WorldWideScience

Sample records for regulating high cellular

  1. Involvement of Sib Proteins in the Regulation of Cellular Adhesion in Dictyostelium discoideum▿ †

    OpenAIRE

    Cornillon, Sophie; Froquet, Romain; Cosson, Pierre

    2008-01-01

    Molecular mechanisms ensuring cellular adhesion have been studied in detail in Dictyostelium amoebae, but little is known about the regulation of cellular adhesion in these cells. Here, we show that cellular adhesion is regulated in Dictyostelium, notably by the concentration of a cellular secreted factor accumulating in the medium. This constitutes a quorum-sensing mechanism allowing coordinated regulation of cellular adhesion in a Dictyostelium population. In order to understand the mechani...

  2. Cellular regulation of the structure and function of aortic valves

    Directory of Open Access Journals (Sweden)

    Ismail El-Hamamsy

    2010-01-01

    Full Text Available The aortic valve was long considered a passive structure that opens and closes in response to changes in transvalvular pressure. Recent evidence suggests that the aortic valve performs highly sophisticated functions as a result of its unique microscopic structure. These functions allow it to adapt to its hemodynamic and mechanical environment. Understanding the cellular and molecular mechanisms involved in normal valve physiology is essential to elucidate the mechanisms behind valve disease. We here review the structure and developmental biology of aortic valves; we examine the role of its cellular parts in regulating its function and describe potential pathophysiological and clinical implications.

  3. Cellular volume regulation and substrate stiffness modulate the detachment dynamics of adherent cells

    Science.gov (United States)

    Yang, Yuehua; Jiang, Hongyuan

    2018-03-01

    Quantitative characterizations of cell detachment are vital for understanding the fundamental mechanisms of cell adhesion. Experiments have found that cell detachment shows strong rate dependence, which is mostly attributed to the binding-unbinding kinetics of receptor-ligand bond. However, our recent study showed that the cellular volume regulation can significantly regulate the dynamics of adherent cell and cell detachment. How this cellular volume regulation contributes to the rate dependence of cell detachment remains elusive. Here, we systematically study the role of cellular volume regulation in the rate dependence of cell detachment by investigating the cell detachments of nonspecific adhesion and specific adhesion. We find that the cellular volume regulation and the bond kinetics dominate the rate dependence of cell detachment at different time scales. We further test the validity of the traditional Johnson-Kendall-Roberts (JKR) contact model and the detachment model developed by Wyart and Gennes et al (W-G model). When the cell volume is changeable, the JKR model is not appropriate for both the detachments of convex cells and concave cells. The W-G model is valid for the detachment of convex cells but is no longer applicable for the detachment of concave cells. Finally, we show that the rupture force of adherent cells is also highly sensitive to substrate stiffness, since an increase in substrate stiffness will lead to more associated bonds. These findings can provide insight into the critical role of cell volume in cell detachment and might have profound implications for other adhesion-related physiological processes.

  4. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600......, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other...

  5. Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes*

    Science.gov (United States)

    Bagriantsev, Sviatoslav N.; Gracheva, Elena O.; Gallagher, Patrick G.

    2014-01-01

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. PMID:25305018

  6. Regulation of ARE-mRNA Stability by Cellular Signaling

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Lykke-Andersen, Jens

    2013-01-01

    but as a response to different cellular cues they can become either stabilized, allowing expression of a given gene, or further destabilized to silence their expression. These tightly regulated mRNAs include many that encode growth factors, proto-oncogenes, cytokines, and cell cycle regulators. Failure to properly...

  7. Piezo proteins: regulators of mechanosensation and other cellular processes.

    Science.gov (United States)

    Bagriantsev, Sviatoslav N; Gracheva, Elena O; Gallagher, Patrick G

    2014-11-14

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Osmosensory mechanisms in cellular and systemic volume regulation

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Kapus, András; Hoffmann, Else K

    2011-01-01

    Perturbations of cellular and systemic osmolarity severely challenge the function of all organisms and are consequently regulated very tightly. Here we outline current evidence on how cells sense volume perturbations, with particular focus on mechanisms relevant to the kidneys and to extracellular...

  9. FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1.

    Directory of Open Access Journals (Sweden)

    Carsten C Scholz

    2016-01-01

    Full Text Available The asparagine hydroxylase, factor inhibiting HIF (FIH, confers oxygen-dependence upon the hypoxia-inducible factor (HIF, a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1 is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit.

  10. Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death.

    Science.gov (United States)

    Truong-Tran, A Q; Ho, L H; Chai, F; Zalewski, P D

    2000-05-01

    The maintenance of discrete subcellular pools of zinc (Zn) is critical for the functional and structural integrity of cells. Among the important biological processes influenced by Zn is apoptosis, a process that is important in cellular homeostasis (an important cellular homeostatic process). It has also been identified as a major mechanism contributing to cell death in response to toxins and in disease, offering hope that novel therapies that target apoptotic pathways may be developed. Because Zn levels in the body can be increased in a relatively nontoxic manner, it may be possible to prevent or ameliorate degenerative disorders that are associated with high rates of apoptotic cell death. This review begins with brief introductions that address, first, the cellular biology of Zn, especially the critical labile Zn pools, and, second, the phenomenon of apoptosis. We then review the evidence relating Zn to apoptosis and address three major hypotheses: (1) that a specific pool or pools of intracellular labile Zn regulates apoptosis; (2) that systemic changes in Zn levels in the body, due to dietary factors, altered physiological states or disease, can influence cell susceptibility to apoptosis, and (3) that this altered susceptibility to apoptosis contributes to pathophysiological changes in the body. Other key issues are the identity of the molecular targets of Zn in the apoptotic cascade, the types of cells and tissues most susceptible to Zn-regulated apoptosis, the role of Zn as a coordinate regulator of mitosis and apoptosis and the apparent release of tightly bound intracellular pools of Zn during the later stages of apoptosis. This review concludes with a section highlighting areas of priority for future studies.

  11. Regulation of cellular communication by signaling microdomains in the blood vessel wall.

    Science.gov (United States)

    Billaud, Marie; Lohman, Alexander W; Johnstone, Scott R; Biwer, Lauren A; Mutchler, Stephanie; Isakson, Brant E

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.

  12. Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall

    Science.gov (United States)

    Billaud, Marie; Lohman, Alexander W.; Johnstone, Scott R.; Biwer, Lauren A.; Mutchler, Stephanie; Isakson, Brant E.

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function. PMID:24671377

  13. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    International Nuclear Information System (INIS)

    Mierke, Claudia Tanja

    2013-01-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation. (paper)

  14. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  15. The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells.

