WorldWideScience

Sample records for regulating intracellular camp

  1. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    Science.gov (United States)

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  2. Biatriosporin D displays anti-virulence activity through decreasing the intracellular cAMP levels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Chang, Wenqiang; Shi, Hongzhuo; Zhou, Yanhui; Zheng, Sha; Li, Ying; Li, Lin; Lou, Hongxiang, E-mail: louhongxiang@sdu.edu.cn

    2017-05-01

    Candidiasis has long been a serious human health problem, and novel antifungal approaches are greatly needed. During both superficial and systemic infection, C. albicans relies on a battery of virulence factors, such as adherence, filamentation, and biofilm formation. In this study, we found that a small phenolic compound, Biatriosporin D (BD), isolated from an endolichenic fungus, Biatriospora sp., displayed anti-virulence activity by inhibiting adhesion, hyphal morphogenesis and biofilm formation of C. albicans. Of note is the high efficacy of BD in preventing filamentation with a much lower dose than its MIC value. Furthermore, BD prolonged the survival of worms infected by C. albicans in vivo. Quantitative real-time PCR analysis, exogenous cAMP rescue experiments and intracellular cAMP measurements revealed that BD regulates the Ras1-cAMP-Efg1 pathway by reducing cAMP levels to inhibit the hyphal formation. Further investigation showed that BD could upregulate Dpp3 to synthesize much more farnesol, which could inhibit the activity of Cdc35 and reduce the generation of cAMP. Taken together, these findings indicate that BD stimulates the expression of Dpp3 to synthesize more farnesol that directly inhibits the Cdc35 activity, reducing intracellular cAMP and thereby disrupting the morphologic transition and attenuating the virulence of C. albicans. Our study uncovers the underlying mechanism of BD as a prodrug in fighting against pathogenic C. albicans and provides a potential application of BD in fighting clinically relevant fungal infections by targeting fungal virulence. - Highlights: • BD inhibits the filamentation of C. albicans in multiple hypha-inducing conditions. • BD can prolong the survival of nematodes infected by C. albicans. • BD stimulates the expression of Dpp3 to synthesize more farnesol. • BD reduces intracellular cAMP and regulates Ras1-cAMP-PKA pathway.

  3. Biatriosporin D displays anti-virulence activity through decreasing the intracellular cAMP levels

    International Nuclear Information System (INIS)

    Zhang, Ming; Chang, Wenqiang; Shi, Hongzhuo; Zhou, Yanhui; Zheng, Sha; Li, Ying; Li, Lin; Lou, Hongxiang

    2017-01-01

    Candidiasis has long been a serious human health problem, and novel antifungal approaches are greatly needed. During both superficial and systemic infection, C. albicans relies on a battery of virulence factors, such as adherence, filamentation, and biofilm formation. In this study, we found that a small phenolic compound, Biatriosporin D (BD), isolated from an endolichenic fungus, Biatriospora sp., displayed anti-virulence activity by inhibiting adhesion, hyphal morphogenesis and biofilm formation of C. albicans. Of note is the high efficacy of BD in preventing filamentation with a much lower dose than its MIC value. Furthermore, BD prolonged the survival of worms infected by C. albicans in vivo. Quantitative real-time PCR analysis, exogenous cAMP rescue experiments and intracellular cAMP measurements revealed that BD regulates the Ras1-cAMP-Efg1 pathway by reducing cAMP levels to inhibit the hyphal formation. Further investigation showed that BD could upregulate Dpp3 to synthesize much more farnesol, which could inhibit the activity of Cdc35 and reduce the generation of cAMP. Taken together, these findings indicate that BD stimulates the expression of Dpp3 to synthesize more farnesol that directly inhibits the Cdc35 activity, reducing intracellular cAMP and thereby disrupting the morphologic transition and attenuating the virulence of C. albicans. Our study uncovers the underlying mechanism of BD as a prodrug in fighting against pathogenic C. albicans and provides a potential application of BD in fighting clinically relevant fungal infections by targeting fungal virulence. - Highlights: • BD inhibits the filamentation of C. albicans in multiple hypha-inducing conditions. • BD can prolong the survival of nematodes infected by C. albicans. • BD stimulates the expression of Dpp3 to synthesize more farnesol. • BD reduces intracellular cAMP and regulates Ras1-cAMP-PKA pathway.

  4. Regulation of melanogenesis: the role of cAMP and MITF

    Directory of Open Access Journals (Sweden)

    Michał Otręba

    2012-01-01

    Full Text Available The article presents the melanogenesis pathway and the role of cyclic adenosine monophosphate (cAMP and microphthalmia transcription factor (MITF in regulation of this process. Products of melanogenesis are eu- and/or pheomelanins synthesized in a multistage process of tyrosine oxidation and polymerization. The conversions require the presence of tyrosinase (TYR, key enzyme, tyrosine hydroxylase isoform I (THI and tyrosinase related proteins (TRP1 and TRP2. Many types of signal molecules and transcription factors participate in regulation of melanin synthesis, but the most important are cAMP and MITF. cAMP is the second messenger in the intracellular signal cascade, which is synthesized from adenosine triphosphate (ATP by adenylyl cyclase, activated among others by the melanocortin receptor and the αS subunit of G protein. The signal molecule cAMP regulates MITF, TYR, THI, GTP-cyclohydroxylase I (GTP-CHI transcription and phenylalanine hydroxylase (PAH phosphorylation at Ser16 by protein kinase A (PKA. Mutations of genes encoding proteins belonging to the cAMP signal cascade may lead to McCune-Albright and Carney syndromes. MITF is one of the most important nuclear transcription factors regulating melanogenesis. Currently 10 isoforms of human MITF are known, but in melanocytes only MITF-M, MITF-Mdel, MITF-A and MITF-H occur. MITF transcription factor regulates melanogenesis by activation of tyrosinase, TRP1 and TRP2 transcription. It also affects expression of other factors regulating melanosome maturation, biogenesis and transport. Moreover, it regulates melanocyte proliferation and protection against apoptosis. Mutations of the MITF gene may lead to hereditary diseases: Waardenburg type II and Tietz syndromes.

  5. PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Ravikrishna Ramanujam

    2010-05-01

    Full Text Available Cyclic AMP-dependent pathways mediate the communication between external stimuli and the intracellular signaling machinery, thereby influencing important aspects of cellular growth, morphogenesis and differentiation. Crucial to proper function and robustness of these signaling cascades is the strict regulation and maintenance of intracellular levels of cAMP through a fine balance between biosynthesis (by adenylate cyclases and hydrolysis (by cAMP phosphodiesterases. We functionally characterized gene-deletion mutants of a high-affinity (PdeH and a low-affinity (PdeL cAMP phosphodiesterase in order to gain insights into the spatial and temporal regulation of cAMP signaling in the rice-blast fungus Magnaporthe oryzae. In contrast to the expendable PdeL function, the PdeH activity was found to be a key regulator of asexual and pathogenic development in M. oryzae. Loss of PdeH led to increased accumulation of intracellular cAMP during vegetative and infectious growth. Furthermore, the pdeHDelta showed enhanced conidiation (2-3 fold, precocious appressorial development, loss of surface dependency during pathogenesis, and highly reduced in planta growth and host colonization. A pdeHDelta pdeLDelta mutant showed reduced conidiation, exhibited dramatically increased (approximately 10 fold cAMP levels relative to the wild type, and was completely defective in virulence. Exogenous addition of 8-Br-cAMP to the wild type simulated the pdeHDelta defects in conidiation as well as in planta growth and development. While a fully functional GFP-PdeH was cytosolic but associated dynamically with the plasma membrane and vesicular compartments, the GFP-PdeL localized predominantly to the nucleus. Based on data from cAMP measurements and Real-Time RTPCR, we uncover a PdeH-dependent biphasic regulation of cAMP levels during early and late stages of appressorial development in M. oryzae. We propose that PdeH-mediated sustenance and dynamic regulation of cAMP signaling

  6. A cAMP Biosensor-Based High-Throughput Screening Assay for Identification of Gs-Coupled GPCR Ligands and Phosphodiesterase Inhibitors

    DEFF Research Database (Denmark)

    Vedel, Line; Bräuner-Osborne, Hans; Mathiesen, Jesper Mosolff

    2015-01-01

    Cyclic adenosine 3',5'-monophosphate (cAMP) is an important second messenger, and quantification of intracellular cAMP levels is essential in studies of G protein-coupled receptors (GPCRs). The intracellular cAMP levels are regulated by the adenylate cyclase (AC) upon activation of either Gs- or ...... also observed for the other representative Gs-coupled GPCRs tested, GLP-1R and GlucagonR. The FRET-based cAMP biosensor assay is robust, reproducible, and inexpensive with good Z factors and is highly applicable for HTS....

  7. cAMP and EPAC are key players in the regulation of the signal transduction pathway involved in the α-hemolysin autophagic response.

    Directory of Open Access Journals (Sweden)

    María Belén Mestre

    Full Text Available Staphylococcus aureus is a microorganism that causes serious diseases in the human being. This microorganism is able to escape the phagolysosomal pathway, increasing intracellular bacterial survival and killing the eukaryotic host cell to spread the infection. One of the key features of S. aureus infection is the production of a series of virulence factors, including secreted enzymes and toxins. We have shown that the pore-forming toxin α-hemolysin (Hla is the S. aureus-secreted factor responsible for the activation of the autophagic pathway and that this response occurs through a PI3K/Beclin1-independent form. In the present report we demonstrate that cAMP has a key role in the regulation of this autophagic response. Our results indicate that cAMP is able to inhibit the autophagy induced by Hla and that PKA, the classical cAMP effector, does not participate in this regulation. We present evidence that EPAC and Rap2b, through calpain activation, are the proteins involved in the regulation of Hla-induced autophagy. Similar results were obtained in cells infected with different S. aureus strains. Interestingly, in this report we show, for the first time to our knowledge, that both EPAC and Rap2b are recruited to the S. aureus-containing phagosome. We believe that our findings have important implications in understanding innate immune processes involved in intracellular pathogen invasion of the host cell.

  8. Synthesis, structural characterization and effect on human granulocyte intracellular cAMP levels of abscisic acid analogs.

    Science.gov (United States)

    Bellotti, Marta; Salis, Annalisa; Grozio, Alessia; Damonte, Gianluca; Vigliarolo, Tiziana; Galatini, Andrea; Zocchi, Elena; Benatti, Umberto; Millo, Enrico

    2015-01-01

    The phytohormone abscisic acid (ABA), in addition to regulating physiological functions in plants, is also produced and released by several mammalian cell types, including human granulocytes, where it stimulates innate immune functions via an increase of the intracellular cAMP concentration ([cAMP]i). We synthesized several ABA analogs and evaluated the structure-activity relationship, by the systematical modification of selected regions of these analogs. The resulting molecules were tested for their ability to inhibit the ABA-induced increase of [cAMP]i in human granulocytes. The analogs with modified configurations at C-2' and C-3' abrogated the ABA-induced increase of the [cAMP]i and also inhibited several pro-inflammatory effects induced by exogenous ABA on granulocytes and monocytes. Accordingly, these analogs could be suitable as novel putative anti-inflammatory compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP

    Energy Technology Data Exchange (ETDEWEB)

    Sugita, Kazuya; Yamamura, Chiaki; Tabata, Ken-ichi [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Fujita, Norihisa, E-mail: nori@ph.ritsumei.ac.jp [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); School of Pharmacy, Ristumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Expression of GPR174 in CHO cells induces morphological changes and proliferation delay. Black-Right-Pointing-Pointer These are due to increase in intracellular cAMP concentration. Black-Right-Pointing-Pointer Lysophosphatidylserine was identified to stimulate GPR174 leading to activate ACase. Black-Right-Pointing-Pointer The potencies of fatty acid moiety on LysoPS were oleoyl Greater-Than-Or-Slanted-Equal-To stearoyl > palmitoyl. Black-Right-Pointing-Pointer We propose that GPR174 is a lysophosphatidylserine receptor. -- Abstract: We established cell lines that stably express orphan GPCR GPR174 using CHO cells, and studied physiological and pharmacological features of the receptor. GPR174-expressing cells showed cell-cell adhesion with localization of actin filaments to cell membrane, and revealed significant delay of cell proliferation. Since the morphological changes of GPR174-cells were very similar to mock CHO cells treated with cholera toxin, we measured the concentration of intracellular cAMP. The results showed the concentration was significantly elevated in GPR174-cells. By measuring intracellular cAMP concentration in GPR174-cells, we screened lipids and nucleotides to identify ligands for GPR174. We found that lysophosphatidylserine (LysoPS) stimulated increase in intracellular cAMP in a dose-dependent manner. Moreover, phosphorylation of Erk was elevated by LysoPS in GPR174 cells. These LysoPS responses were inhibited by NF449, an inhibitor of G{alpha}{sub s} protein. These results suggested that GPR174 was a putative LysoPS receptor conjugating with G{alpha}{sub s}, and its expression induced morphological changes in CHO cells by constitutively activating adenylyl cycles accompanied with cell conjunctions and delay of proliferation.

  10. Discovery of a cAMP Deaminase That Quenches Cyclic AMP-Dependent Regulation

    Science.gov (United States)

    Goble, Alissa M.; Feng, Youjun; Raushel, Frank M.; Cronan, John E.

    2013-01-01

    An enzyme of unknown function within the amidohydrolase superfamily was discovered to catalyze the hydrolysis of the universal second messenger, cyclic-3’, 5’-adenosine monophosphate (cAMP). The enzyme, which we have named CadD, is encoded by the human pathogenic bacterium Leptospira interrogans. Although CadD is annotated as an adenosine deaminase, the protein specifically deaminates cAMP to cyclic-3’, 5’-inosine monophosphate (cIMP) with a kcat/Km of 2.7 ± 0.4 × 105 M−1 s−1 and has no activity on adenosine, adenine, or 5’-adenosine monophosphate (AMP). This is the first identification of a deaminase specific for cAMP. Expression of CadD in Escherichia coli mimics the loss of adenylate cyclase in that it blocks growth on carbon sources that require the cAMP-CRP transcriptional activator complex for expression of the cognate genes. The cIMP reaction product cannot replace cAMP as the ligand for CRP binding to DNA in vitro and cIMP is a very poor competitor of cAMP activation of CRP for DNA binding. Transcriptional analyses indicate that CadD expression represses expression of several cAMP-CRP dependent genes. CadD adds a new activity to the cAMP metabolic network and may be a useful tool in intracellular study of cAMP-dependent processes. PMID:24074367

  11. Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans.

    Science.gov (United States)

    Tao, Li; Zhang, Yulong; Fan, Shuru; Nobile, Clarissa J; Guan, Guobo; Huang, Guanghua

    2017-08-01

    Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways.

  12. Integration of the tricarboxylic acid (TCA cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Li Tao

    2017-08-01

    Full Text Available Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways.

  13. Autonomous and nonautonomous regulation of axis formation by antagonistic signaling via 7-span cAMP receptors and GSK3 in Dictyostelium.

    Science.gov (United States)

    Ginsburg, G T; Kimmel, A R

    1997-08-15

    Early during Dictyostelium development a fundamental cell-fate decision establishes the anteroposterior (prestalk/prespore) axis. Signaling via the 7-transmembrane cAMP receptor CAR4 is essential for creating and maintaining a normal pattern; car4-null alleles have decreased levels of prestalk-specific mRNAs but enhanced expression of prespore genes. car4- cells produce all of the signals required for prestalk differentiation but lack an extracellular factor necessary for prespore differentiation of wild-type cells. This secreted factor decreases the sensitivity of prespore cells to inhibition by the prestalk morphogen DIF-1. At the cell autonomous level, CAR4 is linked to intracellular circuits that activate prestalk but inhibit prespore differentiation. The autonomous action of CAR4 is antagonistic to the positive intracellular signals mediated by another cAMP receptor, CAR1 and/or CAR3. Additional data indicate that these CAR-mediated pathways converge at the serine/threonine protein kinase GSK3, suggesting that the anterior (prestalk)/posterior (prespore) axis of Dictyostelium is regulated by an ancient mechanism that is shared by the Wnt/Fz circuits for dorsoventral patterning during early Xenopus development and establishing Drosophila segment polarity.

  14. IP3-dependent intracellular Ca2+ release is required for cAMP-induced c-fos expression in hippocampal neurons

    International Nuclear Information System (INIS)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng; Johnson, Hong W.; Schell, Michael J.; Lord, Rebecca L.; Chawla, Sangeeta

    2012-01-01

    Highlights: ► cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca 2+ pool. ► The submembraneous Ca 2+ pool derives from intracellular ER stores. ► Expression of IP 3 -metabolizing enzymes inhibits cAMP-induced c-fos expression. ► SRE-mediated and CRE-mediated gene expression is sensitive to IP 3 -metabolizing enzymes. ► Intracellular Ca 2+ release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca 2+ and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca 2+ and cAMP signals, including some that are Ca 2+ -responsive, some that are cAMP-responsive and some that detect coincident Ca 2+ and cAMP signals. Because Ca 2+ and cAMP can influence each other’s amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca 2+ are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca 2+ buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP 3 levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements – the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP 3 metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited by depletion of intracellular Ca 2+ stores. Our data indicate that Ca 2+ release from IP 3 -sensitive pools is required for cAMP-induced transcription in hippocampal neurons.

  15. "cAMP sponge": a buffer for cyclic adenosine 3', 5'-monophosphate.

    Directory of Open Access Journals (Sweden)

    Konstantinos Lefkimmiatis

    Full Text Available BACKGROUND: While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP. METHODS/PRINCIPAL FINDINGS: Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIbeta of protein kinase A (PKA. Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named "cAMP sponge" was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets. CONCLUSIONS: This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events.

  16. Biophysical Techniques for Detection of cAMP and cGMP in Living Cells

    Directory of Open Access Journals (Sweden)

    Viacheslav O. Nikolaev

    2013-04-01

    Full Text Available Cyclic nucleotides cAMP and cGMP are ubiquitous second messengers which regulate myriads of functions in virtually all eukaryotic cells. Their intracellular effects are often mediated via discrete subcellular signaling microdomains. In this review, we will discuss state-of-the-art techniques to measure cAMP and cGMP in biological samples with a particular focus on live cell imaging approaches, which allow their detection with high temporal and spatial resolution in living cells and tissues. Finally, we will describe how these techniques can be applied to the analysis of second messenger dynamics in subcellular signaling microdomains.

  17. Radioprotection of the rat parotid gland by cAMP

    International Nuclear Information System (INIS)

    Sodicoff, M.; Conger, A.D.

    1983-01-01

    Most earlier studies showing a radioprotective effect by cAMP show only slight degrees of protection. The present study demonstrates a substantial protective effect (DMF, 1.63) of exogenously administered cAMP on the rat parotid gland and supports the mechanism suggested previously for protection afforded the parotid glands by the β-adrenergic agonist isoproterenol, which is known to elevate endogenous intracellular cAMP

  18. cAMP biosensors applied in molecular pharmacological studies of G protein-coupled receptors

    DEFF Research Database (Denmark)

    Mathiesen, Jesper Mosolff; Vedel, Line; Bräuner-Osborne, Hans

    2013-01-01

    end-point assays for quantifying GPCR-mediated changes in intracellular cAMP levels exist. More recently, fluorescence resonance energy transfer (FRET)-based cAMP biosensors that can quantify intracellular cAMP levels in real time have been developed. These FRET-based cAMP biosensors have been used...... primarily in single cell FRET microscopy to monitor and visualize changes in cAMP upon GPCR activation. Here, a similar cAMP biosensor with a more efficient mCerulean/mCitrine FRET pair is described for use in the 384-well plate format. After cloning and expression in HEK293 cells, the biosensor...... is characterized in the 384-well plate format and used for measuring the signaling of the G(s)-coupled ß(2)-adrenergic receptor. The procedures described may be applied for other FRET-based biosensors in terms of characterization and conversion to the 384-well plate format....

  19. Calcium pathways such as cAMP modulate clothianidin action through activation of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors.

    Science.gov (United States)

    Calas-List, Delphine; List, Olivier; Quinchard, Sophie; Thany, Steeve H

    2013-07-01

    Clothianidin is a neonicotinoid insecticide developed in the early 2000s. We have recently demonstrated that it was a full agonist of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors expressed in the cockroach dorsal unpaired median neurons. Clothianidin was able to act as an agonist of imidacloprid-insensitive nAChR2 receptor and internal regulation of cAMP concentration modulated nAChR2 sensitivity to clothianidin. In the present study, we demonstrated that cAMP modulated the agonist action of clothianidin via α-bungarotoxin-sensitive and insensitive receptors. Clothianidin-induced current-voltage curves were dependent to clothianidin concentrations. At 10 μM clothianidin, increasing cAMP concentration induced a linear current-voltage curve. Clothianidin effects were blocked by 0.5 μM α-bungarotoxin suggesting that cAMP modulation occurred through α-bungarotoxin-sensitive receptors. At 1 mM clothianidin, cAMP effects were associated to α-bungarotoxin-insensitive receptors because clothianidin-induced currents were blocked by 5 μM mecamylamine and 20 μM d-tubocurarine. In addition, we found that application of 1mM clothianidin induced a strong increase of intracellular calcium concentration. These data reinforced the finding that calcium pathways including cAMP modulated clothianidin action on insect nicotinic acetylcholine receptors. We proposed that intracellular calcium pathways such as cAMP could be a target to modulate the mode of action of neonicotinoid insecticides. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Combined activity of post-exercise concentrations of NA and eHsp72 on human neutrophil function: role of cAMP.

    Science.gov (United States)

    Giraldo, Esther; Hinchado, María D; Ortega, Eduardo

    2013-09-01

    Extracellular heat shock proteins of 72 kDa (eHsp72) and noradrenaline (NA) can act as "danger signals" during exercise-induced stress by activating neutrophil function (chemotaxis, phagocytosis, and fungicidal capacity). In addition, post-exercise concentrations of NA increase the expression and release of Hsp72 by human neutrophils, and adrenoreceptors and cAMP are involved in the stimulation of neutrophils by eHsp72. This suggests an interaction between the two molecules in the modulation of neutrophils during exercise-induced stress. Given this context, the aim of the present investigation was to study the combined activity of post-exercise circulating concentrations of NA and eHsp72 on the neutrophil phagocytic process, and to evaluate the role of cAMP as intracellular signal in these effects. Results showed an accumulative stimulation of chemotaxis induced by NA and eHsp72. However, while NA and eHsp72, separately, stimulate the phagocytosis and fungicidal activity of neutrophils, when they act together they do not modify these capacities of neutrophils. Similarly, post-exercise concentrations of NA and eHsp72 separately increased the intracellular level of cAMP, but NA and eHsp72 acting together did not modify the intracellular concentration of cAMP. These results confirm that cAMP can be involved in the autocrine/paracrine physiological regulation of phagocytosis and fungicidal capacity of human neutrophils mediated by NA and eHsp72 in the context of exercise-induced stress. Copyright © 2013 Wiley Periodicals, Inc.

  1. Cl- transport pathways regulated by Ca++, cAMP, and pH in human fibroblasts

    International Nuclear Information System (INIS)

    Lin, P.; Gruenstein, E.

    1987-01-01

    Under basal conditions Cl - efflux from human fibroblasts occurs with a rate constant of permeability of 0.08 min -1 . 50% of the basal efflux is due to Cl - /anion exchange and is DIDS inhibitable, 25% is due to Na + /K + /Cl - cotransport and is furosemide inhibitable, and 20% is due to an electrically conductive pathway. Increasing intracellular Ca ++ with A23187 stimulates Cl - efflux by 30%. This increase appears to occur entirely via an electrically conducting pathway, but unlike basal Cl - conductance, it is DIDS sensitive. Exposure of the cells to dibutyryl cAMP stimulates Cl - efflux by 15%. They do not yet know whether the cAMP stimulated pathway is electrically conductive, but the stimulation is additive with that caused by elevated Ca ++ suggesting that different pathways are activated. Elevation of intracellular pH by any of several standard methods increases Cl - efflux by as much as 700%. The pH effect appears to be mediated by a Cl - /anion exchange pathway since it is DIDS sensitive and electroneutral. Previous work from this laboratory describing a transient rapid efflux of Cl - followed by a slower efflux phase can now be explained as the result of a transient alkalinization of cells rather than as 2 subcellular Cl - compartments. This alkalinization occurs when cells are transferred from a 5% CO 2 atmosphere during 36 Cl - load to ambient CO 2 for efflux

  2. Opposing effects of cAMP and T259 phosphorylation on plasma membrane diffusion of the water channel aquaporin-5 in Madin-Darby canine kidney cells

    DEFF Research Database (Denmark)

    Koffman, Jennifer Skaarup; Christensen, Eva Arnspang; Marlar, Saw

    2015-01-01

    Aquaporin-5 (AQP5) facilitates passive water transport in glandular epithelia in response to secretory stimuli via intracellular pathways involving calcium release, cAMP and protein kinase A (PKA). In epithelial plasma membranes, AQP5 may be acutely regulated to facilitate water transport...... in the plasma membrane diffusion coefficient of AQP5. We aimed to test the short-term regulatory effects of the above pathways, by measuring lateral diffusion of AQP5 and an AQP5 phospho-mutant, T259A, using k-space Image Correlation Spectroscopy of quantum dot- and EGFP-labeled AQP5. Elevated cAMP and PKA...... inhibition significantly decreased lateral diffusion of AQP5, whereas T259A mutation showed opposing effects; slowing diffusion without stimulation and increasing diffusion to basal levels after cAMP elevation. Thus, lateral diffusion of AQP5 is significantly regulated by cAMP, PKA, and T259 phosphorylation...

  3. Histone deacetylase 6 inhibition reduces cysts by decreasing cAMP and Ca2+ in knock-out mouse models of polycystic kidney disease.

    Science.gov (United States)

    Yanda, Murali K; Liu, Qiangni; Cebotaru, Valeriu; Guggino, William B; Cebotaru, Liudmila

    2017-10-27

    Autosomal dominant polycystic kidney disease (ADPKD) is associated with progressive enlargement of multiple renal cysts, often leading to renal failure that cannot be prevented by a current treatment. Two proteins encoded by two genes are associated with ADPKD: PC1 ( pkd1 ), primarily a signaling molecule, and PC2 ( pkd2 ), a Ca 2+ channel. Dysregulation of cAMP signaling is central to ADPKD, but the molecular mechanism is unresolved. Here, we studied the role of histone deacetylase 6 (HDAC6) in regulating cyst growth to test the possibility that inhibiting HDAC6 might help manage ADPKD. Chemical inhibition of HDAC6 reduced cyst growth in PC1-knock-out mice. In proximal tubule-derived, PC1-knock-out cells, adenylyl cyclase 6 and 3 (AC6 and -3) are both expressed. AC6 protein expression was higher in cells lacking PC1, compared with control cells containing PC1. Intracellular Ca 2+ was higher in PC1-knock-out cells than in control cells. HDAC inhibition caused a drop in intracellular Ca 2+ and increased ATP-simulated Ca 2+ release. HDAC6 inhibition reduced the release of Ca 2+ from the endoplasmic reticulum induced by thapsigargin, an inhibitor of endoplasmic reticulum Ca 2+ -ATPase. HDAC6 inhibition and treatment of cells with the intracellular Ca 2+ chelator 1,2-bis(2-aminophenoxy)ethane- N , N , N ', N '-tetraacetic acid tetrakis(acetoxymethyl ester) reduced cAMP levels in PC1-knock-out cells. Finally, the calmodulin inhibitors W-7 and W-13 reduced cAMP levels, and W-7 reduced cyst growth, suggesting that AC3 is involved in cyst growth regulated by HDAC6. We conclude that HDAC6 inhibition reduces cell growth primarily by reducing intracellular cAMP and Ca 2+ levels. Our results provide potential therapeutic targets that may be useful as treatments for ADPKD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Inhibitory effects of ginseng total saponin on up-regulation of cAMP pathway induced by repeated administration of morphine.

    Science.gov (United States)

    Seo, Jeong-Ju; Lee, Jae-Woong; Lee, Wan-Kyu; Hong, Jin-Tae; Lee, Chong-Kil; Lee, Myung-Koo; Oh, Ki-Wan

    2008-02-01

    We have reported that ginseng total saponin (GTS) inhibited the development of physical and psychological dependence on morphine. However, the possible molecular mechanisms of GTS are unclear. Therefore, this study was undertaken to understand the possible molecular mechanism of GTS on the inhibitory effects of morphine-induced dependence. It has been reported that the up-regulated cAMP pathway in the LC of the mouse brain after repeated administration of morphine contributes to the feature of withdrawals. GTS inhibited up-regulation of cAMP pathway in the LC after repeated administration of morphine in this experiment. GTS inhibited cAMP levels and protein expression of protein kinase A (PKA). In addition, GTS inhibited the increase of cAMP response element binding protein (CREB) phosphorylation. Therefore, we conclude that the inhibitory effects of GTS on morphine-induced dependence might be mediated by the inhibition of cAMP pathway.

  5. Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain

    Science.gov (United States)

    Zippin, Jonathan H.; Farrell, Jeanne; Huron, David; Kamenetsky, Margarita; Hess, Kenneth C.; Fischman, Donald A.; Levin, Lonny R.; Buck, Jochen

    2004-01-01

    Bicarbonate-responsive “soluble” adenylyl cyclase resides, in part, inside the mammalian cell nucleus where it stimulates the activity of nuclear protein kinase A to phosphorylate the cAMP response element binding protein (CREB). The existence of this complete and functional, nuclear-localized cAMP pathway establishes that cAMP signals in intracellular microdomains and identifies an alternate pathway leading to CREB activation. PMID:14769862

  6. Regulation of ATP-sensitive K+ channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP

    International Nuclear Information System (INIS)

    De Weille, J.R.; Schmid-Antomarchi, H.; Fosset, M.; Lazdunski, M.

    1989-01-01

    The actions of somatostatin and of the phorbol ester 4β-phorbol 12-myristate 13-acetate (PMA) were studied in rat insulinoma (RINm5F) cells by electrophysiological and 86 Rb + flux techniques. Both PMA and somatostatin hyperpolarize insulinoma cells by activating ATP-sensitive K + channels. The presence of intracellular GTP is required for the somatostatin effects. PMA- and somatostatin-induced hyperpolarization and channel activity are inhibited by the sulfonylurea glibenclamide. Glibenclamide-sensitive 86 Rb + efflux from insulinoma cells is stimulated by somatostatin in a dose-dependent manner (half maximal effect at 0.7 nM) and abolished by pertussis toxin pretreatment. Mutual roles of a GTP-binding protein, of protein kinase C, and of cAMP in the regulation of ATP-sensitive K + channels are discussed

  7. Modulation of adhesion-dependent cAMP signaling by echistatin and alendronate

    Science.gov (United States)

    Fong, J. H.; Ingber, D. E.

    1996-01-01

    We measured intracellular cAMP levels in cells during attachment and spreading on different extracellular matrix (ECM) proteins. Increases in cAMP were observed within minutes when cells attached to fibronectin, vitronectin, and a synthetic RGD-containing fibronectin peptide (Petite 2000), but not when they adhered to another integrin alpha nu beta 3 ligand, echistatin. Because echistatin also inhibits bone resorption, we measured the effects of adding another osteoporosis inhibitor, alendronate, in this system. Alendronate inhibited the cAMP increase induced by ligands that primarily utilize integrin alpha nu beta 3 (vitronectin, Peptite 2000), but not by fibronectin which can also use integrin alpha 5 beta 1. These results show that cell adhesion to ECM can increase intracellular cAPM levels and raise the possibility that inhibitors of osteoporosis may act, in part, by preventing activation of this pathway by integrins.

  8. Activation of PKA in cell requires higher concentration of cAMP than in vitro: implications for compartmentalization of cAMP signalling.

    Science.gov (United States)

    Koschinski, Andreas; Zaccolo, Manuela

    2017-10-26

    cAMP is a ubiquitous second messenger responsible for the cellular effects of multiple hormones and neurotransmitters via activation of its main effector, protein kinase A (PKA). Multiple studies have shown that the basal concentration of cAMP in several cell types is about 1 μM. This value is well above the reported concentration of cAMP required to half-maximally activate PKA, which measures in the 100-300 nM range. Several hypotheses have been suggested to explain this apparent discrepancy including inaccurate measurements of intracellular free cAMP, inaccurate measurement of the apparent activation constant of PKA or shielding of PKA from bulk cytosolic cAMP via localization of the enzyme to microdomains with lower basal cAMP concentration. However, direct experimental evidence in support of any of these models is limited and a firm conclusion is missing. In this study we use multiple FRET-based reporters for the detection of cAMP and PKA activity in intact cells and we establish that the sensitivity of PKA to cAMP is almost twenty times lower when measured in cell than when measured in vitro. Our findings have important implications for the understanding of compartmentalized cAMP signalling.

  9. Genetically-encoded tools for cAMP probing and modulation in living systems.

    Directory of Open Access Journals (Sweden)

    Valeriy M Paramonov

    2015-09-01

    Full Text Available Intracellular 3'-5'-cyclic adenosine monophosphate (cAMP is one of the principal second messengers downstream of a manifold of signal transduction pathways, including the ones triggered by G protein-coupled receptors. Not surprisingly, biochemical assays for cAMP have been instrumental for basic research and drug discovery for decades, providing insights into cellular physiology and guiding pharmaceutical industry. However, despite impressive track record, the majority of conventional biochemical tools for cAMP probing share the same fundamental shortcoming - all the measurements require sample disruption for cAMP liberation. This common bottleneck, together with inherently low spatial resolution of measurements (as cAMP is typically analyzed in lysates of thousands of cells, underpin the ensuing limitations of the conventional cAMP assays: 1 genuine kinetic measurements of cAMP levels over time in a single given sample are unfeasible; 2 inability to obtain precise information on cAMP spatial distribution and transfer at subcellular levels, let alone the attempts to pinpoint dynamic interactions of cAMP and its effectors. At the same time, tremendous progress in synthetic biology over the recent years culminated in drastic refinement of our toolbox, allowing us not only to bypass the limitations of conventional assays, but to put intracellular cAMP life-span under tight control – something, that seemed scarcely attainable before. In this review article we discuss the main classes of modern genetically-encoded tools tailored for cAMP probing and modulation in living systems. We examine the capabilities and weaknesses of these different tools in the context of their operational characteristics and applicability to various experimental set-ups involving living cells, providing the guidance for rational selection of the best tools for particular needs.

  10. Modulation of phenotype and function of human CD4+CD25+ T regulatory lymphocytes mediated by cAMP elevating agents

    Directory of Open Access Journals (Sweden)

    Antonella Riccomi

    2016-09-01

    Full Text Available We have shown that Cholera Toxin (CT and other cyclic AMP (cAMP elevating agents induce up-regulation of the inhibitory molecule CTLA-4 in human resting CD4+ T lymphocytes, which following the treatment acquired suppressive functions. In this study, we evaluated the effect of cAMP elevating agents on human CD4+CD25+ T cells, which include the T regulatory (Treg cells that play a pivotal role in the maintenance of immunological tolerance. We found that cAMP elevating agents induce up-regulation of CTLA-4 in CD4+CD25- and further enhance its expression in CD4+CD25+ T cells. We observed an increase of two isoforms of mRNA coding for the membrane and the soluble CTLA-4 molecules, suggesting that the regulation of CTLA-4 expression by cAMP is at the transcriptional level. In addition, we found that the increase of cAMP in CD4+CD25+ T cells converts the CD4+CD25+Foxp3- T cells in CD4+CD25+Foxp3+ T cells, whereas the increase of cAMP in CD4+CD25- T cells did not up-regulate Foxp3 in the absence of activation stimuli. To investigate the function of these cells, we performed an in vitro suppression assay by culturing CD4+CD25+ T cells untreated or pre-treated with CT with anti-CD3 mAbs-stimulated autologous PBMC. We found that CT enhances the inhibitory function of CD4+CD25+ T cells, CD4+ and CD8+ T cell proliferation and IFNγ production are strongly inhibited by CD4+CD25+ T cells pre-treated with cAMP elevating agents. Furthermore, we found that CD4+CD25+ T lymphocytes pre-treated with cAMP elevating agents induce the up-regulation of CD80 and CD86 co-stimulatory molecules on immature dendritic cells (DCs in the absence of antigenic stimulation, however without leading to full DC maturation. These data show that the increase of intracellular cAMP modulates the phenotype and function of human CD4+CD25+ T cells.

  11. Regulation of cAMP on the first mitotic cell cycle of mouse embryos.

    Science.gov (United States)

    Yu, Aiming; Zhang, Zhe; Bi, Qiang; Sun, Bingqi; Su, Wenhui; Guan, Yifu; Mu, Runqing; Miao, Changsheng; Zhang, Jie; Yu, Bingzhi

    2008-03-01

    Mitosis promoting factor (MPF) plays a central role during the first mitosis of mouse embryo. We demonstrated that MPF activity increased when one-cell stage mouse embryo initiated G2/M transition following the decrease of cyclic adenosine 3', 5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) activity. When cAMP and PKA activity increases again, MPF activity decreases and mouse embryo starts metaphase-anaphase transition. In the downstream of cAMP/PKA, there are some effectors such as polo-like kinase 1 (Plk1), Cdc25, Mos (mitogen-activated protein kinase kinase kinase), MEK (mitogen-activated protein kinase kinase), mitogen-activated protein kinase (MAPK), Wee1, anaphase-promoting complex (APC), and phosphoprotein phosphatase that are involved in the regulation of MPF activity. Here, we demonstrated that following activation of MPF, MAPK activity was steady, whereas Plk1 activity fluctuated during the first cell cycle. Plk1 activity was the highest at metaphase and decreased at metaphase-anaphase transition. Further, we established a mathematical model using Gepasi algorithm and the simulation was in agreement with the experimental data. Above all the evidences, we suggested that cAMP and PKA might be the upstream factors which were included in the regulation of the first cell cycle development of mouse embryo. Copyright 2007 Wiley-Liss, Inc.

  12. cAMP Signaling Regulates Histone H3 Phosphorylation and Mitotic Entry Through a Disruption of G2 Progression

    OpenAIRE

    Rodriguez-Collazo, Pedro; Snyder, Sara K.; Chiffer, Rebecca C.; Bressler, Erin A.; Voss, Ty C.; Anderson, Eric P.; Genieser, Hans-Gottfried; Smith, Catharine L.

    2008-01-01

    cAMP signaling is known to have significant effects on cell growth, either inhibitory or stimulatory depending on the cell type. Study of cAMP-induced growth inhibition in mammalian somatic cells has focused mainly on the combined role of protein kinase A (PKA) and mitogen-activated protein (MAP) kinases in regulation of progression through the G1 phase of the cell cycle. Here we show that cAMP signaling regulates histone H3 phosphorylation in a cell cycle-dependent fashion, increasing it in ...

  13. Regulation of Constitutive GPR3 Signaling and Surface Localization by GRK2 and β-arrestin-2 Overexpression in HEK293 Cells.

    Directory of Open Access Journals (Sweden)

    Katie M Lowther

    Full Text Available G protein-coupled receptor 3 (GPR3 is a constitutively active receptor that maintains high 3'-5'-cyclic adenosine monophosphate (cAMP levels required for meiotic arrest in oocytes and CNS function. Ligand-activated G protein-coupled receptors (GPCRs signal at the cell surface and are silenced by phosphorylation and β-arrestin recruitment upon endocytosis. Some GPCRs can also signal from endosomes following internalization. Little is known about the localization, signaling, and regulation of constitutively active GPCRs. We demonstrate herein that exogenously-expressed GPR3 localizes to the cell membrane and undergoes internalization in HEK293 cells. Inhibition of endocytosis increased cell surface-localized GPR3 and cAMP levels while overexpression of GPCR-Kinase 2 (GRK2 and β-arrestin-2 decreased cell surface-localized GPR3 and cAMP levels. GRK2 by itself is sufficient to decrease cAMP production but both GRK2 and β-arrestin-2 are required to decrease cell surface GPR3. GRK2 regulates GPR3 independently of its kinase activity since a kinase inactive GRK2-K220R mutant significantly decreased cAMP levels. However, GRK2-K220R and β-arrestin-2 do not diminish cell surface GPR3, suggesting that phosphorylation is required to induce GPR3 internalization. To understand which residues are targeted for desensitization, we mutated potential phosphorylation sites in the third intracellular loop and C-terminus and examined the effect on cAMP and receptor surface localization. Mutation of residues in the third intracellular loop dramatically increased cAMP levels whereas mutation of residues in the C-terminus produced cAMP levels comparable to GPR3 wild type. Interestingly, both mutations significantly reduced cell surface expression of GPR3. These results demonstrate that GPR3 signals at the plasma membrane and can be silenced by GRK2/β-arrestin overexpression. These results also strongly implicate the serine and/or threonine residues in the third

  14. cAMP signalling in the vasculature: the role of Epac (exchange protein directly activated by cAMP).

    Science.gov (United States)

    Roberts, Owain Llŷr; Dart, Caroline

    2014-02-01

    The second messenger cAMP plays a central role in mediating vascular smooth muscle relaxation in response to vasoactive transmitters and in strengthening endothelial cell-cell junctions that regulate the movement of solutes, cells and macromolecules between the blood and the surrounding tissue. The vasculature expresses three cAMP effector proteins: PKA (protein kinase A), CNG (cyclic-nucleotide-gated) ion channels, and the most recently discovered Epacs (exchange proteins directly activated by cAMP). Epacs are a family of GEFs (guanine-nucleotide-exchange factors) for the small Ras-related GTPases Rap1 and Rap2, and are being increasingly implicated as important mediators of cAMP signalling, both in their own right and in parallel with the prototypical cAMP target PKA. In the present paper, we review what is currently known about the role of Epac within blood vessels, particularly with regard to the regulation of vascular tone, endothelial barrier function and inflammation.

  15. Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP.

    Directory of Open Access Journals (Sweden)

    Souvik Basak

    Full Text Available Oxidative damage to microbial hosts often occurs under stressful conditions during bioprocessing. Classical strain engineering approaches are usually both time-consuming and labor intensive. Here, we aim to improve E. coli performance under oxidative stress via engineering its global regulator cAMP receptor protein (CRP, which can directly or indirectly regulate redox-sensing regulators SoxR and OxyR, and other ~400 genes in E. coli. Error-prone PCR technique was employed to introduce modifications to CRP, and three mutants (OM1~OM3 were identified with improved tolerance via H(2O(2 enrichment selection. The best mutant OM3 could grow in 12 mM H(2O(2 with the growth rate of 0.6 h(-1, whereas the growth of wild type was completely inhibited at this H(2O(2 concentration. OM3 also elicited enhanced thermotolerance at 48°C as well as resistance against cumene hydroperoxide. The investigation about intracellular reactive oxygen species (ROS, which determines cell viability, indicated that the accumulation of ROS in OM3 was always lower than in WT with or without H(2O(2 treatment. Genome-wide DNA microarray analysis has shown not only CRP-regulated genes have demonstrated great transcriptional level changes (up to 8.9-fold, but also RpoS- and OxyR-regulated genes (up to 7.7-fold. qRT-PCR data and enzyme activity assay suggested that catalase (katE could be a major antioxidant enzyme in OM3 instead of alkyl hydroperoxide reductase or superoxide dismutase. To our knowledge, this is the first work on improving E. coli oxidative stress resistance by reframing its transcription machinery through its native global regulator. The positive outcome of this approach may suggest that engineering CRP can be successfully implemented as an efficient strain engineering alternative for E. coli.

  16. Cyclic 3',5'-adenosine monophosphate (cAMP) signaling in the anterior pituitary gland in health and disease.

    Science.gov (United States)

    Hernández-Ramírez, Laura C; Trivellin, Giampaolo; Stratakis, Constantine A

    2018-03-05

    The cyclic 3',5'-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy. Copyright © 2017. Published by Elsevier B.V.

  17. Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases

    OpenAIRE

    Park, Sung-Jun; Ahmad, Faiyaz; Philp, Andrew; Baar, Keith; Williams, Tishan; Luo, Haibin; Ke, Hengming; Rehmann, Holger; Taussig, Ronald; Brown, Alexandra L.; Kim, Myung K.; Beaven, Michael A.; Burgin, Alex B.; Manganiello, Vincent; Chung, Jay H.

    2012-01-01

    Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca2...

  18. PKA and PDE4D3 anchoring to AKAP9 provides distinct regulation of cAMP signals at the centrosome

    Science.gov (United States)

    Terrin, Anna; Monterisi, Stefania; Stangherlin, Alessandra; Zoccarato, Anna; Koschinski, Andreas; Surdo, Nicoletta C.; Mongillo, Marco; Sawa, Akira; Jordanides, Niove E.; Mountford, Joanne C.

    2012-01-01

    Previous work has shown that the protein kinase A (PKA)–regulated phosphodiesterase (PDE) 4D3 binds to A kinase–anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA–PDE4D3–AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals. PMID:22908311

  19. Cardiac cAMP: production, hydrolysis, modulation and detection

    Directory of Open Access Journals (Sweden)

    Cédric eBOULARAN

    2015-10-01

    Full Text Available Cyclic adenosine 3’,5’-monophosphate (cAMP modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors’ signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability.

  20. Intracellular interactions of umeclidinium and vilanterol in human airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Shaikh N

    2017-06-01

    Full Text Available Nooreen Shaikh,1,2 Malcolm Johnson,3 David A Hall,4 Kian Fan Chung,1,2 John H Riley,3 Sally Worsley,5 Pankaj K Bhavsar1,2 1Experimental Studies, National Heart and Lung Institute, Imperial College London, 2Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, 3Respiratory Global Franchise, GlaxoSmithKline, Uxbridge, 4Fibrosis and Lung Injury Development Planning Unit, GlaxoSmithKline, Stevenage, 5Respiratory Research & Development, GlaxoSmithKline, Uxbridge, UK Background: Intracellular mechanisms of action of umeclidinium (UMEC, a long-acting muscarinic receptor antagonist, and vilanterol (VI, a long-acting β2-adrenoceptor (β2R agonist, were investigated in target cells: human airway smooth-muscle cells (ASMCs. Materials and methods: ASMCs from tracheas of healthy lung-transplant donors were treated with VI, UMEC, UMEC and VI combined, or control compounds (salmeterol, propranolol, ICI 118.551, or methacholine [MCh]. Cyclic adenosine monophosphate (cAMP was measured using an enzyme-linked immunosorbent assay, intracellular free calcium ([Ca2+]i using a fluorescence assay, and regulator of G-protein signaling 2 (RGS2 messenger RNA using real-time quantitative polymerase chain reaction. Results: VI and salmeterol (10–12–10–6 M induced cAMP production from ASMCs in a concentration-dependent manner, which was greater for VI at all concentrations. β2R antagonism by propranolol or ICI 118.551 (10–12–10–4 M resulted in concentration-dependent inhibition of VI-induced cAMP production, and ICI 118.551 was more potent. MCh (5×10–6 M, 30 minutes attenuated VI-induced cAMP production (P<0.05, whereas pretreatment with UMEC (10–8 M, 1 hour restored the magnitude of VI-induced cAMP production. ASMC stimulation with MCh (10–11–5×10–6 M resulted in a concentration-dependent increase in [Ca2+]i, which was attenuated with UMEC pretreatment. Reduction of MCh-induced [Ca2+]i release was greater with UMEC + VI versus

  1. Evidence for CB2 receptor involvement in LPS-induced reduction of cAMP intracellular levels in uterine explants from pregnant mice: pathophysiological implications.

    Science.gov (United States)

    Salazar, Ana Inés; Carozzo, Alejandro; Correa, Fernando; Davio, Carlos; Franchi, Ana María

    2017-07-01

    What is the role of the endocannabinoid system (eCS) on the lipopolysaccharide (LPS) effects on uterine explants from 7-day pregnant mice in a murine model of endotoxin-induced miscarriage? We found evidence for cannabinoid receptor type2 (CB2) involvement in LPS-induced increased prostaglandin-F2α (PGF2α) synthesis and diminished cyclic adenosine monophosphate (cAMP) intracellular content in uterine explants from early pregnant mice. Genital tract infections by Gram-negative bacteria are a common complication of human pregnancy that results in an increased risk of pregnancy loss. LPS, the main component of the Gram-negative bacterial wall, elicits a strong maternal inflammatory response that results in embryotoxicity and embryo resorption in a murine model endotoxin-induced early pregnancy loss. We have previously shown that the eCS mediates the embryotoxic effects of LPS, mainly via CB1 receptor activation. An in vitro study of mice uterine explants was performed to investigate the eCS in mediating the effects of LPS on PGF2α production and cAMP intracellular content. Eight to 12-week-old virgin female BALB/c or CD1 (wild-type [WT] or CB1-knockout [CB1-KO]) mice were paired with 8- to 12-week-old BALB/c or CD1 (WT or CB1-KO) males, respectively. On day 7 of pregnancy, BALB/c, CD1 WT or CD1 CB1-KO mice were euthanized, the uteri were excised, implantation sites were removed and the uterine tissues were separated from decidual and embryo tissues. Uterine explants were cultured and exposed for an appropriate amount of time to different pharmacological treatments. The tissues were then collected for cAMP assay and PGF2α content determination by radioimmunoassay. In vitro treatment of uteri explants from 7-day pregnant BALB/c or CD1 (WT or CB1-KO) mice with LPS induced an increased production of PGF2α (P Investigaciones Científicas y Técnicas (PIP 2012/0061). Dr Carlos Davio was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2013

  2. Prostaglandin E2 release from dermis regulates sodium permeability of frog skin epithelium

    DEFF Research Database (Denmark)

    Rytved, Klaus A.; Brodin, Birger; Nielsen, Robert

    1995-01-01

    Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium.......Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium....

  3. Synthesis of interleukin 6 (interferon-β2/B cell stimulatory factor 2) in human fibroblasts is triggered by an increase in intracellular cyclic AMP

    International Nuclear Information System (INIS)

    Zhange, Y.; Lin, J.X.; Vilcek, J.

    1988-01-01

    Interleukin 6 (IL-6; also referred to as interferon-β 2 , 26-kDa protein, and B cell stimulatory factor 2) is a cytokine whose actions include a stimulation of immunoglobulin synthesis, enhancement of B cell growth, and modulation of acute phase protein synthesis by hepatocytes. Synthesis of IL-6 is stimulated by interleukin 1 (IL-1), tumor necrosis factor (TNF), or platelet-derived growth factor. The authors examined the role of the cyclic AMP (cAMP)-dependent signal transduction pathway in IL-6 gene expression. Several activators of adenylate cyclase, including prostaglandin E1, forskolin, and cholera toxin, as well as the phosphodiesterase inhibitor isobutylmethylxanthine and the cAMP analog dibutyryl cAMP, shared the ability to cause a dramatic and sustained increase in IL-6 mRNA levels in human FS-4 fibroblasts. Actinomycin D treatment abolished this enhancement. Treatments that increased intracellular cAMP also stimulated the secretion of the IL-6 protein in a biologically active form. Increased intracellular cAMP appears to enhance IL-6 gene expression by a protein kinase C-independent mechanism because down-regulation of protein kinase C by a chronic exposure of cells to a high dose of 12-O-tetradecanoylphorbol 13-acetate did not abolish the enhancement of IL-6 expression by treatments that increase cAMP. IL-1 and TNF too increased IL-6 mRNA levels by a protein kinase C-independent mechanism. The results suggest a role for the cAMP-dependent pathway(s) in IL-6 gene activation by TNF and IL-1

  4. Studies on c-AMP contents in sea urchin eggs fertilized with normal and x-irradiated sperm

    International Nuclear Information System (INIS)

    Kimura, Hiroshi

    1975-01-01

    Intracellular levels of cyclic 3', 5'-adenosine monophosphate (c-AMP) seemed to remain constant through the first cleavage cycle of sea urchin eggs. X-irradiation to the sperm, which induced the first cleavage delay, did not change this level. Although it was shown in the previous paper that X-ray-induced cleavage delay was reduced by caffeine but not by aminophyline, both caffeine and aminophyline caused an increase in c-AMP levels. These results indicated the possibility that c-AMP does not mediate this caffeine effect on cleavage delay. (auth.)

  5. Transepithelial SCFA fluxes link intracellular and extracellular pH regulation of mouse colonocytes.

    Science.gov (United States)

    Chu, S; Montrose, M H

    1997-10-01

    We have studied pH regulation in both intracellular and extracellular compartments of mouse colonic crypts, using distal colonic mucosa with intact epithelial architecture. In this work, we question how transepithelial SCFA gradients affect intracellular pH (pHi) and examine interactions between extracellular pH (pHo) and pHi regulation in crypts of distal colonic epithelium from mouse. We studied pH regulation in three adjacent compartments of distal colonic epithelium (crypt lumen, crypt epithelial cell cytosol, and lamina propria) with SNARF-1 (a pH sensitive fluorescent dye), digital imaging microscopy (for pHi), and confocal microscopy (for pHo). Combining results from the three compartments allows us to find how pHi and pHo are regulated and related under the influence of physiological transepithelial SCFA gradients, and develop a better understanding of pH regulation mechanisms in colonic crypts. Results suggest a complex interdependency between SCFA fluxes and pHo values, which can directly affect how strongly SCFAs acidify colonocytes.

  6. Targeting brain tumor cAMP: the case for sex-specific therapeutics

    Directory of Open Access Journals (Sweden)

    Nicole M Warrington

    2015-07-01

    Full Text Available A relationship between cyclic adenosine 3’, 5’-monophosphate (cAMP levels and brain tumor biology has been evident for nearly as long as cAMP and its synthetase, adenylate cyclase (ADCY have been known. The importance of the pathway in brain tumorigenesis has been demonstrated in vitro and in multiple animal models. Recently, we provided human validation for a cooperating oncogenic role for cAMP in brain tumorigenesis when we found that SNPs in ADCY8 were correlated with glioma (brain tumor risk in individuals with Neurofibromatosis type 1 (NF1. Together, these studies provide a strong rationale for targeting cAMP in brain tumor therapy. However, the cAMP pathway is well known to be sexually dimorphic, and SNPs in ADCY8 affected glioma risk in a sex-specific fashion, elevating the risk for females while protecting males. The cAMP pathway can be targeted at multiple levels in the regulation of its synthesis and degradation. Sex differences in response to drugs that target cAMP regulators indicate that successful targeting of the cAMP pathway for brain tumor patients is likely to require matching specific mechanisms of drug action with patient sex.

  7. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis.

    Science.gov (United States)

    Laurent, Julien; Venn, Alexander; Tambutté, Éric; Ganot, Philippe; Allemand, Denis; Tambutté, Sylvie

    2014-02-01

    The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO₂-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH₄Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na⁺-free seawater indicate a potential role of Na⁺/H⁺ plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited. © 2013 FEBS.

  8. Exchange Protein Directly Activated by cAMP (epac) : A Multidomain cAMP Mediator in the Regulation of Diverse Biological Functions

    NARCIS (Netherlands)

    Schmidt, Martina; Dekker, Frank J.; Maarsingh, Harm

    Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and

  9. Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems.

    Science.gov (United States)

    Wang, Ting; Wang, Lu; Li, Xiaoming; Hu, Xingjie; Han, Yuping; Luo, Yao; Wang, Zejun; Li, Qian; Aldalbahi, Ali; Wang, Lihua; Song, Shiping; Fan, Chunhai; Zhao, Yun; Wang, Maolin; Chen, Nan

    2017-06-07

    Nanoparticles (NPs) have shown great promise as intracellular imaging probes or nanocarriers and are increasingly being used in biomedical applications. A detailed understanding of how NPs get "in and out" of cells is important for developing new nanomaterials with improved selectivity and less cytotoxicity. Both physical and chemical characteristics have been proven to regulate the cellular uptake of NPs. However, the exocytosis process and its regulation are less explored. Herein, we investigated the size-regulated endocytosis and exocytosis of carboxylated polystyrene (PS) NPs. PS NPs with a smaller size were endocytosed mainly through the clathrin-dependent pathway, whereas PS NPs with a larger size preferred caveolae-mediated endocytosis. Furthermore, our results revealed exocytosis of larger PS NPs and tracked the dynamic process at the single-particle level. These results indicate that particle size is a key factor for the regulation of intracellular trafficking of NPs and provide new insight into the development of more effective cellular nanocarriers.

  10. Cortisol rapidly reduces prolactin release and cAMP and 45Ca2+ accumulation in the cichlid fish pituitary in vitro

    International Nuclear Information System (INIS)

    Borski, R.J.; Helms, L.M.H.; Richman, N.H. III; Grau, E.G.

    1991-01-01

    During in vitro incubation, prolactin release is inhibited in a dose-related manner by cortisol. This action is mimicked by the synthetic glucocorticoid agonist dexamethasone but not by other steroids tested. Perifusion studies indicate that the inhibition of [ 3 H]prolactin release by cortisol occurs within 20 min. Cortisol (50 nM) also inhibits cAMP accumulation and reduces 45 Ca 2+ accumulation in the tilapia rostral pars distalis within 15 min. Cortisol's action on prolactin release is blocked in the presence of either the Ca 2+ ionophore A23187 or a combination of dibutyryl cAMP and 3-isobutyl-1-methylxanthine, which increase intracellular Ca 2+ and cAMP, respectively. Taken together, these findings suggest that cortisol may play a physiologically relevant role in the rapid modulation of prolactin secretion in vivo. These studies also suggest that the inhibition of prolactin release by cortisol is a specific glucocorticoid action that may be mediated, in part, through cortisol's ability to inhibit intracellular cAMP and Ca 2+ metabolism

  11. Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP.

    Science.gov (United States)

    Ding, Liucheng; Song, Tao; Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n=15), DM group (n=15) and control group (n=15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.

  12. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance

    International Nuclear Information System (INIS)

    Arana, Maite Rocío; Tocchetti, Guillermo Nicolás; Domizi, Pablo; Arias, Agostina; Rigalli, Juan Pablo; Ruiz, María Laura

    2015-01-01

    The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose–response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics. - Highlights: • cAMP positively modulates the expression and activity of GST and MRP2 in Caco-2 cells. • Such induction resulted in increased cytoprotection against chemical injury. • PKA

  13. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance

    Energy Technology Data Exchange (ETDEWEB)

    Arana, Maite Rocío, E-mail: arana@ifise-conicet.gov.ar [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Tocchetti, Guillermo Nicolás, E-mail: gtocchetti@live.com.ar [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Domizi, Pablo, E-mail: domizi@ibr-conicet.gov.ar [Instituto de Biología Molecular y Celular de Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Arias, Agostina, E-mail: agoarias@yahoo.com.ar [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Rigalli, Juan Pablo, E-mail: jprigalli@gmail.com [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); Ruiz, María Laura, E-mail: ruiz@ifise-conicet.gov.ar [Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 570, 2000 Rosario (Argentina); and others

    2015-09-01

    The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose–response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics. - Highlights: • cAMP positively modulates the expression and activity of GST and MRP2 in Caco-2 cells. • Such induction resulted in increased cytoprotection against chemical injury. • PKA

  14. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines.

    Science.gov (United States)

    Alonso, Carlos Agustín I; Osycka-Salut, Claudia E; Castellano, Luciana; Cesari, Andreína; Di Siervi, Nicolás; Mutto, Adrián; Johannisson, Anders; Morrell, Jane M; Davio, Carlos; Perez-Martinez, Silvina

    2017-08-01

    Is extracellular cAMP involved in the regulation of signalling pathways in bovine sperm capacitation? Extracellular cAMP induces sperm capacitation through the activation of different signalling pathways that involve phospholipase C (PLC), PKC/ERK1-2 signalling and an increase in sperm Ca2+ levels, as well as soluble AC and cAMP/protein kinase A (PKA) signalling. In order to fertilize the oocyte, ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, known as capacitation. This correlates with a number of membrane and metabolic modifications that include an increased influx of bicarbonate and Ca2+, activation of a soluble adenylyl cyclase (sAC) to produce cAMP, PKA activation, protein tyrosine phosphorylation and the development of hyperactivated motility. We previously reported that cAMP efflux by Multidrug Resistance Protein 4 (MRP4) occurs during sperm capacitation and the pharmacological blockade of this inhibits the process. Moreover, the supplementation of incubation media with cAMP abolishes the inhibition and leads to sperm capacitation, suggesting that extracellular cAMP regulates crucial signalling cascades involved in this process. Bovine sperm were selected by the wool glass column method, and washed by centrifugation in BSA-Free Tyrode's Albumin Lactate Pyruvate (sp-TALP). Pellets were resuspended then diluted for each treatment. For in vitro capacitation, 10 to 15 × 106 SPZ/ml were incubated in 0.3% BSA sp-TALP at 38.5°C for 45 min under different experimental conditions. To evaluate the role of extracellular cAMP on different events associated with sperm capacitation, 10 nM cAMP was added to the incubation medium as well as different inhibitors of enzymes associated with signalling transduction pathways: U73122 (PLC inhibitor, 10 μM), Gö6983 (PKC inhibitor, 10 μM), PD98059 (ERK-1/2 inhibitor, 30 μM), H89 and KT (PKA inhibitors, 50 μM and 100 nM, respectively), KH7 (sAC inhibitor, 10 μM), BAPTA

  15. Effect of cholera toxin on cAMP levels and Na+ influx in isolated intestinal epithelial cells

    International Nuclear Information System (INIS)

    Hyun, C.S.; Kimmich, G.A.

