR2DL2/HLA-C ∗ 12:02 and KIR2DL2/HLA-C ∗ 14:03, that impact suppression of HIV-1 replication. KIR2DL2 + NK cells suppressed viral replication in HLA-C ∗ 14:03 + or HLA-C ∗ 12:02 + cells to a significantly greater extent than did KIR2DL2 - NK cells in vitro. Functional analysis showed that the binding between HIV-1-derived peptide and HLA-C ∗ 14:03 or HLA-C ∗ 12:02 influenced KIR2DL2 + NK cell activity through reduced expression of the peptide-HLA (pHLA) complex on the cell surface (i.e., reduced KIR2DL2 ligand expression), rather than through reduced binding affinity of KIR2DL2 to the respective pHLA complexes. Thus, KIR2DL2/HLA-C ∗ 12:02 and KIR2DL2/HLA-C ∗ 14:03 compound genotypes have protective effects on control of HIV-1 through a mechanism involving KIR2DL2-mediated NK cell recognition of virus-infected cells, providing additional understanding of NK cells in HIV-1 infection. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution

    DEFF Research Database (Denmark)

    Pedersen, Line; Idorn, Manja; Olofsson, Gitte H.

    2016-01-01

    Regular exercise reduces the risk of cancer and disease recurrence. Yet the mechanisms behind this protection remain to be elucidated. In this study, tumor-bearing mice randomized to voluntary wheel running showed over 60% reduction in tumor incidence and growth across five different tumor models....... Microarray analysis revealed training-induced upregulation of pathways associated with immune function. NK cell infiltration was significantly increased in tumors from running mice, whereas depletion of NK cells enhanced tumor growth and blunted the beneficial effects of exercise. Mechanistic analyses showed...

  1. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity.

    Science.gov (United States)

    Liu, E; Tong, Y; Dotti, G; Shaim, H; Savoldo, B; Mukherjee, M; Orange, J; Wan, X; Lu, X; Reynolds, A; Gagea, M; Banerjee, P; Cai, R; Bdaiwi, M H; Basar, R; Muftuoglu, M; Li, L; Marin, D; Wierda, W; Keating, M; Champlin, R; Shpall, E; Rezvani, K

    2018-02-01

    Chimeric antigen receptors (CARs) have been used to redirect the specificity of autologous T cells against leukemia and lymphoma with promising clinical results. Extending this approach to allogeneic T cells is problematic as they carry a significant risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are highly cytotoxic effectors, killing their targets in a non-antigen-specific manner without causing GVHD. Cord blood (CB) offers an attractive, allogeneic, off-the-self source of NK cells for immunotherapy. We transduced CB-derived NK cells with a retroviral vector incorporating the genes for CAR-CD19, IL-15 and inducible caspase-9-based suicide gene (iC9), and demonstrated efficient killing of CD19-expressing cell lines and primary leukemia cells in vitro, with marked prolongation of survival in a xenograft Raji lymphoma murine model. Interleukin-15 (IL-15) production by the transduced CB-NK cells critically improved their function. Moreover, iC9/CAR.19/IL-15 CB-NK cells were readily eliminated upon pharmacologic activation of the iC9 suicide gene. In conclusion, we have developed a novel approach to immunotherapy using engineered CB-derived NK cells, which are easy to produce, exhibit striking efficacy and incorporate safety measures to limit toxicity. This approach should greatly improve the logistics of delivering this therapy to large numbers of patients, a major limitation to current CAR-T-cell therapies.

  2. Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors?

    NARCIS (Netherlands)

    Carrillo-Bustamante, Paola; Kesmir, Can; de Boer, Rob J

    2015-01-01

    Natural killer (NK) cells express inhibiting receptors (iNKRs), which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs lose inhibiting signals and the

  3. Plasmodium falciparum-infected erythrocytes and IL-12/IL-18 induce diverse transcriptomes in human NK cells: IFN-α/β pathway versus TREM signaling.

    Directory of Open Access Journals (Sweden)

    Elisandra Grangeiro de Carvalho

    Full Text Available The protective immunity of natural killer (NK cells against malarial infections is thought to be due to early production of type II interferon (IFN and possibly direct NK cell cytotoxicity. To better understand this mechanism, a microarray analysis was conducted on NK cells from healthy donors PBMCs that were co-cultured with P. falciparum 3D7-infected erythrocytes. A very similar pattern of gene expression was observed among all donors for each treatment in three replicas. Parasites particularly modulated genes involved in IFN-α/β signaling as well as molecules involved in the activation of interferon regulatory factors, pathways known to play a role in the antimicrobial immune response. This pattern of transcription was entirely different from that shown by NK cells treated with IL-12 and IL-18, in which IFN-γ- and TREM-1-related genes were over-expressed. These results suggest that P. falciparum parasites and the cytokines IL-12 and IL-18 have diverse imprints on the transcriptome of human primary NK cells. IFN-α-related genes are the prominent molecules induced by parasites on NK cells and arise as candidate biomarkers that merit to be further investigated as potential new tools in malaria control.

  4. Ex vivo expansion of CD3depleted cord blood-MNCs in the presence of bone marrow stromal cells; an appropriate strategy to provide functional NK cells applicable for cellular therapy

    Directory of Open Access Journals (Sweden)

    Ehteramolsadat Hosseini

    2017-03-01

    Full Text Available Considering umbilical cord blood (UCB as a rich source of hematopoietic stem cells, we introduced a cost-effective approach to expand CD3depleted UCB-MNCs into functional NK cells. CD3depleted UCB-MNCs were expanded in the presence or absence of a feeder [bone marrow stem cells (BMSCs or osteoblasts], with or without cytokines and their differentiation into NK cells was determined by flow cytometry. NK cell function was quantified by LAMP-1/CD107a expression, TNF-α/IFN-γ release, and LDH release/PI staining in targets. Higher expansion of NK cells was observed after two weeks in the presence of BMSCs and cytokines (104 ± 15 compared to osteoblasts and cytokines (84 ± 29, p < 0.05. On day 14, CD3depleted UCB-MNCs in the presence of BMSCs and cytokines showed lower expression of CD3, CD19, CD14, CD15 and CD69 as well as higher expression of CD2 and CD7, which were suggestive of cell differentiation into mature NK cell lineage. Strong cytotoxicity of expanded cells was also identified with higher LDH release and PI% in targets. Significant upregulation of LAMP-1 with decreased release of IFN-γ and TNF-α from effectors were observed. We demonstrate an effective expansion of UCB-NK cells that maintained their functional capabilities applicable for cellular therapies.

  5. MHC class I Dk locus and Ly49G2+ NK cells confer H-2k resistance to murine cytomegalovirus.

    Science.gov (United States)

    Xie, Xuefang; Stadnisky, Michael D; Brown, Michael G

    2009-06-01

    Essential NK cell-mediated murine CMV (MCMV) resistance is under histocompatibility-2(k) (H-2(k)) control in MA/My mice. We generated a panel of intra-H2(k) recombinant strains from congenic C57L.M-H2(k/b) (MCMV resistant) mice for precise genetic mapping of the critical interval. Recombination breakpoint sites were precisely mapped and MCMV resistance/susceptibility traits were determined for each of the new lines to identify the MHC locus. Strains C57L.M-H2(k)(R7) (MCMV resistant) and C57L.M-H2(k)(R2) (MCMV susceptible) are especially informative; we found that allelic variation in a 0.3-megabase interval in the class I D locus confers substantial difference in MCMV control phenotypes. When NK cell subsets responding to MCMV were examined, we found that Ly49G2(+) NK cells rapidly expand and selectively acquire an enhanced capacity for cytolytic functions only in C57L.M-H2(k)(R7). We further show that depletion of Ly49G2(+) NK cells before infection abrogated MCMV resistance in C57L.M-H2(k)(R7). We conclude that the MHC class I D locus prompts expansion and activation of Ly49G2(+) NK cells that are needed in H-2(k) MCMV resistance.

  6. Dual Functions of Natural Killer Cells in Selection and Differentiation of Stem Cells; Role in Regulation of Inflammation and Regeneration of Tissues

    Directory of Open Access Journals (Sweden)

    Anahid Jewett, Yan-Gao Man, Han-Ching Tseng

    2013-01-01

    Full Text Available Accumulated evidence from our laboratory indicates that conditioned or anergized NK cells have the ability to induce resistance of healthy stem cells and transformed cancer stem cells through both secreted factors and direct cell-cell contact by inducing differentiation. Cytotoxic function of NK cells is suppressed in the tumor microenvironment by a number of distinct effectors and their secreted factors. Furthermore, decreased peripheral blood NK cell function has been documented in many cancer patients. We have previously shown that NK cells mediate significant cytotoxicity against primary oral squamous carcinoma stem cells (OSCSCs as compared to their more differentiated oral squamous carcinoma cells (OSCCs. In addition, human embryonic stem cells (hESCs, human mesenchymal stem cells (hMSCs, human dental pulp stem cells (hDPSCs and induced human pluripotent stem cells (hiPSCs were all significantly more susceptible to NK cell mediated cytotoxicity than their differentiated counterparts or parental cells from which they were derived. We have also reported that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or gene deletion of COX2 significantly augmented NK cell function. Furthermore, the induction of resistance of the stem cells to NK cell mediated cytotoxicity and their subsequent differentiation is amplified when either the stem cells or the NK cells were cultured in the presence of monocytes. Therefore, we propose that the two stages of NK cell maturation namely CD16+CD56dimCD69- NK cells are important for the lysis of stem cells or poorly differentiated cells whereas the CD16dim/-CD56dim/+CD69+NK cells are important for differentiation and eventual regeneration of the tissues and the resolution of inflammation, thus functionally serving as regulatory NK cells (NKreg. CD16 receptor on the NK cells were found to be the receptor with significant potential to induce NK cell anergy

  7. Enhanced lysis of herpes simplex virus type 1-infected mouse cell lines by NC and NK effectors

    Energy Technology Data Exchange (ETDEWEB)

    Colmenares, C.; Lopez, C.

    1986-05-01

    Spontaneously cytotoxic murine lymphocytes lysed certain cell types infected by herpes simplex virus type 1 (HSV-1) better than uninfected cells. Although HSV-1 adsorbed to the surface of all the target cells, those in which the virus replicated more efficiently were lysed to a greater extent. As targets, the authors used cell lines that, when uninfected, were spontaneously lysed by NK cells (YAC-1) or by NC cells (WEHI-164). They also used a fibroblastoid cell line (M50) and a monocytic tumor line (PU51R), which were not spontaneously killed. NK cells lysed HSV-1-infected YAC cells better than uninfected cells, and an NC-like activity selectively lysed HSV-1-infected WEHI cells. These findings were consistent with the results of experiments performed to define the role of interferon in induction of virus-augmented cytolysis. Increased lysis of YAC-HSV and PU51R-HSV was entirely due to interferon activation and was completely abolished by performing the /sup 51/Cr-release assay in the presence of anti-interferon serum. The data show that HSV-1 infection of NK/NC targets induces increased cytotoxity, but the effector cell responsible for lysis is determined by the uninfected target, or by an interaction between the virus and target cell, rather than by a viral determinant alone.

  8. Increased CD56(bright) NK cells in HIV-HCV co-infection and HCV mono-infection are associated with distinctive alterations of their phenotype.

    Science.gov (United States)

    Bhardwaj, Suvercha; Ahmad, Fareed; Wedemeyer, Heiner; Cornberg, Marcus; Schulze Zur Wiesch, Julian; van Lunzen, Jan; Sarin, Shiv K; Schmidt, Reinhold E; Meyer-Olson, Dirk

    2016-04-18

    HIV-HCV co-infection is associated with accelerated progression to hepatic fibrosis, cirrhosis and hepatocellular carcinoma than HCV mono-infection. The contribution of innate immunity during HIV-HCV co-infection has been a relatively under-investigated area. Natural killer (NK) cells are pivotal sentinels of innate immunity against viruses and tumour cells. In this study we evaluated the effect of HIV-HCV co-infection on peripheral blood NK cell subsets with emphasis on the phenotype of CD56(bright) NK cells. Sixty patients were included in the study; HIV mono-infected (n = 12), HCV mono-infected (n = 15), HCV-HIV co-infected (n = 21) and healthy controls (n = 16). PBMCs were isolated and immunophenotyping of NK cells was performed by flowcytometry. We observed an expansion of CD56(bright) NK cell subset in HIV-HCV co-infection as compared to healthy controls and HIV mono-infected group. All the infected groups had an upregulated expression of the activating receptor NKG2D on CD56(bright) NK cells in comparison to healthy controls while not differing amongst themselves. The expression of NKp46 in HIV-HCV co-infected group was significantly upregulated as compared to both HIV as well as HCV mono-infections while NKp30 expression in the HIV-HCV co-infected group significantly differed as compared to HIV mono-infection. The CD56(bright) NK cell subset was activated in HIV-HCV co-infection as assessed by the expression of CD69 as compared to healthy controls but was significantly downregulated in comparison to HIV mono-infection. CD95 expression on CD56(bright) NK cells followed the same pattern where there was an increased expression of CD95 in HIV mono-infection and HIV-HCV co-infection as compared to healthy controls. In contrast to CD69 expression, CD95 expression in HCV mono-infection was decreased when compared to HIV mono-infection and HIV-HCV co-infection. Finally, expression of CXCR3 on CD56(bright) NK cells was increased in HIV-HCV co-infection in comparison

  9. NK cells of the oldest seniors represent constant and resistant to stimulation high expression of cellular protective proteins SIRT1 and HSP70.

    Science.gov (United States)

    Kaszubowska, Lucyna; Foerster, Jerzy; Kaczor, Jan Jacek; Schetz, Daria; Ślebioda, Tomasz Jerzy; Kmieć, Zbigniew

    2018-01-01

    Natural killer cells (NK cells) are cytotoxic lymphocytes of innate immunity that reveal some immunoregulatory properties, however, their role in the process of ageing is not completely understood. The study aimed to analyze the expression of proteins involved in cellular stress response: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in human NK cells with reference to the process of ageing. Non-stimulated and stimulated with IL-2, LPS or PMA with ionomycin cells originated from peripheral blood samples of: seniors aged over 85 ('the oldest'; n  = 25; 88.5 ± 0.5 years, mean ± SEM), seniors aged under 85 ('the old'; n  = 30; 75.6 ± 0.9 years) and the young ( n  = 31; 20.9 ± 0.3 years). The relationships between the levels of expression of cellular protective proteins in the studied population were also analyzed. The concentrations of carbonyl groups and 8-isoprostanes, markers of oxidative stress, in both stimulated and non-stimulated cultured NK cells were measured to assess the level of the oxidative stress in the cells. The oldest seniors varied from the other age groups by significantly higher expression of SIRT1 and HSP70 both in non-stimulated and stimulated NK cells. These cells also appeared to be resistant to further stimulations with IL-2, LPS or PMA with ionomycin. Highly positive correlations between SIRT1 and intracellular HSP70 in both stimulated and non-stimulated NK cells were observed. SOD2 presented low expression in non-stimulated cells, whereas its sensitivity to stimulation increased with age of donors. High positive correlations between SOD2 and surface HSP70 were observed. We found that the markers of oxidative stress in NK cells did not change with ageing. The oldest seniors revealed well developed adaptive stress response in NK cells with increased, constant levels of SIRT1 and intracellular HSP70. They presented also very high positive correlations between

  10. Is There an Opportunity for Current Chemotherapeutics to Up-regulate MIC-A/B Ligands?

    Directory of Open Access Journals (Sweden)

    Kendel Quirk

    2017-10-01

    Full Text Available Natural killer (NK cells are critical effectors of the immune system. NK cells recognize unhealthy cells by specific ligands [e.g., MHC- class I chain related protein A or B (MIC-A/B] for further elimination by cytotoxicity. Paradoxically, cancer cells down-regulate MIC-A/B and evade NK cell’s anticancer activity. Recent data indicate that cellular-stress induces MIC-A/B, leading to enhanced sensitivity of cancer cells to NK cell-mediated cytotoxicity. In this Perspective article, we hypothesize that current chemotherapeutics at sub-lethal, non-toxic dose may promote cellular-stress and up-regulate the expression of MIC-A/B ligands to augment cancer’s sensitivity to NK cell-mediated cytotoxicity. Preliminary data from two human breast cancer cell lines, MDA-MB-231 and T47D treated with clinically relevant therapeutics such as doxorubicin, paclitaxel and methotrexate support the hypothesis. The goal of this Perspective is to underscore the prospects of current chemotherapeutics in NK cell immunotherapy, and discuss potential challenges and opportunities to improve cancer therapy.

  11. Developmental and Functional Control of Natural Killer Cells by Cytokines

    Directory of Open Access Journals (Sweden)

    Yang Wu

    2017-08-01

    Full Text Available Natural killer (NK cells are effective in combating infections and tumors and as such are tempting for adoptive transfer therapy. However, they are not homogeneous but can be divided into three main subsets, including cytotoxic, tolerant, and regulatory NK cells, with disparate phenotypes and functions in diverse tissues. The development and functions of such NK cells are controlled by various cytokines, such as fms-like tyrosine kinase 3 ligand (FL, kit ligand (KL, interleukin (IL-3, IL-10, IL-12, IL-18, transforming growth factor-β, and common-γ chain family cytokines, which operate at different stages by regulating distinct signaling pathways. Nevertheless, the specific roles of each cytokine that regulates NK cell development or that shapes different NK cell functions remain unclear. In this review, we attempt to describe the characteristics of each cytokine and the existing protocols to expand NK cells using different combinations of cytokines and feeder cells. A comprehensive understanding of the role of cytokines in NK cell development and function will aid the generation of better efficacy for adoptive NK cell treatment.

  12. Differential expression of NK receptors CD94 and NKG2A by T cells in rheumatoid arthritis patients in remission compared to active disease.

    Directory of Open Access Journals (Sweden)

    Ceara E Walsh

    Full Text Available TNF inhibitors (TNFi have revolutionised the treatment of rheumatoid arthritis (RA. Natural killer (NK cells and Natural Killer Cell Receptor+ T (NKT cells comprise important effector lymphocytes whose activity is tightly regulated through surface NK receptors (NKRs. Dysregulation of NKRs in patients with autoimmune diseases has been shown, however little is known regarding NKRs expression in patients with TNFi-induced remission and in those who maintain remission vs disease flare following TNFi withdrawal.Patients with RA were recruited for this study, (i RA patients in clinical remission following a minimum of one year of TNFi therapy (n = -15; (2 Active RA patients, not currently or ever receiving TNFi (n = 18; and healthy control volunteers (n = 15. Patients in remission were divided into two groups: those who were maintained on TNFi and those who withdrew from TNFi and maintained on DMARDS. All patients underwent full clinical assessment. Peripheral blood mononuclear cells were isolated and NKR (CD94, NKG2A, CD161, CD69, CD57, CD158a, CD158b expression on T-(CD3+CD56-, NK-(CD3-CD56+ and NKT-(CD3+CD56+ cells was determined by flow cytometry.Following TNFi withdrawal, percentages and numbers of circulating T cells, NK cells or NKT cell populations were unchanged in patients in remission versus active RA or HCs. Expression of the NKRs CD161, CD57, CD94 and NKG2A was significantly increased on CD3+CD56-T cells from patients in remission compared to active RA (p<0.05. CD3+CD56-T cell expression of CD94 and NKG2A was significantly increased in patients who remained in remission compared with patients whose disease flared (p<0.05, with no differences observed for CD161 and CD57. CD3+CD56- cell expression of NKG2A was inversely related to DAS28 (r = -0.612, p<0.005.High CD94/NKG2A expression by T cells was demonstrated in remission patients following TNFi therapy compared to active RA, while low CD94/NKG2A were associated with

  13. Silencing of the transcription factor STAT3 sensitizes lung cancer cells to DNA damaging drugs, but not to TNFα- and NK cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kulesza, Dorota W. [Laboratory of Transcription Regulation, Department of Cell Biology, The Nencki Institute of Experimental Biology, Warsaw (Poland); Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw (Poland); Carré, Thibault; Chouaib, Salem [Unité INSERM U753, Institut de Cancérologie Gustave Roussy, Villejuif Cedex (France); Kaminska, Bozena, E-mail: bozenakk@nencki.gov.pl [Laboratory of Transcription Regulation, Department of Cell Biology, The Nencki Institute of Experimental Biology, Warsaw (Poland)

    2013-02-15

    Transcription factor STAT3 (Signal Transducers and Activators of Transcription 3) is persistently active in human tumors and may contribute to tumor progression. Inhibition of STAT3 expression/activity could be a good strategy to modulate tumor cell survival and responses to cancer chemotherapeutics or immune cytotoxicity. We silenced STAT3 expression in human A549 lung cancer cells to elucidate its role in cell survival and resistance to chemotherapeutics, TNFα and natural killer (NK)-mediated cytotoxicity. We demonstrate that STAT3 is not essential for basal survival and proliferation of A549 cancer cells. Stable silencing of STAT3 expression sensitized A549 cells to DNA damaging chemotherapeutics doxorubicin and cisplatin in a p53-independent manner. Sensitization to DNA damage-inducing chemotherapeutics could be due to down-regulation of the Bcl-xL expression in STAT3 depleted cells. In contrast, knockdown of STAT3 in cancer cells did not modulate responses to TNFα and NK-mediated cytotoxicity. We found that STAT3 depletion increased the NFκB activity likely providing the compensatory, pro-survival signal. The treatment with TNFα, but not doxorubicin, enhanced this effect. We conclude that STAT3 is not crucial for the control of basal cell proliferation and survival of lung carcinoma cells but modulates susceptibility to DNA damaging chemotherapeutics by regulation of intrinsic pro-survival pathways. - Highlights: ► STAT3 silencing is negligent for basal lung cancer cell viability and proliferation. ► STAT3 depletion sensitizes lung cancer cells to DNA damaging chemotherapeutics. ► STAT3 depletion has no effect on susceptibility to extrinsic apoptosis inducers. ► Increased pro-survival NFκB activity may compensate for STAT3 depletion.

  14. The Secretion of IL-22 from Mucosal NKp44+ NK Cells Is Associated with Microbial Translocation and Virus Infection in SIV/SHIV-Infected Chinese Macaques

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Microbial translocation (MT causes systemic immune activation in chronic human immunodeficiency virus (HIV infection. The role of a novel subtype of innate lymphoid cells, the NKp44+ NK cells, in HIV/simian immunodeficiency virus- (SIV- induced MT remains unknown. In this study, 12 simian-human immunodeficiency virus- (SHIV- infected macaques were chosen and split into two groups based on the MT level. Blood and Peripheral lymphoid tissue were sampled for flow cytometric analysis, viral load detection, and interleukin testing. Then, six naive Chinese macaques were used to determine the dynamics of cytokine secretion from mucosal NKp44+ NK cells in different phases of SIV infection. As a result, the degranulation capacity and IL-22 production of mucosal NKp44+ NK cells were associated with the MT level in the SHIV-infected macaques. And the number of mucosal NKp44+ NK cells and IL-22 secretion by these cells were lower in the chronic phase than in the early acute phase of SIV infection. The number of mucosal NKp44+ NK cells and interleukin-22 (IL-22 secretion by these cells increased before MT occurred. Therefore, we conclude that a decline in IL-22 production from mucosal NKp44+ NK cells induced by virus infection may be one of the causes of microbial translocation in HIV/SIV infection.

  15. Therapeutic effects of a novel tylophorine analog, NK-007, on collagen-induced arthritis through suppressing tumor necrosis factor α production and Th17 cell differentiation.

    Science.gov (United States)

    Wen, Ti; Li, Yangguang; Wu, Meng; Sun, Xiaolin; Bao, Xiucong; Lin, Yuquan; Hao, Jianlei; Han, Lin; Cao, Guangchao; Wang, Ziwen; Liu, Yuxiu; Wu, Zhenzhou; Hong, Zhangyong; Wang, Puyue; Zhao, Liqing; Li, Zhanguo; Wang, Qingmin; Yin, Zhinan

    2012-09-01

    To analyze the effects of a novel compound, NK-007, on the prevention and treatment of collagen-induced arthritis (CIA) and the underlying mechanisms. We determined the effect of NK-007 on lipopolysaccharide (LPS)-triggered tumor necrosis factor α (TNFα) production by murine splenocytes and a macrophage cell line (RAW 264.7) by enzyme-linked immunosorbent assay, intracellular cytokine staining, and Western blotting. The LPS-boosted CIA model was adopted, and NK-007 or vehicle was administered at different time points after immunization. Mice were monitored for clinical severity of arthritis, and joint tissues were used for histologic examination, cytokine detection, and immunohistochemical staining. Finally, stability of TNFα production and Th17 cell differentiation were studied using quantitative polymerase chain reaction and flow cytometry. NK-007 significantly suppressed LPS-induced TNFα production in vitro. Administration of NK-007 completely blocked CIA development and delayed its progression. Furthermore, treatment with NK-007 at the onset of arthritis significantly inhibited the progress of joint inflammation. Administration of NK-007 also suppressed production of TNFα, interleukin-6 (IL-6), and IL-17A in the joint and reduced percentages of IL-17+ cells among CD4+ and γ/δ T cells in draining lymph nodes. We further demonstrated that NK-007 acted on the stability of TNFα messenger RNA and reduced Th17 cell differentiation. In addition, it significantly inhibited levels of IL-6 and IL-17A in human coculture assay. For its effects on the development and progression of CIA and for its therapeutic effect on CIA, NK-007 has great potential to be a therapeutic agent for human rheumatoid arthritis. Copyright © 2012 by the American College of Rheumatology.

  16. Distribution of intrahepatic T, NK and CD3(+)CD56(+)NKT cells alters after liver transplantation: Shift from innate to adaptive immunity?

    Science.gov (United States)

    Werner, Jens M; Lang, Corinna; Scherer, Marcus N; Farkas, Stefan A; Geissler, Edward K; Schlitt, Hans J; Hornung, Matthias

    2011-07-01

    The liver is an immunological organ containing a large number of T, NK and NKT cells, but little is known about intrahepatic immunity after LTx. Here, we investigated whether the distribution of T, NK and CD3(+)CD56(+)NKT cells is altered in transplanted livers under different circumstances. Core biopsies of transplanted livers were stained with antibodies against CD3 and CD56. Several cell populations including T (CD3(+)CD56(-)), NK (CD3(-)CD56(+)) and NKT cells (CD3(+)CD56(+)) were studied by fluorescence microscopy. Cell numbers were analyzed in relation to the time interval after LTx, immunosuppressive therapy and stage of acute graft rejection (measured with the rejection activity index: RAI) compared to tumor free liver tissue from patients after liver resection due to metastatic disease as control. Recruitment of CD3(+)CD56(+)NKT cells revealed a significant decrease during high RAI scores in comparison to low and middle RAI scores (RAI 7-9: 0.03±0.01/HPF vs. RAI 4-6: 0.1±0.005/HPF). CD3(+)CD56(+)NKT cells were also lower during immunosuppressive therapy with tacrolimus (0.03±0.01/HPF) than with cyclosporine (0.1±0.003/HPF), cyclosporine/MMF (0.1±0.003/HPF) or sirolimus (0.1±0.01/HPF) treatment. Intrahepatic T cell numbers increased significantly 50days after LTx compared to control liver tissue (4.5±0.2/HPF vs. 1.9±0.1/HPF). In contrast, NK cells (0.3±0.004/HPF) were significantly fewer in all biopsies after LTx compared to the control (0.7±0.04/HPF). These data indicate significant alterations in the hepatic recruitment of T, NK and CD3(+)CD56(+)NKT cells after LTx. The increase in T cells and the decrease in NK and CD3(+)CD56(+)NKT cells suggest a shift from innate to adaptive hepatic immunity in the liver graft. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Splenocyte proliferation, NK cell activation and cytokines production by extract of Scrophularia variegata; an in vitro study on mice spleen cells

    Directory of Open Access Journals (Sweden)

    A. Azadmehr

    2016-10-01

    Full Text Available Background and objectives:Scrophularia variegata M. Beib. (Scrophulariaceae is a medicinal plant, used for various inflammatory diseases in Iranian Traditional Medicine. In the present study, we evaluated the immune modulation and antioxidant effects of the hydroalcoholic extract of S.  variegata. Methods: The splenocytes were harvested from the spleen of Balb/c mice and were cultured. The splenocyte proliferation, NK cell activity, cytokines production and antioxidant effects were evaluated by MTT assay, enzyme- linked immunosorbent assay (ELISA and DPPH assay, respectively. Results: The S. variegata extract significantly increased splenocyte proliferation. The results indicated that the extract increased NK cell cytotoxicity of Yac-1 tumor cells and at the concentration of 50-200 µg/mL significantly increased IFN-γ and IL-2 cytokines, although the level of IL-4 cytokine was significantly reduced. The antioxidant activity was observed in the extract with IC50 302.34±0.11 μg/mL.Conclusion: The increasing in the splenocyte proliferation, anti-tumor NK cell cytotoxicity and cytokine secretion were indicated as potent immunomodulatory effects. These results suggest that S. variegata could be considered in the treatment of immunopathological disorders such as allergy and cancer; however, future studies are necessary.

  18. The Genetic Deletion of 6q21 and PRDM1 and Clinical Implications in Extranodal NK/T Cell Lymphoma, Nasal Type

    Directory of Open Access Journals (Sweden)

    Li Liang

    2015-01-01

    Full Text Available 6q21 genetic deletion has been frequently detected in extranodal NK/T cell lymphoma, nasal type (EN-NK/T-NT, and PRDM1 is considered as candidate gene. However, direct detection of PRDM1 deletion has not been well documented. We investigated genetic alterations of 6q21 and PRDM1 in 43 cases of EN-NK/T-NT and cell lines by FISH. PRDM1 expression was evaluated by immunohistochemistry and Western blot. The correlation between genetic alteration and PRDM1 expression and the significance in clinic-pathologic were analyzed. Heterozygous deletion of 6q21 and/or PRDM1 was observed in 24 of 43 cases (55.81% of EN-NK/T-NT including 16 cases (37.21% for 6q21 deletion and 19 cases (44.19% for PRDM1 deletion. Similarly, heterozygous codeletion of 6q21 and PRDM1 was identified in NK92 and NKL cells. The heterozygous deletion of 6q21 and/or PRDM1 was correlated with PRDM1 expression. However, genetic deletion of 6q21 and/or PRDM1 was not correlated with clinicopathological features of EN-NK/T-NT, while PRDM1 expression showed positive effect on the outcome of patients as those as disease site, B symptom, and clinical stage. Thus, heterozygous deletion of 6q21 and/or PRDM1 was frequently detected in EN-NK/T-NT and correlated with downregulation of PRDM1. But the prognostic role of genetic deletion needs to be further evaluated in larger cohort.

  19. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells.