    Science.gov (United States)

    Morsczeck, Christian; Hullmann, Markus; Reck, Anja; Reichert, Torsten E

    2018-02-01

    Cellular senescence is a restricting factor for regenerative therapies with somatic stem cells. We showed previously that the onset of cellular senescence inhibits the osteogenic differentiation in stem cells of the dental follicle (DFCs), although the mechanism remains elusive. Two different pathways are involved in the induction of the cellular senescence, which are driven either by the cell cycle protein P21 or by the cell cycle protein P16. In this study, we investigated the expression of cell cycle proteins in DFCs after the induction of cellular senescence. The induction of cellular senescence was proved by an increased expression of β-galactosidase and an increased population doubling time after a prolonged cell culture. Cellular senescence regulated the expression of cell cycle proteins. The expression of cell cycle protein P16 was up-regulated, which correlates with the induction of cellular senescence markers in DFCs. However, the expression of cyclin-dependent kinases (CDK)2 and 4 and the expression of the cell cycle protein P21 were successively decreased in DFCs. In conclusion, our data suggest that a P16-dependent pathway drives the induction of cellular senescence in DFCs.

  16. Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes*

    OpenAIRE

    Bagriantsev, Sviatoslav N.; Gracheva, Elena O.; Gallagher, Patrick G.

    2014-01-01

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular deve...

  17. HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway.

    Science.gov (United States)

    Heo, Jong-Ik; Cho, Jung Hee; Kim, Jae-Ryong

    2013-08-01

    Holliday junction recognition protein (HJURP), a centromere protein-A (CENP-A) histone chaperone, mediates centromere-specific assembly of CENP-A nucleosome, contributing to high-fidelity chromosome segregation during cell division. However, the role of HJURP in cellular senescence of human primary cells remains unclear. We found that the expression levels of HJURP decreased in human dermal fibroblasts and umbilical vein endothelial cells in replicative or premature senescence. Ectopic expression of HJURP in senescent cells partially overcame cell senescence. Conversely, downregulation of HJURP in young cells led to premature senescence. p53 knockdown, but not p16 knockdown, abolished senescence phenotypes caused by HJURP reduction. These data suggest that HJURP plays an important role in the regulation of cellular senescence through a p53-dependent pathway and might contribute to tissue or organismal aging and protection of cellular transformation.

  18. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium.

    Science.gov (United States)

    Lu, Zhongyan; Shen, Hong; Shen, Zanming

    2018-01-01

    In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive). In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. These results indicated that the alterations of cellular metabolism promote the alterations in cellular

  19. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium

    Directory of Open Access Journals (Sweden)

    Zhongyan Lu

    2018-03-01

    Full Text Available Background/Aims: In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. Methods: RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive. In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. Results: The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. Conclusions: These results indicated that the

  20. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    Science.gov (United States)

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  1. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    International Nuclear Information System (INIS)

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: ► Endothelial cells mount a stress response under conditions of low serum. ► Endothelial VEGFR levels are

  2. Sodium Glucose Cotransporter 2 (SGLT2 Plays as a Physiological Glucose Sensor and Regulates Cellular Contractility in Rat Mesangial Cells.

    Directory of Open Access Journals (Sweden)

    Masanori Wakisaka

    Full Text Available Mesangial cells play an important role in regulating glomerular filtration by altering their cellular tone. We report the presence of a sodium glucose cotransporter (SGLT in rat mesangial cells. This study in rat mesangial cells aimed to evaluate the expression and role of SGLT2.The SGLT2 expression in rat mesangial cells was assessed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR. Changes in the mesangial cell surface area at different glucose concentrations and the effects of extracellular Na+ and Ca2+ and of SGLT and Na+/Ca2+ exchanger (NCX inhibitors on cellular size were determined. The cellular sizes and the contractile response were examined during a 6-day incubation with high glucose with or without phlorizin, an SGLT inhibitor.Western blotting revealed an SGLT2 band, and RT-PCR analysis of SGLT2 revealed the predicted 422-bp band in both rat mesangial and renal proximal tubular epithelial cells. The cell surface area changed according to the extracellular glucose concentration. The glucose-induced contraction was abolished by the absence of either extracellular Na+ or Ca2+ and by SGLT and NCX inhibitors. Under the high glucose condition, the cell size decreased for 2 days and increased afterwards; these cells did not contract in response to angiotensin II, and the SGLT inhibitor restored the abolished contraction.These data suggest that SGLT2 is expressed in rat mesangial cells, acts as a normal physiological glucose sensor and regulates cellular contractility in rat mesangial cells.

  3. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    Science.gov (United States)

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-07-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  4. Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies

    Science.gov (United States)

    Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.

    2015-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27347560

  5. Kinetic and Thermodynamic Aspects of Cellular Thiol-Disulfide Redox Regulation

    DEFF Research Database (Denmark)

    Jensen, Kristine Steen; Hansen, Rosa Erritzøe; Winther, Jakob R

    2009-01-01

    . In the cytosol regulatory disulfide bonds are typically formed in spite of the prevailing reducing conditions and may thereby function as redox switches. Such disulfide bonds are protected from enzymatic reduction by kinetic barriers and are thus allowed to exist long enough to elicit the signal. Factors......Regulation of intracellular thiol-disulfide redox status is an essential part of cellular homeostasis. This involves the regulation of both oxidative and reductive pathways, production of oxidant scavengers and, importantly, the ability of cells to respond to changes in the redox environment...... that affect the rate of thiol-disulfide exchange and stability of disulfide bonds are discussed within the framework of the underlying chemical foundations. This includes the effect of thiol acidity (pKa), the local electrostatic environment, molecular strain and entropy. Even though a thiol-disulfide...

  6. Ionizing Radiation Induces Cellular Senescence of Articular Chondrocytes via Negative Regulation of SIRT1 by p38 Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Eun Hee; Hwang, Sang Gu [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    Senescent cells exhibit irreversible growth arrest, large flat morphology, and up-regulated senescence-associated {beta}-galactosidase activity at pH 6.0. Several conditions, including oncogenic stress, oxidative stress, and DNA damage are associated with cellular senescence. Massive acute DNA double-strand breaks occurring as a result of mechanical and chemical stress can be repaired, but some DNA damage persists, eventually triggering premature senescence. Since ionizing radiation directly induces DBS, it is possible that cellular senescence is activated under these conditions. The biological events in chondrocytes following irradiation are poorly understood, and limited information is available on the molecular signal transduction mechanisms of cellular senescence at present. In this study, we identify SIRT1 as a target molecule of p38 kinase and demonstrate that the interactions between p38 kinase and SIRT1 protein play an important role in the regulation of cellular senescence in response to IR.

  7. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures

    NARCIS (Netherlands)

    D. Splinter (Daniël); D.S. Razafsky (David); M.A. Schlager (Max); A. Serra-Marques (Andrea); I. Grigoriev (Ilya); J.A.A. Demmers (Jeroen); N. Keijzer (Nanda); K. Jiang (Kai); S. Poser; A. Hyman (Anthony); C.C. Hoogenraad (Casper); S.J. King (Stephen); A.S. Akhmanova (Anna)

    2012-01-01

    textabstractCytoplasmic dynein is the major microtubule minus-end-directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein-dynactin interaction are poorly understood. In this study, we focus on dynein-dynactin recruitment to cargo by the

  8. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical

  9. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis.