    1982-01-01

    Freshly isolated chicken intestinal cells contain approximately 20 pmol adenosine 3',5'-cyclic monophosphate (cAMP)/mg cellular protein. Incubation with 3 μg/ml cholera toxin (CT) at 37 0 C induces an elevation of cellular cAMP beginning 10-15 min after initial exposure. The response is linear with time for 40-50 min and causes a six- to eightfold increase over control levels at steady state. Dibutyryl cAMP and agents that increase cAMP production inhibit Na + influx into the isolated enterocytes. Chlorpromazine completely abolishes the toxin-induced elevation of cAMP in the isolated cells and also reverses the effect on Na + entry. The data provide evidence for a cAMP-mediated control of intestinal cell Na + uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT on Na + during induction of intestinal secretory activity. Studies on the time-dependent effects of chlorpromazine on both intracellular cAMP concentration and Na + influx suggest that the reactivation of the Na + transport system after cAMP-induced inhibition is slow relative to the disappearance of cAMP

  16. Intracellular mediators of potassium-induced aldosterone secretion

    International Nuclear Information System (INIS)

    Ganguly, A.; Chiou, S.; Davis, J.S.

    1990-01-01

    We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) in 3 H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium

  17. Drosophila VAMP7 regulates Wingless intracellular trafficking.

    Science.gov (United States)

    Gao, Han; He, Fang; Lin, Xinhua; Wu, Yihui

    2017-01-01

    Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.

  18. Intracellular pH regulation in hepatocytes isolated from three teleost species.

    Science.gov (United States)

    Furimsky, M; Moon, T W; Perry, S F

    1999-09-01

    The mechanisms of intracellular pH (pH(i)) regulation were studied in hepatocytes isolated from three species of teleost: rainbow trout (Oncorhynchus mykiss), black bullhead (Ameiurus melas) and American eel (Anguilla rostrata). Intracellular pH was monitored over time using the pH-sensitive fluorescent dye BCECF in response to acid loading under control conditions and in different experimental media containing either low Na(+) or Cl(-) concentrations, the Na(+)-H(+) exchanger blocker amiloride or the blocker of the V-type H(+)-ATPase, bafilomycin A(1). In trout and bullhead hepatocytes, recovery to an intracellular acid load occurred principally by way of a Na(+)-dependent amiloride-sensitive Na(+)-H(+) exchanger. In eel hepatocytes, the Na(+)-H(+) exchanger did not contribute to recovery to an acid load though evidence suggests that it is present on the cell membrane and participates in the maintenance of steady-state pH(i). The V-type H(+)-ATPase did not participate in recovery to an acid load in any species. A Cl(-)-HCO(3)(-) exchanger may play a role in recovery to an acid load in eel hepatocytes by switching off and retaining base that would normally be tonically extruded. Thus, it is clear that hepatocytes isolated from the three species are capable of regulating pH(i), principally by way of a Na(+)-H(+) exchanger and a Cl(-)-HCO(3)(-) exchanger, but do not exploit identical mechanisms for pH(i) recovery. J. Exp. Zool. 284:361-367, 1999. Copyright 1999 Wiley-Liss, Inc.

  19. cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore.

    Directory of Open Access Journals (Sweden)

    Alex K Lyashchenko

    Full Text Available Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model but couple more loosely (as envisioned in a modular model of protein activation. Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile "slow" channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales.

  20. Intracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity.

    Science.gov (United States)

    Schewe, Bettina; Blenau, Wolfgang; Walz, Bernd

    2012-04-15

    Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H(+)-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pH(i)) regulation in unstimulated gland cells is unknown. We used the fluorescent dye BCECF to study intracellular pH(i) regulation microfluorometrically and show that: (1) under resting conditions, the application of Na(+)-free physiological saline induces an intracellular alkalinization attributable to the inhibition of the activity of a Na(+)-dependent glutamate transporter; (2) the maintenance of resting pH(i) is Na(+), Cl(-), concanamycin A and DIDS sensitive; (3) recovery from an intracellular acid load is Na(+) sensitive and requires V-ATPase activity; (4) the Na(+)/H(+) antiporter is not involved in pH(i) recovery after a NH(4)Cl prepulse; and (5) at least one Na(+)-dependent transporter and the V-ATPase maintain recovery from an intracellular acid load. Thus, under resting conditions, the V-ATPase and at least one Na(+)-dependent transporter maintain normal pH(i) values of pH 7.5. We have also detected the presence of a Na(+)-dependent glutamate transporter, which seems to act as an acid loader. Despite this not being a common pH(i)-regulating transporter, its activity affects steady-state pH(i) in C. vicina salivary gland cells.

  1. Mycobacterium tuberculosis cAMP Receptor Protein (Rv3676) Differs from the Escherichia coli Paradigm in Its cAMP Binding and DNA Binding Properties and Transcription Activation Properties*

    Science.gov (United States)

    Stapleton, Melanie; Haq, Ihtshamul; Hunt, Debbie M.; Arnvig, Kristine B.; Artymiuk, Peter J.; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRPMt) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRPMt homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRPMt was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRPMt-binding sites (CRP1 at −58.5 and CRP2 at −37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRPMt concentrations in the absence of cAMP, is a repressing site. Binding of CRPMt to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRPMt to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP. PMID:20028978

  2. Imaging alterations of cardiomyocyte cAMP microdomains in disease

    Directory of Open Access Journals (Sweden)

    Alexander eFroese

    2015-08-01

    Full Text Available 3’,5’-cyclic adenosine monophosphate (cAMP is an important second messenger which regulates heart function by acting in distinct subcellular microdomains. Recent years have provided deeper mechanistic insights into compartmentalized cAMP signaling and its link to cardiac disease. In this mini review, we summarize newest developments in this field achieved by cutting-edge biochemical and biophysical techniques. We further compile the data from different studies into a bigger picture of so far uncovered alterations in cardiomyocyte cAMP microdomains which occur in compensated cardiac hypertrophy and chronic heart failure. Finally, future research directions and translational perspectives are briefly discussed.

  3. Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation

    Directory of Open Access Journals (Sweden)

    Keisuke Sato

    2014-01-01

    Full Text Available Epalrestat (EPS, approved in Japan, is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Here we report that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH, which is important for protection against oxidative injury, through transcription regulation. Treatment of Schwann cells with EPS caused a dramatic increase in intracellular GSH levels. EPS increased the mRNA levels of γ-glutamylcysteine synthetase (γ-GCS, the enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that plays a central role in regulating the expression of γ-GCS. ELISA revealed that EPS increased nuclear Nrf2 levels. Knockdown of Nrf2 by siRNA suppressed the EPS-induced GSH biosynthesis. Furthermore, pretreatment with EPS reduced the cytotoxicity induced by H2O2, tert-butylhydroperoxide, 2,2'-azobis (2-amidinopropane dihydrochloride, and menadione, indicating that EPS plays a role in protecting against oxidative stress. This is the first study to show that EPS induces GSH biosynthesis via the activation of Nrf2. We suggest that EPS has new beneficial properties that may prevent the development and progression of disorders caused by oxidative stress.

  4. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    International Nuclear Information System (INIS)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R.

    2012-01-01

    Highlights: ► cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. ► cAMP blocks NF-κB activation induced by TNF and actinomycin D. ► cAMP blocks DISC formation following TNF and actinomycin D exposure. ► cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC

  5. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  6. Marketing Your Day Camp.

    Science.gov (United States)

    Coleman, George

    1997-01-01

    Marketing strategies for day camps include encouraging camp staff to get involved in organizations involving children, families, and communities; holding camp fairs; offering the use of camp facilities to outside groups; hosting sport leagues and local youth outings; planning community fairs; and otherwise involving the camp in the community. (LP)

  7. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.

    Science.gov (United States)

    Kimura, Tomomi E; Duggirala, Aparna; Smith, Madeleine C; White, Stephen; Sala-Newby, Graciela B; Newby, Andrew C; Bond, Mark

    2016-01-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. cAMP response element binding protein (CREB activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene

    Directory of Open Access Journals (Sweden)

    Stefano Luisa

    2005-01-01

    Full Text Available Abstract Background The enzyme glucose-6-phosphatase catalyzes the dephosphorylation of glucose-6-phosphatase to glucose, the final step in the gluconeogenic and glycogenolytic pathways. Expression of the glucose-6-phosphatase gene is induced by glucocorticoids and elevated levels of intracellular cAMP. The effect of cAMP in regulating glucose-6-phosphatase gene transcription was corroborated by the identification of two genetic motifs CRE1 and CRE2 in the human and murine glucose-6-phosphatase gene promoter that resemble cAMP response elements (CRE. Results The cAMP response element is a point of convergence for many extracellular and intracellular signals, including cAMP, calcium, and neurotrophins. The major CRE binding protein CREB, a member of the basic region leucine zipper (bZIP family of transcription factors, requires phosphorylation to become a biologically active transcriptional activator. Since unphosphorylated CREB is transcriptionally silent simple overexpression studies cannot be performed to test the biological role of CRE-like sequences of the glucose-6-phosphatase gene. The use of a constitutively active CREB2/CREB fusion protein allowed us to uncouple the investigation of target genes of CREB from the variety of signaling pathways that lead to an activation of CREB. Here, we show that this constitutively active CREB2/CREB fusion protein strikingly enhanced reporter gene transcription mediated by either CRE1 or CRE2 derived from the glucose-6-phosphatase gene. Likewise, reporter gene transcription was enhanced following expression of the catalytic subunit of cAMP-dependent protein kinase (PKA in the nucleus of transfected cells. In contrast, activating transcription factor 2 (ATF2, known to compete with CREB for binding to the canonical CRE sequence 5'-TGACGTCA-3', did not transactivate reporter genes containing CRE1, CRE2, or both CREs derived from the glucose-6-phosphatase gene. Conclusions Using a constitutively active CREB2

  9. Dopamine receptors D3 and D5 regulate CD4(+)T-cell activation and differentiation by modulating ERK activation and cAMP production.

    Science.gov (United States)

    Franz, Dafne; Contreras, Francisco; González, Hugo; Prado, Carolina; Elgueta, Daniela; Figueroa, Claudio; Pacheco, Rodrigo

    2015-07-15

    Dopamine receptors have been described in T-cells, however their signalling pathways coupled remain unknown. Since cAMP and ERKs play key roles regulating T-cell physiology, we aim to determine whether cAMP and ERK1/2-phosphorylation are modulated by dopamine receptor 3 (D3R) and D5R, and how this modulation affects CD4(+) T-cell activation and differentiation. Our pharmacologic and genetic evidence shows that D3R-stimulation reduced cAMP levels and ERK2-phosphorylation, consequently increasing CD4(+) T-cell activation and Th1-differentiation, respectively. Moreover, D5R expression reinforced TCR-triggered ERK1/2-phosphorylation and T-cell activation. In conclusion, these findings demonstrate how D3R and D5R modulate key signalling pathways affecting CD4(+) T-cell activation and Th1-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Rac1 controls Schwann cell myelination through cAMP and NF2/merlin

    Science.gov (United States)

    Guo, Li; Moon, Chandra; Niehaus, Karen; Zheng, Yi; Ratner, Nancy

    2013-01-01

    During peripheral nervous system development, Schwann cells (SCs) surrounding single large axons differentiate into myelinating SCs. Previous studies implicate RhoGTPases in SC myelination, but the mechanisms involved in RhoGTPase regulation of SC myelination are unknown. Here, we show that SC myelination is arrested in Rac1 conditional knockout (Rac1-CKO) mice. Rac1 knockout abrogated phosphorylation of the effector p21-activated kinase (PAK) and decreased NF2/merlin phosphorylation. Mutation of NF2/merlin rescued the myelin deficit in Rac1-CKO mice in vivo, and the shortened processes in cultured Rac1-CKO SCs in vitro. Mechanistically, cyclic adenosine monophosphate (cAMP) levels and E-cadherin expression were decreased in the absence of Rac1, and both were restored by mutation of NF2/merlin. Reduced cAMP is a cause of the myelin deficiency in Rac1-CKO mice, as elevation of cAMP by rolipram in Rac1-CKO mice in vivo allowed myelin formation. Thus NF2/merlin and cAMP function downstream of Rac1 signaling in SC myelination, and cAMP levels control Rac1-regulated SC myelination. PMID:23197717

  11. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    Science.gov (United States)

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest

  12. Conduct Disorders: Are Boot Camps Effective?

    Science.gov (United States)

    Jeter, LaVaughn V.

    2010-01-01

    Youth diagnosed with "conduct disorder" are often placed in programs using forced compliance and coercive control. One type of intervention used to treat conduct disorder is the boot camp. The basic idea is that disruptive behaviors can be corrected by strict behavioral regulation and an emphasis on skills training (Weis & Toolis 2009; Weis,…

  13. Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells.

    Science.gov (United States)

    Chen, Gunng-Shinng; Lee, Shiao-Pieng; Huang, Shu-Fu; Chao, Shih-Chi; Chang, Chung-Yi; Wu, Gwo-Jang; Li, Chung-Hsing; Loh, Shih-Hurng

    2018-06-01

    Homeostasis of intracellular pH (pH i ) plays vital roles in many cell functions, such as proliferation, apoptosis, differentiation and metastasis. Thus far, Na + -H + exchanger (NHE), Na + -HCO 3 - co-transporter (NBC), Cl - /HCO 3 - exchanger (AE) and Cl - /OH - exchanger (CHE) have been identified to co-regulate pH i homeostasis. However, functional and biological pH i -regulators in human dental pulp stem cells (hDPSCs) have yet to be identified. Microspectrofluorimetry technique with pH-sensitive fluorescent dye, BCECF, was used to detect pH i changes. NH 4 Cl and Na + -acetate pre-pulse were used to induce intracellular acidosis and alkalosis, respectively. Isoforms of pH i -regulators were detected by Western blot technique. The resting pH i was no significant difference between that in HEPES-buffered (nominal HCO 3 - -free) solution or CO 2 /HCO 3 -buffered system (7.42 and 7.46, respectively). The pH i recovery following the induced-intracellular acidosis was blocked completely by removing [Na + ] o , while only slowed (-63%) by adding HOE694 (a NHE1 specific inhibitor) in HEPES-buffered solution. The pH i recovery was inhibited entirely by removing [Na + ] o , while adding HOE 694 pulse DIDS (an anion-transporter inhibitor) only slowed (-55%) the acid extrusion. Both in HEPES-buffered and CO 2 /HCO 3 -buffered system solution, the pH i recovery after induced-intracellular alkalosis was entirely blocked by removing [Cl - ] o . Western blot analysis showed the isoforms of pH i regulators, including NHE1/2, NBCe1/n1, AE1/2/3/4 and CHE in the hDPSCs. We demonstrate for the first time that resting pH i is significantly higher than 7.2 and meditates functionally by two Na + -dependent acid extruders (NHE and NBC), two Cl - -dependent acid loaders (CHE and AE) and one Na + -independent acid extruder(s) in hDPSCs. These findings provide novel insight for basic and clinical treatment of dentistry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Elevated carbon dioxide blunts mammalian cAMP signaling dependent on inositol 1,4,5-triphosphate receptor-mediated Ca2+ release.

    Science.gov (United States)

    Cook, Zara C; Gray, Michael A; Cann, Martin J

    2012-07-27

    Elevated CO(2) is generally detrimental to animal cells, suggesting an interaction with core processes in cell biology. We demonstrate that elevated CO(2) blunts G protein-activated cAMP signaling. The effect of CO(2) is independent of changes in intracellular and extracellular pH, independent of the mechanism used to activate the cAMP signaling pathway, and is independent of cell context. A combination of pharmacological and genetic tools demonstrated that the effect of elevated CO(2) on cAMP levels required the activity of the IP(3) receptor. Consistent with these findings, CO(2) caused an increase in steady state cytoplasmic Ca(2+) concentrations not observed in the absence of the IP(3) receptor or under nonspecific acidotic conditions. We examined the well characterized cAMP-dependent inhibition of the isoform 3 Na(+)/H(+) antiporter (NHE3) to demonstrate a functional relevance for CO(2)-mediated reductions in cellular cAMP. Consistent with the cellular biochemistry, elevated CO(2) abrogated the inhibitory effect of cAMP on NHE3 function via an IP(3) receptor-dependent mechanism.

  15. Elevated Carbon Dioxide Blunts Mammalian cAMP Signaling Dependent on Inositol 1,4,5-Triphosphate Receptor-mediated Ca2+ Release*

    Science.gov (United States)

    Cook, Zara C.; Gray, Michael A.; Cann, Martin J.

    2012-01-01

    Elevated CO2 is generally detrimental to animal cells, suggesting an interaction with core processes in cell biology. We demonstrate that elevated CO2 blunts G protein-activated cAMP signaling. The effect of CO2 is independent of changes in intracellular and extracellular pH, independent of the mechanism used to activate the cAMP signaling pathway, and is independent of cell context. A combination of pharmacological and genetic tools demonstrated that the effect of elevated CO2 on cAMP levels required the activity of the IP3 receptor. Consistent with these findings, CO2 caused an increase in steady state cytoplasmic Ca2+ concentrations not observed in the absence of the IP3 receptor or under nonspecific acidotic conditions. We examined the well characterized cAMP-dependent inhibition of the isoform 3 Na+/H+ antiporter (NHE3) to demonstrate a functional relevance for CO2-mediated reductions in cellular cAMP. Consistent with the cellular biochemistry, elevated CO2 abrogated the inhibitory effect of cAMP on NHE3 function via an IP3 receptor-dependent mechanism. PMID:22654111

  16. Regulation of intracellular calcium in resting and stimulated rat basophilic leukemia cells

    International Nuclear Information System (INIS)

    Mohr, F.C.

    1988-01-01

    Intracellular calcium regulation was studied in a cell line of mast cells, the rat basophilic leukemia (RBL) cells with the purpose of determining (1) The properties of the plasma membrane calcium permeability pathway and (2) The role of intracellular calcium stores. The first set of experiments showed that depolarization did not induce calcium entry or secretion in resting cells and did inhibit antigen-stimulated calcium uptake and secretion. In the second set of experiments the ionic basis of antigen-induced depolarization was studied using the fluorescent potential-sensitive probe bis-oxonol. The properties of the calcium entry pathway were more consistent with a calcium channel than a calcium transport mechanism such as Na:Ca exchange. The third set of experiments examined the effects of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) on RBL cells. CCCP inhibited antigen-stimulated 45 Ca uptake and secretion by depolarizing the plasma membrane

  17. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Directory of Open Access Journals (Sweden)

    Zheng eLou

    2015-10-01

    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  18. Maintenance of cAMP in non-heart-beating donor lungs reduces ischemia-reperfusion injury.

    Science.gov (United States)

    Hoffmann, S C; Bleiweis, M S; Jones, D R; Paik, H C; Ciriaco, P; Egan, T M

    2001-06-01

    Studies suggest that pulmonary vascular ischemia-reperfusion injury (IRI) can be attenuated by increasing intracellular cAMP concentrations. The purpose of this study was to determine the effect of IRI on capillary permeability, assessed by capillary filtration coeficient (Kfc), in lungs retrieved from non-heart-beating donors (NHBDs) and reperfused with the addition of the beta(2)-adrenergic receptor agonist isoproterenol (iso), and rolipram (roli), a phosphodiesterase (type IV) inhibitor. Using an in situ isolated perfused lung model, lungs were retrieved from NHBD rats at varying intervals after death and either ventilated with O(2) or not ventilated. The lungs were reperfused with Earle's solution with or without a combination of iso (10 microM) and roli (2 microM). Kfc, lung viability, and pulmonary hemodynamics were measured. Lung tissue levels of adenine nucleotides and cAMP were measured by HPLC. Combined iso and roli (iso/roli) reperfusion decreased Kfc significantly (p Kfc in non-iso/roli-reperfused (r = 0.89) and iso/roli-reperfused (r = 0.97) lungs. cAMP levels correlated with Kfc (r = 0.93) in iso/roli-reperfused lungs. Pharmacologic augmentation of tissue TAN and cAMP levels might ameliorate the increased capillary permeability observed in lungs retrieved from NHBDs.

  19. Mesurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Ytting, Cecilie Karkov; Fuglsang, Anja Thoe; Hiltunen, J. Kalervo

    2012-01-01

    Glycolysis in the yeast Saccharomyces cerevisiae exhibits temporal oscillation under anaerobic or semianaerobic conditions. Previous evidence indicated that at least two membrane-bound ATPases, the mitochondrial F0F1 ATPase and the plasma membrane P-type ATPase (Pma1p), were important in regulating...... of the temporal behaviour of intracellular ATP in a yeast strain with oscillating glycolysis showed that, in addition to oscillation in intracellular ATP, there is an overall slow decrease in intracellular ATP because the ATP consumption rate exceeds the ATP production in glycolysis. Measurements of the temporal...... activity is under strict control. In the absence of glucose ATPase activity is switched off, and the intracellular ATP concentration is high. When glucose is added to the cells the ATP concentration starts to decrease, because ATP consumption exceeds ATP production by glycolysis. Finally, when glucose...

  20. Activation of exchange protein activated by cAMP in the rat basolateral amygdala impairs reconsolidation of a memory associated with self-administered cocaine.

    Science.gov (United States)

    Wan, Xun; Torregrossa, Mary M; Sanchez, Hayde; Nairn, Angus C; Taylor, Jane R

    2014-01-01

    The intracellular mechanisms underlying memory reconsolidation critically involve cAMP signaling. These events were originally attributed to PKA activation by cAMP, but the identification of Exchange Protein Activated by cAMP (Epac), as a distinct mediator of cAMP signaling, suggests that cAMP-regulated processes that subserve memory reconsolidation are more complex. Here we investigated how activation of Epac with 8-pCPT-cAMP (8-CPT) impacts reconsolidation of a memory that had been associated with cocaine self-administration. Rats were trained to lever press for cocaine on an FR-1 schedule, in which each cocaine delivery was paired with a tone+light cue. Lever pressing was then extinguished in the absence of cue presentations and cocaine delivery. Following the last day of extinction, rats were put in a novel context, in which the conditioned cue was presented to reactivate the cocaine-associated memory. Immediate bilateral infusions of 8-CPT into the basolateral amygdala (BLA) following reactivation disrupted subsequent cue-induced reinstatement in a dose-dependent manner, and modestly reduced responding for conditioned reinforcement. When 8-CPT infusions were delayed for 3 hours after the cue reactivation session or were given after a cue extinction session, no effect on cue-induced reinstatement was observed. Co-administration of 8-CPT and the PKA activator 6-Bnz-cAMP (10 nmol/side) rescued memory reconsolidation while 6-Bnz alone had no effect, suggesting an antagonizing interaction between the two cAMP signaling substrates. Taken together, these studies suggest that activation of Epac represents a parallel cAMP-dependent pathway that can inhibit reconsolidation of cocaine-cue memories and reduce the ability of the cue to produce reinstatement of cocaine-seeking behavior.

  1. Activation of exchange protein activated by cAMP in the rat basolateral amygdala impairs reconsolidation of a memory associated with self-administered cocaine.

    Directory of Open Access Journals (Sweden)

    Xun Wan

    Full Text Available The intracellular mechanisms underlying memory reconsolidation critically involve cAMP signaling. These events were originally attributed to PKA activation by cAMP, but the identification of Exchange Protein Activated by cAMP (Epac, as a distinct mediator of cAMP signaling, suggests that cAMP-regulated processes that subserve memory reconsolidation are more complex. Here we investigated how activation of Epac with 8-pCPT-cAMP (8-CPT impacts reconsolidation of a memory that had been associated with cocaine self-administration. Rats were trained to lever press for cocaine on an FR-1 schedule, in which each cocaine delivery was paired with a tone+light cue. Lever pressing was then extinguished in the absence of cue presentations and cocaine delivery. Following the last day of extinction, rats were put in a novel context, in which the conditioned cue was presented to reactivate the cocaine-associated memory. Immediate bilateral infusions of 8-CPT into the basolateral amygdala (BLA following reactivation disrupted subsequent cue-induced reinstatement in a dose-dependent manner, and modestly reduced responding for conditioned reinforcement. When 8-CPT infusions were delayed for 3 hours after the cue reactivation session or were given after a cue extinction session, no effect on cue-induced reinstatement was observed. Co-administration of 8-CPT and the PKA activator 6-Bnz-cAMP (10 nmol/side rescued memory reconsolidation while 6-Bnz alone had no effect, suggesting an antagonizing interaction between the two cAMP signaling substrates. Taken together, these studies suggest that activation of Epac represents a parallel cAMP-dependent pathway that can inhibit reconsolidation of cocaine-cue memories and reduce the ability of the cue to produce reinstatement of cocaine-seeking behavior.

  2. Identification of intracellular proteins and signaling pathways in human endothelial cells regulated by angiotensin-(1-7).

    Science.gov (United States)

    Meinert, Christian; Gembardt, Florian; Böhme, Ilka; Tetzner, Anja; Wieland, Thomas; Greenberg, Barry; Walther, Thomas

    2016-01-01

    The study aimed to identify proteins regulated by the cardiovascular protective peptide angiotensin-(1-7) and to determine potential intracellular signaling cascades. Human endothelial cells were stimulated with Ang-(1-7) for 1 h, 3 h, 6 h, and 9 h. Peptide effects on intracellular signaling were assessed via antibody microarray, containing antibodies against 725 proteins. Bioinformatics software was used to identify affected intracellular signaling pathways. Microarray data was verified exemplarily by Western blot, Real-Time RT-PCR, and immunohistochemical studies. The microarray identified 110 regulated proteins after 1 h, 119 after 3 h, 31 after 6 h, and 86 after 9 h Ang-(1-7) stimulation. Regulated proteins were associated with high significance to several metabolic pathways like “Molecular Mechanism of Cancer” and “p53 signaling” in a time dependent manner. Exemplarily, Western blots for the E3-type small ubiquitin-like modifier ligase PIAS2 confirmed the microarray data and displayed a decrease by more than 50% after Ang-(1-7) stimulation at 1 h and 3 h without affecting its mRNA. Immunohistochemical studies with PIAS2 in human endothelial cells showed a decrease in cytoplasmic PIAS2 after Ang-(1-7) treatment. The Ang-(1-7) mediated decrease of PIAS2 was reproduced in other endothelial cell types. The results suggest that angiotensin-(1-7) plays a role in metabolic pathways related to cell death and cell survival in human endothelial cells.

  3. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases.

    Science.gov (United States)

    Park, Sung-Jun; Ahmad, Faiyaz; Philp, Andrew; Baar, Keith; Williams, Tishan; Luo, Haibin; Ke, Hengming; Rehmann, Holger; Taussig, Ronald; Brown, Alexandra L; Kim, Myung K; Beaven, Michael A; Burgin, Alex B; Manganiello, Vincent; Chung, Jay H

    2012-02-03

    Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca(2+) levels and activates the CamKKβ-AMPK pathway via phospholipase C and the ryanodine receptor Ca(2+)-release channel. As a consequence, resveratrol increases NAD(+) and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Intracellular calcium levels can regulate Importin-dependent nuclear import

    International Nuclear Information System (INIS)

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-01-01

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca 2+ on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery

  5. Intracellular calcium levels can regulate Importin-dependent nuclear import

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A., E-mail: David.Jans@monash.edu

    2014-07-18

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca{sup 2+} on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery.

  6. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid secretion in airway epithelia

    Science.gov (United States)

    Turner, Mark J.; Saint‐Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H.; Verdon, Bernard; Ward, Christopher; Garnett, James P.; Tarran, Robert; Cann, Martin J.

    2015-01-01

    Key points Raised arterial blood CO2 (hypercapnia) is a feature of many lung diseases.CO2 has been shown to act as a cell signalling molecule in human cells, notably by influencing the levels of cell signalling second messengers: cAMP and Ca2+.Hypercapnia reduced cAMP‐stimulated cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid transport in Calu‐3 cells and primary human airway epithelia but did not affect cAMP‐regulated HCO3 − transport via pendrin or Na+/HCO3 − cotransporters.These results further support the role of CO2 as a cell signalling molecule and suggests CO2‐induced reductions in airway anion and fluid transport may impair innate defence mechanisms of the lungs. Abstract Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist‐stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)‐mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP‐regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin‐stimulated elevations in intracellular cAMP as well as both adenosine‐ and forskolin‐stimulated increases in CFTR‐dependent transepithelial short‐circuit current, in polarised cultures of Calu‐3 human airway cells. This CO2‐induced reduction in anion secretion was not due to a decrease in HCO3 − transport given that neither a change in CFTR‐dependent HCO3 − efflux nor Na+/HCO3 − cotransporter‐dependent HCO3 − influx were CO2‐sensitive. Hypercapnia also reduced the volume of forskolin‐stimulated fluid

  7. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles.

    Science.gov (United States)

    Heyward, Catherine A; Pettitt, Trevor R; Leney, Sophie E; Welsh, Gavin I; Tavaré, Jeremy M; Wakelam, Michael J O

    2008-05-20

    Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.

  8. Registration Day-Camp 2016

    CERN Multimedia

    Nursery School

    2016-01-01

    Reminder Registration for the CERN Staff Association Day-camp are open for children from 4 to 6 years old More information on the website: http://nurseryschool.web.cern.ch/. The day-camp is open to all children. An inscription per week is proposed, cost 480.-CHF/week, lunch included The camp will be open weeks 27, 28, 29 and 30, from 8:30 am to 5:30 pm. For further questions, thanks you for contacting us by email at Summer.Camp@cern.ch.

  9. Apoplastic and intracellular plant sugars regulate developmental transitions in witches’ broom disease of cacao

    Science.gov (United States)

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-01-01

    Witches’ broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant–fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. PMID:25540440

  10. Global and local missions of cAMP signaling in neural plasticity, learning and memory

    Directory of Open Access Journals (Sweden)

    Daewoo eLee

    2015-08-01

    Full Text Available The fruit fly Drosophila melanogaster has been a popular model to study cAMP signaling and resultant behaviors due to its powerful genetic approaches. All molecular components (AC, PDE, PKA, CREB, etc essential for cAMP signaling have been identified in the fly. Among them, adenylyl cyclase (AC gene rutabaga and phosphodiesterase (PDE gene dunce have been intensively studied to understand the role of cAMP signaling. Interestingly, these two mutant genes were originally identified on the basis of associative learning deficits. This commentary summarizes findings on the role of cAMP in Drosophila neuronal excitability, synaptic plasticity and memory. It mainly focuses on two distinct mechanisms (global versus local regulating excitatory and inhibitory synaptic plasticity related to cAMP homeostasis. This dual regulatory role of cAMP is to increase the strength of excitatory neural circuits on one hand, but to act locally on postsynaptic GABA receptors to decrease inhibitory synaptic plasticity on the other. Thus the action of cAMP could result in a global increase in the neural circuit excitability and memory. Implications of this cAMP signaling related to drug discovery for neural diseases are also described.

  11. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling.

    Science.gov (United States)

    Inda, Carolina; Dos Santos Claro, Paula A; Bonfiglio, Juan J; Senin, Sergio A; Maccarrone, Giuseppina; Turck, Christoph W; Silberstein, Susana

    2016-07-18

    Corticotropin-releasing hormone receptor 1 (CRHR1) activates G protein-dependent and internalization-dependent signaling mechanisms. Here, we report that the cyclic AMP (cAMP) response of CRHR1 in physiologically relevant scenarios engages separate cAMP sources, involving the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). cAMP produced by tmACs and sAC is required for the acute phase of extracellular signal regulated kinase 1/2 activation triggered by CRH-stimulated CRHR1, but only sAC activity is essential for the sustained internalization-dependent phase. Thus, different cAMP sources are involved in different signaling mechanisms. Examination of the cAMP response revealed that CRH-activated CRHR1 generates cAMP after endocytosis. Characterizing CRHR1 signaling uncovered a specific link between CRH-activated CRHR1, sAC, and endosome-based signaling. We provide evidence of sAC being involved in an endocytosis-dependent cAMP response, strengthening the emerging model of GPCR signaling in which the cAMP response does not occur exclusively at the plasma membrane and introducing the notion of sAC as an alternative source of cAMP. © 2016 Inda et al.

  12. Registration Summer Camp 2016

    CERN Multimedia

    2016-01-01

    Reminder: registration for the CERN Staff Association Summer Camp is now open for children from 4 to 6 years old.   More information on the website: http://nurseryschool.web.cern.ch/. The summer camp is open to all children. The proposed cost is 480.-CHF/week, lunch included. The camp will be open weeks 27, 28, 29 and 30, from 8:30 a.m. to 5:30 p.m. For further questions, you are welcome to contact us by email at Summer.Camp@cern.ch. CERN Staff Association

  13. Activation of PKA and Epac proteins by cyclic AMP depletes intracellular calcium stores and reduces calcium availability for vasoconstriction.

    Science.gov (United States)

    Cuíñas, Andrea; García-Morales, Verónica; Viña, Dolores; Gil-Longo, José; Campos-Toimil, Manuel

    2016-06-15

    We investigated the implication of PKA and Epac proteins in the endothelium-independent vasorelaxant effects of cyclic AMP (cAMP). Cytosolic Ca(2+) concentration ([Ca(2+)]c) was measured by fura-2 imaging in rat aortic smooth muscle cells (RASMC). Contraction-relaxation experiments were performed in rat aortic rings deprived of endothelium. In extracellular Ca(2+)-free solution, cAMP-elevating agents induced an increase in [Ca(2+)]c in RASMC that was reproduced by PKA and Epac activation and reduced after depletion of intracellular Ca(2+) reservoirs. Arginine-vasopressin (AVP)-evoked increase of [Ca(2+)]c and store-operated Ca(2+) entry (SOCE) were inhibited by cAMP-elevating agents, PKA or Epac activation in these cells. In aortic rings, the contractions induced by phenylephrine in absence of extracellular Ca(2+) were inhibited by cAMP-elevating agents, PKA or Epac activation. In these conditions, reintroduction of Ca(2+) induced a contraction that was inhibited by cAMP-elevating agents, an effect reduced by PKA inhibition and reproduced by PKA or Epac activators. Our results suggest that increased cAMP depletes intracellular, thapsigargin-sensitive Ca(2+) stores through activation of PKA and Epac in RASMC, thus reducing the amount of Ca(2+) released by IP3-generating agonists during the contraction of rat aorta. cAMP rise also inhibits the contraction induced by depletion of intracellular Ca(2+), an effect mediated by reduction of SOCE after PKA or Epac activation. Both effects participate in the cAMP-induced endothelium-independent vasorelaxation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles

    Directory of Open Access Journals (Sweden)

    Welsh Gavin I

    2008-05-01

    Full Text Available Abstract Background Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Results Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. Conclusion The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.

  15. Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.

    2015-01-01

    In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260

  16. Reciprocal bystander effect between α-irradiated macrophage and hepatocyte is mediated by cAMP through a membrane signaling pathway

    International Nuclear Information System (INIS)

    He, Mingyuan; Dong, Chen; Xie, Yuexia; Li, Jitao; Yuan, Dexiao; Bai, Yang; Shao, Chunlin

    2014-01-01

    Highlights: • α-Irradiation induced reciprocal effects between macrophage and hepatocyte cells. • cAMP played a protective role in regulating the reverse bystander effect. • cAMP communication contributed to the reciprocal effects via membrane signaling. • p53 was required for cAMP-regulated bystander effect in the recipient cells. - Abstract: Irradiated cells can induce biological effects on vicinal non-irradiated bystander cells, meanwhile the bystander cells may rescue the irradiated cells through a feedback signal stress. To elucidate the nature of this reciprocal effect, we examined the interaction between α-irradiated human macrophage cells U937 and its bystander HL-7702 hepatocyte cells using a cell co-culture system. Results showed that after 6 h of cell co-culture, mitochondria depolarization corresponding to apoptosis was significantly induced in the HL-7702 cells, but the formation of micronuclei in the irradiated U937 cells was markedly decreased compared to that without cell co-culture treatment. This reciprocal effect was not observed when the cell membrane signaling pathway was blocked by filipin that inhibited cAMP transmission from bystander cells to irradiated cells. After treatment of cells with exogenous cAMP, forskolin (an activator of cAMP) or KH-7 (an inhibitor of cAMP), respectively, it was confirmed that cAMP communication from bystander cells to targeted cells could mitigate radiation damage in U739 cells, and this cAMP insufficiency in the bystander cells contributed to the enhancement of bystander apoptosis. Moreover, the bystander apoptosis in HL-7702 cells was aggravated by cAMP inhibition but it could not be evoked when p53 of HL-7702 cells was knocked down no matter of forskolin and KH-7 treatment. In conclusion, this study disclosed that cAMP could be released from bystander HL-7702 cells and compensated to α-irradiated U937 cells through a membrane signaling pathway and this cAMP communication played a profound role in

  17. Reciprocal bystander effect between α-irradiated macrophage and hepatocyte is mediated by cAMP through a membrane signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingyuan [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China); Department of Radiation Oncology, China–Japan Union Hospital of Jilin University, Changchun 130033 (China); Dong, Chen; Xie, Yuexia; Li, Jitao; Yuan, Dexiao; Bai, Yang [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China); Shao, Chunlin, E-mail: clshao@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China)

    2014-05-15

    Highlights: • α-Irradiation induced reciprocal effects between macrophage and hepatocyte cells. • cAMP played a protective role in regulating the reverse bystander effect. • cAMP communication contributed to the reciprocal effects via membrane signaling. • p53 was required for cAMP-regulated bystander effect in the recipient cells. - Abstract: Irradiated cells can induce biological effects on vicinal non-irradiated bystander cells, meanwhile the bystander cells may rescue the irradiated cells through a feedback signal stress. To elucidate the nature of this reciprocal effect, we examined the interaction between α-irradiated human macrophage cells U937 and its bystander HL-7702 hepatocyte cells using a cell co-culture system. Results showed that after 6 h of cell co-culture, mitochondria depolarization corresponding to apoptosis was significantly induced in the HL-7702 cells, but the formation of micronuclei in the irradiated U937 cells was markedly decreased compared to that without cell co-culture treatment. This reciprocal effect was not observed when the cell membrane signaling pathway was blocked by filipin that inhibited cAMP transmission from bystander cells to irradiated cells. After treatment of cells with exogenous cAMP, forskolin (an activator of cAMP) or KH-7 (an inhibitor of cAMP), respectively, it was confirmed that cAMP communication from bystander cells to targeted cells could mitigate radiation damage in U739 cells, and this cAMP insufficiency in the bystander cells contributed to the enhancement of bystander apoptosis. Moreover, the bystander apoptosis in HL-7702 cells was aggravated by cAMP inhibition but it could not be evoked when p53 of HL-7702 cells was knocked down no matter of forskolin and KH-7 treatment. In conclusion, this study disclosed that cAMP could be released from bystander HL-7702 cells and compensated to α-irradiated U937 cells through a membrane signaling pathway and this cAMP communication played a profound role in

  18. A generalized allosteric mechanism for cis-regulated cyclic nucleotide binding domains.

    Directory of Open Access Journals (Sweden)

    Alexandr P Kornev

    2008-04-01

    Full Text Available Cyclic nucleotides (cAMP and cGMP regulate multiple intracellular processes and are thus of a great general interest for molecular and structural biologists. To study the allosteric mechanism of different cyclic nucleotide binding (CNB domains, we compared cAMP-bound and cAMP-free structures (PKA, Epac, and two ionic channels using a new bioinformatics method: local spatial pattern alignment. Our analysis highlights four major conserved structural motifs: 1 the phosphate binding cassette (PBC, which binds the cAMP ribose-phosphate, 2 the "hinge," a flexible helix, which contacts the PBC, 3 the beta(2,3 loop, which provides precise positioning of an invariant arginine from the PBC, and 4 a conserved structural element consisting of an N-terminal helix, an eight residue loop and the A-helix (N3A-motif. The PBC and the hinge were included in the previously reported allosteric model, whereas the definition of the beta(2,3 loop and the N3A-motif as conserved elements is novel. The N3A-motif is found in all cis-regulated CNB domains, and we present a model for an allosteric mechanism in these domains. Catabolite gene activator protein (CAP represents a trans-regulated CNB domain family: it does not contain the N3A-motif, and its long range allosteric interactions are substantially different from the cis-regulated CNB domains.

  19. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    Science.gov (United States)

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. Copyright © 2016 the American Physiological Society.

  20. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    Science.gov (United States)

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  1. An odor-specific threshold deficit implicates abnormal cAMP signaling in youths at clinical risk for psychosis.

    Science.gov (United States)

    Kamath, Vidyulata; Moberg, Paul J; Calkins, Monica E; Borgmann-Winter, Karin; Conroy, Catherine G; Gur, Raquel E; Kohler, Christian G; Turetsky, Bruce I

    2012-07-01

    While olfactory deficits have been reported in schizophrenia and youths at-risk for psychosis, few studies have linked these deficits to current pathophysiological models of the illness. There is evidence that disrupted cyclic adenosine 3',5'-monophosphate (cAMP) signaling may contribute to schizophrenia pathology. As cAMP mediates olfactory signal transduction, the degree to which this disruption could manifest in olfactory impairment was ascertained. Odor-detection thresholds to two odorants that differ in the degree to which they activate intracellular cAMP were assessed in clinical risk and low-risk participants. Birhinal assessments of odor-detection threshold sensitivity to lyral and citralva were acquired in youths experiencing prodromal symptoms (n=17) and controls at low risk for developing psychosis (n=15). Citralva and lyral are odorants that differ in cAMP activation; citralva is a strong cAMP activator and lyral is a weak cAMP activator. The overall group-by-odor interaction was statistically significant. At-risk youths showed significantly reduced odor detection thresholds for lyral, but showed intact detection thresholds for citralva. This odor-specific threshold deficit was uncorrelated with deficits in odor identification or discrimination, which were also present. ROC curve analysis revealed that olfactory performance correctly classified at-risk and low-risk youths with greater than 97% accuracy. This study extends prior findings of an odor-specific hyposmia implicating cAMP-mediated signal transduction in schizophrenia and unaffected first-degree relatives to include youths at clinical risk for developing the disorder. These results suggest that dysregulation of cAMP signaling may be present during the psychosis prodrome. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Visitor evaluations of management actions at a highly impacted Appalachian Trail camping area.

    Science.gov (United States)

    Daniels, Melissa L; Marion, Jeffrey L

    2006-12-01

    Protected area management involves balancing environmental and social objectives. This is particularly difficult at high-use/high-impact recreation sites, because resource protection objectives may require substantial site management or visitor regulation. This study examined visitors' reactions to both of these types of actions at Annapolis Rocks, Maryland, a popular Appalachian Trail camping area. We surveyed visitors before and after implementation of camping policies that included shifting camping to designated newly constructed campsites and prohibiting campfires. Survey results reveal that visitors were more satisfied with all social and environmental indicators after the changes were enacted. An Importance-Performance analysis also determined that management actions improved conditions for factors of greatest concern to campers prior to the changes. Posttreatment visitors were least satisfied with factors related to reduced freedom and to some characteristics of the constructed campsites. Although there was evidence of visitor displacement, the camping changes met management goals by protecting the camping area's natural resources and improving social conditions.

  3. Phosphodiesterases in the rat ovary

    DEFF Research Database (Denmark)

    Petersen, Tonny Studsgaard; Stahlhut, Martin; Andersen, Claus Yding

    2015-01-01

    that augmented cAMP levels stimulate primordial follicle growth. The present study examined the gene expression, enzyme activity and immunolocalization of the different cAMP hydrolysing PDEs families in the rat ovary. Further, the effect of PDE4 inhibition on primordial follicle activation in cultured neonatal......Phosphodiesterases (PDEs) are important regulators of the intracellular cAMP concentration, which is a central second messenger that affects a multitude of intracellular functions. In the ovaries, cAMP exerts diverse functions, including regulation of ovulation and it has been suggested...... rat ovaries was also evaluated. We found varied expression of all eight families in the ovary with Pde7b and Pde8a having the highest expression each accounting for more than 20% of the total PDE mRNA. PDE4 accounted for 15-26% of the total PDE activity. Immunoreactive PDE11A was found in the oocytes...

  4. Management of diabetes at summer camps.

    Science.gov (United States)

    Ciambra, Roberta; Locatelli, Chiara; Suprani, Tosca; Pocecco, Mauro

    2005-01-01

    We report our experience in the organization of diabetic children summer-camps since 1973. Guidelines for organization have been recently reported by the SIEDP (Società Italiana di Endocrinologia e Diabetologia Pediatrica). Our attention is focused on diabetes management at camp, organization and planning, medical staff composition and staff training, treatment of diabetes-related emergencies, written camp management plan, diabetes education and psychological issues at camp, prevention of possible risks, assessment of effectiveness of education in summer camps and research at camp.

  5. Apoplastic and intracellular plant sugars regulate developmental transitions in witches' broom disease of cacao.

    Science.gov (United States)

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-03-01

    Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Registration Day-Camp 2016

    CERN Multimedia

    Nursery School

    2016-01-01

    Registration for the CERN SA Day-camp are open for children from 4 to 6 years old From March 14 to 25 for children already enrolled in CERN SA EVE and School From April 4 to 15 for the children of CERN members of the personnel (MP) From April 18 for other children More information on the website: http://nurseryschool.web.cern.ch/. The day-camp is open to all children. An inscription per week is proposed, cost 480.-CHF/week, lunch included The camp will be open weeks 27, 28, 29 and 30, from 8:30 am to 5:30 pm. For further questions, thanks you for contacting us by email at Summer.Camp@cern.ch.

  7. Camp's "Disneyland" Effect.

    Science.gov (United States)

    Renville, Gary

    1999-01-01

    Describes the positive mental, physical, and social growth impacts that the camping experience had on the author, and urges camp program evaluation to plan and implement such changes. Sidebar lists steps of effective evaluation: program goals and objectives, goals of evaluation, implementation of evaluation, data analysis, and findings and…

  8. Regulation of intracellular pH in LLC-PK1 cells by Na+/H+ exchange.

    Science.gov (United States)

    Montrose, M H; Murer, H

    1986-01-01

    Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05 +/- 0.01, n = 5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 microM amiloride or removal of extracellular Na+ (Na+o less than 1 mM). In contrast, when the cells recover from an acid load (caused by NH4 preincubation and removal), the recovery is largely Na+ dependent and is sensitive to 100 microM amiloride. These results suggest that with resting pH near neutrality, both Na+o/H+i and Na+i/H+o exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na+o/H+i exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a "set point" of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.

  9. An odor-specific threshold deficit implicates abnormal intracellular cyclic AMP signaling in schizophrenia.

    Science.gov (United States)

    Turetsky, Bruce I; Moberg, Paul J

    2009-02-01

    Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients' unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dysregulated in schizophrenia.

  10. Scrum Code Camps

    DEFF Research Database (Denmark)

    Pries-Heje, Lene; Pries-Heje, Jan; Dalgaard, Bente

    2013-01-01

    is required. In this paper we present the design of such a new approach, the Scrum Code Camp, which can be used to assess agile team capability in a transparent and consistent way. A design science research approach is used to analyze properties of two instances of the Scrum Code Camp where seven agile teams...

  11. Identification of a specific assembly of the G protein Golf as a critical and regulated module of dopamine and adenosine-activated cAMP pathways in the striatum

    Directory of Open Access Journals (Sweden)

    Denis eHervé

    2011-08-01

    Full Text Available In the principal neurons of striatum (medium spiny neurons, MSNs, cAMP pathway is primarily activated through the stimulation of dopamine D1 and adenosine A2A receptors, these receptors being mainly expressed in striatonigral and striatopallidal MSNs, respectively. Since cAMP signaling pathway could be altered in various physiological and pathological situations, including drug addiction and Parkinson’s disease, it is of crucial importance to identify the molecular components involved in the activation of this pathway. In MSNs, cAMP pathway activation is not dependent on the classical Gs GTP-binding protein but requires a specific G protein subunit heterotrimer containing Galpha-olf/beta2/gamma7 in particular association with adenylate cyclase type 5. This assembly forms an authentic functional signaling unit since loss of one of its members leads to defects of cAMP pathway activation in response to D1 or A2A receptor stimulation, inducing dramatic impairments of behavioral responses dependent on these receptors. Interestingly, D1 receptor-dependent cAMP signaling is modulated by the neuronal levels of Galpha-olf, indicating that Galpha-olf represents the rate-limiting step in this signaling cascade and could constitute a critical element for regulation of D1 receptor responses. In both Parkinsonian patients and several animal models of Parkinson’s disease, the lesion of dopamine neurons produces a prolonged elevation of Galpha-olf levels. This observation gives an explanation for the cAMP pathway hypersensitivity to D1 stimulation, occurring despite an unaltered D1 receptor density. In conclusion, alterations in the highly specialized assembly of Galpha-olf/beta2/gamma7 subunits can happen in pathological conditions, such as Parkinson’s disease, and it could have important functional consequences in relation to changes in D1 receptor signaling in the striatum.

  12. Transformative Leadership: The Camp Counselor Experience

    Directory of Open Access Journals (Sweden)

    Stephanie Femrite

    2017-01-01

    Full Text Available A study, utilizing focus groups, was conducted with teens serving as camp counselors at the North Central 4-H camp in Missouri.  High school students, 14-18 years old, served as camp counselors during a four-day residential camp the summer of 2014. Each counselor was a current 4-H member and had served as a 4-H camp counselor in Missouri for at least one year, some serving as many as five years. Comparing two training models, evidence was found that intentional training sessions are crucial for the empowerment that leads to transformation.

  13. Mental health needs of children and adolescents at camp: are they being assessed and treated appropriately by the camp nurse?

    Science.gov (United States)

    Courey, Tamra J

    2006-11-01

    Increasingly, more children and adolescents are attending camps with mental health concerns. This can pose a challenge for camp nurses who may lack experience in assessment and treatment of mental health issues. To focus on the importance of addressing and treating mental health needs of children and adolescents at camp utilizing the Scope and Standards of Psychiatric Mental Health Nursing Practice. Personal observations, camp nursing experience, and scholarly published literature. It is paramount that mental health needs of children and adolescents at camp are addressed and managed appropriately by the camp nurse. Education of camp nurses and camp administrators is also a vital part of providing care.

  14. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Science.gov (United States)

    Zuo, Wu-Lin; Li, Sheng; Huang, Jie-Hong; Yang, Deng-Liang; Zhang, Geng; Chen, Si-Liang; Ruan, Ye-Chun; Ye, Ke-Nan; Cheng, Christopher H K; Zhou, Wen-Liang

    2011-01-01

    The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis. Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH) solution, the intracellular pH (pHi) recovery from NH(4)Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+)/H(+) exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO(3)(-) buffered would cause another pHi recovery. The pHi recovery in HCO(3)(-) buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), the inhibitor of HCO(3)(-) transporter or by removal of extracellular Na(+). The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH. The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  15. Summer Camp Registrations 2018

    CERN Multimedia

    Staff Association

    2018-01-01

    Registration for the CERN SA Summer camp, for children from 4 to 6 years old, is now open. The general conditions are available on the EVE and School website: http://nurseryschool.web.cern.ch For further questions, please contact us by email at  Summer.Camp@cern.ch An inscription per week is proposed, for 450.-CHF/week, lunch included. The camp will be open on weeks 27, 28, 29 and 30, from 8:30 am to 5:30 pm. This year the theme will be Vivaldi’s Four Seasons.

  16. Control of βAR- and N-methyl-D-aspartate (NMDA Receptor-Dependent cAMP Dynamics in Hippocampal Neurons.

    Directory of Open Access Journals (Sweden)

    Andrew Chay

    2016-02-01

    Full Text Available Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs, facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs. To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA, and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory.

  17. Intracellular mediators of Na+-K+ pump activity in guinea pig pancreatic acinar cells

    International Nuclear Information System (INIS)

    Hootman, S.R.; Ochs, D.L.; Williams, J.A.

    1985-01-01

    The involvement of Ca 2+ and cyclic nucleotides in neurohormonal regulation of Na + -K + -ATPase (Na + -K + pump) activity in guinea pig pancreatic acinar cells was investigated. Changes in Na+-K+ pump activity elicited by secretagogues were assessed by [3H]ouabain binding and by ouabain-sensitive 86 Rb + uptake. Carbachol (CCh) and cholecystokinin octapeptide (CCK-8) each stimulated both ouabain-sensitive 86Rb+ uptake and equilibrium binding of [ 3 H]ouabain by approximately 60%. Secretin increased both indicators of Na+-K+ pump activity by approximately 40% as did forskolin, 8-bromo- and dibutyryl cAMP, theophylline, and isobutylmethylxanthine. Incubation of acinar cells in Ca 2+ -free HEPES-buffered Ringer (HR) with 0.5 mM EGTA reduced the stimulatory effects of CCh and CCK-8 by up to 90% but caused only a small reduction in the effects of secretin, forskolin, and cAMP analogues. In addition, CCh, CCK-8, secretin, and forskolin each stimulated ouabain-insensitive 86Rb+ uptake by acinar cells. The increase elicited by CCh and CCK-8 was greatly reduced in the absence of extracellular Ca 2+ , while that caused by the latter two agents was not substantially altered. The effects of secretagogues on free Ca 2+ levels in pancreatic acinar cells also were investigated with quin-2, a fluorescent Ca 2+ chelator. Basal intracellular Ca 2+ concentration ([Ca 2+ ]i) was 161 nM in resting cells and increased to 713 and 803 nM within 15 s after addition of 100 microM CCh or 10 nM CCK-8, respectively

  18. Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in Drosophila.

    Science.gov (United States)

    Kanellopoulos, Alexandros K; Semelidou, Ourania; Kotini, Andriana G; Anezaki, Maria; Skoulakis, Efthimios M C

    2012-09-19

    Loss of the RNA-binding fragile X protein [fragile X mental retardation protein (FMRP)] results in a spectrum of cognitive deficits, the fragile X syndrome (FXS), while aging individuals with decreased protein levels present with a subset of these symptoms and tremor. The broad range of behavioral deficits likely reflects the ubiquitous distribution and multiple functions of the protein. FMRP loss is expected to affect multiple neuronal proteins and intracellular signaling pathways, whose identity and interactions are essential in understanding and ameliorating FXS symptoms. We used heterozygous mutants and targeted RNA interference-mediated abrogation in Drosophila to uncover molecular pathways affected by FMRP reduction. We present evidence that FMRP loss results in excess metabotropic glutamate receptor (mGluR) activity, attributable at least in part to elevation of the protein in affected neurons. Using high-resolution behavioral, genetic, and biochemical analyses, we present evidence that excess mGluR upon FMRP attenuation is linked to the cAMP decrement reported in patients and models, and underlies olfactory associative learning and memory deficits. Furthermore, our data indicate positive transcriptional regulation of the fly fmr1 gene by cAMP, via protein kinase A, likely through the transcription factor CREB. Because the human Fmr1 gene also contains CREB binding sites, the interaction of mGluR excess and cAMP signaling defects we present suggests novel combinatorial pharmaceutical approaches to symptom amelioration upon FMRP attenuation.

  19. CDC Disease Detective Camp

    Centers for Disease Control (CDC) Podcasts

    The CDC Disease Detective Camp gives rising high school juniors and seniors exposure to key aspects of the CDC, including basic epidemiology, infectious and chronic disease tracking, public health law, and outbreak investigations. The camp also helps students explore careers in public health.

  20. Dendritic diameter influences the rate and magnitude of hippocampal cAMP and PKA transients during β-adrenergic receptor activation.

    Science.gov (United States)

    Luczak, Vincent; Blackwell, Kim T; Abel, Ted; Girault, Jean-Antoine; Gervasi, Nicolas

    2017-02-01

    In the hippocampus, cyclic-adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) form a critical signaling cascade required for long-lasting synaptic plasticity, learning and memory. Plasticity and memory are known to occur following pathway-specific changes in synaptic strength that are thought to result from spatially and temporally coordinated intracellular signaling events. To better understand how cAMP and PKA dynamically operate within the structural complexity of hippocampal neurons, we used live two-photon imaging and genetically-encoded fluorescent biosensors to monitor cAMP levels or PKA activity in CA1 neurons of acute hippocampal slices. Stimulation of β-adrenergic receptors (isoproterenol) or combined activation of adenylyl cyclase (forskolin) and inhibition of phosphodiesterase (IBMX) produced cAMP transients with greater amplitude and rapid on-rates in intermediate and distal dendrites compared to somata and proximal dendrites. In contrast, isoproterenol produced greater PKA activity in somata and proximal dendrites compared to intermediate and distal dendrites, and the on-rate of PKA activity did not differ between compartments. Computational models show that our observed compartmental difference in cAMP can be reproduced by a uniform distribution of PDE4 and a variable density of adenylyl cyclase that scales with compartment size to compensate for changes in surface to volume ratios. However, reproducing our observed compartmental difference in PKA activity required enrichment of protein phosphatase in small compartments; neither reduced PKA subunits nor increased PKA substrates were sufficient. Together, our imaging and computational results show that compartment diameter interacts with rate-limiting components like adenylyl cyclase, phosphodiesterase and protein phosphatase to shape the spatial and temporal components of cAMP and PKA signaling in CA1 neurons and suggests that small neuronal compartments are most sensitive to cAMP

  1. Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides.

    Science.gov (United States)

    Banerjee, Jheelam; Papu John, Arokya M S; Schuller, Hildegard M

    2015-12-15

    Nonsmall-cell lung cancer (NSCLC) is the leading type of lung cancer and has a poor prognosis. We have shown that chronic stress promoted NSCLC xenografts in mice via stress neurotransmitter-activated cAMP signaling downstream of beta-adrenergic receptors and incidental beta-blocker therapy was reported to improve clinical outcomes in NSCLC patients. These findings suggest that psychological stress promotes NSCLC whereas pharmacologically or psychologically induced decreases in cAMP may inhibit NSCLC. Cancer stem cells are thought to drive the development, progression and resistance to therapy of NSCLC. However, their potential regulation by stress neurotransmitters has not been investigated. In the current study, epinephrine increased the number of cancer stem cell like cells (CSCs) from three NSCLC cell lines in spheroid formation assays while enhancing intracellular cAMP and the stem cell markers sonic hedgehog (SHH), aldehyde dehydrogenase-1 (ALDH-1) and Gli1, effects reversed by GABA or dynorphin B via Gαi -mediated inhibition of cAMP formation. The growth of NSCLC xenografts in a mouse model of stress reduction was significantly reduced as compared with mice maintained under standard conditions. Stress reduction reduced serum levels of corticosterone, norepinephrine and epinephrine while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and opioid peptides increased. Stress reduction significantly reduced cAMP, VEGF, p-ERK, p-AKT, p-CREB, p-SRc, SHH, ALDH-1 and Gli1 in xenograft tissues whereas cleaved caspase-3 and p53 were induced. We conclude that stress neurotransmitters activate CSCs in NSCLC via multiple cAMP-mediated pathways and that pharmacologically or psychologically induced decreases in cAMP signaling may improve clinical outcomes in NSCLC patients. © 2015 UICC.

  2. Medical Record Keeping in the Summer Camp Setting.

    Science.gov (United States)

    Kaufman, Laura; Holland, Jaycelyn; Weinberg, Stuart; Rosenbloom, S Trent

    2016-12-14

    Approximately one fifth of school-aged children spend a significant portion of their year at residential summer camp, and a growing number have chronic medical conditions. Camp health records are essential for safe, efficient care and for transitions between camp and home providers, yet little research exists regarding these systems. To survey residential summer camps for children to determine how camps create, store, and use camper health records. To raise awareness in the informatics community of the issues experienced by health providers working in a special pediatric care setting. We designed a web-based electronic survey concerning medical recordkeeping and healthcare practices at summer camps. 953 camps accredited by the American Camp Association received the survey. Responses were consolidated and evaluated for trends and conclusions. Of 953 camps contacted, 298 (31%) responded to the survey. Among respondents, 49.3% stated that there was no computer available at the health center, and 14.8% of camps stated that there was not any computer available to health staff at all. 41.1% of camps stated that internet access was not available. The most common complaints concerning recordkeeping practices were time burden, adequate completion, and consistency. Summer camps in the United States make efforts to appropriately document healthcare given to campers, but inconsistency and inefficiency may be barriers to staff productivity, staff satisfaction, and quality of care. Survey responses suggest that the current methods used by camps to document healthcare cause limitations in consistency, efficiency, and communications between providers, camp staff, and parents. As of 2012, survey respondents articulated need for a standard software to document summer camp healthcare practices that accounts for camp-specific needs. Improvement may be achieved if documentation software offers the networking capability, simplicity, pediatrics-specific features, and avoidance of

  3. Payment or reimbursement for certain medical expenses for Camp Lejeune family members. Interim final rule.

    Science.gov (United States)

    2014-09-24

    The Department of Veterans Affairs (VA) is promulgating regulations to implement statutory authority to provide payment or reimbursement for hospital care and medical services provided to certain veterans' family members who resided at Camp Lejeune, North Carolina, for at least 30 days during the period beginning on January 1, 1957, and ending on December 31, 1987. Under this rule, VA will reimburse family members, or pay providers, for medical expenses incurred as a result of certain illnesses and conditions that may be attributed to exposure to contaminated drinking water at Camp Lejeune during this time period. Payment or reimbursement will be made within the limitations set forth in statute and Camp Lejeune family members will receive hospital care and medical services that are consistent with the manner in which we provide hospital care and medical services to Camp Lejeune veterans.