    Science.gov (United States)

    Ohira, Kosuke; Nakahara, Ayako; Konnai, Satoru; Okagawa, Tomohiro; Nishimori, Asami; Maekawa, Naoya; Ikebuchi, Ryoyo; Kohara, Junko; Murata, Shiro; Ohashi, Kazuhiko

    2016-03-01

    CD4(+)CD25(high)Foxp3(+) T cells suppress excess immune responses that lead to autoimmune and/or inflammatory diseases, and maintain host immune homeostasis. However, CD4(+)CD25(high)Foxp3(+) T cells reportedly contribute to disease progression by over suppressing immune responses in some chronic infections. In this study, kinetic and functional analyses of CD4(+)CD25(high)Foxp3(+) T cells were performed in cattle with bovine leukemia virus (BLV) infections, which have reported immunosuppressive characteristics. In initial experiments, production of the Th1 cytokines IFN-γ and TNF-α was reduced in BLV-infected cattle compared with uninfected cattle, and numbers of IFN-γ or TNF-α producing CD4(+) T cells decreased with disease progression. In contrast, IFN-γ production by NK cells was inversely correlated with BLV proviral loads in infected cattle. Additionally, during persistent lymphocytosis disease stages, NK cytotoxicity was depressed as indicated by low expression of the cytolytic protein perforin. Concomitantly, total CD4(+)CD25(high)Foxp3(+) T cell numbers and percentages of TGF-β(+) cells were increased, suggesting that TGF-β plays a role in the functional declines of CD4(+) T cells and NK cells. In further experiments, recombinant bovine TGF-β suppressed IFN-γ and TNF-α production by CD4(+) T cells and NK cytotoxicity in cultured cells. These data suggest that TGF-β from CD4(+)CD25(high)Foxp3(+) T cells is immunosuppressive and contributes to disease progression and the development of opportunistic infections during BLV infection.

  20. The Poly-γ-D-Glutamic Acid Capsule of Bacillus licheniformis, a Surrogate of Bacillus anthracis Capsule Induces Interferon-Gamma Production in NK Cells through Interactions with Macrophages.

    Science.gov (United States)

    Lee, Hae-Ri; Jeon, Jun Ho; Rhie, Gi-Eun

    2017-05-28

    The poly-γ- D -glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis , provides protection of the bacterium from phagocytosis and allows its unimpeded growth in the host. We investigated crosstalk between murine natural killer (NK) cells and macrophages stimulated with the PGA capsule of Bacillus licheniformis , a surrogate of the B. anthracis capsule. PGA induced interferon-gamma production from NK cells cultured with macrophages. This effect was dependent on macrophage-derived IL-12 and cell-cell contact interaction with macrophages through NK cell receptor NKG2D and its ligand RAE-1. The results showed that PGA could enhance NK cell activation by inducing IL-12 production in macrophages and a contact-dependent crosstalk with macrophages.

  1. DMPD: CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multipleligand specificities and functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available ) (.html) (.csml) Show CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multipleligand specificities and function...d NK cell membrane receptor with multipleligand specificities and functions. Authors Ross GD, Vetvicka V. Pu...igand specificities and functions. Ross GD, Vetvicka V. Clin Exp Immunol. 1993 May;92(2):181-4. (.png) (.svg...8485905 CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiplel

  2. In situ delivery of allogeneic natural killer cell (NK) combined with Cetuximab in liver metastases of gastrointestinal carcinoma: A phase I clinical trial.

    Science.gov (United States)

    Adotevi, O; Godet, Y; Galaine, J; Lakkis, Z; Idirene, I; Certoux, J M; Jary, M; Loyon, R; Laheurte, C; Kim, S; Dormoy, A; Pouthier, F; Barisien, C; Fein, F; Tiberghien, P; Pivot, X; Valmary-Degano, S; Ferrand, C; Morel, P; Delabrousse, E; Borg, C

    2018-01-01

    Despite successful introduction of NK-based cellular therapy in the treatment of myeloid leukemia, the potential use of NK alloreactivity in solid malignancies is still elusive. We performed a phase I clinical trial to assess the safety and efficacy of in situ delivery of allogeneic NK cells combined with cetuximab in liver metastasis of gastrointestinal origin. The conditioning chemotherapy was administrated before the allogeneic NK cells injection via hepatic artery. Three escalating doses were tested (3.10 6 , 8.10 6 and 12.10 6 NK cells/kg) following by a high-dose interleukin-2 (IL-2). Cetuximab was administered intravenously every week for 7 weeks. Nine patients with liver metastases of colorectal or pancreatic cancers were included, three per dose level. Hepatic artery injection was successfully performed in all patients with no report of dose-limiting toxicity. Two patients had febrile aplasia requiring a short-term antibiotherapy. Grade 3/4 anemia and thrombopenia were also observed related to the chemotherapy. Objective clinical responses were documented in 3 patients and among them 2 occurred in patients injected with cell products harboring two KIR ligand mismatches and one in a patient with one KIR ligand mismatch. Immune monitoring revealed that most patients presented an increase but transient of IL-15 and IL-7 cytokines levels one week after chemotherapy. Furthermore, a high expansion of FoxP3 + regulatory T cells and PD-1 + T cells was observed in all patients, related to IL-2 administration. Our results demonstrated that combining allogeneic NK cells transfer via intra-hepatic artery, cetuximab and a high-dose IL-2 is feasible, well tolerated and may result in clinical responses.

  3. Interactions between human mesenchymal stem cells and natural killer cells.

    Science.gov (United States)

    Sotiropoulou, Panagiota A; Perez, Sonia A; Gritzapis, Angelos D; Baxevanis, Constantin N; Papamichail, Michael

    2006-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells representing an attractive therapeutic tool for regenerative medicine. They possess unique immunomodulatory properties, being capable of suppressing T-cell responses and modifying dendritic cell differentiation, maturation, and function, whereas they are not inherently immunogenic, failing to induce alloreactivity to T cells and freshly isolated natural killer (NK) cells. To clarify the generation of host immune responses to implanted MSCs in tissue engineering and their potential use as immunosuppressive elements, the effect of MSCs on NK cells was investigated. We demonstrate that at low NK-to-MSC ratios, MSCs alter the phenotype of NK cells and suppress proliferation, cytokine secretion, and cyto-toxicity against HLA-class I- expressing targets. Some of these effects require cell-to-cell contact, whereas others are mediated by soluble factors, including transforming growth factor-beta1 and prostaglandin E2, suggesting the existence of diverse mechanisms for MSC-mediated NK-cell suppression. On the other hand, MSCs are susceptible to lysis by activated NK cells. Overall, these data improve our knowledge of interactions between MSCs and NK cells and consequently of their effect on innate immune responses and their contribution to the regulation of adaptive immunity, graft rejection, and cancer immunotherapy.

  4. Kinome analysis of receptor-induced phosphorylation in human natural killer cells.

    Directory of Open Access Journals (Sweden)

    Sebastian König

    Full Text Available BACKGROUND: Natural killer (NK cells contribute to the defense against infected and transformed cells through the engagement of multiple germline-encoded activation receptors. Stimulation of the Fc receptor CD16 alone is sufficient for NK cell activation, whereas other receptors, such as 2B4 (CD244 and DNAM-1 (CD226, act synergistically. After receptor engagement, protein kinases play a major role in signaling networks controlling NK cell effector functions. However, it has not been characterized systematically which of all kinases encoded by the human genome (kinome are involved in NK cell activation. RESULTS: A kinase-selective phosphoproteome approach enabled the determination of 188 kinases expressed in human NK cells. Crosslinking of CD16 as well as 2B4 and DNAM-1 revealed a total of 313 distinct kinase phosphorylation sites on 109 different kinases. Phosphorylation sites on 21 kinases were similarly regulated after engagement of either CD16 or co-engagement of 2B4 and DNAM-1. Among those, increased phosphorylation of FYN, KCC2G (CAMK2, FES, and AAK1, as well as the reduced phosphorylation of MARK2, were reproducibly observed both after engagement of CD16 and co-engagement of 2B4 and DNAM-1. Notably, only one phosphorylation on PAK4 was differentally regulated. CONCLUSIONS: The present study has identified a significant portion of the NK cell kinome and defined novel phosphorylation sites in primary lymphocytes. Regulated phosphorylations observed in the early phase of NK cell activation imply these kinases are involved in NK cell signaling. Taken together, this study suggests a largely shared signaling pathway downstream of distinct activation receptors and constitutes a valuable resource for further elucidating the regulation of NK cell effector responses.

  5. Polymethoxylated flavones potentiate the cytolytic activity of NK leukemia cell line KHYG-1 via enhanced expression of granzyme B.

    Science.gov (United States)

    Saito, Takeshi; Abe, Daigo; Nogata, Yoichi

    2015-01-16

    Polymethoxylated flavones (PMFs) are found in the peel tissues of some citrus species. Here, we report that PMFs, such as nobiletin, potentiate the cytolytic activity of KHYG-1 natural killer (NK) leukemia cells. Nobiletin markedly enhanced the expression of granzyme B, a serine protease that plays critical roles in the cytolytic activity of NK cells. The potentiated cytolytic activity induced by nobiletin was canceled by the granzyme B inhibitor Z-AAD-CMK. Nobiletin also increased the levels of phosphorylated CREB, ERK1/2, and p38 MAPK in KHYG-1 cells, which are known to participate in NK cell function. Inhibition of an upstream kinase of ERK1/2 failed to reduce the granzyme B expression and KHYG-1 cytolytic activity. Meanwhile, inhibition of p38 MAPK attenuated both granzyme B expression and KHYG-1 cytolytic activity. These results suggest that the primary role of nobiletin in KHYG-1 cytolytic activity lies in upregulation of granzyme B expression, at least in part, mediated through p38 MAPK function. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis

    Science.gov (United States)

    Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Bovine NK-lysin-derived peptides demonstrate antimicrobia...

  7. Antitumor activity of the Korean mistletoe lectin is attributed to activation of macrophages and NK cells.

    Science.gov (United States)

    Yoon, Taek Joon; Yoo, Yung Choon; Kang, Tae Bong; Song, Seong Kyu; Lee, Kyung Bok; Her, Erk; Song, Kyung Sik; Kim, Jong Bae

    2003-10-01

    Inhibitory effect of the lectins (KML-C) isolated from Korean mistletoe (KM; Viscum album coloratum) on tumor metastases produced by murine tumor cells (B16-BL6 melanoma, colon 26-M3.1 carcinoma and L5178Y-ML25 lymphoma cells) was investigated in syngeneic mice. An intravenous (i.v.) administration of KML-C (20-50 ng/mouse) 2 days before tumor inoculation significantly inhibited lung metastases of both B16-BL6 and colon 26-M3.1 cells. The prophylactic effect of 50 ng/mouse of KML-C on lung metastasis was almost the same with that of 100 microg/mouse of KM. Treatment with KML-C 1 day after tumor inoculation induced a significant inhibition of not only the experimental lung metastasis induced by B16-BL6 and colon 26-M3.1 cells but also the liver and spleen metastasis of L5178Y-ML25 cells. Furthermore, multiple administration of KML-C given at 3 day-intervals after tumor inoculation led to a significant reduction of lung metastasis and suppression of the growth of B16-BL6 melanoma cells in a spontaneous metastasis model. In an assay for natural killer (NK) cell activity, i.v. administration of KML-C (50 ng/mouse) significantly augmented NK cytotoxicity against Yac-1 tumor cells 2 days after KML-C treatment. In addition, treatment with KML-C (50 ng/mouse) induced tumoricidal activity of peritoneal macrophages against B16-BL6 and 3LL cells. These results suggest that KML-C has an immunomodulating activity to enhance the host defense system against tumors, and that its prophylactic and therapeutic effect on tumor metastasis is associated with the activation of NK cells and macrophages.

  8. Association of peripheral NK cell counts with Helios+ IFN-γ- Tregs in patients with good long-term renal allograft function.

    Science.gov (United States)

    Trojan, K; Zhu, L; Aly, M; Weimer, R; Bulut, N; Morath, C; Opelz, G; Daniel, V

    2017-06-01

    Little is known about a possible interaction of natural killer (NK) cells with regulatory T cells (T reg ) in long-term stable kidney transplant recipients. Absolute counts of lymphocyte and T reg subsets were studied in whole blood samples of 136 long-term stable renal transplant recipients and 52 healthy controls using eight-colour fluorescence flow cytometry. Patients were 1946 ± 2201 days (153-10 268 days) post-transplant and showed a serum creatinine of 1·7 ± 0·7 mg/dl. Renal transplant recipients investigated > 1·5 years post-transplant showed higher total NK cell counts than recipients studied express the phenotype Helios + interferon (IFN)-γ - and appear to have stable FoxP3 expression and originate from the thymus. Furthermore, high total NK cells were associated with T reg that co-express the phenotypes interleukin (IL)-10 - transforming growth factor (TGF)-β + (P = 0·013), CD183 + CD62L - (P = 0·003), CD183 + CD62 + (P = 0·001), CD183 - CD62L + (P = 0·002), CD252 - CD152 + (P term good allograft function and the statistical association of these two lymphocyte subsets with each other suggest a direct or indirect (via DC) interaction of these cell subpopulations that contributes to good long-term allograft acceptance. Moreover, we speculate that regulatory NK cells are formed late post-transplant that are able to inhibit graft-reactive effector cells. © 2017 British Society for Immunology.

  9. Influence of In Vitro IL-2 or IL-15 Alone or in Combination with Hsp 70 Derived 14-Mer Peptide (TKD on the Expression of NK Cell Activatory and Inhibitory Receptors on Peripheral Blood T Cells, B Cells and NKT Cells.

    Directory of Open Access Journals (Sweden)

    Ilona Hromadnikova

    Full Text Available Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450-463 plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1 and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A by CD3+CD56+ (NKT, CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by

  10. Influence of In Vitro IL-2 or IL-15 Alone or in Combination with Hsp 70 Derived 14-Mer Peptide (TKD) on the Expression of NK Cell Activatory and Inhibitory Receptors on Peripheral Blood T Cells, B Cells and NKT Cells

    Science.gov (United States)

    Hromadnikova, Ilona; Li, Shuang; Kotlabova, Katerina; Dickinson, Anne M.

    2016-01-01

    Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450–463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment

  11. Natural Killer cells and liver fibrosis

    Directory of Open Access Journals (Sweden)

    Frank eFasbender

    2016-01-01

    Full Text Available In the 40 years since the discovery of Natural Killer (NK cells it has been well established that these innate lymphocytes are important for early and effective immune responses against transformed cells and infections with different pathogens. In addition to these classical functions of NK cells, we now know that they are part of a larger family of innate lymphoid cells and that they can even mediate memory-like responses. Additionally, tissue resident NK cells with distinct phenotypical and functional characteristics have been identified. Here we focus on the phenotype of different NK cell subpopulations that can be found in the liver and summarize the current knowledge about the functional role of these cells with a special emphasis on liver fibrosis. NK cell cytotoxicity can contribute to liver damage in different forms of liver disease. However, NK cells can limit liver fibrosis by killing hepatic stellate cell-derived myofibroblasts, which play a key role in this pathogenic process. Therefore, liver NK cells need to be tightly regulated in order to balance these beneficial and pathological effects.

  12. Re-evaluation of the involvement of NK cells and C-type lectin-like NK receptors in modulation of immune responses by multivalent GlcNAc-terminated oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Grobárová, Valeria; Benson, Veronika; Rozbeský, Daniel; Novák, Petr; Černý, O.

    2013-01-01

    Roč. 156, 1-2 (2013), s. 110-117 ISSN 0165-2478 R&D Projects: GA MŠk ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Anti-tumor immunity * Carbohydrate dendrimer * NK cells Subject RIV: EC - Immunology Impact factor: 2.367, year: 2013

  13. Phenotypic and functional analyses of NK and NKT-like populations during the early stages of chikungunya infection.

    Science.gov (United States)

    Thanapati, Subrat; Das, Rumki; Tripathy, Anuradha S

    2015-01-01

    The aim of this study was to characterize NK (CD56(+)CD3(-)) and NKT-like cell (CD56(+)CD3(+)) responses early after chikungunya infection. Expression profiling and functional analysis of T/NK/NKT-like cells were performed on samples from 56 acute and 31 convalescent chikungunya patients and 56 control individuals. The percentages of NK cells were high in both patient groups, whereas NKT-like cell percentages were high only in the convalescent group. The percentages of NKp30(+)CD3(-)CD56(+), NKp30(+)CD3(+)CD56(+), CD244(+)CD3(-)CD56(+), and CD244(+)CD3(+)CD56(+)cells were high, whereas the percentages of NKG2D(+)CD3(-)CD56(+) and NKG2D(+)CD3(+)CD56(+)cells were low in both patient groups. The percentages of NKp44(+)CD3(-)CD56(+) cells were high in both patient groups, whereas the percentages of NKp44(+)CD3(+)CD56(+) cells were higher in the acute group than in convalescent and control groups. The percentages of NKp46(+)CD3(-)CD56(+) cells were high in both patient groups. Higher percentages of perforin(+)CD3(-)CD56(+) and perforin(+)CD3(+)CD56(+) cells were observed in acute and convalescent patients, respectively. Higher cytotoxic activity was observed in acute patients than in controls. IFN-γ expression on NK cells of convalescent patients and on NKT-like cells of both patient groups was indicative of the regulatory role of NK and NKT-like cells. Collectively, these data showed that higher expression of activating receptors on NK/NKT-like cells and perforin(+) NK cells in acute patients could be responsible for increased cytotoxicity. The observed expression of perforin(+) NK cells in the acute phase and IFN-γ(+) NKT-like cells in the subsequent convalescent stage showed that NK/NKT-like cells mount an early and efficient response to chikungunya virus. Further study of the molecular mechanisms that limit viral dissemination/establishment of chronic disease will aid in understanding how NK/NKT-like cells control chikungunya infection.

  14. NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells

    International Nuclear Information System (INIS)

    Nagel, Stefan; Scherr, Michaela; MacLeod, Roderick AF; Venturini, Letizia; Przybylski, Grzegorz K; Grabarczyk, Piotr; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; Schmidt, Christian A; Drexler, Hans G

    2009-01-01

    Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs. Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses. Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3

  15. Mushroom acidic glycosphingolipid induction of cytokine secretion from murine T cells and proliferation of NK1.1 α/β TCR-double positive cells in vitro

    International Nuclear Information System (INIS)

    Nozaki, Hirofumi; Itonori, Saki; Sugita, Mutsumi; Nakamura, Kimihide; Ohba, Kiyoshi; Suzuki, Akemi; Kushi, Yasunori

    2008-01-01

    Interferon (IFN)-γ and interleukin (IL)-4 regulate many types of immune responses. Here we report that acidic glycosphingolipids (AGLs) of Hypsizigus marmoreus and Pleurotus eryngii induced secretion of IFN- γ and IL-4 from T cells in a CD11c-positive cell-dependent manner similar to that of α-galactosylceramide (α-GalCer) and isoglobotriaosylceramide (iGb3), although activated T cells by AGLs showed less secretion of cytokine than those activated by α-GalCer. In addition, stimulation of these mushroom AGLs induced proliferation of NK1.1 α/β TCR-double positive cells in splenocytes. Administration of a mixture of α-GalCer and AGLs affected the stimulation of α-GalCer and generally induced a subtle Th1 bias for splenocytes but induced an extreme Th2 bias for thymocytes. These results suggested that edible mushroom AGLs contribute to immunomodulation

  16. Up-regulation of granzyme B and perforin by staphylococcal enterotoxin C2 mutant induces enhanced cytotoxicity in Hepa1–6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guojun [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); University of Chinese Academy of Sciences, Beijing (China); Xu, Mingkai, E-mail: mkxu@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); Zhang, Huiwen [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); Song, Yubo [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); University of Chinese Academy of Sciences, Beijing (China); Wang, Jian; Zhang, Chenggang [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China)

    2016-12-15

    Staphylococcal enterotoxin C2 (SEC2), a member of bacterial superantigen, is one of the most potent known activators of T lymphocytes. With this property, SEC2 has already been used in clinic as a tumor immunotherapy agent in China. To increase the antitumor activity, a SEC2 mutant named ST-4 (GKVTG102-106WWH) with amino acid substitutions in T cell receptor (TCR)-binding domain was generated by site-directed mutagenesis, and the molecular mechanism of the enhanced antitumor activity was investigated. Results showed that ST-4 could activate much more Vβ 8.2 and 8.3 T cells and NK cells compared with SEC2, and exhibited significantly enhanced immunocyte stimulation and antitumor activity in vitro. The synthetic peptide sequencing the residues of mutant TCR-binding domain could competitively inhibit the immunocyte stimulation activity of ST-4. Most importantly, ST-4 up-regulated granzyme B and perforin at both mRNA and protein levels. We also found that expression of proapoptotic proteins cytochrome c, BAX and activation of caspase-3, 9 was up-regulated, and antiapoptotic protein Bcl-xL was down-regulated in the treatment with either ST-4 or SEC2. When granzyme B inhibitor or perforin inhibitor is presented, tumor cell viability was significantly rescued. Taken together, we demonstrate that increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. These activated cells released up-regulated granzyme B and perforin, which induced the enhanced tumor cells apoptosis by mitochondrial apoptotic pathway, and ultimately led to enhanced tumor cell growth inhibition. ST-4 may be a promising candidate for antitumor clinic usage in future. - Highlights: • We obtained a SEC2 mutant ST-4 with enhanced superantigen and antitumor activity. • Increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. • Up-regulated GzmB and PRF1 in T cell by ST-4 induced enhanced tumor cells apoptosis. • Enhanced tumor cell apoptosis

  17. Dysregulated cellular functions and cell stress pathways provide critical cues for activating and targeting natural killer cells to transformed and infected cells.

    Science.gov (United States)

    Raulet, David H; Marcus, Assaf; Coscoy, Laurent

    2017-11-01

    Natural killer (NK) cells recognize and kill cancer cells and infected cells by engaging cell surface ligands that are induced preferentially or exclusively on these cells. These ligands are recognized by activating receptors on NK cells, such as NKG2D. In addition to activation by cell surface ligands, the acquisition of optimal effector activity by NK cells is driven in vivo by cytokines and other signals. This review addresses a developing theme in NK cell biology: that NK-activating ligands on cells, and the provision of cytokines and other signals that drive high effector function in NK cells, are driven by abnormalities that arise from transformation or the infected state. The pathways include genomic damage, which causes self DNA to be exposed in the cytosol of affected cells, where it activates the DNA sensor cGAS. The resulting signaling induces NKG2D ligands and also mobilizes NK cell activation. Other key pathways that regulate NKG2D ligands include PI-3 kinase activation, histone acetylation, and the integrated stress response. This review summarizes the roles of these pathways and their relevance in both viral infections and cancer. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Uterine Natural Killer Cells: Functional Distinctions and Influence on Pregnancy in Humans and Mice

    Directory of Open Access Journals (Sweden)

    Francesco Colucci

    2017-04-01

    Full Text Available Our understanding of development and function of natural killer (NK cells has progressed significantly in recent years. However, exactly how uterine NK (uNK cells develop and function is still unclear. To help investigators that are beginning to study tissue NK cells, we summarize in this review our current knowledge of the development and function of uNK cells, and what is yet to be elucidated. We compare and contrast the biology of human and mouse uNK cells in the broader context of the biology of innate lymphoid cells and with reference to peripheral NK cells. We also review how uNK cells may regulate trophoblast invasion and uterine spiral arterial remodeling in human and murine pregnancy.

  19. Identification of GAD65 AA 114-122 reactive 'memory-like' NK cells in newly diagnosed Type 1 diabetic patients by HLA-class I pentamers.

    Science.gov (United States)

    Perri, Valentina; Gianchecchi, Elena; Cifaldi, Loredana; Pellegrino, Marsha; Giorda, Ezio; Andreani, Marco; Cappa, Marco; Fierabracci, Alessandra

    2017-01-01

    Type 1 diabetes is an autoimmune disease, in which pancreatic β cells are destroyed by autoreactive T cells in genetically predisposed individuals. Serum beta cell autoantibody specificities have represented the mainstay for classifying diabetes as autoimmune-mediated and for stratifying risk in first-degree relatives. In recent years, approaches were attempted to solve the difficult issue of detecting rare antigen-specific autoreactive T cells and their significance to etiopathogenesis such as the use of the MHC multimer technology. This tool allowed the specific detection of increased percentages of GAD65 autoreactive T cells by means of HLA A*02:01 GAD65 AA 114-122 pentamers in newly diagnosed diabetics. Here we provide evidence that GAD65 AA 114-122 pentamers can depict a GAD65 AA114-122 peptide expandable population of functionally and phenotypically skewed, preliminary characterized CD3-CD8dullCD56+ 'memory-like' NK cells in PBMC of newly diagnosed diabetics. Our data suggest that the NK cell subset could bind the HLA class I GAD65 AA 114-122 pentamer through ILT2 inhibitory receptor. CD107a expression revealed increased degranulation of CD3-CD8dullCD56+ NK cells in GAD65 AA 114-122 and FLU peptide expanded peripheral blood mononuclear cells of diabetics following GAD65 AA 114-122 peptide HLA A*02:01 presentation in respect to the unpulsed condition. CD107a expression was enriched in ILT2 positive NK cells. As opposite to basal conditions where similar percentages of CD3-CD56+ILT2+ cells were detected in diabetics and controls, CD3-CD56+CD107a+ and CD3-CD56+ILT2+CD107a+ cells were significantly increased in T1D PBMC either GAD65 AA 114-122 or FLU peptides stimulated after co-culture with GAD65 AA 114-122 pulsed APCs. As control, healthy donor NK cells showed similar degranulation against both GAD65 AA 114-122 pulsed and unpulsed APCs. The pathogenetic significance of the CD3-CD8dullCD56+ 'memory-like NK cell subset' with increased response upon secondary

  20. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni

    Science.gov (United States)

    Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all t...

  1. UV-C irradiation of HSV-1 infected fibroblasts (HSV-FS) enhances human natural killer (NK) cell activity against these targets

    International Nuclear Information System (INIS)

    Pettera, L.; Fitzgerald-Bocarsly, P.

    1991-01-01

    Expression of Herpes Simplex Virus Type 1 (HSV-1) immediate early gene products has been bound to be sufficient for NK cell mediated lysis of HSV-1 infected FS. To block the targets at various stages in the infectious cycle, HSV-FS were irradiated with UV light for 1 min at 2, 6, and 20 hr post-infection. NK mediated lysis of 2 hr and 5 hr UV treated HSV-FS was 2-fold higher than non-UV treated HSV-FS despite a >99% inhibition in virus yield. In contrast, 20 hr infected targets were lysed less well than 2 and 6 hr targets despite strong glycoprotein expression and induction of high levels of interferon-alpha (IFN-α) production by effector PBMC's; this lysis was not enhanced by UV treatment. Since NK lysis of HSV-FS has been found to be dependent on an HLA-DR + accessory cell (AC), lysis of irradiated HSV-FS by PBMC's depleted of AC was measured. Such depletion eradicated NK lysis of the UV treated HSV-FS indicating that irradiation does not overcome the AC requirement for NK lysis. UV irradiation of another HLA-DR + dependent target, Vesicular Stomatitis Virus (VSV) infected FS led to a dramatic reduction in both NK lysis and IFN-α induction. HSV-1 is a DNA virus whose genes are expressed in a cascade fashion whereas VSV is an RNA virus. The authors hypothesize that the enhancement in AC dependent NK activity observed for UV irradiated HSV-FS, but not VSV-FS, targets is due to overproduction of either a cellular or viral gene product which specifically occurs early in the HSV-1 infectious cycle and is downregulated by 20 hr post-infection

  2. Restricted processing of CD16a/Fc γ receptor IIIa N-glycans from primary human NK cells impacts structure and function.

    Science.gov (United States)

    Patel, Kashyap R; Roberts, Jacob T; Subedi, Ganesh P; Barb, Adam W

    2018-03-09

    CD16a/Fc γ receptor IIIa is the most abundant antibody Fc receptor expressed on human natural killer (NK) cells and activates a protective cytotoxic response following engagement with antibody clustered on the surface of a pathogen or diseased tissue. Therapeutic monoclonal antibodies (mAbs) with greater Fc-mediated affinity for CD16a show superior therapeutic outcome; however, one significant factor that promotes antibody-CD16a interactions, the asparagine-linked carbohydrates ( N -glycans), remains undefined. Here, we purified CD16a from the primary NK cells of three donors and identified a large proportion of hybrid (22%) and oligomannose N -glycans (23%). These proportions indicated restricted N -glycan processing and were unlike those of the recombinant CD16a forms, which have predominantly complex-type N -glycans (82%). Tethering recombinant CD16a to the membrane by including the transmembrane and intracellular domains and via coexpression with the Fc ϵ receptor γ-chain in HEK293F cells was expected to produce N -glycoforms similar to NK cell-derived CD16a but yielded N -glycoforms different from NK cell-derived CD16a and recombinant soluble CD16a. Of note, these differences in CD16a N -glycan composition affected antibody binding: CD16a with oligomannose N -glycans bound IgG1 Fc with 12-fold greater affinity than did CD16a having primarily complex-type and highly branched N -glycans. The changes in binding activity mirrored changes in NMR spectra of the two CD16a glycoforms, indicating that CD16a glycan composition also affects the glycoprotein's structure. These results indicated that CD16a from primary human NK cells is compositionally, and likely also functionally, distinct from commonly used recombinant forms. Furthermore, our study provides critical evidence that cell lineage determines CD16a N -glycan composition and antibody-binding affinity. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    International Nuclear Information System (INIS)

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung; Park, Yoorim; Bang, Jung-Wook; Kim, Tae Sung; Park, Hyunjeong; Kim, Cherl-hyun; Yang, Yool-hee; Bang, Sa Ik; Cho, Daeho

    2008-01-01

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-γ inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-γ production, we measured IL-18-induced IFN-γ production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-γ expression was blocked by SKI pre-treatment in both mRNA and protein levels. In addition, the increased IFN-γ production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-γ production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-γ production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-γ production via p38 MAPK

  4. Correlation between NK function and response to trastuzumab in metastatic breast cancer patients

    Directory of Open Access Journals (Sweden)

    Spadi Rosella

    2008-05-01

    Full Text Available Abstract Background Trastuzumab is a monoclonal antibody selectively directed against Her2 and approved for the treatment of Her2 overexpressing breast cancer patients. Its proposed mechanisms of action include mediation of antibody-dependent cellular cytotoxicity (ADCC by triggering FcγRIII on natural killer (NK cells. This study addresses the correlation between overall NK function and trastuzumab's clinical activity. Subjects and methods Clinical and immunological responses were assessed in 26 patients receiving trastuzumab monotherapy as maintenance management after chemotherapy (8 mg/kg load and then standard doses of 6 mg/kg every 3 weeks. Cytotoxic activity against the MHC class I-negative standard NK target K562 cell line and HER2-specific ADCC against a trastuzumab-coated Her2-positive SKBR3 cell line were assessed in peripheral blood mononuclear cells (PBMC harvested after the first standard dose. After six months, seventeen patients were scored as responders and nine as non-responders according to the RECIST criteria, while Progression-Free Survival (PFS was calculated during a 12 months follow-up. Results The responders had significantly higher levels of both NK and ADCC activities (p Conclusion One of the mechanisms of action of trastuzumab is NK cell-mediated ADCC lysis of the Her2-positve target cell. We show here that its potency is correlated with the short-term response to treatment, whereas longer protection against tumor expansion seems to be mediated by pure NK activity.