    Science.gov (United States)

    Dong, Xingchen; Hu, Xiangming; Chen, Jinjing; Hu, Dan; Chen, Lin-Feng

    2018-02-12

    Small molecules targeting bromodomains of BET proteins possess strong anti-tumor activities and have emerged as potential therapeutics for cancer. However, the underlying mechanisms for the anti-proliferative activity of these inhibitors are still not fully characterized. In this study, we demonstrated that BET inhibitor JQ1 suppressed the proliferation and invasiveness of gastric cancer cells by inducing cellular senescence. Depletion of BRD4, which was overexpressed in gastric cancer tissues, but not other BET proteins recapitulated JQ1-induced cellular senescence with increased cellular SA-β-Gal activity and elevated p21 levels. In addition, we showed that the levels of p21 were regulated at the post-transcriptional level by BRD4-dependent expression of miR-106b-5p, which targets the 3'-UTR of p21 mRNA. Overexpression of miR-106b-5p prevented JQ1-induced p21 expression and BRD4 inhibition-associated cellular senescence, whereas miR-106b-5p inhibitor up-regulated p21 and induced cellular senescence. Finally, we demonstrated that inhibition of E2F suppressed the binding of BRD4 to the promoter of miR-106b-5p and inhibited its transcription, leading to the increased p21 levels and cellular senescence in gastric cancer cells. Our results reveal a novel mechanism by which BRD4 regulates cancer cell proliferation by modulating the cellular senescence through E2F/miR-106b-5p/p21 axis and provide new insights into using BET inhibitors as potential anticancer drugs.

  10. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks

    Science.gov (United States)

    White, Forest M.; Wolf-Yadlin, Alejandro

    2016-06-01

    Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  11. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  12. HTLV Tax: a fascinating multifunctional co-regulator of viral and cellular pathways

    Directory of Open Access Journals (Sweden)

    Robert eCurrer

    2012-11-01

    Full Text Available Human T cell lymphotropic virus type 1 (HTLV-1 has been identified as the causative agent of adult T cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. The virus infects between 15 and 20 million people worldwide of which approximately 2 to 5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications of Tax and sub-cellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.

  13. Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-β Pathway

    Directory of Open Access Journals (Sweden)

    Valentina Rapisarda

    2017-03-01

    Full Text Available Cellular senescence is an important in vivo mechanism that prevents the propagation of damaged cells. However, the precise mechanisms regulating senescence are not well characterized. Here, we find that ITGB3 (integrin beta 3 or β3 is regulated by the Polycomb protein CBX7. β3 expression accelerates the onset of senescence in human primary fibroblasts by activating the transforming growth factor β (TGF-β pathway in a cell-autonomous and non-cell-autonomous manner. β3 levels are dynamically increased during oncogene-induced senescence (OIS through CBX7 Polycomb regulation, and downregulation of β3 levels overrides OIS and therapy-induced senescence (TIS, independently of its ligand-binding activity. Moreover, cilengitide, an αvβ3 antagonist, has the ability to block the senescence-associated secretory phenotype (SASP without affecting proliferation. Finally, we show an increase in β3 levels in a subset of tissues during aging. Altogether, our data show that integrin β3 subunit is a marker and regulator of senescence.

  14. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    Science.gov (United States)

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a p rogrammed c ell l ysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  15. High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis.

    Science.gov (United States)

    Yeo-Teh, Nicole S L; Ito, Yoshiaki; Jha, Sudhakar

    2018-06-08

    Infection with high-risk human papillomavirus (HPV) has been linked to several human cancers, the most prominent of which is cervical cancer. The integration of the viral genome into the host genome is one of the manners in which the viral oncogenes E6 and E7 achieve persistent expression. The most well-studied cellular targets of the viral oncogenes E6 and E7 are p53 and pRb, respectively. However, recent research has demonstrated the ability of these two viral factors to target many more cellular factors, including proteins which regulate epigenetic marks and splicing changes in the cell. These have the ability to exert a global change, which eventually culminates to uncontrolled proliferation and carcinogenesis.

  16. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  17. Passive Noise Filtering by Cellular Compartmentalization.

    Science.gov (United States)

    Stoeger, Thomas; Battich, Nico; Pelkmans, Lucas

    2016-03-10

    Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Regulation of Cellular and Molecular Functions by Protein ...

    Indian Academy of Sciences (India)

    ... a high-energy linkage. The free energy of hydrolysis 1 of protein bound tyrosine phosphate ... protein kinases, cdc2 kinase (which regulates cell division cycle) and related cdc ... residues in response to extracellular signals such as hormones or growth factors. ... involved in regulating glycogen metabolism. The activity of.

  19. Sub-cellular distribution and translocation of TRP channels.

    Science.gov (United States)

    Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian

    2011-01-01

    Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

  20. Eukaryotic Cell Cycle as a Test Case for Modeling Cellular Regulation in a Collaborative Problem-Solving Environment

    Science.gov (United States)

    2007-03-01

    computer models of cell cycle regulation in a variety of organisms, including yeast cells, amphibian embryos, bacterial cells and human cells. These...and meiosis ), but they do not nullify the central role played by irreversible, alternating START and FINISH transitions in the cell cycle. 32...AFRL-IF-RS-TR-2007-69 Final Technical Report March 2007 EUKARYOTIC CELL CYCLE AS A TEST CASE FOR MODELING CELLULAR REGULATION IN A

  1. Cellular prion protein expression is not regulated by the Alzheimer's amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Victoria Lewis

    Full Text Available There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD and prion diseases. The cellular prion protein, PrP(C, modulates the post-translational processing of the AD amyloid precursor protein (APP, through its inhibition of the β-secretase BACE1, and oligomers of amyloid-β bind to PrP(C which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD, which acts as a transcriptional regulator, has been reported to control the expression of PrP(C. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrP(C. Over-expression of the three major isoforms of human APP (APP(695, APP(751 and APP(770 in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrP(C. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrP(C levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrP(C levels. Overall, we did not detect any significant difference in the expression of PrP(C in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrP(C levels by AICD is not as straightforward as previously suggested.