  4. Marketing for Camp Trends.

    Science.gov (United States)

    Biddle, Alicia

    1998-01-01

    To effectively market a camp, current trends and issues must be considered: specialty programming, the Americans With Disabilities Act, competing recreational programs, changes in the school year, programming for seniors, and accountability. Camps should have a marketing strategy that includes public relations, a marketing plan, a pricing…

  5. Noradrenaline represses PPAR (peroxisome-proliferator-activated receptor) gamma2 gene expression in brown adipocytes: intracellular signalling and effects on PPARgamma2 and PPARgamma1 protein levels

    DEFF Research Database (Denmark)

    Lindgren, Eva M; Nielsen, Ronni; Petrovic, Natasa

    2004-01-01

    phases, with the highest mRNA levels being found at the time of transition between the phases. PPARgamma2 mRNA levels were downregulated by noradrenaline treatment (EC50, 0.1 microM) in both proliferative and differentiating cells, with a lagtime of 1 h and lasting up to 4 h, after which expression...... was thus to investigate the influence of noradrenaline on PPARgamma gene expression in brown adipocytes. In primary cultures of brown adipocytes, PPARgamma2 mRNA levels were 20-fold higher than PPARgamma1 mRNA levels. PPARgamma expression occurred during both the proliferation and the differentiation...... gradually recovered. The down-regulation was beta-adrenoceptor-induced and intracellularly mediated via cAMP and protein kinase A; the signalling pathway did not involve phosphoinositide 3-kinase, Src, p38 mitogen-activated protein kinase or extracellular-signal-regulated kinases 1 and 2. Treatment...

  6. Pancreatic acini possess endothelin receptors whose internalization is regulated by PLC-activating agents.

    Science.gov (United States)

    Hildebrand, P; Mrozinski, J E; Mantey, S A; Patto, R J; Jensen, R T

    1993-05-01

    Endothelin-1 (ET-1) and ET-3 mRNA have been found in the pancreas. We investigated the ability of ET-1, ET-2, and ET-3 to interact with and alter dispersed rat pancreatic acinar cell function. Radiolabeled ETs bound in a time- and temperature-dependent fashion, which was specific and saturable. Analysis demonstrated two classes of receptors, one class (ETA receptor) had a high affinity for ET-1 but a low affinity for ET-3, and the other class (ETB receptor) had equally high affinities for ET-1 and ET-3. No specific receptor for ET-2 was identified. Pancreatic secretagogues that activate phospholipase C (PLC) inhibited binding of 125I-labeled ET-1 (125I-ET-1) or 125I-ET-3, whereas agents that act through adenosine 3',5'-cyclic monophosphate (cAMP) did not. A23187 had no effect on 125I-ET-1 or 125I-ET-3 binding, whereas the phorbol ester 12-O-tetradecanoylphorbol 13-acetate reduced binding. The effect of cholecystokinin octapeptide (CCK-8) was mediated through its own receptor. Stripping of surface bound ligand studies demonstrated that both 125I-labeled ET-1 and 125I-labeled ET-3 were rapidly internalized. CCK-8 decreased the internalization but did not change the amount of surface bound ligand. Endothelins neither stimulate nor alter changes in enzyme secretion, intracellular calcium, cAMP, or [3H]inositol trisphosphate (IP3). This study demonstrates the presence of ETA and ETB receptors on rat pancreatic acini; occupation of both receptors resulted in rapid internalization, which is regulated by PLC-activating secretagogues. Occupation of either ET receptor did not alter intracellular calcium, cAMP, IP3, or stimulate amylase release.

  7. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Directory of Open Access Journals (Sweden)

    Wu-Lin Zuo

    Full Text Available The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+/HCO(3(- cotransporter in the pH regulation in rat epididymis.Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH solution, the intracellular pH (pHi recovery from NH(4Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+/H(+ exchanger (NHE. Immediately changing of the KH solution from HEPES buffered to HCO(3(- buffered would cause another pHi recovery. The pHi recovery in HCO(3(- buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS, the inhibitor of HCO(3(- transporter or by removal of extracellular Na(+. The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH.The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  8. cAMP level modulates scleral collagen remodeling, a critical step in the development of myopia.

    Directory of Open Access Journals (Sweden)

    Yijin Tao

    Full Text Available The development of myopia is associated with decreased ocular scleral collagen synthesis in humans and animal models. Collagen synthesis is, in part, under the influence of cyclic adenosine monophosphate (cAMP. We investigated the associations between cAMP, myopia development in guinea pigs, and collagen synthesis by human scleral fibroblasts (HSFs. Form-deprived myopia (FDM was induced by unilateral masking of guinea pig eyes. Scleral cAMP levels increased selectively in the FDM eyes and returned to normal levels after unmasking and recovery. Unilateral subconjunctival treatment with the adenylyl cyclase (AC activator forskolin resulted in a myopic shift accompanied by reduced collagen mRNA levels, but it did not affect retinal electroretinograms. The AC inhibitor SQ22536 attenuated the progression of FDM. Moreover, forskolin inhibited collagen mRNA levels and collagen secretion by HSFs. The inhibition was reversed by SQ22536. These results demonstrate a critical role of cAMP in control of myopia development. Selective regulation of cAMP to control scleral collagen synthesis may be a novel therapeutic strategy for preventing and treating myopia.

  9. Physiological and Molecular Effects of the Cyclic Nucleotides cAMP and cGMP on Arabidopsis thaliana

    KAUST Repository

    Herrera, Natalia M.

    2012-12-01

    The cyclic nucleotide monophosphates (CNs), cAMP and cGMP, are second messengers that participate in the regulation of development, metabolism and adaptive responses. In plants, CNs are associated with the control of pathogen responses, pollen tube orientation, abiotic stress response, membrane transport regulation, stomatal movement and light perception. In this study, we hypothesize that cAMP and cGMP promote changes in the transcription level of genes related to photosynthesis, high light and membrane transport in Arabidopsis thaliana leaves and, that these changes at the molecular level can have functional biological consequences. For this reason we tested if CNs modulate the photosynthetic rate, responses to high light and root ion transport. Real time quantitative PCR was used to assess transcription levels of selected genes and infrared gas analyzers coupled to fluorescence sensors were used to measure the photosynthetic parameters. We present evidence that both cAMP and cGMP modulate foliar mRNA levels early after stimulation. The two CNs trigger different responses indicating that the signals have specificity. A comparison of proteomic and transcriptional changes suggest that both transcriptional and post-transcriptional mechanisms are modulated by CNs. cGMP up-regulates the mRNA levels of components of the photosynthesis and carbon metabolism. However, neither cAMP nor cGMP trigger differences in the rate of carbon assimilation, maximum efficiency of the photosystem II (PSII), or PSII operating efficiency. It was also demonstrated that CN regulate the expression of its own targets, the cyclic nucleotide gated channels - CNGC. Further studies are needed to identify the components of the signaling transduction pathway that mediate cellular changes and their respective regulatory and/or signaling roles.

  10. Suicide in Nazi concentration camps, 1933-9.

    Science.gov (United States)

    Goeschel, Christian

    2010-01-01

    Too often histories of the concentration camps tend to be ignorant of the wider political context of nazi repression and control. This article tries to overcome this problem. Combining legal, social and political history, it contributes to a more thorough understanding of the changing relationship between the camps as places of extra-legal terror and the judiciary, between nazi terror and the law. It argues that the conflict between the judiciary and the SS was not a conflict between "good" and "evil," as existing accounts claim. Rather, it was a power struggle for jurisdiction over the camps. Concentration camp authorities covered up the murders of prisoners as suicides to prevent judicial investigations. This article also looks at actual suicides in the pre-war camps, to highlight individual inmates' reactions to life within the camps. The article concludes that the history of the concentration camps needs to be firmly integrated into the history of nazi terror and the Third Reich.

  11. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice

    OpenAIRE

    Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami, Hayate; Yachie, Akihiro; Ohno-Shosaku, Takako; Shido, Osamu

    2017-01-01

    Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and m...

  12. Identification of the C-terminal domain of Daxx acts as a potential regulator of intracellular cholesterol synthesis in HepG2 cells

    International Nuclear Information System (INIS)

    Sun, Shaowei; Wen, Juan; Qiu, Fei; Yin, Yufang; Xu, Guina; Li, Tianping; Nie, Juan; Xiong, Guozuo; Zhang, Caiping; Liao, Duangfang; Chen, Jianxiong; Tuo, Qinhui

    2016-01-01

    Daxx is a highly conserved nuclear transcriptional factor, which has been implicated in many nuclear processes including transcription and cell cycle regulation. Our previous study demonstrated Daxx also plays a role in regulation of intracellular cholesterol content. Daxx contains several domains that are essential for interaction with a growing number of proteins. To delineate the underlying mechanism of hypocholesterolemic activity of Daxx, we constructed a set of plasmids which can be used to overexpress different fragments of Daxx and transfected to HepG2 cells. We found that the C- terminal region Daxx626–740 clearly reduced intracellular cholesterol levels and inhibited the expression of SREBPs and SCAP. In GST pull-down experiments and Double immunofluorescence assays, Daxx626–740 was demonstrated to bind directly to androgen receptor (AR). Our findings suggest that the interaction of Daxx626-740 and AR abolishes the AR-mediated activation of SCAP/SREBPs pathway, which suppresses the de novo cholesterol synthesis. Thus, C-terminal domain of Daxx acts as a potential regulator of intracellular cholesterol content in HepG2 cells. - Highlights: • Daxx C-terminal domain reduces cholesterol levels. • Daxx C-terminal domain binds directly to AR. • The interaction of Daxx C-terminal domain and AR suppresses cholesterol synthesis.

  13. β adrenergic receptor/cAMP/PKA signaling contributes to the intracellular Ca2+ release by tentacle extract from the jellyfish Cyanea capillata.

    Science.gov (United States)

    Wang, Qianqian; Zhang, Hui; Wang, Bo; Wang, Chao; Xiao, Liang; Zhang, Liming

    2017-07-25

    Intracellular Ca 2+ overload induced by extracellular Ca 2+ entry has previously been confirmed to be an important mechanism for the cardiotoxicity as well as the acute heart dysfunction induced by jellyfish venom, while the underlying mechanism remains to be elucidated. Under extracellular Ca 2+ -free or Ca 2+ -containing conditions, the Ca 2+ fluorescence in isolated adult mouse cardiomyocytes pre-incubated with tentacle extract (TE) from the jellyfish Cyanea capillata and β blockers was scanned by laser scanning confocal microscope. Then, the cyclic adenosine monophosphate (cAMP) concentration and protein kinase A (PKA) activity in primary neonatal rat ventricular cardiomyocytes were determined by ELISA assay. Furthermore, the effect of propranolol against the cardiotoxicity of TE was evaluated in Langendorff-perfused rat hearts and intact rats. The increase of intracellular Ca 2+ fluorescence signal by TE was significantly attenuated and delayed when the extracellular Ca 2+ was removed. The β adrenergic blockers, including propranolol, atenolol and esmolol, partially inhibited the increase of intracellular Ca 2+ in the presence of 1.8 mM extracellular Ca 2+ and completely abolished the Ca 2+ increase under an extracellular Ca 2+ -free condition. Both cAMP concentration and PKA activity were stimulated by TE, and were inhibited by the β adrenergic blockers. Cardiomyocyte toxicity of TE was antagonized by β adrenergic blockers and the PKA inhibitor H89. Finally, the acute heart dysfuction by TE was antagonized by propranolol in Langendorff-perfused rat hearts and intact rats. Our findings indicate that β adrenergic receptor/cAMP/PKA signaling contributes to the intracellular Ca 2+ overload through intracellular Ca 2+ release by TE from the jellyfish C. capillata.

  14. Investigation on the Metabolic Regulation of pgi gene knockout Escherichia coli by Enzyme Activities and Intracellular Metabolite Concentrations

    Directory of Open Access Journals (Sweden)

    Nor ‘Aini, A. R.

    2006-01-01

    Full Text Available An integrated analysis of the cell growth characteristics, enzyme activities, intracellular metabolite concentrations was made to investigate the metabolic regulation of pgi gene knockout Escherichia coli based on batch culture and continuous culture which was performed at the dilution rate of 0.2h-1. The enzymatic study identified that pathways of pentose phosphate, ED pathway and glyoxylate shunt were all active in pgi mutant. The glycolysis enzymes i.e glyceraldehyde-3-phosphate dehydrogenase, fructose diphosphatase, pyruvate kinase, triose phosphate isomerase were down regulated implying that the inactivation of pgi gene reduced the carbon flux through glycolytic pathway. Meanwhile, the pentose phosphate pathway was active as a major route for intermediary carbohydrate metabolism instead of glycolysis. The pentose phosphate pathway generates most of the major reducing co-factor NADPH as shown by the increased of NADPH/NADP+ ratio in the mutant when compared with the parent strain. The fermentative enzymes such as acetate kinase and lactate dehydrogenase were down regulated in the mutant. Knockout of pgi gene results in the significant increase in the intracellular concentration of glucose-6-phosphate and decrease in the concentration of oxaloacetate. The slow growth rate of the mutant was assumed to be affected by the accumulation of glucose-6-phosphate and imbalance of NADPH reoxidation.

  15. TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING.

    Directory of Open Access Journals (Sweden)

    Yanming Wang

    2015-06-01

    Full Text Available Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α was induced by herpes simplex virus type 1 (HSV-1 infection in dendritic cells (DCs. Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING, which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING.

  16. Neurotrophin-3 Regulates Synapse Development by Modulating TrkC-PTPσ Synaptic Adhesion and Intracellular Signaling Pathways.

    Science.gov (United States)

    Han, Kyung Ah; Woo, Doyeon; Kim, Seungjoon; Choii, Gayoung; Jeon, Sangmin; Won, Seoung Youn; Kim, Ho Min; Heo, Won Do; Um, Ji Won; Ko, Jaewon

    2016-04-27

    Neurotrophin-3 (NT-3) is a secreted neurotrophic factor that binds neurotrophin receptor tyrosine kinase C (TrkC), which in turn binds to presynaptic protein tyrosine phosphatase σ (PTPσ) to govern excitatory synapse development. However, whether and how NT-3 cooperates with the TrkC-PTPσ synaptic adhesion pathway and TrkC-mediated intracellular signaling pathways in rat cultured neurons has remained unclear. Here, we report that NT-3 enhances TrkC binding affinity for PTPσ. Strikingly, NT-3 treatment bidirectionally regulates the synaptogenic activity of TrkC: at concentrations of 10-25 ng/ml, NT-3 further enhanced the increase in synapse density induced by TrkC overexpression, whereas at higher concentrations, NT-3 abrogated TrkC-induced increases in synapse density. Semiquantitative immunoblotting and optogenetics-based imaging showed that 25 ng/ml NT-3 or light stimulation at a power that produced a comparable level of NT-3 (6.25 μW) activated only extracellular signal-regulated kinase (ERK) and Akt, whereas 100 ng/ml NT-3 (light intensity, 25 μW) further triggered the activation of phospholipase C-γ1 and CREB independently of PTPσ. Notably, disruption of TrkC intracellular signaling pathways, extracellular ligand binding, or kinase activity by point mutations compromised TrkC-induced increases in synapse density. Furthermore, only sparse, but not global, TrkC knock-down in cultured rat neurons significantly decreased synapse density, suggesting that intercellular differences in TrkC expression level are critical for its synapse-promoting action. Together, our data demonstrate that NT-3 is a key factor in excitatory synapse development that may direct higher-order assembly of the TrkC/PTPσ complex and activate distinct intracellular signaling cascades in a concentration-dependent manner to promote competition-based synapse development processes. In this study, we present several lines of experimental evidences to support the conclusion that

  17. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wang, Meng; Li, Sijin; Zhao, Huimin

    2016-01-01

    The development of high-throughput phenotyping tools is lagging far behind the rapid advances of genotype generation methods. To bridge this gap, we report a new strategy for design, construction, and fine-tuning of intracellular-metabolite-sensing/regulation gene circuits by repurposing bacterial transcription factors and eukaryotic promoters. As proof of concept, we systematically investigated the design and engineering of bacterial repressor-based xylose-sensing/regulation gene circuits in Saccharomyces cerevisiae. We demonstrated that numerous properties, such as induction ratio and dose-response curve, can be fine-tuned at three different nodes, including repressor expression level, operator position, and operator sequence. By applying these gene circuits, we developed a cell sorting based, rapid and robust high-throughput screening method for xylose transporter engineering and obtained a sugar transporter HXT14 mutant with 6.5-fold improvement in xylose transportation capacity. This strategy should be generally applicable and highly useful for evolutionary engineering of proteins, pathways, and genomes in S. cerevisiae. © 2015 Wiley Periodicals, Inc.

  18. Self-organization of intracellular gradients during mitosis

    Directory of Open Access Journals (Sweden)

    Fuller Brian G

    2010-01-01

    Full Text Available Abstract Gradients are used in a number of biological systems to transmit spatial information over a range of distances. The best studied are morphogen gradients where information is transmitted over many cell lengths. Smaller mitotic gradients reflect the need to organize several distinct events along the length of the mitotic spindle. The intracellular gradients that characterize mitosis are emerging as important regulatory paradigms. Intracellular gradients utilize intrinsic auto-regulatory feedback loops and diffusion to establish stable regions of activity within the mitotic cytosol. We review three recently described intracellular mitotic gradients. The Ran GTP gradient with its elaborate cascade of nuclear transport receptors and cargoes is the best characterized, yet the dynamics underlying the robust gradient of Ran-GTP have received little attention. Gradients of phosphorylation have been observed on Aurora B kinase substrates both before and after anaphase onset. In both instances the phosphorylation gradient appears to result from a soluble gradient of Aurora B kinase activity. Regulatory properties that support gradient formation are highlighted. Intracellular activity gradients that regulate localized mitotic events bare several hallmarks of self-organizing biologic systems that designate spatial information during pattern formation. Intracellular pattern formation represents a new paradigm in mitotic regulation.

  19. Biphasic regulation of intracellular calcium by gemfibrozil contributes to inhibiting L6 myoblast differentiation: implications for clinical myotoxicity.

    Science.gov (United States)

    Liu, Aiming; Yang, Julin; Gonzalez, Frank J; Cheng, Gary Q; Dai, Renke

    2011-02-18

    Gemfibrozil is the most myotoxic fibrate drug commonly used for dyslipidemia, but the mechanism is poorly understood. The current study revealed that gemfibrozil inhibits myoblast differentiation through the regulation of intracellular calcium ([Ca(2+)]i) as revealed in L6 myoblasts by use of laser scan confocal microscopy and flow cytometry using Fluo-4 AM as a probe. Gemfibrozil at 20-400 μM, could regulate [Ca(2+)]i in L6 cells in a biphasic manner, and sustained reduction was observed when the concentration reached 200 μM. Inhibition of L6 differentiation by gemfibrozil was concentration-dependent with maximal effect noted between 200 and 400 μM, as indicated by creatine kinase activities and the differentiation index, respectively. In differentiating L6 myoblasts, gemfibrozil at concentrations below 400 μM led to no significant signs of apoptosis or cytotoxicity, whereas differentiation, inhibited by 200 μM gemfibrozil, was only partially recovered. A good correlation was noted between gemfibrozil concentrations that regulate [Ca(2+)]i and inhibit L6 myoblasts differentiation, and both are within the range of total serum concentrations found in the clinic. These data suggest a potential pharmacodynamic effect of gemfibrozil on myogenesis as a warning sign, in addition to the complex pharmacokinetic interactions. It is also noteworthy that mobilization of [Ca(2+)]i by gemfibrozil may trigger complex biological responses besides myocyte differentiation. Information revealed in this study explores the mechanism of gemfibrozil-induced myotoxicity through the regulation of intracellular calcium.

  20. MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis

    Science.gov (United States)

    Abshire, Camille F.; Roy, Craig R.

    2016-01-01

    Vacuolar bacterial pathogens are sheltered within unique membrane-bound organelles that expand over time to support bacterial replication. These compartments sequester bacterial molecules away from host cytosolic immunosurveillance pathways that induce antimicrobial responses. The mechanisms by which the human pulmonary pathogen Legionella pneumophila maintains niche homeostasis are poorly understood. We uncovered that the Legionella-containing vacuole (LCV) required a sustained supply of host lipids during expansion. Lipids shortage resulted in LCV rupture and initiation of a host cell death response, whereas excess of host lipids increased LCVs size and housing capacity. We found that lipids uptake from serum and de novo lipogenesis are distinct redundant supply mechanisms for membrane biogenesis in Legionella-infected macrophages. During infection, the metabolic checkpoint kinase Mechanistic Target of Rapamycin (MTOR) controlled lipogenesis through the Serum Response Element Binding Protein 1 and 2 (SREBP1/2) transcription factors. In Legionella-infected macrophages a host-driven response that required the Toll-like receptors (TLRs) adaptor protein Myeloid differentiation primary response gene 88 (Myd88) dampened MTOR signaling which in turn destabilized LCVs under serum starvation. Inactivation of the host MTOR-suppression pathway revealed that L. pneumophila sustained MTOR signaling throughout its intracellular infection cycle by a process that required the upstream regulator Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and one or more Dot/Icm effector proteins. Legionella-sustained MTOR signaling facilitated LCV expansion and inhibition of the PI3K-MTOR-SREPB1/2 axis through pharmacological or genetic interference or by activation of the host MTOR-suppression response destabilized expanding LCVs, which in turn triggered cell death of infected macrophages. Our work identified a host metabolic requirement for LCV homeostasis and demonstrated that L

  1. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling.

    Science.gov (United States)

    Noctor, Graham; Foyer, Christine H

    2016-07-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Camp Wanna-Read: Program Guide for the Texas Reading Club 1991.

    Science.gov (United States)

    Switzer, Robin Works

    Camp Wanna-Read is the theme for the 1991 program for the Texas Reading Club, which centers around the experiences and types of things that happen at summer camp. Each chapter is a type of camp a child might attend such as cooking camp, art camp, music camp, science camp, Indian camp, nature camp, and regular summer camp. The chapters are divided…

  3. Cyclic-AMP mediated regulation of ABCB mRNA expression in mussel haemocytes.

    Directory of Open Access Journals (Sweden)

    Silvia Franzellitti

    Full Text Available BACKGROUND: The multixenobiotic resistance system (MXR allows aquatic organisms to cope with their habitat despite high pollution levels by over-expressing membrane and intracellular transporters, including the P-glycoprotein (Pgp. In mammals transcription of the ABCB1 gene encoding Pgp is under cAMP/PKA-mediated regulation; whether this is true in mollusks is not fully clarified. METHODOLOGY/PRINCIPAL FINDINGS: cAMP/PKA regulation and ABCB mRNA expression were assessed in haemocytes from Mediterranean mussels (Mytilus galloprovincialis exposed in vivo for 1 week to 0.3 ng/L fluoxetine (FX alone or in combination with 0.3 ng/L propranolol (PROP. FX significantly decreased cAMP levels and PKA activity, and induced ABCB mRNA down-regulation. FX effects were abolished in the presence of PROP. In vitro experiments using haemocytes treated with physiological agonists (noradrenaline and serotonin and pharmacological modulators (PROP, forskolin, dbcAMP, and H89 of the cAMP/PKA system were performed to obtain clear evidence about the involvement of the signaling pathway in the transcriptional regulation of ABCB. Serotonin (5-HT decreased cAMP levels, PKA activity and ABCB mRNA expression but increased the mRNA levels for a putative 5-HT1 receptor. Interestingly, 5-HT1 was also over-expressed after in vivo exposures to FX. 5-HT effects were counteracted by PROP. Forskolin and dbcAMP increased PKA activity as well as ABCB mRNA expression; the latter effect was abolished in the presence of the PKA inhibitor H89. CONCLUSIONS: This study provides the first direct evidence for the cAMP/PKA-mediated regulation of ABCB transcription in mussels.

  4. Regulation of dopamine transporter trafficking by intracellular amphetamine

    DEFF Research Database (Denmark)

    Kahlig, Kristopher M; Lute, Brandon J; Wei, Yuqiang

    2006-01-01

    -induced cell surface DAT redistribution may result in long-lasting changes in DA homeostasis. The molecular mechanism by which AMPH induces trafficking is not clear. Because AMPH is a substrate, we do not know whether extracellular AMPH stimulates trafficking through its interaction with DAT and subsequent...... alteration in DAT function, thereby triggering intracellular signaling or whether AMPH must be transported and then act intracellularly. In agreement with our previous studies, extracellular AMPH caused cytosolic redistribution of the wild-type human DAT (WT-hDAT). However, AMPH did not induce cytosolic...... redistribution in an uptake-impaired hDAT (Y335A-hDAT) that still binds AMPH. The divalent cation zinc (Zn(2+)) inhibits WT-hDAT activity, but it restores Y335A-hDAT uptake. Coadministration of Zn(2+) and AMPH consistently reduced WT-hDAT trafficking but stimulated cytosolic redistribution of Y335A...

  5. Modulatory effects of cAMP and PKC activation on gap junctional intercellular communication among thymic epithelial cells

    Directory of Open Access Journals (Sweden)

    Neves-dos-Santos Sandra

    2010-01-01

    Full Text Available Abstract Background We investigated the effects of the signaling molecules, cyclic AMP (cAMP and protein-kinase C (PKC, on gap junctional intercellular communication (GJIC between thymic epithelial cells (TEC. Results Treatment with 8-Br-cAMP, a cAMP analog; or forskolin, which stimulates cAMP production, resulted in an increase in dye transfer between adjacent TEC, inducing a three-fold enhancement in the mean fluorescence of coupled cells, ascertained by flow cytometry after calcein transfer. These treatments also increased Cx43 mRNA expression, and stimulated Cx43 protein accumulation in regions of intercellular contacts. VIP, adenosine, and epinephrine which may also signal through cyclic nucleotides were tested. The first two molecules did not mimic the effects of 8-Br-cAMP, however epinephrine was able to increase GJIC suggesting that this molecule functions as an endogenous inter-TEC GJIC modulators. Stimulation of PKC by phorbol-myristate-acetate inhibited inter-TEC GJIC. Importantly, both the enhancing and the decreasing effects, respectively induced by cAMP and PKC, were observed in both mouse and human TEC preparations. Lastly, experiments using mouse thymocyte/TEC heterocellular co-cultures suggested that the presence of thymocytes does not affect the degree of inter-TEC GJIC. Conclusions Overall, our data indicate that cAMP and PKC intracellular pathways are involved in the homeostatic control of the gap junction-mediated communication in the thymic epithelium, exerting respectively a positive and negative role upon cell coupling. This control is phylogenetically conserved in the thymus, since it was seen in both mouse and human TEC preparations. Lastly, our work provides new clues for a better understanding of how the thymic epithelial network can work as a physiological syncytium.

  6. CDC Disease Detective Camp

    Centers for Disease Control (CDC) Podcasts

    2010-08-02

    The CDC Disease Detective Camp gives rising high school juniors and seniors exposure to key aspects of the CDC, including basic epidemiology, infectious and chronic disease tracking, public health law, and outbreak investigations. The camp also helps students explore careers in public health.  Created: 8/2/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 8/2/2010.

  7. Elevated cAMP increases aquaporin-3 plasma membrane diffusion

    DEFF Research Database (Denmark)

    Marlar, Saw; Christensen, Eva Arnspang; Koffman, Jennifer Skaarup

    2014-01-01

    be short-term regulated via changes in protein-protein interactions, incorporation into lipid rafts, and/or changes in steady-state turnover, which could result in changes in the diffusion behavior of AQP3. Thus we measured AQP3 diffusion coefficients upon stimulation with the AVP mimic forskolin to reveal...... if AQP3 could be short-term regulated by AVP. k-Space image correlation spectroscopy (kICS) analysis of time-lapse image sequences of basolateral enhanced green fluorescent protein-tagged AQP3 (AQP3-EGFP) revealed that the forskolin-mediated elevation of cAMP increased the diffusion coefficient by 58...

  8. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana

    KAUST Repository

    Thomas, Ludivine

    2013-05-01

    The second messenger 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses in higher plants. Here we used proteomics to identify cAMP-dependent protein signatures in Arabidopsis thaliana and identify a number of differentially expressed proteins with a role in light- and temperature-dependent responses, notably photosystem II subunit P-1, plasma membrane associated cation-binding protein and chaperonin 60 β. Based on these proteomics results we conclude that, much like in cyanobacteria, algae and fungi, cAMP may have a role in light signaling and the regulation of photosynthesis as well as responses to temperature and we speculate that ACs could act as light and/or temperature sensors in higher plants. Biological significance: This current study is significant since it presents the first proteomic response to cAMP, a novel and key second messenger in plants. It will be relevant to researchers in plant physiology and in particular those with an interest in second messengers and their role in biotic and abiotic stress responses. © 2013 Elsevier B.V.

  9. Components of Camp Experiences for Positive Youth Development

    Directory of Open Access Journals (Sweden)

    Karla A. Henderson

    2007-03-01

    Full Text Available Youth development specialists advocate that well designed, implemented, and staffed youth centered programs result in positive outcomes for young people. Youth organizations have provided opportunities for young people to participate in camping experiences for over a century. The purpose of this paper is to describe what program components were related to camp environments and positive youth development. We describe these program components related to positive youth development based on a large scale national study of ACA (American Camp Association accredited camps that included independent, religiously affiliated, government, and not-for-profit organizations. Based on the responses given by camp directors, contact and leadership from trained staff and the supportive relationships they provided were essential elements of camp. Other aspects leading to positive youth development in camps were program mission and structure along with elements of accountability, assessment of outcomes, and opportunities for skill building.

  10. Opening of a summer camp at CERN

    CERN Multimedia

    Nursery School

    2015-01-01

    The Staff Association has the pleasure to announce the opening of a summer camp in l’EVE et Ecole de l’AP du CERN. With a capacity of 40 children, aged 4 to 6 years, it will be open from July 6 to 30. Registration Summer camp 2015 Registration for the CERN SA Summer camp for children aged 4 to 6 is open 16 to 30 April 2015 More information on the website: http://nurseryschool.web.cern.ch/ The Summer camp is open to all children of CERN Staff. An inscription per week is proposed, cost 480.-CHF/week, lunch included. The camp will be open weeks 28, 29, 30 and 31, from 8:30 am to 5:30 pm.

  11. Sumatriptan increases the proliferation of peripheral blood mononuclear cells from HIV-infected individuals and healthy blood donors in vitro

    DEFF Research Database (Denmark)

    Afzelius, P; Nielsen, Jens Ole

    2000-01-01

    responsible for regulation of the intracellular levels of cAMP. In a preliminary study sumatriptan increased the proliferative responses of PBMC to a polyclonal activator in vitro in 9 of 10 HIV-seropositive individuals (p=0.007), and in 7 of 9 healthy blood donors (p=0.05). This was probably due...... of the intracellular second messenger adenosine 3',5'-cyclic monophosphate (cAMP) has been shown to cause impaired proliferative capacity of peripheral blood mononuclear cells (PBMC) from HIV-infected individuals in vitro. Sumatriptan, a 5HT1d receptor agonist, inhibits the activity of adenylyl cyclases, the enzymes...

  12. Extension Sustainability Camp: Design, Implementation, and Evaluation

    Science.gov (United States)

    Brain, Roslynn; Upton, Sally; Tingey, Brett

    2015-01-01

    Sustainability Camps provide an opportunity for Extension educators to be in the forefront of sustainability outreach and to meet the growing demand for sustainability education. This article shares development, implementation, and evaluation of an Extension Sustainability Camp for youth, grades 4-6. Camp impact was measured via daily pre-and…

  13. Structure and function of the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    M.M. Morales

    1999-08-01

    Full Text Available Cystic fibrosis (CF is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR. Mutations in the CFTR gene may result in a defective processing of its protein and alter the function and regulation of this channel. Mutations are associated with different symptoms, including pancreatic insufficiency, bile duct obstruction, infertility in males, high sweat Cl-, intestinal obstruction, nasal polyp formation, chronic sinusitis, mucus dehydration, and chronic Pseudomonas aeruginosa and Staphylococcus aureus lung infection, responsible for 90% of the mortality of CF patients. The gene responsible for the cellular defect in CF was cloned in 1989 and its protein product CFTR is activated by an increase of intracellular cAMP. The CFTR contains two membrane domains, each with six transmembrane domain segments, two nucleotide-binding domains (NBDs, and a cytoplasmic domain. In this review we discuss the studies that have correlated the role of each CFTR domain in the protein function as a chloride channel and as a regulator of the outwardly rectifying Cl- channels (ORCCs.

  14. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

    Science.gov (United States)

    Hurwitz, Stephanie N; Cheerathodi, Mujeeb R; Nkosi, Dingani; York, Sara B; Meckes, David G

    2018-03-01

    The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells. IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major

  15. PDF and cAMP enhance PER stability in Drosophila clock neurons

    Science.gov (United States)

    Li, Yue; Guo, Fang; Shen, James; Rosbash, Michael

    2014-01-01

    The neuropeptide PDF is important for Drosophila circadian rhythms: pdf01 (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light–dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neurons. However, there is no known connection of PDF or of cAMP with the Drosophila molecular clockworks. We discovered that the mutant period gene perS ameliorates the phenotypes of pdf-null flies. The period protein (PER) is a well-studied repressor of clock gene transcription, and the perS protein (PERS) has a markedly short half-life. The result therefore suggests that the PDF-mediated increase in cAMP might lengthen circadian period by directly enhancing PER stability. Indeed, increasing cAMP levels and cAMP-mediated protein kinase A (PKA) activity stabilizes PER, in S2 tissue culture cells and in fly circadian neurons. Adding PDF to fly brains in vitro has a similar effect. Consistent with these relationships, a light pulse causes more prominent PER degradation in pdf01 circadian neurons than in wild-type neurons. The results indicate that PDF contributes to clock neuron synchrony by increasing cAMP and PKA, which enhance PER stability and decrease clock speed in intrinsically fast-paced PDFR-containing clock neurons. We further suggest that the more rapid degradation of PERS bypasses PKA regulation and makes the pace of clock neurons more uniform, allowing them to avoid much of the asynchrony caused by the absence of PDF. PMID:24707054

  16. Bacterial subversion of cAMP signalling inhibits cathelicidin expression, which is required for innate resistance to Mycobacterium tuberculosis

    Science.gov (United States)

    Gupta, Shashank; Winglee, Kathryn; Gallo, Richard; Bishai, William R

    2017-01-01

    Antimicrobial peptides such as cathelicidins are an important component of innate immune defence against inhaled microorganisms and have demonstrated antimicrobial activity against Mycobacterium tuberculosis with in vitro models. Despite this, little is known about the regulation and expression of cathelicidin during tuberculosis in vivo. We sought to determine whether the cathelicidin-related antimicrobial peptide (Cramp) gene, the murine functional homologue of the human cathelicidin gene (CAMP or LL-37), is required for regulating protective immunity during M. tuberculosis infection in vivo. We used Cramp−/− mice in a validated model of pulmonary tuberculosis and conducted cell-based assays with macrophages from these mice. We evaluated the in vivo susceptibility of Cramp−/− mice to infection and further dissected various pro-inflammatory immune responses against M. tuberculosis. We observed increased susceptibility of Cramp−/− mice to M. tuberculosis compared to wild type mice. Macrophages from Cramp−/− mice were unable to control M. tuberculosis growth in an in vitro infection model, were deficient in intracellular calcium influx and were defective in stimulating T-cells. Additionally, CD4 and CD8 T-cells from Cramp−/− mice produced less IFNβ upon stimulation. Furthermore, bacterial-derived cyclic-AMP modulated cathelicidin expression in macrophages. Our results demonstrate that cathelicidin is required for innate resistance to M. tuberculosis in a relevant animal model and is a key mediator in regulating the levels of pro-inflammatory cytokines by calcium and cyclic nucleotides. PMID:28097645

  17. Intracellular Ca2+ Regulation in Calcium Sensitive Phenotype of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    HERMANSYAH

    2010-03-01

    Full Text Available Intracellular cytosolic Ca2+ concentration accumulation plays an essential information in Saccharomyces cerevisiae i.e. to explain cellular mechanism of Ca2+ sensitive phenotype. Disruption both S. cerevisiae PPase PTP2 and MSG5 genes showed an inhibited growth in the presence of Ca2+. On the other hand, by using Luminocounter with apoaequorin system, a method based upon luminescent photoprotein aequorin, intracellular Ca2+ concentration was accumulated as a consequence of calcium sensitive phenotype of S. cerevisiae. This fact indicated that PPase ptp2Δ and msg5Δ were involved in intracellular Ca2+ transport in addition their already known pathways i.e Mitogen Activated Protein Kinase cell wall integrity pathway, high osmolarity glycerol (HOG pathway, and pheromone response FUS3 pathway.

  18. Creating a Sun-Safe Camp.

    Science.gov (United States)

    Landrey, Ann

    1996-01-01

    Strategies for minimizing sun exposure of campers and staff include educating campers about the sun's effect on their skin, scheduling activities when the sun is less intense, creating shade at the camp site, incorporating sun protection into camp dress code, and training staff regarding sun protection. Addresses OSHA and liability issues. (LP)

  19. Ladders to Leadership: What Camp Counselor Positions Do for Youth

    Directory of Open Access Journals (Sweden)

    Darcy Tessman

    2012-09-01

    Full Text Available The 4-H youth development organization understands and has recognized residential camping as one of the major modes of program delivery. Primary benefactors of the residential camping program are those youth who serve as camp counselors. Not only are they recipients of the educational program, but also supervise and teach younger campers (Garst & Johnson, 2005; McNeely, 2004. As a result of their experience, camp counselors learn about and develop leadership and life skills (Thomas, 1996; Purcell, 1996. The residential camping experience allows youth to serve as volunteers through their role as camp counselors. In addition to the benefits earned from their volunteer role, residential camping provides youth camp counselors the opportunity to gain leadership skills (Arnold, 2003 as well as add to the camp structure, planning, and implementation (Hines & Riley, 2005.

  20. Regulation of insulin-like growth factor I transcription by cyclic adenosine 3',5'-monophosphate (cAMP) in fetal rat bone cells through an element within exon 1: protein kinase A-dependent control without a consensus AMP response element

    Science.gov (United States)

    McCarthy, T. L.; Thomas, M. J.; Centrella, M.; Rotwein, P.

    1995-01-01

    Insulin-like growth factor I (IGF-I) is a locally synthesized anabolic growth factor for bone. IGF-I synthesis by primary fetal rat osteoblasts (Ob) is stimulated by agents that increase the intracellular cAMP concentration, including prostaglandin E2 (PGE2). Previous studies with Ob cultures demonstrated that PGE2 enhanced IGF-I transcription through selective use of IGF-I promoter 1, with little effect on IGF-I messenger RNA half-life. Transient transfection of Ob cultures with an array of promoter 1-luciferase reporter fusion constructs has now allowed localization of a potential cis-acting promoter element(s) responsible for cAMP-stimulated gene expression to the 5'-untranslated region (5'-UTR) of IGF-I exon 1, within a segment lacking a consensus cAMP response element. Our evidence derives from three principal observations: 1) a transfection construct containing only 122 nucleotides (nt) of promoter 1 and 328 nt of the 5'-UTR retained full PGE2-stimulated reporter expression; 2) maximal PGE2-driven reporter expression required the presence of nt 196 to 328 of exon 1 when tested within the context of IGF-I promoter 1; 3) cotransfection of IGF-I promoter-luciferase-reporter constructs with a plasmid encoding the alpha-isoform of the catalytic subunit of murine cAMP-dependent protein kinase (PKA) produced results comparable to those seen with PGE2 treatment, whereas cotransfection with a plasmid encoding a mutant regulatory subunit of PKA that cannot bind cAMP blocked PGE2-induced reporter expression. Deoxyribonuclease I footprinting of the 5'-UTR of exon 1 demonstrated protected sequences at HS3A, HS3B, and HS3D, three of six DNA-protein binding sites previously characterized with rat liver nuclear extracts. Of these three regions, only the HS3D binding site is located within the functionally identified hormonally responsive segment of IGF-I exon 1. These results directly implicate PKA in the control of IGF-I gene transcription by PGE2 and identify a segment of

  1. Rethinking the lessons from Za’atari refugee camp

    Directory of Open Access Journals (Sweden)

    Melissa N Gatter

    2018-02-01

    Full Text Available Humanitarian efforts to build a model refugee camp when constructing Azraq camp in Jordan – drawing on what was supposed to have been learned in Za’atari camp – missed crucial aspects of Za’atari’s governance.

  2. Intracellular pH gradients in migrating cells

    DEFF Research Database (Denmark)

    Martin, Christine; Pedersen, Stine Helene Falsig; Schwab, Albrecht

    2011-01-01

    might function as such unevenly distributed regulators as they modulate the interaction of focal adhesion proteins and components of the cytoskeleton in vitro. However, an intracellular pH (pH(i)) gradient reflecting a spatial asymmetry of protons has not been shown so far. One major regulator of p...

  3. A Thapsigargin-Resistant Intracellular Calcium Sequestering Compartment in Rat Brain

    Science.gov (United States)

    2000-03-31

    have a major impact on neuronal intracellular signaling. Most of the ER in neurons and glia appears to accumulate calcium by energy driven ion pumps...secretion of exocrine, endocrine, and neurocrine products, regulation of glycogenolysis and gluconeogenesis , intracellular transport, secretion of fluids...the RyRs [140]. Furthermore, the intracellular expression of these receptor-channels in neuronal ER is also reciprocal with RyRs located primarily in

  4. The tripeptide feG regulates the production of intracellular reactive oxygen species by neutrophils

    Directory of Open Access Journals (Sweden)

    Davison Joseph S

    2006-06-01

    challenge. Conclusion feG reduces the capacity of circulating neutrophils to generate intracellular ROS consequent to an allergic reaction by preventing the deregulation of PKCδ. This action of feG may be related to the reduction in antigen-induced up-regulation of CD49d expression on circulating neutrophils.

  5. Effects of potentially acidic air pollutants on the intracellular distribution and transport of plant growth regulators in mesophyll cells of leaves. Consequences on stress- and developmental physiology

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H.; Pfanz, H.; Hartung, W.

    1987-07-11

    The influence of SO/sub 2/ on the intracellular distribution of abscisic acid (ABA) and indole-acetic acid (IAA) in mesophyll cells of Picea abies, Tsuga americana and Hordeum vulgare was investigated. The compartmentation of ABA and IAA depends on intracellular pH-gradients. The hydrophilic anions ABA and IAA are accumulated in the alkaline cell compartments cytosol and chloroplasts, which act as anion traps for weak acids. Uptake of sulfur dioxide into leaves leads to an acidification of alkaline cell compartments, thus decreasing intracellular pH-gradients. Consequently this results in an increased release of plant growth regulators from the cell interior into the apoplast. Therefore the target cells of plant hormones i.e. meristems and stomates are exposed to altered hormone concentrations. Obviously this influences the regulation of cellular metabolism plant development and growth.

  6. IDENTIFYING DEMENTIA IN ELDERLY POPULATION : A CAMP APPROACH

    Directory of Open Access Journals (Sweden)

    Anand P

    2015-06-01

    Full Text Available BACKGROUND: Dementia is an emerging medico social problem affecting elderly, and poses a challenge to clinician and caregivers. It is usually identified in late stage where management becomes difficult. AIM: The aim of camp was to identify dementia in elderly population participating in screening camp. MATERIAL AND METHODS : The geriatric clinic and department of psychiatry jointly organised screening camp to detect dementia in elderly for five days in September 2014 to commemorate world Alzheimer’s day. The invitation regarding camp was sent to all senio r citizen forums and also published in leading Kannada daily newspaper. Mini Mental Status Examination and Diagnostic and Statistical Manual of Mental Disorders, 4 th edition criteria (DSM IV was used to identify dementia. RESULTS: Elderly male participate d in camp in more number than females and dementia was identified in 36% elderly with education less than 9 th standard. Dementia was found in 18% in our study population. CONCLUSION: The camp help identify elderly suffering from dementia and also created a wareness about it. Hypertension and diabetes mellitus were common co morbidity in study population. Our study suggested organising screening camp will help identify elderly living with dementia.

  7. cAMP-CRP acts as a key regulator for the viable but non-culturable state in Escherichia coli.

    Science.gov (United States)

    Nosho, Kazuki; Fukushima, Hiroko; Asai, Takehiro; Nishio, Masahiro; Takamaru, Reiko; Kobayashi-Kirschvink, Koseki Joseph; Ogawa, Tetsuhiro; Hidaka, Makoto; Masaki, Haruhiko

    2018-03-01

    A variety of bacteria, including Escherichia coli, are known to enter the viable but non-culturable (VBNC) state under various stress conditions. During this state, cells lose colony-forming activities on conventional agar plates while retaining signs of viability. Diverse environmental stresses including starvation induce the VBNC state. However, little is known about the genetic mechanism inducing this state. Here, we aimed to reveal the genetic determinants of the VBNC state of E. coli. We hypothesized that the VBNC state is a process wherein specific gene products important for colony formation are depleted during the extended period of stress conditions. If so, higher expression of these genes would maintain colony-forming activities, thereby restraining cells from entering the VBNC state. From an E. coli plasmid-encoded ORF library, we identified genes that were responsible for maintaining high colony-forming activities after exposure to starvation condition. Among these, cpdA encoding cAMP phosphodiesterase exhibited higher performance in the maintenance of colony-forming activities. As cpdA overexpression decreases intracellular cAMP, cAMP or its complex with cAMP-receptor protein (CRP) may negatively regulate colony-forming activities under stress conditions. We confirmed this using deletion mutants lacking adenylate cyclase or CRP. These mutants fully maintained colony-forming activities even after a long period of starvation, while wild-type cells lost most of this activity. Thus, we concluded that the lack of cAMP-CRP effectively retains high colony-forming activities, indicating that cAMP-CRP acts as a positive regulator necessary for the induction of the VBNC state in E. coli.

  8. Design and Development Issues for Educational Robotics Training Camps

    Science.gov (United States)

    Ucgul, Memet; Cagiltay, Kursat

    2014-01-01

    The aim of this study is to explore critical design issues for educational robotics training camps and to describe how these factors should be implemented in the development of such camps. For this purpose, two robotics training camps were organized for elementary school students. The first camp had 30 children attendees, and the second had 22. As…

  9. Summer camps for children with burn injuries: a literature review.

    Science.gov (United States)

    Maslow, Gary R; Lobato, Debra

    2010-01-01

    The first summer camps for children with burn injuries started over 25 years ago, and as of 2008, there were 60 camps worldwide. This review examines the literature on summer pediatric burn camps. The authors describe common characteristics of burn camp structure, activities, and staffing and then examine the scientific evidence regarding the effect of burn camp programs on campers and camp staff volunteers. A search of Pubmed and Psychinfo databases from 1970 to 2008 for articles related to pediatric burn summer camps identified 17 articles, of which 13 fit the inclusion criteria. Existing literature consists primarily of qualitative studies, suggesting that burn camp can decrease camper isolation, improve self-esteem, and promote coping and social skills. Studies examining volunteer staff at burn camp have consistently found that there are both personal and professional benefits. Quantitative studies of self-esteem have yielded equivocal results. No studies have examined safety or the effect of burn camp on medical or rehabilitation outcomes. For the past 25 years, pediatric summer camps for children with burn injuries have played an important rehabilitation role and provided a strong community that benefits both campers and staff. Future research using more rigorous research methods and examining a broader range of outcomes (eg, safety and medical/rehabilitation outcomes) is recommended.

  10. Increase of Intracellular Cyclic AMP by PDE4 Inhibitors Affects HepG2 Cell Cycle Progression and Survival.

    Science.gov (United States)

    Massimi, Mara; Cardarelli, Silvia; Galli, Francesca; Giardi, Maria Federica; Ragusa, Federica; Panera, Nadia; Cinque, Benedetta; Cifone, Maria Grazia; Biagioni, Stefano; Giorgi, Mauro

    2017-06-01

    Type 4 cyclic nucleotide phosphodiesterases (PDE4) are major members of a superfamily of enzymes (PDE) involved in modulation of intracellular signaling mediated by cAMP. Broadly expressed in most human tissues and present in large amounts in the liver, PDEs have in the last decade been key therapeutic targets for several inflammatory diseases. Recently, a significant body of work has underscored their involvement in different kinds of cancer, but with no attention paid to liver cancer. The present study investigated the effects of two PDE4 inhibitors, rolipram and DC-TA-46, on the growth of human hepatoma HepG2 cells. Treatment with these inhibitors caused a marked increase of intracellular cAMP level and a dose- and time-dependent effect on cell growth. The concentrations of inhibitors that halved cell proliferation to about 50% were used for cell cycle experiments. Rolipram (10 μM) and DC-TA-46 (0.5 μM) produced a decrease of cyclin expression, in particular of cyclin A, as well as an increase in p21, p27 and p53, as evaluated by Western blot analysis. Changes in the intracellular localization of cyclin D1 were also observed after treatments. In addition, both inhibitors caused apoptosis, as demonstrated by an Annexin-V cytofluorimetric assay and analysis of caspase-3/7 activity. Results demonstrated that treatment with PDE4 inhibitors affected HepG2 cell cycle and survival, suggesting that they might be useful as potential adjuvant, chemotherapeutic or chemopreventive agents in hepatocellular carcinoma. J. Cell. Biochem. 118: 1401-1411, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Regulation of rat intrapulmonary arterial tone by arachidonic acid and prostaglandin E2 during hypoxia.

    Directory of Open Access Journals (Sweden)

    Gaoliang Yan

    Full Text Available Arachidonic acid (AA and its metabolites, prostaglandins (PG are known to be involved in regulation of vascular homeostasis including vascular tone and vessel wall tension, but their potential role in Hypoxic pulmonary vasoconstriction (HPV remains unclear. In this study, we examined the effects of AA and PGE2 on the hypoxic response in isolated rat intrapulmonary arteries (IPAs.We carried out the investigation on IPAs by vessel tension measurement. Isotetrandrine (20 µM significantly inhibited phase I, phase IIb and phase IIc of hypoxic vasoconstriction. Both indomethacin (100 µM and NS398 attenuated KPSS-induced vessel contraction and phase I, phase IIb and phase IIc of HPV, implying that COX-2 plays a primary role in the hypoxic response of rat IPAs. PGE2 alone caused a significant vasoconstriction in isolated rat IPAs. This constriction is mediated by EP4. Blockage of EP4 by L-161982 (1 µM significantly inhibited phase I, phase IIb and phase IIc of hypoxic vasoconstriction. However, AH6809 (3 µM, an antagonist of EP1, EP2, EP3 and DP1 receptors, exerted no effect on KPSS or hypoxia induced vessel contraction. Increase of cellular cAMP by forskolin could significantly reduce KPSS-induced vessel contraction and abolish phase I, phase II b and phase II c of HPV.Our results demonstrated a vasoconstrictive effect of PGE2 on rat IPAs and this effect is via activation of EP4. Furthermore, our results suggest that intracellular cAMP plays dual roles in regulation of vascular tone, depending on the spatial distribution of cAMP and its coupling with EP receptor and Ca(2+ channels.

  12. Protein kinase A and Epac activation by cAMP regulates the expression of glial fibrillary acidic protein in glial cells

    Directory of Open Access Journals (Sweden)

    Sugimoto Naotoshi

    2016-01-01

    Full Text Available Cyclic adenosine monophosphate (cAMP controls differentiation in several types of cells during brain development. However, the molecular mechanism of cAMP-controlled differentiation is not fully understood. We investigated the role of protein kinase A (PKA and exchange protein directly activated by cAMP (Epac on cAMP-induced glial fibrillary acidic protein (GFAP, an astrocyte marker, in cultured glial cells. B92 glial cells were treated with cAMP-elevating drugs, an activator of adenylate cyclase, phosphodiesterase inhibitor and a ß adrenal receptor agonist. These cAMP-elevating agents induced dramatic morphological changes and expression of GFAP. A cAMP analog, 8-Br-cAMP, which activates Epac as well as PKA, induced GFAP expression and morphological changes, while another cAMP analog, 8-CPT-cAMP, which activates Epac with greater efficacy when compared to PKA, induced GFAP expression but very weak morphological changes. Most importantly, the treatment with a PKA inhibitor partially reduced cAMP-induced GFAP expression. Taken together, these results indicate that cAMP-elevating drugs lead to the induction of GFAP via PKA and/or Epac activation in B92 glial cells.

  13. CRP-Cyclic AMP Regulates the Expression of Type 3 Fimbriae via Cyclic di-GMP in Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Ching-Ting Lin

    Full Text Available Klebsiella pneumoniae is the predominant pathogen isolated from liver abscesses of diabetic patients in Asian countries. However, the effects of elevated blood glucose levels on the virulence of this pathogen remain largely unknown. Type 3 fimbriae, encoded by the mrkABCDF genes, are important virulence factors in K. pneumoniae pathogenesis. In this study, the effects of exogenous glucose and the intracellular cyclic AMP (cAMP signaling pathway on type 3 fimbriae expression regulation were investigated. The production of MrkA, the major subunit of type 3 fimbriae, was increased in glucose-rich medium, whereas cAMP supplementation reversed the effect. MrkA production was markedly increased by cyaA or crp deletion, but slightly decreased by cpdA deletion. In addition, the mRNA levels of mrkABCDF genes and the activity of PmrkA were increased in Δcrp strain, as well as the mRNA levels of mrkHIJ genes that encode cyclic di-GMP (c-di-GMP-related regulatory proteins that influence type 3 fimbriae expression. Moreover, the activities of PmrkHI and PmrkJ were decreased in ΔlacZΔcrp strain. These results indicate that CRP-cAMP down-regulates mrkABCDF and mrkHIJ at the transcriptional level. Further deletion of mrkH or mrkI in Δcrp strain diminished the production of MrkA, indicating that MrkH and MrkI are required for the CRP regulation of type 3 fimbriae expression. Furthermore, the high activity of PmrkHI in the ΔlacZΔcrp strain was diminished in ΔlacZΔcrpΔmrkHI, but increased in the ΔlacZΔcrpΔmrkJ strain. Deletion of crp increased the intracellular c-di-GMP concentration and reduced the phosphodiesterase activity. Moreover, we found that the mRNA levels of multiple genes related to c-di-GMP metabolism were altered in Δcrp strain. These indicate that CRP regulates type 3 fimbriae expression indirectly via the c-di-GMP signaling pathway. In conclusion, we found evidence of a coordinated regulation of type 3 fimbriae expression by the CRP

  14. Camping Safety--Bring 'Em Back Alive.

    Science.gov (United States)

    Schmidt, Ernest F.

    1980-01-01

    A "prioritized" list of dangers of the woods is discussed and suggestions for safety in organized camping are listed. Available from: Center for Environmental, Camping and Outdoor Education; University of North Carolina at Greensboro; Pine Lake Field Campus; 4016 Blumenthal Road; Greensboro, NC, 27406. (AN)

  15. Recreation Summer Camps

    Data.gov (United States)

    Montgomery County of Maryland — List of all Camps (Register here:https://apm.activecommunities.com/montgomerycounty/Home) to include Aquatics, Basketball, Soccer, Special Interest, General Sports,...

  16. Coxiella burnetii transcriptional analysis reveals serendipity clusters of regulation in intracellular bacteria.

    Directory of Open Access Journals (Sweden)

    Quentin Leroy

    Full Text Available Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is mainly transmitted to humans through an aerosol route. A spore-like form allows C. burnetii to resist different environmental conditions. Because of this, analysis of the survival strategies used by this bacterium to adapt to new environmental conditions is critical for our understanding of C. burnetii pathogenicity. Here, we report the early transcriptional response of C. burnetii under temperature stresses. Our data show that C. burnetii exhibited minor changes in gene regulation under short exposure to heat or cold shock. While small differences were observed, C. burnetii seemed to respond similarly to cold and heat shock. The expression profiles obtained using microarrays produced in-house were confirmed by quantitative RT-PCR. Under temperature stresses, 190 genes were differentially expressed in at least one condition, with a fold change of up to 4. Globally, the differentially expressed genes in C. burnetii were associated with bacterial division, (pppGpp synthesis, wall and membrane biogenesis and, especially, lipopolysaccharide and peptidoglycan synthesis. These findings could be associated with growth arrest and witnessed transformation of the bacteria to a spore-like form. Unexpectedly, clusters of neighboring genes were differentially expressed. These clusters do not belong to operons or genetic networks; they have no evident associated functions and are not under the control of the same promoters. We also found undescribed but comparable clusters of regulation in previously reported transcriptomic analyses of intracellular bacteria, including Rickettsia sp. and Listeria monocytogenes. The transcriptomic patterns of C. burnetii observed under temperature stresses permits the recognition of unpredicted clusters of regulation for which the trigger mechanism remains unidentified but which may be the result of a new mechanism of epigenetic regulation.

  17. Running Boot Camp

    CERN Document Server

    Toporek, Chuck

    2008-01-01

    When Steve Jobs jumped on stage at Macworld San Francisco 2006 and announced the new Intel-based Macs, the question wasn't if, but when someone would figure out a hack to get Windows XP running on these new "Mactels." Enter Boot Camp, a new system utility that helps you partition and install Windows XP on your Intel Mac. Boot Camp does all the heavy lifting for you. You won't need to open the Terminal and hack on system files or wave a chicken bone over your iMac to get XP running. This free program makes it easy for anyone to turn their Mac into a dual-boot Windows/OS X machine. Running Bo

  18. Is ROEE Good for Your Camp?

    Science.gov (United States)

    Parry, Jim

    1998-01-01

    Resident outdoor environmental education (ROEE) is a camp-based extension of the classroom for two to five days, promoting student independence, interpersonal skills, and ecological awareness. Advantages and disadvantages of the "camp as innkeeper" and full program-provider models are given. Program development guidelines cover expenses,…

  19. IL-1α Up-Regulates IL-6 Expression in Bovine Granulosa Cells via MAPKs and NF-κB Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Meng Yang

    2017-01-01

    Full Text Available Background/Aims: IL-6 is one of the main cytokines in regulating ovarian follicular development and ovulation. However, the factors that regulate IL-6 expression in follicles are still unclear. The aim of this study was to elucidate the mechanisms underlying the effect of IL-1α on IL-6 expression in granulosa cells. Methods: IL-6 expression after IL-1α with/without inhibitors treatment was analyzed by RT-qPCR and ELISA. The phosphorylation of proteins induced by IL-1α was analyzed by western blot. The intracellular cAMP level was assayed by immunoassay kit. Results: IL-1α has a dose-dependent effect on IL-6 expression in granulosa cells. This promoting effect can be significantly attenuated by Erk, c-Jun, p38 and IκB proteins inhibitors, respectively. Moreover, the phosphorylation levels of Erk, c-Jun, p38 and IκBα proteins were significantly increased after IL-1α treatment. In addition, we also found that IL-1α not only reversed the cAMP attenuated IL-6 expression, but also increased IL-1α mRNA expression in granulosa cells. Conclusion: The regulation of IL-1α on IL-6 expression is mediated by activation of MAPKs and NF-κB signaling pathways. Moreover,IL-1α may regulate the ovulation-related genes expression in granulosa cells by an autocrine and/or paracrine manner.

  20. The NO/cGMP pathway inhibits transient cAMP signals through the activation of PDE2 in striatal neurons

    Directory of Open Access Journals (Sweden)

    Marina ePolito

    2013-11-01

    Full Text Available The NO-cGMP signaling plays an important role in the regulation of striatal function although the mechanisms of action of cGMP specifically in medium spiny neurons (MSNs remain unclear. Using genetically encoded fluorescent biosensors, including a novel Epac-based sensor (EPAC-SH150 with increased sensitivity for cAMP, we analyze the cGMP response to NO and whether it affected cAMP/PKA signaling in MSNs. The Cygnet2 sensor for cGMP reported large responses to NO donors in both striatonigral and striatopallidal MSNs, and this cGMP signal was controlled partially by PDE2. At the level of cAMP brief forskolin stimulations produced transient cAMP signals which differed between D1 and D2 medium spiny neurons. NO inhibited these cAMP transients through cGMP-dependent PDE2 activation, an effect that was translated and magnified downstream of cAMP, at the level of PKA. PDE2 thus appears as a critical effector of NO which modulates the post-synaptic response of MSNs to dopaminergic transmission.