  5. Destructive impact of t-lymphocytes, NK and mast cells on basal cell layers: implications for tumor invasion

    International Nuclear Information System (INIS)

    Yuan, Hongyan; Hsiao, Yi-Hsuan; Zhang, Yiyu; Wang, Jinlian; Yin, Chao; Shen, Rong; Su, Yiping

    2013-01-01

    Our previous studies have suggested that the primary impact of immune cell infiltration into the normal or pre-invasive tissue component is associated with the physical destruction of epithelial capsules, which may promote tumor progression and invasion. Our current study attempted to further verify our previous observations and determine the primary type(s) of infiltrating immune cells and the possible mechanism associated with physical destructions of the epithelial capsules. In total, the study was conducted with 250 primary breast and prostate tumors, the primary immune cell of cytotoxic T-lymphocytes (CTL), Natural killer cells (NK) and Mast cells were analyzed by immunohistochemistry, fluorescent labeling and apoptosis assay. qRT-PCR was used for gene expression analysis. Our current study assessed the physical disruption of these immune cells and potential impact on the epithelial capsule of human breast and prostate tumors. Our study yield several clinically-relevant findings that have not been studied before. (1) A vast majority of these infiltrating immune cells are distributed in the normal-appearing or pre-invasive tissue components rather than in invasive cancer tissues. (2) These cells often form rings or semilunar structures that either surround focally-disrupted basal cell layers or physically attach to the basal cells. (3) Basal cells physically associated with these immune cells generally displayed distinct signs of degeneration, including substantially elevated apoptosis, necrosis, and reduced tumor suppressor p63 expression. In contrast, luminal cells overlying focally disrupted basal cell layers had a substantially increased proliferation rate and elevated expression of stem cell markers compared to their adjacent morphologically similar counterparts that overlie a non-disrupted capsule. Our findings suggest that at the early stage of tumor invasion, CTL, NK and Mast cells are the main types of tumor infiltrating immune cells involved in focal

  6. Processos linfoproliferativos da pele: parte 2 - linfomas cutâneos de células T e de células NK Processos linfoproliferativos da pele: part 2 - cutaneous T-cell and NK-cell lymphomas

    Directory of Open Access Journals (Sweden)

    José Antonio Sanches Jr

    2006-02-01

    Full Text Available Os linfomas cutâneos de células T/NK constituem um grupo de doenças linfoproliferativas extranodais atualmente classificadas e subdivididas de acordo com o comportamento clínico segundo consenso da Organização Mundial de Saúde e da Organização Européia para Pesquisa e Tratamento do Câncer. Os linfomas cutâneos de células T/NK de comportamento clínico indolente compreendem a micose fungóide clássica, a micose fungóide foliculotrópica, a reticulose pagetóide, a cútis laxa granulomatosa, o linfoma cutâneo primário de grande célula anaplásica, a papulose linfomatóide, o linfoma subcutâneo de célula T paniculite-símile e o linfoma cutâneo primário de pequena e média célula T CD4+ pleomórfica. Os linfomas cutâneos de células T/NK de comportamento agressivo incluem a síndrome de Sézary, o linfoma extranodal de célula T/NK, tipo nasal, o linfoma cutâneo primário agressivo de célula T CD8+ epidermotrópica, o linfoma cutâneo de célula T gd e o linfoma cutâneo primário de célula T periférica, não especificado. O linfoma-leucemia de células T do adulto e a neoplasia hematodémica CD4+CD56+, embora considerados linfomas sistêmicos, são aqui abordados por apresentarem-se inicialmente na pele em significativo número de pacientes. O diagnóstico desses processos é realizado pelo exame histopatológico complementado pela análise do fenótipo das células neoplásicas, imprescindível no processo classificatório. O estadiamento para a avaliação da extensão anatômica da doença considera além do envolvimento cutâneo, o estado clínico e histológico dos linfonodos e das vísceras. Avaliação hematológica é fundamental na caracterização da síndrome de Sézary. Os tratamentos preconizados incluem terapêuticas dirigidas exclusivamente à pele, modificadores da resposta biológica e quimioterapia sistêmica.The cutaneous NKT/cell lymphomas are a group of extranodal lymphoproliferative disorders

  7. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    International Nuclear Information System (INIS)

    Muñoz, Miguel; Coveñas, Rafael

    2015-01-01

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC

  8. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Miguel, E-mail: mmunoz@cica.es [Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Sevilla (Spain); Coveñas, Rafael [Laboratory of Neuroanatomy of the Peptidergic System (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37008 Salamanca (Spain)

    2015-07-06

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC.

  9. Evolving role of 2B4/CD244 in T and NK cell responses during virus infection

    Directory of Open Access Journals (Sweden)

    Stephen Noel Waggoner

    2012-12-01

    Full Text Available The signaling lymphocyte activation molecule (SLAM family receptor, 2B4/CD244, was first implicated in anti-viral immunity by the discovery that mutations of the SLAM-associated protein, SAP/SH2D1A, impaired 2B4-dependent stimulation of T and natural killer (NK cell anti-viral functions in X-linked lymphoproliferative (XLP syndrome patients with uncontrolled Epstein-Barr virus (EBV infections. Engagement of 2B4 has been variably shown to either activate or inhibit lymphocytes which express this receptor. While SAP expression is required for stimulatory functions of 2B4 on lymphocytes, it remains unclear whether inhibitory signals derived from 2B4 can predominate even in the presence of SAP. Regardless, mounting evidence suggests that 2B4 expression by NK and CD8 T cells is altered by virus infection in mice as well as in humans, and 2B4-mediated signaling may be an important determinant of effective immune control of chronic virus infections. In this review, recent findings regarding the expression and function of 2B4 as well as SAP on T and NK cells during virus infection is discussed, with a focus on the role of 2B4-CD48 interactions in crosstalk between innate and adaptive immunity.

  10. Secretory products from thrombin-stimulated human platelets exert an inhibitory effect on NK-cytotoxic activity

    DEFF Research Database (Denmark)

    Skov Madsen, P; Hokland, P; Hokland, M

    1987-01-01

    We have investigated the interaction between human platelets and the NK-system, with special emphasis on the action of secretory products from platelets in an NK assay with 51Cr-labelled K562 as target cells. Supernatants from thrombin-stimulated platelets added to the NK assay consistently...... decreased the NK-cytotoxicity by 40% +/- 4.3%, indicating the existence of secreted products from platelets as a source of NK-inhibiting substances. In contrast, no direct cytotoxic effect of these secretory products on the target cells (K562) was seen. Thus, normal human platelets, when stimulated...... with thrombin, are capable of secreting different, yet undefined factors, which significantly inhibit NK activity in vitro. The results also suggest that the role of products from contaminating in vitro activated platelets should be borne in mind when performing conventional NK assays. Udgivelsesdato: 1986-Oct...

  11. Therapeutic potential and challenges of Natural killer cells in treatment of solid tumors

    Directory of Open Access Journals (Sweden)

    Andrea eGras Navarro

    2015-04-01

    Full Text Available Natural killer (NK cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing requiring one–to-one target engagement and site directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells (CSCs and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME and augment adaptive immune responses by promoting differentiation, activation and/ or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach.

  12. Association of Monoclonal Expansion of Epstein-Barr Virus-Negative CD158a+ NK Cells Secreting Large Amounts of Gamma Interferon with Hemophagocytic Lymphohistiocytosis▿

    Science.gov (United States)

    López-Álvarez, María R.; Martínez-Sánchez, María V.; Salgado-Cecilia, María G.; Campillo, José A.; Heine-Suñer, Damian; Villar-Permuy, Florentina; Fuster, José L.; Bas, Águeda; Gil-Herrera, Juana; Muro, Manuel; García-Alonso, Ana M.; Álvarez-López, María R.; Minguela, Alfredo

    2009-01-01

    We report the first case of hemophagocytic lymphohistiocytosis (HLH) induced by the monoclonal expansion of Epstein-Barr virus (EBV)-negative NK cells. Consanguinity of the patient's parents made it necessary to discard familial HLH in the patient and her sister with identical HLA markers and demonstrate that no cause other than the expansion of NK cells, which secrete high levels of gamma interferon, was inducing HLH in this patient. PMID:19020108

  13. Interleukin-2-induced survival of natural killer (NK) cells involving phosphatidylinositol-3 kinase-dependent reduction of ceramide through acid sphingomyelinase, sphingomyelin synthase, and glucosylceramide synthase.

    Science.gov (United States)

    Taguchi, Yoshimitsu; Kondo, Tadakazu; Watanabe, Mitsumasa; Miyaji, Michihiko; Umehara, Hisanori; Kozutsumi, Yasunori; Okazaki, Toshiro

    2004-11-15

    Interleukin 2 (IL-2) rescued human natural killer (NK) KHYG-1 cells from apoptosis along with a reduction of ceramide. Conversely, an increase of ceramide inhibited IL-2-rescued survival. IL-2 deprivation-induced activation of acid sphingomyelinase (SMase) and inhibition of glucosylceramide synthase (GCS) and sphingomyelin synthase (SMS) were normalized by IL-2 supplementation. A phosphatidyl inositol-3 (PI-3) kinase inhibitor, LY294002, inhibited IL-2-rescued survival, but a mitogen-activated protein kinase inhibitor, PD98059, and an inhibitor of Janus tyrosine kinase/signal transducer and activator of transcription pathway, AG490, did not. LY294002 inhibited IL-2-induced reduction of ceramide through activation of acid SMase and inhibition of GCS and SMS, suggesting the positive involvement of PI-3 kinase in ceramide reduction through enzymatic regulation. Indeed, a constitutively active PI-3 kinase enhanced growth rate and ceramide reduction through inhibition of acid SMase and activation of GCS and SMS. Further, LY294002 inhibited IL-2-induced changes of transcriptional level as well as mRNA and protein levels in acid SMase and GCS but did not affect the stability of the mRNAs. These results suggest that PI-3 kinase-dependent reduction of ceramide through regulation of acid SMase, GCS, and SMS plays a role in IL-2-rescued survival of NK cells.

  14. B7H6-derived peptides trigger TNF-α-dependent immunostimulatory activity of lymphocytic NK92-MI cells.

    Science.gov (United States)

    Phillips, Mariana; Romeo, Francesca; Bitsaktsis, Constantine; Sabatino, David

    2016-09-01

    The rise of biologics that can stimulate immune responses towards the eradication of tumors has led to the evolution of cancer-based immunotherapy. Representatively, B7H6 has been recently identified as a protein ligand on tumor cells that binds specifically to the NKp30 receptor and triggers NK cell-derived cytokine production, which ultimately leads to tumor cell lysis and death. In an effort to develop effective immunotherapy approaches, the rational design of a novel class of immunostimulatory peptides (IPs) derived from the binding interface of B7H6:NKp30 is described in this study. The IPs comprised the B7H6 active site sequence for NKp30 binding and immunostimulatory activity. An aminohexanoic acid linker was also introduced at the N-terminus of the peptides for FITC-labeling by Fmoc-solid phase peptide synthesis. The peptides were characterized by LCMS to confirm identities and purities >95%. The secondary structures of the peptides were examined by CD spectroscopy in H2 O, PBS and a H2 O:TFE mixture which demonstrated versatile peptide structures which transitioned from random coil (H2 O) to α-helical (PBS) and turn-type (H2 O:TFE) conformations. Their biological properties were then evaluated by flow cytometry, enzyme-linked immunosorbent assays (ELISAs), and cell death assays. The occupancy of the synthetic peptides to a human NK cell line demonstrated comparable binding relative to the natural NKp30 ligand, B7H6, and the human anti-NKp30 monoclonal antibody (mAb), in a concentration dependent manner. A competitive binding assay between the human anti-NKp30 mAb or B7H6, and the synthetic peptides, demonstrated partial displacement of the ligands upon anti-NKp30 mAb treatment, suggesting NKp30 receptor specificities by the synthetic peptides. Moreover, the immunostimulatory activity of B7H6 was demonstrated by the secretion of the pro-inflammatory cytokines tumor necrosis factor-alfa (TNF-α) and interferon gamma (IFN-γ) by the human NK cell line. The

  15. Suppression of Natural Killer Cell Activity by Regulatory NKT10 Cells Aggravates Alcoholic Hepatosteatosis

    Directory of Open Access Journals (Sweden)

    Kele Cui

    2017-10-01

    Full Text Available We and others have found that the functions of hepatic natural killer (NK cells are inhibited but invariant NKT (iNKT cells become activated after alcohol drinking, leaving a possibility that there exists interplay between NK cells and iNKT cells during alcoholic liver disease. Here, in a chronic plus single-binge ethanol consumption mouse model, we observed that NK cells and interferon-γ (IFN-γ protected against ethanol-induced liver steatosis, as both wild-type (WT mice treated with anti-asialo GM1 antibody and IFN-γ-deficient GKO mice developed more severe alcoholic fatty livers. As expected, IFN-γ could directly downregulate lipogenesis in primary hepatocytes in vitro. On the contrary, iNKT cell-deficient Jα18−/− or interleukin-10 (IL-10−/− mice showed fewer alcoholic steatosis, along with the recovered number and IFN-γ release of hepatic NK cells, and exogenous IL-10 injection was sufficient to compensate for iNKT cell deficiency. Furthermore, NK cell depletion in Jα18−/− or IL-10−/− mice caused more severe hepatosteatosis, implying NK cells are the direct effector cells to inhibit liver steatosis. Importantly, adoptive transfer of iNKT cells purified from normal but not IL-10−/− mice resulted in suppression of the number and functions of NK cells and aggravated alcoholic liver injury in Jα18−/− mice, indicating that IL-10-producing iNKT (NKT10 cells are the regulators on NK cells. Conclusion: Ethanol exposure-triggered NKT10 cells antagonize the protective roles of NK cells in alcoholic hepatosteatosis.

  16. Genotype, Phenotype and Outcomes of Nine Patients with T-B+NK+ SCID

    OpenAIRE

    Yu, Grace P; Nadeau, Kari C; Berk, David R; de Saint Basile, Geneviève; Lambert, Nathalie; Knapnougel, Perrine; Roberts, Joseph; Kavanau, Kristina; Dunn, Elizabeth; Stiehm, E. Richard; Lewis, David B; Umetsu, Dale T; Puck, Jennifer M; Cowan, Morton J

    2011-01-01

    There are few reports of clinical presentation, genotype, and hematopoietic cell transplant (HCT) outcomes for T-B+NK+ SCID patients. Between 1981 and 2007, 8 of 84 SCID patients who received and/or were followed after HCT at UCSF had the T-B+NK+ phenotype. One additional T-B+NK+ SCID patient was identified as the sibling of a patient treated at UCSF. Chart reviews were performed. Molecular analyses of IL7R, IL2RG, JAK3 and the genes encoding the CD3 T-cell receptor components δ (CD3D), ε (CD...

  17. The Natural Killer Cell Cytotoxic Function Is Modulated by HIV-1 Accessory Proteins

    Directory of Open Access Journals (Sweden)

    Edward Barker

    2011-07-01

    Full Text Available Natural killer (NK cells’ major role in the control of viruses is to eliminate established infected cells. The capacity of NK cells to kill virus-infected cells is dependent on the interactions between ligands on the infected cell and receptors on the NK cell surface. Because of the importance of ligand-receptor interactions in modulating the NK cell cytotoxic response, HIV has developed strategies to regulate various NK cell ligands making the infected cell surprisingly refractory to NK cell lysis. This is perplexing because the HIV-1 accessory protein Vpr induces expression of ligands for the NK cell activating receptor, NKG2D. In addition, the accessory protein Nef removes the inhibitory ligands HLA-A and -B. The reason for the ineffective killing by NK cells despite the strong potential to eliminate infected cells is due to HIV-1 Vpu’s ability to down modulate the co-activation ligand, NTB-A, from the cell surface. Down modulation of NTB-A prevents efficient NK cell degranulation. This review will focus on the mechanisms through which the HIV-1 accessory proteins modulate their respective ligands, and its implication for NK cell killing of HIV-infected cells.

  18. NK-, NKT- and CD8-Derived IFNγ Drives Myeloid Cell Activation and Erythrophagocytosis, Resulting in Trypanosomosis-Associated Acute Anemia.

    Directory of Open Access Journals (Sweden)

    Jennifer Cnops

    2015-06-01

    Full Text Available African trypanosomes are the causative agents of Human African Trypanosomosis (HAT/Sleeping Sickness and Animal African Trypanosomosis (AAT/Nagana. A common hallmark of African trypanosome infections is inflammation. In murine trypanosomosis, the onset of inflammation occurs rapidly after infection and is manifested by an influx of myeloid cells in both liver and spleen, accompanied by a burst of serum pro-inflammatory cytokines. Within 48 hours after reaching peak parasitemia, acute anemia develops and the percentage of red blood cells drops by 50%. Using a newly developed in vivo erythrophagocytosis assay, we recently demonstrated that activated cells of the myeloid phagocytic system display enhanced erythrophagocytosis causing acute anemia. Here, we aimed to elucidate the mechanism and immune pathway behind this phenomenon in a murine model for trypanosomosis. Results indicate that IFNγ plays a crucial role in the recruitment and activation of erythrophagocytic myeloid cells, as mice lacking the IFNγ receptor were partially protected against trypanosomosis-associated inflammation and acute anemia. NK and NKT cells were the earliest source of IFNγ during T. b. brucei infection. Later in infection, CD8+ and to a lesser extent CD4+ T cells become the main IFNγ producers. Cell depletion and transfer experiments indicated that during infection the absence of NK, NKT and CD8+ T cells, but not CD4+ T cells, resulted in a reduced anemic phenotype similar to trypanosome infected IFNγR-/- mice. Collectively, this study shows that NK, NKT and CD8+ T cell-derived IFNγ is a critical mediator in trypanosomosis-associated pathology, driving enhanced erythrophagocytosis by myeloid phagocytic cells and the induction of acute inflammation-associated anemia.

  19. Tumor hypoxia modulates podoplanin/CCL21 interactions in CCR7+ NK cell recruitment and CCR7+ tumor cell mobilization.

    Science.gov (United States)

    Tejchman, Anna; Lamerant-Fayel, Nathalie; Jacquinet, Jean-Claude; Bielawska-Pohl, Aleksandra; Mleczko-Sanecka, Katarzyna; Grillon, Catherine; Chouaib, Salem; Ugorski, Maciej; Kieda, Claudine

    2017-05-09

    Podoplanin (PDPN), an O-glycosylated, transmembrane, mucin-type glycoprotein, is expressed by cancer associated fibroblasts (CAFs). In malignant transformation, PDPN is subjected to changes and its role is yet to be established. Here we show that it is involved in modulating the activity of the CCL21/CCR7 chemokine/receptor axis in a hypoxia-dependent manner. In the present model, breast cancer MDA-MB-231 cells and NKL3 cells express the surface CCR7 receptor for CCL21 chemokine which is a potent chemoattractant able to bind to PDPN. The impact of the CCL21/CCR7 axis in the molecular mechanism of the adhesion of NKL3 cells and of MDA-MB-231 breast cancer cells was reduced in a hypoxic tumor environment. In addition to its known effect on migration, CCL21/CCR7 interaction was shown to allow NK cell adhesion to endothelial cells (ECs) and its reduction by hypoxia. A PDPN expressing model of CAFs made it possible to demonstrate the same CCL21/CCR7 axis involvement in the tumor cells to CAFs recognition mechanism through PDPN binding of CCL21. PDPN was induced by hypoxia and its overexpression undergoes a reduction of adhesion, making it an anti-adhesion molecule in the absence of CCL21, in the tumor. CCL21/CCR7 modulated NK cells/ECs and MDA-MB-231 cells/CAF PDPN-dependent interactions were further shown to be linked to hypoxia-dependent microRNAs as miRs: miR-210 and specifically miR-21, miR-29b which influence PDPN expression.

  20. HIV exposed seronegative (HESN compared to HIV infected individuals have higher frequencies of telomeric Killer Immunoglobulin-like Receptor (KIR B motifs; Contribution of KIR B motif encoded genes to NK cell responsiveness.

    Directory of Open Access Journals (Sweden)

    Elise Jackson

    Full Text Available Previously, we showed that Killer Immunoglobulin-like Receptor (KIR3DS1 homozygotes (hmz are more frequent in HIV exposed seronegative (HESN than in recently HIV infected (HIV+ individuals. KIR3DS1 encodes an activating Natural Killer (NK cell receptor (NKR. The link between KIR genotype and HIV outcomes likely arises from the function that NK cells acquire through expression of particular NKRs. An initial screen of 97 HESN and 123 HIV+ subjects for the frequency of KIR region gene carriage observed between-group differences for several telomeric KIR region loci. In a larger set of up to 106 HESN and 439 HIV+ individuals, more HESN than HIV+ subjects were KIR3DS1 homozygotes, lacked a full length KIR2DS4 gene and carried the telomeric group B KIR haplotype motif, TB01. TB01 is characterized by the presence of KIR3DS1, KIR2DL5A, KIR2DS3/5 and KIR2DS1, in linkage disequilibrium with each other. We assessed which of the TB01 encoded KIR gene products contributed to NK cell responsiveness by stimulating NK cells from 8 HIV seronegative KIR3DS1 and TB01 motif homozygotes with 721.221 HLA null cells and evaluating the frequency of KIR3DS1+/-KIR2DL5+/-, KIR3DS1+/-KIR2DS1+/-, KIR3DS1+/-KIR2DS5+/- NK cells secreting IFN-γ and/or expressing CD107a. A higher frequency of NK cells expressing, versus not, KIR3DS1 responded to 721.221 stimulation. KIR2DL5A+, KIR2DS1+ and KIR2DS5+ NK cells did not contribute to 721.221 responses or modulate those by KIR3DS1+ NK cells. Thus, of the TB01 KIR gene products, only KIR3DS1 conferred responsiveness to HLA-null stimulation, demonstrating its ligation can activate ex vivo NK cells.

  1. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    International Nuclear Information System (INIS)

    Egami, Takuya; Ohuchida, Kenoki; Yasui, Takaharu; Onimaru, Manabu; Toma, Hiroki; Sato, Norihiro; Tanaka, Masao; Mizumoto, Kazuhiro; Matsumoto, Kunio

    2009-01-01

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  2. Ultrastructural characterization of effector-target interactions for human neonatal and adult NK cells reveals reduced intercellular surface contacts of neonatal cells

    NARCIS (Netherlands)

    Ribeiro-do-Couto, Laura M.; Poelen, Martien; Hooibrink, Berend; Dormans, Jan A. M. A.; Roholl, Paul J. M.; Boog, Claire J. P.

    2003-01-01

    Limitations in neonatal natural killer (NK) cell responses may be associated with the less efficient newborn capacity to solve viral infections. Although these limitations have been extensively reported they are poorly characterized. Making use of the major histocompatibility complex (MHC) class I

  3. Activation of p44/42 in Human Natural Killer Cells Decreases Cell-surface Protein Expression: Relationship to Tributyltin-induced alterations of protein expression

    Science.gov (United States)

    Dudimah, Fred D.; Abraha, Abraham; Wang, Xiaofei; Whalen, Margaret M.

    2010-01-01

    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56. PMID:20883105

  4. Association of T and NK Cell Phenotype With the Diagnosis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS

    Directory of Open Access Journals (Sweden)

    Jose Luis Rivas

    2018-05-01

    Full Text Available Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS is a pathological condition characterized by incapacitating fatigue and a combination of neurologic, immunologic, and endocrine symptoms. At present its diagnosis is based exclusively on clinical criteria. Several studies have described altered immunologic profiles; therefore, we proposed to further examine the more significant differences, particularly T and NK cell subpopulations that could be conditioned by viral infections, to discern their utility in improving the diagnosis and characterization of the patients. The study included 76 patients that fulfilled the revised Canadian Consensus Criteria (CCC 2010 for ME/CFS and 73 healthy controls, matched for age and gender. Immunophenotyping of different T cell and natural killer cell subpopulations in peripheral blood was determined by flow cytometry. ME/CFS patients showed significantly lower values of T regulatory cells (CD4+CD25++(highFOXP3+ and higher NKT-like cells (CD3+CD16+/−CD56+ than the healthy individuals. Regarding NK phenotypes, NKG2C was significantly lower and NKCD69 and NKCD56 bright were significantly higher in the patients group. A classification model was generated using the more relevant cell phenotype differences (NKG2C and T regulatory cells that was able to classify the individuals as ME/CFS patients or healthy in a 70% of cases. The observed differences in some of the subpopulations of T and NK cells between patients and healthy controls could define a distinct immunological profile that can help in the diagnostic process of ME/CFS patients, contribute to the recognition of the disease and to the search of more specific treatments. However, more studies are needed to corroborate these findings and to contribute to establish a consensus in diagnosis.

  5. Interaction between dendritic cells and natural killer cells during pregnancy in mice.

    Science.gov (United States)

    Blois, Sandra M; Barrientos, Gabriela; Garcia, Mariana G; Orsal, Arif S; Tometten, Mareike; Cordo-Russo, Rosalia I; Klapp, Burghard F; Santoni, Angela; Fernández, Nelson; Terness, Peter; Arck, Petra C

    2008-07-01

    A complex regulation of innate and adaptive immune responses at the maternal fetal interface promotes tolerance of trophoblast cells carrying paternally derived antigens. Such regulatory functions involve uterine dendritic cells (uDC) and natural killer (uNK) cells. The existence of a NK and DC "cross talk" has been revealed in various experimental settings; its biological significance ranging from cooperative stimulation to cell lysis. Little is known about the presence or role of NK and DC cross talk at the maternal fetal interface. The present study shows that mouse NK and DC interactions are subject to modulation by trophoblast cells in vitro. This interaction promotes a tolerogenic microenvironment characterized by downregulation of the expression of activation markers on uNK cells and uDC and dominance of Th2 cytokines. NK and DC interactions would also influence uterine cell proliferation and this process would be strongly modulated by trophoblast-derived signals. Indeed; while low proliferation rates were observed upon regular coculture allowing direct contact between uterine cells and trophoblasts, incubation in a transwell culture system markedly increased uterine cell proliferation suggesting that soluble factors are key mediators in the molecular "dialog" between the mother and the conceptus during the establishment of mouse pregnancy. Our data further reveal that the regulatory functions of trophoblast cells associated with tolerance induction are impaired in high abortion murine matings. Interestingly, we observed that secretion of interleukin-12p70 by uDC is dramatically abrogated in the presence of uNK cells. Taken together, our results provide the first evidence that a delicate balance of interactions involving NK cells, DC, and trophoblasts at the mouse maternal fetal interface supports a successful pregnancy outcome.

  6. Study on the Immunomodulation Effect of Isodon japonicus Extract via Splenocyte Function and NK Anti-Tumor Activity

    Directory of Open Access Journals (Sweden)

    Kyung-A Hwang

    2012-04-01

    Full Text Available Here we investigated the potential immune-enhancing activity of Isodon japonicus on murine splenocyte and natural-killer (NK cells in vitro. The ethanol extract of I. japonicus significantly enhanced the proliferation of splenocyte and induced the significant enhancement of NK cells’ activity against tumor cells (YAC-1. In addition, I. japonicus increased the production of interferon (IFN-γ and tumor necrosis factor (TNF-α, suggesting that the increase in NK cell cytotoxicity could be due to the enhancement of the NK cell production of both cytokines. Taken together, I. japonicus extract inhibited the growth of human leukemia cells (K562 by 74%. Our observation indicated that the anti-tumor effects of I. japonicus may be attributed to its ability to serve as a stimulant of NK anti-tumor activity. In addition, our results support the development of functional food studies on I. japonicus.

  7. Progress of research on activation function of NK cell exposed to low dose radiation in adoptive cellular immunotherapy

    International Nuclear Information System (INIS)

    Pan Xiaosong; Shi Yujia; Yao Yimin; Xu Hong; Liu Fenju

    2009-01-01

    Natural killer cells is an important immunological factor in killing malignant cells. Low dose radiation can enhance proliferation and biological activity of NK cell. The involvement of P38MAPK signal pathway and endogenous glutathione induced by LDR may be the probable mechanism. Natural killer cell, especially adherent natural killer cell, is the preferential choice for adoptive cellular immunotherapy, which has a remarkable foreground in malignancy therapy.(authors)

  8. Conservation of gene linkage in dispersed vertebrate NK homeobox clusters.

    Science.gov (United States)

    Wotton, Karl R; Weierud, Frida K; Juárez-Morales, José L; Alvares, Lúcia E; Dietrich, Susanne; Lewis, Katharine E

    2009-10-01

    Nk homeobox genes are important regulators of many different developmental processes including muscle, heart, central nervous system and sensory organ development. They are thought to have arisen as part of the ANTP megacluster, which also gave rise to Hox and ParaHox genes, and at least some NK genes remain tightly linked in all animals examined so far. The protostome-deuterostome ancestor probably contained a cluster of nine Nk genes: (Msx)-(Nk4/tinman)-(Nk3/bagpipe)-(Lbx/ladybird)-(Tlx/c15)-(Nk7)-(Nk6/hgtx)-(Nk1/slouch)-(Nk5/Hmx). Of these genes, only NKX2.6-NKX3.1, LBX1-TLX1 and LBX2-TLX2 remain tightly linked in humans. However, it is currently unclear whether this is unique to the human genome as we do not know which of these Nk genes are clustered in other vertebrates. This makes it difficult to assess whether the remaining linkages are due to selective pressures or because chance rearrangements have "missed" certain genes. In this paper, we identify all of the paralogs of these ancestrally clustered NK genes in several distinct vertebrates. We demonstrate that tight linkages of Lbx1-Tlx1, Lbx2-Tlx2 and Nkx3.1-Nkx2.6 have been widely maintained in both the ray-finned and lobe-finned fish lineages. Moreover, the recently duplicated Hmx2-Hmx3 genes are also tightly linked. Finally, we show that Lbx1-Tlx1 and Hmx2-Hmx3 are flanked by highly conserved noncoding elements, suggesting that shared regulatory regions may have resulted in evolutionary pressure to maintain these linkages. Consistent with this, these pairs of genes have overlapping expression domains. In contrast, Lbx2-Tlx2 and Nkx3.1-Nkx2.6, which do not seem to be coexpressed, are also not associated with conserved noncoding sequences, suggesting that an alternative mechanism may be responsible for the continued clustering of these genes.

  9. Altered development of NKT cells, γδ T cells, CD8 T cells and NK cells in a PLZF deficient patient.

    Directory of Open Access Journals (Sweden)

    Maggie Eidson

    Full Text Available In mice, the transcription factor, PLZF, controls the development of effector functions in invariant NKT cells and a subset of NKT cell-like, γδ T cells. Here, we show that in human lymphocytes, in addition to invariant NKT cells, PLZF was also expressed in a large percentage of CD8+ and CD4+ T cells. Furthermore, PLZF was also found to be expressed in all γδ T cells and in all NK cells. Importantly, we show that in a donor lacking functional PLZF, all of these various lymphocyte populations were altered. Therefore, in contrast to mice, PLZF appears to control the development and/or function of a wide variety of human lymphocytes that represent more than 10% of the total PBMCs. Interestingly, the PLZF-expressing CD8+ T cell population was found to be expanded in the peripheral blood of patients with metastatic melanoma but was greatly diminished in patients with autoimmune disease.

  10. Cytokine and surface receptor diversity of NK cells in resistant C3H/HeN and susceptible BALB/c mice with chronic Pseudomonas aeruginosa lung infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Moser, Claus; Jensen, Peter Østrup

    2003-01-01

    The purpose of the present study was to investigate whether NK cells from resistant C3H/HeN mice and susceptible BALB/c mice showed different release of cytokines and expression of surface molecules during chronic P. aeruginosa lung infection using alginate-embedded P. aeruginosa mimicking...... expression of the LFA-1 and Fc receptors on NK cells. At day 2, IFN-gamma levels increased in C3H/HeN mice but decreased in BALB/c mice. The GM-CSF levels increased only in the C3H/HeN mice at day 1 and 2. Surface expression of LFA-1 on the NK cells was higher in C3H/HeN mice at day 1 and 2. In contrast...