  2. Involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells.

    Science.gov (United States)

    Takahashi, Kaede; Fukushima, Kaori; Onishi, Yuka; Minami, Kanako; Otagaki, Shiho; Ishimoto, Kaichi; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2018-08-01

    Free fatty acid receptor 1 (FFA1) and FFA4 mediate a variety of biological responses through binding of medium- and long-chain free fatty acids. The aim of this study was to investigate an involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells. The long-term fluorouracil (5-FU) and cisplatin (CDDP) treated cells were generated from DLD1 cells (DLD-5FU and DLD-CDDP cells, respectively). FFAR1 expressions were lower in DLD-5FU and DLD-CDDP cells than in DLD1 cells. In contrast, DLD-5FU and DLD-CDDP cells showed the high FFAR4 expressions, compared with DLD1 cells. The cell motile activities of DLD-5FU and DLD-CDDP cells were reduced by GW9508 which is an agonist of FFA1 and FFA4. Moreover, GW1100, an antagonist of FFA1, inhibited the cell motile activities of DLD-5FU and DLD-CDDP cells. To evaluate whether FFA1 and FFA4 regulate the enhancement of cell motility, invasion and colony formation, highly migratory (hmDLD1) cells were established from DLD1 cells. FFAR1 expression was significantly higher in hmDLD1 cells than in DLD1 cells, but no change of FFAR4 expression was observed. The elevated cell motile and invasive activities and colony formation of hmDLD1 cells were suppressed by FFA1 inhibition. These results suggest that FFA1 and FFA4 are involved in the regulation of cellular functions during tumor progression in colon cancer DLD1 cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. ATM-mediated Snail Serine 100 phosphorylation regulates cellular radiosensitivity

    International Nuclear Information System (INIS)

    Boohaker, Rebecca J.; Cui, Xiaoli; Stackhouse, Murray; Xu, Bo

    2013-01-01

    Purpose: Activation of the DNA damage responsive protein kinase ATM is a critical step for cellular survival in response to ionizing irradiation (IR). Direct targets of ATM regulating radiosensitivity remain to be fully investigated. We have recently reported that ATM phosphorylates the transcriptional repressor Snail on Serine 100. We aimed to further study the functional significance of ATM-mediated Snail phosphorylation in response to IR. Material and methods: We transfected vector-only, wild-type, the Serine 100 to alanine (S100A) or to glutamic acid (S100E) substitution of Snail into various cell lines. We assessed colony formation, γ-H2AX focus formation and the invasion index in the cells treated with or without IR. Results: We found that over-expression of the S100A mutant Snail in HeLa cells significantly increased radiosensitivity. Meanwhile the expression of S100E, a phospho-mimicking mutation, resulted in enhanced radio-resistance. Interestingly, S100E could rescue the radiosensitive phenotype in ATM-deficient cells. We also found that expression of S100E increased γ-H2AX focus formation and compromised inhibition of invasion in response to IR independent of cell survival. Conclusion: ATM-mediated Snail Serine 100 phosphorylation in response to IR plays an important part in the regulation of radiosensitivity

  4. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress

    Directory of Open Access Journals (Sweden)

    Muhammed eJamsheer K

    2015-09-01

    Full Text Available Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1 signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response towards energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response.

  5. Regulation of Mitochondrial Function and Cellular Energy Metabolism by Protein Kinase C-λ/ι: A Novel Mode of Balancing Pluripotency

    Science.gov (United States)

    Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar; Paul, Arindam; Saha, Biswarup; Ganguly, Avishek; Ray, Soma; Roy, Nairita; Swerdlow, Russell H.; Paul, Soumen

    2014-01-01

    Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis is key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing vs. differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-HIF1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. PMID:25142417

  6. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    Science.gov (United States)

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  7. Anterior gradient protein-2 is a regulator of cellular adhesion in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Diptiman Chanda

    Full Text Available Anterior Gradient Protein (AGR-2 is reported to be over-expressed in many epithelial cancers and promotes metastasis. A clear-cut mechanism for its observed function(s has not been previously identified. We found significant upregulation of AGR-2 expression in a bone metastatic prostate cancer cell line, PC3, following culturing in bone marrow-conditioned medium. Substantial AGR-2 expression was also confirmed in prostate cancer tissue specimens in patients with bone lesions. By developing stable clones of PC3 cells with varying levels of AGR-2 expression, we identified that abrogation of AGR-2 significantly reduced cellular attachment to fibronectin, collagen I, collagen IV, laminin I and fibrinogen. Loss of cellular adhesion was associated with sharp decrease in the expression of α4, α5, αV, β3 and β4 integrins. Failure to undergo apoptosis following detachment is a hallmark of epithelial cancer metastasis. The AGR-2-silenced PC3 cells showed higher resistance to Tumor necrosis factor-related apoptosis- inducing ligand (TRAIL induced apoptosis in vitro. This observation was also supported by significantly reduced Caspase-3 expression in AGR-2-silenced PC3 cells, which is a key effector of both extrinsic and intrinsic death signaling pathways. These data suggest that AGR-2 influence prostate cancer metastasis by regulation of cellular adhesion and apoptosis.

  8. Active cell-matrix coupling regulates cellular force landscapes of cohesive epithelial monolayers

    Science.gov (United States)

    Zhao, Tiankai; Zhang, Yao; Wei, Qiong; Shi, Xuechen; Zhao, Peng; Chen, Long-Qing; Zhang, Sulin

    2018-03-01

    Epithelial cells can assemble into cohesive monolayers with rich morphologies on substrates due to competition between elastic, edge, and interfacial effects. Here we present a molecularly based thermodynamic model, integrating monolayer and substrate elasticity, and force-mediated focal adhesion formation, to elucidate the active biochemical regulation over the cellular force landscapes in cohesive epithelial monolayers, corroborated by microscopy and immunofluorescence studies. The predicted extracellular traction and intercellular tension are both monolayer size and substrate stiffness dependent, suggestive of cross-talks between intercellular and extracellular activities. Our model sets a firm ground toward a versatile computational framework to uncover the molecular origins of morphogenesis and disease in multicellular epithelia.

  9. A new method of high-speed cellular protein separation and insight into subcellular compartmentalization of proteins.

    Science.gov (United States)

    Png, Evelyn; Lan, WanWen; Lazaroo, Melisa; Chen, Silin; Zhou, Lei; Tong, Louis

    2011-05-01

    Transglutaminase (TGM)-2 is a ubiquitous protein with important cellular functions such as regulation of cytoskeleton, cell adhesion, apoptosis, energy metabolism, and stress signaling. We identified several proteins that may interact with TGM-2 through a discovery-based proteomics method via pull down of flag-tagged TGM-2 peptide fragments. The distribution of these potential binding partners of TGM-2 was studied in subcellular fractions separated by density using novel high-speed centricollation technology. Centricollation is a compressed air-driven, low-temperature stepwise ultracentrifugation procedure where low extraction volumes can be processed in a relatively short time in non-denaturing separation conditions with high recovery yield. The fractions were characterized by immunoblots against known organelle markers. The changes in the concentrations of the binding partners were studied in cells expressing short hairpin RNA against TGM-2 (shTG). Desmin, mitochondrial intramembrane cleaving protease (PARL), protein tyrosine kinase (NTRK3), and serine protease (PRSS3) were found to be less concentrated in the 8.5%, 10%, 15%, and 20% sucrose fractions (SFs) from the lysate of shTG cells. The Golgi-associated protein (GOLGA2) was predominantly localized in 15% SF fraction, and in shTG, this shifted to predominantly in the 8.5% SF and showed larger aggregations in the cytosol of cells on immunofluorescent staining compared to control. Based on the relative concentrations of these proteins, we propose how trafficking of such proteins between cellular compartments can occur to regulate cell function. Centricollation is useful for elucidating biological function at the molecular level, especially when combined with traditional cell biology techniques.