  1. cAMP and forskolin decrease γ-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    International Nuclear Information System (INIS)

    Heuschneider, G.; Schwartz, R.D.

    1989-01-01

    The effects of the cyclic nucleotide cAMP on γ-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N 6 , O 2' -dibutyryladenosine 3',5'-cyclic monophosphate inhibited muscimol-induced 36 Cl - uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the γ-aminobutyric acid-gated Cl - channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced 36 Cl - uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl - channel directly. The data suggest that γ-aminobutyric acid (GABA A ) receptor function in brain can be regulated by cAMP-dependent phosphorylation

  2. Camp Marmal Flood Study

    Science.gov (United States)

    2012-03-01

    was simulated by means of a broad - crested weir built into the topography of the mesh. There is 0.5 m of freeboard and the width of the weir is 30 m...ER D C/ CH L TR -1 2- 5 Camp Marmal Flood Study Co as ta l a nd H yd ra ul ic s La bo ra to ry Jeremy A. Sharp , Steve H. Scott...Camp Marmal Flood Study Jeremy A. Sharp , Steve H. Scott, Mark R. Jourdan, and Gaurav Savant Coastal and Hydraulics Laboratory U.S. Army Engineer

  3. The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome

    Science.gov (United States)

    Diener, Christian; Muñoz-Gonzalez, Felipe; Encarnación, Sergio; Resendis-Antonio, Osbaldo

    2016-01-01

    During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory events on the transcriptional or post-transcriptional level whose identification contributes to the rational design of therapeutic targets. We present a mechanistic strategy capable of inferring enzymatic regulation from intracellular metabolome measurements that is independent of the actual mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic constants (k-cone) such that the alteration between two phenotypes is given by their corresponding kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few enzymatic activities change between those two cell lines and that this regulation does not depend on gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with oxidative stress, that affects the activity of the pentose phosphate pathway. PMID:27335086

  4. Inducible cAMP early repressor acts as a negative regulator for kindling epileptogenesis and long-term fear memory.

    Science.gov (United States)

    Kojima, Nobuhiko; Borlikova, Gilyana; Sakamoto, Toshiro; Yamada, Kazuyuki; Ikeda, Toshio; Itohara, Shigeyoshi; Niki, Hiroaki; Endo, Shogo

    2008-06-18

    Long-lasting neuronal plasticity as well as long-term memory (LTM) requires de novo synthesis of proteins through dynamic regulation of gene expression. cAMP-responsive element (CRE)-mediated gene transcription occurs in an activity-dependent manner and plays a pivotal role in neuronal plasticity and LTM in a variety of species. To study the physiological role of inducible cAMP early repressor (ICER), a CRE-mediated gene transcription repressor, in neuronal plasticity and LTM, we generated two types of ICER mutant mice: ICER-overexpressing (OE) mice and ICER-specific knock-out (KO) mice. Both ICER-OE and ICER-KO mice show no apparent abnormalities in their development and reproduction. A comprehensive battery of behavioral tests revealed no robust changes in locomotor activity, sensory and motor functions, and emotional responses in the mutant mice. However, long-term conditioned fear memory was attenuated in ICER-OE mice and enhanced in ICER-KO mice without concurrent changes in short-term fear memory. Furthermore, ICER-OE mice exhibited retardation of kindling development, whereas ICER-KO mice exhibited acceleration of kindling. These results strongly suggest that ICER negatively regulates the neuronal processes required for long-term fear memory and neuronal plasticity underlying kindling epileptogenesis, possibly through suppression of CRE-mediated gene transcription.

  5. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    Science.gov (United States)

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  6. 49 CFR 218.75 - Methods of protection for camp cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Methods of protection for camp cars. 218.75... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Protection of Occupied Camp Cars § 218.75 Methods of protection for camp cars. When camp cars requiring protection are on either main track...

  7. Sustainable Design Principles for Refugee Camps

    NARCIS (Netherlands)

    Rooij, de L.L.; Wascher, D.M.; Paulissen, M.P.C.P.

    2016-01-01

    This report’s main focus is on the phenomenon of refugee camps as one of the most visible and spatially explicit results of refuge and migration movements at the global scale. Given the steadily growing numbers of people on the move and staying in temporary homes and settlements, refugee camps must

  8. Two memory associated genes regulated by amyloid precursor protein intracellular domain ovel insights into the pathogenesis of learning and memory impairment in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Chuandong Zheng; Xi Gu; Zhimei Zhong; Rui Zhu; Tianming Gao; Fang Wang

    2012-01-01

    In this study, we employed chromatin immunoprecipitation, a useful method for studying the locations of transcription factors bound to specific DNA regions in specific cells, to investigate amyloid precursor protein intracellular domain binding sites in chromatin DNA from hippocampal neurons of rats, and to screen out five putative genes associated with the learning and memory functions. The promoter regions of the calcium/calmodulin-dependent protein kinase II alpha and glutamate receptor-2 genes were amplified by PCR from DNA products immunoprecipitated by amyloid precursor protein intracellular domain. An electrophoretic mobility shift assay and western blot analysis suggested that the promoter regions of these two genes associated with learning and memory were bound by amyloid precursor protein intracellular domain (in complex form). Our experimental findings indicate that the amyloid precursor protein intracellular domain is involved in the transcriptional regulation of learning- and memory-associated genes in hippocampal neurons. These data may provide new insights into the molecular mechanism underlying the symptoms of progressive memory loss in Alzheimer's disease.

  9. Measuring the Influences of Youth Participation in Ohio 4-H Camps

    Directory of Open Access Journals (Sweden)

    Greg Homan

    2008-06-01

    Full Text Available Findings from a multi-component 4-H camp marketing and enrollment study of Ohio 4-H camps are highlighted. Significant influencers on the camp enrollment decision (parents, other adults, peers, siblings, and the respective camper are evaluated as well as the effectiveness of various marketing techniques. The data found in this study indicates that the decision to enroll in camp is most influenced by the respective 4-H camper; however parents are also a strong factor in the choice to participate in 4-H camps. Alumni parents report significantly higher influence in the camp enrollment decision than those parents who are not alumni of 4-H. Personal methods of promoting camps were rated the most effective in reaching potential camp audiences.

  10. Cross-talk between signaling pathways can generate robust oscillations in calcium and cAMP.

    Directory of Open Access Journals (Sweden)

    Fernando Siso-Nadal

    Full Text Available BACKGROUND: To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate 'bursting' oscillations of calcium and may enable better filtering of noise. CONCLUSION: We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists.

  11. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    Science.gov (United States)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  12. Adventure Code Camp: Library Mobile Design in the Backcountry

    OpenAIRE

    Ward, David; Hahn, James; Mestre, Lori

    2014-01-01

    This article presents a case study exploring the use of a student Coding Camp as a bottom-up mobile design process to generate library mobile apps. A code camp sources student programmer talent and ideas for designing software services and features.  This case study reviews process, outcomes, and next steps in mobile web app coding camps. It concludes by offering implications for services design beyond the local camp presented in this study. By understanding how patrons expect to integrate li...

  13. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes.

    Science.gov (United States)

    Agarwal, Shailesh R; Gratwohl, Jackson; Cozad, Mia; Yang, Pei-Chi; Clancy, Colleen E; Harvey, Robert D

    2018-01-01

    Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane

  14. Investigating Internalization and Intracellular Trafficking of GPCRs

    DEFF Research Database (Denmark)

    Foster, Simon R; Bräuner-Osborne, Hans

    2017-01-01

    for signal transduction. One of the major mechanisms for GPCR regulation involves their endocytic trafficking, which serves to internalize the receptors from the plasma membrane and thereby attenuate G protein-dependent signaling. However, there is accumulating evidence to suggest that GPCRs can signal...... independently of G proteins, as well as from intracellular compartments including endosomes. It is in this context that receptor internalization and intracellular trafficking have attracted renewed interest within the GPCR field. In this chapter, we will review the current understanding and methodologies...

  15. IDENTIFYING DEMENTIA IN ELDERLY POPULATION : A CAMP APPROACH

    OpenAIRE

    Anand P; Chaukimath; Srikanth; Koli

    2015-01-01

    BACKGROUND: Dementia is an emerging medico social problem affecting elderly, and poses a challenge to clinician and caregivers. It is usually identified in late stage where management becomes difficult. AIM: The aim of camp was to identify dementia in elderly population participating in screening camp. MATERIAL AND METHODS : The geriatric clinic and department of psychiatry jointly organised screening camp to detect dementia in elderly for five days in Sept...

  16. 49 CFR 218.80 - Movement of occupied camp cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of occupied camp cars. 218.80 Section 218... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Protection of Occupied Camp Cars § 218.80 Movement of occupied camp cars. Occupied cars may not be humped or flat switched unless coupled to...

  17. Thinking Big for 25 Years: Astronomy Camp Research Projects

    Science.gov (United States)

    Hooper, Eric Jon; McCarthy, D. W.; Benecchi, S. D.; Henry, T. J.; Kirkpatrick, J. D.; Kulesa, C.; Oey, M. S.; Regester, J.; Schlingman, W. M.; Camp Staff, Astronomy

    2013-01-01

    Astronomy Camp is a deep immersion educational adventure for teenagers and adults in southern Arizona that is entering its 25th year of existence. The Camp Director (McCarthy) is the winner of the 2012 AAS Education Prize. A general overview of the program is given in an accompanying contribution (McCarthy et al.). In this presentation we describe some of the research projects conducted by Astronomy Camp participants over the years. Many of the Camps contain a strong project-oriented emphasis, which reaches its pinnacle in the Advanced Camps for teenagers. High school students from around the world participate in a microcosm of the full arc of astronomy research. They plan their own projects before the start of Camp, and the staff provide a series of "key projects." Early in the Camp the students submit observing proposals to utilize time on telescopes. (The block of observing time is secured in advance by the staff.) The participants collect, reduce and analyze astronomical data with the help of staff, and they present the results to their peers on the last night of Camp, all in a span of eight days. The Camps provide research grade telescopes and instruments, in addition to amateur telescopes. Some of the Camps occur on Kitt Peak, where we use an ensemble of telescopes: the 2.3-meter (University of Arizona) with a spectrograph; the WIYN 0.9-meter; the McMath-Pierce Solar Telescope; and the 12-meter millimeter wave telescope. Additionally the Camp has one night on the 10-meter Submillimeter Telescope on Mt. Graham. Campers use these resources to study stars, galaxies, AGN, transiting planets, molecular clouds, etc. Some of the camper-initiated projects have led to very high level performances in prestigious international competitions, such as the Intel International Science and Engineering Fair. The key projects often contribute to published astronomical research (e.g., Benecchi et al. 2010, Icarus, 207, 978). Many former Campers have received Ph.D. degrees in

  18. Advances in Pediatric Cardiology Boot Camp: Boot Camp Training Promotes Fellowship Readiness and Enables Retention of Knowledge.

    Science.gov (United States)

    Ceresnak, Scott R; Axelrod, David M; Sacks, Loren D; Motonaga, Kara S; Johnson, Emily R; Krawczeski, Catherine D

    2017-03-01

    We previously demonstrated that a pediatric cardiology boot camp can improve knowledge acquisition and decrease anxiety for trainees. We sought to determine if boot camp participants entered fellowship with a knowledge advantage over fellows who did not attend and if there was moderate-term retention of that knowledge. A 2-day training program was provided for incoming pediatric cardiology fellows from eight fellowship programs in April 2016. Hands-on, immersive experiences and simulations were provided in all major areas of pediatric cardiology. Knowledge-based examinations were completed by each participant prior to boot camp (PRE), immediately post-training (POST), and prior to the start of fellowship in June 2016 (F/U). A control group of fellows who did not attend boot camp also completed an examination prior to fellowship (CTRL). Comparisons of scores were made for individual participants and between participants and controls. A total of 16 participants and 16 control subjects were included. Baseline exam scores were similar between participants and controls (PRE 47 ± 11% vs. CTRL 52 ± 10%; p = 0.22). Participants' knowledge improved with boot camp training (PRE 47 ± 11% vs. POST 70 ± 8%; p cardiology knowledge after the training program and had excellent moderate-term retention of that knowledge. Participants began fellowship with a larger fund of knowledge than those fellows who did not attend.

  19. Increasing the flexibility of the LANCE cAMP detection kit.

    Science.gov (United States)

    Hunter, Morag Rose; Glass, Michelle

    2015-01-01

    The detection of cAMP signalling is a common endpoint in the study of G-protein coupled receptors. A number of commercially available kits enable easy detection of cAMP. These kits are based on competition for a cAMP binding site on an antibody or cAMP binding protein and as such have a limited dynamic range. Here, we describe the optimisation of the commercially-available LANCE cAMP detection kit (PerkinElmer) to enable detection in cell lysates. This kit has been designed for use with live cells, with detection reagents applied to cells without wash steps. The standard protocol therefore requires that all assay reagents are compatible with the antibody and the final fluorescent detection stage, limiting the range of assay media and test compounds that can be utilised. The entire experiment must be repeated if cAMP levels fall outside the limited dynamic range. Here we describe a modified protocol that enables the assay to be performed on cell lysates, thereby overcoming these limitations. In this modified protocol, cells are stimulated for a cAMP response in standard media/buffers, washed and then lysed. The cell lysate is then assayed using a modified protocol for the LANCE cAMP detection kit. Samples were tested for stability following a freeze-thaw cycle. The modified LANCE cAMP detection protocol gives a reproducible measurement of cAMP in cell lysate. Lysate samples remain stable when stored at -80°C. Separating the stimulation and detection phases of this cAMP assay allows a vast array of cell stimulation conditions to be tested. The lysate-modified protocol for the LANCE cAMP detection kit therefore increases the flexibility, versatility and convenience of the assay. As samples are insensitive to freeze-thaw, it enables retesting of samples under different dilution conditions to ensure that all samples remain within the dynamic range of the standard curve. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Eukaryotic translation initiation factor 3 subunit e controls intracellular calcium homeostasis by regulation of cav1.2 surface expression.

    Directory of Open Access Journals (Sweden)

    Pawel Buda

    Full Text Available Inappropriate surface expression of voltage-gated Ca(2+channels (CaV in pancreatic ß-cells may contribute to the development of type 2 diabetes. First, failure to increase intracellular Ca(2+ concentrations at the sites of exocytosis impedes insulin release. Furthermore, excessive Ca(2+ influx may trigger cytotoxic effects. The regulation of surface expression of CaV channels in the pancreatic β-cells remains unknown. Here, we used real-time 3D confocal and TIRFM imaging, immunocytochemistry, cellular fractionation, immunoprecipitation and electrophysiology to study trafficking of L-type CaV1.2 channels upon β-cell stimulation. We found decreased surface expression of CaV1.2 and a corresponding reduction in L-type whole-cell Ca(2+ currents in insulin-secreting INS-1 832/13 cells upon protracted (15-30 min stimulation. This internalization occurs by clathrin-dependent endocytosis and could be prevented by microtubule or dynamin inhibitors. eIF3e (Eukaryotic translation initiation factor 3 subunit E is part of the protein translation initiation complex, but its effect on translation are modest and effects in ion channel trafficking have been suggested. The factor interacted with CaV1.2 and regulated CaV1.2 traffic bidirectionally. eIF3e silencing impaired CaV1.2 internalization, which resulted in an increased intracellular Ca(2+ load upon stimulation. These findings provide a mechanism for regulation of L-type CaV channel surface expression with consequences for β-cell calcium homeostasis, which will affect pancreatic β-cell function and insulin production.

  1. Camp Health Aide Manual = Manual para trabajadores de salud.

    Science.gov (United States)

    Robinson, June Grube; And Others

    This bilingual manual serves as a textbook for migrant Camp Health Aides. Camp Health Aides are members of migrant labor camps enlisted to provide information about health and social services to migrant workers and their families. The manual is divided into 12 tabbed sections representing lessons. Teaching notes printed on contrasting paper…

  2. Intracellular calcium signal at the leading edge regulates mesodermal sheet migration during Xenopus gastrulation.

    Science.gov (United States)

    Hayashi, Kentaro; Yamamoto, Takamasa S; Ueno, Naoto

    2018-02-05

    During the gastrulation stage in animal embryogenesis, the cells leading the axial mesoderm migrate toward the anterior side of the embryo, vigorously extending cell protrusions such as lamellipodia. It is thought that the leading cells sense gradients of chemoattractants emanating from the ectodermal cells and translate them to initiate and maintain the cell movements necessary for gastrulation. However, it is unclear how the extracellular information is converted to the intracellular chemical reactions that lead to motion. Here we demonstrated that intracellular Ca 2+ levels in the protrusion-forming leading cells are markedly higher than those of the following cells and the axial mesoderm cells. We also showed that inhibiting the intracellular Ca 2+ significantly retarded the gastrulation cell movements, while increasing the intracellular Ca 2+ with an ionophore enhanced the migration. We further found that the ionophore treatment increased the active form of the small GTPase Rac1 in these cells. Our results suggest that transient intracellular Ca 2+ signals play an essential role in the active cell migration during gastrulation.

  3. Good Camping for Children and Youth of Low Income Families; Some Suggestions for Camps Concerned About Providing Equal Opportunities for Children and Youth.

    Science.gov (United States)

    Richards, Catharine V.

    Guidelines are offered for positive camping experiences for poverty children and youth. There are sections on community organizations which can offer services for camp placement, recruitment of campers from among disadvantaged groups, and the orientation of new campers to camp (including such practical suggestions as the types of food and snacks…

  4. Fatty Acid Signaling: The New Function of Intracellular Lipases

    Directory of Open Access Journals (Sweden)

    Zuzana Papackova

    2015-02-01

    Full Text Available Until recently, intracellular triacylglycerols (TAG stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed.

  5. Intracellular events regulating cross-presentation

    Directory of Open Access Journals (Sweden)

    Peter eCresswell

    2012-06-01

    Full Text Available Cross-presentation plays a fundamental role in the induction of CD8-T cell immunity. However, although more than three decades have passed since its discovery, surprisingly little is known about the exact mechanisms involved. Here we give an overview of the components involved at different stages of this process. First, antigens must be internalized into the cross-presenting cell. The involvement of different receptors, method of antigen uptake, and nature of the antigen can influence intracellular trafficking and access to the cross-presentation pathway. Once antigens access the endocytic system, different requirements for endosomal/phagosomal processing arise, such as proteolysis and reduction of disulfide bonds. The majority of cross-presented peptides are generated by proteasomal degradation. Therefore, antigens must cross a membrane barrier in a manner analogous to the fate of misfolded proteins in the endoplasmic reticulum (ER that are retrotranslocated into the cytosol for degradation. Indeed, some components of the ER-associated degradation (ERAD machinery have been implicated in cross-presentation. Further complicating the matter, endosomal and phagosomal compartments have been suggested as alternative sites to the ER for loading of peptides on MHC class I molecules. Finally, the antigen presenting cells involved, particularly dendritic cell subsets and their state of maturation, influence the efficiency of cross-presentation.

  6. Camp as a Teaching Method in Health Education

    DEFF Research Database (Denmark)

    Ringby, Betina

    Background Camp as a learning activity was introduced in entrepreneurship teaching. Students were engaged to get experiences on how to cope with uncertainty, complexity and to take action in collaboration with external partners. Relevance Society calls for creative and innovative health professio......Background Camp as a learning activity was introduced in entrepreneurship teaching. Students were engaged to get experiences on how to cope with uncertainty, complexity and to take action in collaboration with external partners. Relevance Society calls for creative and innovative health...... to the future didactic development in health education. Camp as a learning process based on participation, creativity and an innovative approach combined with a professional focus seems relevant when trying to engage students to take action. Keywords Innovation, method, camp...

  7. Transitioning Traditions: Rectifying an Ontario Camp's Indian Council Ring

    Science.gov (United States)

    Wilkes, Taylor

    2011-01-01

    Council Ring has always been a very special event, remembered fondly by generations of campers. Taylor Statten Camps (TSC) are not the only camps to cherish such an activity. Across Canada there are dozens of camps that have supported "Indian" assemblies in the past, but a select few still do. Most organizations abandoned them during the…

  8. Expression of the alaE gene is positively regulated by the global regulator Lrp in response to intracellular accumulation of l-alanine in Escherichia coli.

    Science.gov (United States)

    Ihara, Kohei; Sato, Kazuki; Hori, Hatsuhiro; Makino, Yumiko; Shigenobu, Shuji; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-04-01

    The alaE gene in Escherichia coli encodes an l-alanine exporter that catalyzes the active export of l-alanine using proton electrochemical potential. In our previous study, alaE expression was shown to increase in the presence of l-alanyl-l-alanine (Ala-Ala). In this study, the global regulator leucine-responsive regulatory protein (Lrp) was identified as an activator of the alaE gene. A promoter less β-galactosidase gene was fused to an alaE upstream region (240 nucleotides). Cells that were lacZ-deficient and harbored this reporter plasmid showed significant induction of β-galactosidase activity (approximately 17-fold) in the presence of 6 mM l-alanine, l-leucine, and Ala-Ala. However, a reporter plasmid possessing a smaller alaE upstream region (180 nucleotides) yielded transformants with strikingly low enzyme activity under the same conditions. In contrast, lrp-deficient cells showed almost no β-galactosidase induction, indicating that Lrp positively regulates alaE expression. We next performed an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay using purified hexahistidine-tagged Lrp (Lrp-His). Consequently, we found that Lrp-His binds to the alaE upstream region spanning nucleotide -161 to -83 with a physiologically relevant affinity (apparent K D , 288.7 ± 83.8 nM). Furthermore, the binding affinity of Lrp-His toward its cis-element was increased by l-alanine and l-leucine, but not by Ala-Ala and d-alanine. Based on these results, we concluded that the gene expression of the alaE is regulated by Lrp in response to intracellular levels of l-alanine, which eventually leads to intracellular homeostasis of l-alanine concentrations. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Hitler's Death Camps.

    Science.gov (United States)

    Wieser, Paul

    1995-01-01

    Presents a high school lesson on Hitler's death camps and the widespread policy of brutality and oppression against European Jews. Includes student objectives, instructional procedures, and a chart listing the value of used clothing taken from the Jews. (CFR)

  10. Adventure Code Camp: Library Mobile Design in the Backcountry

    Directory of Open Access Journals (Sweden)

    David Ward

    2014-09-01

    Full Text Available This article presents a case study exploring the use of a student Coding Camp as a bottom-up mobile design process to generate library mobile apps. A code camp sources student programmer talent and ideas for designing software services and features.  This case study reviews process, outcomes, and next steps in mobile web app coding camps. It concludes by offering implications for services design beyond the local camp presented in this study. By understanding how patrons expect to integrate library services and resources into their use of mobile devices, librarians can better design the user experience for this environment.

  11. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xianglu Li

    2009-01-01

    Full Text Available HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization.

  12. Vegetation response to wagon wheel camp layouts.

    African Journals Online (AJOL)

    Wagon wheel camp layouts have been favoured, in some quarters, for rotational grazing due to the economy and convenience of having the camps radially arranged around central facilities. A possible disadvantage of such layouts is the tendency for over-grazing near the hub and under-grazing at the extremities.

  13. The Camp Hill Project: Objectives and Design

    Science.gov (United States)

    Mattingly, John B.

    1976-01-01

    Available from: EC 090 474. Outlined are the problems and objectives of Pennsylvania's Camp Hill Project--a program designed to complete psychological needs assessments for juveniles incarcerated at Camp Hill, to develop project policies and guidelines in preparation for meeting with juvenile court judges, and to hire staff. (SBH)

  14. Bicaudal-D1 regulates the intracellular sorting and signalling of neurotrophin receptors.

    Science.gov (United States)

    Terenzio, Marco; Golding, Matthew; Russell, Matthew R G; Wicher, Krzysztof B; Rosewell, Ian; Spencer-Dene, Bradley; Ish-Horowicz, David; Schiavo, Giampietro

    2014-07-17

    We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor-containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain-derived neurotrophic factor (BDNF)-activated TrkB and p75 neurotrophin receptor (p75(NTR)) by disrupting the endosomal sorting, reducing lysosomal degradation and increasing the co-localisation of these neurotrophin receptors with retromer-associated sorting nexin 1. The resulting re-routing of active receptors increased their recycling to the plasma membrane and altered the repertoire of signalling-competent TrkB isoforms and p75(NTR) available for ligand binding on the neuronal surface. This resulted in attenuated, but more sustained, AKT activation in response to BDNF stimulation. These data, together with our observation that Bicd1 expression is restricted to the developing nervous system when neurotrophin receptor expression peaks, indicate that BICD1 regulates neurotrophin signalling by modulating the endosomal sorting of internalised ligand-activated receptors. © 2014 The Authors.

  15. [Central Work Camp in Jaworzno (1945-1949) -- epidemiological aspects -- attempt of evaluation].

    Science.gov (United States)

    Smolik, Przemysław

    2013-01-01

    Publication presents the short history of camp hospital which was organised in 1943 Nazi concentration camp Neu-Dachs in Jaworzno. The camp was a branch of Oświecim concentration camp. Atfer the war damage of the camp, the restoration was begun in 1945. Already in Febraury 1945, in place of German concentration camp, rises Central Work Camp. Several thousands of prisoners of war were placed there. The prisoners of war: Germans, Volksdeutches, Silesians were forced emlpoyed in nearby coal mines. Since 1947 the camp was a place of staying for several thousands Ukrainians who were displaced from eastern part of Poland in "Vistula Operation". Based on available written materials, publication is an attempt to analyse and evaluate: sanitary conditions, prison illnesses, mortality reasons among prisoners, hospital equipment, personel work conditions. The publication gives opportunity to compare conditions of prison hospital under nazi occupation and conditions in the camp which was organised in the same place under Stalin system of terror.

  16. Seafloor Science and Remotely Operated Vehicle (SSROV) Day Camp: A Week-Long, Hands-On STEM Summer Camp

    Science.gov (United States)

    Wheat, C. G.; Fournier, T.; Monahan, K.; Paul, C.

    2015-12-01

    RETINA (Robotic Exploration Technologies IN Astrobiology) has developed a program geared towards stimulating our youth with innovative and relevant hands-on learning modules under a STEM umbrella. Given the breadth of potential science and engineering topics that excite children, the RETINA Program focuses on interactive participation in the design and development of simple robotic and sensor systems, providing a range of challenges to engage students through project-based learning (PBL). Thus, young students experience scientific discovery through the use and understanding of technology. This groundwork serves as the foundation for SSROV Camp, a week-long, summer day camp for 6th-8th grade students. The camp is centered on the sensors and platforms that guide seafloor exploration and discovery and builds upon the notion that transformative discoveries in the deep sea result from either sampling new environments or making new measurements with sensors adapted to this extreme environment. These technical and scientific needs are folded into the curriculum. Each of the first four days of the camp includes four team-based, hands-on technical challenges, communication among peer groups, and competition. The fifth day includes additional activities, culminating in camper-led presentations to describe a planned mission based on a given geologic setting. Presentations include hypotheses, operational requirements and expected data products. SSROV Camp was initiated last summer for three sessions, two in Monterey, CA and one in Oxford, MS. Campers from both regions grasped key elements of the program, based on written responses to questions before and after the camp. On average, 32% of the pre-test questions were answered correctly compared with 80% of the post-test questions. Additional confirmation of gains in campers' knowledge, skills, and critical thinking on environmental issues and engineering problems were apparent during the "jeopardy" competition, nightly homework

  17. Body and Gender in Nazi Concentration Camps

    Directory of Open Access Journals (Sweden)

    Bożena Karwowska

    2009-01-01

    Full Text Available The article Body and Gender in Nazi Concentration Camps is an attempt to discuss difficult issues of human sexuality and sexually marked behaviors in the context of the concentration camps, and their descriptions in the memoirs of the survivors. Using notions and concepts of the so called "black American feminism" the author (referring extensively to books by Stanisław Grzesiuk and Zofia Romanowiczowa shows how in the concentration camp the human body became the only space of a relative privacy of the prisoner. At the same time the body becomes a territory on which all - both biological and socially constructed - human fates cross.

  18. Life Skills Developed on the Camp "Stage."

    Science.gov (United States)

    Powell, Gwynn M.

    2000-01-01

    Draws on research concerning the components of sense of place, the rootedness of college students to their hometowns, and categories of environmental competence. Offer insights to camp staff into fostering sense of place and the emotional attachments to camp that comprise place attachment, and to developing environmental competence among campers…

  19. Summer Camp of Mathematical Modeling in China

    Science.gov (United States)

    Tian, Xiaoxi; Xie, Jinxing

    2013-01-01

    The Summer Camp of Mathematical Modeling in China is a recently created experience designed to further Chinese students' academic pursuits in mathematical modeling. Students are given more than three months to research on a mathematical modeling project. Researchers and teams with outstanding projects are invited to the Summer Camp to present…

  20. 1940s: Camping in the War Years.

    Science.gov (United States)

    Camping Magazine, 1999

    1999-01-01

    Camps continued to operate during World War II, but young male counselors, food, and supplies were difficult to obtain. An illustrative article from 1943, "Meal Planning for Summer Camps in Wartime" (Agnes B. Peterson), presents a guide to planning nutritious meals for campers despite shortages caused by wartime rationing, increased food…

  1. Forest Fire: A Crisis Reality for Camp.

    Science.gov (United States)

    Brown, Don; Mickelson, Rhonda

    2002-01-01

    Two camp directors were interviewed about evacuations from their camps due to forest fires. Topics covered include descriptions of the events; actions taken; aspects of advance planning that proved helpful; unexpected portions of the experience and resultant changes made in plans; relations with outside agencies, the media, and parents; working…

  2. Intracellular pH in sperm physiology.

    Science.gov (United States)

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Lipoic acid attenuates inflammation via cAMP and protein kinase A signaling.

    Directory of Open Access Journals (Sweden)

    Sonemany Salinthone

    2010-09-01

    Full Text Available Abnormal regulation of the inflammatory response is an important component of diseases such as diabetes, Alzheimer's disease and multiple sclerosis (MS. Lipoic acid (LA has been shown to have antioxidant and anti-inflammatory properties and is being pursued as a therapy for these diseases. We first reported that LA stimulates cAMP production via activation of G-protein coupled receptors and adenylyl cyclases. LA also suppressed NK cell activation and cytotoxicity. In this study we present evidence supporting the hypothesis that the anti-inflammatory properties of LA are mediated by the cAMP/PKA signaling cascade. Additionally, we show that LA oral administration elevates cAMP levels in MS subjects.We determined the effects of LA on IL-6, IL-17 and IL-10 secretion using ELISAs. Treatment with 50 µg/ml and 100 µg/ml LA significantly reduced IL-6 levels by 19 and 34%, respectively, in T cell enriched PBMCs. IL-17 levels were also reduced by 35 and 50%, respectively. Though not significant, LA appeared to have a biphasic effect on IL-10 production. Thymidine incorporation studies showed LA inhibited T cell proliferation by 90%. T-cell activation was reduced by 50% as measured by IL-2 secretion. Western blot analysis showed that LA treatment increased phosphorylation of Lck, a downstream effector of protein kinase A. Pretreatment with a peptide inhibitor of PKA, PKI, blocked LA inhibition of IL-2 and IFN gamma production, indicating that PKA mediates these responses. Oral administration of 1200 mg LA to MS subjects resulted in increased cAMP levels in PBMCs four hours after ingestion. Average cAMP levels in 20 subjects were 43% higher than baseline.Oral administration of LA in vivo resulted in significant increases in cAMP concentration. The anti-inflammatory effects of LA are mediated in part by the cAMP/PKA signaling cascade. These novel findings enhance our understanding of the mechanisms of action of LA.

  4. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

    Directory of Open Access Journals (Sweden)

    Brinton Roberta

    2008-12-01

    Full Text Available Abstract Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that AP

  5. Teen Moms and Babies Benefit from Camping.

    Science.gov (United States)

    Goode, Marsha; Broesamle, Barbara

    1987-01-01

    Describes nine-day residential camp for Michigan teenage mothers/babies to enhance personal growth and develop responsible social skills. Outlines goals, pre-camp planning, staff, activities, evaluation. Reports 31 teen moms (ages 13-21) and 35 babies attended in 1986. Indicates participants were in therapy, experienced abuse, had low self-esteem,…

  6. A second look at the heavy half of the camping market

    Science.gov (United States)

    Wilbur R. LaPage; Dale P. Ragain; Dale P. Ragain

    1971-01-01

    A 1968 survey of campers revealed that one-half of the campers did more than three-fourths of all the reported camping. Campers in this heavy half of the camping market were found to differ significantly from light-half campers in their camping motivations, past experience, and investments in camping equipment (LdPage 1969). However, the 1968 survey identified heavy-...

  7. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... and insulin signalling transduction remain elusive. We believe that one of the reasons is that the role of intracellular compartmentalization as a regulator of metabolic pathways and signalling transduction has been rather ignored. This paper briefly reviews the literature to discuss the role of intracellular...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  8. Investigation of Sylvatic Typhus at a Wilderness Camp

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dr. Greg Dasch discusses an outbreak of four cases of sylvatic typhus that occurred at a wilderness camp in Pennsylvania. Sylvatic typhus is very rare in the United States, with only 41 cases since it was discovered in the United States in 1975. Lab work at CDC and the discovery that all four camp counselors who became ill had slept in the same bunk at the camp between 2004 and 2006 ultimately led to confirmation that flying squirrels living in the wall of the cabin were to blame for the illnesses.

  9. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    Science.gov (United States)

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Reexamination of the Physiological Role of PykA in Escherichia coli Revealed that It Negatively Regulates the Intracellular ATP Levels under Anaerobic Conditions.

    Science.gov (United States)

    Zhao, Chunhua; Lin, Zhao; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2017-06-01

    Pyruvate kinase is one of the three rate-limiting glycolytic enzymes that catalyze the last step of glycolysis, conversion of phosphoenolpyruvate (PEP) into pyruvate, which is associated with ATP generation. Two isozymes of pyruvate kinase, PykF and PykA, are identified in Escherichia coli PykF is considered important, whereas PykA has a less-defined role. Prior studies inactivated the pykA gene to increase the level of its substrate, PEP, and thereby increased the yield of end products derived from PEP. We were surprised when we found a pykA ::Tn 5 mutant in a screen for increased yield of an end product derived from pyruvate ( n -butanol), suggesting that the role of PykA needs to be reexamined. We show that the pykA mutant exhibited elevated intracellular ATP levels, biomass concentrations, glucose consumption, and n -butanol production. We also discovered that the pykA mutant expresses higher levels of a presumed pyruvate transporter, YhjX, permitting the mutant to recapture and metabolize excreted pyruvate. Furthermore, we demonstrated that the nucleotide diphosphate kinase activity of PykA leads to negative regulation of the intracellular ATP levels. Taking the data together, we propose that inactivation of pykA can be considered a general strategy to enhance the production of pyruvate-derived metabolites under anaerobic conditions. IMPORTANCE This study showed that knocking out pykA significantly increased the intracellular ATP level and thus significantly increased the levels of glucose consumption, biomass formation, and pyruvate-derived product formation under anaerobic conditions. pykA was considered to be encoding a dispensable pyruvate kinase; here we show that pykA negatively regulates the anaerobic glycolysis rate through regulating the energy distribution. Thus, knocking out pykA can be used as a general strategy to increase the level of pyruvate-derived fermentative products. Copyright © 2017 American Society for Microbiology.

  11. Intracellular pH regulation by acid-base transporters in mammalian neurons

    Science.gov (United States)

    Ruffin, Vernon A.; Salameh, Ahlam I.; Boron, Walter F.; Parker, Mark D.

    2014-01-01

    Intracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (JL) and extrusion (JE). The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g., metabolic acidosis). (3) The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3) and JE (the Na-H exchangers NHE1, NHE3, and NHE5 as well as the Na+- coupled HCO3− transporters NBCe1, NBCn1, NDCBE, and NBCn2). (4) The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions. PMID:24592239

  12. Yesterday and Today: The Impact of Research Conducted at Camp Detrick on Botulinum Toxin.

    Science.gov (United States)

    Lebeda, Frank J; Adler, Michael; Dembek, Zygmunt F

    2018-05-01

    This review summarizes the research conducted on botulinum toxin (BoTx) from 1943 to 1956 by a small group of Camp Detrick investigators and their staff. A systematic, cross-disciplinary approach was used to develop effective vaccines against this biological warfare threat agent. In response to the potential need for medical countermeasures against BoTx during World War II, the refinement of isolation and purification techniques for BoTx successfully led to the large-scale production of botulinum toxoid vaccines. In addition, the work at Camp Detrick provided the foundation for the subsequent use of BoTx as a tool for studying the trophic regulation of skeletal muscle within motor neuron terminals and, more recently, for elucidation of the intricate details of neurotransmitter release at the molecular level. Indirectly, Camp Detrick investigators also played a significant role in studies that culminated in the use of BoTx as a pharmaceutical product that has been approved by the U.S. Food and Drug Administration for treating movement disorders, autonomic dysfunctions, and other conditions. Online literature searches were performed with Google, Google Scholar, PubMed, the bibliography from the Camp Detrick technical library, and at the Defense Technical Information Center. Reference lists in some of the primary research publications and reviews also provided source material. Search terms included botulinum, botulinus, and Camp Detrick. References related to the subsequent impacts of the Camp Detrick results were selected and cited from reviews and primary references in the more recent literature. Notes on toxin nomenclature and potential sources of error in this study are presented. The literature searches returned 27 citations of Camp Detrick authors, 24 of which were articles in peer-reviewed journals. The publications by these investigators included several disciplines such as biochemistry, immunology, pharmacology, physiology, and toxicology. A fundamental

  13. The Effect of Size and Species on Lens Intracellular Hydrostatic Pressure

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; Brink, Peter R.; White, Thomas W.; Mathias, Richard T.

    2013-01-01

    Purpose. Previous experiments showed that mouse lenses have an intracellular hydrostatic pressure that varied from 335 mm Hg in central fibers to 0 mm Hg in surface cells. Model calculations predicted that in larger lenses, all else equal, pressure should increase as the lens radius squared. To test this prediction, lenses of different radii from different species were studied. Methods. All studies were done in intact lenses. Intracellular hydrostatic pressures were measured with a microelectrode-manometer–based system. Membrane conductances were measured by frequency domain impedance analysis. Intracellular Na+ concentrations were measured by injecting the Na+-sensitive dye sodium-binding benzofuran isophthalate. Results. Intracellular hydrostatic pressures were measured in lenses from mice, rats, rabbits, and dogs with radii (cm) 0.11, 0.22, 0.49, and 0.57, respectively. In each species, pressure varied from 335 ± 6 mm Hg in central fiber cells to 0 mm Hg in surface cells. Further characterization of transport in lenses from mice and rats showed that the density of fiber cell gap junction channels was approximately the same, intracellular Na+ concentrations varied from 17 mM in central fiber cells to 7 mM in surface cells, and intracellular voltages varied from −45 mV in central fiber cells to −60 mV in surface cells. Fiber cell membrane conductance was a factor of 2.7 times larger in mouse than in rat lenses. Conclusions. Intracellular hydrostatic pressure is an important physiological parameter that is regulated in lenses from these different species. The most likely mechanism of regulation is to reduce the density of open Na+-leak channels in fiber cells of larger lenses. PMID:23211824

  14. A novel role for ecdysone in Drosophila conditioned behavior: linking GPCR-mediated non-canonical steroid action to cAMP signaling in the adult brain.

    Science.gov (United States)

    Ishimoto, Hiroshi; Wang, Zhe; Rao, Yi; Wu, Chun-Fang; Kitamoto, Toshihiro

    2013-01-01

    The biological actions of steroid hormones are mediated primarily by their cognate nuclear receptors, which serve as steroid-dependent transcription factors. However, steroids can also execute their functions by modulating intracellular signaling cascades rapidly and independently of transcriptional regulation. Despite the potential significance of such "non-genomic" steroid actions, their biological roles and the underlying molecular mechanisms are not well understood, particularly with regard to their effects on behavioral regulation. The major steroid hormone in the fruit fly Drosophila is 20-hydroxy-ecdysone (20E), which plays a variety of pivotal roles during development via the nuclear ecdysone receptors. Here we report that DopEcR, a G-protein coupled receptor for ecdysteroids, is involved in activity- and experience-dependent plasticity of the adult central nervous system. Remarkably, a courtship memory defect in rutabaga (Ca²⁺/calmodulin-responsive adenylate cyclase) mutants was rescued by DopEcR overexpression or acute 20E feeding, whereas a memory defect in dunce (cAMP-specific phosphodiestrase) mutants was counteracted when a loss-of-function DopEcR mutation was introduced. A memory defect caused by suppressing dopamine synthesis was also restored through enhanced DopEcR-mediated ecdysone signaling, and rescue and phenocopy experiments revealed that the mushroom body (MB)--a brain region central to learning and memory in Drosophila--is critical for the DopEcR-dependent processing of courtship memory. Consistent with this finding, acute 20E feeding induced a rapid, DopEcR-dependent increase in cAMP levels in the MB. Our multidisciplinary approach demonstrates that DopEcR mediates the non-canonical actions of 20E and rapidly modulates adult conditioned behavior through cAMP signaling, which is universally important for neural plasticity. This study provides novel insights into non-genomic actions of steroids, and opens a new avenue for genetic

  15. A novel role for ecdysone in Drosophila conditioned behavior: linking GPCR-mediated non-canonical steroid action to cAMP signaling in the adult brain.

    Directory of Open Access Journals (Sweden)

    Hiroshi Ishimoto

    Full Text Available The biological actions of steroid hormones are mediated primarily by their cognate nuclear receptors, which serve as steroid-dependent transcription factors. However, steroids can also execute their functions by modulating intracellular signaling cascades rapidly and independently of transcriptional regulation. Despite the potential significance of such "non-genomic" steroid actions, their biological roles and the underlying molecular mechanisms are not well understood, particularly with regard to their effects on behavioral regulation. The major steroid hormone in the fruit fly Drosophila is 20-hydroxy-ecdysone (20E, which plays a variety of pivotal roles during development via the nuclear ecdysone receptors. Here we report that DopEcR, a G-protein coupled receptor for ecdysteroids, is involved in activity- and experience-dependent plasticity of the adult central nervous system. Remarkably, a courtship memory defect in rutabaga (Ca²⁺/calmodulin-responsive adenylate cyclase mutants was rescued by DopEcR overexpression or acute 20E feeding, whereas a memory defect in dunce (cAMP-specific phosphodiestrase mutants was counteracted when a loss-of-function DopEcR mutation was introduced. A memory defect caused by suppressing dopamine synthesis was also restored through enhanced DopEcR-mediated ecdysone signaling, and rescue and phenocopy experiments revealed that the mushroom body (MB--a brain region central to learning and memory in Drosophila--is critical for the DopEcR-dependent processing of courtship memory. Consistent with this finding, acute 20E feeding induced a rapid, DopEcR-dependent increase in cAMP levels in the MB. Our multidisciplinary approach demonstrates that DopEcR mediates the non-canonical actions of 20E and rapidly modulates adult conditioned behavior through cAMP signaling, which is universally important for neural plasticity. This study provides novel insights into non-genomic actions of steroids, and opens a new avenue for

  16. Boot Camps: A Critique and a Proposed Alternative.

    Science.gov (United States)

    Salerno, Anthony W.

    1994-01-01

    Explores origins of boot camp concept and application of its principles to juvenile delinquents. Offers eight-point critique of concept itself. Concludes with alternative: combination of intermittent incarceration (lasting at least six months and comprised of "no frills" camp for one week, followed by weekends gradually spaced further…

  17. The Physics of Quidditch Summer Camp: An Interdisciplinary Approach

    Science.gov (United States)

    Hammer, Donna; Uher, Tim

    The University of Maryland Physics Department has developed an innovative summer camp program that takes an interdisciplinary approach to engaging and teaching physics. The Physics of Quidditch Camp uniquely sits at the intersection of physics, sports, and literature, utilizing the real-life sport of quidditch adapted from the Harry Potter novels to stimulate critical thinking about real laws of physics and leaps of imagination, while actively engaging students in learning the sport and discussing the literature. Throughout the camp, middle school participants become immersed in fun physics experiments and exciting physical activities, which aim to build and enhance skills in problem-solving, analytical thinking, and teamwork. This camp has pioneered new ways of teaching physics to pre-college students, successfully engaged middle school students in learning physics, and grown a large demand for such activities.

  18. Imaging of persistent cAMP signaling by internalized G protein-coupled receptors.

    Science.gov (United States)

    Calebiro, Davide; Nikolaev, Viacheslav O; Lohse, Martin J

    2010-07-01

    G protein-coupled receptors (GPCRs) are the largest family of plasma membrane receptors. They mediate the effects of several endogenous cues and serve as important pharmacological targets. Although many biochemical events involved in GPCR signaling have been characterized in great detail, little is known about their spatiotemporal dynamics in living cells. The recent advent of optical methods based on fluorescent resonance energy transfer allows, for the first time, to directly monitor GPCR signaling in living cells. Utilizing these methods, it has been recently possible to show that the receptors for two protein/peptide hormones, the TSH and the parathyroid hormone, continue signaling to cAMP after their internalization into endosomes. This type of intracellular signaling is persistent and apparently triggers specific cellular outcomes. Here, we review these recent data and explain the optical methods used for such studies. Based on these findings, we propose a revision of the current model of the GPCR-cAMP signaling pathway to accommodate receptor signaling at endosomes.

  19. Exploring Marine Science through the University of Delaware's TIDE camp

    Science.gov (United States)

    Veron, D. E.; Newton, F. A.; Veron, F.; Trembanis, A. C.; Miller, D. C.

    2012-12-01

    For the past five years, the University of Delaware has offered a two-week, residential, summer camp to rising sophomores, juniors, and seniors who are interested in marine science. The camp, named TIDE (Taking an Interest in Delaware's Estuary) camp, is designed to introduce students to the breadth of marine science while providing them with a college experience. Campers participate in a variety of academic activities which include classroom, laboratory, and field experiences, as well as numerous social activities. Two unique features of this small, focused camp is the large number of university faculty that are involved, and the ability of students to participate in ongoing research projects. At various times students have participated in fish and dolphin counts, AUV deployment, wind-wave tank experiments, coastal water and beach studies, and ROV activities. In addition, each year campers have participated in a local service project. Through communication with former TIDE participants, it is clear that this two-week, formative experience plays a large role in students choice of major when entering college.2012 Tide Camp - Salt marsh in southern Delaware 2012 Tide Camp - Field trip on a small boat

  20. Investigation of Sylvatic Typhus at a Wilderness Camp

    Centers for Disease Control (CDC) Podcasts

    2009-06-30

    In this podcast, Dr. Greg Dasch discusses an outbreak of four cases of sylvatic typhus that occurred at a wilderness camp in Pennsylvania. Sylvatic typhus is very rare in the United States, with only 41 cases since it was discovered in the United States in 1975. Lab work at CDC and the discovery that all four camp counselors who became ill had slept in the same bunk at the camp between 2004 and 2006 ultimately led to confirmation that flying squirrels living in the wall of the cabin were to blame for the illnesses.  Created: 6/30/2009 by Emerging Infectious Diseases.   Date Released: 6/30/2009.

  1. Rare genomic variants link bipolar disorder to CREB regulated intracellular signaling pathways

    Directory of Open Access Journals (Sweden)

    Berit eKerner

    2013-11-01

    Full Text Available Bipolar disorder is a common, complex, and severe psychiatric disorder with cyclical disturbances of mood and a high suicide rate. Here, we describe a family with four siblings, three affected females and one unaffected male. The disease course was characterized by early-onset bipolar disorder and co-morbid anxiety spectrum disorders that followed the onset of bipolar disorder. Genetic risk factors were suggested by the early onset of the disease, the severe disease course, including multiple suicide attempts, and lack of adverse prenatal or early life events. In particular, drug and alcohol abuse did not contribute to the disease onset. Exome sequencing identified very rare, heterozygous, and likely protein-damaging variants in eight brain-expressed genes: IQUB, JMJD1C, GADD45A, GOLGB1, PLSCR5, VRK2, MESDC2, and FGGY. The variants were shared among all three affected family members but absent in the unaffected sibling and in more than 200 controls. The genes encode proteins with significant regulatory roles in the ERK/MAPK and CREB-regulated intracellular signaling pathways. These pathways are central to neuronal and synaptic plasticity, cognition, affect regulation and response to chronic stress. In addition, proteins in these pathways are the target of commonly used mood stabilizing drugs, such as tricyclic antidepressants, lithium and valproic acid. The combination of multiple rare, damaging mutations in these central pathways could lead to reduced resilience and increased vulnerability to stressful life events. Our results support a new model for psychiatric disorders, in which multiple rare, damaging mutations in genes functionally related to a common signaling pathway contribute to the manifestation of bipolar disorder.

  2. Direct Light-up of cAMP Derivatives in Living Cells by Click Reactions

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2013-10-01

    Full Text Available 8-Azidoadenosine 3′,5′-cyclic monophosphate (8-azido cAMP was directly detected in living cells, by applying Cu-free azide-alkyne cycloaddition to probe cAMP derivatives by fluorescence light-up. Fluorescence emission was generated by two non-fluorescent molecules, 8-azido cAMP as a model target and difluorinated cyclooctyne (DIFO reagent as a probe. The azide-alkyne cycloaddition reaction between 8-azido cAMP and DIFO induces fluorescence in 8-azido cAMP. The fluorescence emission serves as a way to probe 8-azido cAMP in cells.

  3. Chlorella intake attenuates reduced salivary SIgA secretion in kendo training camp participants

    Directory of Open Access Journals (Sweden)

    Otsuki Takeshi

    2012-12-01

    Full Text Available Abstract Background The green alga Chlorella contains high levels of proteins, vitamins, and minerals. We previously reported that a chlorella-derived multicomponent supplement increased the secretion rate of salivary secretory immunoglobulin A (SIgA in humans. Here, we investigated whether intake of this chlorella-derived supplement attenuated the reduced salivary SIgA secretion rate during a kendo training camp. Methods Ten female kendo athletes participated in inter-university 6-day spring and 4-day summer camps. They were randomized into two groups; one took placebo tablets during the spring camp and chlorella tablets during the summer camp, while the other took chlorella tablets during the spring camp and placebo tablets during the summer camp. Subjects took these tablets starting 4 weeks before the camp until post-camp saliva sampling. Salivary SIgA concentrations were measured by ELISA. Results All subjects participated in nearly all training programs, and body-mass changes and subjective physical well-being scores during the camps were comparable between the groups. However, salivary SIgA secretion rate changes were different between these groups. Salivary SIgA secretion rates decreased during the camp in the placebo group (before vs. second, middle, and final day of camp, and after the camp: 146 ± 89 vs. 87 ± 56, 70 ± 45, 94 ± 58, and 116 ± 71 μg/min, whereas no such decreases were observed in the chlorella group (121 ± 53 vs. 113 ± 68, 98 ± 69,115 ± 80, and 128 ± 59 μg/min. Conclusion Our results suggest that a use of a chlorella-derived dietary supplement attenuates reduced salivary SIgA secretion during a training camp for a competitive sport.

  4. Learning the Nation in Exile: Constructing Youth Identities, Belonging and "Citizenship" in Palestinian Refugee Camps in South Lebanon

    Science.gov (United States)

    Fincham, Kathleen

    2012-01-01

    This paper examines the ways in which "Palestine" and "Palestinianess" are culturally, socially and symbolically produced and regulated through formal and non-formal institutional sites in Palestinian camps in south Lebanon. It argues that although institutional power, processes and outcomes help to construct shared notions of…

  5. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    Science.gov (United States)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-12-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 - 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail.

  6. Emergency Medicine Residency Boot Camp Curriculum: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ataya, Ramsey

    2015-03-01

    Full Text Available Introduction: Establishing a boot camp curriculum is pertinent for emergency medicine (EM residents in order to develop proficiency in a large scope of procedures and leadership skills.  In this article, we describe our program’s EM boot camp curriculum as well as measure the confidence levels of resident physicians through a pre- and post-boot camp survey. Methods: We designed a one-month boot camp curriculum with the intention of improving the confidence, procedural performance, leadership, communication and resource management of EM interns. Our curriculum consisted of 12 hours of initial training and culminated in a two-day boot camp. The initial day consisted of clinical skill training and the second day included code drill scenarios followed by interprofessional debriefing.   Results: Twelve EM interns entered residency with an overall confidence score of 3.2 (1-5 scale across all surveyed skills. Interns reported the highest pre-survey confidence scores in suturing (4.3 and genitourinary exams (3.9. The lowest pre-survey confidence score was in thoracostomy (2.4. Following the capstone experience, overall confidence scores increased to 4.0. Confidence increased the most in defibrillation and thoracostomy. Additionally, all interns reported post-survey confidence scores of at least 3.0 in all skills, representing an internal anchor of “moderately confident/need guidance at times to perform procedure.” Conclusion: At the completion of the boot camp curriculum, EM interns had improvement in self-reported confidence across all surveyed skills and procedures. The described EM boot camp curriculum was effective, feasible and provided a foundation to our trainees during their first month of residency. [West J Emerg Med. 2015;16(2:356–361.

  7. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    International Nuclear Information System (INIS)

    Sze, Heven

    2008-01-01

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular (Ca2+) during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  8. G protein-coupled receptor 30 (GPR30) forms a plasma membrane complex with membrane-associated guanylate kinases (MAGUKs) and protein kinase A-anchoring protein 5 (AKAP5) that constitutively inhibits cAMP production.

    Science.gov (United States)

    Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2014-08-08

    GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Dopamine D2 Receptor-Mediated Regulation of Pancreatic β Cell Mass

    Directory of Open Access Journals (Sweden)

    Daisuke Sakano

    2016-07-01

    Full Text Available Understanding the molecular mechanisms that regulate β cell mass and proliferation is important for the treatment of diabetes. Here, we identified domperidone (DPD, a dopamine D2 receptor (DRD2 antagonist that enhances β cell mass. Over time, islet β cell loss occurs in dissociation cultures, and this was inhibited by DPD. DPD increased proliferation and decreased apoptosis of β cells through increasing intracellular cAMP. DPD prevented β cell dedifferentiation, which together highly contributed to the increased β cell mass. DRD2 knockdown phenocopied the effects of domperidone and increased the number of β cells. Drd2 overexpression sensitized the dopamine responsiveness of β cells and increased apoptosis. Further analysis revealed that the adenosine agonist 5′-N-ethylcarboxamidoadenosine, a previously identified promoter of β cell proliferation, acted with DPD to increase the number of β cells. In humans, dopamine also modulates β cell mass through DRD2 and exerts an inhibitory effect on adenosine signaling.

  10. mc1r Pathway regulation of zebrafish melanosome dispersion

    DEFF Research Database (Denmark)

    Richardson, Jennifer; Lundegaard, Pia Rengtved; Reynolds, Natalie L

    2008-01-01

    Zebrafish rapidly alter their pigmentation in response to environmental changes. For black melanocytes, this change is due to aggregation or dispersion of melanin in the cell. Dispersion and aggregation are controlled by intracellular cyclic adenosine monophosphate (cAMP) levels, which increase...... in mammals, and melanosome dispersal in cold-blood vertebrates, the pathway components are highly conserved. However, it has only been assumed that mc1r mediates melanosome dispersal in fish. Here, using morpholino oligonucleotides designed to knockdown mc1r expression, we find that mc1r morphants are unable...... to disperse melanosomes when grown in dark conditions. We also use chemical modifiers of the cAMP pathway, and find an unexpected response to the specific phosphodiesterase 4 (PDE4) inhibitor, rolipram, in melanosome dispersal. When treated with the drug, melanosomes fail to fully disperse in dark conditions...

  11. Participant Perspectives on the ESO Astronomy Camp Programme

    Science.gov (United States)

    Olivotto, C.; Cenadelli, D.; Gamal, M.; Grossmann, D.; Teller, L. A. I.; Marta, A. S.; Matoni, C. L.; Taillard, A.

    2015-09-01

    This article describes the experience of attending the European Southern Observatory (ESO) Astronomy Camp from the perspective of its participants - students aged between 16 and 18 years old from around the world. The students shared a week together during the winter of 2014 in the Alpine village of Saint-Barthelemy, Italy. The camp was organised by ESO in collaboration with Sterrenlab and the Astronomical Observatory of the Autonomous Region of the Aosta Valley and offered a rich programme of astronomy and leisure activities. This article focuses on the concept of astronomy camps, and their role as a unique tool to complement formal classroom education, rather than on the astronomy activities and the scientific programme. Thus, it is not an academic review of the implemented methodologies, but rather a reflection on the overall experience. The article was brought together from collaborative accounts by some of the participants who were asked to reflect on the experience. The participants who contributed to this article represent the diversity of the ESO Astronomy Camp's alumni community.

  12. Characterization of a new CAMP factor carried by an integrative and conjugative element in Streptococcus agalactiae and spreading in Streptococci.

    Directory of Open Access Journals (Sweden)

    Sarah Chuzeville

    Full Text Available Genetic exchanges between Streptococci occur frequently and contribute to their genome diversification. Most of sequenced streptococcal genomes carry multiple mobile genetic elements including Integrative and Conjugative Elements (ICEs that play a major role in these horizontal gene transfers. In addition to genes involved in their mobility and regulation, ICEs also carry genes that can confer selective advantages to bacteria. Numerous elements have been described in S. agalactiae especially those integrated at the 3' end of a tRNA(Lys encoding gene. In strain 515 of S. agalactiae, an invasive neonate human pathogen, the ICE (called 515_tRNA(Lys is functional and carries different putative virulence genes including one encoding a putative new CAMP factor in addition to the one previously described. This work demonstrated the functionality of this CAMP factor (CAMP factor II in Lactococcus lactis but also in pathogenic strains of veterinary origin. The search for co-hemolytic factors in a collection of field strains revealed their presence in S. uberis, S. dysgalactiae, but also for the first time in S. equisimilis and S. bovis. Sequencing of these genes revealed the prevalence of a species-specific factor in S. uberis strains (Uberis factor and the presence of a CAMP factor II encoding gene in S. bovis and S. equisimilis. Furthermore, most of the CAMP factor II positive strains also carried an element integrated in the tRNA(Lys gene. This work thus describes a CAMP factor that is carried by a mobile genetic element and has spread to different streptococcal species.

  13. Camp Verde Adult Reading Program. Final Performance Report.

    Science.gov (United States)

    Maynard, David A.

    This document begins with a four-page performance report describing how the Camp Verde Adult Reading Program site was relocated to the Community Center Complex, and the Town Council contracted directly with the Friends of the Camp Verde Library to provide for the requirements of the program. The U.S. Department of Education grant allowed the…

  14. He Sapa Bloketu Waecun: 2008 Summer Science and Cultural Camps

    Science.gov (United States)

    Kliche, D. V.; Sanovia, J.; Decker, R.; Bolman, J.

    2008-12-01

    The South Dakota School of Mines, Humboldt State University and Sinte Gleska University with support from the National Science Foundation, sponsored four camps for South Dakota Lakota youth to nurture a geosciences learning community linked to culturally significant sites in the Black Hills. These camps utilized outdoor, experiential learning to integrate indigenous knowledge with contemporary western science. The project resulted in increased awareness among Native and non-Native Americans, young and adult, about the importance of geosciences in their connection and interpretation of nature. The project also motivated participants in learning and becoming active in land and resources protection and the importance of becoming knowledgeable and active in regulatory policies (both Tribal and State). The four camps were scheduled during the month of June, 2008, which is the month of the summer solstice, a sacred time for the Lakota people which signal the Lakota Sundance Ceremony. The timing of the camps was chosen to give the Native American participants the framework to express their connection to Native lands through the understanding of their oral history. For the first time in such camps, middle and high school students were encouraged to have a parent or relative attending with them. The camps proved to be a great success among students and their families. The curriculum and activities helped participants immerse themselves mentally, physically and spiritually into an experience of a life time. We plan to show our results from these camps and emphasize the usefulness of this new approach in teaching science and encouraging the new generation to pursue careers in geosciences.

  15. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Fabian Arenas

    2017-11-01

    Full Text Available Cholesterol is a critical component of membrane bilayers where it plays key structural and functional roles by regulating the activity of diverse signaling platforms and pathways. Particularly enriched in brain, cholesterol homeostasis in this organ is singular with respect to other tissues and exhibits a heterogeneous regulation in distinct brain cell populations. Due to the key role of cholesterol in brain physiology and function, alterations in cholesterol homeostasis and levels have been linked to brain diseases and neurodegeneration. In the case of Alzheimer disease (AD, however, this association remains unclear with evidence indicating that either increased or decreased total brain cholesterol levels contribute to this major neurodegenerative disease. Here, rather than analyzing the role of total cholesterol levels in neurodegeneration, we focus on the contribution of intracellular cholesterol pools, particularly in endolysosomes and mitochondria through its trafficking via specialized membrane domains delineated by the contacts between endoplasmic reticulum and mitochondria, in the onset of prevalent neurodegenerative diseases such as AD, Parkinson disease, and Huntington disease as well as in lysosomal disorders like Niemann-Pick type C disease. We dissect molecular events associated with intracellular cholesterol accumulation, especially in mitochondria, an event that results in impaired mitochondrial antioxidant defense and function. A better understanding of the mechanisms involved in the distribution of cholesterol in intracellular compartments may shed light on the role of cholesterol homeostasis disruption in neurodegeneration and may pave the way for specific intervention opportunities.