  11. Clinical significance of cyclooxygenase-2 expression in extranodal natural killer (NK)/T-cell lymphoma, nasal type

    International Nuclear Information System (INIS)

    Shim, Su Jung; Yang, Woo-Ick; Shin, Eunah; Koom, Woong Sub; Kim, Yong Bae; Cho, Jae Ho; Suh, Chang Ok; Kim, Joo Hang; Kim, Gwi Eon

    2007-01-01

    Purpose: To determine whether there are any differences in therapeutic response, patterns of systemic recurrence, and prognosis of patients with extranodal natural killer (NK)/T-cell lymphoma, nasal type, by the cyclooxygenase-2 (COX-2) expression. Patients and Methods: Thirty-four patients with Ann Arbor Stage I and II extranodal NK/T-cell lymphoma who underwent chemotherapy or radiotherapy, or both, were retrospectively reviewed. These patients were divided into two groups according to their immunohistochemical staining for COX-2 expressions: a COX-2-negative group (n = 10 patients) and a COX-2-positive group (n = 24 patients). The treatment response, patterns of treatment failure, and survival data for the patients were compared between the COX-2-positive and negative groups. Results: There was no significant difference in the clinical profiles between the COX-2-negative and COX-2-positive groups. All patients (100%) in the COX-2-negative group achieved complete response after initial treatment, whereas only 14 patients (58%) in the COX-2-positive group achieved complete response (p = 0.03). Compared with the patients in the COX-2-negative group, those in the COX-2-positive group had a significantly lower 2-year systemic recurrence-free survival rate (100% for the COX-2-negative group vs. 54% for the COX-2-positive group) (p = 0.02) and a decreased 5-year overall survival rate (70% for the COX-2-negative group vs. 32% for the COX-2-positive group) (p = 0.06). Conclusion: Cyclooxygenase-2 expression can serve as a predictive factor for poor treatment response, higher systemic recurrence, and unfavorable prognosis in patients with extranodal NK/T-cell lymphoma, nasal type

  12. Elevation of CD16+CD56+ NK-cells and down-regulation of serum interleukin-21 (IL-21) and IL-1α after splenectomy in relapsed hemophagocytic lymphohistiocytosis of unknown cause.

    Science.gov (United States)

    Wang, Jingshi; Han, Wei; Gao, Zhuo; Wang, Yini; Wu, Lin; Zhang, Jia; Lai, Wenyuan; Wang, Zhao

    2017-09-01

    Encouraging progress has been made in application of splenectomy in the treatment of relapsed hemophagocytic lymphohistiocytosis (HLH) of unknown cause. The aim was to determine the roles of lymphocyte subpopulations and inflammatory cytokines in splenectomy. We retrospectively analyzed changes in lymphocyte subpopulations and levels of inflammatory cytokines at different time-points before and after splenectomy in the patients with relapsed HLH of unknown cause, as well as the correlations between these changes and the disease prognosis. During the period from June 2006 to June 2016, we enrolled 107 patients with relapsed HLH of unknown cause, of whom 29 were treated with splenectomy. Among the 29 patients, 7 cases were non-Hodgkin lymphomas based on spleen pathology, 1 case withdrew and the remaining 21 non-lymphoma cases were available for analysis. Results showed a significant increase in both percentage of CD16 + CD56 + NK cells (P = 0.003) and NK cell activity (P = 0.028) at 24 wk after splenectomy compared to their baseline pre-surgery levels. We also examined seven patients for the changes in cytokine levels before and after splenectomy and found that IL-21 and IL-1α decreased at 4 wk after splenectomy (P splenectomy had significantly longer survival (P = 0.001) compared to the 24 patients with relapsed HLH of unknown cause who were also determined as NR but not treated by splenectomy. Splenectomy can improve clinical symptoms and survival of patients with relapsed HLH of unknown cause. The mechanism is likely related to the changes in percent NK cells and cytokines (IL-21 and IL-1α) after surgery.

  13. Effects of low dose irradiation on NK activity of normal individuals and patients with cancer

    International Nuclear Information System (INIS)

    Tian Hailin; Su Liaoyuan

    1994-10-01

    Effects of low dose irradiation on NK activity of lymphocytes and on K 562 cells were studied. The NK activity was determined by means of 3 H-TdR release assay. While 3 H-TdR incorporation was used to reflect functional changes of K 562 cells after low dose irradiation. 21 patients with cancer and 10 normal individuals were detected. The results indicated that the NK activity of lymphocytes in normal individuals increased significantly after 10 and 50 cGy γ-ray irradiation, while in patients with cancer the NK activity of lymphocytes increased only at the dose of 50 cGy irradiation. The increase of NK activity in normal individuals was higher than that in patients with cancer after same doses of irradiation. When K 562 cells were irradiated by 10 cGy γ-rays, the 3 H-TdR incorporation value increased. After exposed to over 50 cGy the stimulating effect disappeared

  14. CD5−NK1.1+ γδ T Cells that Develop in a Bcl11b-Independent Manner Participate in Early Protection against Infection

    Directory of Open Access Journals (Sweden)

    Shinya Hatano

    2017-10-01

    Full Text Available Summary: We recently found that a unique subset of innate-like γδ T cells develops from the DN2a stage of the fetal thymus independently of the zinc-finger transcription factor B cell leukemia/lymphoma 11b (Bcl11b. Herein, we characterize these Bcl11b-independent γδ T cells in the periphery as CD5−NK1.1+ and Granzyme B+, and we show that they are capable of producing interferon (IFN-γ upon T cell receptor stimulation without Ca2+ influx. In wild-type mice, these cells were sparse in lymphoid tissues but abundant in non-lymphoid tissues, such as the liver. Bcl11b-independent CD5−NK1.1+ γδ T cells appeared and contributed to early protection before Bcl11b-dependent CD5+NK1.1− γδ T cells following Listeria monocytogenes infection, resembling their sequential appearance during development in the thymus. : Bcl11b is essential for transition from the DN2a to the DN2b stage in the thymus. Hatano et al. find that CD5−NK1.1+ γδ T cells develop from the DN2a stage in a Bcl11b-independent manner and participate in host defense at an early stage after bacterial infection in periphery. Keywords: innate immunity, γδ T cell, Bcl11b, DN2a, IFN-γ, Granzyme, IL-17A, host defense, bacteria, Listeria monocytogenes

  15. Biological and Pharmacological Aspects of the NK1-Receptor

    Directory of Open Access Journals (Sweden)

    Susana Garcia-Recio

    2015-01-01

    Full Text Available The neurokinin 1 receptor (NK-1R is the main receptor for the tachykinin family of peptides. Substance P (SP is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema. This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV. The first of these antagonists, aprepitant (oral administration and fosaprepitant (intravenous administration, are prescribed for high and moderate emesis.

  16. The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells.

    Science.gov (United States)

    Huang, Bo Yuan; Zhan, Yi Ping; Zong, Wen Jing; Yu, Chun Jiang; Li, Jun Fa; Qu, Yan Ming; Han, Song

    2015-01-01

    Glioblastoma multiforme (GBM) is the most malignant primary type of brain tumor in adults. There has been increased focus on the immunotherapies to treat GBM patients, the therapeutic value of natural killer (NK) cells is still unknown. Programmed death-1 (PD-1) is a major immunological checkpoint that can negatively regulate the T-cell-mediated immune response. We tested the combination of the inhibiting the PD-1/B7H1 pathway with a NK-cell mediated immune response in an orthotopic mouse model of GBM. Mouse glioma stem cells (GL261GSCs) and mouse NK cells were isolated and identified. A lactate dehydrogenase (LDH) assay was perfomed to detect the cytotoxicity of NK cells against GL261GSCs. GL261GSCs were intracranially implanted into mice, and the mice were stratified into 3 treatment groups: 1) control, 2) NK cells treatment, and 3) PD-1 inhibited NK cells treatment group. Overall survival was quantified, and animal magnetic resonance imaging (MRI) was performed to determine tumor growth. The brains were harvested after the mice were euthanized, and immunohistochemistry against CD45 and PCNA was performed. The mouse NK cells were identified as 90% CD3- NK1.1+CD335+ by flow cytometric analysis. In the LDH assay, the ratios of the damaged GL261GSCs, with the E:T ratios of 2.5:1, 5:1, and 10:1, were as follows: 1) non-inhibited group: 7.42%, 11.31%, and 15.1%, 2) B7H1 inhibited group: 14.75%, 18.25% and 29.1%, 3) PD-1 inhibited group: 15.53%, 19.21% and 29.93%, 4) double inhibited group: 33.24%, 42.86% and 54.91%. In the in vivo experiments, the mice in the PD-1 inhibited NK cells treatment group and IL-2-stimulated-NK cells treatment group displayed a slowest tumor growth (F = 308.5, Pmouse NK cells to kill the GL261GSCs, and the PD-1-inhibited NK cells could be a feasible immune therapeutic approach against GBM.

  17. Clinicopathological categorization of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disease: an analysis of 42 cases with an emphasis on prognostic implications.

    Science.gov (United States)

    Paik, Jin Ho; Choe, Ji-Young; Kim, Hyojin; Lee, Jeong-Ok; Kang, Hyoung Jin; Shin, Hee Young; Lee, Dong Soon; Heo, Dae Seog; Kim, Chul-Woo; Cho, Kwang-Hyun; Kim, Tae Min; Jeon, Yoon Kyung

    2017-01-01

    Epstein-Barr virus-positive T/NK-cell lymphoproliferative diseases (EBV-T/NK-LPDs) include several overlapping EBV-related conditions with variably aggressive courses. For prognostic categorization, we retrospectively analyzed 42 EBV-T/NK-LPD cases. Male (79% [33/42]), young (≤40 years; 83% [35/42]) patients and T-cell lineage (81% [34/42]; CD8/CD4 = 1.8) were predominant. Clinicopathologically, three systemic and one cutaneous category were developed: hemophagocytic lymphohistiocytosis (HLH; 26% [11/42]), chronic active EBV infection (CAEBV; 31% [13/42]), systemic unclassifiable disease (24% [10/42]), and hydroa vacciniforme/hydroa vacciniforme-like lymphoma (HV/HVL; 19% [8/42]). Prognostically, cutaneous disease (HV/HVL) was better than systemic disease (p = 0.014; median, 285 vs. 10 months). In systemic diseases, HLH was worst (p = 0.002; 3[HLH] vs. 4[unclassifiable] vs. not reached [CAEBV]). Univariate survival analysis (n = 42) revealed cytopenia (≥one lineage; p 40 years; p = 0.001), T-cell lineage (p = 0.041), hemophagocytic histiocytes (p = 0.031), elevated lactate dehydrogenase (p = 0.020), and liver dysfunction (p = 0.023) predicted shorter survival. In multivariate analysis, T-cell lineage (p = 0.025 [HR =11.3]) and cytopenia (p = 0.028 [HR =5.4]) were independent prognostic factors. Therefore, EBV-T/NK-LPD could be classified into four prognostic categories.

  18. Characterization of species-related differences in the pharmacology of tachykinin NK receptors 1, 2 and 3

    OpenAIRE

    2009-01-01

    Abstract Tachykinin NK receptors (NKR) differ to a large degree among species with respect to their affinities for small molecule antagonists. The aims of the present study were to clone NKRs from gerbil (NK2R and NK3R) and dog (NK1R, NK2R, NK3R) in which the sequence was previously unknown and to investigate the potency of several NKR antagonists at all known human, dog, gerbil and rat NKRs. The NKR protein coding sequences were cloned and expressed in CHO cells. The in...

  19. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation.

    Science.gov (United States)

    Ha, V L; Luong, A; Li, F; Casero, D; Malvar, J; Kim, Y M; Bhatia, R; Crooks, G M; Parekh, C

    2017-11-01

    The initial stages of T-cell differentiation are characterized by a progressive commitment to the T-cell lineage, a process that involves the loss of alternative (myelo-erythroid, NK, B) lineage potentials. Aberrant differentiation during these stages can result in T-cell acute lymphoblastic leukemia (T-ALL). However, the mechanisms regulating the initial stages of human T-cell differentiation are obscure. Through loss of function studies, we showed BCL11B, a transcription factor recurrently mutated T-ALL, is essential for T-lineage commitment, particularly the repression of NK and myeloid potentials, and the induction of T-lineage genes, during the initial stages of human T-cell differentiation. In gain of function studies, BCL11B inhibited growth of and induced a T-lineage transcriptional program in T-ALL cells. We found previously unknown differentiation stage-specific DNA binding of BCL11B at multiple T-lineage genes; target genes showed BCL11B-dependent expression, suggesting a transcriptional activator role for BCL11B at these genes. Transcriptional analyses revealed differences in the regulatory actions of BCL11B between human and murine thymopoiesis. Our studies show BCL11B is a key regulator of the initial stages of human T-cell differentiation and delineate the BCL11B transcriptional program, enabling the dissection of the underpinnings of normal T-cell differentiation and providing a resource for understanding dysregulations in T-ALL.

  20. Anti-metastatic effects of viral and non-viral mediated Nk4 delivery to tumours.

    Science.gov (United States)

    Buhles, Alexandra; Collins, Sara A; van Pijkeren, Jan P; Rajendran, Simon; Miles, Michelle; O'Sullivan, Gerald C; O'Hanlon, Deirdre M; Tangney, Mark

    2009-03-09

    The most common cause of death of cancer sufferers is through the occurrence of metastases. The metastatic behaviour of tumour cells is regulated by extracellular growth factors such as hepatocyte growth factor (HGF), a ligand for the c-Met receptor tyrosine kinase, and aberrant expression/activation of the c-Met receptor is closely associated with metastatic progression. Nk4 (also known as Interleukin (IL)32b) is a competitive antagonist of the HGF c-Met system and inhibits c-Met signalling and tumour metastasis. Nk4 has an additional anti-angiogenic activity independent of its HGF-antagonist function. Angiogenesis-inhibitory as well as cancer-specific apoptosis inducing effects make the Nk4 sequence an attractive candidate for gene therapy of cancer. This study investigates the inhibition of tumour metastasis by gene therapy mediated production of Nk4 by the primary tumour. Optimal delivery of anti-cancer genes is vital in order to achieve the highest therapeutic responses. Non-viral plasmid delivery methods have the advantage of safety and ease of production, providing immediate transgene expression, albeit short-lived in most tumours. Sustained presence of anti-angiogenic molecules is preferable with anti-angiogenic therapies, and the long-term expression mediated by Adeno-associated Virus (AAV) might represent a more appropriate delivery in this respect. However, the incubation time required by AAV vectors to reach appropriate gene expression levels hampers efficacy in many fast-growing murine tumour models. Here, we describe murine trials assessing the effects of Nk4 on the spontaneously metastatic Lewis Lung Carcinoma (LLC) model when delivered to primary tumour via plasmid lipofection or AAV2 vector. Intratumoural AAV-Nk4 administration produced the highest therapeutic response with significant reduction in both primary tumour growth and incidence of lung metastases. Plasmid-mediated therapy also significantly reduced metastatic growth, but with moderate

  1. IL-15 regulates homeostasis and terminal maturation of NKT cells1

    Science.gov (United States)

    Gordy, Laura E.; Bezbradica, Jelena S.; Flyak, Andrew I.; Spencer, Charles T.; Dunkle, Alexis; Sun, Jingchun; Stanic, Aleksandar K.; Boothby, Mark R.; He, You-Wen; Zhao, Zhongming; Van Kaer, Luc; Joyce, Sebastian

    2011-01-01

    Semi-invariant natural killer T (NKT) cells are thymus-derived innate lymphocytes that modulate microbial and tumour immunity as well as autoimmune diseases. These immunoregulatory properties of NKT cells are acquired during their development. Much has been learnt regarding the molecular and cellular cues that promote NKT cell development, yet how these cells are maintained in the thymus and the periphery and how they acquire functional competence are incompletely understood. We found that IL-15 induced several Bcl-2 family survival factors in thymic and splenic NKT cells in vitro. Yet, IL15-mediated thymic and peripheral NKT cell survival critically depended on Bcl-xL expression. Additionally, IL-15 regulated thymic developmental stage 2 (ST2) to ST3 lineage progression and terminal NKT cell differentiation. Global gene expression analyses and validation revealed that IL-15 regulated Tbx21 (T-bet) expression in thymic NKT cells. The loss of IL15 also resulted in poor expression of key effector molecules such as IFN-γ, granzyme A and C as well as several NK cell receptors in NKT cells. Taken together, our findings reveal a critical role for IL-15 in NKT cell survival, which is mediated by Bcl-xL, and effector differentiation, which is consistent with a role of T-bet in regulating terminal maturation. PMID:22084435

  2. Elusive Role of the CD94/NKG2C NK Cell Receptor in the Response to Cytomegalovirus: Novel Experimental Observations in a Reporter Cell System

    Directory of Open Access Journals (Sweden)

    Aldi Pupuleku

    2017-10-01

    Full Text Available Human cytomegalovirus (HCMV infection promotes the differentiation and persistent expansion of a mature NK cell subset, which displays high surface levels of the activating CD94/NKG2C NK cell receptor, together with additional distinctive phenotypic and functional features. The mechanisms underlying the development of adaptive NK cells remain uncertain but some observations support the involvement of a cognate interaction of CD94/NKG2C with ligand(s displayed by HCMV-infected cells. To approach this issue, the heterodimer and its adaptor (DAP12 were expressed in the human Jurkat leukemia T cell line; signaling was detected by transfection of a reporter plasmid encoding for Luciferase (Luc under NFAT/AP1-dependent control. Engagement of the receptor by solid-phase bound CD94- or NKG2C-specific monoclonal antibodies (mAbs triggered Luc expression. Moreover, reporter activation was detectable upon interaction with HLA-E+ 721.221 (.221-AEH cells, as well as with 721.221 cells incubated with synthetic peptides, which stabilized surface expression of endogenous HLA-E; the response was specifically antagonized by soluble NKG2C- and HLA-E-specific mAbs. By contrast, activation of Jurkat-NKG2C+ was undetectable upon interaction with Human Fetal Foreskin Fibroblasts (HFFF infected with HCMV laboratory strains (i.e., AD169, Towne, regardless of their differential ability to preserve surface HLA-E expression. On the other hand, infection with two clinical isolates or with the endotheliotropic TB40/E strain triggered Jurkat-NKG2C+ activation; yet, this response was not inhibited by blocking mAbs and was independent of CD94/NKG2C expression. The results are discussed in the framework of previous observations supporting the hypothetical existence of specific ligand(s for CD94/NKG2C in HCMV-infected cells.

  3. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion.

    Directory of Open Access Journals (Sweden)

    Marie Lundholm

    Full Text Available Tumor-derived exosomes, which are nanometer-sized extracellular vesicles of endosomal origin, have emerged as promoters of tumor immune evasion but their role in prostate cancer (PC progression is poorly understood. In this study, we investigated the ability of prostate tumor-derived exosomes to downregulate NKG2D expression on natural killer (NK and CD8+ T cells. NKG2D is an activating cytotoxicity receptor whose aberrant loss in cancer plays an important role in immune suppression. Using flow cytometry, we found that exosomes produced by human PC cells express ligands for NKG2D on their surface. The NKG2D ligand-expressing prostate tumor-derived exosomes selectively induced downregulation of NKG2D on NK and CD8+ T cells in a dose-dependent manner, leading to impaired cytotoxic function in vitro. Consistent with these findings, patients with castration-resistant PC (CRPC showed a significant decrease in surface NKG2D expression on circulating NK and CD8+ T cells compared to healthy individuals. Tumor-derived exosomes are likely involved in this NKG2D downregulation, since incubation of healthy lymphocytes with exosomes isolated from serum or plasma of CRPC patients triggered downregulation of NKG2D expression in effector lymphocytes. These data suggest prostate tumor-derived exosomes as down-regulators of the NKG2D-mediated cytotoxic response in PC patients, thus promoting immune suppression and tumor escape.

  4. Dynamic changes of cytotoxic T lymphocytes (CTLs, natural killer (NK cells, and natural killer T (NKT cells in patients with acute hepatitis B infection

    Directory of Open Access Journals (Sweden)

    Liu Bo

    2011-05-01

    Full Text Available Abstract Background The goal of this study is to observe changes in HBcAg-specific cytotoxic T lymphocytes (CTLs, natural killer (NK and natural killer T (NKT cells from peripheral blood and to relate such changes on viral clearance and liver injury in patients with acute hepatitis B (AHB. Methods Dynamic profiles on the frequency of HLA-A0201-restricted HBcAg18-27 pentamer complex (MHC-Pentamer-specific CTLs and lymphocyte subsets in AHB patients were analyzed in addition to liver function tests, HBV serological markers, and HBV DNA levels. ELISPOT was used to detect interferon-gamma (INF-γ secretion in specific CTLs stimulated with known T cell epitope peptides associated with HBV surface protein, polymerase, and core protein. Results HBV-specific CTL frequencies in AHB patients were much higher than in patients with chronic hepatitis B (CHB (p +CD8+ T cell numbers in AHB patients was more than observed in the healthy control group from the first to the fourth week after admission (p = 0.008 and 0.01, respectively; the number of CD3+CD8+ T cells and frequency of HBcAg18-27-specific CTLs in AHB patients reached peak levels at the second week after admission. NK and NKT cell numbers were negatively correlated with the frequency of HBcAg-specific CTLs (r = -0.266, p = 0.05. Conclusions Patients with AHB possess a higher frequency of HBcAg-specific CTLs than CHB patients. The frequency of specific CTLs in AHB patients is correlated with HBeAg clearance indicating that HBV-specific CTLs play an important role in viral clearance and the self-limited process of the disease. Furthermore, NK and NKT cells are likely involved in the early, non-specific immune response to clear the virus.

  5. MANUFACTURING NATURAL KILLER CELLS AS MEDICINAL PRODUCTS

    Directory of Open Access Journals (Sweden)

    Christian CHABANNON

    2016-11-01

    Full Text Available Natural Killer (NK cells are Innate Lymphoid Cells (ILC with cytotoxic and regulatory properties. Their functions are tightly regulated by an array of inhibitory and activating receptors, and their mechanisms of activation strongly differ from antigen recognition in the context of HLA presentation as needed for T-cell activation. NK cells thus offer unique opportunities for new and improved therapeutic manipulation, either in vivo or in vitro, in a variety of human diseases, including cancers. NK cell activity can possibly be modulated in vivo through direct or indirect actions exerted by small molecules or monoclonal antibodies. NK cells can also be adoptively transferred following more or less substantial modifications through cell and gene manufacturing, in order to empower them with new or improved functions and ensure their controlled persistence and activity in the recipient. In the present review, we will focus on the technological and regulatory challenges of NK cell manufacturing, and discuss conditions in which these innovative cellular therapies can be brought to the clinic.

  6. Different features of V?2 T and NK cells in fatal and non-fatal human Ebola infections

    OpenAIRE

    Cimini, Eleonora; Viola, Domenico; Cabeza-Cabrerizo, Mar; Romanelli, Antonella; Tumino, Nicola; Sacchi, Alessandra; Bordoni, Veronica; Casetti, Rita; Turchi, Federica; Martini, Federico; Bore, Joseph A.; Koundouno, Fara Raymond; Duraffour, Sophie; Michel, Janine; Holm, Tobias

    2017-01-01

    Background Human Ebola infection is characterized by a paralysis of the immune system. A signature of ?? T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze ?? T and NK cells in patients from the Ebola outbreak of 2014?2015 occurred in West Africa, and to assess their association with the clinical outcome. Methodology/Principal findings Nineteen ...

  7. Extranodal NK/T Cell Lymphoma, Nasal Type (ENKTL-NT): An Update on Epidemiology, Clinical Presentation, and Natural History in North American and European Cases.

    Science.gov (United States)

    Haverkos, Bradley M; Pan, Zenggang; Gru, Alejandro A; Freud, Aharon G; Rabinovitch, Rachel; Xu-Welliver, Meng; Otto, Brad; Barrionuevo, Carlos; Baiocchi, Robert A; Rochford, Rosemary; Porcu, Pierluigi

    2016-12-01

    Extranodal NK/T cell lymphoma, nasal type (ENKTL-NT) is an aggressive extranodal non-Hodgkin lymphoma most commonly occurring in East Asia and Latin America but with increasing incidence in the United States. Data on epidemiology, disease presentation, and outcome for European and North American ("Western") cases are very limited. We review published landmark clinical studies on ENKTL-NT in the West and report in detail recent data, including our institutional experience. We highlight key observations in its epidemiology, natural history, and trends in clinical management. In the USA, ENKTL-NT is more common among Asian Pacific Islanders (API) and Hispanics compared to non-Hispanic whites. Published studies indicate less heterogeneity in clinical presentation in Western ENKTL-NT compared to Asian patients. While there is variation in age at diagnosis, presence of antecedent lymphoproliferative disorders, and outcomes among racial/ethnic groups, the universal association of ENKTL-NT with EBV and the poor response of this neoplasm to anthracycline-based therapy is consistent across all geographic areas. Data on epidemiology, disease presentation, and clinical outcomes in mature T cell and NK cell (T/NK cell) neoplasms, including ENKTL-NT, in Europe and North America are very limited. As the classification and diagnostic characterization of the currently recognized T/NK cell lymphoma disease entities continue to evolve, gaps and inconsistencies in data reporting across different studies are being recognized. Despite these limitations, several studies from the USA suggest that the incidence of ENKTL-NT is higher in Asian Pacific Islanders (API) and non-white Hispanics and that outcomes may be worse in non-whites. However, the universal association of ENKTL-NT with Epstein-Barr virus (EBV) across all ethnic groups suggests a common pathogenesis. Given the overlap between the entities included in the category of T/NK cell neoplasms, there is a need to further define

  8. Inflammatory Ly6Chigh Monocytes Protect against Candidiasis through IL-15-Driven NK Cell/Neutrophil Activation.

    Science.gov (United States)

    Domínguez-Andrés, Jorge; Feo-Lucas, Lidia; Minguito de la Escalera, María; González, Leticia; López-Bravo, María; Ardavín, Carlos

    2017-06-20

    Neutrophils play a crucial role in defense against systemic candidiasis, a disease associated with a high mortality rate in patients receiving immunosuppressive therapy, although the early immune mechanisms that boost the candidacidal activity of neutrophils remain to be defined in depth. Here, we used a murine model of systemic candidiasis to explore the role of inflammatory Ly6C high monocytes in NK cell-mediated neutrophil activation during the innate immune response against C. albicans. We found that efficient anti-Candida immunity required a collaborative response between the spleen and kidney, which relied on type I interferon-dependent IL-15 production by spleen inflammatory Ly6C high monocytes to drive efficient activation and GM-CSF release by spleen NK cells; this in turn was necessary to boost the Candida killing potential of kidney neutrophils. Our findings unveil a role for IL-15 as a critical mediator in defense against systemic candidiasis and hold promise for the design of IL-15-based antifungal immunotherapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Peningkatan Ekspresi Gen NKG2D Sel-sel NK oleh Brokoli untuk Mencegah Kanker

    Directory of Open Access Journals (Sweden)

    Diana Krisanti Jasaputra

    2017-08-01

    Cancer is the non-communicable diseases (NCD and the biggest cause of death in the world. One of the factors that affect cancer development is NKG2D receptors (natural-killer group 2, member D is a receptor complex that activates NK cells and is important in cancer immunosurveilance. Broccoli, Cruciferae vegetable, contains glucosinolate and isothiocyanate. Glucosinolate will be hydrolysed by the mirosinase (thioglucodase β and form the isothiocyanate compound. Isothiocyanate compounds essential to prevent cancer are sulforafan compounds. The objective of the study was to assess the effect of broccoli in enhancing NKG2D receptor expression in order to improve NK cell activity to prevent cancer. This experimental study is a comparative true experimental laboratory, conducted in the Aretha Medika Utama in February to July 2016. Broccoli was freeze dryer and made two concentrations of flour, 50 μg/mL and 25 μg/mL. The study begins with multiplication of NK cells (cell line, then continued with treatment for 24 hours and assessment of NKG2D gene expression using qPCR. NKG2D gene expression research data was calculated by Livak formula and analyzed using one-way ANOVA test and Tukey's advanced test (SPSS 16. The administration of broccoli concentrations of 50 μg/mL and 25 μg/mL increased the level of NKG2D gene expression, indicating an increase in NK cell activity. The conclusion of this study is the provision of broccoli increases the activity of NK cells in preventing and fighting cancer cells.

  10. [Immune regulation activity and mechanism of Tibetan Kefir exopolysaccharide fractions].

    Science.gov (United States)

    Meng, Li; Zhang, Lanwei

    2009-12-01

    To investigate the effects and mechanism on immune regulation activity in mice of two Tibetan Kefir exoploysaccharides (EPS) with different molecular weight of 0.1 x 10(5) - 3 x 10(5) (fraction 1) and 1.8 x 10(3) (fraction 2). The immune regulation activity experiment was carried out in vitro based on the Functional Assessment Procedure and Test Methods of Health Food, which was issued by Ministry of Health of China. First, we treated mice subjects with EPS at doses of 40 mg/kg, 80 mg/kg, 120 mg/kg through ig. Then we detected the index of immune organs, the ability of antibody production (tested by HC50), activity of NK cell, delayed type hypersensitivity (DTH) and phagocytosis of macrophage in mice. Finally, we examined the expression of Erk protein in Macrophages by Western Blot assay. Fraction 1 could promote HC50, activity of NK cell and DTH in mice which low dose showed better. Fraction 2 could promote DTH, phagocytosis of macrophage which high dose showed better. The expression of Erk and COX-2 had the same trend with Phagocytic index. We verified the two fractions of Tibetan Kefir EPS could enhance immune functions in mice. Fraction 1 regulated immune function through NK cell and B cell while fraction 2 through macrophage cell and T cell. The effects to macrophage of Tibetan Kefir EPS in mice may realize through extra cellular signal-regulated kinase Erk pathway.

  11. Dynamic contrast enhanced MRI detects early response to adoptive NK cellular immunotherapy targeting the NG2 proteoglycan in a rat model of glioblastoma.