  10. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  11. HTLV Tax: A Fascinating Multifunctional Co-Regulator of Viral and Cellular Pathways

    Science.gov (United States)

    Currer, Robert; Van Duyne, Rachel; Jaworski, Elizabeth; Guendel, Irene; Sampey, Gavin; Das, Ravi; Narayanan, Aarthi; Kashanchi, Fatah

    2012-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2–5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis. PMID:23226145

  12. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Directory of Open Access Journals (Sweden)

    Jessica A. Simpkins

    2016-06-01

    Full Text Available Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling.

  13. CRF2 signaling is a novel regulator of cellular adhesion and migration in colorectal cancer cells.

    Science.gov (United States)

    Ducarouge, Benjamin; Pelissier-Rota, Marjolaine; Lainé, Michèle; Cristina, Nadine; Vachez, Yvan; Scoazec, Jean-Yves; Bonaz, Bruno; Jacquier-Sarlin, Muriel

    2013-01-01

    Stress has been proposed to be a tumor promoting factor through the secretion of specific neuromediators, such as Urocortin2 and 3 (Ucn2/3), however its role in colorectal cancer (CRC) remains elusive. We observed that Ucn2/3 and their receptor the Corticotropin Releasing Factor receptor 2 (CRF2) were up-regulated in high grade and poorly differentiated CRC. This suggests a role for CRF2 in the loss of cellular organization and tumor progression. Using HT-29 and SW620 cells, two CRC cell lines differing in their abilities to perform cell-cell contacts, we found that CRF2 signals through Src/ERK pathway to induce the alteration of cell-cell junctions and the shuttle of p120ctn and Kaiso in the nucleus. In HT-29 cells, this signaling pathway also leads to the remodeling of cell adhesion by i) the phosphorylation of Focal Adhesion Kinase and ii) a modification of actin cytoskeleton and focal adhesion complexes. These events stimulate cell migration and invasion. In conclusion, our findings indicate that CRF2 signaling controls cellular organization and may promote metastatic potential of human CRC cells through an epithelial-mesenchymal transition like process. This contributes to the comprehension of the tumor-promoting effects of stress molecules and designates Ucn2/3-CRF2 tandem as a target to prevent CRC progression and aggressiveness.

  14. Hybrid disassembly system for cellular telephone end-of-life treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kniebel, M.; Basdere, B.; Seliger, G. [Technical Univ. Berlin, Inst. for Machine Tools and Factory Management, Dept. of Assembly Technology and Factory Management, Berlin (Germany)

    2004-07-01

    Concern over the negative environmental impacts associated with the production, use, and end-of-life (EOL) of cellular telephones is particularly high due to large production volumes and characteristically short time scales of technological and stylistic obsolescence. Landfilled or incinerated cellular telephones create the potential for release of toxic substances. The European legislation has passed the directive on Waste of Electrical and Electronic Equipment (WEEE) to regulate their collection and appropriate end-of-life treatment. Manufacturers must conduct material recycling or remanufacturing processes to recover resources. While recovery rates can hardly be met economically by material recycling, remanufacturing and reusing cellular phones is developing into a reasonable alternative. Both end-of-life options require disassembly processes for WEEE compliant treatment. Due to the high number of different cell phone variants and their typical design that fits components into tight enclosing spaces, cellular phone disassembly becomes a challenging task. These challenges and the expected high numbers of phones to be returned in the course of the WEEE urges for automated disassembly. A hybrid disassembly system has been developed to ensure the mass-treatment of obsolete cellular phones. It has been integrated into a prototypical remanufacturing factory for cellular phones that has been planned based on market data. (orig.)

  15. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Lan; Josifi, Erlena; Tiao, Joshua R. [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  16. Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.

    Science.gov (United States)

    Olson, D K; Fröhlich, F; Farese, R V; Walther, T C

    2016-08-01

    Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2015. Published by Elsevier B.V.

  17. Lysophosphatidic acid signaling via LPA_1 and LPA_3 regulates cellular functions during tumor progression in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri; Onishi, Yuka; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2017-01-01

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA_1 and LPA_3 in cellular functions during tumor progression in pancreatic cancer cells. LPA_1 and LPA_3 knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA_1 and LPA_3 knockdown. In gelatin zymography, LPA_1 and LPA_3 knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence of LPA. Next, to assess whether LPA_1 and LPA_3 regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA_1 and LPA_3 knockdown as well as colony formation. These results suggest that LPA signaling via LPA_1 and LPA_3 play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells. - Highlights: • The cell motile and invasive activities of PANC-1 cells were stimulated by LPA_1 and LPA_3. • LPA_1 and LPA_3 enhanced MMP-2 activation in PANC-1 cells. • The expressions of LPAR1 and LPAR3 genes were elevated in PANC-1 cells treated with cisplatin. • The cell motile and invasive activities of PANC-1 cells treated with cisplatin were suppressed by LPA_1 and LPA_3 knockdown. • LPA_1 and LPA_3 are involved in the regulation of cellular functions during tumor progression in PANC-1 cells.

  18. A chemical biology approach to interrogate quorum-sensing regulated behaviors at the molecular and cellular level.

    Science.gov (United States)

    Lowery, Colin A; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan; Lively, Jenny M; Cravatt, Benjamin F; Miller, Samuel I; Kaufmann, Gunnar F; Janda, Kim D

    2013-07-25

    Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. High performance cellular level agent-based simulation with FLAME for the GPU.

    Science.gov (United States)

    Richmond, Paul; Walker, Dawn; Coakley, Simon; Romano, Daniela

    2010-05-01

    Driven by the availability of experimental data and ability to simulate a biological scale which is of immediate interest, the cellular scale is fast emerging as an ideal candidate for middle-out modelling. As with 'bottom-up' simulation approaches, cellular level simulations demand a high degree of computational power, which in large-scale simulations can only be achieved through parallel computing. The flexible large-scale agent modelling environment (FLAME) is a template driven framework for agent-based modelling (ABM) on parallel architectures ideally suited to the simulation of cellular systems. It is available for both high performance computing clusters (www.flame.ac.uk) and GPU hardware (www.flamegpu.com) and uses a formal specification technique that acts as a universal modelling format. This not only creates an abstraction from the underlying hardware architectures, but avoids the steep learning curve associated with programming them. In benchmarking tests and simulations of advanced cellular systems, FLAME GPU has reported massive improvement in performance over more traditional ABM frameworks. This allows the time spent in the development and testing stages of modelling to be drastically reduced and creates the possibility of real-time visualisation for simple visual face-validation.