  16. Geographies of the camp

    NARCIS (Netherlands)

    Minca, C.

    2015-01-01

    Facing the current growing global archipelago of encampments – including concentration, detention, transit, identification, refugee, military and training camps, this article is a geographical reflection on ‘the camp’, as a modern institution and as a spatial bio-political technology. In particular,

  17. Simulation-based otolaryngology - head and neck surgery boot camp: 'how I do it'.

    Science.gov (United States)

    Chin, C J; Chin, C A; Roth, K; Rotenberg, B W; Fung, K

    2016-03-01

    In otolaryngology, surgical emergencies can occur at any time. An annual surgical training camp (or 'boot camp') offers junior residents from across North America the opportunity to learn and practice these skills in a safe environment. The goals of this study were to describe the set-up and execution of a simulation-based otolaryngology boot camp and to determine participants' confidence in performing routine and emergency on-call procedures in stressful situations before and after the boot camp. There were three main components of the boot camp: task trainers, simulations and an interactive panel discussion. Surveys were given to participants before and after the boot camp, and their confidence in performing the different tasks was assessed via multiple t-tests. Participants comprised 22 residents from 12 different universities; 10 of these completed both boot camp surveys. Of the nine tasks, the residents reported a significant improvement in confidence levels for six, including surgical airway and orbital haematoma management. An otolaryngology boot camp gives residents the chance to learn and practice emergency skills before encountering the emergencies in everyday practice. Their confidence in multiple skillsets was significantly improved after the boot camp. Given the shift towards competency-based learning in medical training, this study has implications for all surgical and procedural specialties.

  18. Various functions of PBMC from colon cancer patients are not decreased compared to healthy blood donors

    DEFF Research Database (Denmark)

    Afzelius, P; Nielsen, Hans Jørgen

    1997-01-01

    The immune surveillance hypothesis suggests impaired immune responses to participate in development of cancer. This may partly be due to increased amounts of PGE2 and histamine, which inhibit cellular immunity. These effects are mediated by cAMP, which is increased and thereby may down-regulate I...... no difference in levels of intracellular cAMP, IL-2 mRNA expression, IL-2R mRNA expression, or proliferative responses of PBMC from colon cancer patients compared to healthy blood donors. There was no effect of the immune modulating agents on PBMC from colon cancer patients....

  19. Immunomodulatory effect of APS and PSP is mediated by Ca2+-cAMP and TLR4/NF-κB signaling pathway in macrophage.

    Science.gov (United States)

    Wang, Zhixue; Liu, Zijing; Zhou, Lijng; Long, Tingting; Zhou, Xing; Bao, Yixi

    2017-01-01

    This study is to investigate the role of second messengers and TLR4/NF-κB signaling pathway in the immunomodulatory activities of Astragalus polysaccharide (APS) and Polysaccharopeptide (PSP) in macrophages. RAW 264.7 macrophage cells were treated with APS, PSP, lipopolysaccharide (LPS), or NiCl 2 . Power-spectral method was used to detect protein kinase C (PKC) and Griess reaction to detect nitric oxide (NO). ELISA was conducted to detect cyclic adenosine monophosphate (cAMP), diglycerides (DAG), inositol 1, 4, 5-triphosphate (IP3), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Confocal laser scanning microscopy was performed to detect calcium level. qRT-PCR and Western blot was used to detect mRNA and protein expression of NF-κB. APS and PSP significantly increased the concentrations of intracellular second messengers (NO, cAMP, DAG, IP3, Ca 2+ ) and the activity of PKC in macrophages (pAPS and PSP (pAPS and PSP mediated immunomodulatory activities in macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. PIST regulates the intracellular trafficking and plasma membrane expression of Cadherin 23

    Directory of Open Access Journals (Sweden)

    Oshima Kazuo

    2010-10-01

    Full Text Available Abstract Background The atypical cadherin protein cadherin 23 (CDH23 is crucial for proper function of retinal photoreceptors and inner ear hair cells. As we obtain more and more information about the specific roles of cadherin 23 in photoreceptors and hair cells, the regulatory mechanisms responsible for the transport of this protein to the plasma membrane are largely unknown. Results PIST, a Golgi-associated, PDZ domain-containing protein, interacted with cadherin 23 via the PDZ domain of PIST and the C-terminal PDZ domain-binding interface (PBI of cadherin 23. By binding to cadherin 23, PIST retained cadherin 23 in the trans-Golgi network of cultured cells. The retention was released when either of the two known cadherin 23-binding proteins MAGI-1 and harmonin was co-expressed. Similar to MAGI-1 and harmonin, PIST was detected in mouse inner ear sensory hair cells. Conclusions PIST binds cadherin 23 via its PDZ domain and retains cadherin 23 in trans-Golgi network. MAGI-1 and harmonin can compete with PIST for binding cadherin 23 and release cadherin 23 from PIST's retention. Our finding suggests that PIST, MAGI-1 and harmonin collaborate in intracellular trafficking of cadherin 23 and regulate the plasma membrane expression of cadherin 23.

  1. Klambi Lurik Compang-Camping: Sebuah Komposisi Karawitan

    Directory of Open Access Journals (Sweden)

    SUHARDJONO -

    2013-11-01

    Full Text Available Klambi Lurik Compang-Camping Karawitan Composition. This article discusses the creation process ofKlambi Lurik Compang Camping karawitan composition. This composition is inspired by Jineman Klambi Lurik,penned by Wasiran –a traditional artist and teaching staff in Karawitan study programme in ISI Yogyakarta. Thisjineman is favoured by both laypeople and karawitan traditional artists. This composition consists of eight parts,united as one full composition. The creation methods are exploration, improvisation, and shaping.

  2. Summer camp course in nuclear operations

    International Nuclear Information System (INIS)

    Peterson, P.F.; James, J.Z.; Terrell, B.E.

    1993-01-01

    This paper describes a new kind of nuclear engineering curriculum that echoes an old method of professional training - the intensive summer camp. For many years a staple of the training of civil engineers and foresters, summer camp courses immerse the student in an intensive, focused experience, isolated from the familiar campus and resembling the actual work environment for which the student is being trained. With financial support from the U.S. Department of Energy, University of California-Berkeley (UCB) and Pacific Gas ampersand Electric (PG ampersand E) have launched such a course for UCB nuclear engineering undergraduates

  3. The Popeye Domain Containing Genes and cAMP Signaling

    Directory of Open Access Journals (Sweden)

    Thomas Brand

    2014-05-01

    Full Text Available 3'-5'-cyclic adenosine monophosphate (cAMP is a second messenger, which plays an important role in the heart. It is generated in response to activation of G-protein-coupled receptors (GPCRs. Initially, it was thought that protein kinase A (PKA exclusively mediates cAMP-induced cellular responses such as an increase in cardiac contractility, relaxation, and heart rate. With the identification of the exchange factor directly activated by cAMP (EPAC and hyperpolarizing cyclic nucleotide-gated (HCN channels as cAMP effector proteins it became clear that a protein network is involved in cAMP signaling. The Popeye domain containing (Popdc genes encode yet another family of cAMP-binding proteins, which are prominently expressed in the heart. Loss-of-function mutations in mice are associated with cardiac arrhythmia and impaired skeletal muscle regeneration. Interestingly, the cardiac phenotype, which is present in both, Popdc1 and Popdc2 null mutants, is characterized by a stress-induced sinus bradycardia, suggesting that Popdc proteins participate in cAMP signaling in the sinuatrial node. The identification of the two-pore channel TREK-1 and Caveolin 3 as Popdc-interacting proteins represents a first step into understanding the mechanisms of heart rate modulation triggered by Popdc proteins.

  4. cAMP promotes the synthesis in early G1 of gp115, a yeast glycoprotein containing glycosyl-phosphatidylinositol.

    Science.gov (United States)

    Grandori, R; Popolo, L; Vai, M; Alberghina, L

    1990-08-25

    The glycoprotein gp115 (Mr = 115,000, pI 4.8-5) is localized in the plasma membrane of Saccharomyces cerevisiae cells and maximally expressed during G1 phase. To gain insight on the mechanism regulating its synthesis, we have examined various conditions of cell proliferation arrest. We used pulse-labeling experiments with [35S]methionine and two-dimensional gel electrophoresis analysis, which allow the detection of the well characterized 100-kDa precursor of gp115 (p100). In the cAMP-requiring mutant cyr1, p100 synthesis is active during exponential growth, shut off by cAMP removal, and induced when growth is restored by cAMP readdition. The inhibition of p100 synthesis also occurs in TS1 mutant cells (ras1ras2-ts1) shifted from 24 to 37 degrees C. During nitrogen starvation of rca1 cells, a mutant permeable to cAMP, p100 synthesis is also inhibited. cAMP complements the effect of ammonium deprivation, promoting p100 synthesis, even when added to cells which have already entered G0. Experiments with the bcy1 and cyr1bcy1 mutants have indicated the involvement of the cAMP-dependent protein kinases in the control of p100 synthesis. Moreover, the synthesis of p100 was unaffected in A364A cells, terminally arrested at START B by alpha-factor. These results indicate that the switch operating on p100 synthesis is localized in early G1 (START A) and is one of the multiple events controlled by the cAMP pathway.

  5. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    International Nuclear Information System (INIS)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-01-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 − 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail. (topical review)

  6. Summer Camp July 2017 - Registration

    CERN Multimedia

    EVE et École

    2017-01-01

    The CERN Staff Association’s Summer Camp will be open for children from 4 to 6 years old during four weeks, from 3 to 28 July. Registration is offered on a weekly basis for 450 CHF, lunch included. This year, the various activities will revolve around the theme of the Four Elements. Registration opened on 20 March 2017 for children currently attending the EVE and School of the Association. It will be open from 3 April for children of CERN Members of Personnel, and starting from 24 April for all other children. The general conditions are available on the website of the EVE and School of CERN Staff Association: http://nurseryschool.web.cern.ch. For further questions, please contact us by email at Summer.Camp@cern.ch.

  7. Towards a multiscale description of microvascular flow regulation: O2-dependent release of ATP from human erythrocytes and the distribution of ATP in capillary networks

    Directory of Open Access Journals (Sweden)

    Daniel eGoldman

    2012-07-01

    Full Text Available Integration of the numerous mechanisms that have been suggested to contribute to optimization of O2 supply to meet O2 need in skeletal muscle requires a systems biology approach which permits quantification of these physiological processes over a wide range of length scales. Here we describe two individual computational models based on in vivo and in vitro studies which, when incorporated into a single robust multiscale model, will provide information on the role of erythrocyte-released ATP in perfusion distribution in skeletal muscle under both physiological and pathophysiological conditions. Healthy human erythrocytes exposed to low O2 tension release ATP via a well characterized signaling pathway requiring activation of the G-protein, Gi, and adenylyl cyclase leading to increases in cAMP. This cAMP then activates PKA and subsequently CFTR culminating in ATP release via pannexin 1. A critical control point in this pathway is the level of cAMP which is regulated by pathway-specific phosphodiesterases. Using time constants (~100ms that are consistent with measured erythrocyte ATP release, we have constructed a dynamic model of this pathway. The model predicts levels of ATP release consistent with measurements obtained over a wide range of hemoglobin O2 saturations (sO2. The model further predicts how insulin, at concentrations found in prediabetes, enhances the activity of PDE3 and reduces intracellular cAMP levels leading to decreased low O2-induced ATP release from erythrocytes. The second model, which couples O2 and ATP transport in capillary networks, shows how intravascular ATP and the resulting conducted vasodilation are affected by local sO2, convection and ATP degradation. This model also predicts network-level effects of decreased ATP release resulting from elevated insulin levels. Taken together, these models lay the groundwork for investigating the systems biology of the regulation of microvascular perfusion distribution by

  8. Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells.

    Science.gov (United States)

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Andric, Silvana A; Kostic, Tatjana S

    2017-05-01

    The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.

  9. Homosexual inmates in the Buchenwald Concentration Camp.

    Science.gov (United States)

    Röll, W

    1996-01-01

    The treatment of homosexual inmates in Nazi concentration camps is a subject which was largely ignored by historians in both West and East Germany after the war. Not until the 1980s, when research began to focus on some of the lesser-known victims of Nazi terror, did attention shift to the fate of homosexuals. This process can be seen clearly at the Buchenwald Memorial in the former GDR, the site of the persecution and also the death of considerable numbers of prisoners identified by the pink triangle on their clothing. The persecution of homosexuals in Nazi Germany began in 1933, even before Buchenwald was built in 1937. The Nazis aimed to eradicate homosexuality, which they saw as a threat to the survival of the German people. Incarceration in concentration camps like Buchenwald marked a stage in the radicalization of Nazi policy against homosexuals. There they were subjected to the harshest conditions and treated as the lowest of the low in the camp hierarchy. They were continually exposed to the terror of the SS but also the latent prejudices of the rest of the camp population. The culminating points of their maltreatment in Buchenwald were the use of homosexuals in experiments to develop immunization against typhus fever and the attempt by an SS doctor to "cure" homosexuality through the implantation of sexual hormones.

  10. Preparing for the primary care clinic: an ambulatory boot camp for internal medicine interns

    Science.gov (United States)

    Esch, Lindsay M.; Bird, Amber-Nicole; Oyler, Julie L.; Lee, Wei Wei; Shah, Sachin D.; Pincavage, Amber T.

    2015-01-01

    Introduction Internal medicine (IM) interns start continuity clinic with variable ambulatory training. Multiple other specialties have utilized a boot camp style curriculum to improve surgical and procedural skills, but boot camps have not been used to improve interns’ ambulatory knowledge and confidence. The authors implemented and assessed the impact of an intern ambulatory boot camp pilot on primary care knowledge, confidence, and curricular satisfaction. Methods During July 2014, IM interns attended ambulatory boot camp. It included clinically focused case-based didactic sessions on common ambulatory topics as well as orientation to the clinic and electronic medical records. Interns anonymously completed a 15-question pre-test on topics covered in the boot camp as well as an identical post-test after the boot camp. The interns were surveyed regarding their confidence and satisfaction. Results Thirty-eight interns participated in the boot camp. Prior to the boot camp, few interns reported confidence managing common outpatient conditions. The average pre-test knowledge score was 46.3%. The average post-test knowledge score significantly improved to 76.1% (pinterns reported that the boot camp was good preparation for clinics and 97% felt that the boot camp boosted their confidence. Conclusions The ambulatory boot camp pilot improved primary care knowledge, and interns thought it was good preparation for clinic. The ambulatory boot camp was well received and may be an effective way to improve the preparation of interns for primary care clinic. Further assessment of clinical performance and expansion to other programs and specialties should be considered. PMID:26609962

  11. Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac

    Science.gov (United States)

    Zhou, L; Ma, S L; Yeung, P K K; Wong, Y H; Tsim, K W K; So, K F; Lam, L C W; Chung, S K

    2016-01-01

    Intracellular cAMP and serotonin are important modulators of anxiety and depression. Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) also known as Prozac, is widely used against depression, potentially by activating cAMP response element-binding protein (CREB) and increasing brain-derived neurotrophic factor (BDNF) through protein kinase A (PKA). However, the role of Epac1 and Epac2 (Rap guanine nucleotide exchange factors, RAPGEF3 and RAPGEF4, respectively) as potential downstream targets of SSRI/cAMP in mood regulations is not yet clear. Here, we investigated the phenotypes of Epac1 (Epac1−/−) or Epac2 (Epac2−/−) knockout mice by comparing them with their wild-type counterparts. Surprisingly, Epac2−/− mice exhibited a wide range of mood disorders, including anxiety and depression with learning and memory deficits in contextual and cued fear-conditioning tests without affecting Epac1 expression or PKA activity. Interestingly, rs17746510, one of the three single-nucleotide polymorphisms (SNPs) in RAPGEF4 associated with cognitive decline in Chinese Alzheimer's disease (AD) patients, was significantly correlated with apathy and mood disturbance, whereas no significant association was observed between RAPGEF3 SNPs and the risk of AD or neuropsychiatric inventory scores. To further determine the detailed role of Epac2 in SSRI/serotonin/cAMP-involved mood disorders, we treated Epac2−/− mice with a SSRI, Prozac. The alteration in open field behavior and impaired hippocampal cell proliferation in Epac2−/− mice were alleviated by Prozac. Taken together, Epac2 gene polymorphism is a putative risk factor for mood disorders in AD patients in part by affecting the hippocampal neurogenesis. PMID:27598965

  12. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb.

    Science.gov (United States)

    Wang, Jinli; Yang, Kun; Zhou, Lin; Minhaowu; Wu, Yongjian; Zhu, Min; Lai, Xiaomin; Chen, Tao; Feng, Lianqiang; Li, Meiyu; Huang, Chunyu; Zhong, Qiu; Huang, Xi

    2013-01-01

    Mycobacterium tuberculosis is a hard-to-eradicate intracellular pathogen that infects one-third of the global population. It can live within macrophages owning to its ability to arrest phagolysosome biogenesis. Autophagy has recently been identified as an effective way to control the intracellular mycobacteria by enhancing phagosome maturation. In the present study, we demonstrate a novel role of miR-155 in regulating the autophagy-mediated anti-mycobacterial response. Both in vivo and in vitro studies showed that miR-155 expression was significantly enhanced after mycobacterial infection. Forced expression of miR-155 accelerated the autophagic response in macrophages, thus promoting the maturation of mycobacterial phagosomes and decreasing the survival rate of intracellular mycobacteria, while transfection with miR-155 inhibitor increased mycobacterial survival. However, macrophage-mediated mycobacterial phagocytosis was not affected after miR-155 overexpression or inhibition. Furthermore, blocking autophagy with specific inhibitor 3-methyladenine or silencing of autophagy related gene 7 (Atg7) reduced the ability of miR-155 to promote autophagy and mycobacterial elimination. More importantly, our study demonstrated that miR-155 bound to the 3'-untranslated region of Ras homologue enriched in brain (Rheb), a negative regulator of autophagy, accelerated the process of autophagy and sequential killing of intracellular mycobacteria by suppressing Rheb expression. Our results reveal a novel role of miR-155 in regulating autophagy-mediated mycobacterial elimination by targeting Rheb, and provide potential targets for clinical treatment.

  13. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb.

    Directory of Open Access Journals (Sweden)

    Jinli Wang

    Full Text Available Mycobacterium tuberculosis is a hard-to-eradicate intracellular pathogen that infects one-third of the global population. It can live within macrophages owning to its ability to arrest phagolysosome biogenesis. Autophagy has recently been identified as an effective way to control the intracellular mycobacteria by enhancing phagosome maturation. In the present study, we demonstrate a novel role of miR-155 in regulating the autophagy-mediated anti-mycobacterial response. Both in vivo and in vitro studies showed that miR-155 expression was significantly enhanced after mycobacterial infection. Forced expression of miR-155 accelerated the autophagic response in macrophages, thus promoting the maturation of mycobacterial phagosomes and decreasing the survival rate of intracellular mycobacteria, while transfection with miR-155 inhibitor increased mycobacterial survival. However, macrophage-mediated mycobacterial phagocytosis was not affected after miR-155 overexpression or inhibition. Furthermore, blocking autophagy with specific inhibitor 3-methyladenine or silencing of autophagy related gene 7 (Atg7 reduced the ability of miR-155 to promote autophagy and mycobacterial elimination. More importantly, our study demonstrated that miR-155 bound to the 3'-untranslated region of Ras homologue enriched in brain (Rheb, a negative regulator of autophagy, accelerated the process of autophagy and sequential killing of intracellular mycobacteria by suppressing Rheb expression. Our results reveal a novel role of miR-155 in regulating autophagy-mediated mycobacterial elimination by targeting Rheb, and provide potential targets for clinical treatment.

  14. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    Science.gov (United States)

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general. © 2016. Published by The Company of Biologists Ltd.

  15. Preserved cardiac function despite marked impairment of cAMP generation.

    Directory of Open Access Journals (Sweden)

    Mei Hua Gao

    Full Text Available So many clinical trials of positive inotropes have failed, that it is now axiomatic that agents that increase cAMP are deleterious to the failing heart. An alternative strategy is to alter myocardial Ca(2+ handling or myofilament response to Ca(2+ using agents that do not affect cAMP. Although left ventricular (LV function is tightly linked to adenylyl cyclase (AC activity, the beneficial effects of AC may be independent of cAMP and instead stem from effects on Ca(2+ handling. Here we ask whether an AC mutant molecule that reduces LV cAMP production would have favorable effects on LV function through its effects on Ca(2+ handling alone.We generated transgenic mice with cardiac-directed expression of an AC6 mutant (AC6mut. Cardiac myocytes showed impaired cAMP production in response to isoproterenol (74% reduction; p<0.001, but LV size and function were normal. Isolated hearts showed preserved LV function in response to isoproterenol stimulation. AC6mut expression was associated with increased sarcoplasmic reticulum Ca(2+ uptake and the EC50 for SERCA2a activation was reduced. Cardiac myocytes isolated from AC6mut mice showed increased amplitude of Ca(2+ transients in response to isoproterenol (p = 0.0001. AC6mut expression also was associated with increased expression of LV S100A1 (p = 0.03 and reduced expression of phospholamban protein (p = 0.01.LV AC mutant expression is associated with normal cardiac function despite impaired cAMP generation. The mechanism appears to be through effects on Ca(2+ handling - effects that occur despite diminished cAMP.

  16. Proven Effectiveness of Missouri 4-H Camps in Developing Life Skills in Youth

    Directory of Open Access Journals (Sweden)

    Michelle D. Klem

    2008-03-01

    Full Text Available Camping is generally believed to be a context for positive youth development. The 4-H Camp environments presumably focus on the development of life skills including managing and thinking; relating and caring; giving and working and; living and being. However, the effectiveness of the Missouri 4-H Camp environments in developing life skills among campers had never been evaluated in a consistent manner across the multiple camping programs. In order to evaluate the efficacy of these camp programs, resident campers within the 10-13 year age range were surveyed about their camping experience during the summer of 2005 and a similar group was surveyed in 2006. Parents of campers were also surveyed both years to gather their perceptions of 4-H Camp’s impact on their children in developing the life skill areas identified above. Parents and youth agreed strongly that the 4-H Camp experience was substantially valuable in developing the life skills identified in the Targeting Life Skills Model (Hendricks, 1998.

  17. Hack City Summer: Computer Camps Can Bring a Vacation of Keyboard Delights.

    Science.gov (United States)

    Shell, Ellen Ruppel

    1983-01-01

    Activities at a summer computer camp (Camp Atari held at East Stroudsburg State College PA) are described. The curriculum, using logic, systematic analysis, and other fundamental programing skills, teaches students to interact effectively and creatively with computers. Sources for finding a computer camp are included. (JN)

  18. Assessing Disaster Preparedness Among Select Children's Summer Camps in the United States and Canada.

    Science.gov (United States)

    Chang, Megan; Sielaff, Alan; Bradin, Stuart; Walker, Kevin; Ambrose, Michael; Hashikawa, Andrew

    2017-08-01

    Children's summer camps are at risk for multiple pediatric casualties during a disaster. The degree to which summer camps have instituted disaster preparedness is unknown. We assessed disaster preparedness among selected camps nationally for a range of disasters. We partnered with a national, web-based electronic health records system to send camp leadership of 315 camp organizations a 14-question online survey of disaster preparedness. One response from each camp was selected in the following order of importance: owner, director, physician, nurse, medical technician, office staff, and other. The results were analyzed using descriptive statistics. A total of 181 camps responses were received, 169 of which were complete. Camp types were overnight (60%), day (21%), special/medical needs (14%), and other (5%). Survey respondents were directors (52%), nurses (14%), office staff (10%), physicians (5%), owners (5%), emergency medical technicians (2%), and other (12%). Almost 18% of camps were located >20 mi from a major medical center, and 36% were >5 mi from police/fire departments. Many camps were missing emergency supplies: car/booster seats for evacuation (68%), shelter (35%), vehicles for evacuation (26%), quarantine isolation areas (21%), or emergency supplies of extra water (20%) or food (17%). Plans were unavailable for the following: power outages (23%); lockdowns (15%); illness outbreaks (15%); tornadoes (11%); evacuation for fire, flood, or chemical spill (9%); and other severe weather (8%). Many camps did not have online emergency plans (53%), plans for children with special/medical needs (38%), methods to rapidly communicate information to parents (25%), or methods to identify children for evacuation/reunification with parents (40%). Respondents reported that staff participation in disaster drills varied for weather (58%), evacuations (46%), and lockdowns (36%). The majority (75%) of respondents had not collaborated with medical organizations for planning. A

  19. Flavonoid Regulation of HCN2 Channels*

    Science.gov (United States)

    Carlson, Anne E.; Rosenbaum, Joel C.; Brelidze, Tinatin I.; Klevit, Rachel E.; Zagotta, William N.

    2013-01-01

    The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels. PMID:24085296

  20. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    International Nuclear Information System (INIS)

    Arai, Roberto J.; Ogata, Fernando T.; Batista, Wagner L.; Masutani, Hiroshi; Yodoi, Junji; Debbas, Victor; Augusto, Ohara; Stern, Arnold; Monteiro, Hugo P.

    2008-01-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases

  1. Cis-Lunar Base Camp

    Science.gov (United States)

    Merrill, Raymond G.; Goodliff, Kandyce E.; Mazanek, Daniel D.; Reeves, John D., Jr.

    2012-01-01

    Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign

  2. Reduced intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Chua, Song Lin; Liu, Yang; Li, Yingying

    2017-01-01

    Cyclic-di-GMP (c-di-GMP) is an intracellular secondary messenger which controls the biofilm life cycle in many bacterial species. High intracellular c-di-GMP content enhances biofilm formation via the reduction of motility and production of biofilm matrix, while low c-di-GMP content in biofilm...... cells leads to increased motility and biofilm dispersal. While the effect of high c-di-GMP levels on bacterial lifestyles is well studied, the physiology of cells at low c-di-GMP levels remains unclear. Here, we showed that Pseudomonas aeruginosa cells with high and low intracellular c-di-GMP contents...... possessed distinct transcriptome profiles. There were 535 genes being upregulated and 432 genes downregulated in cells with low c-di-GMP, as compared to cells with high c-di-GMP. Interestingly, both rhl and pqs quorum-sensing (QS) operons were expressed at higher levels in cells with low intracellular c-di-GMP...

  3. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    Science.gov (United States)

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  4. Modulating intracellular acidification by regulating the incubation time of proton caged compounds.

    Science.gov (United States)

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2016-09-01

    A proton caged compound, the 1-(2-nitrophenyl)- ethylhexadecyl sulfonate (HDNS), was dosed into HEK-293 at different incubation times. Samples were irradiated with filtered UV light for inducing photolysis of the HDNS and then probed by infrared spectroscopy. The intracellular acidification reaction can be followed by monitoring the consequent CO2 peak intensity variation. The total CO2 produced is similar for all the samples, hence it is only a function of the initial HDNS concentration. The way it is achieved, though, is different for the different incubation times and follows kinetics, which results in a combination of a linear CO2 increase and a steep CO2 increase followed by a decay. This is interpreted in terms of confinement of the HDNS into intracellular vesicles of variable average size and sensitive to UV light when they reach critical dimensions.

  5. Impact of incarceration in Nazi concentration camps on multimorbidity of former prisoners

    Science.gov (United States)

    Jablonski, Robert K; Leszek, Jerzy; Rosińczuk, Joanna; Uchmanowicz, Izabella; Panaszek, Bernard

    2015-01-01

    Objective To show the extent to which the health of former prisoners was affected by incarceration in extermination camps after 5 and 30 years of leaving the camp, and to determine the etiological factors underlying particular dysfunctions. Methods Medical records of former prisoners developed in 1950 (n=250) and 1975 (n=120) were then, after several decades, retrospectively analyzed and compared with the control group, randomized and matched according to age, sex, occupation, and environment. None of the subjects in the control group was a prisoner either at a concentration camp or at any other prison or detention facility. Results Multimorbidity affected mainly the central nervous system (CNS). Five years after leaving a camp, CNS dysfunctions were observed in 66% of former prisoners. Skeletal (42.4%) and cardiovascular system (34.4%) dysfunctions were the second and third most frequent dysfunctions. Thirty years after leaving a camp, the most prevalent coexisting conditions were also found within the CNS (80%), cardiovascular system (58.33%), and skeletal system (55%). Five and 30 years after leaving a camp, multiorgan lesions were found in 21.6% and 60% of survivors, respectively. Multimorbidity was more frequent in a group of prisoners who underwent the state of apathy and depression or who had been incarcerated longer than 24 months. The rate of CNS diseases was four times higher, and the rate of cardiovascular diseases or skeletal system dysfunctions was two times higher, in the study group after 30 years of leaving a camp compared with the control group. Conclusion The consequences of incarceration in concentration camps manifesting as multimorbidity, premature aging, and dramatic increase in mortality rate are observed in the majority of former prisoners. The multimorbidity mostly affected older prisoners who stayed at a camp for a longer time period. PMID:25792836

  6. Camp GLOW (Girls Leading Our World): Handbook for Volunteers.

    Science.gov (United States)

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    Camp GLOW (Girls Leading Our World) began in Romania in 1995 as a weeklong leadership camp with the purpose of encouraging young women to become active citizens by building their self-esteem and confidence, increasing their self-awareness, and developing their skills in goal-setting, assertiveness, and career and life planning. Since that first…

  7. Science Camp - lystigt eller lærerigt

    DEFF Research Database (Denmark)

    Ahrenkiel, Linda; Albrechtsen, Thomas S. R.

    2013-01-01

    I oplægget vil vi undersøge fænomenet Science Camps nærmere ved at fortælle om dets historiske udvikling og ikke mindst lægge op til en diskussion af en definition. Derudover vil vi præsentere en case, hvor der med udgangspunkt i et aktuelt ph.d.-projekt er blevet undersøgt, hvad deltagerne får ud...... af at deltage i en science camp: Kan man både vække begejstring og medvirke til læring?...

  8. The accidental city : violence, economy and humanitarianism in Kakuma refugee camp Kenya

    NARCIS (Netherlands)

    Jansen, B.J.

    2011-01-01

    In this research I examine social ordering processes in Kakuma refugee camp in

    Kenya. I view the camp as an accidental city, by which I challenge the image of

    the camp as a temporary and artificial waiting space or a protracted refugee crisis

    per se. The reference to the

  9. Prayer Camps and Biomedical Care in Ghana: Is Collaboration in Mental Health Care Possible?

    Science.gov (United States)

    Arias, Daniel; Taylor, Lauren; Ofori-Atta, Angela; Bradley, Elizabeth H

    2016-01-01

    Experts have suggested that intersectoral partnerships between prayer camps and biomedical care providers may be an effective strategy to address the overwhelming shortage of mental health care workers in Africa and other low-income settings. Nevertheless, previous studies have not explored whether the prayer camp and biomedical staff beliefs and practices provide sufficient common ground to enable cooperative relationships. Therefore, we sought to examine the beliefs and practices of prayer camp staff and the perspective of biomedical care providers, with the goal of characterizing interest in-and potential for-intersectoral partnership between prayer camp staff and biomedical care providers. We conducted 50 open-ended, semi-structured interviews with prophets and staff at nine Christian prayer camps in Ghana, and with staff within Ghana's three public psychiatric hospitals. We used the purposive sampling method to recruit participants and the constant comparative method for qualitative data analysis. Prayer camp staff expressed interest in collaboration with biomedical mental health care providers, particularly if partnerships could provide technical support introducing medications in the prayer camp and address key shortcomings in their infrastructure and hygienic conditions. Nevertheless, challenges for collaboration were apparent as prayer camp staff expressed strong beliefs in a spiritual rather than biomedical explanatory model for mental illness, frequently used fasting and chained restraints in the course of treatment, and endorsed only short-term use of medication to treat mental illness-expressing concerns that long-term medication regimens masked underlying spiritual causes of illness. Biomedical providers were skeptical about the spiritual interpretations of mental illness held by faith healers, and were concerned by the use of chains, fasting, and the lack of adequate living facilities for patients in prayer camps; many, however, expressed interest in

  10. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  11. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.

    Directory of Open Access Journals (Sweden)

    Kyle T Beggs

    Full Text Available BACKGROUND: Three dopamine receptor genes have been identified that are highly conserved among arthropod species. One of these genes, referred to in honey bees as Amdop2, shows a close phylogenetic relationship to the a-adrenergic-like octopamine receptor family. In this study we examined in parallel the functional and pharmacological properties of AmDOP2 and the honey bee octopamine receptor, AmOA1. For comparison, pharmacological properties of the honey bee dopamine receptors AmDOP1 and AmDOP3, and the tyramine receptor AmTYR1, were also examined. METHODOLOGY/PRINCIPAL FINDINGS: Using HEK293 cells heterologously expressing honey bee biogenic amine receptors, we found that activation of AmDOP2 receptors, like AmOA1 receptors, initiates a rapid increase in intracellular calcium levels. We found no evidence of calcium signaling via AmDOP1, AmDOP3 or AmTYR1 receptors. AmDOP2- and AmOA1-mediated increases in intracellular calcium were inhibited by 10 µM edelfosine indicating a requirement for phospholipase C-β activity in this signaling pathway. Edelfosine treatment had no effect on AmDOP2- or AmOA1-mediated increases in intracellular cAMP. The synthetic compounds mianserin and epinastine, like cis-(Z-flupentixol and spiperone, were found to have significant antagonist activity on AmDOP2 receptors. All 4 compounds were effective antagonists also on AmOA1 receptors. Analysis of putative ligand binding sites offers a possible explanation for why epinastine acts as an antagonist at AmDOP2 receptors, but fails to block responses mediated via AmDOP1. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AmDOP2, like AmOA1, is coupled not only to cAMP, but also to calcium-signalling and moreover, that the two signalling pathways are independent upstream of phospholipase C-β activity. The striking similarity between the pharmacological properties of these 2 receptors suggests an underlying conservation of structural properties related to receptor

  12. Science and technology camp for girls. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This document reports on the success of Pacific University`s camp held during the summers of 1992 and 1993; ultimate goal of this summer day camp was to increase the number of women in technical and scientific fields. Some experimentation was done with the age groups (7th and 8th grade girls). The curriculum was biology, chemistry, physics, and mathematics/computer science. Laboratory work and field trips were emphasized, along with socialization.

  13. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun-Ah [Department of Biochemistry and Molecular Biology, Cancer Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr [Department of Biochemistry and Molecular Biology, Cancer Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma}-ray irradiation. From

  14. Impact of pediatric burn camps on participants' self esteem and body image: an empirical study.

    Science.gov (United States)

    Bakker, Anne; Van der Heijden, Peter G M; Van Son, Maarten J M; Van de Schoot, Rens; Van Loey, Nancy E E

    2011-12-01

    This study focuses on possible effects of specialized summer camps on young burn survivors' self esteem and body image. Quantitative as well as qualitative measures was used. To study possible effects, a pretest-posttest comparison group design with a follow-up was employed. Self-report questionnaires were used to measure self esteem and body image in a burn camp group (n=83, 8-18 years) and in a comparison group of children with burns who did not attend a burn camp during the course of the study (n=90, 8-18 years). Additionally, burn camp participants and parents completed an evaluation form about benefits derived from burn camp. A small positive short-term effect of burn camp participation was found on the 'satisfaction with appearance' component of body image. Overall, participants and parents showed high appreciation of the burn camps and reported several benefits, particularly concerning meeting other young burn survivors. Albeit statistically modest, this is the first quantitative study to document on a significant short-term impact of burn camp on young burn survivors' body image. Implications of this result for future research and burn camp organization were discussed, including the strengths of residential camps for young burn survivors. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  15. Serotonin modulates immune function in T cells from HIV-seropositive subjects

    DEFF Research Database (Denmark)

    Eugen-Olsen, J; Afzelius, P; Andresen, L

    1997-01-01

    We have shown earlier increased intracellular levels of cAMP in peripheral lymphocytes from HIV-seropositive subjects and that a chemically induced decrease in this level increases cell proliferation and cytotoxicity. Others have shown that serotonin indirectly decreases intracellular cAMP levels...

  16. Summer Camp of the CERN Staff Association

    CERN Document Server

    Staff Association

    2017-01-01

    A Journey to Discover the Four Elements Over the past few years, the Children’s Day-Care Centre and School (EVEE) of the CERN Staff Association has transformed into a summer camp for the four weeks of July. Every year, this summer camp welcomes up to 40 children from 4 to 6 years old. The camp offers a rich and varied program. This year, the theme was the four elements of life, and the children set out on a journey to discover a different element every week: WATER was the theme of the first week. What is water? What purpose does it serve? Where can we find it? With these questions and many others in mind, the children set out on a cruise, sailing across Lake Geneva to visit the Lake Geneva Museum in Nyon. All through the week, the children were able to discover the different properties of water by carrying out various scientific experiments. For instance, getting soaked can certainly help observe a simple property of water: it’s wet! Giggles guaranteed. The children made fancy hats and e...

  17. EVERYDAY LIFE IN CAMPS FOR DISPLACED PERSONS IN GERMANY (ON PERSONAL MEMOIRS OF THEIR INHABITANTS

    Directory of Open Access Journals (Sweden)

    Татьяна Александровна Котова

    2015-12-01

    Full Text Available The object of the research of the article is to reveal the main lines of everyday life in camps for displaced persons on the example of such camps as Fyussen, Kempten and Shlayskhaym, located in Germany. The author reveals thepeculiarities of the structure of the camps, household, cultural and spiritual life. The article is written on the basis of memoirs of contemporaries of that time, inhabitants of camps DPs I. N. Koren, V. Gashurova, O. Bezradetskaya-Astromova, I. Hrapunov, I. Savostina and others. The author concludes that in the camps for displaced persons there was active life, but not without difficulties. Despite various problems, in DP camps there was cultural life, various sporting and game events; inhabitants of camps spent leisure time by participating in theatrical and scout circles, ballet troupes. An important role in people’sadaptation to difficult conditions of accommodation in camps was played by publishing activities and the Church which helped people to survive financially and spiritually.

  18. Summer Camp, July 2016

    CERN Multimedia

    Staff Association

    2016-01-01

    During the month of July, the Staff Association’s Children’s Day-Care Centre and School EVEE held a summer camp for 4- to 6-year-olds. 24 children altogether joined in on the adventures. On the summer camp, the children got to “travel” to a different continent of the world every week. Day after day, they would pass through make-believe Customs upon arrival and get their passports stamped by a “customs officer”. For the first week, we went on a trip to Africa. In the spirit of the theme, the children got to do plenty of crafts and coloring, make their own little bindles and play various games. They even had the chance to visit the Museum of Ethnography in Geneva (MEG), learn to play the balafon and make musical instruments with Sterrenlab. For the second week, we set off to discover the Americas, exploring both the South and the North. Alongside different workshops (singing, dancing, storytelling, crafts), the children could enjoy several special ac...

  19. Integrating Enhanced STEM Themes in the UTEP CAREERS Weather Camp for Youth

    Science.gov (United States)

    Güereque, M.; Olgin, J. G.; Kier, M. W.; Winston, C. E.; Fitzgerald, R. M.; Morris, V. R.

    2014-12-01

    The NOAA Center for Atmospheric Science (NCAS) sponsors a network of high school and middle school summer camps entitled "Channeling Atmospheric Research into Educational Experiences Reaching Students program, CAREERS". These camps are conducted nationwide at NCAS academic partners; the University of Texas at El Paso (UTEP), Howard University (HU), University of Puerto Rico at Mayagüez (UPRM), and Jackson State University (JSU). The goals of these camps are to increase the interest of secondary school (HS) students in atmospheric and weather related sciences, target under-represented students, and to ultimately boost their college enrollment in STEM related fields. For 2014 at UTEP, the annual student-outreach weather camp program underwent a thematic overhaul that sought to incorporate more of the geological and environmental context of the region. Doctoral students were allowed to assume greater responsibility for the design, development and implementation of the camp activities. The prevailing assumption was that these Ph.D. students were better suited for peer mentoring, bridging the age and interest gap, and delivering the material through the modern technologies and modes of communication. The redesigned approach focused on the identification of climate drivers within the region and this concept formed a thread throughout the planning and design of the camp modules. The outcome resulted in the incorporation of project based learning (PBL) activities, field excursions, and deployment of weather instrumentation, for explaining regional climate processes and events. Standardized surveys were administered to camp participants to evaluate the efficacy, as well as student perceptions of the camp and its activities. Results will be presented that are based on qualitative and quantitative analysis of student responses.

  20. Teen camp: a unique approach to recruit future nurses.

    Science.gov (United States)

    Redding, Donna A; Riech, Sandy; Prater, Marsha A

    2004-01-01

    A collaborative and unique approach to interest high school students in nursing. To inform educators and nursing departments about an innovative approach to recruit future nurses. Professional literature and authors' experience. All students related positive experiences. The initial camp evaluation produced innovative input from the students, and each camp met its goal of creating career interest in the nursing profession.

  1. Impacts of a Southern Indiana Summer Camp: Adult Reflections on Childhood Experiences

    Directory of Open Access Journals (Sweden)

    Colin L. Snider

    2017-01-01

    Full Text Available Scholars have well documented the impact on youth of attending a residential summer camp. Quantitative studies, generally consisting of pre/post assessments, have found positive outcomes related to self-esteem, self-efficacy, hard skills, and social skills. We explored the long-term outcomes of the camp experience through adult recollections of the camp experience. Participants’ interviews provided four primary, emergent themes: self growth, affinity for nature, life skills, and relationship. Outcomes appear to stem from camper-counselor relationships and unstructured free time. This study highlights the lifelong benefits of the camp experience and suggests there is utility in collecting adult long-term recollections of childhood memories.

  2. Intracellular transport of fat-soluble vitamins A and E.

    Science.gov (United States)

    Kono, Nozomu; Arai, Hiroyuki

    2015-01-01

    Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E. © 2014 The Authors. Traffic published by John Wiley & Sons Ltd.

  3. Adrenomedullin stimulates cyclic AMP production in the airway epithelial cells of guinea-pigs and in the human epithelial cell line

    Directory of Open Access Journals (Sweden)

    Takashi Kawaguchi

    1999-01-01

    Full Text Available This study was designed to examine the effects of adrenomedullin (AM on airway epithelial cells. Primary cultures of guinea-pig tracheal epithelial cells and the human bronchiolar epithelial cell line NCI-H441 were used. Intracellular cyclic adenosine monophosphate (cAMP, cyclic guanosine monophosphate (cGMP, prostaglandin E2 (PGE2, and stable end-products of nitric oxide were assayed. Adrenomedullin (10−6 mol/L stimulated cAMP production in guinea-pig epithelial cells. Indomethacin (10−5 mol/L significantly decreased the basal level of intracellular cAMP in guinea-pig epithelial cells, but not in NCI-H441 cells. However, AM did not stimulate production of PGE2, a major product that can increase cAMP formation. In the case of NCI-H441 cells, AM (10−8 – 10−6 mol/L did not significantly affect intracellular cGMP levels or nitrite content in conditioned medium. Adrenomedullin and calcitonin gene-related peptide (CGRP each stimulated cAMP production in NCI-H441 cells, but AM-stimulated cAMP production was antagonized by the CGRP fragment CGRP8–37. These findings suggest that AM stimulates cAMP production and functionally competes with CGRP for binding sites in airway epithelial cells, at least in human epithelial cells, but that it does not stimulate the release of PGE2 and nitric oxide. Though cyclooxygenase products contribute to some extent to cAMP formation in guinea-pigs, AM independently stimulates intracellular cAMP formation in airway epithelial cells.

  4. Developing Social Skills of Summer Campers with Autism Spectrum Disorder: A Case Study of Camps on TRACKS Implementation in an Inclusive Day-Camp Setting

    Science.gov (United States)

    Maich, Kimberly; Hall, Carmen L.; van Rhijn, Tricia Marie; Quinlan, Laurie

    2015-01-01

    This research provides preliminary results of an exploratory case study conducted of the Camps on TRACKS program in an inclusive, municipal day-camp program in southwestern Ontario, Canada. Positive changes are demonstrated in the social skills of nine day campers with an autism spectrum disorder (ASD) who participated in the program. In this…

  5. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    Science.gov (United States)

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    Science.gov (United States)

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses. © 2013 Published by Elsevier B.V.

  7. The Effect of a Disability Camp Program on Attitudes towards the Inclusion of Children with Disabilities in a Summer Sport and Leisure Activity Camp

    Science.gov (United States)

    Papaioannou, Christina; Evaggelinou, Christina

    2014-01-01

    The aim of the present study was to examine the impact of a specific Disability Camp Program (DCP) in the attitudes of children without disabilities toward the inclusion of children with disabilities in a summer sport and leisure activity camp. Three hundred eighty-seven campers without disabilities participated in the study and were divided into…

  8. Characterization of Leptin Intracellular Trafficking

    Directory of Open Access Journals (Sweden)

    E Walum

    2009-12-01

    Full Text Available Leptin is produced by adipose tissue, and its concentration in plasma is related to the amount of fat in the body. The leptin receptor (OBR is a member of the class I cytokine receptor family and several different isoforms, produced by alternative mRNA splicing are found in many tissues, including the hypothalamus. The two predominant isoforms includes a long form (OBRl with an intracellular domain of 303 amino acids and a shorter form (OBRs with an intracellular domain of 34 amino acids. Since OBRl is mainly expressed in the hypotalamus, it has been suggested to be the main signalling form. The peripheral production of leptin by adipocyte tissue and its effects as a signal of satiety in the central nervous system imply that leptin gains access to regions of the brain regulating in energy balance by crossing the blood-brain barrier. In an attempt to characterize the intracellular transport of leptin, we have followed binding internalization and degradation of leptin in HEK293 cells. We have also monitored the intracellular transport pathway of fluorescent conjugated leptin in HEK293 cells. Phenylarsine oxide, a general inhibitor of endocytosis, as well as incubation at mild hypertonic conditions, prevented the uptake of leptin, confirming a receptor-mediated internalization process. When internalized, 125I-leptin was rapidly accumulated inside the cells and reached a maximum after 10 min. After 70 minutes about 40-50% of total counts in each time point were found in the medium as TCA-soluble material. Leptin sorting, at the level of early endosomes, did not seem to involve recycling endosomes, since FITC-leptin was sorted from Cy3- transferrin containing compartments at 37°C. At 45 minutes of continuos internalization, FITC-leptin appeared mainly accumulated in late endocytic structures colocalizing with internalized rhodamine coupled epidermial growth factor (EGF and the lysosomal marker protein lamp-1. The transport of leptin was also shown

  9. Camp life: Are northern work camps safe havens for a migrant workforce, or dens of iniquity rampant with sex, drugs and alcohol?

    Energy Technology Data Exchange (ETDEWEB)

    Laverty, K.

    2004-02-01

    Two studies, dealing with life in work camps in northern Alberta and yielding contradictory results, are discussed. One study by a graduate student in sociology found that many of the men and women housed in work camps in remote locations of the northeastern oilsands belt use drugs, alcohol and casual sex to relieve boredom and loneliness. The other study, commissioned by the Athabasca Regional Issues Working Group (RWIG) found that camp workers visit Fort McMurray on the average of just over once a week, and use that time to take care of normal business, such as visiting health care professionals, buying gasoline, clothing, etc. It found no evidence of widespread sex, or drug or alcohol abuse among work camp residents. The RWIG study surveyed 25 per cent of the 6,272 worker population living in three camps in the Wood Buffalo region during June 2003. The study prepared by V. Taylor for a M.A. degree in sociology at the University of Calgary was severely criticized, primarily for its conclusions being based on a sample size of only nine men and one woman. Despite the criticism, the Taylor study made headlines across the country and has been instrumental in raising awareness of the special needs of a mobile workforce. A more broadly-based study is in progress at the University of Alberta, supported by the RCMP and a number of workplace stakeholders. Its objectives are to examine the situation more thoroughly, identify gaps in services and to explore long term solutions to what is undeniably a serious problem, indicated, if not proven, by the Taylor study.

  10. Peroxisome proliferator-activated receptor delta (PPARdelta )-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling

    DEFF Research Database (Denmark)

    Hansen, Jacob B.; Zhang, H; Rasmussen, T H

    2001-01-01

    of a PPARdelta ligand and methylisobutylxanthine (MIX) or other cAMP elevating agents. We further show that ligands and MIX synergistically stimulated PPARdelta-mediated transactivation. In 3T3-L1 preadipocytes, simultaneous administration of a PPARdelta-selective ligand and MIX significantly enhanced the early...

  11. Cellular prion protein expression is not regulated by the Alzheimer's amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Victoria Lewis

    Full Text Available There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD and prion diseases. The cellular prion protein, PrP(C, modulates the post-translational processing of the AD amyloid precursor protein (APP, through its inhibition of the β-secretase BACE1, and oligomers of amyloid-β bind to PrP(C which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD, which acts as a transcriptional regulator, has been reported to control the expression of PrP(C. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrP(C. Over-expression of the three major isoforms of human APP (APP(695, APP(751 and APP(770 in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrP(C. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrP(C levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrP(C levels. Overall, we did not detect any significant difference in the expression of PrP(C in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrP(C levels by AICD is not as straightforward as previously suggested.

  12. Tying the Design of Your Camp Staff Training to the Delivery of Desired Youth Outcomes

    Science.gov (United States)

    Galloway, Robin; Bourdeau, Virginia; Arnold, Mary; Nott, Brooke D.

    2013-01-01

    As experience camp directors, we've seen the challenges faced by young camp counselors and inexperienced staff. Evaluations from staff at many camps motivated us to help our people be more effective with their campers. In response we created a comprehensive camp staff training. Lessons showed staff what we wanted them to do and say as they…

  13. Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment.

    LENUS (Irish Health Repository)

    Rogan, Mark P

    2012-02-01

    Recent advances in basic science have greatly expanded our understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), the chloride and bicarbonate channel that is encoded by the gene, which is mutated in patients with CF. We review the structure, function, biosynthetic processing, and intracellular trafficking of CFTR and discuss the five classes of mutations and their impact on the CF phenotype. The therapeutic discussion is focused on the significant progress toward CFTR mutation-specific therapies. We review the results of encouraging clinical trials examining orally administered therapeutics, including agents that promote read-through of class I mutations (premature termination codons); correctors, which overcome the CFTR misfolding that characterizes the common class II mutation F508del; and potentiators, which enhance the function of class III or IV mutated CFTR at the plasma membrane. Long-term outcomes from successful mutation-specific treatments could finally answer the question that has been lingering since and even before the CFTR gene discovery: Will therapies that specifically restore CFTR-mediated chloride secretion slow or arrest the deleterious cascade of events leading to chronic infection, bronchiectasis, and end-stage lung disease?

  14. The Development of Environmental Conservation Youth Camping Using Environmental Education Process

    Directory of Open Access Journals (Sweden)

    Okrit Tee-ngarm

    2016-12-01

    Full Text Available The purposes of this research were: to make youths camp activities using environmental education process, to study and to compare the knowledge and attitude before and after the camp activities for conserving environment by using the process of environmental education. The sample were 30 youths in Mueng district, Sisaket province. The tools used in the research including activity manual, knowledge test, attitudes test and participation measurement. The data were analyzed by percentage, mean, standard deviation, and Paired t-test at significant level .05. The result showed that After camp activities for conserving environment by using the process of environmental education, the participats had mean score of knowledge and attitude toward environmental conservation at was higher than before the activities at statistical significantly level .05. And they had participation in youths camp activities for environmental conservation at the most level.

  15. Human muscle-specific A-kinase anchoring protein (mAKAP) polymorphisms modulate the susceptibility to cardiovascular diseases by altering cAMP/ PKA signaling.

    Science.gov (United States)

    Suryavanshi, Santosh V; Jadhav, Shweta M; Anderson, Kody L; Katsonis, Panagiotis; Lichtarge, Olivier; McConnell, Bradley K

    2018-03-30

    One of the crucial cardiac signaling pathways is cAMP-mediated PKA signal transduction which is regulated by a family of scaffolding proteins, A-kinase anchoring proteins (AKAPs). Muscle-specific AKAP (mAKAP) partly regulates cardiac cAMP/PKA signaling by binding to PKA and phosphodiesterase4D3 (PDE4D3) among other proteins and plays a central role in modulating cardiac remodeling. Moreover, genetics plays an incomparable role in modifying the risk of cardiovascular diseases (CVDs). Especially, single nucleotide polymorphisms (SNPs) in various proteins have been shown to predispose individuals to CVDs. Hence, we hypothesized that human mAKAP polymorphisms found in humans with CVDs alter cAMP/PKA pathway influencing the susceptibility of individuals to CVDs. Our computational analyses revealed two mAKAP SNPs found in cardiac disease related patients with highest predicted deleterious effects, Ser(S) 1653 Arg(R) and Glu(E) 2124 Gly(G). Co-immunoprecipitation data in HEK293T cells showed that S1653R SNP, present in the PDE4D3 binding domain of mAKAP, changed the binding of PDE4D3 to mAKAP and E2124G SNP, flanking the 3'-PKA binding domain, changed the binding of PKA before and after stimulation with isoproterenol. These SNPs significantly altered intracellular cAMP levels, global PKA activity and cytosolic PDE activity when compared with the wild-type (WT) before and after isoproterenol stimulation. PKA-mediated phosphorylation of pathological markers was found to be up-regulated after cell stimulation in both mutants. In conclusion, human mAKAP polymorphisms may influence the propensity of developing CVDs by affecting cAMP/PKA signaling supporting the clinical significance of PKA-mAKAP-PDE4D3 interactions.

  16. The Role of Intracellular Calcium for the Development and Treatment of Neuroblastoma

    International Nuclear Information System (INIS)

    Satheesh, Noothan Jyothi; Büsselberg, Dietrich

    2015-01-01

    Neuroblastoma is the second most common paediatric cancer. It develops from undifferentiated simpatico-adrenal lineage cells and is mostly sporadic; however, the aetiology behind the development of neuroblastoma is still not fully understood. Intracellular calcium ([Ca 2+ ] i ) is a secondary messenger which regulates numerous cellular processes and, therefore, its concentration is tightly regulated. This review focuses on the role of [Ca 2+ ] i in differentiation, apoptosis and proliferation in neuroblastoma. It describes the mechanisms by which [Ca 2+ ] i is regulated and how it modulates intracellular pathways. Furthermore, the importance of [Ca 2+ ] i for the function of anti-cancer drugs is illuminated in this review as [Ca 2+ ] i could be a target to improve the outcome of anti-cancer treatment in neuroblastoma. Overall, modulations of [Ca 2+ ] i could be a key target to induce apoptosis in cancer cells leading to a more efficient and effective treatment of neuroblastoma

  17. The Role of Intracellular Calcium for the Development and Treatment of Neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Satheesh, Noothan Jyothi; Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weill Cornell Medical College in Qatar, Qatar Foundation-Education City, POB 24144, Doha (Qatar)

    2015-05-22

    Neuroblastoma is the second most common paediatric cancer. It develops from undifferentiated simpatico-adrenal lineage cells and is mostly sporadic; however, the aetiology behind the development of neuroblastoma is still not fully understood. Intracellular calcium ([Ca{sup 2+}]{sub i}) is a secondary messenger which regulates numerous cellular processes and, therefore, its concentration is tightly regulated. This review focuses on the role of [Ca{sup 2+}]{sub i} in differentiation, apoptosis and proliferation in neuroblastoma. It describes the mechanisms by which [Ca{sup 2+}]{sub i} is regulated and how it modulates intracellular pathways. Furthermore, the importance of [Ca{sup 2+}]{sub i} for the function of anti-cancer drugs is illuminated in this review as [Ca{sup 2+}]{sub i} could be a target to improve the outcome of anti-cancer treatment in neuroblastoma. Overall, modulations of [Ca{sup 2+}]{sub i} could be a key target to induce apoptosis in cancer cells leading to a more efficient and effective treatment of neuroblastoma.

  18. Nonsecreted cytoplasmic alpha-fetoprotein: a newly discovered role in intracellular signaling and regulation. An update and commentary.

    Science.gov (United States)

    Mizejewski, G J

    2015-12-01

    The concept of a non-secreted cytoplasmic-bound form of alpha-fetoprotein is not a new notion in AFP biological activities. Cytoplasmic AFP (CyAFP) is a long known but forgotten protein in search of a function other than a histochemical biomarker. In this report, CyAFP is presented as an "old" protein with a newly described intracellular function. In 1976, CyAFP was shown to be a product of hepatoma cells utilizing 14Cleucine incorporation and demonstrated by autoradiographic procedures. The synthesis of CyAFP without secretion was demonstrated to occur in both malignant and non-malignant cells encompassing hepatomas, ascite fluid cells, immature rodent uterus, MCF-7 breast cancers, and cytosols from human breast cancer patients. Using computer protein matching and alignments in AFP versus members of the nuclear receptor superfamily, a consecutive series of leucine zipper (heptad) repeats in AFP was previously reported, suggesting the possibility for protein-to-protein interactions. The potential for heptad heterodimerization between protein-binding partners provided the rationale for proposing that CyAFP might have the capability to form molecular hetero-complexes with cytoplasmic based transcription factors. More recent investigations have now provided experimental evidence that CyAFP is capable of colocalizing and interacting with transcription-associated factors. Such proteins can modulate intracellular signaling leading to regulation of transcription factors and initiation of growth in human cancer cells. Although circulating serum AFP is known as a growth-enhancing factor during development, cytoplasmic AFP has a lethal role in the oncogenesis, growth, and metastasis of adult liver cancer.

  19. Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development

    OpenAIRE

    Kero, Jukka; Ahmed, Kashan; Wettschureck, Nina; Tunaru, Sorin; Wintermantel, Tim; Greiner, Erich; Schütz, Günther; Offermanns, Stefan

    2007-01-01

    The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts through a G protein–coupled receptor. Overactivation of the TSH receptor results in hyperthyroidism and goiter. The Gs-mediated stimulation of adenylyl cyclase–dependent cAMP formation has been regarded as the principal intracellular signaling mechanism mediating the action of TSH. Here we show that the Gq/G11-mediated signaling pathway plays an unexpected and essential role in the regulation of th...

  20. Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels.

    Science.gov (United States)

    Muro-Pastor, M I; Reyes, J C; Florencio, F J

    2001-10-12

    The regulatory circuits that control nitrogen metabolism are relatively well known in several bacterial model groups. However, much less is understood about how the nitrogen status of the cell is perceived in vivo. In cyanobacteria, the transcription factor NtcA is required for regulation (activation or repression) of an extensive number of genes involved in nitrogen metabolism. In contrast, how NtcA activity is regulated is largely unknown. Assimilation of ammonium by most microorganisms occurs through the sequential action of two enzymes: glutamine synthetase (GS) and glutamate synthase. Interestingly, regulation of the expression of NtcA-dependent genes in the cyanobacterium Synechocystis sp. PCC 6803 is altered in mutants with modified levels of GS activity. Two types of mutants were analyzed: glnA null mutants that lack GS type I and gif mutants unable to inactivate GS in the presence of ammonium. Changes in the intracellular pools of 19 different amino acids and the keto acid 2-oxoglutarate were recorded in wild-type and mutant strains under different nitrogen conditions. Our data strongly indicate that the nitrogen status in cyanobacteria is perceived as changes in the intracellular 2-oxoglutarate pool.

  1. Reflections on Refugee Students' Major Perceptions of Education in Kakuma Refugee Camp, Kenya

    Science.gov (United States)

    Mareng, Chuei D.

    2010-01-01

    This reflective study explores refugee students' perceptions of the educational approach used in Kakuma Refugee Camp in Kenya. The study focuses on my personal reflections as a teacher and a student in this camp, and as a refugee. My goal of writing this narrative is to reflect fully on the refugee students' life in a camp and then contribute to…

  2. Children's cancer camps: a sense of community, a sense of family.

    Science.gov (United States)

    Laing, Catherine M; Moules, Nancy J

    2014-05-01

    Childhood cancer is a family affair, and each year in Canada, approximately 1,400 children and adolescents under the age of 20 are diagnosed with cancer. Innumerable challenges accompany this diagnosis, and in recognition of the stress of childhood cancer, children's cancer camps arose in the 1970s to help children and their families escape the rigidity and severity of cancer treatment. Very little is known about these cancer camps, and to that end, a philosophical hermeneutic study was conducted to understand the meaning of children's cancer camps for the child with cancer and the family. Six families were interviewed to bring understanding to this topic. While the research included findings related to the concept of play, fit and acceptance, storytelling, and grief, this paper will detail the finding related to the solidarity of the community--the "camp family"--as one that creates intense, healing bonds.