    Directory of Open Access Journals (Sweden)

    Cecilie Brekke Rygh

    Full Text Available There are currently no established radiological parameters that predict response to immunotherapy. We hypothesised that multiparametric, longitudinal magnetic resonance imaging (MRI of physiological parameters and pharmacokinetic models might detect early biological responses to immunotherapy for glioblastoma targeting NG2/CSPG4 with mAb9.2.27 combined with natural killer (NK cells. Contrast enhanced conventional T1-weighted MRI at 7±1 and 17±2 days post-treatment failed to detect differences in tumour size between the treatment groups, whereas, follow-up scans at 3 months demonstrated diminished signal intensity and tumour volume in the surviving NK+mAb9.2.27 treated animals. Notably, interstitial volume fraction (ve, was significantly increased in the NK+mAb9.2.27 combination therapy group compared mAb9.2.27 and NK cell monotherapy groups (p = 0.002 and p = 0.017 respectively in cohort 1 animals treated with 1 million NK cells. ve was reproducibly increased in the combination NK+mAb9.2.27 compared to NK cell monotherapy in cohort 2 treated with increased dose of 2 million NK cells (p<0.0001, indicating greater cell death induced by NK+mAb9.2.27 treatment. The interstitial volume fraction in the NK monotherapy group was significantly reduced compared to mAb9.2.27 monotherapy (p<0.0001 and untreated controls (p = 0.014 in the cohort 2 animals. NK cells in monotherapy were unable to kill the U87MG cells that highly expressed class I human leucocyte antigens, and diminished stress ligands for activating receptors. A significant association between apparent diffusion coefficient (ADC of water and ve in combination NK+mAb9.2.27 and NK monotherapy treated tumours was evident, where increased ADC corresponded to reduced ve in both cases. Collectively, these data support histological measures at end-stage demonstrating diminished tumour cell proliferation and pronounced apoptosis in the NK+mAb9.2.27 treated tumours compared to the other

  12. Human natural killer cell maturation defect supports in vivo CD56(bright to CD56(dim lineage development.

    Directory of Open Access Journals (Sweden)

    Carolina Inés Domaica

    Full Text Available Two populations of human natural killer (NK cells can be identified in peripheral blood. The majority are CD3(-CD56(dim cells while the minority exhibits a CD3(-CD56(bright phenotype. In vitro evidence indicates that CD56(bright cells are precursors of CD56(dim cells, but in vivo evidence is lacking. Here, we studied NK cells from a patient that suffered from a melanoma and opportunistic fungal infection during childhood. The patient exhibited a stable phenotype characterized by a reduction in the frequency of peripheral blood CD3(-CD56(dim NK cells, accompanied by an overt increase in the frequency and absolute number of CD3(-CD56(bright cells. These NK cells exhibited similar expression of perforin, CD57 and CD158, the major activating receptors CD16, NKp46, NKG2D, DNAM-1, and 2B4, as well as the inhibitory receptor CD94/NKG2A, on both CD56(bright and CD56(dim NK cells as healthy controls. Also, both NK cell subpopulations produced IFN-γ upon stimulation with cytokines, and CD3(-CD56(dim NK cells degranulated in response to cytokines or K562 cells. However, upon stimulation with cytokines, a substantial fraction of CD56(dim cells failed to up-regulate CD57 and CD158, showed a reduction in the percentage of CD16(+ cells, and CD56(bright cells did not down-regulate CD62L, suggesting that CD56(dim cells could not acquire a terminally differentiated phenotype and that CD56(bright cells exhibit a maturation defect that might result in a potential altered migration pattern. These observations, support the notion that NK cells of this patient display a maturation/activation defect that precludes the generation of mature NK cells at a normal rate accompanied by CD56(dim NK cells that cannot completely acquire a terminally differentiated phenotype. Thus, our results provide evidence that support the concept that in vivo CD56(bright NK cells differentiate into CD56(dim NK cells, and contribute to further understand human NK cell ontogeny.

  13. Natural killer cells recognize friend retrovirus-infected erythroid progenitor cells through NKG2D-RAE-1 interactions In Vivo.

    Science.gov (United States)

    Ogawa, Tatsuya; Tsuji-Kawahara, Sachiyo; Yuasa, Takae; Kinoshita, Saori; Chikaishi, Tomomi; Takamura, Shiki; Matsumura, Haruo; Seya, Tsukasa; Saga, Toshihiko; Miyazawa, Masaaki

    2011-06-01

    Natural killer (NK) cells function as early effector cells in the innate immune defense against viral infections and also participate in the regulation of normal and malignant hematopoiesis. NK cell activities have been associated with early clearance of viremia in experimental simian immunodeficiency virus and clinical human immunodeficiency virus type 1 (HIV-1) infections. We have previously shown that NK cells function as major cytotoxic effector cells in vaccine-induced immune protection against Friend virus (FV)-induced leukemia, and NK cell depletion totally abrogates the above protective immunity. However, how NK cells recognize retrovirus-infected cells remains largely unclear. The present study demonstrates a correlation between the expression of the products of retinoic acid early transcript-1 (RAE-1) genes in target cells and their susceptibility to killing by NK cells isolated from FV-infected animals. This killing was abrogated by antibodies blocking the NKG2D receptor in vitro. Further, the expression of RAE-1 proteins on erythroblast surfaces increased early after FV inoculation, and administration of an RAE-1-blocking antibody resulted in increased spleen infectious centers and exaggerated pathology, indicating that FV-infected erythroid cells are recognized by NK cells mainly through the NKG2D-RAE-1 interactions in vivo. Enhanced retroviral replication due to host gene-targeting resulted in markedly increased RAE-1 expression in the absence of massive erythroid cell proliferation, indicating a direct role of retroviral replication in RAE-1 upregulation.

  14. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections

    OpenAIRE

    Cimini, Eleonora; Viola, Domenico; Cabeza-Cabrerizo, Mar; Romanelli, Antonella; Tumino, Nicola; Sacchi, Alessandra; Bordoni, Veronica; Casetti, Rita; Turchi, Federica; Martini, Federico; Bore, Joseph A.; Koundouno, Fara Raymond; Duraffour, Sophie; Michel, Janine; Holm, Tobias

    2017-01-01

    Background: Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014–2015 occurred in West Africa, and to assess their association with the clinical outcome. Methodology/Principal findings: ...

  15. STING activation enhances cetuximab-mediated NK cell activation and DC maturation and correlates with HPV+ status in head and neck cancer.

    Science.gov (United States)

    Lu, Shanhong; Concha-Benavente, Fernando; Shayan, Gulidanna; Srivastava, Raghvendra M; Gibson, Sandra P; Wang, Lin; Gooding, William E; Ferris, Robert L

    2018-03-01

    The intracellular DNA sensor stimulator of interferon genes (STING) has recently been shown to play a vital role in anti-viral and anti-tumor immune responses stimulating cytokine production. While human papillomavirus (HPV) is a causative agent for a subset of head and neck squamous cell carcinoma (HNSCC) with unique etiology and clinical outcome, how the STING pathway is regulated in a virus-induced tumor microenvironment is not well understood. Since STING inactivation likely reflects immunoescape via innate immunity, we hypothesized that its restoration would improve efficacy of the immune modulatory monoclonal antibody (mAb), cetuximab. We correlated STING protein expression with clinical parameters by immunohistochemistry (n = 106) and its mRNA expression from The Cancer Genome Atlas (TCGA) in HNSCC tissue specimens. STING protein expression was tested for association with cancer-specific survival (CSS). We further examined the impact of STING activation on cetuximab-mediated immunity using an in vitro NK:DC:tumor cells co-culture system. In this study, we found that expression of STING both at the protein and mRNA level was higher in HPV positive (HPV + ) specimens but unrelated to TNM stage or cancer-specific survival. Our in vitro studies verified that STING activation enhanced cetuximab mediated NK cell activation and DC maturation. Our findings suggest a novel role of STING in HPV-related carcinogenesis, in which activation of the STING signaling pathway may facilitate anti-tumor response in HNSCC patients, particularly in combination with therapeutic monoclonal antibodies (mAbs) such as cetuximab, an epidermal growth factor receptor (EGFR) inhibitor. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Cytokine and surface receptor diversity of NK cells in resistant C3H/HeN and susceptible BALB/c mice with chronic Pseudomonas aeruginosa lung infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Moser, Claus; Jensen, Peter Østrup

    2003-01-01

    The purpose of the present study was to investigate whether NK cells from resistant C3H/HeN mice and susceptible BALB/c mice showed different release of cytokines and expression of surface molecules during chronic P. aeruginosa lung infection using alginate-embedded P. aeruginosa mimicking...... the infection in cystic fibrosis. Lung cell suspensions were depleted of lymphocytes by magnetic cell sorting. The concentrations of IFN-gamma, IL-1beta and GM-CSF were estimated by ELISA at day 1 and 2 after infection. Non-infected mice were used as controls. Flow cytometry was used to estimate the surface...... expression of the LFA-1 and Fc receptors on NK cells. At day 2, IFN-gamma levels increased in C3H/HeN mice but decreased in BALB/c mice. The GM-CSF levels increased only in the C3H/HeN mice at day 1 and 2. Surface expression of LFA-1 on the NK cells was higher in C3H/HeN mice at day 1 and 2. In contrast...

  17. Deciphering the role of Epstein-Barr virus in the pathogenesis of T and NK cell lymphoproliferations

    Science.gov (United States)

    2011-01-01

    Epstein-Barr virus (EBV) is a highly successful herpesvirus, colonizing more than 90% of the adult human population worldwide, although it is also associated with various malignant diseases. Primary infection is usually clinically silent, and subsequent establishment of latency in the memory B lymphocyte compartment allows persistence of the virus in the infected host for life. EBV is so markedly B-lymphotropic when exposed to human lymphocytes in vitro that the association of EBV with rare but distinct types of T and NK cell lymphoproliferations was quite unexpected. Whilst relatively rare, these EBV-associated T and NK lymphoproliferations can be therapeutically challenging and prognosis for the majority of patients is dismal. In this review, we summarize the current knowledge on the role of EBV in the pathogenesis of these tumours, and the implications for treatment. PMID:21899744

  18. Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity.

    Science.gov (United States)

    Siew, Yin-Yin; Neo, Soek-Ying; Yew, Hui-Chuing; Lim, Shun-Wei; Ng, Yi-Cheng; Lew, Si-Min; Seetoh, Wei-Guang; Seow, See-Voon; Koh, Hwee-Ling

    2015-12-01

    Selected cytotoxic chemicals can provoke the immune system to recognize and destroy malignant tumors. Most of the studies on immunogenic cell death are focused on the signals that operate on a series of receptors expressed by dendritic cells to induce tumor antigen-specific T-cell responses. Here, we explored the effects of oxaliplatin, an immunogenic cell death inducer, on the induction of stress ligands and promotion of natural killer (NK) cell-mediated cytotoxicity in human ovarian cancer cells. The results indicated that treatment of tumor cells with oxaliplatin induced the production of type I interferons and chemokines and enhanced the expression of major histocompatibility complex class I-related chains (MIC) A/B, UL16-binding protein (ULBP)-3, CD155 and TNF-related apoptosis-inducing ligand (TRAIL)-R1/R2. Furthermore, oxaliplatin but not cisplatin treatment enhanced susceptibility of ovarian cancer cells to NK cell-mediated cytolysis. In addition, activated NK cells completely abrogated the growth of cancer cells that were pretreated with oxaliplatin. However, cancer cells pretreated with the same concentration of oxaliplatin alone were capable of potentiating regrowth over a period of time. These results suggest an advantage in combining oxaliplatin and NK cell-based therapy in the treatment of ovarian cancer. Further investigation on such potential combination therapy is warranted. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad

    OpenAIRE

    Iwabuchi, Chikako; Iwabuchi, Kazuya; Nakagawa, Ken-ichi; Takayanagi, Toshiaki; Nishihori, Hiroki; Tone, Saori; Ogasawara, Kazumasa; Good, Robert A.; Onoé, Kazunori

    1998-01-01

    Generation and negative selection of NK1.1+α/β T cell receptor (TCR)+ thymocytes were analyzed using TCR-transgenic (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice and Rag-1−/−/DO10 mice, which had been established by breeding and backcrossing between Rag-1−/− and DO10 mice. Almost all T cells from these mice were shown to bear Vα13/Vβ8.2 that is specific for chicken ovalbumin (cOVA) and restricted to I-Ad. A normal proportion of the NK1.1+ Vα13/Vβ8.2+ thymocytes was generated in these mice. Ho...

  20. Targeting CD147 for T to NK Lineage Reprogramming and Tumor Therapy.

    Science.gov (United States)

    Geng, Jie-Jie; Tang, Juan; Yang, Xiang-Min; Chen, Ruo; Zhang, Yang; Zhang, Kui; Miao, Jin-Lin; Chen, Zhi-Nan; Zhu, Ping

    2017-06-01

    CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αβ T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative) and fully committed DP (double positive) cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy. Copyright © 2017. Published by Elsevier B.V.

  1. Targeting CD147 for T to NK Lineage Reprogramming and Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Jie-Jie Geng

    2017-06-01

    Full Text Available CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αβ T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative and fully committed DP (double positive cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy.

  2. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection.

    Science.gov (United States)

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  3. The impact of HLA class I-specific killer cell immunoglobulin-like receptors on antibody-dependent natural killer cell-mediated cytotoxicity and organ allograft rejection

    Directory of Open Access Journals (Sweden)

    Raja Rajalingam

    2016-12-01

    Full Text Available Natural killer (NK cells of the innate immune system are cytotoxic lymphocytes that play important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self HLA class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIR is involved in the calibration of NK cell effector capacities during a developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self HLA class I (due to virus infection or tumor transformation or HLA class I disparities (in the setting of allogeneic transplantation. NK cells expressing an inhibitory KIR binding self HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC, triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  4. Distinct Gut-Derived Bacteria Differentially Affect Three Types of Antigen-Presenting Cells and Impact on NK- and T-Cell Responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Hansen, Anne Marie Valentin; Frøkiær, Hanne

    Objectives Gut bacteria are assumed essential for development and maintenance of a balanced immune system. Specifically, stimulation of antigen-presenting cells (APCs) by gut bacteria is important for polarisation of the immune response. This experiment was designed to reveal similarities...... and differences between the reaction patterns of three types of human APCs when stimulated with intestinal bacteria. Furthermore, the effect of these APCs on NK-cells and T-cells was examined. Methodology The APCs used in this study were blood monocytes, blood dendritic cells, and dendritic cells differentiated...... from monocytes. Monocyte-derived dendritic cells constitute a commonly used model of dendritic cell function. The APCs were cultured for 18 h with four different gut bacteria: Lactobacillus acidophilus X37, Lactobacillus reuteri DSM 12246, E. coli Nissle 1917 or Bifidobacterium longum Q46. Results...

  5. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  6. β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G2/M phase transition.

    Science.gov (United States)

    Zhang, Yi-Xin; Li, Xiao-Fang; Yuan, Guo-Qiang; Hu, Hui; Song, Xiao-Yun; Li, Jing-Yi; Miao, Xiao-Kang; Zhou, Tian-Xiong; Yang, Wen-Le; Zhang, Xiao-Wei; Mou, Ling-Yun; Wang, Rui

    2017-05-26

    Glioblastoma is the most common malignant brain tumor and has a poor prognosis. Tachykinin receptor neurokinin-1 (NK1R) is a promising target in glioblastoma therapy because of its overexpression in human glioblastoma. NK1R agonists promote glioblastoma cell growth, whereas NK1R antagonists efficiently inhibit cell growth both in vitro and in vivo However, the molecular mechanisms involved in these effects are incompletely understood. β-Arrestins (ARRBs) serve as scaffold proteins and adapters to mediate intracellular signal transduction. Here we show that the ARRB1-mediated signaling pathway is essential for NK1-mediated glioblastoma cell proliferation. ARRB1 knockdown significantly inhibited NK1-mediated glioblastoma cell proliferation and induced G 2 /M phase cell cycle arrest. ARRB1 knockdown cells showed remarkable down-regulation of CDC25C/CDK1/cyclin B1 activity. We also demonstrated that ARRB1 mediated prolonged phosphorylation of ERK1/2 and Akt in glioblastoma cells induced by NK1R activation. ERK1/2 and Akt phosphorylation are involved in regulating CDC25C/CDK1/cyclin B1 activity. The lack of long-term ERK1/2 and Akt activation in ARRB1 knockdown cells was at least partly responsible for the delayed cell cycle progression and proliferation. Moreover, we found that ARRB1-mediated ERK1/2 and Akt phosphorylation regulated the transcriptional activity of both NF-κB and AP-1, which were involved in cyclin B1 expression. ARRB1 deficiency increased the sensitivity of glioblastoma cells to the treatment of NK1R antagonists. Taken together, our results suggest that ARRB1 plays an essential role in NK1R-mediated cell proliferation and G 2 /M transition in glioblastoma cells. Interference with ARRB1-mediated signaling via NK1R may have potential significance for therapeutic strategies targeting glioblastoma. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Elsevier Trophoblast Research Award Lecture: Unique properties of decidual T cells and their role in immune regulation during human pregnancy.

    Science.gov (United States)

    Tilburgs, T; Claas, F H J; Scherjon, S A

    2010-03-01

    Maternal lymphocytes at the fetal-maternal interface play a key role in the immune acceptance of the allogeneic fetus. Most studies focus on decidual NK cells and their interaction with fetal trophoblasts, whereas limited data are available on the mechanisms of fetus specific immune recognition and immune regulation by decidual T cells at the fetal-maternal interface. The aim of this review is to describe the phenotypic characteristics of decidual T cell subsets present at the fetal-maternal interface, their interaction with HLA-C expressed by fetal trophoblasts and their role in immune recognition and regulation at the fetal-maternal interface during human pregnancy. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Innate Lymphoid Cell Biology: Lessons Learnt from Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Yuhao Jiao

    2016-10-01

    Full Text Available Group 1 innate lymphoid cells (ILC comprise the natural killer (NK cells and ILC1 which reside within peripheral tissues. Several different ILC1 subsets have recently been characterised, however no unique markers to define these subsets have been identified. Whether ILC1 and NK cells are in fact distinct lineages, or alternately exhibit transitional molecular programs, that allow them to adapt to different tissue niches remains an open question. NK cells are the prototypic member of the Group 1 ILC and have been historically assigned the functions of what now appears to be a multi-subset family that are distributed throughout the body. This raises the question of whether each of these populations mediate distinct functions during infection and tumour immunosurveillance. Here, we review the diversity in the Group 1 ILC subsets with regards to their transcriptional regulation, localization, mobility and receptor expression and highlight the challenges in unraveling the individual functions of these different populations of cells.

  9. Analysis of changes in the percentage of B (CD19) and T (CD3) lymphocytes, nk cells, subsets CD4, CD8 in differentiated thyroid cancer patients treated with iodine-131

    International Nuclear Information System (INIS)

    Luo Quanyong; Yu Yongli; Chen Libo; Lu Hankui; Zhu Ruisen

    2004-01-01

    Objective: To evaluate the changes in the percentage of B (CD19) and T (CD3) lymphocytes, NK cells, subsets CD4, CD8 in patients with differentiated thyroid carcinoma (DTC) who received iodine-131 for therapeutic purposes. Methods: In this study, 102 DTC patients were divided into three groups. Group A, 8 cases received 1850 MBq of iodine-131 for the remnant thyroid ablation. Group B, 43 cases received 3700 MBq of iodine-131 for the treatment of cervical lymph node metastasis. Group C, 51 cases received 7400 MBq of iodine-131 for remote metastasis. All patients were in a hypothyroid state at the time of administration of iodine-131 and resumed L-thyroxine (2μg/Kg/day) 5 days after iodine-131 administration. The percentage of B and T lymphocytes, NK cells, subsets CD4, CD8 in peripheral blood were serially analyzed at baseline and at days 7, 30 and 90 after iodine-131 administration using a Coulter EPICS XL cytometer. Ten healthy individuals were used as a control group for lymphocyte subset values. Results: Comparing the basal lymphocyte subset levels in groups A, B and C with the control group, only NK cells showed significantly higher levels in patients than in controls (P=0.043). In group A, only the percentage of NK cells (P=0.031) and B cells (P =0.024) were reduced at day 7. In group B, a decrease in the percentage of NK cells at days 7(P=0.005), 30 (P=0.021) was observed, while a significant decrease in the percentage of B cells was only observed at day 7(P=0.006). Among T cells, only CD4+ was obviously affected, resulting in a reduction in the CD4+/CD8+ ratio at day 30 (P=0.034). In group C, patients showed a decrease in the percentage of NK cells at days 7 (P=0.023), 30 (P=0.006). A decrease in the percentage of both B and T lymphocytes was observed at days 7(P=0.020, 0.018 respectively), 30(P=0.041, 0.025 respectively). Among T cells, a decrease in the percentage of CD4+ and an increase in the percentage of CD8+ were observed, resulting in a marked

  10. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    Science.gov (United States)

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P cells expressed NKG2D at 10% oxygen (P oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  11. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells.

    Science.gov (United States)

    Paolino, Magdalena; Choidas, Axel; Wallner, Stephanie; Pranjic, Blanka; Uribesalgo, Iris; Loeser, Stefanie; Jamieson, Amanda M; Langdon, Wallace Y; Ikeda, Fumiyo; Fededa, Juan Pablo; Cronin, Shane J; Nitsch, Roberto; Schultz-Fademrecht, Carsten; Eickhoff, Jan; Menninger, Sascha; Unger, Anke; Torka, Robert; Gruber, Thomas; Hinterleitner, Reinhard; Baier, Gottfried; Wolf, Dominik; Ullrich, Axel; Klebl, Bert M; Penninger, Josef M

    2014-03-27

    Tumour metastasis is the primary cause of mortality in cancer patients and remains the key challenge for cancer therapy. New therapeutic approaches to block inhibitory pathways of the immune system have renewed hopes for the utility of such therapies. Here we show that genetic deletion of the E3 ubiquitin ligase Cbl-b (casitas B-lineage lymphoma-b) or targeted inactivation of its E3 ligase activity licenses natural killer (NK) cells to spontaneously reject metastatic tumours. The TAM tyrosine kinase receptors Tyro3, Axl and Mer (also known as Mertk) were identified as ubiquitylation substrates for Cbl-b. Treatment of wild-type NK cells with a newly developed small molecule TAM kinase inhibitor conferred therapeutic potential, efficiently enhancing anti-metastatic NK cell activity in vivo. Oral or intraperitoneal administration using this TAM inhibitor markedly reduced murine mammary cancer and melanoma metastases dependent on NK cells. We further report that the anticoagulant warfarin exerts anti-metastatic activity in mice via Cbl-b/TAM receptors in NK cells, providing a molecular explanation for a 50-year-old puzzle in cancer biology. This novel TAM/Cbl-b inhibitory pathway shows that it might be possible to develop a 'pill' that awakens the innate immune system to kill cancer metastases.

  12. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes.

    Directory of Open Access Journals (Sweden)

    Mehul S Suthar

    2013-02-01

    Full Text Available The actions of the RIG-I like receptor (RLR and type I interferon (IFN signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV. In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen and nonpermissive (liver tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs(-/- × Ifnar(-/- mice revealed the loss of expression of several key components within the natural killer (NK cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs(-/- × Ifnar(-/- infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue

  13. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain.

    Science.gov (United States)

    Sanger, Gareth J

    2004-04-01

    NK1 and NK3 receptors do not appear to play significant roles in normal GI functions, but both may be involved in defensive or pathological processes. NK1 receptor antagonists are antiemetic, operating via vagal sensory and motor systems, so there is a need to study their effects on other gastro-vagal functions thought to play roles in functional bowel disorders. Interactions between NK1 receptors and enteric nonadrenergic, noncholinergic motorneurones suggest a need to explore the role of this receptor in disrupted colonic motility. NK1 receptor antagonism does not exert consistent analgesic activity in humans, but similar studies have not been carried out against pain of GI origin, where NK1 receptors may have additional influences on mucosal inflammatory or "irritant" processes. NK3 receptors mediate certain disruptions of intestinal motility. The activity may be driven by tachykinins released from intrinsic primary afferent neurones (IPANs), which induce slow EPSP activity in connecting IPANs and hence, a degree of hypersensitivity within the enteric nervous system. The same process is also proposed to increase C-fibre sensitivity, either indirectly or directly. Thus, NK3 receptor antagonists inhibit intestinal nociception via a "peripheral" mechanism that may be intestine-specific. Studies with talnetant and other selective NK3 receptor antagonists are, therefore, revealing an exciting and novel pathway by which pathological changes in intestinal motility and nociception can be induced, suggesting a role for NK3 receptor antagonism in irritable bowel syndrome.

  14. A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells.

    Science.gov (United States)

    Offersen, Rasmus; Nissen, Sara Konstantin; Rasmussen, Thomas A; Østergaard, Lars; Denton, Paul W; Søgaard, Ole Schmeltz; Tolstrup, Martin

    2016-05-01

    Toll-like receptor (TLR) agonists are potent enhancers of innate antiviral immunity and may also reverse HIV-1 latency. Therefore, TLR agonists have a potential role in the context of a "shock-and-kill" approach to eradicate HIV-1. Our extensive preclinical evaluation suggests that a novel TLR9 agonist, MGN1703, may indeed perform both functions in an HIV-1 eradication trial. Peripheral blood mononuclear cells (PBMCs) from aviremic HIV-1-infected donors on antiretroviral therapy (ART) that were incubated with MGN1703 ex vivo exhibited increased secretion of interferon alpha (IFN-α) (P= 0.005) and CXCL10 (P= 0.0005) in culture supernatants. Within the incubated PBMC pool, there were higher proportions of CD69-positive CD56(dim)CD16(+)NK cells (P= 0.001) as well as higher proportions of CD107a-positive (P= 0.002) and IFN-γ-producing (P= 0.038) NK cells. Incubation with MGN1703 also increased the proportions of CD69-expressing CD4(+)and CD8(+)T cells. Furthermore, CD4(+)T cells within the pool of MGN1703-incubated PBMCs showed enhanced levels of unspliced HIV-1 RNA (P= 0.036). Importantly, MGN1703 increased the capacity of NK cells to inhibit virus spread within a culture of autologous CD4(+)T cells assessed by using an HIV-1 p24 enzyme-linked immunosorbent assay (ELISA) (P= 0.03). In conclusion, we show that MGN1703 induced strong antiviral innate immune responses, enhanced HIV-1 transcription, and boosted NK cell-mediated suppression of HIV-1 infection in autologous CD4(+)T cells. These findings support clinical testing of MGN1703 in HIV-1 eradication trials. We demonstrate that MGN1703 (a TLR9 agonist currently undergoing phase 3 clinical testing for the treatment of metastatic colorectal cancer) induces potent antiviral responses in immune effector cells from HIV-1-infected individuals on suppressive antiretroviral therapy. The significantly improved safety and tolerability profiles of MGN1703 versus TLR9 agonists of the CpG-oligodeoxynucleotide (CpG-ODN) family

  15. The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Bo Yuan Huang

    Full Text Available Glioblastoma multiforme (GBM is the most malignant primary type of brain tumor in adults. There has been increased focus on the immunotherapies to treat GBM patients, the therapeutic value of natural killer (NK cells is still unknown. Programmed death-1 (PD-1 is a major immunological checkpoint that can negatively regulate the T-cell-mediated immune response. We tested the combination of the inhibiting the PD-1/B7H1 pathway with a NK-cell mediated immune response in an orthotopic mouse model of GBM.Mouse glioma stem cells (GL261GSCs and mouse NK cells were isolated and identified. A lactate dehydrogenase (LDH assay was perfomed to detect the cytotoxicity of NK cells against GL261GSCs. GL261GSCs were intracranially implanted into mice, and the mice were stratified into 3 treatment groups: 1 control, 2 NK cells treatment, and 3 PD-1 inhibited NK cells treatment group. Overall survival was quantified, and animal magnetic resonance imaging (MRI was performed to determine tumor growth. The brains were harvested after the mice were euthanized, and immunohistochemistry against CD45 and PCNA was performed.The mouse NK cells were identified as 90% CD3- NK1.1+CD335+ by flow cytometric analysis. In the LDH assay, the ratios of the damaged GL261GSCs, with the E:T ratios of 2.5:1, 5:1, and 10:1, were as follows: 1 non-inhibited group: 7.42%, 11.31%, and 15.1%, 2 B7H1 inhibited group: 14.75%, 18.25% and 29.1%, 3 PD-1 inhibited group: 15.53%, 19.21% and 29.93%, 4 double inhibited group: 33.24%, 42.86% and 54.91%. In the in vivo experiments, the mice in the PD-1 inhibited NK cells treatment group and IL-2-stimulated-NK cells treatment group displayed a slowest tumor growth (F = 308.5, P<0.01 and a slower tumor growth compared with control group (F = 118.9, P<0.01, respectively. The median survival of the mice in the three groups were as follows: 1 conrol group: 29 days, 2 NK cells treatment group: 35 days (P = 0.0012, 3 PD-1 inhibited NK cells treatment group

  16. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Kenichi Kumagai

    2016-01-01

    Full Text Available Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis.

  17. Antigen Presenting Cells and Stromal Cells Trigger Human Natural Killer Lymphocytes to Autoreactivity: Evidence for the Involvement of Natural Cytotoxicity Receptors (NCR and NKG2D

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2006-01-01

    Full Text Available Human natural killer (NK lymphocytes should not damage autologous cells due to the engagement of inhibitory receptor superfamily (IRS members by HLA-I. Nevertheless, NK cells kill self cells expressing low levels or lacking HLA-I, as it may occur during viral infections (missing-self hypothesis. Herein, we show that human NK cells can be activated upon binding with self antigen presenting cells or stromal cells despite the expression of HLA-I. Indeed, NK cells can kill and produce pro-inflammatory and regulating cytokines as IFN-γ, TNF-α and IL10 during interaction with autologous dendritic cells or bone marrow stromal cells or skin fibroblasts. The killing of antigen presenting and stromal cells is dependent on LFA1/ICAM1 interaction. Further, the natural cytotoxicity receptors (NCR NKp30 and NKp46 are responsible for the delivery of lethal hit to DC, whereas NKG2D activating receptor, the ligand of the MHC-related molecule MIC-A and the UL16 binding protein, is involved in stromal cell killing. These findings indicate that different activating receptors are involved in cell to self cell interaction. Finally, NK cells can revert the veto effect of stromal cells on mixed lymphocyte reaction further supporting the idea that NK cells may alter the interaction between T lymphocytes and microenvironment leading to autoreactivity.

  18. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner.

    Science.gov (United States)

    Vasilopoulou, E; Loubière, L S; Lash, G E; Ohizua, O; McCabe, C J; Franklyn, J A; Kilby, M D; Chan, S Y

    2014-06-01

    Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. Maternal thyroid dysfunction during early pregnancy is associated with complications of malplacentation including miscarriage and pre-eclampsia. T3 regulates the proliferation and apoptosis of fetal-derived trophoblasts, as well as promotes the invasive capability of extravillous trophoblasts (EVT). We hypothesize that T3 may also have a direct impact on human maternal-derived decidual cells, which are known to exert paracrine regulation upon trophoblast behaviour and vascular development at the uteroplacental interface. This laboratory-based study used human decidua from first (8-11 weeks; n = 18) and second (12-16 weeks; n = 12) trimester surgical terminations of apparently uncomplicated pregnancies. Primary cultures of total decidual cells, and immunomagnetic bead-isolated populations of stromal-enriched (CD10+) and stromal-depleted (CD10-) cells, uterine natural killer cells (uNK cells; CD56+) and macrophages (CD14+) were assessed for thyroid hormone receptors and transporters by immunocytochemistry. Each cell population was treated with T3 (0, 1, 10, 100 nM) and assessments were made of cell viability (MTT assay) and angiogenic growth factor and cytokine secretion (immunomediated assay). The effect of decidual cell-conditioned media on EVT invasion through Matrigel(®) was evaluated. Immunocytochemistry showed the expression of thyroid hormone transporters (MCT8, MCT10) and receptors (TRα1, TRβ1) required for thyroid hormone-responsiveness in uNK cells and macrophages from the first trimester. The viability of total decidual cells and the different

  19. PD-1 blocks lytic granule polarization with concomitant impairment of integrin outside-in signaling in the natural killer cell immunological synapse.