  20. Novel aspects of cellular action of dipeptidyl peptidase IV/CD26.

    Science.gov (United States)

    Ansorge, Siegfried; Nordhoff, Karsten; Bank, Ute; Heimburg, Anke; Julius, Heiko; Breyer, Doreen; Thielitz, Anja; Reinhold, Dirk; Täger, Michael

    2011-03-01

    The cellular dipeptidyl peptidase IV (DPIV, E.C.3.4.14.5, CD26) is a type II membrane peptidase with various physio-logical functions. Our main knowledge on DPIV comes from studies of soluble DPIV which plays a role in regulation of glucose homeostasis by inactivation of the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic poly-peptide. It has been reported that membrane-bound DPIV plays a crucial role in the immune system and in other tissues and cells, but the knowledge on the action of cellular DPIV and its regulation is limited. In this study, we show particularly for immune cells that DPIV and not DP8 or DP9 is the most potent member of the DPIV family in regulating cellular immune functions. Moreover, we provide evidence that soluble and cellular DPIV differ in functions and hand-ling of substrates and inhibitors owing to the different accessibility of peptide substrates to the two access paths of DPIV. The different functions are based on the favored access path of the central pore of cellular DPIV and a special central pore binding site which assists substrate access to the active site of the enzyme. The newly discovered central pore binding site mediates an autosterical regulation of cellular DPIV and is its most crucial target site to regulate cellular functions such as growth and cytokine production. Neuropeptide Y (NPY) processing by cellular DPIV was found to be inhibited by ligands which interact with the central pore binding site. This finding suggests a crucial role of the immunosuppressive cytokine NPY in the function of DPIV in growth regulation.

  1. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport.

    Science.gov (United States)

    Pirkmajer, Sergej; Kirchner, Henriette; Lundell, Leonidas S; Zelenin, Pavel V; Zierath, Juleen R; Makarova, Kira S; Wolf, Yuri I; Chibalin, Alexander V

    2017-07-15

    Small transmembrane proteins such as FXYDs, which interact with Na + ,K + -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca 2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na + ,K + -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony

  2. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea

    Directory of Open Access Journals (Sweden)

    Anna Kirjavainen

    2015-03-01

    Full Text Available Hair cells of the organ of Corti (OC of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC, a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

  3. The Cellular DNA Helicase ChlR1 Regulates Chromatin and Nuclear Matrix Attachment of the Human Papillomavirus 16 E2 Protein and High-Copy-Number Viral Genome Establishment.

    Science.gov (United States)

    Harris, Leanne; McFarlane-Majeed, Laura; Campos-León, Karen; Roberts, Sally; Parish, Joanna L

    2017-01-01

    In papillomavirus infections, the viral genome is established as a double-stranded DNA episome. To segregate the episomes into daughter cells during mitosis, they are tethered to cellular chromatin by the viral E2 protein. We previously demonstrated that the E2 proteins of diverse papillomavirus types, including bovine papillomavirus (BPV) and human papillomavirus 16 (HPV16), associate with the cellular DNA helicase ChlR1. This virus-host interaction is important for the tethering of BPV E2 to mitotic chromatin and the stable maintenance of BPV episomes. The role of the association between E2 and ChlR1 in the HPV16 life cycle is unresolved. Here we show that an HPV16 E2 Y131A mutant (E2 Y131A ) had significantly reduced binding to ChlR1 but retained transcriptional activation and viral origin-dependent replication functions. Subcellular fractionation of keratinocytes expressing E2 Y131A showed a marked change in the localization of the protein. Compared to that of wild-type E2 (E2 WT ), the chromatin-bound pool of E2 Y131A was decreased, concomitant with an increase in nuclear matrix-associated protein. Cell cycle synchronization indicated that the shift in subcellular localization of E2 Y131A occurred in mid-S phase. A similar alteration between the subcellular pools of the E2 WT protein occurred upon ChlR1 silencing. Notably, in an HPV16 life cycle model in primary human keratinocytes, mutant E2 Y131A genomes were established as episomes, but at a markedly lower copy number than that of wild-type HPV16 genomes, and they were not maintained upon cell passage. Our studies indicate that ChlR1 is an important regulator of the chromatin association of E2 and of the establishment and maintenance of HPV16 episomes. Infections with high-risk human papillomaviruses (HPVs) are a major cause of anogenital and oropharyngeal cancers. During infection, the circular DNA genome of HPV persists within the nucleus, independently of the host cell chromatin. Persistence of infection

  4. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures

    Science.gov (United States)

    Splinter, Daniël; Razafsky, David S.; Schlager, Max A.; Serra-Marques, Andrea; Grigoriev, Ilya; Demmers, Jeroen; Keijzer, Nanda; Jiang, Kai; Poser, Ina; Hyman, Anthony A.; Hoogenraad, Casper C.; King, Stephen J.; Akhmanova, Anna

    2012-01-01

    Cytoplasmic dynein is the major microtubule minus-end–directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein–dynactin interaction are poorly understood. In this study, we focus on dynein–dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N–dynein–dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end–directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors. PMID:22956769

  5. Pex35 is a regulator of peroxisome abundance

    DEFF Research Database (Denmark)

    Yofe, Ido; Soliman, Kareem; Chuartzman, Silvia G

    2017-01-01

    Peroxisomes are cellular organelles with vital functions in lipid, amino acid, and redox metabolism. The cellular formation and dynamics of peroxisomes are governed by PEX genes, however, the regulation of peroxisome abundance is yet poorly understood. Here we use a high-content microscopy screen...

  6. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    Science.gov (United States)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  7. Nrf2 regulates cellular behaviors and Notch signaling in oral squamous cell carcinoma cells.

    Science.gov (United States)

    Fan, Hong; Paiboonrungruan, Chorlada; Zhang, Xinyan; Prigge, Justin R; Schmidt, Edward E; Sun, Zheng; Chen, Xiaoxin

    2017-11-04

    Oxidative stress is known to play a pivotal role in the development of oral squamous cell carcinoma (OSCC). We have demonstrated that activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has chemopreventive effects against oxidative stress-associated OSCC. However, Nrf2 have dual roles in cancer development; while it prevents carcinogenesis of normal cells, hyperactive Nrf2 also promotes the survival of cancer cells. This study is aimed to understand the function of Nrf2 in regulating cellular behaviors of OSCC cells, and the potential mechanisms through which Nrf2 facilitates OSCC. We established the Nrf2-overexpressing and Nrf2-knockdown OSCC cell lines, and examined the function of Nrf2 in regulating cell proliferation, migration, invasion, cell cycle and colony formation. Our data showed that Nrf2 overexpression promoted cancer phenotypes in OSCC cells, whereas Nrf2 silencing inhibited these phenotypes. In addition, Nrf2 positively regulated Notch signaling pathway in OSCC cells in vitro. Consistent with this observation, Nrf2 activation in Keap1 -/- mice resulted in not only hyperproliferation of squamous epithelial cells in mouse tongue as evidenced by increased expression of PCNA, but also activation of Notch signaling in these cells as evidenced by increased expression of NICD1 and Hes1. In conclusion, Nrf2 regulates cancer behaviors and Notch signaling in OSCC cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. DNA Mismatch Repair System: Repercussions in Cellular Homeostasis and Relationship with Aging

    Directory of Open Access Journals (Sweden)

    Juan Cristóbal Conde-Pérezprina

    2012-01-01

    Full Text Available The mechanisms that concern DNA repair have been studied in the last years due to their consequences in cellular homeostasis. The diverse and damaging stimuli that affect DNA integrity, such as changes in the genetic sequence and modifications in gene expression, can disrupt the steady state of the cell and have serious repercussions to pathways that regulate apoptosis, senescence, and cancer. These altered pathways not only modify cellular and organism longevity, but quality of life (“health-span”. The DNA mismatch repair system (MMR is highly conserved between species; its role is paramount in the preservation of DNA integrity, placing it as a necessary focal point in the study of pathways that prolong lifespan, aging, and disease. Here, we review different insights concerning the malfunction or absence of the DNA-MMR and its impact on cellular homeostasis. In particular, we will focus on DNA-MMR mechanisms regulated by known repair proteins MSH2, MSH6, PMS2, and MHL1, among others.