  3. Prissy’s Quittin’ Time: The Black Camp Aesthetics of Kara Walker

    Directory of Open Access Journals (Sweden)

    Stephens Brian

    2017-12-01

    Full Text Available Through a close reading of Walker’s first silhouette instalment-the audaciously titled Gone, An Historical Romance of a Civil War as it Occurred Between the Dusky Thighs of One Young Negress and Her Heart (1994-this article examines how Walker utilises black camp to undermine both white supremacist and restrictive black uplift discourse. To be sure, the article is not an attempt to conflate these two, for the former is powerfully worse than the latter. However, it is necessary to explore how both discourses reinforce essentialist articulations of blackness and also to examine how black camp is a provocative analytic for their simultaneous disruption. Camp is usually understood as a queer-derived cultural practice that inflates identity to expose the constructed nature of gender. However, this article shows that black articulations of camp inflate identity to demonstrate the fiction of race as well.

  4. Health-related quality of life of Palestinian refugees inside and outside camps in Jordan.

    Science.gov (United States)

    Alduraidi, Hamza; Waters, Catherine M

    Jordan hosts more Palestinian refugees than any country in the world. Conditions under which people in a community live influence their health-related quality of life (HRQOL). The purpose of this descriptive comparative cross-sectional study was to compare HRQOL of Palestinian refugees in Jordan who live inside camps with those who live outside camps. Participants, recruited from inside the Baqa'a camp (n = 86) and the surrounding Abu Nsair community (n = 91), completed the World Health Organization Quality of Life Brief questionnaire. There were disparities in education and social relations and environment HRQOL related to income and residency, but not gender, among refugees. Refugees living inside camps, particularly if poorer, fared worse than refugees living outside camps. Enhanced programs and policies may be needed to improve HRQOL, education, and socioeconomics for camp refugees. Nursing's perspective on refugee health could make an important contribution to humanitarian efforts and health diplomacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Joining psychiatric care and faith healing in a prayer camp in Ghana: randomised trial.

    Science.gov (United States)

    Ofori-Atta, A; Attafuah, J; Jack, H; Baning, F; Rosenheck, R

    2018-01-01

    Care of people with serious mental illness in prayer camps in low-income countries generates human rights concerns and ethical challenges for outcome researchers. Aims To ethically evaluate joining traditional faith healing with psychiatric care including medications (Clinical trials.gov identifier NCT02593734). Residents of a Ghana prayer camp were randomly assigned to receive either indicated medication for schizophrenia or mood disorders along with usual prayer camp activities (prayers, chain restraints and fasting) (n = 71); or the prayer camp activities alone (n = 68). Masked psychologists assessed Brief Psychiatric Rating Scale (BPRS) outcomes at 2, 4 and 6 weeks. Researchers discouraged use of chaining, but chaining decisions remained under the control of prayer camp staff. Total BPRS symptoms were significantly lower in the experimental group (P = 0.003, effect size -0.48). There was no significant difference in days in chains. Joining psychiatric and prayer camp care brought symptom benefits but, in the short-run, did not significantly reduce days spent in chains. Declaration of interest None.

  6. CRP-dependent positive autoregulation and proteolytic degradation regulate competence activator Sxy of Escherichia coli

    DEFF Research Database (Denmark)

    Jaskólska, Milena; Gerdes, Kenn

    2015-01-01

    is positively autoregulated at the level of transcription by a mechanism that requires cAMP receptor protein (CRP), cyclic AMP (cAMP) and a CRP-S site in the sxy promoter. Similarly, we found no evidence that Sxy expression in E. coli was regulated at the translational level. However, our analysis revealed...

  7. Specialized Summer Camps: Provide Benefits for Children and Families Alike

    Science.gov (United States)

    Neff, John M.

    2009-01-01

    The arrival of summer signals a season of endless days of swimming, fishing, summer camps, and other outdoor activities. For children with chronic or terminal illnesses, it can be difficult to participate in many of these activities as well as challenging for parents to find summer camps that not only engage their children, but also offer the…

  8. Intracellular calcium modulation of voltage-gated sodium channels in ventricular myocytes

    NARCIS (Netherlands)

    Casini, Simona; Verkerk, Arie O.; van Borren, Marcel M. G. J.; van Ginneken, Antoni C. G.; Veldkamp, Marieke W.; de Bakker, Jacques M. T.; Tan, Hanno L.

    2009-01-01

    AIMS: Cardiac voltage-gated sodium channels control action potential (AP) upstroke and cell excitability. Intracellular calcium (Ca(i)(2+)) regulates AP properties by modulating various ion channels. Whether Ca(i)(2+) modulates sodium channels in ventricular myocytes, is unresolved. We studied

  9. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway.

    Directory of Open Access Journals (Sweden)

    Bhushan Vijay Nagpure

    Full Text Available Alzheimer's disease (AD is the leading cause of senile dementia in today's society. Its debilitating symptoms are manifested by disturbances in many important brain functions, which are influenced by adenosine. Hence, adenosinergic system is considered as a potential therapeutic target in AD treatment. In the present study, we found that sodium hydrosulfide (NaHS, an H2S donor, 100 µM attenuated HENECA (a selective A2A receptor agonist, 10-200 nM induced β-amyloid (1-42 (Aβ42 production in SH-SY5Y cells. NaHS also interfered with HENECA-stimulated production and post-translational modification of amyloid precursor protein (APP by inhibiting its maturation. Measurement of the C-terminal APP fragments generated from its enzymatic cleavage by β-site amyloid precursor protein cleaving enzyme 1 (BACE1 showed that NaHS did not have any significant effect on β-secretase activity. However, the direct measurements of HENECA-elevated γ-secretase activity and mRNA expressions of presenilins suggested that the suppression of Aβ42 production in NaHS pretreated cells was mediated by inhibiting γ-secretase. NaHS induced reductions were accompanied by similar decreases in intracellular cAMP levels and phosphorylation of cAMP responsive element binding protein (CREB. NaHS significantly reduced the elevated cAMP and Aβ42 production caused by forskolin (an adenylyl cyclase, AC agonist alone or forskolin in combination with IBMX (a phosphodiesterase inhibitor, but had no effect on those caused by IBMX alone. Moreover, pretreatment with NaHS significantly attenuated HENECA-elevated AC activity and mRNA expressions of various AC isoforms. These data suggest that NaHS may preferentially suppress AC activity when it was stimulated. In conclusion, H2S attenuated HENECA induced Aβ42 production in SH-SY5Y neuroblastoma cells through inhibiting γ-secretase via a cAMP dependent pathway.

  10. 2012 USGS Lidar: Brooks Camp (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) had a requirement for high resolution Lidar needed for mapping the Brooks Camp region of Katmai National Park in Alaska....

  11. Lyme Disease Comes to Camp.

    Science.gov (United States)

    Peterson, Michael

    1989-01-01

    Describes one summer camp's plan for dealing with Lyme disease. Describes the disease and the deer tick. Recommends avoiding tick exposure through clothing, frequent examination, showers, and avoiding high grass and brushy areas, and using chemical insect repellents and chemicals to kill ticks in deer mouse nests. (DHP)

  12. Targeted antiviral prophylaxis with oseltamivir in a summer camp setting.

    Science.gov (United States)

    Kimberlin, David W; Escude, Janell; Gantner, Janel; Ott, Jeanne; Dronet, Melissa; Stewart, Timothy A; Jester, Penelope; Redden, David T; Chapman, Whitney; Hammond, Rob

    2010-04-01

    To describe the effectiveness of containment of novel influenza A(H1N1) infection at a summer camp. Targeted use of oseltamivir phosphate by individuals in close contact with influenza-confirmed cases. Boys' camp in Alabama in July 2009. A total of 171 campers, 48 camp counselors, and 27 camp staff. Campers with confirmed influenza received oseltamivir and were immediately isolated and sent home. All boys and counselors in the infected child's adjoining cabins received prophylactic oseltamivir for 10 days, including 8 campers at higher risk for influenza infection (eg, those with asthma, seizure disorder, or diabetes). Alcohol-based hand sanitizer was provided at each of the daily activities, in the boys' cabins, and in the dining hall, and counselors were educated by the medical staff on the spread of influenza and its prevention through good hand hygiene. All cabins, bathrooms, and community sports equipment were sprayed or wiped down with disinfectant each day. Main Outcome Measure Virologic confirmation of influenza. Three of the 171 campers tested positive for influenza A during the course of the 2-week fourth session, for an attack rate of 1.8%. The probability of observing 3 or fewer infected campers if the attack rate was 12% is less than 1 in 10,000,000 (P hand sanitization and surface decontamination, a targeted approach to antiviral prophylaxis contained the spread of influenza in a summer camp setting.

  13. "Coaching the Camp Coach: Leadership Development for Small Organizations" Resource Review

    Directory of Open Access Journals (Sweden)

    Jason Hedrick

    2009-09-01

    Full Text Available Coaching is an important component of successful professional growth for leaders within any organization. However, organizations with limited resources may have challenges providing such coaching opportunities. This can be especially true for small business, non profit organizations and summer camps. “Coaching the Camp Coach; Leadership Development for Small Organizations” by Shelton, M. (2003 provides a framework, both in theory and practice, for camp leaders to improve interpersonal and intrapersonal skills through self evaluation. Accompanying the book is a CD-ROM that has multiple worksheets to be used in conjunction with the text.

  14. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    Science.gov (United States)

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  15. Distinct temporal roles for the promyelocytic leukaemia (PML protein in the sequential regulation of intracellular host immunity to HSV-1 infection.

    Directory of Open Access Journals (Sweden)

    Thamir Alandijany

    2018-01-01

    Full Text Available Detection of viral nucleic acids plays a critical role in the induction of intracellular host immune defences. However, the temporal recruitment of immune regulators to infecting viral genomes remains poorly defined due to the technical difficulties associated with low genome copy-number detection. Here we utilize 5-Ethynyl-2'-deoxyuridine (EdU labelling of herpes simplex virus 1 (HSV-1 DNA in combination with click chemistry to examine the sequential recruitment of host immune regulators to infecting viral genomes under low multiplicity of infection conditions. Following viral genome entry into the nucleus, PML-nuclear bodies (PML-NBs rapidly entrapped viral DNA (vDNA leading to a block in viral replication in the absence of the viral PML-NB antagonist ICP0. This pre-existing intrinsic host defence to infection occurred independently of the vDNA pathogen sensor IFI16 (Interferon Gamma Inducible Protein 16 and the induction of interferon stimulated gene (ISG expression, demonstrating that vDNA entry into the nucleus alone is not sufficient to induce a robust innate immune response. Saturation of this pre-existing intrinsic host defence during HSV-1 ICP0-null mutant infection led to the stable recruitment of PML and IFI16 into vDNA complexes associated with ICP4, and led to the induction of ISG expression. This induced innate immune response occurred in a PML-, IFI16-, and Janus-Associated Kinase (JAK-dependent manner and was restricted by phosphonoacetic acid, demonstrating that vDNA polymerase activity is required for the robust induction of ISG expression during HSV-1 infection. Our data identifies dual roles for PML in the sequential regulation of intrinsic and innate immunity to HSV-1 infection that are dependent on viral genome delivery to the nucleus and the onset of vDNA replication, respectively. These intracellular host defences are counteracted by ICP0, which targets PML for degradation from the outset of nuclear infection to promote v

  16. The accidental city : violence, economy and humanitarianism in Kakuma refugee camp Kenya

    OpenAIRE

    Jansen, B.J.

    2011-01-01

    In this research I examine social ordering processes in Kakuma refugee camp in Kenya. I view the camp as an accidental city, by which I challenge the image of the camp as a temporary and artificial waiting space or a protracted refugee crisis per se. The reference to the city is both metaphorically and physically relevant. First, the metaphorical dimension of the city places refugees and their negotiation of space into the realm of the normal and the possible, contrary to prevailing not...

  17. Intracellular pH is a tightly controlled signal in yeast

    NARCIS (Netherlands)

    Orij, R.; Brul, S.; Smits, G.J.

    2011-01-01

    Background: Nearly all processes in living cells are pH dependent, which is why intracellular pH (pHi) is a tightly regulated physiological parameter in all cellular systems. However, in microbes such as yeast, pHi responds to extracellular conditions such as the availability of nutrients. This

  18. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum.

    Directory of Open Access Journals (Sweden)

    Jose C Garcia-Garcia

    2009-06-01

    Full Text Available Intracellular bacteria have evolved mechanisms that promote survival within hostile host environments, often resulting in functional dysregulation and disease. Using the Anaplasma phagocytophilum-infected granulocyte model, we establish a link between host chromatin modifications, defense gene transcription and intracellular bacterial infection. Infection of THP-1 cells with A. phagocytophilum led to silencing of host defense gene expression. Histone deacetylase 1 (HDAC1 expression, activity and binding to the defense gene promoters significantly increased during infection, which resulted in decreased histone H3 acetylation in infected cells. HDAC1 overexpression enhanced infection, whereas pharmacologic and siRNA HDAC1 inhibition significantly decreased bacterial load. HDAC2 does not seem to be involved, since HDAC2 silencing by siRNA had no effect on A. phagocytophilum intracellular propagation. These data indicate that HDAC up-regulation and epigenetic silencing of host cell defense genes is required for A. phagocytophilum infection. Bacterial epigenetic regulation of host cell gene transcription could be a general mechanism that enhances intracellular pathogen survival while altering cell function and promoting disease.

  19. cAMP Stimulates Transepithelial Short-Circuit Current and Fluid Transport Across Porcine Ciliary Epithelium.

    Science.gov (United States)

    Cheng, Angela King-Wah; Civan, Mortimer M; To, Chi-Ho; Do, Chi-Wai

    2016-12-01

    To investigate the effects of cAMP on transepithelial electrical parameters and fluid transport across porcine ciliary epithelium. Transepithelial electrical parameters were determined by mounting freshly isolated porcine ciliary epithelium in a modified Ussing chamber. Similarly, fluid movement across intact ciliary body was measured with a custom-made fluid flow chamber. Addition of 1, 10, and 100 μM 8-Br-cAMP (cAMP) to the aqueous side (nonpigmented ciliary epithelium, NPE) induced a sustained increase in short-circuit current (Isc). Addition of niflumic acid (NFA) to the aqueous surface effectively blocked the cAMP-induced Isc stimulation. The administration of cAMP to the stromal side (pigmented ciliary epithelium, PE) triggered a significant stimulation of Isc only at 100 μM. No additive effect was observed with bilateral application of cAMP. Likewise, forskolin caused a significant stimulation of Isc when applied to the aqueous side. Concomitantly, cAMP and forskolin increased fluid transport across porcine ciliary epithelium, and this stimulation was effectively inhibited by aqueous NFA. Depleting Cl- in the bathing solution abolished the baseline Isc and inhibited the subsequent stimulation by cAMP. Pretreatment with protein kinase A (PKA) blockers (H89/KT5720) significantly inhibited the cAMP- and forskolin-induced Isc responses. Our results suggest that cAMP triggers a sustained stimulation of Cl- and fluid transport across porcine ciliary epithelium; Cl- channels in the NPE cells are potentially a cellular site for this PKA-sensitive cAMP-mediated response.

  20. An intracellular interaction network regulates conformational transitions in the dopamine transporter

    DEFF Research Database (Denmark)

    Kniazeff, Julie; Shi, Lei; Løland, Claus Juul

    2008-01-01

    Neurotransmitter:sodium symporters (NSS)(1) mediate sodium-dependent reuptake of neurotransmitters from the synaptic cleft and are targets for many psychoactive drugs. The crystal structure of the prokaryotic NSS protein, LeuT, was recently solved at high resolution; however, the mechanistic...... and the intracellular milieu. The mechanism that emerges from these findings may be unique to the NSS family, where the local disruption of ionic interactions modulates the transition of the transporter between the outward- and inward-facing conformations....

  1. Intracellular trafficking of the β-secretase and processing of amyloid precursor protein.

    Science.gov (United States)

    Zhi, Pei; Chia, Pei Zhi Cheryl; Chia, Cheryl; Gleeson, Paul A

    2011-09-01

    The main component of the amyloid plaques found in the brains of those with Alzheimer's disease (AD) is a polymerized form of the β-amyloid peptide (Aβ) and is considered to play a central role in the pathogenesis of this neurodegenerative disorder. Aβ is derived from the proteolytic processing of the amyloid precursor protein (APP). Beta site APP-cleaving enzyme, BACE1 (also known as β-secretase) is a membrane-bound aspartyl protease responsible for the initial step in the generation of Aβ peptide and is thus a prime target for therapeutic intervention. Substantive evidence now indicates that the processing of APP by BACE1 is regulated by the intracellular sorting of the enzyme and, moreover, perturbations in these intracellular trafficking pathways have been linked to late-onset AD. In this review, we highlight the recent advances in the understanding of the regulation of the intracellular sorting of BACE1 and APP and illustrate why the trafficking of these cargos represent a key issue for understanding the membrane-mediated events associated with the generation of the neurotoxic Aβ products in AD. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  2. Putting Your Camp on Video.

    Science.gov (United States)

    Peterson, Michael

    1997-01-01

    Creating a video to use in marketing camp involves selecting a format, writing the script, determining the video's length, obtaining release forms from campers who appear in the video, determining strategies for filming, choosing a narrator, and renting a studio and a mixing engineer (videotape editor). Includes distribution tips. (LP)

  3. An Improved Targeted cAMP Sensor to Study the Regulation of Adenylyl Cyclase 8 by Ca2+ Entry through Voltage-Gated Channels

    Science.gov (United States)

    Everett, Katy L.; Cooper, Dermot M. F.

    2013-01-01

    Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC) 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes. PMID:24086669

  4. An improved targeted cAMP sensor to study the regulation of adenylyl cyclase 8 by Ca2+ entry through voltage-gated channels.

    Directory of Open Access Journals (Sweden)

    Katy L Everett

    Full Text Available Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca(2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca(2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes.

  5. Suicide in inmates in Nazis and Soviet concentration camps: historical overview and critique

    Directory of Open Access Journals (Sweden)

    Francisco eLopez-Munoz

    2016-05-01

    Full Text Available Living conditions in concentration camps were harsh and often inhumane, leading many prisoners to commit suicide. We have reviewed this topic in Nazi concentration camps (KL, Soviet special camps and gulags, providing some preliminary data of our research. Data show that the incidence of suicide in Nazi KL could be up to 30 times higher than the general population, and was also much higher than in Soviet special camps (maybe due to more favorable conditions for prisoners and the abolishment of death penalty, while available data on Soviet gulags are contradictory. However, data interpretation is very controversial, because, for example, the Nazi KL authorities used to cover up the murder victims as suicides. Most of suicides were committed in the first years of imprisonment and the method of suicide most commonly used was hanging, although other methods included cutting blood vessels, poisoning, contact with electrified wire, or starvation. It is possible to differentiate two behavior when committing suicide; impulsive behavior (contact with electrified barbed or premeditated suicide (hanging up or through poison. In Soviet special camps, possible motives for suicides could include feelings of guilt for crimes committed, fear of punishment and a misguided understanding of honor on the eve of criminal trials. Self-destructive behaviors such as self-mutilation in gulag camps or prisoners who let themselves die have been widely reported. Committing suicide in concentration camps was a common practice, although precise data may be impossible to obtain.

  6. Down-regulation of Cell Surface Cyclic AMP Receptors and Desensitization of Cyclic AMP-stimulated Adenylate Cyclase by Cyclic AMP in Dictyostelium discoideum. Kinetics and Concentration Dependence

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1987-01-01

    cAMP binds to Dictyostelium discoideum surface receptors and induces a transient activation of adenylate cyclase, which is followed by desensitization. cAMP also induces a loss of detectable surface receptors (down-regulation). Cells were incubated with constant cAMP concentrations, washed free of

  7. Regulation of cAMP Responsive Element Binding Protein 3-Like 1 (Creb3l1 Expression by Orphan Nuclear Receptor Nr4a1

    Directory of Open Access Journals (Sweden)

    Michael P. Greenwood

    2017-12-01

    Full Text Available Cyclic AMP (cAMP inducible transcription factor cAMP responsive element binding protein 3 like 1 (Creb3l1 is strongly activated in the hypothalamus in response to hyperosmotic cues such as dehydration (DH. We have recently shown that Creb3l1 expression is upregulated by cAMP pathways in vitro, however the exact mechanisms are not known. Here we show that increasing Creb3l1 transcription by raising cAMP levels in mouse pituitary AtT20 cells automatically initiates cleavage of Creb3l1, leading to a greater abundance of the transcriptionally active N-terminal portion. Inhibiting protein synthesis indicated that de novo protein synthesis of an intermediary transcription factor was required for Creb3l1 induction. Strategic mining of our microarray data from dehydrated rodent hypothalamus revealed four candidates, reduced to two by analysis of acute hyperosmotic-induced transcriptional activation profiles in the hypothalamus, and one, orphan nuclear receptor Nr4a1, by direct shRNA mediated silencing in AtT20 cells. We show that activation of Creb3l1 transcription by Nr4a1 involves interaction with a single NBRE site in the promoter region. The ability to activate Creb3l1 transcription by this pathway in vitro is dictated by the level of methylation of a CpG island within the proximal promoter/5′UTR of this gene. We thus identify a novel cAMP-Nr4a1-Creb3l1 transcriptional pathway in AtT20 cells and also, our evidence would suggest, in the hypothalamus.

  8. Hormonal regulation of colour change in eyes of a cryptic fish

    Directory of Open Access Journals (Sweden)

    Helen Nilsson Sköld

    2015-01-01

    Full Text Available Colour change of the skin in lower vertebrates such as fish has been a subject of great scientific and public interest. However, colour change also takes place in eyes of fish and while an increasing amount of data indicates its importance in behaviour, very little is known about its regulation. Here, we report that both eye and skin coloration change in response to white to black background adaptation in live sand goby Pomatoschistus minutes, a bentic marine fish. Through in vitro experiments, we show that noradrenaline and melanocyte concentrating hormone (MCH treatments cause aggregation of pigment organelles in the eye chromatophores. Daylight had no aggregating effect. Combining forskolin to elevate intracellular cyclic adenosine monophosphate (cAMP with MCH resulted in complete pigment dispersal and darkening of the eyes, whereas combining prolactin, adrenocorticotrophic hormone (ACTH or melanocyte stimulating hormone (α-MSH with MCH resulted in more yellow and red eyes. ACTH and MSH also induced dispersal in the melanophores, resulting in overall darker eyes. By comparing analysis of eyes, skin and peritoneum, we conclude that the regulation pattern is similar between these different tissues in this species which is relevant for the cryptic life strategy of this species. With the exception of ACTH which resulted in most prominent melanophore pigment dispersal in the eyes, all other treatments provided similar results between tissue types. To our knowledge, this is the first study that has directly analysed hormonal regulation of physiological colour change in eyes of fish.

  9. [Widows of victims of Nazi concentration camps: their pathology].

    Science.gov (United States)

    Ryn, Z J

    1992-09-01

    The psychosocial situation of widows and orphans of victims of the Nazi concentration camps in Poland are presented. In 1984, 74 widows of victims from the Auschwitz-Birkenau camp were interviewed. This article describes widows' emotional-behavioral reactions when facing the imprisonment and death of their husbands, their difficulties in adapting themselves to widowhood, different adaptative forms of memories of their married life, and consequences relevant to widows' mental health and family, and social consequences of widowhood.

  10. Alexander Pechersky Testifies: an Open Page of Sobibor Death Camp History

    Directory of Open Access Journals (Sweden)

    Lev S. Simkin

    2013-01-01

    Full Text Available Here, the author introduces the interrogation of the witness Alexander Aronovich Pechersky, the leader of the German death camp Sobibor Revolt during the World War II. Special attention is attached to the daily life of the death camp. The picture of revolt preparation was completed

  11. Expression of the potential therapeutic target CXXC5 in primary acute myeloid leukemia cells - high expression is associated with adverse prognosis as well as altered intracellular signaling and transcriptional regulation.

    Science.gov (United States)

    Bruserud, Øystein; Reikvam, Håkon; Fredly, Hanne; Skavland, Jørn; Hagen, Karen-Marie; van Hoang, Tuyen Thy; Brenner, Annette K; Kadi, Amir; Astori, Audrey; Gjertsen, Bjørn Tore; Pendino, Frederic

    2015-02-20

    The CXXC5 gene encodes a transcriptional activator with a zinc-finger domain, and high expression in human acute myeloid leukemia (AML) cells is associated with adverse prognosis. We now characterized the biological context of CXXC5 expression in primary human AML cells. The global gene expression profile of AML cells derived from 48 consecutive patients was analyzed; cells with high and low CXXC5 expression then showed major differences with regard to extracellular communication and intracellular signaling. We observed significant differences in the phosphorylation status of several intracellular signaling mediators (CREB, PDK1, SRC, STAT1, p38, STAT3, rpS6) that are important for PI3K-Akt-mTOR signaling and/or transcriptional regulation. High CXXC5 expression was also associated with high mRNA expression of several stem cell-associated transcriptional regulators, the strongest associations being with WT1, GATA2, RUNX1, LYL1, DNMT3, SPI1, and MYB. Finally, CXXC5 knockdown in human AML cell lines caused significantly increased expression of the potential tumor suppressor gene TSC22 and genes encoding the growth factor receptor KIT, the cytokine Angiopoietin 1 and the selenium-containing glycoprotein Selenoprotein P. Thus, high CXXC5 expression seems to affect several steps in human leukemogenesis, including intracellular events as well as extracellular communication.

  12. Distancing Students From Nature: Science Camp and the Representation of the Human-Nature Relationship

    Science.gov (United States)

    Terrill, Laura Anne

    This study investigated the curricular representations of the environment and the human-environment relationship at one residential school sponsored science camp. Data gathered included field notes from observational time at the camp, interviews with staff and classroom teachers, and documents from the site's website, guides, manuals, and curricular guides. These data were analyzed to understand how the camp represented the human-environment relationship and the "proper" human-environment relationship to its participants. Analysis indicated that the camp's official and enacted curriculum was shaped in response to two perceived problems, (1) students were perceived as having a disconnected relationship with the outdoors and lacking in outdoor experiences; and (2) staff members of the camp believed that time for science during the school day had diminished and that students were not receiving adequate science instruction at school. In response, the goal of the camp was to connect students to the outdoors through hands-on, sensory, experience based science and outdoor education experiences. However, key aspects of the camp experience and the formal and enacted curriculum unintentionally positioned students as separate from nature. The camp experience presented a vacation like understanding of the human-environment relationship as students became tourists of the outdoors. Despite the site's goal of connecting students to the outdoors, the science camp experience worked to distance students from the outdoors by unintentionally representing the outdoors as a place that existed away from home and students' everyday lives. Notably, nature became a place that existed in the past, separate from modernity. Students were tourists in an exotic location - nature. They received tours of the foreign outdoors, had fun, and returned home to their ordinary lives that were separate and distinct from the natural world.

  13. Payment or Reimbursement for Certain Medical Expenses for Camp Lejeune Family Members. Final rule.

    Science.gov (United States)

    2017-05-05

    The Department of Veterans Affairs (VA) adopts as final an interim final rule addressing payment or reimbursement of certain medical expenses for family members of Camp Lejeune veterans. Under this rule, VA reimburses family members, or pays providers, for medical expenses incurred as a result of certain illnesses and conditions that may be associated with contaminants present in the base water supply at U.S. Marine Corps Base Camp Lejeune (Camp Lejeune), North Carolina, from August 1, 1953, to December 31, 1987. Payment or reimbursement is made within the limitations set forth in statute and Camp Lejeune family members receive hospital care and medical services that are consistent with the manner in which we provide hospital care and medical services to Camp Lejeune veterans. The statutory authority has since been amended to also include certain veterans' family members who resided at Camp Lejeune, North Carolina, for no less than 30 days (consecutive or nonconsecutive) between August 1, 1953, and December 31, 1987. This final rule will reflect that statutory change and will address public comments received in response to the interim final rule.

  14. Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum

    International Nuclear Information System (INIS)

    O’Day, Danton H.; Huber, Robert J.; Suarez, Andres

    2012-01-01

    Highlights: ► Extracellular calmodulin is present throughout growth and development in Dictyostelium. ► Extracellular calmodulin localizes within the ECM during development. ► Extracellular calmodulin inhibits cell proliferation and increases chemotaxis. ► Extracellular calmodulin exists in eukaryotic microbes. ► Extracellular calmodulin may be functionally as important as intracellular calmodulin. -- Abstract: The existence of extracellular calmodulin (CaM) has had a long and controversial history. CaM is a ubiquitous calcium-binding protein that has been found in every eukaryotic cell system. Calcium-free apo-CaM and Ca 2+ /CaM exert their effects by binding to and regulating the activity of CaM-binding proteins (CaMBPs). Most of the research done to date on CaM and its CaMBPs has focused on their intracellular functions. The presence of extracellular CaM is well established in a number of plants where it functions in proliferation, cell wall regeneration, gene regulation and germination. While CaM has been detected extracellularly in several animal species, including frog, rat, rabbit and human, its extracellular localization and functions are less well established. In contrast the study of extracellular CaM in eukaryotic microbes remains to be done. Here we show that CaM is constitutively expressed and secreted throughout asexual development in Dictyostelium where the presence of extracellular CaM dose-dependently inhibits cell proliferation but increases cAMP mediated chemotaxis. During development, extracellular CaM localizes within the slime sheath where it coexists with at least one CaMBP, the matricellular CaM-binding protein CyrA. Coupled with previous research, this work provides direct evidence for the existence of extracellular CaM in the Dictyostelium and provides insight into its functions in this model amoebozoan.

  15. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions

    International Nuclear Information System (INIS)

    Broeer, A.; Broeer, S.; Setiawan, I.; Lang, F.

    2001-01-01

    Full text: SN1 has recently been identified as one of the major glutamine transporters in hepatocytes and brain astrocytes. It appears to be the molecular correlate of the system N amino acid transporter. Two different transport mechanisms have been proposed for this transporter. Either an electroneutral mechanism, in which glutamine uptake is coupled to an exchange of 1Na + and 1H + , or an electrogenic mechanism coupled to the exchange of 2Na + against 1H + . This study was performed to solve the discrepancies and to investigate the reversibility of the transporter. When expressed in Xenopus laevis oocytes glutamine uptake activity increased strongly with increasing pH. In agreement with the pH-dependence we found that uptake of glutamine was accompanied by an alkalization of the cytosol, indicating that SN1 mediates Glutamine/H + -Antiport. Uptake of glutamine into oocytes was Na + -dependent. Analysis of the Na + -dependence of glutamine transport and Flux studies using 22 Na + indicated that two or more sodium ions were cotransported together with glutamine. However, at the same time intracellular Na + was exchanged against extracellular Na + . Taken together with the results of the pH-dependence it is proposed that SN1 mediates a Na + /Na + -exchange and a Na + /H + -exchange, both being coupled to the transport of glutamine. In agreement with this mechanism we found that acidic pH caused a reversal of the transporter. To investigate the source of the glutamine-induced inward currents, we compared inward currents generated by the 1Na + /glutamine cotransporter ATA1 with those generated by SN1. Currents induced by glutamine uptake in SN1 expressing oocytes were only a fraction of the currents induced by glutamine in ATA1 expressing oocytes, indicating that they were not generated by a stoichiometric uptake of ions. It is concluded that SN1 is tightly regulated by pH and intracellular Na + -ions and is capable of mediating glutamine uptake and release

  16. How Women Work: The Symbolic and Material Reproduction of Migrant Labor Camps in United States Agribusiness

    Directory of Open Access Journals (Sweden)

    Robert CARLEY

    2011-05-01

    Full Text Available This article analyzes gender exploitation in Mexican and Central American migrant farm worker camps in the U.S through small group interactions. We describe how gender exploitation and oppression is transmitted through the social fabric of the camp. We argue that the camp produces an endogenous system of social interaction, which maintains uneven gender relationships. Our data is based on observations of twenty-five women and girls in three labor camps in North Carolina. Research was conducted over a period of six weeks. We found that women who served as the primary bearers of patrimonial authority best maintained the camp community. We conclude that women who successfully reproduce the authority structure gain social status in the camps and are more likely to stay.

  17. Investigation of cAMP microdomains as a path to novel cancer diagnostics.

    Science.gov (United States)

    Desman, Garrett; Waintraub, Caren; Zippin, Jonathan H

    2014-12-01

    Understanding of cAMP signaling has greatly improved over the past decade. The advent of live cell imaging techniques and more specific pharmacologic modulators has led to an improved understanding of the intricacies by which cAMP is able to modulate such a wide variety of cellular pathways. It is now appreciated that cAMP is able to activate multiple effector proteins at distinct areas in the cell leading to the activation of very different downstream targets. The investigation of signaling proteins in cancer is a common route to the development of diagnostic tools, prognostic tools, and/or therapeutic targets, and in this review we highlight how investigation of cAMP signaling microdomains driven by the soluble adenylyl cyclase in different cancers has led to the development of a novel cancer biomarker. Antibodies directed against the soluble adenylyl cyclase (sAC) are highly specific markers for melanoma especially for lentigo maligna melanoma and are being described as "second generation" cancer diagnostics, which are diagnostics that determine the 'state' of a cell and not just identify the cell type. Due to the wide presence of cAMP signaling pathways in cancer, we predict that further investigation of both sAC and other cAMP microdomains will lead to additional cancer biomarkers. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A Multidisciplinary Science Summer Camp for Students with Emphasis on Environmental and Analytical Chemistry

    Science.gov (United States)

    Schwarz, Gunnar; Frenzel, Wolfgang; Richter, Wolfgang M.; Ta¨uscher, Lothar; Kubsch, Georg

    2016-01-01

    This paper presents the course of events of a five-day summer camp on environmental chemistry with high emphasis on chemical analysis. The annual camp was optional and open for students of all disciplines and levels. The duration of the summer camp was five and a half days in the Feldberg Lake District in northeast Germany (federal state of…

  19. Exploring early twenty-first century developed forest camping experiences and meanings

    Science.gov (United States)

    Barry A. Garst; Daniel R. Williams; Joseph W. Roggenbuck

    2010-01-01

    This study examines experiences and associated meanings of 38 family groups participating in developed camping. The analysis is guided by discursive social psychology in which expressed meanings reflect interpretive frames campers use to explain experiences. Key elements of camping experience include nature, social interaction, and comfort/convenience. The most common...

  20. Experience from mental health clinics held during medical service camps in Fiji.

    Science.gov (United States)

    Sivakumaran, Hemalatha; George, Kuruvilla; Naker, Gunu; Nadanachandran, Kathir

    2015-12-01

    We aim to describe the experience and findings of mental health clinics held during medical service camps in the rural settings of Fiji. Descriptive data collated at the end of the medical camps across 2011-2014 are used to highlight the main findings. The exposure to mental health assessments and brief interventions at these camps was a validating experience for both individuals and medical students attending the clinics. The most common presentations can be categorised under symptoms of depression, anxiety and relationship problems. The accessibility of mental health support services is a challenge in Fiji. Medical service camps can form an important pathway in promoting mental health awareness, especially amongst the rural communities of Fiji, and a useful platform for medical students to acquire some clinical exposure. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  1. Plasmalemmal V-H+-ATPases regulate intracellular pH in human lung microvascular endothelial cells

    International Nuclear Information System (INIS)

    Rojas, Jose D.; Sennoune, Souad R.; Maiti, Debasish; Martinez, Gloria M.; Bakunts, Karina; Wesson, Donald E.; Martinez-Zaguilan, Raul

    2004-01-01

    The lung endothelium layer is exposed to continuous CO 2 transit which exposes the endothelium to a substantial acid load that could be detrimental to cell function. The Na + /H + exchanger and HCO 3 - -dependent H + -transporting mechanisms regulate intracellular pH (pH cyt ) in most cells. Cells that cope with high acid loads might require additional primary energy-dependent mechanisms. V-H + -ATPases localized at the plasma membranes (pmV-ATPases) have emerged as a novel pH regulatory system. We hypothesized that human lung microvascular endothelial (HLMVE) cells use pmV-ATPases, in addition to Na + /H + exchanger and HCO 3 - -based H + -transporting mechanisms, to maintain pH cyt homeostasis. Immunocytochemical studies revealed V-H + -ATPase at the plasma membrane, in addition to the predicted distribution in vacuolar compartments. Acid-loaded HLMVE cells exhibited proton fluxes in the absence of Na + and HCO 3 - that were similar to those observed in the presence of either Na + , or Na + and HCO 3 - . The Na + - and HCO 3 - -independent pH cyt recovery was inhibited by bafilomycin A 1 , a V-H + -ATPase inhibitor. These studies show a Na + - and HCO 3 - -independent pH cyt regulatory mechanism in HLMVE cells that is mediated by pmV-ATPases

  2. Hydrogen sulfide regulates intracellular Ca2+ concentration in endothelial cells from excised rat aorta.

    Science.gov (United States)

    Moccia, Francesco; Bertoni, Giuseppe; Pla, Alessandra Florio; Dragoni, Silvia; Pupo, Emanuela; Merlino, Annalisa; Mancardi, Daniele; Munaron, Luca; Tanzi, Franco

    2011-09-01

    Hydrogen sulphide (H2S) is a recently discovered gasotransmitter that may regulate a growing number of endothelial functions, including nitric oxide (NO) release, proliferation, adhesion and migration, which are the key steps of angiogenesis. The mechanism whereby H2S impacts on endothelial physiology is still unclear: however, the aforementioned processes are driven by an increase in intracellular Ca2+ concentration ([Ca2+]i). In the present study, we exploited the excised rat aorta to gain insights into the regulation of [Ca2+]i by H2S within in situ endothelial cells (ECs). Sodium hydrosulphide (NaHS), a H2S donor, caused an elevation in [Ca2+]i, which disappeared in absence of extracellular Ca2+. NaHSinduced Ca2+ inflow was sensitive to high doses of Gd3+, but not BTP-2. Inhibition of the reverse-mode of the Na+-Ca2+ exchanger (NCX), with KB-R7943 or upon removal of extracellular Na+, abrogated the Ca2+ response to NaHS. Moreover, NaHS-elicited Ca2+ entry was significantly reduced by TEA and glybenclamide, which hinted at the involvement of ATP-dependent K+ (KATP) channels. Conversely, NaHS-evoked Ca2+ signal was not affected by the reducing agent, dithiothreitol. Acute addition of NaHS hindered both Ca2+ release and Ca2+ entry induced by ATP, a physiological agonist of ECs. Consistently, inhibition of endogenous H2S synthesis with DL-propargylglycine impaired ATP-induced Ca2+ inflow, whereas it did not affect Ca2+ mobilization. These data provide the first evidence that H2S may stimulate Ca2+ influx into ECs by recruiting the reverse-mode of NCX and KATP channels. In addition, they show that such gasotransmitter may modulate the Ca2+ signals elicited by physiological stimuli in intact endothelium.

  3. Intracellular glutathione status regulates mouse bone marrow monocyte-derived macrophage differentiation and phagocytic activity

    International Nuclear Information System (INIS)

    Kim, Jin-Man; Kim, Hyunsoo; Kwon, Soon Bok; Lee, Soo Young; Chung, Sung-Chang; Jeong, Dae-Won; Min, Byung-Moo

    2004-01-01

    Although a redox shift can regulate the development of cells, including proliferation, differentiation, and survival, the role of the glutathione (GSH) redox status in macrophage differentiation remains unclear. In order to elucidate the role of a redox shift, macrophage-like cells were differentiated from the bone marrow-derived monocytes that were treated with a macrophage colony stimulating factor (M-CSF or CSF-1) for 3 days. The macrophagic cells were characterized by a time-dependent increase in three major symptoms: the number of phagocytic cells, the number of adherent cells, and the mRNA expression of c-fms, a M-CSF receptor that is one of the macrophage-specific markers and mediates development signals. Upon M-CSF-driven macrophage differentiation, the GSH/GSSG ratio was significantly lower on day 1 than that observed on day 0 but was constant on days 1-3. To assess the effect of the GSH-depleted and -repleted status on the differentiation and phagocytosis of the macrophages, GSH depletion by BSO, a specific inhibitor of the de novo GSH synthesis, inhibited the formation of the adherent macrophagic cells by the down-regulation of c-fms, but did not affect the phagocytic activity of the macrophages. To the contrary, GSH repletion by the addition of NAC, which is a GSH precursor, or reduced GSH in media had no effect on macrophage differentiation, and led to a decrease in the phagocytic activity. Furthermore, we observed that there is checkpoint that is capable of releasing from the inhibition of the formation of the adherent macrophagic cells according to GSH depletion by BSO. Summarizing, these results indicate that the intracellular GSH status plays an important role in the differentiation and phagocytosis of macrophages

  4. Self-Awareness and Leadership Skills of Female Students in Outdoor Camp

    Science.gov (United States)

    Esentas, Melike; Özbey, Selhan; Güzel, Pinar

    2017-01-01

    This study aims to determine the role of youth camp practices, organised by the Ministry of Youth and Sports, in the development of self-awareness and leadership skills of female students participating in youth camps. As a result of analysis of the data collected with triangulation method--observation, focus group discussions and document…

  5. The Kurse of Kumbayah: Five Camp Stereotypes That Derail New Staff.

    Science.gov (United States)

    Malinowski, Jon C.

    2003-01-01

    The camp community is plagued by various stereotypes, including that camps and their staff are excessively happy, of poor quality, focused on partying and debauchery, scary, or overly strict. These cliches are perpetuated by the mass media. Each stereotype is discussed, and strategies for countering them during staff training are presented. (TD)

  6. Characterization of Vaccination Policies for Attendance and Employment at Day/Summer Camps in New York State.

    Science.gov (United States)

    Prescott, William A; Violanti, Kelsey C; Fusco, Nicholas M

    2018-01-01

    New York state requires day/summer camps to keep immunization records for all enrolled campers and strongly recommends requiring vaccination for all campers and staff. The objective of this study was to characterize immunization requirements/recommendations for children/adolescents enrolled in and staff employed at day/summer camps in New York state. An electronic hyperlink to a 9-question survey instrument was distributed via e-mail to 178 day/summer camps located in New York state cities with a population size greater than 100 000 people. A follow-up telephone survey was offered to nonresponders. The survey instrument included questions pertaining to vaccination documentation policies for campers/staff and the specific vaccines that the camp required/recommended. Fisher's exact and Chi-square tests were used to analyze categorical data. Sixty-five day/summer camps responded to the survey (36.5% response rate): 48 (73.8%) and 23 (41.8%) camps indicated having a policy/procedure for documenting vaccinations for campers and staff, respectively. Camps that had a policy/procedure for campers were more likely to have a policy/procedure for staff ( P = .0007). Age-appropriate vaccinations that were required/recommended for campers by at least 80% of camps included: measles, mumps, and rubella (MMR), diphtheria, tetanus, and pertussis (DTaP), hepatitis B, inactivated/oral poliovirus (IPV/OPV), Haemophilus influenzae type b (Hib), and varicella. Age-appropriate vaccinations that were required/recommended for staff by at least 80% of camps included: DTaP, hepatitis B, IPV/OPV, MMR, meningococcus, varicella, Hib, and tetanus, diphtheria, and pertussis (Tdap). Vaccination policies at day/summer camps in New York state appear to be suboptimal. Educational outreach may encourage camps to strengthen their immunization policies, which may reduce the transmission of vaccine-preventable diseases.

  7. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  8. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells.

    Science.gov (United States)

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2018-04-01

    Exposure to specific electromagnetic field (EMF) patterns can affect a variety of biological systems. We have shown that exposure to Thomas-EMF, a low-intensity, frequency-modulated (25-6 Hz) EMF pattern, inhibited growth and altered cell signaling in malignant cells. Exposure to Thomas-EMF for 1 h/day inhibited the growth of malignant cells including B16-BL6 mouse melanoma cells, MDA-MB-231, MDA-MB-468, BT-20, and MCF-7 human breast cancer and HeLa cervical cancer cells but did not affect non-malignant cells. The Thomas-EMF-dependent changes in cell proliferation were mediated by adenosine 3',5'-cyclic monophosphate (cAMP) and extracellular-signal-regulated kinase (ERK) signaling pathways. Exposure of malignant cells to Thomas-EMF transiently changed the level of cellular cAMP and promoted ERK phosphorylation. Pharmacologic inhibitors (SQ22536) and activators (forskolin) of cAMP production both blocked the ability of Thomas-EMF to inhibit cell proliferation, and an inhibitor of the MAP kinase pathway (PD98059) was able to partially block Thomas-EMF-dependent inhibition of cell proliferation. Genetic modulation of protein kinase A (PKA) in B16-BL6 cells also altered the effect of Thomas-EMF on cell proliferation. Cells transfected with the constitutively active form of PKA (PKA-CA), which interfered with ERK phosphorylation, also interfered with the Thomas-EMF effect on cell proliferation. The non-malignant cells did not show any EMF-dependent changes in cAMP levels, ERK phosphorylation, or cell growth. These data indicate that exposure to the specific Thomas-EMF pattern can inhibit the growth of malignant cells in a manner dependent on contributions from the cAMP and MAP kinase pathways. Bioelectromagnetics. 39;217-230, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Glycemic control in diabetic children and adolescents after attending diabetic camp

    Directory of Open Access Journals (Sweden)

    Erwin P. Soenggono

    2011-10-01

    Conclusion Glycemic control in T1DM children and adolescents was significantly improved 3 months after attending diabetic camp compared to that before attending camp. According to subjects’ self-assessment by PedsQL questionnaire, no subjects indicated a poor quality of life for the duration of their illness. [Paediatr Indones. 2011;51:294-7].

  10. The UXO Classification Demonstration at the Former Camp Butner, NC

    Science.gov (United States)

    2011-07-01

    Symposium and Workshop, Technical Session 2D: Classification Methods for Military Munitions Response. 1 December 2010. [49] Pasion , L. Personal...Communication. 15 June 2011. [50] Pasion , L. “Practical Strategies for UXO Discrimination: Camp Butner Analysis.” ESTCP Munitions Management In-Progress...Review. 9 February 2011. [51] Pasion , L., et al. “UXO Discrimination Using Full Coverage and Cued Interrogation Data Sets at Camp Butner, NC.” Partners

  11. Adenyl cyclases and cAMP in plant signaling - Past and present

    KAUST Repository

    Gehring, Christoph A.

    2010-06-25

    In lower eukaryotes and animals 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins. 2010 Gehring; licensee BioMed Central Ltd.

  12. Adenyl cyclases and cAMP in plant signaling - Past and present

    KAUST Repository

    Gehring, Christoph A

    2010-01-01

    In lower eukaryotes and animals 3'-5'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins. 2010 Gehring; licensee BioMed Central Ltd.

  13. ATPase and GTPase Tangos Drive Intracellular Protein Transport.

    Science.gov (United States)

    Shan, Shu-Ou

    2016-12-01

    The GTPase superfamily of proteins provides molecular switches to regulate numerous cellular processes. The 'GTPase switch' paradigm, in which external regulatory factors control the switch of a GTPase between 'on' and 'off' states, has been used to interpret the regulatory mechanism of many GTPases. However, recent work unveiled a class of nucleotide hydrolases that do not adhere to this classical paradigm. Instead, they use nucleotide-dependent dimerization cycles to regulate key cellular processes. In this review article, recent studies of dimeric GTPases and ATPases involved in intracellular protein targeting are summarized. It is suggested that these proteins can use the conformational plasticity at their dimer interface to generate multiple points of regulation, thereby providing the driving force and spatiotemporal coordination of complex cellular pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sorting Tubules Regulate Blood-Brain Barrier Transcytosis

    Directory of Open Access Journals (Sweden)

    Roberto Villaseñor

    2017-12-01

    Full Text Available Transcytosis across the blood-brain barrier (BBB regulates key processes of the brain, but the intracellular sorting mechanisms that determine successful receptor-mediated transcytosis in brain endothelial cells (BECs remain unidentified. Here, we used Transferrin receptor-based Brain Shuttle constructs to investigate intracellular transport in BECs, and we uncovered a pathway for the regulation of receptor-mediated transcytosis. By combining live-cell imaging and mathematical modeling in vitro with super-resolution microscopy of the BBB, we show that intracellular tubules promote transcytosis across the BBB. A monovalent construct (sFab sorted for transcytosis was localized to intracellular tubules, whereas a bivalent construct (dFab sorted for degradation formed clusters with impaired transport along tubules. Manipulating tubule biogenesis by overexpressing the small GTPase Rab17 increased dFab transport into tubules and induced its transcytosis in BECs. We propose that sorting tubules regulate transcytosis in BECs and may be a general mechanism for receptor-mediated transport across the BBB.

  15. Octopamine regulates antennal sensory neurons via daytime-dependent changes in cAMP and IP3 levels in the hawkmoth Manduca sexta.

    Directory of Open Access Journals (Sweden)

    Thomas Schendzielorz

    Full Text Available The biogenic amine octopamine (OA mediates reward signals in olfactory learning and memory as well as circadian rhythms of sleep and activity. In the crepuscular hawkmoth Manduca sexta, OA changed pheromone detection thresholds daytime-dependently, suggesting that OA confers circadian control of olfactory transduction. Thus, with enzyme-linked immunosorbent assays we searched hawkmoth antennae for daytime-dependent changes in the concentration of OA and its respective second messengers. Antennal stimulation with OA raised cAMP- and IP3 levels. Furthermore, antennae expressed daytime-dependent changes in the concentration of OA, with maxima at Zeitgebertime (ZT 20 when moths were active and also maximal concentrations of cAMP occurred. Maximal IP3 levels at ZT 18 and 23 correlated with maximal flight activity of male moths, while minimal IP3 levels at dusk correlated with peaks of feeding activity. Half maximal effective concentration (EC50 for activation of the OA-receptor decreased during the moth's activity phase suggesting daytime-dependent changes in OA receptor sensitivity. With an antiserum against tyramine, the precursor of OA, two centrifugal neurons were detected projecting out into the sensory cell layer of the antenna, possibly mediating more rapid stimulus-dependent OA actions. Indeed, in fast kinetic assays OA receptor stimulation increased cAMP concentrations within 50 msec. Thus, we hypothesize that fast, stimulus-dependent centrifugal control of OA-release in the antenna occurs. Additional slow systemic OA actions might be based upon circadian release of OA into the hemolymph mediating circadian rhythms of antennal second messenger levels. The resulting rhythms of odor sensitivity are suggested to underlie circadian rhythms in odor-mediated behavior.

  16. Culture Camp, Ethnic Identity, and Adoption Socialization for Korean Adoptees: A Pretest and Posttest Study

    Science.gov (United States)

    Baden, Amanda L.

    2015-01-01

    This study explores the impact of racial-ethnic socialization on adopted South Korean children and adolescents who attended a sleepaway Korean culture camp for one week. This camp provided racial-ethnic socialization experiences via exposure to camp counselors, staff, and teachers who were Korean Americans, Korean nationals, and Korean adult…

  17. Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination.

    Directory of Open Access Journals (Sweden)

    Ketty Bacallao

    Full Text Available Isolated Schwann cells (SCs respond to cAMP elevation by adopting a differentiated post-mitotic state that exhibits high levels of Krox-20, a transcriptional enhancer of myelination, and mature SC markers such as the myelin lipid galactocerebroside (O1. To address how cAMP controls myelination, we performed a series of cell culture experiments which compared the differentiating responses of isolated and axon-related SCs to cAMP analogs and ascorbate, a known inducer of axon ensheathment, basal lamina formation and myelination. In axon-related SCs, cAMP induced the expression of Krox-20 and O1 without a concomitant increase in the expression of myelin basic protein (MBP and without promoting axon ensheathment, collagen synthesis or basal lamina assembly. When cAMP was provided together with ascorbate, a dramatic enhancement of MBP expression occurred, indicating that cAMP primes SCs to form myelin only under conditions supportive of basal lamina formation. Experiments using a combination of cell permeable cAMP analogs and type-selective adenylyl cyclase (AC agonists and antagonists revealed that selective transmembrane AC (tmAC activation with forskolin was not sufficient for full SC differentiation and that the attainment of an O1 positive state also relied on the activity of the soluble AC (sAC, a bicarbonate sensor that is insensitive to forskolin and GPCR activation. Pharmacological and immunological evidence indicated that SCs expressed sAC and that sAC activity was required for morphological differentiation and the expression of myelin markers such as O1 and protein zero. To conclude, our data indicates that cAMP did not directly drive myelination but rather the transition into an O1 positive state, which is perhaps the most critical cAMP-dependent rate limiting step for the onset of myelination. The temporally restricted role of cAMP in inducing differentiation independently of basal lamina formation provides a clear example of the

  18. Creating a social work link to the burn community: a research team goes to burn camp.

    Science.gov (United States)

    Williams, Nancy R; Reeves, Patricia M; Cox, Ellen R; Call, Serena B

    2004-01-01

    Social work faculty and graduate students conducted focus groups with 52 burn-injured adolescents from three burn camps to explore perceptions of their camp experience. Three themes emerged from data analysis that suggest burn camps play an important role in participants' lives. Camp is a place where burn-injured adolescents: (1) feel "normal" and accepted; (2) acquire insight in regard to self and meaning in life; and (3) gain confidence, increase self-esteem, and develop empathy. This project highlights how the use of qualitative research methods with grassroots organizations such as burn camps can serve as a link to greater social work involvement with this community.

  19. Injury and illness epidemiology at a summer sport-camp program, 2008 through 2011.

    Science.gov (United States)

    Oller, Daria M; Buckley, W E; Sebastianelli, Wayne J; Vairo, Giampietro L

    2015-03-01

    University-sponsored summer sport camps often employ athletic trainers; however, there is a dearth of epidemiologic studies describing the injury and illness experience of sport-camp participants to guide clinicians. To describe the injury and illness experience of youth participants at a university-sponsored summer sport-camp program during a 4-year period. Descriptive epidemiology study. A National Collegiate Athletic Association Division I university that sponsored 76 to 81 camps for 28 sports each summer. A total of 44, 499 camp participants enrolled during the 4 years. Male and female participants ranged in age from 10 to 17 years and in athletic skill from novice to elite. Data from handwritten injury and illness log books, maintained by sports health care personnel, were accessed retrospectively, entered into an electronic spreadsheet, and coded. Data were applied to the National Athletic Injury/Illness Reporting System. Participant-personnel contacts, defined as any instance when a participant sought health care services from personnel, were calculated per 100 participants. Injury and illness rates were calculated per 10 ,000 exposures, measured in participant-days. The distribution of injury and illness conditions and affected body regions were calculated. There were 11 ,735 contacts, for an overall rate of 26 per 100 participants, and 4949 injuries and illnesses, for a rate of 1 per 10, 000 participant-days. Participants at single-sex camps were less likely to sustain injuries and illnesses than participants at coeducational camps (rate ratio [RR] = 0.49; 95% confidence interval = 0.45, 0. 35; P < .001, and RR = 0.47; 95% confidence interval = 0.43, 0.51; P < .001, respectively). The lower extremity was injured most frequently (27.9%). Most injury and illness conditions were dermatologic (37.1%). The contact and injury and illness differences observed among sports and between sexes demonstrated potential differences in the sports health care needs

  20. Assisting Groundwater Exploration for Refugee/IDP Camps by Remote Sensing and GIS

    Science.gov (United States)

    Wendt, Lorenz; Robl, Jörg; Hilberg, Sylke; Braun, Andreas; Rogenhofer, Edith; Dirnberger, Daniel; Strasser, Thomas; Füreder, Petra; Lang, Stefan

    2015-04-01

    Refugee camps and camps of internally displaced people (IDP) often form spontaneously or have to be established rapidly in remote, rural areas, where little is known about the hydrogeological situation. This requires a rapid assessment of the availability of groundwater to enable humanitarian organisations like Médecins Sans Frontières (MSF) to supply the camp population with sufficient potable water. Within the project EO4HumEn, hydrogeological reconnaissance maps are produced for MSF by integrating remote sensing data like SRTM, Landsat, ASTER, optical very-high resolution (VHR) imagery, and SAR data. Depending on the specific situation of the camps, these maps contain topography, permanent and temporary water bodies, hard rock outcrops and their geological variability, locations of existing boreholes and wells (if available), potential contamination sources, roads and obstacles (e.g. swampland). In areas characterized by unconsolidated sediments, specific landforms like alluvial fans, meanders, levees, deltas or beach ridges are identified. Here, the reconnaissance map can be sufficient to plan drill sites for groundwater abstraction. In hard rock areas, the lithology is determined, if the vegetation cover allows it. Fractures, faults and karst features are mapped to resolve the structural setting. Anomalous vegetation patterns are interpreted in terms of near-surface groundwater. The maps provide an overview of the camp surroundings, and allow the field hydrogeologists to focus their investigations on the most promising locations. The maps are complemented by a literature review on geological maps, articles and reports available for the area of interest. Assisting groundwater exploration by remote sensing data analysis is not a new development, but it has not been widely adopted by the humanitarian community as interfaces between humanitarian organisations and GI-scientists were missing. EO4HumEn fills this gap by a strong interdisciplinary cooperation

  1. Theobromine, the primary methylxanthine found in Theobroma cacao, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase-4, extracellular signal-regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor-kappa B.

    Science.gov (United States)

    Sugimoto, Naotoshi; Miwa, Shinji; Hitomi, Yoshiaki; Nakamura, Hiroyuki; Tsuchiya, Hiroyuki; Yachie, Akihiro

    2014-01-01

    Theobromine, a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. We previously showed that methylxanthines, including caffeine and theophylline, have antitumor and antiinflammatory effects, which are in part mediated by their inhibition of phosphodiesterase (PDE). A member of the PDE family, PDE4, is widely expressed in and promotes the growth of glioblastoma, the most common type of brain tumor. The purpose of this study was to determine whether theobromine could exert growth inhibitory effects on U87-MG, a cell line derived from human malignant glioma. We show that theobromine treatment elevates intracellular cAMP levels and increases the activity of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, whereas it attenuates p44/42 extracellular signal-regulated kinase activity and the Akt/mammalian target of rapamycin kinase and nuclear factor-kappa B signal pathways. It also inhibits cell proliferation. These results suggest that foods and beverages containing cocoa bean extracts, including theobromine, might be extremely effective in preventing human glioblastoma.

  2. Measurement of cAMP in an undergraduate teaching laboratory, using ALPHAscreen technology.

    Science.gov (United States)

    Bartho, Joseph D; Ly, Kien; Hay, Debbie L

    2012-02-14

    Adenosine 3',5'-monophosphate (cAMP) is a cellular second messenger with central relevance to pharmacology, cell biology, and biochemistry teaching programs. cAMP is produced from adenosine triphosphate by adenylate cyclase, and its production is reduced or enhanced upon activation of many G protein-coupled receptors. Therefore, the measurement of cAMP serves as an indicator of receptor activity. Although there are many assays available for measuring cAMP, few are suitable for large class teaching, and even fewer seem to have been adapted for this purpose. Here, we describe the use of bead-based ALPHAscreen (Amplified Luminescent Proximity Homogenous Assay) technology for teaching a class of more than 300 students the practical aspects of detecting signal transduction. This technology is applicable to the measurement of many different signaling pathways. This resource is designed to provide a practical guide for instructors and a useful model for developing other classes using similar technologies.

  3. Selective effect of hydroxyapatite nanoparticles on osteoporotic and healthy bone formation correlates with intracellular calcium homeostasis regulation.

    Science.gov (United States)

    Zhao, Rui; Xie, Pengfei; Zhang, Kun; Tang, Zhurong; Chen, Xuening; Zhu, Xiangdong; Fan, Yujiang; Yang, Xiao; Zhang, Xingdong

    2017-09-01

    Adequate bone substitutes osseointegration has been difficult to achieve in osteoporosis. Hydroxyapatite of the osteoporotic bone, secreted by pathologic osteoblasts, had a smaller crystal size and lower crystallinity than that of the normal. To date, little is known regarding the interaction of synthetic hydroxyapatite nanoparticles (HANPs) with osteoblasts born in bone rarefaction. The present study investigated the biological effects of HANPs on osteoblastic cells derived from osteoporotic rat bone (OVX-OB), in comparison with the healthy ones (SHM-OB). A selective effect of different concentrations of HANPs on the two cell lines was observed that the osteoporotic osteoblasts had a higher tolerance. Reductions in cell proliferation, ALP activity, collagen secretion and osteoblastic gene expressions were found in the SHM-OB when administered with HANPs concentration higher than 25µg/ml. In contrast, those of the OVX-OB suffered no depression but benefited from 25 to 250µg/ml HANPs in a dose-dependent manner. We demonstrated that the different effects of HANPs on osteoblasts were associated with the intracellular calcium influx into the endoplasmic reticulum. The in vivo bone defect model further confirmed that, with a critical HANPs concentration administration, the osteoporotic rats had more and mechanically matured new bone formation than the non-treated ones, whilst the sham rats healed no better than the natural healing control. Collectively, the observed epigenetic regulation of osteoblastic cell function by HANPs has significant implication on defining design parameters for a potential therapeutic use of nanomaterials. In this study, we investigated the biological effects of hydroxyapatite nanoparticles (HANPs) on osteoporotic rat bone and the derived osteoblast. Our findings revealed a previously unrecognized phenomenon that the osteoporotic individuals could benefit from higher concentrations of HANPs, as compared with the healthy individuals. The in

  4. Sexual Harassment at Camp: Reducing Liability.

    Science.gov (United States)

    Oakleaf, Linda; Grube, Angela Johnson

    2003-01-01

    Employers are responsible for sexual harassment perpetrated by a supervisor. Camps may be responsible for sexual harassment between campers. Steps to reduce liability include providing multiple channels for reporting sexual harassment; having written policies prohibiting sexual harassment and procedures for reporting it; posting these policies and…

  5. Pathogenic mechanisms of intracellular bacteria.

    Science.gov (United States)

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  6. Parathyroid hormone contributes to the down-regulation of cytochrome P450 3A through the cAMP/PI3K/PKC/PKA/NF-κB signaling pathway in secondary hyperparathyroidism.