    Science.gov (United States)

    Huang, Yu; Chen, Zhiying; Jang, Joon Hee; Baig, Mirza S; Bertolet, Grant; Schroeder, Casey; Huang, Shengjian; Hu, Qian; Zhao, Yong; Lewis, Dorothy E; Qin, Lidong; Zhu, Michael Xi; Liu, Dongfang

    2018-04-18

    The inhibitory receptor programmed cell death protein 1 (PD-1) is upregulated on a variety of immune cells, including natural killer (NK) cells, during chronic viral infection and tumorigenesis. Blockade of PD-1 or its ligands produces durable clinical responses with tolerable side effects in patients with a broad spectrum of cancers. However, the underlying molecular mechanisms of how PD-1 regulates NK cell function remain poorly characterized. We sought to determine the effect of PD-1 signaling on NK cells. PD-1 was overexpressed in CD16-KHYG-1 (a human NK cell line with both antibody-dependent cellular cytotoxicity through CD16 and natural cytotoxicity through NKG2D) cells and stimulated by exposing the cells to NK-sensitive target cells expressing programmed death ligand 1 (PD-L1). PD-1 engagement by PD-L1 specifically blocked NK cell-mediated cytotoxicity without interfering with the conjugation between NK cells and target cells. Further examination showed that PD-1 signaling blocked lytic granule polarization in NK cells, which was accompanied by failure of integrin-linked kinase, a key molecule in the integrin outside-in signaling pathway, to accumulate in the immunological synapse after NK-target cell conjugation. Our results suggest that NK cell cytotoxicity is inhibited by PD-1 engagement, which blocks lytic granule polarization to the NK cell immunological synapse with concomitant impairment of integrin outside-in signaling. This study provides novel mechanistic insights into how PD-1 inhibition disrupts NK cell function. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Heat shock protein 70 and tumor-infiltrating NK cells as prognostic indicators for patients with squamous cell carcinoma of the head and neck after radiochemotherapy: A multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG).

    Science.gov (United States)

    Stangl, Stefan; Tontcheva, Nikoletta; Sievert, Wolfgang; Shevtsov, Maxim; Niu, Minli; Schmid, Thomas E; Pigorsch, Steffi; Combs, Stephanie E; Haller, Bernhard; Balermpas, Panagiotis; Rödel, Franz; Rödel, Claus; Fokas, Emmanouil; Krause, Mechthild; Linge, Annett; Lohaus, Fabian; Baumann, Michael; Tinhofer, Inge; Budach, Volker; Stuschke, Martin; Grosu, Anca-Ligia; Abdollahi, Amir; Debus, Jürgen; Belka, Claus; Maihöfer, Cornelius; Mönnich, David; Zips, Daniel; Multhoff, Gabriele

    2018-05-01

    Tumor cells frequently overexpress heat shock protein 70 (Hsp70) and present it on their cell surface, where it can be recognized by pre-activated NK cells. In our retrospective study the expression of Hsp70 was determined in relation to tumor-infiltrating CD56 + NK cells in formalin-fixed paraffin embedded (FFPE) tumor specimens of patients with SCCHN (N = 145) as potential indicators for survival and disease recurrence. All patients received radical surgery and postoperative cisplatin-based radiochemotherapy (RCT). In general, Hsp70 expression was stronger, but with variable intensities, in tumor compared to normal tissues. Patients with high Hsp70 expressing tumors (scores 3-4) showed significantly decreased overall survival (OS; p = 0.008), local progression-free survival (LPFS; p = 0.034) and distant metastases-free survival (DMFS; p = 0.044), compared to those with low Hsp70 expression (scores 0-2), which remained significant after adjustment for relevant prognostic variables. The adverse prognostic value of a high Hsp70 expression for OS was also observed in patient cohorts with p16- (p = 0.001), p53- (p = 0.0003) and HPV16 DNA-negative (p = 0.001) tumors. The absence or low numbers of tumor-infiltrating CD56 + NK cells also correlated with significantly decreased OS (p = 0.0001), LPFS (p = 0.0009) and DMFS (p = 0.0001). A high Hsp70 expression and low numbers of tumor-infiltrating NK cells have the highest negative predictive value (p = 0.00004). In summary, a strong Hsp70 expression and low numbers of tumor-infiltrating NK cells correlate with unfavorable outcome following surgery and RCT in patients with SCCHN, and thus serve as negative prognostic markers. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  1. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models.

    Science.gov (United States)

    Ng, Samuel Y; Yoshida, Noriaki; Christie, Amanda L; Ghandi, Mahmoud; Dharia, Neekesh V; Dempster, Joshua; Murakami, Mark; Shigemori, Kay; Morrow, Sara N; Van Scoyk, Alexandria; Cordero, Nicolas A; Stevenson, Kristen E; Puligandla, Maneka; Haas, Brian; Lo, Christopher; Meyers, Robin; Gao, Galen; Cherniack, Andrew; Louissaint, Abner; Nardi, Valentina; Thorner, Aaron R; Long, Henry; Qiu, Xintao; Morgan, Elizabeth A; Dorfman, David M; Fiore, Danilo; Jang, Julie; Epstein, Alan L; Dogan, Ahmet; Zhang, Yanming; Horwitz, Steven M; Jacobsen, Eric D; Santiago, Solimar; Ren, Jian-Guo; Guerlavais, Vincent; Annis, D Allen; Aivado, Manuel; Saleh, Mansoor N; Mehta, Amitkumar; Tsherniak, Aviad; Root, David; Vazquez, Francisca; Hahn, William C; Inghirami, Giorgio; Aster, Jon C; Weinstock, David M; Koch, Raphael

    2018-05-22

    T- and NK-cell lymphomas (TCL) are a heterogenous group of lymphoid malignancies with poor prognosis. In contrast to B-cell and myeloid malignancies, there are few preclinical models of TCLs, which has hampered the development of effective therapeutics. Here we establish and characterize preclinical models of TCL. We identify multiple vulnerabilities that are targetable with currently available agents (e.g., inhibitors of JAK2 or IKZF1) and demonstrate proof-of-principle for biomarker-driven therapies using patient-derived xenografts (PDXs). We show that MDM2 and MDMX are targetable vulnerabilities within TP53-wild-type TCLs. ALRN-6924, a stapled peptide that blocks interactions between p53 and both MDM2 and MDMX has potent in vitro activity and superior in vivo activity across 8 different PDX models compared to the standard-of-care agent romidepsin. ALRN-6924 induced a complete remission in a patient with TP53-wild-type angioimmunoblastic T-cell lymphoma, demonstrating the potential for rapid translation of discoveries from subtype-specific preclinical models.

  2. Role of Natural Killer Cells in the Innate Immune System After Intraportal Islet Transplantation in Mice.

    Science.gov (United States)

    Saeki, Y; Ishiyama, K; Ishida, N; Tanaka, Y; Ohdan, H

    Both liver natural killer (NK) and NK T cells of the innate immune system play a crucial role in islet graft loss after intraportal islet transplantation, although a relationship between NK and NK T cells in islet loss has not been proven. In this study, we investigated the role of NK cells in the innate immune system in islet graft loss after intraportal islet transplantation. To investigate the involvement of liver NK cells in islet destruction, we assessed the differences in graft survival after intraportal islet transplantation between CD1d -/- diabetic mice and NK cell-depleted CD1d -/- diabetic mice. The transplantation of 400 islets into the liver was sufficient to reverse hyperglycemia in wild-type diabetic mice (100%, 4/4). However, normoglycemia could not be achieved when 200 islets were transplanted (0%, 0/4). In contrast, intraportal transplantation of 200 islets in NK cell-depleted CD1d -/- diabetic mice ameliorated hyperglycemia in 71% of cases (5/7), whereas transplantation of the same number of islets in CD1d -/- diabetic mice did not (0%, 0/4). Histologic findings also confirmed that intact islets were observed in NK cell-depleted CD1d -/- diabetic mice, but were difficult to observe in CD1d -/- diabetic mice. The involvement of liver NK cells in the innate immune system related to islet graft loss after intraportal islet transplantation is revealed by improved graft survival and function in NK cell-depleted CD1d -/- diabetic mice. Our data reveal that regulation of NK cell activity is particularly important when insufficient islet numbers are used for transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Characteristic of innate lymphoid cells (ILC

    Directory of Open Access Journals (Sweden)

    Mateusz Adamiak

    2014-12-01

    Full Text Available Innate lymphoid cells (ILC is a newly described family of immune cells that are part of the natural immunity which is important not only during infections caused by microorganisms, but also in the formation of lymphoid tissue, tissue remodeling after damage due to injury and homeostasis tissue stromal cells. Family ILC cells form NK cells (natural killer and lymphoid tissue inducer T cells (LTi, which, although they have different functions, are evolutionarily related. NK cells are producing mainly IFN-γ, whereas LTi cells as NKR+LTi like, IL-17 and/or IL-22, which suggests that the last two cells, can also represent the innate versions of helper T cell - TH17 and TH22. Third population of ILC is formed by cells with characteristics such as NK cells and LTi (ILC22 - which are named NK22 cells, natural cytotoxicity receptor 22 (NCR22 cells or NK receptor-positive (LTi NKR+ LTi cells. Fourth population of ILC cells are ILC17 - producing IL-17, while the fifth is formed by natural helper type 2 T cells (nTH2, nuocyte, innate type 2 helper cells (IH2 and multi-potent progenitor type 2 cells (MPPtype2. Cells of the last population synthesize IL-5 and IL-13. It is assumed that an extraordinary functional diversity of ILC family, resembles T cells, probably because they are under the control of the corresponding transcription factors - as direct regulation factors, such as the family of lymphocytes T.

  4. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line

    International Nuclear Information System (INIS)

    Marcet-Palacios, Marcelo; Odemuyiwa, Solomon O.; Coughlin, Jason J.; Garofoli, Daniella; Ewen, Catherine; Davidson, Courtney E.; Ghaffari, Mazyar; Kane, Kevin P.; Lacy, Paige; Logan, Michael R.; Befus, A. Dean; Bleackley, R. Chris; Moqbel, Redwan

    2008-01-01

    Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Our data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 μg/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo

  5. Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes.

    Science.gov (United States)

    Fortunato, Sofia A V; Adamski, Marcin; Ramos, Olivia Mendivil; Leininger, Sven; Liu, Jing; Ferrier, David E K; Adamska, Maja

    2014-10-30

    Sponges are simple animals with few cell types, but their genomes paradoxically contain a wide variety of developmental transcription factors, including homeobox genes belonging to the Antennapedia (ANTP) class, which in bilaterians encompass Hox, ParaHox and NK genes. In the genome of the demosponge Amphimedon queenslandica, no Hox or ParaHox genes are present, but NK genes are linked in a tight cluster similar to the NK clusters of bilaterians. It has been proposed that Hox and ParaHox genes originated from NK cluster genes after divergence of sponges from the lineage leading to cnidarians and bilaterians. On the other hand, synteny analysis lends support to the notion that the absence of Hox and ParaHox genes in Amphimedon is a result of secondary loss (the ghost locus hypothesis). Here we analysed complete suites of ANTP-class homeoboxes in two calcareous sponges, Sycon ciliatum and Leucosolenia complicata. Our phylogenetic analyses demonstrate that these calcisponges possess orthologues of bilaterian NK genes (Hex, Hmx and Msx), a varying number of additional NK genes and one ParaHox gene, Cdx. Despite the generation of scaffolds spanning multiple genes, we find no evidence of clustering of Sycon NK genes. All Sycon ANTP-class genes are developmentally expressed, with patterns suggesting their involvement in cell type specification in embryos and adults, metamorphosis and body plan patterning. These results demonstrate that ParaHox genes predate the origin of sponges, thus confirming the ghost locus hypothesis, and highlight the need to analyse the genomes of multiple sponge lineages to obtain a complete picture of the ancestral composition of the first animal genome.

  6. Suppression of a Natural Killer Cell Response by Simian Immunodeficiency Virus Peptides.

    Directory of Open Access Journals (Sweden)

    Jamie L Schafer

    2015-09-01

    Full Text Available Natural killer (NK cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs on NK cells and their major histocompatibility complex (MHC class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses.

  7. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain

    OpenAIRE

    Sanger, Gareth J

    2004-01-01

    NK1 and NK3 receptors do not appear to play significant roles in normal GI functions, but both may be involved in defensive or pathological processes. NK1 receptor antagonists are antiemetic, operating via vagal sensory and motor systems, so there is a need to study their effects on other gastro-vagal functions thought to play roles in functional bowel disorder's. Interactions between NK1 receptors and enteric nonadrenergic, noncholinergic motorneurones suggest a need to explore the role of t...

  8. Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies.

    Science.gov (United States)

    Matlawska-Wasowska, K; Ward, E; Stevens, S; Wang, Y; Herbst, R; Winter, S S; Wilson, B S

    2013-06-01

    This work reports the tumoricidal effects of a novel investigational humanized anti-CD19 monoclonal antibody (Medi-551). An a-fucosylated antibody with increased affinity for human FcγRIIIA, Medi-551 is shown to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Medi-551/CD19 complexes internalize slowly (>5 h) and thus remain accessible to effector cells for prolonged periods. We evaluated in vitro ADCC and ADCP activities of primary human natural killer (NK) cells and macrophages against precursor-B (pre-B) acute lymphoblastic leukemia (ALL) cell lines and pediatric patient blasts. Fluorescent imaging studies document immunological synapses formed between anti-CD19-bound target leukemia cells and effector cells and capture the kinetics of both NK-mediated killing and macrophage phagocytosis. Genetic polymorphisms in FcγRIIIA-158F/V modulate in vitro activities of effector cells, with FcγRIIIA-158V homozygotes or heterozygotes showing the strongest activity. Medi-551 treatment of severe combined immunodeficiency (SCID) mice engrafted with human pre-B cells led to prolonged animal survival and markedly reduced disease burden in blood, liver and bone marrow. These data show that anti-CD19 antibodies effectively recruit immune cells to pre-B ALL cells and support a move forward to early phase trials in this disease.

  9. The Effects of Aloe Vera on TNF-a Levels, the Percentage of Nk Cells and Th 17 Cells in Rat That Received Izoniazid and Rifampycin.

    Science.gov (United States)

    Mawarti, Herin; Rajin, Mukhamad; Asumta, Zulfikar

    2017-10-01

    The present study was undertaken to investigate the hepatoprotective effect of Aloe vera against side effect of antituberculosis drug. Twenty-five rats will be divided into five groups, namely the control group (without any treatment), the group of rats treated with anti-tuberculosis drugs, and a group of rats were treated antituberculosis drugs and got Aloe vera extract at a dose of 40; 80; and 120 mg/kg body weight. Antituberculosis drugs are isoniazid and rifampicin a dose of 50 mg/kg body weight. Antituberculosis treated group showed significantly increase levels of TNF-a, the percentage of NK cells and the number of Th17 cells compared with the control group ( p 0.05). Aloe vera at first and the third dose lower the number of NK cells compared to the antituberculosis group, although it has not yet reached a significant difference ( p > 0.05). The first dose of Aloe vera was significantly decreased the percentage of Th17 cells compared to the antituberculosis drug group ( p 0.05). It was concluded that administration of Aloe vera can suppress the production of TNF-a and the percentage of Th17 cells as a result of antituberculosis drug administration. Thus, Aloe vera can be a useful alternative to natural materials in the successful treatment of tuberculosis through the inhibition of side effect.

  10. Thy1+ NK [corrected] cells from vaccinia virus-primed mice confer protection against vaccinia virus challenge in the absence of adaptive lymphocytes.

    Directory of Open Access Journals (Sweden)

    Geoffrey O Gillard

    2011-08-01

    Full Text Available While immunological memory has long been considered the province of T- and B-lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1(+ subset of natural killer (NK cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1(+ NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance.

  11. High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells

    DEFF Research Database (Denmark)

    Bottley, G; Watherston, O G; Hiew, Y-L

    2007-01-01

    a role for E7 in tumour immune evasion. We show that knockdown of E7 expression in HPV16- and HPV18-transformed cervical carcinoma cells by RNA interference increased expression of major histocompatibility complex (MHC) class I at the cell surface and reduced susceptibility of these cells to natural...... killer (NK) cells. Tetracycline-regulated induction of HPV16 E7 resulted in reduced expression of cell surface MHC class I molecules and increased NK cell killing. Our results suggest that, for HPV-associated malignancies, reduced MHC class I expression is the result of an active immune evasion strategy...

  12. CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes.

    Science.gov (United States)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank; Briet, Claire; Löfbom, Linda; Yagita, Hideo; Lehuen, Agnes; Boitard, Christian; Holmberg, Dan; Sorokin, Lydia; Cardell, Susanna L

    2012-04-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic β cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24αβ type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24αβ NKT cells exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24αβ NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred in the pancreas draining lymph nodes. To our knowledge, these results provide for the first time cellular and molecular information on how type II CD1d-restricted NKT cells regulate T1D.

  13. Modification of P-selectin glycoprotein ligand-1 with a natural killer cell-restricted sulfated lactosamine creates an alternate ligand for L-selectin

    Science.gov (United States)

    André, Pascale; Spertini, Olivier; Guia, Sophie; Rihet, Pascal; Dignat-George, Françoise; Brailly, Hervé; Sampol, José; Anderson, Paul J.; Vivier, Eric

    2000-01-01

    Natural killer (NK) cells are components of the innate immune system that can recognize and kill virally infected cells, tumor cells, and allogeneic cells without prior sensitization. NK cells also elaborate cytokines (e.g., interferon-γ and tumor necrosis factor-α) and chemokines (e.g., macrophage inflammatory protein-1α) that promote the acquisition of antigen-specific immunity. NK cell differentiation is accompanied by the cell surface expression of a mucin-like glycoprotein bearing an NK cell-restricted keratan sulfate-related lactosamine carbohydrate, the PEN5 epitope. Here, we report that PEN5 is a post-translational modification of P-selectin glycoprotein ligand-1 (PSGL-1). The PEN5 epitope creates on PSGL-1 a unique binding site for L-selectin, which is independent of PSGL-1 tyrosine sulfation. On the surface of NK cells, the expression of PEN5 is coordinated with the disappearance of L-selectin and the up-regulation of Killer cell Ig-like Receptors (KIR). These results indicate that NK cell differentiation is accompanied by the acquisition of a unique carbohydrate, PEN5, that can serve as part of a combination code to deliver KIR+ NK cells to specific tissues. PMID:10725346

  14. The impact of ageing on natural killer cell function and potential consequences for health in older adults.

    Science.gov (United States)

    Hazeldine, Jon; Lord, Janet M

    2013-09-01

    Forming the first line of defence against virally infected and malignant cells, natural killer (NK) cells are critical effector cells of the innate immune system. With age, significant impairments have been reported in the two main mechanisms by which NK cells confer host protection: direct cytotoxicity and the secretion of immunoregulatory cytokines and chemokines. In elderly subjects, decreased NK cell activity has been shown to be associated with an increased incidence and severity of viral infection, highlighting the clinical implications that age-associated changes in NK cell biology have on the health of older adults. However, is an increased susceptibility to viral infection the only consequence of these age-related changes in NK cell function? Recently, evidence has emerged that has shown that in addition to eliminating transformed cells, NK cells are involved in many other biological processes such as immune regulation, anti-microbial immune responses and the recognition and elimination of senescent cells, novel functions that involve NK-mediated cytotoxicity and/or cytokine production. Thus, the decrease in NK cell function that accompanies physiological ageing is likely to have wider implications for the health of older adults than originally thought. Here, we give a detailed description of the changes in NK cell biology that accompany human ageing and propose that certain features of the ageing process such as: (i) the increased reactivation rates of latent Mycobacterium tuberculosis, (ii) the slower resolution of inflammatory responses and (iii) the increased incidence of bacterial and fungal infection are attributable in part to an age-associated decline in NK cell function. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α-Galactosylceramide-Stimulated Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    2013-01-01

    Full Text Available Natural killer dendritic cells (NKDCs possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT cells is required for the anti-tumor immune responses that are elicited by α-galactosylceramide (α-GC in mice. The rapid and strong expression of interferon-γ by NKDCs after α-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α-GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  16. Decreased Siglec-9 Expression on Natural Killer Cell Subset Associated With Persistent HBV Replication

    Directory of Open Access Journals (Sweden)

    Di Zhao

    2018-05-01

    Full Text Available Siglec-9 is an MHC-independent inhibitory receptor selectively expressed on CD56dim NK cells. Its role in infection diseases has not been investigated yet. Here, we studied the potential regulatory roles of NK Siglec-9 in the pathogenesis of chronic hepatitis B (CHB infection. Flow cytometry evaluated the expression of Siglec-9 and other receptors on peripheral NK cells. Immunofluorescence staining was used to detect Siglec-9 ligands on liver biopsy tissues and cultured hepatocyte cell lines. Siglec-9 blocking assay was carried out and cytokine synthesis and CD107a degranulation was detected by flow cytometry. Compared to healthy donors, CHB patients had decreased Siglec-9+ NK cells, which reversely correlated with serum hepatitis B e antigen and HBV DNA titer. Siglec-9 expression on NK cells from patients achieving sustained virological response recovered to the level of normal donors. Neutralization of Siglec-9 restored cytokine synthesis and degranulation of NK cells from CHB patients. Immunofluorescence staining showed increased expression of Siglec-9 ligands in liver biopsy tissues from CHB patients and in hepatocyte cell lines infected with HBV or stimulated with inflammatory cytokines (IL-6 or TGF-β. These findings identify Siglec-9 as a negative regulator for NK cells contributing to HBV persistence and the intervention of Siglec-9 signaling might be of potentially translational significance.

  17. The role of NK1.1+ cells in the protection against MHC class I+ HPV16-associated tumours

    Czech Academy of Sciences Publication Activity Database

    Šímová, Jana; Bubeník, Jan; Bieblová, Jana; Jandlová, Táňa

    2004-01-01

    Roč. 50, č. 6 (2004), s. 200-202 ISSN 0015-5500 R&D Projects: GA AV ČR IAA5052203; GA AV ČR KSK5011112; GA MZd NC7148; GA MZd NR7807 Institutional research plan: CEZ:AV0Z5052915 Keywords : HPV16 * MHC class I expression * NK1.1+ cells Subject RIV: EC - Immunology Impact factor: 0.507, year: 2004

  18. Natural Killer Cells Are Activated by Lactic Acid Bacteria-Matured Dendritic Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    of certain lactic acid bacteria has been shown to increase in vivo NK cytotoxicity. Here, we investigated how human gut flora-derived lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human NK cells upon bacterial stimulation. Human peripheral blood NK cells were....... In contrast, a Lactobacillus paracasei strain caused the NK cells to proliferate only in the presence of monocytes. These results demonstrate that various strains of lactobacilli have the capacity to activate NK cells in vitro, in a monocyte dependent or independent way. Hence, the encounter of NK cells...

  19. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions

    OpenAIRE

    Wu, Jinhong; Yang, Jialong; Yang, Kai; Wang, Hongxia; Gorentla, Balachandra; Shin, Jinwook; Qiu, Yurong; Que, Loretta G.; Foster, W. Michael; Xia, Zhenwei; Chi, Hongbo; Zhong, Xiao-Ping

    2014-01-01

    Terminal maturation of invariant NKT (iNKT) cells from stage 2 (CD44+NK1.1–) to stage 3 (CD44+NK1.1+) is accompanied by a functional acquisition of a predominant IFN-γ–producing (iNKT-1) phenotype; however, some cells develop into IL-17–producing iNKT (iNKT-17) cells. iNKT-17 cells are rare and restricted to a CD44+NK1.1– lineage. It is unclear how iNKT terminal maturation is regulated and what factors mediate the predominance of iNKT-1 compared with iNKT-17. The tumor suppressor tuberous scl...

  20. Genomic analysis of CD8+ NK/T cell line, ‘SRIK-NKL’, with array-based CGH (aCGH), SKY/FISH and molecular mapping

    Science.gov (United States)

    Rossi, Michael; LaDuca, Jeff; Cowell, John; Srivastava, Bejai I.S.; Matsui, Sei-ichi

    2010-01-01

    We performed aCGH, SKY /FISH, molecular mapping and expression analyses on a permanent CD8+ NK/T cell line, ‘SRIK-NKL’ established from a lymphoma (ALL) patient, in attempt to define the fundamental genetic profile of its unique NK phenotypes. aCGH revealed hemizygous deletion of 6p containing genes responsible for hematopoietic functions. The SKY demonstrated that a constitutive reciprocal translocation, rcpt(5;14)(p13.2;q11) is a stable marker. Using somatic hybrids containing der(5) derived from SRIK-NKL, we found that the breakpoint in one homologue of no. 5 is located upstream of IL7R and also that the breakpoint in no. 14 is located within TRA@. The FISH analysis using BAC which contains TRA@ and its flanking region further revealed a ~231 kb deletion within 14q11 in the der(5) but not in the normal homologue of no. 14. The RT-PCR analysis detected mRNA for TRA@ transcripts which were extending across, but not including, the deleted region. IL7R was detected at least at mRNA levels. These findings were consistent with the immunological findings that TRA@ and IL7R are both expressed at mRNA levels and TRA@ at cytoplasmic protein levels in SRIK-NKL cells. In addition to rept(5;14), aCGH identified novel copy number abnormalities suggesting that the unique phenotype of the SRIK-NKL cell line is not solely due to the TRA@ rearrangement. These findings provide supportive evidence for the notion that SRIK-NKL cells may be useful for studying not only the function of NK cells but also genetic deregulations associated with leukemiogenesis. PMID:17640729

  1. Neurokinin 1 Receptor Mediates Membrane Blebbing and Sheer Stress-Induced Microparticle Formation in HEK293 Cells

    Science.gov (United States)

    Chen, Panpan; Douglas, Steven D.; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2–10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing. PMID:23024816

  2. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Panpan Chen

    Full Text Available Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP. We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  3. Role of protein kinase C in TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells.

    Science.gov (United States)

    Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M

    2010-11-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.

  4. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Martha Luevano

    Full Text Available Adoptive natural killer (NK cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC has become an alluring option for NK cell therapy, with umbilical cord blood (UCB and mobilized peripheral blood (PBCD34(+ being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+ and frozen PBCD34(+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+ cultures. NK cells generated from CBCD34(+ and PBCD34(+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+ for the production of NK cells in vitro results in higher cell numbers than PBCD34(+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  5. Augmented serum level of major histocompatibility complex class I-related chain A (MICA) protein and reduced NKG2D expression on NK and T cells in patients with cervical cancer and precursor lesions

    International Nuclear Information System (INIS)

    Arreygue-Garcia, Naela A; Delgado-Rizo, Vidal; Garcia-Iglesias, Trinidad; Hernandez-Flores, Georgina; Toro-Arreola, Susana del; Daneri-Navarro, Adrian; Toro-Arreola, Alicia del; Cid-Arregui, Angel; Gonzalez-Ramella, Oscar; Jave-Suarez, Luis F; Aguilar-Lemarroy, Adriana; Troyo-Sanroman, Rogelio; Bravo-Cuellar, Alejandro

    2008-01-01

    Cervical cancer is the second most common cancer in women worldwide. NK and cytotoxic T cells play an important role in the elimination of virus-infected and tumor cells through NKG2D activating receptors, which can promote the lysis of target cells by binding to the major histocompatibility complex class I-related chain A (MICA) proteins. Increased serum levels of MICA have been found in patients with epithelial tumors. The aim of this study was to compare the levels of soluble MICA (sMICA) and NKG2D-expressing NK and T cells in blood samples from patients with cervical cancer or precursor lesions with those from healthy donors. Peripheral blood with or without heparin was collected to obtain mononuclear cells or sera, respectively. Serum sMICA levels were measured by ELISA and NKG2D-expressing immune cells were analyzed by flow cytometry. Also, a correlation analysis was performed to associate sMICA levels with either NKG2D expression or with the stage of the lesion. Significant amounts of sMICA were detected in sera from nearly all patients. We found a decrease in the number of NKG2D-expressing NK and T cells in both cervical cancer and lesion groups when compared to healthy donors. Pearson analysis showed a negative correlation between sMICA and NKG2D-expressing T cells; however, we did not find a significant correlation when the analysis was applied to sMICA and NKG2D expression on NK cells. Our results show for the first time that high sMICA levels are found in sera from patients with both cervical cancer and precursor lesions when compared with healthy donors. We also observed a diminution in the number of NKG2D-expressing NK and T cells in the patient samples; however, a significant negative correlation between sMICA and NKG2D expression was only seen in T cells

  6. Targeting natural killer cell reactivity by employing antibody to NKp46: implications for type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Rami Yossef

    Full Text Available Natural killer (NK cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D. Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.

  7. Role of protein kinase C in the TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells

    Science.gov (United States)

    Abraha, Abraham B.; Rana, Krupa; Whalen, Margaret M.

    2010-01-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposures of NK cells to tributyltin (TBT) greatly diminish their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in the NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C (PKC) as well as MAPK activity. The TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in the inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposures. TBT caused a 2–3 fold activation of PKC at concentrations ranging from 50–300 nM (16–98 ng/mL), indicating that activation of PKC occurs in response to TBT exposures. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that in NK cells where PKC activation was blocked there was no activation of the MAPK, p44/42 in response to TBT. However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including the activation of p44/42 by TBT in NK cells. PMID:20390410

  8. Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    Full Text Available Dopamine (DA, a neurotransmitter in the nervous system, has been shown to modulate immune function. We have previously reported that five subtypes of DA receptors, including D1R, D2R, D3R, D4R and D5R, are expressed in T lymphocytes and they are involved in regulation of T cells. However, roles of these DA receptor subtypes and their coupled signal-transduction pathway in modulation of natural killer (NK cells still remain to be clarified. The spleen of mice was harvested and NK cells were isolated and purified by negative selection using magnetic activated cell sorting. After NK cells were incubated with various drugs for 4 h, flow cytometry measured cytotoxicity of NK cells against YAC-1 lymphoma cells. NK cells expressed the five subtypes of DA receptors at mRNA and protein levels. Activation of D1-like receptors (including D1R and D5R with agonist SKF38393 enhanced NK cell cytotoxicity, but activation of D2-like receptors (including D2R, D3R and D4R with agonist quinpirole attenuated NK cells. Simultaneously, SKF38393 elevated D1R and D5R expression, cAMP content, and phosphorylated cAMP-response element-binding (CREB level in NK cells, while quinpirole reduced D3R and D4R expression, cAMP content, and phosphorylated CREB level in NK cells. These effects of SKF38393 were blocked by SCH23390, an antagonist of D1-like receptors, and quinpirole effects were abolished by haloperidol, an antagonist of D2-like receptors. In support these results, H89, an inhibitor of phosphokinase A (PKA, prevented the SKF38393-dependent enhancement of NK cells and forskolin, an activator of adenylyl cyclase (AC, counteracted the quinpirole-dependent suppression of NK cells. These findings show that DA receptor subtypes are involved in modulation of NK cells and suggest that D1-like receptors facilitate NK cells by stimulating D1R/D5R-cAMP-PKA-CREB signaling pathway and D2-like receptors suppress NK cells by inhibiting D3R/D4R-cAMP-PKA-CREB signaling pathway. The

  9. Revving up natural killer cells and cytokine-induced killer cells against hematological malignancies

    Directory of Open Access Journals (Sweden)

    Gianfranco ePittari

    2015-05-01

    Full Text Available Natural killer (NK cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors (KIR, NK Group 2 member D (NKG2D, NKG2A/CD94, NKp46 and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols.Cytokine-induced killer (CIK cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming.NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies.