  9. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    OpenAIRE

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optic...

  10. Neural networks and cellular automata in experimental high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B

    1988-06-01

    Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature. Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition and high combinatorial complexity since many combinations of hits or cells must be considered in order to arrive at the final tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of experimental high energy physics. It is found that such problems as track and cluster finding adapt naturally to these approaches. When large scale hard-wired connective networks become available, it will be possible to realize solutions to such problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast trigger decisions.

  11. Neural networks and cellular automata in experimental high energy physics

    International Nuclear Information System (INIS)

    Denby, B.

    1987-11-01

    Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature. Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition and high combinatorial complexity since many combinations of hits or cells must be considered in order to arrive at the final tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of experimental high physics. It is found that such problems as track and cluster finding adapt naturally to these approaches. When large scale hardwired connective networks become available, it will be possible to realize solutions to such problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast trigger decisions

  12. Neural networks and cellular automata in experimental high energy physics

    International Nuclear Information System (INIS)

    Denby, B.

    1988-01-01

    Within the past few years, two novel computing techniques, cellular automata and neural networks, have shown considerable promise in the solution of problems of a very high degree of complexity, such as turbulent fluid flow, image processing, and pattern recognition. Many of the problems faced in experimental high energy physics are also of this nature. Track reconstruction in wire chambers and cluster finding in cellular calorimeters, for instance, involve pattern recognition and high combinatorial complexity since many combinations of hits or cells must be considered in order to arrive at the final tracks or clusters. Here we examine in what way connective network methods can be applied to some of the problems of experimental high energy physics. It is found that such problems as track and cluster finding adapt naturally to these approaches. When large scale hard-wired connective networks become available, it will be possible to realize solutions to such problems in a fraction of the time required by traditional methods. For certain types of problems, faster solutions are already possible using model networks implemented on vector or other massively parallel machines. It should also be possible, using existing technology, to build simplified networks that will allow detailed reconstructed event information to be used in fast trigger decisions. (orig.)

  13. HPV integration hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high viral oncogene expression

    Science.gov (United States)

    Redmond, Catherine J.; Dooley, Katharine E.; Fu, Haiqing; Gillison, Maura L.; Akagi, Keiko; Symer, David E.; Aladjem, Mirit I.

    2018-01-01

    Integration of human papillomavirus (HPV) genomes into cellular chromatin is common in HPV-associated cancers. Integration is random, and each site is unique depending on how and where the virus integrates. We recently showed that tandemly integrated HPV16 could result in the formation of a super-enhancer-like element that drives transcription of the viral oncogenes. Here, we characterize the chromatin landscape and genomic architecture of this integration locus to elucidate the mechanisms that promoted de novo super-enhancer formation. Using next-generation sequencing and molecular combing/fiber-FISH, we show that ~26 copies of HPV16 are integrated into an intergenic region of chromosome 2p23.2, interspersed with 25 kb of amplified, flanking cellular DNA. This interspersed, co-amplified viral-host pattern is frequent in HPV-associated cancers and here we designate it as Type III integration. An abundant viral-cellular fusion transcript encoding the viral E6/E7 oncogenes is expressed from the integration locus and the chromatin encompassing both the viral enhancer and a region in the adjacent amplified cellular sequences is strongly enriched in the super-enhancer markers H3K27ac and Brd4. Notably, the peak in the amplified cellular sequence corresponds to an epithelial-cell-type specific enhancer. Thus, HPV16 integration generated a super-enhancer-like element composed of tandem interspersed copies of the viral upstream regulatory region and a cellular enhancer, to drive high levels of oncogene expression. PMID:29364907

  14. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  15. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    International Nuclear Information System (INIS)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-01-01

    Highlights: • LPA 5 inhibits the cell growth and motile activities of 3T3 cells. • LPA 5 suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA 5 on the cell motile activities inhibited by LPA 1 in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA 5 in 3T3 cells. • LPA signaling via LPA 5 acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA 1 –LPA 6 ) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA 1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA 5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA 1 and LPA 5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA 5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA 1

  16. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    Energy Technology Data Exchange (ETDEWEB)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G., E-mail: bipin@amrita.edu

    2016-08-15

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  17. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    International Nuclear Information System (INIS)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G.

    2016-01-01

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  18. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    Science.gov (United States)

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  19. Metabolic regulation of cellular plasticity in the pancreas.

    Science.gov (United States)

    Ninov, Nikolay; Hesselson, Daniel; Gut, Philipp; Zhou, Amy; Fidelin, Kevin; Stainier, Didier Y R

    2013-07-08

    Obese individuals exhibit an increase in pancreatic β cell mass; conversely, scarce nutrition during pregnancy has been linked to β cell insufficiency in the offspring [reviewed in 1, 2]. These phenomena are thought to be mediated mainly through effects on β cell proliferation, given that a nutrient-sensitive β cell progenitor population in the pancreas has not been identified. Here, we employed the fluorescent ubiquitination-based cell-cycle indicator system to investigate β cell replication in real time and found that high nutrient concentrations induce rapid β cell proliferation. Importantly, we found that high nutrient concentrations also stimulate β cell differentiation from progenitors in the intrapancreatic duct (IPD). Furthermore, using a new zebrafish line where β cells are constitutively ablated, we show that β cell loss and high nutrient intake synergistically activate these progenitors. At the cellular level, this activation process causes ductal cell reorganization as it stimulates their proliferation and differentiation. Notably, we link the nutrient-dependent activation of these progenitors to a downregulation of Notch signaling specifically within the IPD. Furthermore, we show that the nutrient sensor mechanistic target of rapamycin (mTOR) is required for endocrine differentiation from the IPD under physiological conditions as well as in the diabetic state. Thus, this study reveals critical insights into how cells modulate their plasticity in response to metabolic cues and identifies nutrient-sensitive progenitors in the mature pancreas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A dynamic cellular vertex model of growing epithelial tissues

    Science.gov (United States)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-04-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  1. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer.

    Science.gov (United States)

    Roberts, David D; Kaur, Sukhbir; Isenberg, Jeffrey S

    2017-10-20

    In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H 2 S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H 2 S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.