    Science.gov (United States)

    Watanabe, Hiroshi; Sugimoto, Ryusei; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Fujimura, Rui; Bi, Jing; Nishida, Kento; Sakaguchi, Yoshiaki; Murata, Michiya; Maeda, Hitoshi; Hirata, Kenshiro; Jingami, Sachiko; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-12-01

    Chronic kidney disease (CKD), which affects, not only renal clearance, but also non-renal clearance, is accompanied by a decline in renal function. Although it has been suggested that humoral factors, such as uremic toxins that accumulate in the body under CKD conditions, could be involved in the changes associated with non-renal drug clearance, the overall process is not completely understood. In this study, we report on the role of parathyroid hormone (PTH), a middle molecule uremic toxin, on the expression of drug metabolizing or transporting proteins using rats with secondary hyperparathyroidism (SHPT) as models. In SHPT rats, hepatic and intestinal CYP3A expression was suppressed, but the changes were recovered by the administration of the calcimimetic cinacalcet, a PTH suppressor. Under the same experimental conditions, a pharmacokinetic study using orally administered midazolam, a substrate for CYP3A, showed that the AUC was increased by 5 times in SHPT rats, but that was partially recovered by a cinacalcet treatment. This was directly tested in rat primary hepatocytes and intestinal Caco-2 cells where the expression of the CYP3A protein was down-regulated by PTH (1-34). In Caco-2 cells, PTH (1-34) down-regulated the expression of CYP3A mRNA, but an inactive PTH derivative (13-34) had no effect. 8-Bromo-cyclic adenosine monophosphate, a membrane-permeable cAMP analog, reduced mRNA expression of CYP3A whereas the inhibitors of PI3K, NF-κB, PKC and PKA reversed the PTH-induced CYP3A down-regulation. These results suggest that PTH down-regulates CYP3A through multiple signaling pathways, including the PI3K/PKC/PKA/NF-κB pathway after the elevation of intracellular cAMP, and the effect of PTH can be prevented by cinacalcet treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    Science.gov (United States)

    Namkoong, Eun; Shin, Yong-Hwan; Bae, Jun-Seok; Choi, Seulki; Kim, Minkyoung; Kim, Nahyun; Hwang, Sung-Min; Park, Kyungpyo

    2015-01-01

    Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  8. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    Directory of Open Access Journals (Sweden)

    Eun Namkoong

    Full Text Available Sodium bicarbonate cotransporters (NBCs are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1 and electrogenic NBC (NBCe1, with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs and HSG cells. Intracellular pH (pHi was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  9. Hands-on Summer Camp to Attract K-12 Students to Engineering Fields

    Science.gov (United States)

    Yilmaz, Muhittin; Ren, Jianhong; Custer, Sheryl; Coleman, Joyce

    2010-01-01

    This paper explains the organization and execution of a summer engineering outreach camp designed to attract and motivate high school students as well as increase their awareness of various engineering fields. The camp curriculum included hands-on, competitive design-oriented engineering projects from several disciplines: the electrical,…

  10. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana

    KAUST Repository

    Thomas, Ludivine; Marondedze, Claudius; Ederli, Luisa; Pasqualini, Stefania; Gehring, Christoph A

    2013-01-01

    The second messenger 3'-5'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses

  11. High glucose enhances cAMP level and extracellular signal-regulated kinase phosphorylation in Chinese hamster ovary cell: Usage of Br-cAMP in foreign protein β-galactosidase expression.

    Science.gov (United States)

    Lin, Hsiao-Hsien; Lee, Tsung-Yih; Liu, Ting-Wei; Tseng, Ching-Ping

    2017-07-01

    Glucose is a carbon source for Chinese hamster ovary (CHO) cell growth, while low growth rate is considered to enhance the production of recombinant proteins. The present study reveals that glucose concentrations higher than 1 g/L reduce the growth rate and substantially increase in cAMP (∼300%) at a high glucose concentration (10 g/L). High glucose also enhances the phosphorylation of extracellular signal-regulated kinase (ERK) and p27 kip by Western blot analysis. To determine whether the phosphorylation of ERK is involved in the mechanism, a cyclic-AMP dependent protein kinase A (PKA) inhibitor (H-8) or MEK (MAPKK) inhibitor (PD98059) was added to block ERK phosphorylation. We show that both the high glucose-induced ERK phosphorylation and growth rate return to baseline levels. These results suggest that the cAMP/PKA and MAP signaling pathways are involved in the abovementioned mechanism. Interestingly, the direct addition of 8-bromo-cAMP (Br-cAMP), a membrane-permeable cAMP analog, can mimic the similar effects produced by high glucose. Subsequently Br-cAMP could induce β-galactosidase (β-Gal) recombinant protein expression by 1.6-fold. Furthermore, Br-cAMP can additionally enhance the β-Gal production (from 2.8- to 4.5-fold) when CHO cells were stimulated with glycerol, thymidine, dimethyl sulfoxide, pentanoic acid, or sodium butyrate. Thus, Br-cAMP may be used as an alternative agent in promoting foreign protein expression for CHO cells. Copyright © 2017. Published by Elsevier B.V.

  12. Participation of intracellular signal transduction in the radio-adaptive response induced by low-dose X-irradiation in human embryonic cells

    International Nuclear Information System (INIS)

    Ishii, Keiichiro; Hoshi, Yuko; Iwasaki, Toshiyasu; Watanabe, Masami.

    1996-01-01

    To elucidate the induction mechanism of radio-adaptive response in normal cells, we searched the literatures of the intracellular signal transduction. Furthermore, we examined the induction of radio-adaptive response with or without inhibitors of several kinds of protein kinase. The major results obtained were as follows; (1) According to the literature survey it is revealed that there are 4 intracellular signal transduction pathways which are possibly involved in the induction of radio-adaptive response: pathways depending on cAMP, calcium, cGMP, or protein-tyrosine kinase. (2) Addition of either inhibitor of protein-tyrosine kinase or protein kinase C to the cell culture medium during the low-dose X-irradiation inhibited the induction of radio-adaptive response. However, the addition of inhibitor of cAMP-dependent protein kinase, cGMP-dependent protein kinase, or Ca 2+ -calmodulin kinase II failed to inhibit the induction of radio-adaptive response. (3) These results suggest that the signal induced in cells by low-dose X-irradiation was transduced from protein-tyrosine kinase to protein kinase C via either pathway of phosphatidylinositol 3-kinase or splitting of profilin binding phosphatidylinositol 4,5-bisphosphate. (author)

  13. Characterization of a crp* mutant of the E. coli cAMP receptor protein

    International Nuclear Information System (INIS)

    Ren, Y.L.; Garges, S.; Adhya, S.; Krakow, J.S.

    1987-01-01

    One of the crp* mutants previously isolated to activate lac promoter in vivo has been characterized with regard to its biochemical properties. CRP*592 shows a more open conformation than CRP as indicated by its sensitivity to proteolytic attack. Dithionitrobenzoic acid mediated intersubunit crosslinking of CRP requires cAMP; this reaction occurs with unliganded CRP*592. Binding of CRP to its site on the lac promoter and activation of abortive initiation is effected by cAMP but not by cGMP. CRP*592 can activate abortive initiation in the presence of cAMP or cGMP and also at a high CRP*592 concentration in the absence of cyclic nucleotide. DNase I footprinting shows that cAMP-CRP* binds to its site on lac P + while unliganded CRP* and cGMP-CRP* form a stable complex with the [ 32 P]lac P + only in the presence of RNA polymerase. While cGMP binds to CRP it cannot replace cAMP in effecting the conformation necessary for site specific promoter binding; the weakly active unliganded CRP*592 can be shifted to a functional conformation by cAMP, cGMP and RNA polymerase

  14. Riflery: A Specialty Opportunity for Camp.

    Science.gov (United States)

    Pulliam, Richard

    1997-01-01

    Campers at the Virginia 4-H Shooting Education Camp receive intensive training from certified range coaches in shotgun, rifle, air rifle, air pistol, and archery. Such programs teach campers responsibility; develop character and self-concept; and promote safety, sportsmanship, and ethical behavior. Includes resources for developing a shooting…

  15. New intracellular activities of matrix metalloproteinases shine in the moonlight.

    Science.gov (United States)

    Jobin, Parker G; Butler, Georgina S; Overall, Christopher M

    2017-11-01

    Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication.

    Science.gov (United States)

    Mehta, Kosha J; Farnaud, Sebastien; Patel, Vinood B

    2017-10-01

    In liver hepatocytes, the HFE gene regulates cellular and systemic iron homeostasis by modulating cellular iron-uptake and producing the iron-hormone hepcidin in response to systemic iron elevation. However, the mechanism of iron-sensing in hepatocytes remain enigmatic. Therefore, to study the effect of iron on HFE and hepcidin (HAMP) expressions under distinct extracellular and intracellular iron-loading, we examined the effect of holotransferrin treatment (1, 2, 5 and 8 g/L for 6 h) on intracellular iron levels, and mRNA expressions of HFE and HAMP in wild-type HepG2 and previously characterized iron-loaded recombinant-TfR1 HepG2 cells. Gene expression was analyzed by real-time PCR and intracellular iron was measured by ferrozine assay. Data showed that in the wild-type cells, where intracellular iron content remained unchanged, HFE expression remained unaltered at low holotransferrin treatments but was upregulated upon 5 g/L (p HFE and HAMP expressions were elevated only at low 1 g/L treatment (p HFE (p HFE mRNA was independently elevated by extracellular and intracellular iron-excess. Thus, it may be involved in sensing both, extracellular and intracellular iron. Repression of HAMP expression under simultaneous intracellular and extracellular iron-loading resembles non-hereditary iron-excess pathologies.

  17. Treatments for diabetes mellitus type II: New perspectives regarding the possible role of calcium and cAMP interaction.

    Science.gov (United States)

    Carvalho, Diego Soares; de Almeida, Alexandre Aparecido; Borges, Aurélio Ferreira; Campos, Vannucci

    2018-07-05

    Diabetes mellitus (DM) is among the top ten causes of death worldwide. It is considered to be one of the major global epidemics of the 21st century, with a significant impact on public health budgets. DM is a metabolic disorder with multiple etiologies. Its pathophysiology is marked by dysfunction of pancreatic β-cells which compromises the synthesis and secretion of insulin along with resistance to insulin action in peripheral tissues (muscle and adipose). Subjects presenting insulin resistance in DM type 2 often also exhibit increased insulin secretion and hyperinsulinemia. Insulin secretion is controlled by several factors such as nutrients, hormones, and neural factors. Exocytosis of insulin granules has, as its main stimulus, increased intracellular calcium ([Ca +2 ]i) and it is further amplified by cyclic AMP (cAMP). In the event of this hyperfunction, it is very common for β-cells to go into exhaustion leading to failure or death. Several animal studies have demonstrated pleiotropic effects of L-type Ca 2+ channel blockers (CCBs). In animal models of obesity and diabetes, treatment with CCBs promoted restoration of insulin secretion, glycemic control, and reduction of pancreatic β-cell apoptosis. In addition, hypertensive individuals treated with CCBs presented a lower incidence of DM when compared with other antihypertensive agents. In this review, we propose that pharmacological manipulation of the Ca 2+ /cAMP interaction system could lead to important targets for pharmacological improvement of insulin secretion in DM type 2. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Science.gov (United States)

    Gueguen, Marie; Vallin, Benjamin; Glorian, Martine; Blaise, Régis; Limon, Isabelle

    2016-01-01

    In response to various types of vascular stress, the smooth muscle cells of the vessel wall (VSMCs) change phenotype and acquire the capacity to react to abnormal signals. This phenomenon favors the involvement of these cells in the development of major vascular diseases, such as atherosclerosis, and some complications of angioplasty, such as restenosis. The cyclic adenosine monophosphate (cAMP) pathway plays a key role in the integration of stimuli from the immediate environment and in the development of cellular responses. The temporal and spatial subcellular compartmentalization of cAMP ensures that the signals transmitted are specific. This compartmentalization is dependent on the diversity of (1) proteins directly or indirectly regulating the synthesis, degradation or release of cAMP; (2) intracellular effectors of cAMP; (3) isoforms of all these proteins with unique biochemical properties and unique patterns of regulation and (4) the scaffolding proteins on which the macromolecular complexes are built. This review illustrates the ways in which changes in the profile of adenylyl cyclases (ACs) may play critical roles in signal integration, the response of muscle cells and pathological vascular remodeling. It also illustrates the relevance of the renewed consideration of ACs as potentially interesting treatment targets. © Société de Biologie, 2016.

  19. Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis.

    Science.gov (United States)

    Adragna, Norma C; Ravilla, Nagendra B; Lauf, Peter K; Begum, Gulnaz; Khanna, Arjun R; Sun, Dandan; Kahle, Kristopher T

    2015-01-01

    The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K(+) and Cl(-) efflux via activation of K(+) channels, volume-regulated anion channels (VRACs), and the K(+)-Cl(-) cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1). This results in a rapid (90%) reduction in intracellular K(+) content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD.

  20. 77 FR 5398 - Safety Zone; Atlantic Intracoastal Waterway, Vicinity of Marine Corps Base, Camp Lejeune, NC

    Science.gov (United States)

    2012-02-03

    ...-AA00 Safety Zone; Atlantic Intracoastal Waterway, Vicinity of Marine Corps Base, Camp Lejeune, NC... zone on the Atlantic Intracoastal Waterway (AICW) adjacent to Marine Corps Base (MCB) Camp Lejeune..., Vicinity of Marine Corps Base, Camp Lejeune, NC in the Federal Register (77 FR 1431). We received no...

  1. A Pediatric Cardiology Fellowship Boot Camp improves trainee confidence.

    Science.gov (United States)

    Allan, Catherine K; Tannous, Paul; DeWitt, Elizabeth; Farias, Michael; Mansfield, Laura; Ronai, Christina; Schidlow, David; Sanders, Stephen P; Lock, James E; Newburger, Jane W; Brown, David W

    2016-12-01

    Introduction New paediatric cardiology trainees are required to rapidly assimilate knowledge and gain clinical skills to which they have limited or no exposure during residency. The Pediatric Cardiology Fellowship Boot Camp (PCBC) at Boston Children's Hospital was designed to provide incoming fellows with an intensive exposure to congenital cardiac pathology and a broad overview of major areas of paediatric cardiology practice. The PCBC curriculum was designed by core faculty in cardiac pathology, echocardiography, electrophysiology, interventional cardiology, exercise physiology, and cardiac intensive care. Individual faculty contributed learning objectives, which were refined by fellowship directors and used to build a programme of didactics, hands-on/simulation-based activities, and self-guided learning opportunities. A total of 16 incoming fellows participated in the 4-week boot camp, with no concurrent clinical responsibilities, over 2 years. On the basis of pre- and post-PCBC surveys, 80% of trainees strongly agreed that they felt more prepared for clinical responsibilities, and a similar percentage felt that PCBC should be offered to future incoming fellows. Fellows showed significant increase in their confidence in all specific knowledge and skills related to the learning objectives. Fellows rated hands-on learning experiences and simulation-based exercises most highly. We describe a novel 4-week-long boot camp designed to expose incoming paediatric cardiology fellows to the broad spectrum of knowledge and skills required for the practice of paediatric cardiology. The experience increased trainee confidence and sense of preparedness to begin fellowship-related responsibilities. Given that highly interactive activities were rated most highly, boot camps in paediatric cardiology should strongly emphasise these elements.

  2. Intracellular pH in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Novak, I; Hug, M; Greger, R

    1997-01-01

    In order to study the mechanism of H+ and HCO3- transport in a HCO3- secreting epithelium, pancreatic ducts, we have measured the intracellular pH (pHi) in this tissue using the pH sensitive probe BCECF. We found that exposures of ducts to solutions containing acetate/acetic acid or NH4+/NH3...... buffers (20 mmol/l) led to pHi changes in accordance with entry of lipid-soluble forms of the buffers, followed by back-regulation of pHi by duct cells. In another type of experiment, changes in extracellular pH of solutions containing HEPES or HCO3-/CO2 buffers led to significant changes in pHi that did....... Under some conditions, these exchangers can be invoked to regulate cell pH....

  3. Cyclic AMP regulates the biosynthesis of cellobiohydrolase in Cellulomonas flavigena growing in sugar cane bagasse.

    Science.gov (United States)

    Herrera-Herrera, Jesús Antonio; Pérez-Avalos, Odilia; Salgado, Luis M; Ponce-Noyola, Teresa

    2009-10-01

    Cellulomonas flavigena produces a battery of cellulase components that act concertedly to degrade cellulose. The addition of cAMP to repressed C. flavigena cultures released catabolic repression, while addition of cAMP to induced C. flavigena cultures led to a cellobiohydrolase hyperproduction. Exogenous cAMP showed positive regulation on cellobiohydrolase production in C. flavigena grown on sugar cane bagasse. A C. flavigena cellobiohydrolase gene was cloned (named celA), which coded for a 71- kDa enzyme. Upstream, a repressor celR1, identified as a 38 kDa protein, was monitored by use of polyclonal antibodies.

  4. Beyoncé’s Slay Trick: The Performance of Black Camp and its Intersectional Politics

    Directory of Open Access Journals (Sweden)

    Chatzipapatheodoridis Constantine

    2017-12-01

    Full Text Available This article pays attention to African-American artist Beyonce Knowles and her performance of black camp. Beyonce’s stage persona and performances invite multiple ideological readings as to what pertains to her interpretation of gender, sexuality, and race. While cultural theory around the icon of Beyonce has focused on her feminist and racial politics as well as her politicization of the black female body, a queer reading applied from the perspective of camp performance will concentrate on the artist’s queer appeal and, most importantly, on her exposition of black camp, an intersection of feminist, racial and queer poetics. By examining video and live performances, the scope of this article is to underline those queer nuances inherent in Beyonce’s dramatisation of black femininity and the cultural pool she draws from for its effective staging. More specifically, since Beyonce plays with tropes and themes that are common in camp culture, her performance relies on a meta-camping effect that interacts with African-American queer culture. This article, thus, traces black queer traditions and discourses in the artist’s praxis of black camp.

  5. Membrane mechanisms and intracellular signalling in cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Dunham, Philip B.

    1995-01-01

    Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation.......Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation....

  6. Hydromania II: Journey of the Oncorhynchus. Summer Science Camp Curriculum 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Joan; Swerin, Rod

    1995-01-01

    The Hydromania II curriculum was written for the third in a series of summer science camp experiences targeting students in grades 4--6 who generally have difficulty accessing supplementary academic programs. The summer science camp in Portland is a collaborative effort between Bonneville Power Administration (BPA), the US Department of Energy (DOE), and the Portland Parks and Recreation Community Schools Program along with various other cooperating businesses and organizations. The curriculum has also been incorporated into other summer programs and has been used by teachers to supplement classroom activities. Camps are designed to make available, affordable learning experiences that are fun and motivating to students for the study of science and math. Inner-city, under-represented minorities, rural, and low-income families are particularly encouraged to enroll their children in the program.

  7. Registrations for the 2017 Summer Camp : there are still places available!

    CERN Multimedia

    Staff Association

    2017-01-01

    The CERN Staff Association’s Summer Camp will be open for 4- to 6 year-old children for four weeks, from 3 to 28 July. Registration is offered on a weekly basis for 450 CHF, lunch included. A maximum of 24 children can attend the camp per week. This year, the various activities will revolve around the theme of the Four Elements. Every week, one of the elements will be the core of all activities and explored through cultural outings, arts and crafts, stories, music, sports activities and scientific workshops, with or without special guests. The general conditions are available on the website of EVE and School of the CERN Staff Association: http://nurseryschool.web.cern.ch. For further questions and registration, please contact us by email at Summer.Camp@cern.ch.

  8. MUC1 intra-cellular trafficking is clathrin, dynamin, and rab5 dependent

    International Nuclear Information System (INIS)

    Liu Xiaolong; Yuan Zhenglong; Chung, Maureen

    2008-01-01

    MUC1, a transmembrane glycoprotein, is abnormally over-expressed in most human adenocarcinomas. MUC1 association with cytoplasmic cell signal regulators and nuclear accumulation are important for its tumor related activities. Little is known about how MUC1 translocates from the cell membrane to the cytoplasm. In this study, live cell imaging was used to study MUC1 intracellular trafficking. The interaction between EGFR and MUC1 was mapped by FRET analysis and EGF stimulated MUC1 endocytosis was observed directly through live cell imaging. MUC1-CT endocytosis was clathrin and dynamin dependent. Rab5 over-expression resulted in decreased cell membrane localization of MUC1, with accumulation of MUC1 endocytic vesicles in the peri-nuclear region. Conversely, over-expression of a Rab5 dominant negative mutant (S34N) resulted in redistribution of MUC1 from the peri-nuclear region to the cytoplasm. Collectively, these results indicated that MUC1 intra-cellular trafficking occurs through a regulated process that was stimulated by direct EGFR and MUC1 interaction, mediated by clathrin coated pits that were dynamin dependent and regulated by Rab5

  9. Rab proteins: The key regulators of intracellular vesicle transport

    International Nuclear Information System (INIS)

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-01-01

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future

  10. Rab proteins: The key regulators of intracellular vesicle transport

    Energy Technology Data Exchange (ETDEWEB)

    Bhuin, Tanmay [Cell and Developmental Biology Unit, Department of Zoology, The University of Burdwan, Golapbag 713104 (India); Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in [Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India)

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.

  11. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling.

    Science.gov (United States)

    Monterisi, Stefania; Lobo, Miguel J; Livie, Craig; Castle, John C; Weinberger, Michael; Baillie, George; Surdo, Nicoletta C; Musheshe, Nshunge; Stangherlin, Alessandra; Gottlieb, Eyal; Maizels, Rory; Bortolozzi, Mario; Micaroni, Massimo; Zaccolo, Manuela

    2017-05-02

    cAMP/PKA signalling is compartmentalised with tight spatial and temporal control of signal propagation underpinning specificity of response. The cAMP-degrading enzymes, phosphodiesterases (PDEs), localise to specific subcellular domains within which they control local cAMP levels and are key regulators of signal compartmentalisation. Several components of the cAMP/PKA cascade are located to different mitochondrial sub-compartments, suggesting the presence of multiple cAMP/PKA signalling domains within the organelle. The function and regulation of these domains remain largely unknown. Here, we describe a novel cAMP/PKA signalling domain localised at mitochondrial membranes and regulated by PDE2A2. Using pharmacological and genetic approaches combined with real-time FRET imaging and high resolution microscopy, we demonstrate that in rat cardiac myocytes and other cell types mitochondrial PDE2A2 regulates local cAMP levels and PKA-dependent phosphorylation of Drp1. We further demonstrate that inhibition of PDE2A, by enhancing the hormone-dependent cAMP response locally, affects mitochondria dynamics and protects from apoptotic cell death.

  12. Intracellular vorinostat accumulation and its relationship to histone deacetylase activity in soft tissue sarcoma patients.

    Science.gov (United States)

    Burhenne, Jürgen; Liu, Lu; Heilig, Christoph E; Meid, Andreas D; Leisen, Margarete; Schmitt, Thomas; Kasper, Bernd; Haefeli, Walter E; Mikus, Gerd; Egerer, Gerlinde

    2017-08-01

    In the regulation of chromatin-structure and histone function, histone deacetylases (HDACs) are key enzymes and thus modulators of epigenetic regulation and gene expression. Accesses of the HDAC inhibitor vorinostat to intracellular compartments are essential to exert epigenetic effects. In ten sarcoma patients receiving oral Zolinza (400 mg qd) vorinostat concentrations in plasma and peripheral blood mononuclear cells (PBMCs) were quantified using validated LC/MS/MS assays to determine intracellular and extracellular pharmacokinetic data. Cellular HDAC activity was evaluated using a fluorogenic assay. Concentration-response relationships were established between intracellular and extracellular vorinostat concentrations and HDAC inhibition in PBMCs. Pharmacokinetics of vorinostat and its two main inactive metabolites were determined over 8 h in plasma and PBMCs. Steady state AUCs (±SD) and T 1/2 (±SD) were calculated to 4.61 ± 0.87 h µM and 1.73 ± 0.69 h (plasma) and 15.2 ± 9.03 h µM and 5.30 ± 4.27 h (PBMCs). Intracellular accumulation of vorinostat was determined together with prolonged vorinostat elimination in PBMCs. Cellular HDAC inhibition increased parallel with vorinostat concentrations in plasma and PBMCs. For effective inhibition of cellular HDACs (IC 50 ) vorinostat concentrations of 0.05 µM in plasma and 0.17 µM in PBMCs were necessary. HDAC inhibition closely followed intracellular vorinostat concentrations and was short-lasting, which may contribute to the limited efficacy seen with vorinostat in solid tumors so far.

  13. USE OF MODIFIED CAMP TEST FOR PRELIMINARY NONSEROLOGIC IDENTIFICATION OF VIBRIO CHOLERAE IN STOOL SPECIMENS

    Directory of Open Access Journals (Sweden)

    Murad Lesmana

    2012-09-01

    Full Text Available Suatu modifikasi uji CAMP digunakan bersama dengan reaksi biokimiawi untuk identifikasi Vibrio cholerae pada sampel klinis. Dari 579 usap dubur penderita diare, 92 (16% memberikan hasil isolasi V. cholerae 01 biotipe El Tor dan 34 (6% V. cholerae non-01. Semua isolat V. cholerae 01 El Tor menunjukkan reaksi CAMP positif kuat dengan gambaran hemolisis sinergistik lengkap berbentuk sosis; sedangkan V. cholerae non-01 memberikan reaksi CAMP yang sempit dengan pola hemolisis menyerupai bulan sabit. Hasil uji CAMP yang dilakukan bersama dengan reaksi biokimiawi sesuai dengan metode biakan konvensional yang menyertakan tes aglutinasi dengan antiserum V. cholerae 01 untuk mengidentifikasi V. cholerae.

  14. TetR-dependent gene regulation in intracellular Listeria monocytogenes demonstrates the spatiotemporal surface distribution of ActA.

    Science.gov (United States)

    Schmitter, Sibylle; Fieseler, Lars; Klumpp, Jochen; Bertram, Ralph; Loessner, Martin J

    2017-08-01

    To enable specific and tightly controlled gene expression both in vitro and during the intracellular lifecycle of the pathogen Listeria monocytogenes, a TetR-dependent genetic induction system was developed. Highest concentration of cytoplasmic TetR and best repression of tetO-controlled genes was obtained by tetR expression from the synthetic promoter Pt 17 . Anhydrotetracycline (ATc) as inducer permitted concentration-dependent, fine-tuned expression of genes under control of the tetO operator and a suitable promoter. The actin-polymerizing ActA protein represents a major virulence factor of L. monocytogenes, required for actin-based motility and cell-to-cell spread in infected host cells. To be able to observe its spatial and temporal distribution on intracellular L. monocytogenes cells, conditional mutants featuring actA placed under TetR control were used to infect PtK2 epithelial cells. Following induction at different time intervals, the subsequent recruitment of actin by L. monocytogenes could be monitored. We found that cells displayed functional ActA after approximately 15 min, while formation of polarized actin tail was complete after 90-120 min. At this point, intracellular motility of the induced mutants was indistinguishable from wild-type bacteria. Interestingly, de novo ActA synthesis in intracellular Listeria also demonstrated the temporal, asymmetric redistribution of the membrane-anchored proteins from the lateral walls toward the cell poles. © 2017 John Wiley & Sons Ltd.

  15. PI3K/Akt/mTOR Intracellular Pathway and Breast Cancer: Factors, Mechanism and Regulation.

    Science.gov (United States)

    Sharma, Var Ruchi; Gupta, Girish Kumar; Sharma, A K; Batra, Navneet; Sharma, Daljit K; Joshi, Amit; Sharma, Anil K

    2017-01-01

    The most recurrent and considered second most frequent cause of cancer-related deaths worldwide in women is the breast cancer. The key to diagnosis is early prediction and a curable stage but still treatment remains a great clinical challenge. Origin of the Problem: A number of studies have been carried out for the treatment of breast cancer which includes the targeted therapies and increased survival rates in women. Essential PI3K/mTOR signaling pathway activation has been observed in most breast cancers. The cell growth and tumor development in such cases involve phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) complex intracellular pathway. Through preclinical and clinical trials, it has been observed that there are a number of other inhibitors of PI3K/Akt/mTOR pathway, which either alone or in combination with cytotoxic agents can be used for endocrine therapies. Structure and regulation/deregulation of mTOR provides a greater insight into the action mechanism. Also, through this review, one could easily scan first and second generation inhibitors for PI3K/Akt/mTOR pathway besides targeted therapies for breast cancer and the precise role of mTOR. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Regulation of the sodium-potassium pump in cultured rat skeletal myotubes by intracellular sodium ions

    International Nuclear Information System (INIS)

    Brodie, C.; Sampson, S.R.

    1989-01-01

    The properties of the Na-K pump and some of the factors controlling its amount and function were studied in rat myotubes in culture. The number of Na-K pump sites was quantified by measuring the amount of [ 3 H]ouabain bound to whole-cell preparations. Activity of the pump was determined by measurement of ouabain-sensitive 86 Rb-uptake and component of membrane potential. Chronic treatment of myotubes with tetrodotoxin (TTX), which lowers [Na]i, decreased the number of Na-K pumps, the ouabain-sensitive 86Rb uptake, and the size of the electrogenic pump component of Em. In contrast, chronic treatment with either ouabain or veratridine, which increases [Na+]i, resulted in an elevated level of Na-K pump sites. This effect was blocked by inhibitors of protein synthesis. Neither rates of degradation nor affinity of pump sites in cells treated with TTX, veratridine, or ouabain differred from those in control cells. The number and activity of Na-K pump sites were unaffected by chronic elevation in [Ca]i or chronic depolarization. We conclude that alterations in the level in intracellular Na ions play the major role in regulation of Na-K pump synthesis in cultured mammalian skeletal muscle

  17. Identification of the nuclear export signals that regulate the intracellular localization of the mouse CMP-sialic acid synthetase

    International Nuclear Information System (INIS)

    Fujita, Akiko; Sato, Chihiro; Kitajima, Ken.

    2007-01-01

    The CMP-sialic acid synthetase (CSS) catalyzes the activation of sialic acid (Sia) to CMP-Sia which is a donor substrate of sialyltransferases. The vertebrate CSSs are usually localized in nucleus due to the nuclear localization signal (NLS) on the molecule. In this study, we first point out that a small, but significant population of the mouse CMP-sialic acid synthetase (mCSS) is also present in cytoplasm, though mostly in nucleus. As a mechanism for the localization in cytoplasm, we first identified two nuclear export signals (NESs) in mCSS, based on the localization studies of the potential NES-deleted mCSS mutants as well as the potential NES-tagged eGFP proteins. These two NESs are conserved among mammalian and fish CSSs, but not present in the bacterial or insect CSS. These results suggest that the intracellular localization of vertebrate CSSs is regulated by not only the NLS, but also the NES sequences

  18. Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120.

    Science.gov (United States)

    Shi, Yunming; Zhao, Weixing; Zhang, Wei; Ye, Zi; Zhao, Jindong

    2006-07-25

    Calcium ions are important to some prokaryotic cellular processes, such as heterocyst differentiation of cyanobacteria. Intracellular free Ca(2+)concentration, [Ca(2+)](i), increases several fold in heterocysts and is regulated by CcbP, a Ca(2+)-binding protein found in heterocyst-forming cyanobacteria. We demonstrate here that CcbP is degraded by HetR, a serine-type protease that controls heterocyst differentiation. The degradation depends on Ca(2+) and appears to be specific because HetR did not digest other tested proteins. CcbP was found to bind two Ca(2+) per molecule with K(D) values of 200 nM and 12.8 microM. Degradation of CcbP releases bound Ca(2+) that contributes significantly to the increase of [Ca(2+)](i) during the process of heterocyst differentiation in Anabaena sp. strain PCC 7120. We suggest that degradation of CcbP is a mechanism of positive autoregulation of HetR. The down-regulation of ccbP in differentiating cells and mature heterocysts, which also is critical to the regulation of [Ca(2+)](i), depends on NtcA. Coexpression of ntcA and a ccbP promoter-controlled gfp in Escherichia coli diminished production of GFP, and the decrease is enhanced by alpha-ketoglutarate. It was also found that NtcA could bind a fragment of the ccbP promoter containing an NtcA-binding sequence in a alpha-ketoglutarate-dependent fashion. Therefore, [Ca(2+)](i) is regulated by a collaboration of HetR and NtcA in heterocyst differentiation in Anabaena sp. strain PCC 7120.

  19. PeakCaller: an automated graphical interface for the quantification of intracellular calcium obtained by high-content screening.

    Science.gov (United States)

    Artimovich, Elena; Jackson, Russell K; Kilander, Michaela B C; Lin, Yu-Chih; Nestor, Michael W

    2017-10-16

    Intracellular calcium is an important ion involved in the regulation and modulation of many neuronal functions. From regulating cell cycle and proliferation to initiating signaling cascades and regulating presynaptic neurotransmitter release, the concentration and timing of calcium activity governs the function and fate of neurons. Changes in calcium transients can be used in high-throughput screening applications as a basic measure of neuronal maturity, especially in developing or immature neuronal cultures derived from stem cells. Using human induced pluripotent stem cell derived neurons and dissociated mouse cortical neurons combined with the calcium indicator Fluo-4, we demonstrate that PeakCaller reduces type I and type II error in automated peak calling when compared to the oft-used PeakFinder algorithm under both basal and pharmacologically induced conditions. Here we describe PeakCaller, a novel MATLAB script and graphical user interface for the quantification of intracellular calcium transients in neuronal cultures. PeakCaller allows the user to set peak parameters and smoothing algorithms to best fit their data set. This new analysis script will allow for automation of calcium measurements and is a powerful software tool for researchers interested in high-throughput measurements of intracellular calcium.

  20. Combinatorial effects of genistein and sex-steroids on the level of cystic fibrosis transmembrane regulator (CFTR), adenylate cyclase (AC) and cAMP in the cervix of ovariectomised rats.

    Science.gov (United States)

    Salleh, Naguib; Ismail, Nurain; Muniandy, Sekaran; Korla, Praveen Kumar; Giribabu, Nelli

    2015-12-01

    The combinatorial effects of genistein and estrogen (E) or estrogen plus progesterone (E+P) on CFTR, AC and cAMP levels in cervix were investigated. Ovariectomised adult female rats received 50 or 100mg/kg/day genistein with E or E followed by E+P [E+(E+P)] for seven consecutive days. Cervixes were harvested and analyzed for CFTR mRNA levels by Real-time PCR. Distribution of AC and CFTR proteins in endocervix were observed by immunohistochemistry. Levels of cAMP were measured by enzyme-immunoassay. Molecular docking predicted interaction between genistein and AC. Our results indicate that levels of CFTR, AC and cAMP in cervix of rats receiving genistein plus E were higher than E-only treatment (pcervix of E and E+(E+P)-treated rats by genistein could affect the cervical secretory function which could influence the female reproductive processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The Impact of Learning Styles on Learning Outcomes at FFA Camp: What Campers Retain over Time

    Science.gov (United States)

    Brown, Nicholas R.; Terry, Robert, Jr.; Kelsey, Kathleen D.

    2013-01-01

    Twenty-four states host FFA summer camps to support adolescent maturation along with indoctrination into the culture and values of the FFA. Camps typically include a variety of activities designed to engage members in social activities and non-formal academic content. More than 1500 campers attend the Oklahoma FFA Alumni Leadership Camp annually…

  2. Phosphodiesterase inhibitors suppress Lactobacillus casei cell-wall-induced NF-κB and MAPK activations and cell proliferation through protein kinase A--or exchange protein activated by cAMP-dependent signal pathway.

    Science.gov (United States)

    Saito, Takekatsu; Sugimoto, Naotoshi; Ohta, Kunio; Shimizu, Tohru; Ohtani, Kaori; Nakayama, Yuko; Nakamura, Taichi; Hitomi, Yashiaki; Nakamura, Hiroyuki; Koizumi, Shoichi; Yachie, Akihiro

    2012-01-01

    Specific strains of Lactobacillus have been found to be beneficial in treating some types of diarrhea and vaginosis. However, a high mortality rate results from underlying immunosuppressive conditions in patients with Lactobacillus casei bacteremia. Cyclic AMP (cAMP) is a small second messenger molecule that mediates signal transduction. The onset and progression of inflammatory responses are sensitive to changes in steady-state cAMP levels. L. casei cell wall extract (LCWE) develops arteritis in mice through Toll-like receptor-2 signaling. The purpose of this study was to investigate whether intracellular cAMP affects LCWE-induced pathological signaling. LCWE was shown to induce phosphorylation of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and cell proliferation in mice fibroblast cells. Theophylline and phosphodiesterase inhibitor increased intracellular cAMP and inhibited LCWE-induced cell proliferation as well as phosphorylation of NF-κB and MAPK. Protein kinase A inhibitor H89 prevented cAMP-induced MAPK inhibition, but not cAMP-induced NF-κB inhibition. An exchange protein activated by cAMP (Epac) agonist inhibited NF-κB activation but not MAPK activation. These results indicate that an increase in intracellular cAMP prevents LCWE induction of pathological signaling pathways dependent on PKA and Epac signaling.

  3. Cell membrane disruption stimulates cAMP and Ca2+ signaling to potentiate cell membrane resealing in neighboring cells

    Directory of Open Access Journals (Sweden)

    Tatsuru Togo

    2017-12-01

    Full Text Available Disruption of cellular plasma membranes is a common event in many animal tissues, and the membranes are usually rapidly resealed. Moreover, repeated membrane disruptions within a single cell reseal faster than the initial wound in a protein kinase A (PKA- and protein kinase C (PKC-dependent manner. In addition to wounded cells, recent studies have demonstrated that wounding of Madin-Darby canine kidney (MDCK cells potentiates membrane resealing in neighboring cells in the short-term by purinergic signaling, and in the long-term by nitric oxide/protein kinase G signaling. In the present study, real-time imaging showed that cell membrane disruption stimulated cAMP synthesis and Ca2+ mobilization from intracellular stores by purinergic signaling in neighboring MDCK cells. Furthermore, inhibition of PKA and PKC suppressed the ATP-mediated short-term potentiation of membrane resealing in neighboring cells. These results suggest that cell membrane disruption stimulates PKA and PKC via purinergic signaling to potentiate cell membrane resealing in neighboring MDCK cells.

  4. Selective Regulation of Oocyte Meiotic Events Enhances Progress in Fertility Preservation Methods

    Directory of Open Access Journals (Sweden)

    Onder Celik

    2015-01-01

    Full Text Available Following early embryonic germ cell migration, oocytes are surrounded by somatic cells and remain arrested at diplotene stage until luteinizing hormone (LH surge. Strict regulation of both meiotic arrest and meiotic resumption during dormant stage are critical for future fertility. Intercellular signaling system between the somatic compartment and oocyte regulates these meiotic events and determines the follicle quality. As well as the collected number of eggs, their qualities are also important for in vitro fertilization (IVF outcome. In spontaneous and IVF cycles, germinal vesicle (GV–stage oocytes, premature GV breakdown, and persistence of first meiotic arrest limit the reproductive performance. Likewise, both women with premature ovarian aging and young cancer women are undergoing chemoradiotherapy under the risk of follicle loss because of unregulated meiotic events. Understanding of oocyte meiotic events is therefore critical for the prevention of functional ovarian reserve. High levels of cyclic guanosine monophophate (cGMP, cyclic adenosine monophophate (cAMP and low phosphodiesterase (PDE 3A enzyme activity inside the oocyte are responsible for maintaining of meiotic arrest before the LH surge. cGMP is produced in the somatic compartment, and natriuretic peptide precursor C (Nppc and natriuretic peptide receptor 2 (Npr2 regulate its production. cGMP diffuses into the oocyte and reduces the PDE3A activity, which inhibits the conversion of cAMP to the 5′AMP, and cAMP levels are enhanced. In addition, oocyte itself has the ability to produce cAMP. Taken together, accumulation of cAMP inside the oocyte induces protein kinase activity, which leads to the inhibition of maturation-promoting factor and meiotic arrest also continues. By stimulating the expression of epidermal growth factor, LH inhibits the Nppc/Npr2 system, blocks cGMP synthesis, and initiates meiotic resumption. Oocytes lacking the functional of this pathway may lead to

  5. Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3.

    Directory of Open Access Journals (Sweden)

    Anna K Coussens

    2015-07-01

    Full Text Available Adjunctive vitamin D treatment for pulmonary tuberculosis enhances resolution of inflammation but has modest effects on bacterial clearance. Sodium 4-phenylbutyrate (PBA is in clinical use for a range of conditions and has been shown to synergise with vitamin D metabolites to upregulate cathelicidin antimicrobial peptide (CAMP expression. We investigated whether clinically attainable plasma concentrations of PBA (0.4-4 mM directly affect Mycobacterium tuberculosis (Mtb growth and human macrophage and PBMC response to infection. We also tested the ability of PBA to enhance the immunomodulatory actions of the vitamin D metabolite 25(OHD3 during infection and synergistically inhibit intracellular Mtb growth. PBA inhibited Mtb growth in broth with an MIC99 of 1 mM, which was reduced to 0.25 mM by lowering pH. During human macrophage infection, PBA treatment restricted Mtb uptake, phagocytic receptor expression and intracellular growth in a dose-dependent manner. PBA independently regulated CCL chemokine secretion and induced expression of the antimicrobial LTF (lactoferrin, the anti-inflammatory PROC (protein C and multiple genes within the NLRP3 inflammasome pathway. PBA co-treatment with 25(OHD3 synergistically modulated expression of numerous vitamin D-response genes, including CAMP, CYP24A1, CXCL10 and IL-37. This synergistic effect was dependent on MAPK signalling, while the effect of PBA on LTF, PROC and NLRP3 was MAPK-independent. During PBA and 25(OHD3 co-treatment of human macrophages, in the absence of exogenous proteinase 3 (PR3 to activate cathelicidin, Mtb growth restriction was dominated by the effect of PBA, while the addition of PR3 enhanced growth restriction by 25(OHD3 and PBA co-treatment. This suggests that PBA augments vitamin D-mediated cathelicidin-dependent Mtb growth restriction by human macrophages and independently induces antimicrobial and anti-inflammatory action. Therefore through both host-directed and bacterial

  6. Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3.

    Science.gov (United States)

    Coussens, Anna K; Wilkinson, Robert J; Martineau, Adrian R

    2015-07-01

    Adjunctive vitamin D treatment for pulmonary tuberculosis enhances resolution of inflammation but has modest effects on bacterial clearance. Sodium 4-phenylbutyrate (PBA) is in clinical use for a range of conditions and has been shown to synergise with vitamin D metabolites to upregulate cathelicidin antimicrobial peptide (CAMP) expression. We investigated whether clinically attainable plasma concentrations of PBA (0.4-4 mM) directly affect Mycobacterium tuberculosis (Mtb) growth and human macrophage and PBMC response to infection. We also tested the ability of PBA to enhance the immunomodulatory actions of the vitamin D metabolite 25(OH)D3 during infection and synergistically inhibit intracellular Mtb growth. PBA inhibited Mtb growth in broth with an MIC99 of 1 mM, which was reduced to 0.25 mM by lowering pH. During human macrophage infection, PBA treatment restricted Mtb uptake, phagocytic receptor expression and intracellular growth in a dose-dependent manner. PBA independently regulated CCL chemokine secretion and induced expression of the antimicrobial LTF (lactoferrin), the anti-inflammatory PROC (protein C) and multiple genes within the NLRP3 inflammasome pathway. PBA co-treatment with 25(OH)D3 synergistically modulated expression of numerous vitamin D-response genes, including CAMP, CYP24A1, CXCL10 and IL-37. This synergistic effect was dependent on MAPK signalling, while the effect of PBA on LTF, PROC and NLRP3 was MAPK-independent. During PBA and 25(OH)D3 co-treatment of human macrophages, in the absence of exogenous proteinase 3 (PR3) to activate cathelicidin, Mtb growth restriction was dominated by the effect of PBA, while the addition of PR3 enhanced growth restriction by 25(OH)D3 and PBA co-treatment. This suggests that PBA augments vitamin D-mediated cathelicidin-dependent Mtb growth restriction by human macrophages and independently induces antimicrobial and anti-inflammatory action. Therefore through both host-directed and bacterial

  7. A Temporal-Specific and Transient cAMP Increase Characterizes Odorant Classical Conditioning

    Science.gov (United States)

    Cui, Wen; Smith, Andrew; Darby-King, Andrea; Harley, Carolyn W.; McLean, John H.

    2007-01-01

    Increases in cyclic adenosine monophosphate (cAMP) are proposed to initiate learning in a wide variety of species. Here, we measure changes in cAMP in the olfactory bulb prior to, during, and following a classically conditioned odor preference trial in rat pups. Measurements were taken up to the point of maximal CREB phosphorylation in olfactory…

  8. The Abode of the Other (Museums in German Concentration Camps 1933-1945

    Directory of Open Access Journals (Sweden)

    Božidar Jezernik

    2011-03-01

    Full Text Available In major German concentration camps, museums were set up with the aim of collecting exhibits and displaying them within a Rassenkunde (race science framework. As the discourse of racial anthropology was built on the rhetoric of the difference between the ‘pure’ races and people with ‘inferior hereditary quality,’ SS museums put on display ‘pieces of evidence’ with a view to rendering present and visible that which was absent and invisible: the hierarchical order of different races. Thus, collections displayed in SS museums in concentration camps were instrumental in the process of defining the Aryan Übermensch (superhuman as the personification of all desirable physical, cultural and intellectual attributes, born to conquer and rule the world as a member of the Herrenvolk (master race, and the non-Aryan, above all the Jewish Untermensch (subhuman as his opposite, a radically other and barely human, suitable only for menial chores.The first museum established in German concentration camps was opened in Dachau early in the 1930s. Similar museums worked in other German concentration camps (Buchenwald, Mauthausen and Auschwitz. The richest was the museum in Gusen I, the sub-camp of Mauthausen. In autumn 1940, when the SS began with the construction of a railway between KZ Gusen I and St Georgen railway station, a grave-yard from the Bronze-Age was found. All the finds were housed in an archaeological museum that was established at the Museumsbaracke (museum barrack within the camp. By the side of archaeological findings, human skins, skulls and body parts were put on view. At the time of the liberation of Gusen I, on 5 May 1945, a collection of 286 body parts was found and a voluminous album with fragements of tattooed human skin. Today, from all the SS museums’ anthropological exhibits not a single one is on display in the museum exhibitions set up in the former concentration camps. So far, these establishments also escaped the

  9. The Abode of the Other (Museums in German Concentration Camps 1933-1945

    Directory of Open Access Journals (Sweden)

    Božidar Jezernik

    2007-12-01

    Full Text Available In major German concentration camps, museums were set up with the aim of collecting exhibits and displaying them within a Rassenkunde (race science framework. As the discourse of racial anthropology was built on the rhetoric of the difference between the ‘pure’ races and people with ‘inferior hereditary quality,’ SS museums put on display ‘pieces of evidence’ with a view to rendering present and visible that which was absent and invisible: the hierarchical order of different races. Thus, collections displayed in SS museums in concentration camps were instrumental in the process of defining the Aryan Übermensch (superhuman as the personification of all desirable physical, cultural and intellectual attributes, born to conquer and rule the world as a member of the Herrenvolk (master race, and the non-Aryan, above all the Jewish Untermensch (subhuman as his opposite, a radically other and barely human, suitable only for menial chores.The first museum established in German concentration camps was opened in Dachau early in the 1930s. Similar museums worked in other German concentration camps (Buchenwald, Mauthausen and Auschwitz. The richest was the museum in Gusen I, the sub-camp of Mauthausen. In autumn 1940, when the SS began with the construction of a railway between KZ Gusen I and St Georgen railway station, a grave-yard from the Bronze-Age was found. All the finds were housed in an archaeological museum that was established at the Museumsbaracke (museum barrack within the camp. By the side of archaeological findings, human skins, skulls and body parts were put on view. At the time of the liberation of Gusen I, on 5 May 1945, a collection of 286 body parts was found and a voluminous album with fragements of tattooed human skin. Today, from all the SS museums’ anthropological exhibits not a single one is on display in the museum exhibitions set up in the former concentration camps. So far, these establishments also escaped the

  10. What Do Children Eat in the Summer? A Direct Observation of Summer Day Camps That Serve Meals.

    Science.gov (United States)

    Kenney, Erica L; Lee, Rebekka M; Brooks, Carolyn J; Cradock, Angie L; Gortmaker, Steven L

    2017-07-01

    More than 14 million children in the United States attend summer camp annually, yet little is known about the food environment in day camps. Our aim was to describe the nutritional quality of meals served to, brought by, and consumed by children attending summer day camps serving meals and snacks, and to describe camp water access. We conducted a cross-sectional study. Participants were 149 children attending five summer camps in Boston, MA, in 2013. Foods and beverages served were observed for 5 consecutive days. For 2 days, children's dietary intake was directly observed using a validated protocol. Outcome measures included total energy (kilocalories) and servings of different types of foods and beverages served and consumed during breakfast, lunch, and snack. Mean total energy, trans fats, sodium, sugar, and fiber served per meal were calculated across the camps, as were mean weekly frequencies of serving fruits, vegetables, meat/meat alternates, grains, milk, 100% juice, sugar-sweetened beverages, whole grains, red/highly processed meats, grain-based desserts, and salty snacks. Mean consumption was calculated per camper per day. Camps served a mean (standard deviation) of 647.7 (134.3) kcal for lunch, 401.8 (149.6) kcal for breakfast, and 266.4 (150.8) kcal for snack. Most camps served red/highly processed meats, salty snacks, and grain-based desserts frequently, and rarely served vegetables or water. Children consumed little (eg, at lunch, 36.5% of fruit portions, 35.0% of meat/meat alternative portions, and 37.6% of milk portions served) except for salty snacks (66.9% of portions) and grain-based desserts (64.1% of portions). Sugar-sweetened beverages and salty snacks were frequently brought to camp. One-quarter of campers drank nothing throughout the entire camp day. The nutritional quality of foods and beverages served at summer day camps could be improved. Future studies should assess barriers to consumption of healthy foods and beverages in these

  11. Impact of Attending Jump Start Literacy Camp on Reading Achievement among Third and Fourth Grade Students

    Science.gov (United States)

    Padgett, Carrie B.

    2010-01-01

    The Jump Start Literacy Camp was developed as a means to combat summer learning loss. The camp utilized high-energy activities to target phonemic awareness, phonics, vocabulary, fluency, and comprehension. This study examined the effects of the Jump Start Literacy Camp on reading achievement for rising third and fourth grade students in an urban…

  12. Molecular analysis of the interaction between the intracellular loops of the human serotonin receptor type 6 (5-HT6) and the α subunit of GS protein

    International Nuclear Information System (INIS)

    Kang, Hatan; Lee, Won Kyu; Choi, Yun Hui; Vukoti, Krishna Moorthy; Bang, Won Gi; Yu, Yeon Gyu

    2005-01-01

    The serotonin type 6 (5-HT 6 ) receptor is a G-protein coupled receptor (GPCR) coupled to a stimulatory G-protein (G S ). To identify the structural basis for the interaction of the 5-HT 6 receptor with the G S protein, we have dissected the interaction between GST-fusion proteins containing the second intracellular loop (iL2), the third intracellular loop (iL3), or the C-terminal tail of the 5-HT 6 receptor and the α subunit of G S (Gα S ). The direct interaction of iL3 and Gα S was demonstrated by co-immunoprecipitation. Furthermore, the kinetic parameters of the interaction between iL3 and Gα S were measured by surface plasmon resonance, and the apparent dissociation constant was determined to be 0.9 x 10 -6 M. In contrast, the second intracellular loop and C-terminal tail regions showed negligible affinity to Gα S . The critical residues within the iL3 region for the interaction with Gα S were identified as conserved positively charged residues near the C-terminus of iL3 by measuring the cellular levels of cAMP produced in response to 5-HT stimulation of cells transfected with 5-HT 6 receptor mutants

  13. The Orphan G Protein-coupled Receptor Gpr175 (Tpra40) Enhances Hedgehog Signaling by Modulating cAMP Levels.

    Science.gov (United States)

    Singh, Jaskirat; Wen, Xiaohui; Scales, Suzie J

    2015-12-04

    The Hedgehog (Hh) signaling pathway plays an essential role in vertebrate embryonic tissue patterning of many developing organs. Signaling occurs predominantly in primary cilia and is initiated by the entry of the G protein-coupled receptor (GPCR)-like protein Smoothened into cilia and culminates in gene transcription via the Gli family of transcription factors upon their nuclear entry. Here we identify an orphan GPCR, Gpr175 (also known as Tpra1 or Tpra40: transmembrane protein, adipocyte associated 1 or of 40 kDa), which also localizes to primary cilia upon Hh stimulation and positively regulates Hh signaling. Interaction experiments place Gpr175 at the level of PKA and upstream of the Gαi component of heterotrimeric G proteins, which itself localizes to cilia and can modulate Hh signaling. Gpr175 or Gαi1 depletion leads to increases in cellular cAMP levels and in Gli3 processing into its repressor form. Thus we propose that Gpr175 coupled to Gαi1 normally functions to inhibit the production of cAMP by adenylyl cyclase upon Hh stimulation, thus maximizing signaling by turning off PKA activity and hence Gli3 repressor formation. Taken together our data suggest that Gpr175 is a novel positive regulator of the Hh signaling pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Living without Boys: A Retrospective Analysis of the Benefits and Skills Gained at All-Female Camps

    Science.gov (United States)

    Whittington, Anja; Garst, Barry A.; Gagnon, Ryan J.; Baughman, Sarah

    2017-01-01

    The purpose of this study was to investigate the outcomes of all-female camp experiences on women's lives. Using a retrospective approach, this study collected qualitative data from 131 women to examine the benefits of all-female camp experiences, to analyze the skills they gained at camp, and to understand how they apply these skills to their…

  15. E. Coli: Preventing Outbreaks at Camp.

    Science.gov (United States)

    McKinney, Mary D.

    1996-01-01

    One strain of E. coli is not usually found in foods, but has been related to consumption of undercooked ground beef. Symptoms are stomach cramps and diarrhea, and 2-7% of infections lead to hemolytic uremic syndrome, which is life threatening. Camps can prevent outbreaks by avoiding uncooked meat on overnight campouts and requiring appropriate…

  16. An Inaugural Girl Scout Destinations Astronomy Camp

    Science.gov (United States)

    Lebofsky, Larry A.; McCarthy, Donald W.; Wright, Joe; Wright, Rita; Mace, Mikayla; Floyd, Charmayne

    2017-10-01

    The University of Arizona (UA) conducted its first teenage Girl Scout Destinations Astronomy Camp. This program was preceded by 24 Leadership Workshops for Adult Girl Scout Leaders, initially supported by EPO funding from NIRCam for JWST. For five days in late June, 24 girls (ages 13-17 years) attended from 16 states. The Camp was led by UA astronomers and long-term educators. Representing Girl Scouts of the USA (GSUSA) were a husband/wife amateur astronomer team who are SOFIA Airborne Astronomy and NASA Solar System Ambassadors. Other leaders included a Stanford undergraduate engineering student who is a lifelong Girl Scout and Gold Award recipient and a recent UA Master’s degree science journalist. The Camp is a residential, hands-on “immersion” adventure in scientific exploration using telescopes in southern Arizona’s Catalina Mountains near Tucson. Under uniquely dark skies girls become real astronomers, operating telescopes (small and large) and associated technologies, interacting with scientists, obtaining images and quantitative data, investigating their own questions, and most importantly having fun actually doing science and building observing equipment. Girls achieve a basic understanding of celestial objects, how and why they move, and their historical significance, leading to an authentic understanding of science, research, and engineering. Girls can lead these activities back home in their own troops and councils, encouraging others to consider STEM field careers. These programs are supported by a 5-year NASA Collaborative Agreement, Reaching for the Stars: NASA Science for Girl Scouts (www.seti.org/GirlScoutStars), through the SETI Institute in collaboration with the UA, GSUSA, Girl Scouts of Northern California, the Astronomical Society of the Pacific, and Aries Scientific, Inc. The Girl Scout Destinations Astronomy Camp aligns with the GSUSA Journey: It’s Your Planet-Love It! and introduces the girls to some of the activities being

  17. Cellular regulation of basal and FSH-stimulated cyclic AMP production in irradiated rat testes

    International Nuclear Information System (INIS)

    Kangasniemi, M.; Kaipia, A.; Toppari, J.; Mali, P.; Huhtaniemi, I.; Parvinen, M.

    1990-01-01

    Basal and follicle-stimulating hormone (FSH)-stimulated cyclic AMP (cAMP) productions by seminiferous tubular segments from irradiated adult rats were investigated at defined stages of the epithelial cycle when specific spermatogenic cells were low in number. Seven days post-irradiation, depletion of spermatogonia did not influence the basal cAMP production, but FSH response increased in stages II-VIII. Seventeen days post-irradiation when spermatocytes were low in number, there was a small increase in basal cAMP level in stages VII-VIII and FSH-stimulated cAMP production increased in stages VII-XII and XIII-I. At 38 days when pachytene spermatocytes and round spermatids (steps 1-6) were low in number, a decreased basal cAMP production was measured in stages II-VI and IX-XII. FSH-stimulated cAMP output increased in stages VII-XII but decreased in stages II-VI. At 52 days when all spermatids were low in number, basal cAMP levels decreased in all stages of the cycle, whereas FSH response was elevated only in stages VII-XII. All spermatogenic cell types seem to have an effect on cAMP production by the seminiferous tubule in a stage-specific fashion. Germ cells appear to regulate Sertoli cell FSH response in a paracrine way, and a part of cAMP may originate from spermatids stimulated by an unknown FSH-dependent Sertoli cell factor. The FSH-dependent functions may control such phenomena as spermatogonial proliferation, final maturation of spermatids, and onset of meiosis

  18. DMT efficiently inhibits hepatic gluconeogenesis by regulating the Gαq signaling pathway.

    Science.gov (United States)

    Zhou, Ting-Ting; Ma, Fei; Shi, Xiao-Fan; Xu, Xin; Du, Te; Guo, Xiao-Dan; Wang, Gai-Hong; Yu, Liang; Rukachaisirikul, Vatcharin; Hu, Li-Hong; Chen, Jing; Shen, Xu

    2017-08-01

    Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with complicated pathogenesis and targeting gluconeogenesis inhibition is a promising strategy for anti-diabetic drug discovery. G protein-coupled receptors (GPCRs) are classified as distinct families by heterotrimeric G proteins, primarily including Gαs, Gαi and Gαq. Gαs-coupled GPCRs function potently in the regulation of hepatic gluconeogenesis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and Gαi-coupled GPCRs exhibit inhibitory effect on adenylyl cyclase and reduce intracellular cAMP level. However, little is known about the regulation of Gαq-coupled GPCRs in hepatic gluconeogenesis. Here, small-molecule 2-(2,4-dimethoxy-3-methylphenyl)-7-(thiophen-2-yl)-9-(trifluoromethyl)-2,3-dihydropyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4( 1H )-one (DMT) was determined to suppress hepatic glucose production and reduce mRNA levels of gluconeogenic genes. Treatment of DMT in db/db mice decreased fasting blood glucose and hemoglobin A1C (HbA1c) levels, while improved glucose tolerance and pyruvate tolerance. Mechanism study demonstrated that DMT-inhibited gluconeogenesis by regulating the Gαq/phospholipase C (PLC)/inositol-1,4,5-triphosphate receptor (IP3R)-mediated calcium (Ca 2+ )/calmodulin (CaM)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/forkhead box protein O1 (FOXO1) signaling pathway. To our knowledge, DMT might be the first reported small molecule able to suppress hepatic gluconeogenesis by regulating Gαq signaling, and our current work has also highlighted the potential of DMT in the treatment of T2DM. © 2017 Society for Endocrinology.