  10. Revving up Natural Killer Cells and Cytokine-Induced Killer Cells Against Hematological Malignancies.

    Science.gov (United States)

    Pittari, Gianfranco; Filippini, Perla; Gentilcore, Giusy; Grivel, Jean-Charles; Rutella, Sergio

    2015-01-01

    Natural killer (NK) cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors, NK Group 2 member D (NKG2D), NKG2A/CD94, NKp46, and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL)-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols. Cytokine-induced killer (CIK) cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming. NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies.

  11. Coexistence of reduced function of natural killer cells and osteoclasts in two distinct osteopetrotic mutations in the rat

    International Nuclear Information System (INIS)

    Popoff, S.N.; Jackson, M.E.; Koevary, S.B.; Marks, S.C. Jr.

    1991-01-01

    Recent evidence suggesting that immune cells and their products (cytokines) play an important role in the regulation of skeletal development and function, particularly of the osteoclast, implies that immune cell dysfunction may be involved in the pathogenesis of certain skeletal disorders. The mammalian osteopetroses are a pathogenetically heterogeneous group of skeletal disorders characterized by skeletal sclerosis resulting from reduced osteoclast-mediated bone resorption. Using a 51 Cr release microcytotoxicity assay we demonstrated that splenic natural killer (NK) cell activity was significantly reduced in two distinctly different osteopetrotic mutations in the rat, osteopetrosis (op) and toothless (tl). To determine whether this reduction in NK cell-mediated cytotoxicity is caused by decreased cell number and/or function in these osteopetrotic mutants, we quantitated NK cells by analyzing mononuclear cell suspensions labeled for two-color fluorescence with OX8 and OX19 monoclonal antibodies in a fluorescence-activated cell sorter. Flow cytometry of these double-labeled cells revealed that the percentage of NK cells (OX8+/OX19- subset) in op and tl spleens was not significantly different from that of normal spleens. These results suggest that NK cells in these osteopetrotic mutants are functionally defective. Thus aberrations in osteoclast and NK cell function coexist in these mutations, and their developmental relationships deserve further study

  12. HMB-45, S-100, NK1/C3, and MART-1 in metastatic melanoma.

    Science.gov (United States)

    Zubovits, Judit; Buzney, Elizabeth; Yu, Lawrence; Duncan, Lyn M

    2004-02-01

    The diagnosis of melanoma metastatic to lymph node remains a difficult problem given its histological diversity. We examined the staining patterns of S-100, NK1/C3, HMB-45, and MART-1 (DC10) in melanoma metastases to lymph nodes. Immunohistochemical stains were performed on tissue sections of 126 formalin-fixed lymph nodes from 126 patients with an established diagnosis of metastatic melanoma. A total of 98% of cases (123 of 126) stained positive for S-100, 93% (117 of 125) stained positive for NK1/C3, 82% (103 of 126) stained positive for MART-1, and 76% (95 of 125) stained positive for HMB-45. The distribution and intensity of staining varied among these markers. A diffuse staining pattern, defined as >50% of tumor cells stained, was observed in 83% of MART-1-positive cases but in only 56% of S-100-positive cases, 48% of NK1/C3-positive cases, and 34% of HMB-45-positive cases. A maximally intense signal was almost always observed for MART-1 (83% of positive cases) but was rarely observed for NK1/C3 (20%). S-100 and HMB-45 showed maximally intense staining in 50% and 54% of cases, respectively. S-100 and NK1/C3 stained both histiocytes and melanocytes, whereas MART-1 and HMB-45 stained only melanocytes. Seventy-eight cases (63%) stained positive for all 4 markers, 17 cases (14%) stained for all markers except HMB-45, 13 cases (10%) stained for all markers except MART-1, 6 cases (5%) stained only with S-100 and NK1/C3, 4 cases (3%) stained only with S-100 and HMB-45, and 2 cases stained for all markers except S-100. One case each stained for the following: only S-100, only S-100 and HMB-45, and all markers except NK1/C3. One case exhibited absence of staining for any of these markers. We demonstrate that lymph node metastases of melanoma are heterogeneous with regard to tumor marker expression. S-100 and NK1/C3 were the most sensitive stains for detecting metastatic melanoma; however, they both also stain other nontumor cells in lymph nodes. MART-1 did not stain

  13. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma.

    Science.gov (United States)

    Drexler, H G; Matsuo, Y

    2000-05-01

    Malignancies involving natural killer (NK) cells are rare disorders. The complexity of NK cell-involving disorders has only recently been appreciated. Modern classifications discern immature (precursor) from mature NK cell leukemias-lymphomas. Continuous NK leukemia-lymphoma cell lines represent important model systems to study these neoplasms. While there are a number of putative NK cell lines which are, however, either not characterized, not immortalized, non-malignant, non-NK, or plain false cell lines, six bona fide malignant NK cell lines have been established and are sufficiently well characterized: HANK1, KHYG-1, NK-92, NKL, NK-YS and YT. Except for YT which was derived from a not further defined acute lymphoblastic lymphoma, these cell lines were established from patients with various NK cell malignancies. Five of the six cell lines are constitutively interleukin-2-dependent. Their immunoprofile is remarkably similar: CD1-, CD2+, surface CD3 (but cytoplasmic CD3epsilon+), CD4-, CD5-, CD7+, CD8-, CD16-, CD56+, CD57-, TCRalphabeta-, TCRgammadelta-, negative for B cell and myelomonocytic markers. The immunoglobulin heavy chain and T cell receptor genes are all in germline configuration. All six lines show complex chromosomal alterations, with both numerical and structural aberrations, attesting to their malignant and monoclonal nature. Functionally, these cells which contain azurophilic granules in their cytoplasm are nearly universally positive in NK activity assays. Three of five cell lines are Epstein-Barr virus-positive (type II latency). The composite data on these six cell lines allow for the operational definition of a typical malignant NK cell line profile. NK leukemia-lymphoma cell lines will prove invaluable for studies of normal and malignant NK cell biology.

  14. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions.

    Science.gov (United States)

    Di Trapani, Mariano; Bassi, Giulio; Midolo, Martina; Gatti, Alessandro; Kamga, Paul Takam; Cassaro, Adriana; Carusone, Roberta; Adamo, Annalisa; Krampera, Mauro

    2016-04-13

    Mesenchymal stromal cells (MSCs) are multipotent cells, immunomodulatory stem cells that are currently used for regenerative medicine and treatment of a number of inflammatory diseases, thanks to their ability to significantly influence tissue microenvironments through the secretion of large variety of soluble factors. Recently, several groups have reported the presence of extracellular vesicles (EVs) within MSC secretoma, showing their beneficial effect in different animal models of disease. Here, we used a standardized methodological approach to dissect the immunomodulatory effects exerted by MSC-derived EVs on unfractionated peripheral blood mononuclear cells and purified T, B and NK cells. We describe here for the first time: i. direct correlation between the degree of EV-mediated immunosuppression and EV uptake by immune effector cells, a phenomenon further amplified following MSC priming with inflammatory cytokines; ii. induction in resting MSCs of immunosuppressive properties towards T cell proliferation through EVs obtained from primed MSCs, without any direct inhibitory effect towards T cell division. Our conclusion is that the use of reproducible and validated assays is not only useful to characterize the mechanisms of action of MSC-derived EVs, but is also capable of justifying EV potential use as alternative cell-free therapy for the treatment of human inflammatory diseases.

  15. Viral Evasion of Natural Killer Cell Activation

    Directory of Open Access Journals (Sweden)

    Yi Ma

    2016-04-01

    Full Text Available Natural killer (NK cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  16. Viral Evasion of Natural Killer Cell Activation.

    Science.gov (United States)

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-04-12

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  17. Lactobacilli Differentially Activate Natural Killer Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    bacteria on regulatory functions of NK-cells. Here, we have investigated how human gut flora-derived non-pathogenic lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human peripheral blood NK cells upon bacterial stimulation. CD3-CD56+ NK cells were isolated from...... having engulfed bacteria, stimulated the growth of the NK cells. In contrast, a Lactobacillus paracasei strain caused the NK cells to proliferate only in the presence of monocytes. These results demonstrate that various lactobacilli have the capacity to activate NK cells in vitro, in a monocyte dependent...

  18. P02.03INCREASED COUNTS OF NK AND NKT CELLS ARE ASSOCIATED WITH PROLONGED SURVIVAL IN PRIMARY GLIOBLASTOMA PATIENTS TREATED WITH DENDRITIC CELL IMMUNOTHERAPY IN COMBINATION WITH RADIO- AND CHEMO-THERAPY

    Science.gov (United States)

    Pellegatta, S.; Eoli, M.; Cantini, G.; Anghileri, E.; Antozzi, C.; Frigerio, S.; Bruzzone, M.; Pollo, B.; Parati, E.; Finocchiaro, G.

    2014-01-01

    Two clinical studies, DENDR1 and DENDR2 including, respectively, the treatment of first diagnosis and recurrent glioblastoma (GB) patients with dendritic cells (DCs) loaded with autologous tumor lysate are currently active at Istituto Neurologico Besta, Milan. Our first results obtained on a group of recurrent GB patients demonstrated that the response of NK cells correlates with significantly prolonged survival. Here we provide results of the interim analysis on 22 patients affected by primary GB. Patients with post-surgery volume ≤10 cc underwent leukapheresis before radiotherapy and chemotherapy with temozolomide (TMZ). Three intradermal injections of mature DC were done before adjuvant chemotherapy. The subsequent 4 injections were performed 17 ± 3 days after adjuvant TMZ. MRI, clinical and immunological follow-up were performed every 2 months. The median age at surgery was 54.5 years (28-69). RT-TMZ induced significant lymphopenia (1000 lymphocytes/microl (5/22) before first vaccination had shorter PFS than others (p < 0.005). Peripheral Blood Lymphocytes (PBLs) were analyzed by flow cytometry to identify CD8+ T cells, NK and NKT cells before and after DC vaccines. The ratio of vaccination/baseline frequencies and counts (V/B ratio) of all of the immunological parameters for each patient was calculated, and the median of all of the observations used as the cut off value to separate patients. V/B ratio was correlated with the progression free survival (PFS) of each patient. Increased V/B ratio for NK cells and in particular NKT cells, but not for CD8 T lymphocytes, was significantly associated with prolonged PFS (median PFS 14 vs 8.0 mo, p = 0.01; 15.0 vs 8.0 mo, respectively). Interferon (IFN)-γ in PBLs was significantly higher in patients with PFS12 (p < 0.02), increasing immediately after the second vaccination as evaluated by real time-PCR. No changes in the expression levels of IFN-γ were observed in the other patients. After a median follow up of 14

  19. Distinct T and NK cell populations may serve as immune correlates of protection against symptomatic pandemic influenza A(H1N1 virus infection during pregnancy.

    Directory of Open Access Journals (Sweden)

    Miloje Savic

    Full Text Available Maternal influenza infection during pregnancy is associated with increased risk of morbidity and mortality. However, the link between the anti-influenza immune responses and health-related risks during infection is not well understood. We have analyzed memory T and NK cell mediated immunity (CMI responses in pandemic influenza A(H1N1pdm09 (pdm09 virus infected non-vaccinated pregnant women participating in the Norwegian Influenza Pregnancy Cohort (NorFlu. The cohort includes information on immunization, self-reported health and disease status, and biological samples (plasma and PBMC. Infected cases (N = 75 were defined by having a serum hemagglutination inhibition (HI titer > = 20 to influenza pdm09 virus at the time of delivery, while controls (N = 75 were randomly selected among non-infected pregnant women (HI titer <10. In ELISpot assays cases had higher frequencies of IFNγ+ CD8+ T cells responding to pdm09 virus or conserved CD8 T cell-restricted influenza A virus epitopes, compared to controls. Within this T cell population, frequencies of CD95+ late effector (CD45RA+CCR7- and naive (CD45RA+CCR7+ CD8+ memory T cells correlated inversely with self-reported influenza illness (ILI symptoms. ILI symptoms in infected women were also associated with lower numbers of poly-functional (IFNγ+TNFα+, IL2+IFNγ+, IL2+IFNγ+TNFα+ CD4+ T cells and increased frequencies of IFNγ+CD3-CD7+ NK cells compared to asymptomatic cases, or controls, after stimulation with the pdm09 virus. Taken together, virus specific and functionally distinct T and NK cell populations may serve as cellular immune correlates of clinical outcomes of pandemic influenza disease in pregnant women. Our results may provide information important for future universal influenza vaccine design.

  20. Distinct T and NK cell populations may serve as immune correlates of protection against symptomatic pandemic influenza A(H1N1) virus infection during pregnancy.

    Science.gov (United States)

    Savic, Miloje; Dembinski, Jennifer L; Laake, Ida; Hungnes, Olav; Cox, Rebecca; Oftung, Fredrik; Trogstad, Lill; Mjaaland, Siri

    2017-01-01

    Maternal influenza infection during pregnancy is associated with increased risk of morbidity and mortality. However, the link between the anti-influenza immune responses and health-related risks during infection is not well understood. We have analyzed memory T and NK cell mediated immunity (CMI) responses in pandemic influenza A(H1N1)pdm09 (pdm09) virus infected non-vaccinated pregnant women participating in the Norwegian Influenza Pregnancy Cohort (NorFlu). The cohort includes information on immunization, self-reported health and disease status, and biological samples (plasma and PBMC). Infected cases (N = 75) were defined by having a serum hemagglutination inhibition (HI) titer > = 20 to influenza pdm09 virus at the time of delivery, while controls (N = 75) were randomly selected among non-infected pregnant women (HI titer <10). In ELISpot assays cases had higher frequencies of IFNγ+ CD8+ T cells responding to pdm09 virus or conserved CD8 T cell-restricted influenza A virus epitopes, compared to controls. Within this T cell population, frequencies of CD95+ late effector (CD45RA+CCR7-) and naive (CD45RA+CCR7+) CD8+ memory T cells correlated inversely with self-reported influenza illness (ILI) symptoms. ILI symptoms in infected women were also associated with lower numbers of poly-functional (IFNγ+TNFα+, IL2+IFNγ+, IL2+IFNγ+TNFα+) CD4+ T cells and increased frequencies of IFNγ+CD3-CD7+ NK cells compared to asymptomatic cases, or controls, after stimulation with the pdm09 virus. Taken together, virus specific and functionally distinct T and NK cell populations may serve as cellular immune correlates of clinical outcomes of pandemic influenza disease in pregnant women. Our results may provide information important for future universal influenza vaccine design.

  1. Expression of activating natural killer-cell receptors is a hallmark of the innate-like T-cell neoplasm in peripheral T-cell lymphomas.

    Science.gov (United States)

    Uemura, Yu; Isobe, Yasushi; Uchida, Akiko; Asano, Junko; Nishio, Yuji; Sakai, Hirotaka; Hoshikawa, Masahiro; Takagi, Masayuki; Nakamura, Naoya; Miura, Ikuo

    2018-04-01

    Peripheral T- or natural killer (NK)-cell lymphomas are rare and difficult-to-recognize diseases. It remains arduous to distinguish between NK cell- and cytotoxic T-lymphocyte-derived lymphomas through routine histological evaluation. To clarify the cells of origin, we focused on NK-cell receptors and examined the expression using immunohistochemistry in 22 cases with T- and NK-cell neoplasms comprising angioimmunoblastic T-cell lymphoma, anaplastic lymphoma kinase (ALK)-positive and -negative anaplastic large-cell lymphomas, extranodal NK/T-cell lymphoma, nasal type, monomorphic epitheliotropic intestinal T-cell lymphoma, aggressive NK-cell leukemia, and other peripheral T-cell lymphomas. Inhibitory receptor leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) was detected in 14 (64%) cases, whereas activating receptors DNAM1, NKp46, and NKG2D were expressed in 7 (32%), 9 (41%), and 5 (23%) cases, respectively. Although LILRB1 was detected regardless of the disease entity, the activating NK-cell receptors were expressed predominantly in TIA-1-positive neoplasms (DNAM1, 49%; NKp46, 69%; and NKG2D, 38%). In addition, NKp46 and NKG2D were detected only in NK-cell neoplasms and cytotoxic T-lymphocyte-derived lymphomas including monomorphic epitheliotropic intestinal T-cell lymphoma. One Epstein-Barr virus-harboring cytotoxic T-lymphocyte-derived lymphoma mimicking extranodal NK/T-cell lymphoma, nasal type lacked these NK-cell receptors, indicating different cell origin from NK and innate-like T cells. Furthermore, NKG2D expression showed a negative impact on survival among the 22 examined cases, which mainly received the standard chemotherapy regimen (log-rank test, P = .024). We propose that the presence of activating NK-cell receptors may provide new insights into understanding peripheral T-cell lymphomas and characterizing them as innate-like T-cell neoplasm. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on

  2. Type 1 Diabetes and Its Multi-Factorial Pathogenesis: The Putative Role of NK Cells.

    Science.gov (United States)

    Marca, Valeria La; Gianchecchi, Elena; Fierabracci, Alessandra

    2018-03-10

    Type 1 diabetes (T1D) affects millions of people worldwide and is the prevalent form of all pediatric diabetes diagnoses. T1D is recognized to have an autoimmune etiology, since failure in specific self-tolerance mechanisms triggers immune reactions towards self-antigens and causes disease onset. Among all the different immunocytes involved in T1D etiopathogenesis, a relevant role of natural killer cells (NKs) is currently emerging. NKs represent the interface between innate and adaptive immunity; they intervene in the defense against infections and present, at the same time, typical features of the adaptive immune cells, such as expansion and generation of memory cells. Several recent studies, performed both in animal models and in human diabetic patients, revealed aberrations in NK cell frequency and functionality in the peripheral blood and in damaged tissues, suggesting their possible redirection towards affected tissues. NKs oscillate from a quiescent to an activated state through a delicate balance of activating and inhibitory signals transduced via surface receptors. Further accurate investigations are needed to elucidate the exact role of NKs in T1D, in order to develop novel immune-based therapies able to reduce the disease risk or delay its onset.

  3. MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape.

    Science.gov (United States)

    Codo, Paula; Weller, Michael; Meister, Gunter; Szabo, Emese; Steinle, Alexander; Wolter, Marietta; Reifenberger, Guido; Roth, Patrick

    2014-09-15

    Malignant gliomas are intrinsic brain tumors with a dismal prognosis. They are well-adapted to hypoxic conditions and poorly immunogenic. NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DL). Here we evaluated the impact of miRNA on the expression of NKG2DL in glioma cells including stem-like glioma cells. Three of the candidate miRNA predicted to target NKG2DL were expressed in various glioma cell lines as well as in glioblastomas in vivo: miR-20a, miR-93 and miR-106b. LNA inhibitor-mediated miRNA silencing up-regulated cell surface NKG2DL expression, which translated into increased susceptibility to NK cell-mediated lysis. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced lysis upon miRNA silencing was mediated through the NKG2D system. Hypoxia, a hallmark of glioblastomas in vivo, down-regulated the expression of NKG2DL on glioma cells, associated with reduced susceptibility to NK cell-mediated lysis. This process, however, was not mediated through any of the examined miRNA. Accordingly, both hypoxia and the expression of miRNA targeting NKG2DL may contribute to the immune evasion of glioma cells at the level of the NKG2D recognition pathway. Targeting miRNA may therefore represent a novel approach to increase the immunogenicity of glioblastoma.

  4. Regulation of CD93 cell surface expression by protein kinase C isoenzymes.

    Science.gov (United States)

    Ikewaki, Nobunao; Kulski, Jerzy K; Inoko, Hidetoshi

    2006-01-01

    Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell

  5. Epstein-Barr virus-negative aggressive natural killer-cell leukaemia with high P-glycoprotein activity and phosphorylated extracellular signal-regulated protein kinases 1 and 2

    Directory of Open Access Journals (Sweden)

    Sanja Perkovic

    2012-09-01

    Full Text Available Aggressive natural killer-cell leukaemia (ANKL is a rare type of disease with fulminant course and poor outcome. The disease is more prevalent among Asians than in other ethnic groups and shows strong association with Epstein-Barr virus (EBV and P-glycoprotein (P-gp expression associated with multidrug resistance. Here we present a case of a 47 year old Caucasian female with a prior medical history of azathioprine treated ulcerative colitis who developed EBV-negative form of ANKL. The patient presented with hepatosplenomegaly, fever and nausea with peripheral blood and bone marrow infiltration with up to 70% of atypical lymphoid cells positive for cCD3, CD2, CD7, CD56, CD38, CD45, TIA1 and granzyme B, and negative for sCD3, CD4, CD5, CD8, CD34 and CD123 indicative of ANKL. Neoplastic CD56+ NK-cells showed high level of P-glycoprotein expression and activity, but also strong expression of phosphorylated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2 MAP kinase. The patient was treated with an intensive polychemotherapy regimen designed for treatment of acute lymphoblastic leukaemia, but one month after admission developed sepsis, coma and died of cardiorespiratory arrest. We present additional evidence that, except for the immunophenotype, leukaemic NK-cells resemble normal NK-cells in terms of P-gp functional capacity and expression of phosphorylated ERK1/2 signalling molecule. In that sense drugs that block P-glycoprotein activity and activated signalling pathways might represent new means for targeted therapy.

  6. Invariant NKT cells regulate experimental autoimmune uveitis through inhibition of Th17 differentiation.

    Science.gov (United States)

    Oh, Keunhee; Byoun, Ok-Jin; Ham, Don-Il; Kim, Yon Su; Lee, Dong-Sup

    2011-02-01

    Although NKT cells have been implicated in diverse immunomodulatory responses, the effector mechanisms underlying the NKT cell-mediated regulation of pathogenic T helper cells are not well understood. Here, we show that invariant NKT cells inhibited the differentiation of CD4(+) T cells into Th17 cells both in vitro and in vivo. The number of IL-17-producing CD4(+) T cells was reduced following co-culture with purified NK1.1(+) TCR(+) cells from WT, but not from CD1d(-/-) or Jα18(-/-) , mice. Co-cultured NKT cells from either cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) or WT mice efficiently inhibited Th17 differentiation. The contact-dependent mechanisms of NKT cell-mediated regulation of Th17 differentiation were confirmed using transwell co-culture experiments. On the contrary, the suppression of Th1 differentiation was dependent on IL-4 derived from the NKT cells. The in vivo regulatory capacity of NKT cells on Th17 cells was confirmed using an experimental autoimmune uveitis model induced with human IRBP(1-20) (IRBP, interphotoreceptor retinoid-binding protein) peptide. NKT cell-deficient mice (CD1d(-/-) or Jα18(-/-) ) demonstrated an increased disease severity, which was reversed by the transfer of WT or cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) NKT cells. Our results indicate that invariant NKT cells inhibited autoimmune uveitis predominantly through the cytokine-independent inhibition of Th17 differentiation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Correlação da infiltração das células Natural Killer (NK CD 57+ no prognóstico do adenocarcinoma gástrico Gástrico correlation of Natural Killer cell with the prognosis of gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Déborah Rosso

    2012-06-01

    Full Text Available OBJETIVO: Avaliar a concentração da célula Natural Killer (NK no adenocarcinoma gástrico operado, e sua correlação com fatores prognósticos e sobrevida MÉTODOS: Foram estudados 72 doentes portadores de adenocarcinoma gástrico e que foram submetidos à gastrectomia com linfadenectomia D2. A concentração de célula NK foi avaliada por técnica de imunoistoquímica pelo reagente CD57. Os doentes foram divididos em dois grupos: alta concentração de células (n=32 (>15 células /10 campos de grande aumento e baixa concentração (≤ 15 células/10 campos de grande aumento. Esses dois grupos foram comparados com seguintes fatores prognósticos: gênero, idade, localização do tumor, grau de diferenciação celular, classificação de Lauren, estádio, disseminação linfática, metástases e sobrevida. A curva de Kaplan-Meier foi empregada para avaliação de sobrevida e a análise multivariada para avaliação dos fatores prognósticos. RESULTADOS: Não houve relação das células NK com as diversas variáveis estudadas, a não ser com o estádio, onde houve significância (pAIM: To evaluate the concentration of Natural Killer cells (NK cells in adenocarcinoma of the stomach, and its correlation with prognostic factors and survival. METHODS: Seventy-two patients with gastric adenocarcinoma who underwent gastric resection surgery and D2 lymphadenectomy in the period 1997-2007 were analyzed. The concentration of NK cells was evaluated by immunohistochemistry technique with the reagent CD57. Patients were divided into two groups: high concentration (n = 32 (more than 15 cells per 10 high power field and low concentration (less or equal than 15 cells per 10 high power field. These two groups were compared with several prognostic factors such as: gender, age, tumor location, tumor differentiation, Lauren classification, stage, lymph nodes involvement, distant metastases and survival. The Kaplan-Meier curve was applied to evaluate survival

  8. Electroporation driven delivery of both an IL-12 expressing plasmid and cisplatin synergizes to inhibit B16 melanoma tumor growth through an NK cell mediated tumor killing mechanism.

    Science.gov (United States)

    Kim, Ha; Sin, Jeong-Im

    2012-11-01

    Combined therapy using chemotherapeutic drugs and immunotherapeutics offers some promise for treating patients with cancer. In this study, we evaluated whether cisplatin delivered by intratumoral (IT)-electroporation (EP) might enhance antitumor activity against established B16 melanoma and whether further addition of intramuscular (IM)-EP of IL-12 cDNA to IT-EP of cisplatin might augment antitumor therapeutic activity, with a focus on the underlining antitumor mechanism(s). When tumor (7 mm)-bearing animals were treated locally with cisplatin by IT-EP, they showed tumor growth inhibition significantly more than those without IT-EP. Moreover, IL-12 cDNA delivered by IM-EP was also able to inhibit tumor growth significantly more than control vector delivery. This tumor growth inhibition was mediated by NK cells, but not CD4+ T or CD8+ T cells, as determined by immune cell subset depletion and IFN-γ induction. Moreover, concurrent therapy using IT-EP of cisplatin plus IM-EP of IL-12 cDNA displayed antitumor therapeutic synergy. This therapeutic synergy appeared to be mediated by increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. Taken together, these data support that cisplatin delivery by IT-EP plus IL-12 gene delivery by IM-EP are more effective at inducing antitumor therapeutic responses through increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. This combined approach might have some implication for treating melanoma in patients.

  9. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells.

    Science.gov (United States)

    Scoville, Steven D; Freud, Aharon G; Caligiuri, Michael A

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development.

  10. Expression of the RAE-1 Family of Stimulatory NK-Cell Ligands Requires Activation of the PI3K Pathway during Viral Infection and Transformation

    Science.gov (United States)

    Tokuyama, Maria; Lorin, Clarisse; Delebecque, Frederic; Jung, Heiyoun; Raulet, David H.; Coscoy, Laurent

    2011-01-01

    Natural killer (NK) cells are lymphocytes that play a major role in the elimination of virally-infected cells and tumor cells. NK cells recognize and target abnormal cells through activation of stimulatory receptors such as NKG2D. NKG2D ligands are self-proteins, which are absent or expressed at low levels on healthy cells but are induced upon cellular stress, transformation, or viral infection. The exact molecular mechanisms driving expression of these ligands remain poorly understood. Here we show that murine cytomegalovirus (MCMV) infection activates the phosphatidylinositol-3-kinase (PI3K) pathway and that this activation is required for the induction of the RAE-1 family of mouse NKG2D ligands. Among the multiple PI3K catalytic subunits, inhibition of the p110α catalytic subunit blocks this induction. Similarly, inhibition of p110α PI3K reduces cell surface expression of RAE-1 on transformed cells. Many viruses manipulate the PI3K pathway, and tumors frequently mutate the p110α oncogene. Thus, our findings suggest that dysregulation of the PI3K pathway is an important signal to induce expression of RAE-1, and this may represent a commonality among various types of cellular stresses that result in the induction of NKG2D ligands. PMID:21966273

  11. A flow-cytometric NK-cytotoxicity assay adapted for use in rat repeated dose toxicity studies

    International Nuclear Information System (INIS)

    Marcusson-Staahl, Maritha; Cederbrant, Karin

    2003-01-01

    A recent regulatory document for immunotoxicity testing of new pharmaceutical drugs includes cytotoxic natural killer (NK)-cell function as a required parameter in repeated dose toxicity studies. The classical 51 Cr-release assay is the conventional test for cytotoxicity testing but several drawbacks with this assay has increased the demand for new reliable test systems. Here, we describe the optimisation of a flow-cytometric cytotoxicity assay especially adapted for regulatory rat studies in drug development. The test principle is based on target cell labelling with 5-(6)-carboxy-fluorescein succinimidyl ester (CFSE) and subsequent DNA-labelling with propidium iodide (PI) for identification of target cells with compromised cell membranes. The results are expressed as percentage of dead targets on a cell-to-cell basis. The final format of the assay includes 0.5 ml peripheral blood, 1.25x10 5 effector cells per sample, and collection of 500 target events by flow-cytometry. When NKR-P1+ cells were removed from the effector cell population by magnetic depletion the relative proportion decreased from 6 to 0.08%. The corresponding cytotoxic activity decreased from 68 to 8%. Also, the cytotoxic activity showed a significant and positive correlation with the proportion of NK-cells present in the effector cell suspension. Thus, the cytotoxicity measured is almost exclusively exerted by NK-cells. The current flow-cytometric test benefits from using peripheral blood as a source for effector cells since it will not conflict with the use of spleen for histopathological investigations in repeated dose toxicity studies. Additionally, since only a minimal number of effector cells are required per sample repeated testing of the same animal is enabled

  12. Generation of “Off-the-Shelf” Natural Killer Cells from Peripheral Blood Cell-Derived Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jieming Zeng

    2017-12-01

    Full Text Available Summary: Current donor cell-dependent strategies can only produce limited “made-to-order” therapeutic natural killer (NK cells for limited patients. To provide unlimited “off-the-shelf” NK cells that serve many recipients, we designed and demonstrated a holistic manufacturing scheme to mass-produce NK cells from induced pluripotent stem cells (iPSCs. Starting with a highly accessible human cell source, peripheral blood cells (PBCs, we derived a good manufacturing practice-compatible iPSC source, PBC-derived iPSCs (PBC-iPSCs for this purpose. Through our original protocol that excludes CD34+ cell enrichment and spin embryoid body formation, high-purity functional and expandable NK cells were generated from PBC-iPSCs. Above all, most of these NK cells expressed no killer cell immunoglobulin-like receptors (KIRs, which renders them unrestricted by recipients' human leukocyte antigen genotypes. Hence, we have established a practical “from blood cell to stem cells and back with less (less KIRs” strategy to generate abundant “universal” NK cells from PBC-iPSCs for a wide range of patients. : To provide unlimited “off-the-shelf” NK cells that serve many recipients, Zeng and colleagues demonstrate a manufacturing scheme to mass-produce NK cells from peripheral blood cell-derived iPSCs (PBC-iPSCs. Through their original protocol, high-purity functional NK cells are generated from PBC-iPSCs. Most of these NK cells express no killer cell immunoglobulin-like receptors, which renders them unrestricted by recipients' HLA genotypes. Keywords: induced pluripotent stem cells, peripheral blood cells, natural killer cells, killer cell immunoglobulin-like receptors, cell therapy, immunotherapy, cancer, cytotoxicity

  13. NKp46+CD3+ cells - a novel non-conventional T-cell subset in cattle exhibiting both NK cell and T-cell features

    Science.gov (United States)

    Connelley, Timothy K.; Longhi, Cassandra; Burrells, Alison; Degnan, Kathryn; Hope, Jayne; Allan, Alasdair; Hammond, John A.; Storset, Anne K.; Morrison, W. Ivan

    2014-01-01

    The NKp46 receptor demonstrates a high degree of lineage-specificity, being expressed almost exclusively in natural killer cells. Previous studies have demonstrated NKp46 expression by T-cells, but NKp46+CD3+ cells are rare and almost universally associated with NKp46 acquisition by T-cells following stimulation. In this study we demonstrate the existence of a population of NKp46+CD3+ cells resident in normal bovine PBMC which include cells of both the αβ TCR+ and γδ TCR+ lineages and is present at a frequency of 0.1-1.7%. NKp46+CD3+ cells express transcripts for a broad repertoire of both natural killer (NKR) and T-cell receptors (TCR) and also the CD3ζ, DAP10 and FcεR1γ but not DAP12 adaptor proteins. In vitro functional analysis of NKp46+CD3+ cells confirm that NKp46, CD16 and CD3 signalling pathways are all functionally competent and capable of mediating-re-direct cytolysis. However, only CD3 cross-ligation elicits IFN-γ release. NKp46+CD3+ cells exhibit cytotoxic activity against autologous Theileria parva infected cells in vitro and during in vivo challenge with this parasite an expansion of NKp46+CD3+ cells was observed in some animals, indicating the cells have the potential to act as an anti-pathogen effector population. The results presented herein identifies and describes a novel non-conventional NKp46+CD3+ T-cell subset that is phenotypically and functionally distinct from conventional NK and T-cells. The ability to exploit both NKR and TCR suggests these cells may fill a functional niche at the interface of innate and adaptive immune responses. PMID:24639352

  14. Present and future of allogeneic natural killer cell therapy

    Directory of Open Access Journals (Sweden)

    Okjae eLim

    2015-06-01

    Full Text Available Natural killer (NK cells are innate lymphocytes that are capable of eliminating tumor cells and are therefore used for cancer therapy. Although many early investigators used autologous NK cells, including lymphokine-activated killer cells, the clinical efficacies were not satisfactory. Meanwhile, human leukocyte antigen (HLA-haploidentical hematopoietic stem cell transplantation revealed the anti-tumor effect of allogeneic NK cells, and HLA-haploidentical, killer cell immunoglobulin-like receptor (KIR ligand-mismatched allogeneic NK cells are currently used for many protocols requiring NK cells. Moreover, allogeneic NK cells from non-HLA-related healthy donors have been recently used in cancer therapy. The use of allogeneic NK cells from non-HLA-related healthy donors allows the selection of donor NK cells with higher flexibility and to prepare expanded, cryopreserved NK cells for instant administration without delay for ex vivo expansion. In cancer therapy with allogeneic NK cells, optimal matching of donors and recipients is important to maximize the efficacy of the therapy. In this review, we summarize the present state of allogeneic NK cell therapy and its future directions.

  15. The mouse tumor cell lines EL4 and RMA display mosaic expression of NK-related and certain other surface molecules and appear to have a common origin.

    Science.gov (United States)

    Gays, F; Unnikrishnan, M; Shrestha, S; Fraser, K P; Brown, A R; Tristram, C M; Chrzanowska-Lightowlers, Z M; Brooks, C G

    2000-05-15

    As a potential means for facilitating studies of NK cell-related molecules, we examined the expression of these molecules on a range of mouse tumor cell lines. Of the lines we initially examined, only EL4 and RMA expressed such molecules, both lines expressing several members of the Ly49 and NKRP1 families. Unexpectedly, several of the NK-related molecules, together with certain other molecules including CD2, CD3, CD4, CD32, and CD44, were often expressed in a mosaic manner, even on freshly derived clones, indicating frequent switching in expression. In each case examined, switching was controlled at the mRNA level, with expression of CD3zeta determining expression of the entire CD3-TCR complex. Each of the variable molecules was expressed independently, with the exception that CD3 was restricted to cells that also expressed CD2. Treatment with drugs that affect DNA methylation and histone acetylation could augment the expression of at least some of the variable molecules. The striking phenotypic similarity between EL4 and RMA led us to examine the state of their TCRbeta genes. Both lines had identical rearrangements on both chromosomes, indicating that RMA is in fact a subline of EL4. Overall, these findings suggest that EL4 is an NK-T cell tumor that may have retained a genetic mechanism that permits the variable expression of a restricted group of molecules involved in recognition and signaling.

  16. NK1.1+ cells are important for the development of protective immunity against MHC I-deficient, HPV16-associated tumours

    Czech Academy of Sciences Publication Activity Database

    Indrová, Marie; Šímová, Jana; Bieblová, Jana; Bubeník, Jan; Reiniš, Milan

    2011-01-01

    Roč. 25, č. 1 (2011), s. 281-288 ISSN 1021-335X R&D Projects: GA AV ČR IAA500520807 Grant - others:EU-FP6-NOE(XE) Project 018933 Institutional research plan: CEZ:AV0Z50520514 Keywords : MHC class I-deficient tumours * CD8+, CD4+, NK1.1+cell subpopulations * interferon gamma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.835, year: 2011

  17. Effects of Butyltins (BTs) on Mitogen-Activated-Protein Kinase Kinase Kinase (MAP3K) and Ras Activity in Human Natural Killer Cells

    Science.gov (United States)

    Celada, Lindsay J.; Whalen, Margaret M.

    2013-01-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT), diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally-infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to the activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 minutes of TBT exposure and the MAP3K, ASK1, after one hour exposures to TBT. In addition, our results suggest that both TBT and DBT are impacting the regulation of c-Raf. PMID:24038145

  18. Novel method for the study of receptor Ca2+ signalling exemplified by the NK1 receptor

    DEFF Research Database (Denmark)

    Heding, A; Elling, C E; Schwartz, T W

    2002-01-01

    We have used a novel technology (NovoStar from BMG Labtechnologies) for the study of the Ca2+ signalling of the human tackykinin NK1 (hNK-I receptor). The NovoStar is a microplate reader based on fluorescence and luminescence. The instrument implements a robotic pipettor arm and two microplate...... carriers, typically one for samples and one for cells. The robotic pipettor arm can transfer sample (agonist or antagonist) from the sample plate or other liquid containers to the cell plate, facilitating the study of Ca2+ signalling to such a degree that the instrument can be used for Medium Throughput...

  19. Therapeutic Outcome of Extranodal NK/T-Cell Lymphoma Initially Treated with Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Su; Kim, Tae-you; Kim, Chul Woo; Kim, Ji Yeun; Heo, Dae Seog; Bang, Yung-jue; Kim, Noe Kyeong [Seoul National Univ. College of Medicine (Korea, Republic of). Cancer Research Inst.

    2003-11-01

    The therapeutic outcome of chemotherapy in NK/T cell lymphoma (NTCL) has not been well documented until now. The aims of this study were to investigate the outcome of chemotherapy and to evaluate the clinical factors influencing the responsiveness to chemotherapy. Between 1995 and 2000, 59 patients received anthracycline-based chemotherapy as an initial treatment. Forty-five patients had nasal NTCL, whereas 14 had extranasal NTCL. Forty-one patients had stage I/II and 18 had stage III/IV disease. Epstein-Barr virus status was positive in 67.6% of cases. The results of initial chemotherapy were complete remission in 35.6% of the patients, 2-year disease-free survival in 22.9% and 2-year overall survival in 44.2%. Adjuvant radiotherapy after chemotherapy did not improve outcome in stage I/II nasal NTCL. The International Prognostic Index was a significant prognostic factor of complete remission rate, and stage was also significant for disease-free survival.

  20. Therapeutic Outcome of Extranodal NK/T-Cell Lymphoma Initially Treated with Chemotherapy

    International Nuclear Information System (INIS)

    Kim, Byung Su; Kim, Tae-you; Kim, Chul Woo; Kim, Ji Yeun; Heo, Dae Seog; Bang, Yung-jue; Kim, Noe Kyeong

    2003-01-01

    The therapeutic outcome of chemotherapy in NK/T cell lymphoma (NTCL) has not been well documented until now. The aims of this study were to investigate the outcome of chemotherapy and to evaluate the clinical factors influencing the responsiveness to chemotherapy. Between 1995 and 2000, 59 patients received anthracycline-based chemotherapy as an initial treatment. Forty-five patients had nasal NTCL, whereas 14 had extranasal NTCL. Forty-one patients had stage I/II and 18 had stage III/IV disease. Epstein-Barr virus status was positive in 67.6% of cases. The results of initial chemotherapy were complete remission in 35.6% of the patients, 2-year disease-free survival in 22.9% and 2-year overall survival in 44.2%. Adjuvant radiotherapy after chemotherapy did not improve outcome in stage I/II nasal NTCL. The International Prognostic Index was a significant prognostic factor of complete remission rate, and stage was also significant for disease-free survival

  1. GMP-compliant, large-scale expanded allogeneic natural killer cells have potent cytolytic activity against cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Okjae Lim

    Full Text Available Ex vivo-expanded, allogeneic natural killer (NK cells can be used for the treatment of various types of cancer. In allogeneic NK cell therapy, NK cells from healthy donors must be expanded in order to obtain a sufficient number of highly purified, activated NK cells. In the present study, we established a simplified and efficient method for the large-scale expansion and activation of NK cells from healthy donors under good manufacturing practice (GMP conditions. After a single step of magnetic depletion of CD3(+ T cells, the depleted peripheral blood mononuclear cells (PBMCs were stimulated and expanded with irradiated autologous PBMCs in the presence of OKT3 and IL-2 for 14 days, resulting in a highly pure population of CD3(-CD16(+CD56(+ NK cells which is desired for allogeneic purpose. Compared with freshly isolated NK cells, these expanded NK cells showed robust cytokine production and potent cytolytic activity against various cancer cell lines. Of note, expanded NK cells selectively killed cancer cells without demonstrating cytotoxicity against allogeneic non-tumor cells in coculture assays. The anti-tumor activity of expanded human NK cells was examined in SCID mice injected with human lymphoma cells. In this model, expanded NK cells efficiently controlled lymphoma progression. In conclusion, allogeneic NK cells were efficiently expanded in a GMP-compliant facility and demonstrated potent anti-tumor activity both in vitro and in vivo.

  2. Combustible and non-combustible tobacco product preparations differentially regulate human peripheral blood mononuclear cell functions.

    Science.gov (United States)

    Arimilli, Subhashini; Damratoski, Brad E; Prasad, G L

    2013-09-01

    Natural killer (NK) cells and T cells play essential roles in innate and adaptive immune responses in protecting against microbial infections and in tumor surveillance. Although evidence suggests that smoking causes immunosuppression, there is limited information whether the use of smokeless tobacco (ST) products affects immune responses. In this study, we assessed the effects of two preparations of cigarette smoke, ST extract and nicotine on T cell and NK cell responses using Toll-like receptor-ligand stimulated human peripheral blood mononuclear cells (PBMCs). The tobacco product preparations (TPPs) tested included whole smoke conditioned media (WS-CM), total particulate matter (TPM) and a ST product preparation in complete artificial saliva (ST/CAS). The PBMCs were stimulated with polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharide (LPS). A marked reduction of the expression of intracellular IFN-γ and TNF-α was evident in NK cells and T cells treated with WS-CM and TPM. Consistently, attenuation of ligand-induced secretion of cytokines (IL-1β, IL-10, IL-12 and TNF-α) from PBMCs treated with WS-CM and TPM were observed. While the treatment with TPPs did not alter the expression of the maturation marker CD69, WS-CM and TPM inhibited the cytolytic activity of human PBMCs. Suppression of perforin by WS-CM was also detected. Although interference from the vehicle confounded the interpretation of effects of ST/CAS, some effects were evident only at high concentrations. Nicotine treatment minimally impacted expression of cytokines and cytolytic activity. Data presented herein suggests that the function of NK cells and T cells is influenced by exposure to TPPs (based on equi-nicotine units) in the following order: WS-CM>TPM>ST/CAS. These findings are consistent with the hypothesis put forward by others that chronic smoking leads to immunosuppression, an effect that may contribute to increased microbial infections and cancer incidence among smokers

  3. IL-15 STIMULATED NATURAL KILLER CELLS CLEAR HIV-1 INFECTED CELLS FOLLOWING LATENCY REVERSAL EX VIVO.

    Science.gov (United States)

    Garrido, Carolina; Abad-Fernandez, Maria; Tuyishime, Marina; Pollara, Justin J; Ferrari, Guido; Soriano-Sarabia, Natalia; Margolis, David M

    2018-03-28

    Current efforts towards HIV eradication include approaches to augment immune recognition and elimination of persistently infected cells following latency reversal. Natural killer (NK) cells, the main effectors of the innate immune system, recognize and clear targets using different mechanisms than CD8 + T cells, offering an alternative or complementary approach for HIV clearance strategies. We assessed the impact of IL-15 treatment on NK cell function and the potential of stimulated NK cells to clear the HIV reservoir. We measured NK cell receptor expression, antibody-dependent cell-dependent cytotoxicity (ADCC), cytotoxicity, IFN-γ production and antiviral activity in autologous HIV replication systems. All NK cell functions were uniformly improved by IL-15, and more importantly, IL-15-treated NK cells were able to clear latently HIV infected cells after exposure to vorinostat, a clinically relevant latency reversing agent. We also demonstrate that NK cells from HIV infected individuals aviremic on antiretroviral therapy can be efficiently stimulated with IL-15. Our work opens a promising line of investigation towards future immunotherapies to clear persistent HIV infection using NK cells. IMPORTANCE In the search for an HIV cure, strategies to enhance immune function to allow recognition and clearance of HIV infected cells following latency reversal are being evaluated. Natural killer (NK) cells possess characteristics that can be exploited for immunotherapy against persistent HIV infection. We demonstrate that NK cells from HIV-positive donors can be strongly stimulated with IL-15, improving their antiviral and cytotoxic potential, and more importantly, clearing HIV infected cells after latency reversal with a clinically relevant drug. Our results encourage further investigation to design NK cell-based immunotherapies to achieve HIV eradication. Copyright © 2018 American Society for Microbiology.

  4. Lifestyles and mental health status are associated with natural killer cell and lymphokine-activated killer cell activities.

    Science.gov (United States)

    Morimoto, K; Takeshita, T; Inoue-Sakurai, C; Maruyama, S

    2001-04-10

    We investigated the association of lifestyle and mental health status with natural killer (NK) cell and lymphokine-activated killer (LAK) cell activities in healthy males. NK cell activity was determined in 105 male workers and LAK cell activity was determined in 54 male workers. Peripheral blood was obtained from each subject and peripheral blood mononuclear cells (PBMC) were isolated from the blood. These PBMC were used as effector cells. LAK cells were generated by incubation of PBMC with interleukin-2 for 72 h. NK cell activity against NK-sensitive K562 cells and LAK cell activity against NK-resistant Raji cells were examined by 51Cr release assay. Overall lifestyles were evaluated according to the answers on a questionnaire regarding eight health practices (cigarette smoking, alcohol consumption, eating breakfast, hours of sleep, hours of work, physical exercise, nutritional balance, mental stress). Subjects with a good overall lifestyle showed significantly higher NK cell (P mental status had significantly lower NK cell activity than those who reported stable mental status. When subjects were divided into four groups by lifestyle and mental health status, subjects who had poor or moderate lifestyle and reported unstable mental status showed the lowest NK cell activity and subjects who had good lifestyle and reported stable mental status showed the highest NK cell activity among four groups.

  5. Relationship between laminin binding capacity and laminin expression on tumor cells sensitive or resistant to natural cell-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Laybourn, K.A.; Varani, J.; Fligiel, S.E.G.; Hiserodt, J.C.

    1986-01-01

    Previous studies have identified the presence of laminin binding sites on murine NK and NC sensitive tumor cells by 125 I-laminin binding and laminin induced cell-cell aggregation. The finding that the addition of exogenous laminin inhibits NK/NC binding to sensitive tumor cells suggests laminin binding sites may serve as target antigens for NK cells. The present study extends earlier reports by analyzing a large panel of tumor cells for laminin binding capacity, laminin expression and sensitivity to NK/NC killing. The data indicate that all tumor cells which bind to NK/NC cells (8 lines tested) express laminin binding sites. All of these tumor cells were capable of competing for NK lysis of YAC-1 cells in cold target competition assays, and all bound enriched NK cells in direct single cell binding assays. In contrast, tumor cells expressing high levels of surface laminin (B16 melanomas, C57B1/6 fibrosarcomas, and RAS transfected 3T3 fibroblasts) but low levels of laminin binding capacity did not bind NK/NC cells and were resistant to lysis. These data support the hypothesis that expression of laminin/laminin binding sites may contribute to tumor cell sensitivity to NK/NC binding and/or killing

  6. NKG2H-Expressing T Cells Negatively Regulate Immune Responses

    Directory of Open Access Journals (Sweden)

    Daniela Dukovska

    2018-03-01

    Full Text Available The biology and function of NKG2H receptor, unlike the better characterized members of the NKG2 family NKG2A, NKG2C, and NKG2D, remains largely unclear. Here, we show that NKG2H is able to associate with the signaling adapter molecules DAP12 and DAP10 suggesting that this receptor can signal for cell activation. Using a recently described NKG2H-specific monoclonal antibody (mAb, we have characterized the expression and function of lymphocytes that express this receptor. NKG2H is expressed at the cell surface of a small percentage of peripheral blood mononuclear cell (PBMC and is found more frequently on T cells, rather than NK cells. Moreover, although NKG2H is likely to trigger activation, co-cross-linking of this receptor with an NKG2H-specific mAb led to decreased T cell activation and proliferation in polyclonal PBMC cultures stimulated by anti-CD3 mAbs. This negative regulatory activity was seen only after cross-linking with NKG2H, but not NKG2A- or NKG2C-specific monoclonal antibodies. The mechanism underlying this negative effect is as yet unclear, but did not depend on the release of soluble factors or recognition of MHC class I molecules. These observations raise the intriguing possibility that NKG2H may be a novel marker for T cells able to negatively regulate T cell responses.

  7. Tofacitinib induces G1 cell-cycle arrest and inhibits tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells.

    Science.gov (United States)

    Ando, Shotaro; Kawada, Jun-Ichi; Watanabe, Takahiro; Suzuki, Michio; Sato, Yoshitaka; Torii, Yuka; Asai, Masato; Goshima, Fumi; Murata, Takayuki; Shimizu, Norio; Ito, Yoshinori; Kimura, Hiroshi

    2016-11-22

    Epstein-Barr virus (EBV) infects not only B cells, but also T cells and natural killer (NK) cells, and is associated with T or NK cell lymphoma. These lymphoid malignancies are refractory to conventional chemotherapy. We examined the activation of the JAK3/STAT5 pathway in EBV-positive and -negative B, T and NK cell lines and in cell samples from patients with EBV-associated T cell lymphoma. We then evaluated the antitumor effects of the selective JAK3 inhibitor, tofacitinib, against these cell lines in vitro and in a murine xenograft model. We found that all EBV-positive T and NK cell lines and patient samples tested displayed activation of the JAK3/STAT5 pathway. Treatment of these cell lines with tofacitinib reduced the levels of phospho-STAT5, suppressed proliferation, induced G1 cell-cycle arrest and decreased EBV LMP1 and EBNA1 expression. An EBV-negative NK cell line was also sensitive to tofacitinib, whereas an EBV-infected NK cell line was more sensitive to tofacitinib than its parental line. Tofacitinib significantly inhibited the growth of established tumors in NOG mice. These findings suggest that tofacitinib may represent a useful therapeutic agent for patients with EBV-associated T and NK cell lymphoma.

  8. T−B+NK+ severe combined immunodeficiency caused by complete deficiency of the CD3ζ subunit of the T-cell antigen receptor complex

    OpenAIRE

    Roberts, Joseph L.; Lauritsen, Jens Peter H.; Cooney, Myriah; Parrott, Roberta E.; Sajaroff, Elisa O.; Win, Chan M.; Keller, Michael D.; Carpenter, Jeffery H.; Carabana, Juan; Krangel, Michael S.; Sarzotti, Marcella; Zhong, Xiao-Ping; Wiest, David L.; Buckley, Rebecca H.

    2007-01-01

    CD3ζ is a subunit of the T-cell antigen receptor (TCR) complex required for its assembly and surface expression that also plays an important role in TCR-mediated signal transduction. We report here a patient with T−B+NK+ severe combined immunodeficiency (SCID) who was homozygous for a single C insertion following nucleotide 411 in exon 7 of the CD3ζ gene. The few T cells present contained no detectable CD3ζ protein, expressed low levels of cell surface CD3ε, and were nonfunctional. CD4+CD8−CD...

  9. Conversion of adipose-derived stem cells into natural killer-like cells with anti-tumor activities in nude mice.

    Directory of Open Access Journals (Sweden)

    Hongxiu Ning

    Full Text Available Efforts to develop peripheral blood-derived nature killer (NK cells into therapeutic products have been hampered by these cells' low abundance and histoincompatibility. On the other hand, derivation of NK-like cells from more abundant cell sources such as embryonic stem cells (ESCs and umbilical cord blood (UCB requires the selection of rare CD34+ cells. Thus, we sought to convert adipose-derived stem cells (ADSCs, which are abundant and natively CD34+, into NK-like cells. When grown in hematopoietic induction medium, ADSCs formed sphere clusters and expressed hematopoietic markers CD34, CD45, and KDR. Further induction in NK cell-specific medium resulted in a population of cells that expressed NK cell marker CD56, and thus termed ADSC-NK. Alternatively, the hematopoietically induced ADSCs were transduced with NK cell-specific transcription factor E4BP4 prior to induction in NK cell-specific medium. This latter population of cells, termed ADSC-NKE, expressed CD56 and additional NK cell markers such as CD16, CD94, CD158, CD314, FasL, and NKp46. ADSC-NKE was as potent as NK leukemia cell NKL in killing breast cancer cell MCF7 and prostate cancer cells DU145, PC3, LnCap, DuPro, C4-2 and CWR22, but exhibited no killing activity toward normal endothelial and smooth muscle cells. In nude mice test ADSC-NKE was able to significantly delay the progression of tumors formed by MCF7 and PC3. When injected into immunocompetent rats, ADSC-NKE was detectable in bone marrow and spleen for at least 5 weeks. Together, these results suggest that ADSCs can be converted into NK-like cells with anti-tumor activities.

  10. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma

    Science.gov (United States)

    Spel, Lotte; Boelens, Jaap-Jan; van der Steen, Dirk M.; Blokland, Nina J.G.; van Noesel, Max M.; Molenaar, Jan J.; Heemskerk, Mirjam H.M.

    2015-01-01

    Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20–40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses. PMID:26452036

  11. Dengue Virus-Infected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules.

    Science.gov (United States)

    Costa, Vivian Vasconcelos; Ye, Weijian; Chen, Qingfeng; Teixeira, Mauro Martins; Preiser, Peter; Ooi, Eng Eong; Chen, Jianzhu

    2017-08-01

    Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo , identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control

  12. Interplay between Natural Killer Cells and Anti-HER2 Antibodies: Perspectives for Breast Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Aura Muntasell

    2017-11-01

    Full Text Available Overexpression of the human epidermal growth factor receptor 2 (HER2 defines a subgroup of breast tumors with aggressive behavior. The addition of HER2-targeted antibodies (i.e., trastuzumab, pertuzumab to chemotherapy significantly improves relapse-free and overall survival in patients with early-stage and advanced disease. Nonetheless, considerable proportions of patients develop resistance to treatment, highlighting the need for additional and co-adjuvant therapeutic strategies. HER2-specific antibodies can trigger natural killer (NK cell-mediated antibody-dependent cellular cytotoxicity and indirectly enhance the development of tumor-specific T cell immunity; both mechanisms contributing to their antitumor efficacy in preclinical models. Antibody-dependent NK cell activation results in the release of cytotoxic granules as well as the secretion of pro-inflammatory cytokines (i.e., IFNγ and TNFα and chemokines. Hence, NK cell tumor suppressive functions include direct cytolytic killing of tumor cells as well as the regulation of subsequent antitumor adaptive immunity. Albeit tumors with gene expression signatures associated to the presence of cytotoxic lymphocyte infiltrates benefit from trastuzumab-based treatment, NK cell-related biomarkers of response/resistance to HER2-specific therapeutic antibodies in breast cancer patients remain elusive. Several variables, including (i the configuration of the patient NK cell repertoire; (ii tumor molecular features (i.e., estrogen receptor expression; (iii concomitant therapeutic regimens (i.e., chemotherapeutic agents, tyrosine kinase inhibitors; and (iv evasion mechanisms developed by progressive breast tumors, have been shown to quantitatively and qualitatively influence antibody-triggered NK cell responses. In this review, we discuss possible interventions for restoring/enhancing the therapeutic activity of HER2 therapeutic antibodies by harnessing NK cell antitumor potential through

  13. OP9 Feeder Cells Are Superior to M2-10B4 Cells for the Generation of Mature and Functional Natural Killer Cells from Umbilical Cord Hematopoietic Progenitors

    Directory of Open Access Journals (Sweden)

    Lara Herrera

    2017-06-01

    Full Text Available Adoptive natural killer (NK cell therapy relies on the acquisition of large numbers of mature and functional NK cells. An option for future immunotherapy treatments is to use large amounts of NK cells derived and differentiated from umbilical cord blood (UCB CD34+ hematopoietic stem cells (HSCs, mainly because UCB is one of the most accessible HSC sources. In our study, we compared the potential of two stromal cell lines, OP9 and M2-10B4, for in vitro generation of mature and functional CD56+ NK cells from UCB CD34+ HSC. We generated higher number of CD56+ NK cells in the presence of the OP9 cell line than when they were generated in the presence of M2-10B4 cells. Furthermore, higher frequency of CD56+ NK cells was achieved earlier when cultures were performed with the OP9 cells than with the M2-10B4 cells. Additionally, we studied in detail the maturation stages of CD56+ NK cells during the in vitro differentiation process. Our data show that by using both stromal cell lines, CD34+ HSC in vitro differentiated into the terminal stages 4–5 of maturation resembled the in vivo differentiation pattern of human NK cells. Higher frequencies of more mature NK cells were reached earlier by using OP9 cell line than M2-10B4 cells. Alternatively, we observed that our in vitro NK cells expressed similar levels of granzyme B and perforin, and there were no significant differences between cultures performed in the presence of OP9 cell line or M2-10B4 cell line. Likewise, degranulation and cytotoxic activity against K562 target cells were very similar in both culture conditions. The results presented here provide an optimal strategy to generate high numbers of mature and functional NK cells in vitro, and point toward the use of the OP9 stromal cell line to accelerate the culture procedure to obtain them. Furthermore, this method could establish the basis for the generation of mature NK cells ready for cancer immunotherapy.

  14. IL-21 Modulates Activation of NKT Cells in Patients with Stage IV Malignant Melanoma.

    Science.gov (United States)

    Coquet, Jonathan M; Skak, Kresten; Davis, Ian D; Smyth, Mark J; Godfrey, Dale I

    2013-10-01

    Interleukin-21 (IL-21) is a common γ-chain cytokine produced by T helper and natural killer T (NKT) cells. It has been shown to regulate the response of various lymphocyte subsets including NK, NKT, T and B cells. Owing to its potent anti-tumor function in preclinical studies and its ability to induce cytotoxicity and interferon-γ (IFN-γ) production in NK and CD8 T cells, recombinant IL-21 (rIL-21) was fast-tracked into early-phase clinical trials of patients with various malignancies. In a phase 2a trial of patients with metastatic melanoma, we analyzed the frequency and function of NKT cells in patients receiving rIL-21. NKT cells were present at a low frequency, but their levels were relatively stable in patients administered rIL-21. Unlike our observations in NK and CD8 T cells, rIL-21 appeared to reduce IFN-γ and TNF production by NKT cells, whereas it enhanced IL-4 production. It also modulated the expression of cell surface markers, specifically on CD4(-) NKT cells. In addition, an increase in CD3(+)CD56(+) NKT-like cells was observed over the course of rIL-21 administration. These results highlight that IL-21 is a potent regulator of NKT cell function in vivo.

  15. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    Science.gov (United States)

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Septide and neurokinin A are high-affinity ligands on the NK-1 receptor: evidence from homologous versus heterologous binding analysis.

    Science.gov (United States)

    Hastrup, H; Schwartz, T W

    1996-12-16

    The three main tachykinins, substance P, neurokinin A (NKA), and neurokinin B, are believed to be selective ligands for respectively the NK-1, NK-2 and NK-3 receptors. However, NKA also has actions which cannot be mediated through its normal NK-2 receptor and the synthetic peptide [pGlu6,Pro9]-Substance P9-11--called septide--is known to have tachykinin-like actions despite its apparent lack of binding to any known tachykinin receptor. In the cloned NK-1 receptor expressed in COS-7 cells NKA and septide as expected were poor competitors for radiolabeled substance P. However, by using radiolabeled NKA and septide directly, it was found that both peptides in homologous binding assays as well as in competition against each other in fact bound to the NK-1 receptor with high affinity: Kd values of 0.51 +/- 0.15 nM (NKA) and 0.55 +/- 0.03 nM (septide). It is concluded that NKA and septide are high-affinity ligands for the NK-1 receptor but that they are poor competitors for substance P, which in contrast competes very well for binding with both NKA and septide.

  17. NCR1 Expression Identifies Canine Natural Killer Cell Subsets with Phenotypic Similarity to Human Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Ann Foltz

    2016-11-01

    Full Text Available Canines spontaneously develop many cancers similar to humans - including osteosarcoma, leukemia, and lymphoma - offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46, the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3-/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3-/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3-/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and GM-CSF as measured by Luminex. Like human NK cells, CD3-/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median= 20,283-fold in 21 days. Further, we identify a minor Null population (CD3-/CD21-/CD14-/NKp46- with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3-/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells, and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46- subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy.

  18. Lactobacilli Modulate Natural Killer Cell Responses In Vitro

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    of certain lactic acid bacteria has been shown to increase in vivo NK cytotoxicity. Here, we investigated how human gut flora-derived lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human NK cells upon bacterial stimulation. CD3-CD56+ NK cells were isolated from...... monocytes present, probably because cytokines, secreted by monocytes having engulfed bacteria, stimulated the NK cells. In contrast, a Lactobacillus paracasei strain caused the NK cells to proliferate only in the presence of monocytes. These results demonstrate that various strains of lactobacilli have...

  19. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling

    NARCIS (Netherlands)

    Spits, Hergen; Di Santo, James P.

    2011-01-01

    Research has identified what can be considered a family of innate lymphoid cells (ILCs) that includes not only natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells but also cells that produce interleukin 5 (IL-5), IL-13, IL-17 and/or IL-22. These ILC subsets are developmentally related,

  20. Influence of relative NK-DC abundance on placentation and its relation to epigenetic programming in the offspring

    NARCIS (Netherlands)

    Freitag, N.; Zwier, M. V.; Barrientos, G.; Tirado-Gonzalez, I.; Conrad, M. L.; Rose, M.; Scherjon, S. A.; Plosch, T.; Blois, S. M.

    2014-01-01

    Normal placentation relies on an efficient maternal adaptation to pregnancy. Within the decidua, natural killer (NK) cells and dendritic cells (DC) have a critical role in modulating angiogenesis and decidualization associated with pregnancy. However, the contribution of these immune cells to the