  19. Camp Site City, suburban porosity and eclecticism in San José, Costa Rica.

    NARCIS (Netherlands)

    Doevendans, C.H.; Schram, A.L.; Heynen, Hilde; Meulder, Bruno de

    2005-01-01

    The notion of 'camp' seems opposed to the more solid city and its almost permanent architecture. In this contribution, we regard the camp as a spatial concept with a twofold appearance: as both repressing and freeing, as a site for both larger, planned strategic activities, and smaller scale tactic

  20. Science Skills Boot Camp Gets Interns Ready for Research | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer Summer interns learned how to read a scientific paper, present a poster, maintain a laboratory notebook, and much more, at the Science Skills Boot Camp in June. “It was a great experience, and it was a great opportunity to meet some of the other interns also working on the campus,” said Alyssa Klein, a Werner H. Kirsten student intern in the Cellular Immunology Group, Laboratory of Molecular Immunoregulation. “The boot camp covered many topics essential to being a good scientist and science researcher.”

  1. Effectiveness of mammography boot camp for radiology residents

    International Nuclear Information System (INIS)

    Kim, Keum Won; Kim, Young Joong; Seo, Jae Young

    2017-01-01

    To evaluate an educational effect of the mammography boot camp (MBC) for radiology residents and analyze affecting factors. Between December 2014 and February 2015, radiology residents in 16 institutions performed the MBC program. We compared the educational effect (score difference between pre- and post-camp test) using 25 case series and analyzed the affecting factors including institution, grades of residents, training periods, presence of sub-specialized breast staff, breast density, and types of cases. The mean scores of 92 residents were 52.80 ± 18.10 and 72.50 ± 12.91 in the pre- and post-camp test, respectively (p = 0.001). There was no significant difference of educational effect according to institution (19.70 ± 16.31), grade, or training period. Although the educational effect of non-trainees was superior to that of trainees (28.10 ± 17.55 vs. 15.90 ± 14.22; p = 0.001), the scores of trainees were higher than those of non-trainees. The diagnostic accuracy showed more improvement in a fatty breast and cases with microcalcifications than compared with others. The MBC showed an effective educational result for radiology residents when interpretating a mammography. It was helpful even for non-trainees. The institution, grades training period, and presence of sub-specialized breast staff did not affect the educational effect

  2. Effectiveness of mammography boot camp for radiology residents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keum Won; Kim, Young Joong; Seo, Jae Young [Dept. of Radiology, Konyang University Hospital, Daejeon (Korea, Republic of); and others

    2017-01-15

    To evaluate an educational effect of the mammography boot camp (MBC) for radiology residents and analyze affecting factors. Between December 2014 and February 2015, radiology residents in 16 institutions performed the MBC program. We compared the educational effect (score difference between pre- and post-camp test) using 25 case series and analyzed the affecting factors including institution, grades of residents, training periods, presence of sub-specialized breast staff, breast density, and types of cases. The mean scores of 92 residents were 52.80 ± 18.10 and 72.50 ± 12.91 in the pre- and post-camp test, respectively (p = 0.001). There was no significant difference of educational effect according to institution (19.70 ± 16.31), grade, or training period. Although the educational effect of non-trainees was superior to that of trainees (28.10 ± 17.55 vs. 15.90 ± 14.22; p = 0.001), the scores of trainees were higher than those of non-trainees. The diagnostic accuracy showed more improvement in a fatty breast and cases with microcalcifications than compared with others. The MBC showed an effective educational result for radiology residents when interpretating a mammography. It was helpful even for non-trainees. The institution, grades training period, and presence of sub-specialized breast staff did not affect the educational effect.

  3. Long-Lasting Impairment of mGluR5-Activated Intracellular Pathways in the Striatum After Withdrawal of Cocaine Self-Administration

    Science.gov (United States)

    Hoffmann, Hanne Mette; Crouzin, Nadine; Moreno, Estefanía; Raivio, Noora; Fuentes, Silvia; McCormick, Peter J.; Vignes, Michel

    2017-01-01

    Abstract Background: Cocaine addiction continues to be a major heath concern, and despite public health intervention there is a lack of efficient pharmacological treatment options. A newly identified potential target are the group I metabotropic glutamate receptors, with allosteric modulators showing particular promise. Methods: We evaluated the capacity of group I metabotropic glutamate receptors to induce functional responses in ex vivo striatal slices from rats with (1) acute cocaine self-administration, (2) chronic cocaine self-administration, and (3) 60 days cocaine self-administration withdrawal by Western blot and extracellular recordings of synaptic transmission. Results: We found that striatal group I metabotropic glutamate receptors are the principal mediator of the mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine-induced cAMP responsive-element binding protein phosphorylation. Both acute and chronic cocaine self-administration blunted group I metabotropic glutamate receptor effects on cAMP responsive-element binding protein phosphorylation in the striatum, which correlated with the capacity to induce long-term depression, an effect that was maintained 60 days after chronic cocaine self-administration withdrawal. In the nucleus accumbens, the principal brain region mediating the rewarding effects of drugs, chronic cocaine self-administration blunted group I metabotropic glutamate receptor stimulation of extracellular signal-regulated protein kinases 1/2 and cAMP responsive-element binding protein. Interestingly, the group I metabotropic glutamate receptor antagonist/inverse-agonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride, led to a specific increase in cAMP responsive-element binding protein phosphorylation after chronic cocaine self-administration, specifically in the nucleus accumbens, but not in the striatum. Conclusions: Prolonged cocaine self-administration, through withdrawal, leads to a blunting of group I metabotropic glutamate receptor

  4. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose.

    Science.gov (United States)

    Berrone, Elena; Beltramo, Elena; Solimine, Carmela; Ape, Alessandro Ubertalli; Porta, Massimo

    2006-04-07

    Hyperglycemia is a causal factor in the development of the vascular complications of diabetes. One of the biochemical mechanisms activated by excess glucose is the polyol pathway, the key enzyme of which, aldose reductase, transforms d-glucose into d-sorbitol, leading to imbalances of intracellular homeostasis. We aimed at verifying the effects of thiamine and benfotiamine on the polyol pathway, transketolase activity, and intracellular glucose in endothelial cells and pericytes under high ambient glucose. Human umbilical vein endothelial cells and bovine retinal pericytes were cultured in normal (5.6 mmol/liter) or high (28 mmol/liter) glucose, with or without thiamine or benfotiamine 50 or 100 mumol/liter. Transketolase and aldose reductase mRNA expression was determined by reverse transcription-PCR, and their activity was measured spectrophotometrically; sorbitol concentrations were quantified by gas chromatography-mass spectrometry and intracellular glucose concentrations by fluorescent enzyme-linked immunosorbent assay method. Thiamine and benfotiamine reduce aldose reductase mRNA expression, activity, sorbitol concentrations, and intracellular glucose while increasing the expression and activity of transketolase, for which it is a coenzyme, in human endothelial cells and bovine retinal pericytes cultured in high glucose. Thiamine and benfotiamine correct polyol pathway activation induced by high glucose in vascular cells. Activation of transketolase may shift excess glycolytic metabolites into the pentose phosphate cycle, accelerate the glycolytic flux, and reduce intracellular free glucose, thereby preventing its conversion to sorbitol. This effect on the polyol pathway, together with other beneficial effects reported for thiamine in high glucose, could justify testing thiamine as a potential approach to the prevention and/or treatment of diabetic complications.

  5. Relationship between Platelet PPARs, cAMP Levels, and P-Selectin Expression: Antiplatelet Activity of Natural Products

    Directory of Open Access Journals (Sweden)

    Eduardo Fuentes

    2013-01-01

    Full Text Available Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists.

  6. The Easter Seal Directory of Resident Camps for Persons with Special Health Needs.

    Science.gov (United States)

    National Easter Seal Society for Crippled Children and Adults, Chicago, IL.

    The directory of resident camps is designed for persons with special health needs (children and adults with physical, mental, social, or emotional handicaps). Published by the National Easter Seal Society for Crippled Children and Adults, the listing contains residential facilities only (day care camp program information is not included). Listed…

  7. Cyclic AMP regulation of the human glycoprotein hormone α-subunit gene is mediated by an 18-base-pair element

    International Nuclear Information System (INIS)

    Silver, B.J.; Bokar, J.A.; Virgin, J.B.; Vallen, E.A.; Milsted, A.; Nilson, J.H.

    1987-01-01

    cAMP regulates transcription of the gene encoding the α-subunit of human chorionic gonadotropin (hCG) in the choriocarcinoma cells (BeWo). To define the sequences required for regulation by cAMP, the authors inserted fragments from the 5' flanking region of the α-subunit gene into a test vector containing the simian virus 40 early promoter (devoid of its enhancer) linked to the bacterial chloramphenicol acetyltransferase (CAT) gene. Results from transient expression assays in BeWo cells indicated that a 1500-base-pair (bp) fragment conferred cAMP responsiveness on the CAT gene regardless of position or orientation of the insert relative to the viral promoter. A subfragment extending from position -169 to position -100 had the same effect on cAMP-induced expression. Furthermore, the entire stimulatory effect could be achieved with an 18-bp synthetic oligodeoxynucleotide corresponding to a direct repeat between position -146 and -111. In the absence of cAMP, the α-subunit 5' flanking sequence also enhanced transcription from the simian virus 40 early promoter. They localized this enhancer activity to the same -169/-100 fragment containing the cAMP response element. The 18-bp element alone, however, had no effect on basal expression. Thus, this short DNA sequence serves as a cAMP response element and also functions independently of other promoter-regulatory elements located in the 5' flanking sequence of the α-subunit gene

  8. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors.

    Science.gov (United States)

    Fang, Shenglin; Yu, Xiaonan; Ding, Haoxuan; Han, Jianan; Feng, Jie

    2018-06-11

    Iron overload causes many diseases, while the underlying etiologies of these diseases are unclear. Cell death processes including apoptosis, necroptosis, cyclophilin D-(CypD)-dependent necrosis and a recently described additional form of regulated cell death called ferroptosis, are dependent on iron or iron-dependent reactive oxygen species (ROS). However, whether the accumulation of intracellular iron itself induces ferroptosis or other forms of cell death is largely elusive. In present study, we study the role of intracellular iron overload itself-induced cell death mechanisms by using ferric ammonium citrate (FAC) and a membrane-permeable Ferric 8-hydroxyquinoline complex (Fe-8HQ) respectively. We show that FAC-induced intracellular iron overload causes ferroptosis. We also identify 3-phosphoinositide-dependent kinase 1 (PDK1) inhibitor GSK2334470 as a potent ferroptosis inhibitor. Whereas, Fe-8HQ-induced intracellular iron overload causes unregulated necrosis, but partially activates PARP-1 dependent parthanatos. Interestingly, we identify many phenolic compounds as potent inhibitors of Fe-8HQ-induced cell death. In conclusion, intracellular iron overload-induced cell death form might be dependent on the intracellular iron accumulation rate, newly identified cell death inhibitors in our study that target ferroptosis and unregulated oxidative cell death represent potential therapeutic strategies against iron overload related diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Regulation of TORC2 complex in Dictyostelium discoideum

    NARCIS (Netherlands)

    Khanna, Ankita

    2016-01-01

    Dictyostelium is an amoeba that lives in the soil where it feeds on bacteria. During scarcity of food, Dictyostelium cells undergo a highly regulated developmental process in which the cells aggregate by chemotaxing towards pulsatile emission of extracellular cAMP from a signaling center; the cells

  10. Communication, Coping, and Connections: Campers’ and Parents’ Perspectives of Self-Efficacy and Benefits of Participation in Deployment Support Camps

    Directory of Open Access Journals (Sweden)

    Christy D. Clary

    2015-06-01

    Full Text Available Military youth have unique challenges, particularly when a parent is deployed. Camp participation has been linked to multiple positive outcomes, thus camps have become popular as a setting for addressing these youth’s unique needs. With limited existing research on outcomes related to participation, this study explored to what extent participation in OMK camps affected military youth’s self-efficacy for communication, coping, and social skills. Participants responded to an online instrument three months after camp. Both campers and parents reported the largest increase in self-efficacy for communication skills, followed by social skills, and then coping skills. Open-ended responses overwhelmingly supported that developing friendships was one of the greatest benefits of attending a camp. The results are consistent with the literature regarding the importance of connectedness. Recommendations for conducting camps are offered. These finding may also be useful to those working with other special populations in the camp setting.

  11. Intracellular Na+ regulation of Na+ pump sites in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Allen, J.C.; Navran, S.S.; Seidel, C.L.; Dennison, D.K.; Amann, J.M.; Jemelka, S.K.

    1989-01-01

    Enzymatically dispersed cells from canine saphenous vein and femoral artery were grown in fetal calf serum and studied at day 0 (freshly dispersed) through confluence in primary culture. Intracellular Na levels (Nai), but not intracellular K (Ki), were increased after 24 h in culture and then decreased to a steady state by 4 days. Na+ pump site number [( 3 H] ouabain binding) increased through day 3 and remained elevated. Nai was still elevated at 2 days when the Na+ pump site number began to increase. Total pump turnover (maximum ouabain-inhibited 86 Rb uptake) reflected the increase in Na+ pump site number. These key events precede the observed increases in both protein production and cellular proliferation. If the same cells are maintained in defined medium, without fetal calf serum, Nai, Ki, and the number of [ 3 H]ouabain binding sites do not change with time. These data are consistent with the suggestion that the initial mitogenic response of vascular smooth muscle cells to fetal calf serum involves an increased Na+ influx, and a Nai accumulation, caused by low Na+ pump density. The synthesis of new pump sites effects a decrease in the accumulated Nai, which may be related to cell proliferation

  12. 1,3-Dichloro-2-propanol inhibits progesterone production through the expression of steroidogenic enzymes and cAMP concentration in Leydig cells.

    Science.gov (United States)

    Sun, Jianxia; Bai, Shun; Bai, Weibin; Zou, Feiyan; Zhang, Lei; Li, Guoqiang; Hu, Yunfeng; Li, Mingwei; Yan, Rian; Su, Zhijian; Huang, Yadong

    2014-07-01

    1,3-Dichloro-2-propanol (1,3-DCP) is a well-known food processing contaminant that has been shown to impede male reproductive function. However, its mechanism of action remains elusive. In this study, the effects of 1,3-DCP on progesterone production were investigated using the R2C Leydig cell model. 1,3-DCP significantly reduced cell viability from 7.48% to 97.4% at doses comprised between 0.5 and 6mM. Single cell gel/comet assays and atomic force microscopy assays showed that 1,3-DCP induced early phase cell apoptosis. In addition, 1,3-DCP significantly reduced progesterone production detected by radioimmunoassay (RIA). The results from quantitative polymerase chain reaction and western blotting demonstrated that the mRNA expression levels of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase were significantly down-regulated in R2C cells. Particularly, the change rhythm of Star expression was highly consistent with progesterone production. Furthermore, the cyclic adenosine monophosphate (cAMP) and the mitochondrial membrane potential mediated by ROS, which are involved in regulating progesterone synthesis were also decreased in response to the 1,3-DCP treatment. Overall, the data presented here suggested that 1,3-DCP interferes with the male steroidogenic capacity mainly by down-regulating the level of cAMP and the key enzymes involved in the androgen synthesis pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Functional desensitization to isoproterenol without reducing cAMP production in canine failing cardiocytes.

    Science.gov (United States)

    Laurent, C E; Cardinal, R; Rousseau, G; Vermeulen, M; Bouchard, C; Wilkinson, M; Armour, J A; Bouvier, M

    2001-02-01

    To corroborate alterations in the functional responses to beta-adrenergic receptor (beta-AR) stimulation with changes in beta-AR signaling in failing cardiomyocytes, contractile and L-type Ca(2+) current responses to isoproterenol along with stimulated cAMP generation were compared among cardiomyocytes isolated from canines with tachycardia-induced heart failure or healthy hearts. The magnitude of shortening of failing cardiomyocytes was significantly depressed (by 22 +/- 4.4%) under basal conditions, and the maximal response to isoproterenol was significantly reduced (by 45 +/- 18%). Similar results were obtained when the responses in the rate of contraction and rate of relaxation to isoproterenol were considered. The L-type Ca(2+) current amplitude measured in failing cardiomyocytes under basal conditions was unchanged, but the responses to isoproterenol were significantly reduced compared with healthy cells. Isoproterenol-stimulated cAMP generation was similar in sarcolemmal membranes derived from the homogenates of failing (45 +/- 6.8) and healthy cardiomyocytes (52 +/- 8.5 pmol cAMP. mg protein(-1). min(-1)). However, stimulated cAMP generation was found to be significantly reduced when the membranes were derived from the homogenates of whole tissue (failing: 67 +/- 8.1 vs. healthy: 140 +/- 27.8 pmol cAMP. mg protein(-1). min(-1)). Total beta-AR density was not reduced in membranes derived from either whole tissue or isolated cardiomyocyte homogenates, but the beta(1)/beta(2) ratio was significantly reduced in the former (failing: 45/55 vs. healthy: 72/28) without being altered in the latter (failing: 72/28, healthy: 77/23). We thus conclude that, in tachycardia-induced heart failure, reduction in the functional responses of isolated cardiomyocytes to beta-AR stimulation may be attributed to alterations in the excitation-contraction machinery rather than to limitation of cAMP generation.

  14. Planning and Executing the Neurosurgery Boot Camp: The Bolivia Experience.

    Science.gov (United States)

    Ament, Jared D; Kim, Timothy; Gold-Markel, Judah; Germano, Isabelle M; Dempsey, Robert; Weaver, John P; DiPatri, Arthur J; Andrews, Russell J; Sanchez, Mary; Hinojosa, Juan; Moser, Richard P; Glick, Roberta

    2017-08-01

    The neurosurgical boot camp has been fully incorporated into U.S. postgraduate education. This is the first implementation of the neurosurgical boot in a developing country. To advance neurosurgical education, we developed a similar boot camp program, in collaboration with Bolivian neurosurgeons, to determine its feasibility and effectiveness in an international setting. In a collective effort, the Bolivian Society for Neurosurgery, Foundation for International Education in Neurological Surgery, Solidarity Bridge, and University of Massachusetts organized and executed the first South American neurosurgical boot camp in Bolivia in 2015. Both U.S. and Bolivian faculty led didactic lectures followed by a practicum day using mannequins and simulators. South American residents and faculty were surveyed after the course to determine levels of enthusiasm and their perceived improvement in fund of knowledge and course effectiveness. Twenty-four neurosurgery residents from 5 South American countries participated. Average survey scores ranged between 4.2 and 4.9 out of 5. Five Bolivian neurosurgeons completed the survey with average scores of 4.5-5. This event allowed for Bolivian leaders in the field to unify around education, resulting in the formation of an institute to continue similar initiatives. Total cost was estimated at $40 000 USD; however, significant faculty, industry, and donor support helped offset this amount. The first South American neurosurgical boot camp had significant value and was well received in Bolivia. This humanitarian model provides a sustainable solution to education needs and should be expanded to other regions as a means for standardizing the core competencies in neurosurgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Marketingová strategie společnosti Camp Leaders s.r.o.

    OpenAIRE

    Švubová, Tereza

    2014-01-01

    The bachelor thesis deals with the marketing strategy of the company Camp Leaders s.r.o. in the Czech Republic. The main objective of the work is to analyse the marketing strategy. The first chapter explains some key concepts of marketing. The second chapter is dedicated to the introduction of the company Camp Leaders, part of the Smaller Earth. Then the second chapter analyses the marketing mix of this company and the main competitors of providing Work&Travel programmes are introduced. The m...

  16. From charity and philanthropy to State social protection: school holiday camps in Spain (1887-1936

    Directory of Open Access Journals (Sweden)

    Pedro L. MORENO MARTÍNEZ

    2013-11-01

    Full Text Available School holiday camps, which started in Switzerland in 1886, would start to function in Spain under the institutionalist and director of the then called Museo de Instrucción Primaria de Madrid (Museum of Primary Instruction, Manuel B. Cossío, in 1887. The paper analyses briefly the social, hygienic and educational context in which international movement of summer camps made their appearance and with special reference to Spain. The paper focuses on the beginnings and the scope of these camps in Spain and on the influence of public policies on these processes. These policies shifted from initial government inhibition and the call to the forces of the country to charity and patriotism, to a progressive promotion and to State protection for the summer camps.

  17. Organizing an App Inventor Summer Camp for Middle School Girls: What the Experts Don't Tell You

    Science.gov (United States)

    Martin, Nancy L.; Soares, Andrey

    2016-01-01

    In this paper, we report on our experience as rookies organizing, funding, and running a summer computing camp for middle school girls. The focus of the camp was building mobile applications using App Inventor. The three day/two night camp targeted girls in rural, high poverty school districts and was funded through an award from the National…

  18. Winter Camp: A Blog from the Greenland Summit, Part II

    Science.gov (United States)

    Koenig, Lora

    2009-01-01

    An earlier issue presents the first half of the author's experience living and working at the National Science Foundation's (NSF) Greenland Summit Camp. The author is a remote-sensing glaciologist at NASA s Goddard Space Flight Center. She took measurements that will be used to validate data collected by NASA s Aqua, Terra, and Ice, Clouds, and land Elevation Satellite (ICESat) satellites with ground-truth measurements of the Greenland Ice Sheet she made at Summit Camp from November 2008-February 2009. This article presents excerpts from the second half of her stay and work at the Greenland Summit.

  19. Rab7b at the intersection of intracellular trafficking and cell migration.

    Science.gov (United States)

    Distefano, Marita Borg; Kjos, Ingrid; Bakke, Oddmund; Progida, Cinzia

    2015-01-01

    Rab proteins are small GTPases essential for controlling and coordinating intracellular traffic. The small GTPase Rab7b regulates the retrograde transport from late endosomes toward the Trans-Golgi Network (TGN), and is important for the proper trafficking of several receptors such as Toll-like receptors (TLRs) and sorting receptors. We recently identified the actin motor protein myosin II as a new interaction partner for Rab7b, and found that Rab7b transport is dependent on myosin II. Interestingly, we also discovered that Rab7b influences the phosphorylation state of myosin II by controlling the activation status of the small GTPase RhoA. Consequently, Rab7b is important for the remodeling of actin filaments in processes such as stress fiber formation, cell adhesion, polarization and cell migration. Our finding that Rab7b can control actomyosin reorganization reveals yet another important role for Rab proteins, in addition to their already established role as master regulators of intracellular transport. Here we discuss our findings and speculate how they can explain the importance of Rab7b in dendritic cells (DCs).

  20. Woods and Camping Safety for the Whole Family

    Science.gov (United States)

    ... for Educators Search English Español Woods and Camping Safety for the Whole Family KidsHealth / For Parents / Woods ... products before hiking that will act as a barrier against the oils of the plants. Any area ...

  1. Distancing Students from Nature: Science Camp and the Representation of the Human-Nature Relationship

    Science.gov (United States)

    Terrill, Laura Anne

    2015-01-01

    This study investigated the curricular representations of the environment and the human-environment relationship at one residential school sponsored science camp. Data gathered included field notes from observational time at the camp, interviews with staff and classroom teachers, and documents from the site's website, guides, manuals, and…

  2. Regulation of cessation of respiration and killing by cyclic 3',5'-adenosine monophosphate and its receptor protein after far-ultraviolet irradiation of Escherichia coli

    International Nuclear Information System (INIS)

    Swenson, P.A.; Schenley, R.L.; Joshi, J.G.

    1978-01-01

    When Escherichia coli B/r cultures are irradiated with ultraviolet light (UV) (254 nm), those cells that are killed stop respiring by 60 min after irradiation. Post-UV treatment with cyclic adenosine 3',5'-adenosine monophosphate (cAMP) causes more cells to stop respiring and to die. We have studied these effects at a UV fluence of 52 I/m 2 in a a wild-type E. coli K 12 strain and in mutants defective in cAMP metabolism. Strain CA 8,000 has crp + and cya + genes for the cAMP receptor protein (CRP) (required for transcription of operons regulated by cAMP) and for adenylate cyclase, respectively; CA 7901 is crp - ; and CA 8306 is a cya deletion (Δ). The wild-type culture showed a small transient cessation of respiration, and addition of cAMP caused cessation to be nearly complete. The crp - culture showed no evidence of cessation of respiration, and cAMP had no effect. The Δ cya mutant also showed no cessation of respiration, but cAMP (5 mM) caused as complete inhibition as in the wild type. cAMP caused a 10-fold loss in viability of UV-irradiated wild-type and Δ cya liquid cultures but had no effect on the cpr - culture. Respiration and viability changes were also studied in a double mutant, CA8404 Δ cya crp*, which has an altered CRP that is, with respect to the lac operon, independent of cAMP. The respiration response to UV was similar to that of the wild-type culture, and both respiration and viability of cells in liquid culture were sensitive to cAMP. The survival data, obtained by plating immediately after irradiation, show the wild type, Δ cya strains, and Δ cya crp* to be equally sensitive and the crp - strain to be more resistant. We conclude that cessation of respiration and cell killing after UV irradiation are regulated by cAMP and the CRP. (orig.) [de

  3. Study of deaths by suicide of homosexual prisoners in Nazi Sachsenhausen concentration camp.

    Science.gov (United States)

    Cuerda-Galindo, Esther; López-Muñoz, Francisco; Krischel, Matthis; Ley, Astrid

    2017-01-01

    Living conditions in Nazi concentration camps were harsh and inhumane, leading many prisoners to commit suicide. Sachsenhausen (Oranienburg, Germany) was a concentration camp that operated from 1936 to 1945. More than 200,000 people were detained there under Nazi rule. This study analyzes deaths classified as suicides by inmates in this camp, classified as homosexuals, both according to the surviving Nazi files. This collective was especially repressed by the Nazi authorities. Data was collected from the archives of Sachsenhausen Memorial and the International Tracing Service in Bad Arolsen. Original death certificates and autopsy reports were reviewed. Until the end of World War II, there are 14 death certificates which state "suicide" as cause of death of prisoners classified as homosexuals, all of them men aged between 23 and 59 years and of various religions and social strata. Based on a population of 1,200 prisoners classified as homosexuals, this allows us to calculate a suicide rate of 1,167/100,000 (over the period of eight years) for this population, a rate 10 times higher than for global inmates (111/100,000). However, our study has several limitations: not all suicides are registered; some murders were covered-up as suicides; most documents were lost during the war or destroyed by the Nazis when leaving the camps and not much data is available from other camps to compare. We conclude that committing suicides in Sachsenhausen was a common practice, although accurate data may be impossible to obtain.

  4. Caxingo - a promising model for integrating the hydroelectric work camps to the site communities

    International Nuclear Information System (INIS)

    Luna, A.M.; Falcao, A.A.

    1989-01-01

    The social and economical impacts caused by the hydroelectric work camps in the sites where the hydroelectric will be constructed are studied, analysing the great supply of works when the hydroelectric is been constructed face to the reduction one when the works are concluded; the neglect by the State in providing medical and educational assistances to the neighbour populations; the appearance of a commerce in the neighbour areas; the employer stableness in the camp after the pension and the lack by the neighbour cities of a social and economical substructure to offer to the population, that come with the hydroelectric construction. A new solution for these problems is presented in the Xingo camp, where the camp will be as a district of city near to the work, with community services provide by the State and the needful substructure to its construction and the equipment provide by the concessionaire. (C.G.C.). 1 fig

  5. RU SciTech: Weaving Astronomy and Physics into a University-sponsored Summer Camp for Middle School Students

    Science.gov (United States)

    Hart, Quyen N.

    2015-01-01

    We present a successful model for organizing a small University-sponsored summer camp that integrates astronomy and physics content with other science disciplines and computer programming content. The aim of our science and technology camp is to engage middle school students in a wide array of critical thinking tasks and hands-on activities centered on science and technology. Additionally, our program seeks to increase and maintain STEM interest among children, particularly in under-represented populations (e.g., Hispanic, African-American, women, and lower socioeconomic individuals) with hopes of decreasing disparities in diversity across many STEM fields.During this four-day camp, organized and facilitated by faculty volunteers, activities rotated through many STEM modules, including optics, telescopes, circuit building, computer hardware, and programming. Specifically, we scaffold camp activities to build upon similar ideas and content if possible. Using knowledge and skills gained through the AAS Astronomy Ambassadors program, we were able to integrate several astronomy activities into the camp, leading students through engaging activities, and conduct educational research. We present best practices on piloting a similar program in a university environment, our efforts to connect the learning outcomes common across all the modules, specifically in astronomy and physics, outline future camp activities, and the survey results on the impact of camp activities on attitudes toward science, technology, and science careers.

  6. Solid waste composition analysis and recycling evaluation: Zaatari Syrian Refugees Camp, Jordan.

    Science.gov (United States)

    Saidan, Motasem N; Drais, Ammar Abu; Al-Manaseer, Ehab

    2017-03-01

    There is a need for Municipal Solid Waste (MSW) stream characterization and composition analysis to allow for an accurate estimation of its recycling potential and for effective management of the entire system. Recycling provides employment and a livelihood for vulnerable social groups such as refugees. The aim of this paper is to determine the composition of MSW in Zaatari Syrian Refugee Camp, where approximately 430,000 Syrian refugees have passed through the camp. The representative waste samples and analysis included household waste and commercial waste produced by the refugees in the selected districts in Zaatari. The waste sampling was performed in 2015 over two seasons to ensure that the seasonal fluctuations in the composition of the waste stream are taken into consideration. Hand sorting was used for classifying the collected wastes into the categories and subcategories. The organic waste represents the main waste category with 53% of the total MSW, while plastics, textile, and paper and cardboard are 12.85%, 10.22% and 9%, respectively. Moreover, the MSW composition percentage in Zaatari Camp is similar to that in municipalities in Jordan with slight disparity. The potential recyclable materials market has been investigated in this study. Plastics and paper and cardboard have significant potential to be separated and collected for recycling purposes. Financial revenues of potential recyclables have been analyzed based on local prices. Recycling model in the camp is also proposed based on the present study findings. Consequently, these results should be taken as a baseline for all Syrian refugees camps in the Middle East, as well as, in Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. 29 CFR 1910.142 - Temporary labor camps.

    Science.gov (United States)

    2010-07-01

    ... employed or permitted to work in the preparation, cooking, serving, or other handling of food, foodstuffs... facilities shall be provided for storing and preparing food. (11) All heating, cooking, and water heating... principal camp area in which food is prepared and served and where sleeping quarters are located shall be at...

  8. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    Science.gov (United States)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  9. Forced migration and sexual abuse: experience of Congolese adolescent girls in Kigeme refugee camp, Rwanda

    Directory of Open Access Journals (Sweden)

    Innocent Iyakaremye

    2016-05-01

    Full Text Available Background This study deals with the link between forced migration and sexual abuse, with a special focus on adolescent girls. Existing literature associates forced migration with sexual abuse and identifies adolescent girls as the most vulnerable. However, little is known about the situation of sexual abuse among Congolese refugees in Rwanda since their arrival in 2012 due to the conflict between Congolese government forces and the M23 rebel group. This study was initiated to explore the situation of sexual abuse of Congolese adolescent girls in Kigeme camp and to suggest remedial strategies. Participants and procedure Qualitative data were collected through individual interviews and focus group discussions (FGDs with adolescent girls. Interviews also involved parents, boys, camp authorities, and neighbouring citizens. Results The findings show that rape, unwanted physical touching, sexual exploitation, commercial sex, early marriage and girl trafficking are the main forms of sexual abuse. These are facilitated by the miserable life in the camp, shortcomings in the camp layout and security system, and adolescent developmental stage. They negatively impact girls’ reproductive health, social integration and mental health. Conclusions Existing strategies to address sexual abuse in the camp have had positive but insufficient results, and thus need to be improved and reinforced. Improvement is suggested in the areas of the abuse reporting system, the camp layout and security system, involvement of men and youth, and the consolidation of anti-GBV (gender-based violence clubs.

  10. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors.

    Science.gov (United States)

    Castro, Liliana R V; Guiot, Elvire; Polito, Marina; Paupardin-Tritsch, Daniéle; Vincent, Pierre

    2014-02-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP-dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, pathfinding, efficacy of synaptic transmission, regulation of excitability, or long term changes. Genetically encoded optical biosensors for cAMP or PKA are considerably improving our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progress made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the sub-cellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus, and axon. Combining this imaging approach with pharmacology or genetic models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly emerge as a forefront tool to decipher the subtle mechanics of intracellular signaling. This will certainly help us to understand the mechanism of action of current drugs and foster the development of novel molecules for neuropsychiatric diseases. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion

    KAUST Repository

    Tochhawng, Lalchhandami

    2016-07-07

    The actin-binding protein, gelsolin, is a well known regulator of cancer cell invasion. However, the mechanisms by which gelsolin promotes invasion are not well established. As reactive oxygen species (ROS) have been shown to promote cancer cell invasion, we investigated on the hypothesis that gelsolin-induced changes in ROS levels may mediate the invasive capacity of colon cancer cells. Herein, we show that increased gelsolin enhances the invasive capacity of colon cancer cells, and this is mediated via gelsolin\\'s effects in elevating intracellular superoxide (O2 .-) levels. We also provide evidence for a novel physical interaction between gelsolin and Cu/ZnSOD, that inhibits the enzymatic activity of Cu/ZnSOD, thereby resulting in a sustained elevation of intracellular O2 .-. Using microarray data of human colorectal cancer tissues from Gene Omnibus, we found that gelsolin gene expression positively correlates with urokinase plasminogen activator (uPA), an important matrix-degrading protease invovled in cancer invasion. Consistent with the in vivo evidence, we show that increased levels of O2 .- induced by gelsolin overexpression triggers the secretion of uPA. We further observed reduction in invasion and intracellular O2 .- levels in colon cancer cells, as a consequence of gelsolin knockdown using two different siRNAs. In these cells, concurrent repression of Cu/ ZnSOD restored intracellular O2 .- levels and rescued invasive capacity. Our study therefore identified gelsolin as a novel regulator of intracellular O2 .- in cancer cells via interacting with Cu/ZnSOD and inhibiting its enzymatic activity. Taken together, these findings provide insight into a novel function of gelsolin in promoting tumor invasion by directly impacting the cellular redox milieu.

  12. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    Science.gov (United States)

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  13. 1992 Environmental Summer Science Camp Program evaluation. The International Environmental Institute of Westinghouse Hanford Company

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report describes the 1992 Westinghouse Hanford Company/US Department of Energy Environmental Summer Science Camp. The objective of the ``camp`` was to motivate sixth and seventh graders to pursue studies in math, science, and the environment. This objective was accomplished through hands-on fun activities while studying the present and future challenges facing our environment. The camp was funded through Technical Task Plan, 424203, from the US Department of Energy-Headquarters, Office of Environmental Restoration and Waste Management, Technology Development,to Westinghouse Hanford Company`s International Environmental Institute, Education and Internship Performance Group.

  14. Imaging cAMP-specific phosphodiesterase-4 in human brain with R-[11C]rolipram and positron emission tomography

    International Nuclear Information System (INIS)

    DaSilva, Jean N.; Lourenco, Celia M.; Meyer, Jeffrey H.; Houle, Sylvain; Hussey, Douglas; Potter, William Z.

    2002-01-01

    Evidence of disruptions in cAMP-mediated signaling in several neuropsychiatric disorders has led to the development of R-[ 11 C]rolipram for imaging phosphodiesterase-4 (PDE4) enzymes with positron emission tomography (PET). The high-affinity PDE4 inhibitor rolipram was previously reported to have an antidepressant effect in humans. PDE4 is abundant in the brain, and it hydrolyzes cAMP produced following stimulation of various neurotransmitter systems. PDE4 is regulated by intracellular cAMP levels. This paper presents the first PET study of R-[ 11 C]rolipram in living human brain. Consistent with the wide distribution of PDE4, high radioactivity retention was observed in all regions representing the gray matter. Rapid metabolism was observed, and kinetic analysis demonstrated that the data fit in a two-tissue compartment model. R-[ 11 C]Rolipram is thus suitable for imaging PDE4 and possibly cAMP signal transduction in the living human brain with PET. (orig.)

  15. CORRECTIVE SURGERY IN CONGENITAL TALIPES EQUINOVARUS DEFORMITY: A CAMP APPROACH

    Directory of Open Access Journals (Sweden)

    Antony R.

    2015-09-01

    Full Text Available The study was intended to assess the results of soft tissue release and bony corrective surgery in patients of moderate to severe deformed rigid club foot (CTEV and neglected clubfoot (CTEV at free disabled surgical camps at Chhattisgarh state . MATERIAL AND METHODS : In our study 50 patients were included with 70% male and 30% female with 4 - 16 years of age grou p and 70% unilateral and 30% bilateral foot involvement. Patients were admitted and operated in different free disabled surgical camps at Chhattisgarh state over the period of 36 months (1 may 2004 to 30 th April 2007. Improvement in functional ability and locomotion of all operated patients were assessed by physical and clinical examination. RESULTS : All patients who were operated in our study showed significant improvement in functional ability and locomotion after surgery. All patients were maintaining f unctional ability at follow up duration of 12 months (1 year. 75% patients were walking normally, 10% cases were walking with internal rotation of leg and 5% cases were walking with midtarsal varus foot with AFO with medial bar support. CONCLUSION : Our st udy showed and established that excellent results can be obtained in congenital talipes equinovarus (CTEV patients by soft tissue release with bony corrective surgery. The team work of devoted surgeons, paramedical and rehabilitation staff in whole durati on of camps to achieve the goal. With an aim to help more number of CTEV cases by surgery, our team has started doing surgeries in small institutions, and organize charity camps to help poor patients and mankind even in small clinics

  16. Calmodulin-regulated adenylyl cyclases and neuromodulation.

    Science.gov (United States)

    Xia, Z; Storm, D R

    1997-06-01

    Coincidence detection and crosstalk between signal transduction systems play very important regulatory roles in the nervous system, particularly in the regulation of transcription. Coupling of the Ca2+ and cAMP regulatory systems by calmodulin-regulated adenylyl cyclases is hypothesized to be important for some forms of synaptic plasticity, neuroendocrine function, and olfactory detection. Recent studies of a mutant mouse deficient in type I calmodulin-sensitive adenylyl cyclase have provided the first evidence that adenylyl cyclases are important for synaptic plasticity, as well as for learning and memory in vertebrates.

  17. Camp of Hip-Hop - kõigile kohustuslik / Mari Hiiemäe ; kommenteerinud Joel Juht

    Index Scriptorium Estoniae

    Hiiemäe, Mari

    2012-01-01

    Üheksandat korda toimuvast rahvusvahelisest tantsulaagrist ja tänavakultuuri tutvustavast noortelaagrist Camp of Hip-Hop, mis toimub Lääne Virumaal Käsmus. 28. juunil toimub kõigile huvilistele meelelahutusüritus Camp of Hip-Hop Championships, kus näitavad oma tantsuoskusi laagris osalejad ja maailmas tunnustatud koreograafid

  18. Release from Xenopus oocyte prophase I meiotic arrest is independent of a decrease in cAMP levels or PKA activity.

    Science.gov (United States)

    Nader, Nancy; Courjaret, Raphael; Dib, Maya; Kulkarni, Rashmi P; Machaca, Khaled

    2016-06-01

    Vertebrate oocytes arrest at prophase of meiosis I as a result of high levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) activity. In Xenopus, progesterone is believed to release meiotic arrest by inhibiting adenylate cyclase, lowering cAMP levels and repressing PKA. However, the exact timing and extent of the cAMP decrease is unclear, with conflicting reports in the literature. Using various in vivo reporters for cAMP and PKA at the single-cell level in real time, we fail to detect any significant changes in cAMP or PKA in response to progesterone. More interestingly, there was no correlation between the levels of PKA inhibition and the release of meiotic arrest. Furthermore, we devised conditions whereby meiotic arrest could be released in the presence of sustained high levels of cAMP. Consistently, lowering endogenous cAMP levels by >65% for prolonged time periods failed to induce spontaneous maturation. These results argue that the release of oocyte meiotic arrest in Xenopus is independent of a reduction in either cAMP levels or PKA activity, but rather proceeds through a parallel cAMP/PKA-independent pathway. © 2016. Published by The Company of Biologists Ltd.

  19. Tabud ja reeglid. Sissevaateid eesti laagriromaani / Taboos and Rules. Insights into Prison Camp Novels by Estonian Writers

    Directory of Open Access Journals (Sweden)

    Anneli Kõvamees

    2013-12-01

    Full Text Available The article concentrates on Estonian novels depicting Soviet prison camps in the 1940s and 1950s. The goal is to map themes, motifs and characteristics in such novels, concentrating on various taboos and rules in the prison camp environment. For a long time the Soviet prison camp theme was not publicly discussed in Estonia due to political reasons. Texts dealing with prison camps could appear in print only outside the Soviet Union; the way Estonians saw these historical events and hellish experiences were depicted mostly in exile novels. Most notable are the novels by Arved Viirlaid (b. 1922, e.g., Kes tappis Eerik Hormi? (Who Killed Eerik Horm? (1974, Surnud ei loe (The Dead do not Read (1975, Vaim ja ahelad (Mind and Chains (1961. Estonian prison camp novels can be seen as “the literature of testimony”, to use the term by Leona Toker. Dramatic historical events are written down to record the events and to show the inhumane nature of Soviet society. These records of the dramatic past follow certain patterns and create certain self- and hetero-images. A prison camp is a closed territory within a closed territory; prison camps can be seen as small models of Soviet society. Prison camp novels give a detailed view of the environment of the prison camp, its inhabitants and activities. Two central aspects are labour and food; the life of the prisoner whirls around these. The most important thing is to survive, which often leads to moral decline, e.g., stealing, cheating. However, there are lines Estonians do not cross, e.g., cannibalism or homosexual relationships with superiors. Estonians are always depicted as political prisoners (not common criminals and heterosexuals, while Russians are portrayed mainly as criminals and often also as homosexuals. Another important component of the image of the Estonians is their enterprising spirit and ability to manage even under very difficult conditions. Therefore, several oppositions can be identified, e

  20. Hypotonicity-induced reduction of aquaporin-2 transcription in mpkCCD cells is independent of the tonicity responsive element, vasopressin, and cAMP.

    Science.gov (United States)

    Kortenoeven, Marleen L A; van den Brand, Michiel; Wetzels, Jack F M; Deen, Peter M T

    2011-04-15

    The syndrome of inappropriate antidiuretic hormone secretion is characterized by excessive water uptake and hyponatremia. The extent of hyponatremia, however, is less than anticipated, which is ascribed to a defense mechanism, the vasopressin-escape, and is suggested to involve a tonicity-determined down-regulation of the water channel aquaporin-2 (AQP2). The underlying mechanism, however, is poorly understood. To study this, we used the mouse cortical collecting duct (mpkCCD) cell line. MpkCCD cells, transfected with an AQP2-promoter luciferase construct showed a reduced and increased AQP2 abundance and transcription following culture in hypotonic and hypertonic medium, respectively. This depended on tonicity rather than osmolality and occurred independently of the vasopressin analog dDAVP, cAMP levels, or protein kinase A activity. Although prostaglandins and nitric oxide reduced AQP2 abundance, inhibition of their synthesis did not influence tonicity-induced AQP2 transcription. Also, cells in which the cAMP or tonicity-responsive element (CRE/TonE) in the AQP2-promoter were mutated showed a similar response to hypotonicity. Instead, the tonicity-responsive elements were pin-pointed to nucleotides -283 to -252 and -157 to -126 bp. In conclusion, our data indicate that hypotonicity reduces AQP2 abundance and transcription, which occurs independently of vasopressin, cAMP, and the known TonE and CRE in the AQP2-promoter. Increased prostaglandin and nitric oxide, as found in vivo, may contribute to reduced AQP2 in vasopressin-escape, but do not mediate the effect of hypotonicity on AQP2 transcription. Our data suggest that two novel segments (-283 to -252 and -157 to -126 bp) in the AQP2-promoter mediate the hypotonicity-induced AQP2 down-regulation during vasopressin-escape.

  1. Diabetes Camp as Continuing Education for Diabetes Self-Management in Middle-Aged and Elderly People with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    So Young Park

    2017-03-01

    Full Text Available BackgroundDespite the established benefits of diabetes camps for the continuing education of children with type 1 diabetes mellitus, little is known about the long-term metabolic benefits of diabetes camps for middle-aged and elderly people with type 2 diabetes mellitus (T2DM, especially in terms of glycosylated hemoglobin (HbA1c variability.MethodsThe 1-year mean and variability of HbA1c before and after the diabetes camp was compared between the participants of the diabetes camp (n=57; median age 65 years [range, 50 to 86 years]; median diabetes duration 14 years [range, 1 to 48 years]. Additional case-control analysis compared the metabolic outcomes of the participants of the diabetes camp and their propensity score-matched controls who underwent conventional diabetes education (n=93.ResultsThe levels of HbA1c during the first year after the diabetes camp were comparable to those of the matched controls (P=0.341. In an analysis of all participants of the diabetes camp, the 1-year mean±standard deviation (SD of HbA1c decreased (P=0.010 and P=0.041 after the diabetes camp, whereas the adjusted SD and coefficient of variance (CV of HbA1c did not decrease. The adjusted SD and CV significantly decreased after the diabetes camp in participants whose 1-year mean HbA1c was ≥6.5% before the diabetes camp (n=40 and those with a duration of diabetes less than 15 years (n=32.ConclusionThe 1-year mean and SD of HbA1c decreased after the diabetes camp, with significant reduction in the adjusted SD and CV in those with higher baseline HbA1c and a shorter duration of diabetes.

  2. Brucella abortus: pathogenicity and gene regulation of virulence

    Directory of Open Access Journals (Sweden)

    Olga Rivas-Solano

    2015-06-01

    Full Text Available Brucella abortus is a zoonotic intracellular facultative pathogen belonging to the subdivision α2 of class Proteobacteria. It causes a worldwide distributed zoonotic disease called brucellosis. The main symptoms are abortion and sterility in cattle, as well as an undulant febrile condition in humans. In endemic regions like Central America, brucellosis has a high socioeconomic impact. A basic research project was recently conducted at the ITCR with the purpose of studying gene regulation of virulence, structure and immunogenicity in B. abortus. The present review was written as part of this project. B. abortus virulence seems to be determined by its ability to invade, survive and replicate inside professional and non-professional phagocytes. It reaches its intracellular replicative niche without the activation of host antimicrobial mechanisms of innate immunity. It also has gene regulation mechanisms for a rapid adaptation to an intracellular environment such as the two-component signal transduction system BvrR/BvrS and the quorum sensing regulator called Vjbr, as well as other transcription factors. All of them integrate a complex gene regulation network.

  3. An Observational Study of Peer Learning for High School Students at a Cybersecurity Camp

    Science.gov (United States)

    Pittman, Jason M.; Pike, Ronald E.

    2016-01-01

    This paper reports on the design and implementation of a cybersecurity camp offered as a cybersecurity learning experience to a group of female and male high school students. Students ranged in grade level from freshmen to senior. Student demographics, including any existing pre-requisite knowledge, were unknown to camp designers prior to the…

  4. Effects of a multi-component camp-based intervention on inflammatory markers and adipokines in children

    DEFF Research Database (Denmark)

    Huang, T.; Larsen, K. T.; Moller, N. C.

    2015-01-01

    Objective. To examine the effects of a multi-component camp-based intervention on inflammatory markers and adipokines in children. Methods. One hundred and fifteen children were recruited in Odense, Denmark (2012-2014). The participants were randomly allocated to either the day camp intervention ...

  5. Refugee-led humanitarianism in Lebanon’s Shatila camp

    Directory of Open Access Journals (Sweden)

    Hind Sharif

    2018-02-01

    Full Text Available Refugee-led humanitarian initiatives by ‘established’ Palestinian refugees in response to the arrival of ‘new’ displaced Syrians to Shatila camp raise key questions about the limitations of the humanitarian system and representations of refugees as passive victims.

  6. APA Award for Distinguished Professional Contributions to Applied Research: Cameron J. Camp.

    Science.gov (United States)

    2017-12-01

    The Award for Distinguished Professional Contributions to Applied Research is given to a psychologist whose research has led to important discoveries or developments in the field of applied psychology. The 2017 recipient is Cameron J. Camp, whose innovative programs have informed psychologists in working with dementia patients to improve their living skills and enhance their independence. Camp's award citation, biography, and a selected bibliography are presented here. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Insecticide resistance and intracellular proteases.

    Science.gov (United States)

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. S'Cool LAB Summer CAMP 2017

    CERN Multimedia

    Woithe, Julia

    2017-01-01

    The S’Cool LAB Summer CAMP is an opportunity for high-school students (aged 16-19) from all around the world to spend 2 weeks exploring the fascinating world of particle physics. The 24 selected participants spend their summer at S’Cool LAB, CERN’s hands-on particle physics learning laboratory, for an epic programme of lectures and tutorials, team research projects, visits of CERN’s research installations, and social activities.

  9. Impact of the Purdue University School of Veterinary Medicine's Boiler Vet Camp on participants' knowledge of veterinary medicine.

    Science.gov (United States)

    Weisman, James L; Amass, Sandra F; Warren, Joshua D

    2011-04-01

    To assess whether Boiler Vet Camp, a 7-day residential summer camp for students entering eighth or ninth grade in the fall, would increase participants' understanding of career options in the veterinary profession, increase understanding of the science of veterinary medicine, or increase the number of students stating that they intended to apply to the Purdue University School of Veterinary Medicine. Survey. 48 individuals attending the 2009 Boiler Vet Camp. Information on participant demographics was obtained from camp applications. A questionnaire was administered on the first and sixth days of camp, and results were analyzed to identify changes in responses over time. More campers correctly answered questions designed to evaluate knowledge of the veterinary profession and 10 of 12 questions designed to evaluate specific knowledge of the science of veterinary medicine on day 6, compared with day 1. Remarkable differences were not observed among gender or race-ethnicity groups for these questions. There was no significant difference between percentages of campers who stated that they would apply to Purdue before and after camp. Significantly more Caucasian campers stated they would apply to Purdue on both day 1 and day 6, compared with campers from under-represented minority groups. Results indicated that the Boiler Vet Camp accomplished 2 of its 3 planned objectives, suggesting that such camps can be successfully used to increase knowledge of the veterinary profession among middle school students. Reasons for the low percentage of participants from underrepresented minorities who indicated they would apply to the Purdue University School of Veterinary Medicine require further exploration.

  10. The First Neurosurgery Boot Camp in Southeast Asia: Evaluating Impact on Knowledge and Regional Collaboration in Yangon, Myanmar.

    Science.gov (United States)

    Rock, Jack; Glick, Roberta; Germano, Isabelle M; Dempsey, Robert; Zervos, John; Prentiss, Tyler; Davis, Matthew; Wright, Ernest; Hlaing, Kyi; Thu, Myat; Soe, Zaw Wai; Myaing, Win

    2018-05-01

    For the first time in Southeast Asia, a Fundamentals of Neurosurgery Boot Camp was held at the University of Medicine 1 in Yangon, Myanmar, February 24-26, 2017. The aim of this course was to teach and train fundamental skills to neurosurgery residents. The Myanmar Neurosurgical Society, Foundation for International Education in Neurosurgery, Society for Neurological Surgeons, The University of Medicine 1 in Yangon, Myanmar, and the Henry Ford Department of Neurosurgery developed a 2-day resident training course. Day 1 activities consisted of lectures by faculty, small group case discussions, and industry-supported demonstrations of surgical techniques. Day 2 activities consisted of hands-on skill stations for common neurosurgical procedures with each station supervised by attending faculty. Written evaluations were distributed before the meeting, immediately after the meeting, and 6 months after the meeting. Boot camp attendees included 40 residents and 24 neurosurgical faculty from Myanmar, Cambodia, Nepal, Singapore, South Korea, Thailand, and Vietnam. There were 35 evaluations completed before the boot camp, 34 completed immediately after boot camp, and 20 completed 6 months after boot camp. Knowledge of participants improved from 62.75% before boot camp to 71.50% 6 months after boot camp (P = 0.046). Boot camps provide fundamental didactic and technical exposure to trainees in developed and developing countries and help standardize training in basic neurosurgical competencies, while exposing local faculty to important teaching methods. This model provides a sustainable solution to educational needs and demonstrates to local neurosurgeons how they can take ownership of the educational process. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Effect of cAMP on short-circuit current in isolated human ciliary body.

    Science.gov (United States)

    Wu, Ren-yi; Ma, Ning; Hu, Qian-qian

    2013-07-01

    Cyclic adenosine monophosphate (cAMP) could activate chloride channels in bovine ciliary body and trigger an increase in the ionic current (short-circuit current, Isc) across the ciliary processes in pigs. The purpose of this study was to investigate how cAMP modulates Isc in isolated human ciliary processes and the possible involvement of chloride transport across the tissue in cAMP-induced Isc change. In an Ussing-type chamber system, the Isc changes induced by the cAMP analogue 8-bromo-cAMP and an adenylyl cyclase activator forskolin in isolated human ciliary processes were assessed. The involvement of Cl(-) component in the bath solution was investigated. The effect of Cl(-) channel (10 µmol/L niflumic acid and 1 mmol/L 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)), K(+) channel (10 mmol/L tetraethylammonium chloride (TEA)), or Na(+) channel blockers (1 mmol/L amiloride) on 8-bromo-cAMP-induced Isc change was also studied. Dose-dependently, 8-bromo-cAMP (10 nmol/L-30 µmol/L) or forskolin (10 nmol/L-3 µmol/L) increased Isc across the ciliary processes with an increase in negative potential difference on the non-pigmented epithelium (NPE) side of the tissue. Isc increase induced by 8-bromo-cAMP was more pronounced when the drug was applied on the NPE side than on the pigmented epithelium side. When the tissue was bathed in low Cl(-) solutions, the Isc increase was significantly inhibited. Finally, niflumic acid and DIDS, but not TEA or amiloride, significantly prevented the Isc increase induced by 8-bromo-cAMP. cAMP stimulates stroma-to-aqueous anionic transport in isolated human ciliary processes. Chloride is likely to be among the ions, the transportation of which across the tissue is triggered by cAMP, suggesting the potential role of cAMP in the process of aqueous humor formation in human eyes.

  12. Factors Related to the Developmental Experiences of Youth Serving as 4-H Camp Counselors

    Science.gov (United States)

    Carter, David N.; Kotrlik, Joe W.

    2008-01-01

    The purpose of this study was to investigate the developmental experiences of high-school-aged 4-H youth volunteering as counselors at Louisiana 4-H summer camps. A total of 288 counselors from 10 different camping sessions participated in the study. The Youth Experiences Survey 2.0 and the Developmental Experience Survey measured the personal…

  13. Psychological Security and Self-Efficacy among Syrian Refugee Students inside and outside the Camps

    Science.gov (United States)

    ALharbi, Bassam H. M.

    2017-01-01

    The present study aimed to identify the degree of psychological security and self-efficacy among the Syrian refugee students inside and outside the camps. The sample consisted of 600 students from Syrian refugees inside and outside the camps in the second semester of the academic year 2014-2015. Scales for psychological security and self-efficacy…

  14. Malnourished children in refugee camps and lack of connection with services after US resettlement.

    Science.gov (United States)

    Lutfy, Caitlyn; Cookson, Susan T; Talley, Leisel; Rochat, Roger

    2014-10-01

    Identifying and addressing malnutrition among US-bound refugee children is an important human rights issue. Failure to address childhood malnutrition can impair cognitive development and productivity. The target population was children aged 6-59 months, originating from eight countries representing 51 % of US-resettled refugees for 2005-2011, living in 22 camps prior to potential US-resettlement. The corresponding camp-level nutritional survey data were evaluated. State Refugee Health Coordinators were surveyed on nutritional assessment, reporting and referrals for their US-refugee medical screenings. From 2004 to 2010, half of the camps (63 total surveys) had global acute malnutrition prevalence over 15 % at least once (surveys not done annually) and anemia prevalence greater than 40 %. The majority of US-refugee medical screenings included height and weight measurements but few used national or WHO standards to evaluate presence or level of malnutrition. Improve overseas camp monitoring and link these nutritional data to US-resettling refugee children to inform potential nutritional interventions. Domestically, use WHO or US growth standards for anthropometrics to determine presence of malnutrition and need for corrective action.

  15. Malnourished Children in Refugee Camps and Lack of Connection with Services After US Resettlement

    Science.gov (United States)

    Cookson, Susan T.; Talley, Leisel; Rochat, Roger

    2016-01-01

    Identifying and addressing malnutrition among US-bound refugee children is an important human rights issue. Failure to address childhood malnutrition can impair cognitive development and productivity. The target population was children aged 6–59 months, originating from eight countries representing 51 % of US-resettled refugees for 2005–2011, living in 22 camps prior to potential US-resettlement. The corresponding camp-level nutritional survey data were evaluated. State Refugee Health Coordinators were surveyed on nutritional assessment, reporting and referrals for their US-refugee medical screenings. From 2004 to 2010, half of the camps (63 total surveys) had global acute malnutrition prevalence over 15 % at least once (surveys not done annually) and anemia prevalence greater than 40 %. The majority of US-refugee medical screenings included height and weight measurements but few used national or WHO standards to evaluate presence or level of malnutrition. Improve overseas camp monitoring and link these nutritional data to US-resettling refugee children to inform potential nutritional interventions. Domestically, use WHO or US growth standards for anthropometrics to determine presence of malnutrition and need for corrective action. PMID:23430464

  16. Multielemental accumulation and its intracellular distribution in tissues of some aquatic birds

    International Nuclear Information System (INIS)

    Nam, Dong-Ha; Anan, Yasumi; Ikemoto, Tokutaka; Tanabe, Shinsuke

    2005-01-01

    This study was aimed at determining multielemental concentration and its intracellular distribution in selected tissues of cormorant and waterfowl species. Non-essential elements such as Hg, Tl, Cd, Pb and V in tissues were generally consistent with those in ingested items, indicating the significance of food sources of non-essential metal accumulation in great cormorants and mallards. Great cormorants and four waterfowl species examined reflected natural background levels of toxic metals such as Cd, Hg and Pb as well as some essential elements, indicating no specific metal exposure from local sources. Most of Cu, Zn, Se, Rb, Ag, Cd, Cs, and Hg contents were present in the hepatocytosolic fraction, whereas a large percentage of V and Mo were present in insoluble fraction in great cormorant, mallard, and spot-billed duck. The major role of these subcelluar fractions in elemental regulation accounts for the high percentage contribution of each cellular fraction to the total metal contents. Cadmium and Cu are chiefly sequestered through binding to metallothioneins (MTs) of hepatocytosolic fraction in these three avian species. Both MTs and high-molecular-weight substance (HMWS) for Zn and low-molecular-weight substance (LMWS) for Rb were also involved in their sequestration in cytosolic fractions. Relatively different species-specific cytosolic substances were responsible for varying degrees of Ag, Mn, and Co accumulation. It is worth noting that these intracellular metal levels in birds are closely regulated by metal-associated cellular constituents. Therefore, risk assessment studies of metal accumulation in such wild birds should take intracellular metal distribution and specific cellular constituents into account

  17. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  18. Science Camps in Europe--Collaboration with Companies and School, Implications and Results on Scientific Literacy

    Science.gov (United States)

    Lindner, M.; Kubat, C.

    2014-01-01

    The paper informs on the characteristics of a Comenius Network of seven organizations, who are collaborating in exchanging best practice on science camps. This exchange includes evaluation results on more science camps of European organizations, which will deliver information on organization, collaboration with companies, pedagogical aspects, as…

  19. Oxygen effect and intracellular oxygen content (adaptation hypothesis)

    Energy Technology Data Exchange (ETDEWEB)

    Yarmonenko, S P; Ehpshtejn, I M [Akademiya Meditsinskikh Nauk SSSR, Moscow. Onkologicheskij Tsentr

    1977-01-01

    Experimental data indicating that a radiomodifying action of hypoxia is dependent on the ''prehistory'' of the irradiated object are considered. This dependence manifests itself in a decreased protective action of acute hypoxia on the hypoxia-adapted objects. To explain this a hypothesis is proposed connecting a degree of cell radiosensitivity modification, determined by the oxygen effect, with the intracellular oxygen content. The latter, in accord with current ideas, is regulated by variations in the diffusion resistance to oxygen shown by the cytoplasmic membranes depending on the energy level of the cell and the degree of its oxygenation.

  20. Oxygen effect and intracellular oxygen content (adaptation hypothesis)

    International Nuclear Information System (INIS)

    Yarmonenko, S.P.; Ehpshtejn, I.M.

    1977-01-01

    Experimental data indicating that a radiomodifying action of hypoxia is dependent on the ''prehistory'' of the irradiated object are considered. This dependence manifests itself in a decreased protective action of acute hypoxia on the hypoxia-adapted objects. To explain this a hypothesis is proposed connecting a degree of cell radiosensitivity modification, determined by the oxygen effect, with the intracellular oxygen content. The latter, in accord with current ideas, is regulated by variations in the diffusion resistance to oxygen shown by the cytoplasmic membranes depending on the energy level of the cell and the degree of its oxygenation