  2. Systematic identification of cellular signals reactivating Kaposi sarcoma-associated herpesvirus.

    Directory of Open Access Journals (Sweden)

    Fuqu Yu

    2007-03-01

    Full Text Available The herpesvirus life cycle has two distinct phases: latency and lytic replication. The balance between these two phases is critical for viral pathogenesis. It is believed that cellular signals regulate the switch from latency to lytic replication. To systematically evaluate the cellular signals regulating this reactivation process in Kaposi sarcoma-associated herpesvirus, the effects of 26,000 full-length cDNA expression constructs on viral reactivation were individually assessed in primary effusion lymphoma-derived cells that harbor the latent virus. A group of diverse cellular signaling proteins were identified and validated in their effect of inducing viral lytic gene expression from the latent viral genome. The results suggest that multiple cellular signaling pathways can reactivate the virus in a genetically homogeneous cell population. Further analysis revealed that the Raf/MEK/ERK/Ets-1 pathway mediates Ras-induced reactivation. The same pathway also mediates spontaneous reactivation, which sets the first example to our knowledge of a specific cellular pathway being studied in the spontaneous reactivation process. Our study provides a functional genomic approach to systematically identify the cellular signals regulating the herpesvirus life cycle, thus facilitating better understanding of a fundamental issue in virology and identifying novel therapeutic targets.

  3. Regulation of cellular pH: From molecules to membranes

    Science.gov (United States)

    Grabe, Michael David

    The vacuolar H+-ATPase (V-ATPase) is a universal class of proton pumps responsible for creating and maintaining acidic milieus in both intracellular and extracellular spaces. In the first chapter, I develop a mechanochemical model of this enzyme based upon the counter-rotation of adjacent subunits. The mathematical approach details a general integrated method for describing the mechanical and chemical reactions that occur in motor systems. A novel escapement is proposed for how the protons cross the protein-bilayer interface, and it is shown how this movement couples to ATP hydrolysis. This model reproduces a variety of experimental data while providing a framework for understanding the function of the enzyme's subunits. Specifically, it explains how ATP hydrolysis can uncouple from proton movement, which has important consequences for cellular energetics and pH regulation. Until now only an equilibrium theory of organelle acidification has been proposed; however, recent experiments show that large proton leaks prevent many cellular compartments from reaching thermodynamic equilibrium. The characterization of the V-ATPase is used in the second chapter in order to develop a unified model of organelle acidification based on the interplay of ion pumps and channels and the physical characteristics of the organelle. This model successfully describes the time dependent acidification of many different organelle systems. It accurately predicts both the electrical and concentration dependent terms of the chemical potential. In conjunction with fluorescence experiments, I determined the first measurements of the proton permeability of organelles along the secretory pathway. These measurements allowed me to make the first estimates of the number of V-ATPases in each compartment by analyzing the resting pH's of the respective organelles. I found a decrease in permeability from the endoplasmic reticulum (ER) (51 x 10-4 cm/s) to the Golgi (21 x 10-4 cm/s) to the mature secretory

  4. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    Science.gov (United States)

    Wong, Terence T. W.; Lau, Andy K. S.; Ho, Kenneth K. Y.; Tang, Matthew Y. H.; Robles, Joseph D. F.; Wei, Xiaoming; Chan, Antony C. S.; Tang, Anson H. L.; Lam, Edmund Y.; Wong, Kenneth K. Y.; Chan, Godfrey C. F.; Shum, Ho Cheung; Tsia, Kevin K.

    2014-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity – a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry – permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay. PMID:24413677

  5. High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording

    Science.gov (United States)

    Kim, Seong-Min; Kim, Nara; Kim, Youngseok; Baik, Min-Seo; Yoo, Minsu; Kim, Dongyoon; Lee, Won-June; Kang, Dong-Hee; Kim, Sohee; Lee, Kwanghee; Yoon, Myung-Han

    2018-04-01

    Due to the trade-off between their electrical/electrochemical performance and underwater stability, realizing polymer-based, high-performance direct cellular interfaces for electrical stimulation and recording has been very challenging. Herein, we developed transparent and conductive direct cellular interfaces based on a water-stable, high-performance poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) film via solvent-assisted crystallization. The crystallized PEDOT:PSS on a polyethylene terephthalate (PET) substrate exhibited excellent electrical/electrochemical/optical characteristics, long-term underwater stability without film dissolution/delamination, and good viability for primarily cultured cardiomyocytes and neurons over several weeks. Furthermore, the highly crystallized, nanofibrillar PEDOT:PSS networks enabled dramatically enlarged surface areas and electrochemical activities, which were successfully employed to modulate cardiomyocyte beating via direct electrical stimulation. Finally, the high-performance PEDOT:PSS layer was seamlessly incorporated into transparent microelectrode arrays for efficient, real-time recording of cardiomyocyte action potentials with a high signal fidelity. All these results demonstrate the strong potential of crystallized PEDOT:PSS as a crucial component for a variety of versatile bioelectronic interfaces.

  6. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    Science.gov (United States)

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  7. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties.

    Science.gov (United States)

    Katira, Parag; Bonnecaze, Roger T; Zaman, Muhammad H

    2013-01-01

    Malignant transformation, though primarily driven by genetic mutations in cells, is also accompanied by specific changes in cellular and extra-cellular mechanical properties such as stiffness and adhesivity. As the transformed cells grow into tumors, they interact with their surroundings via physical contacts and the application of forces. These forces can lead to changes in the mechanical regulation of cell fate based on the mechanical properties of the cells and their surrounding environment. A comprehensive understanding of cancer progression requires the study of how specific changes in mechanical properties influences collective cell behavior during tumor growth and metastasis. Here we review some key results from computational models describing the effect of changes in cellular and extra-cellular mechanical properties and identify mechanistic pathways for cancer progression that can be targeted for the prediction, treatment, and prevention of cancer.

  8. High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98.

    Science.gov (United States)

    Li, Xin-Xin; Liu, Yue-Mei; Li, You-Jie; Xie, Ning; Yan, Yun-Fei; Chi, Yong-Liang; Zhou, Ling; Xie, Shu-Yang; Wang, Ping-Yu

    2016-06-01

    Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin-D2-regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p-RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2-3' untranslated region is targeted by miR-98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p-RB1 expression was regulated by miR-98. The results indicated that miR-98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR-98 might be related to regulation of Bcl-2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR-98 decreased in 4.5 g/l glucose-treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR-98 significantly decreased in aortas of established streptozotocin (STZ)-induced diabetic rat model compared with that in control rats; but cyclin D2 and p-RB1 levels remarkably increased in aortas of STZ-induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up-regulation and miR-98 down-regulation in the RAOECs. By regulating cyclin D2, miR-98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites

    Science.gov (United States)

    Carvalho, Sandra; da Silva, Rosa Barreira; Shawki, Ali; Castro, Helena; Lamy, Márcia; Eide, David; Costa, Vítor; Mackenzie, Bryan; Tomás, Ana M.

    2016-01-01

    Summary Cellular zinc homeostasis ensures that the intracellular concentration of this element is kept within limits that enable its participation in critical physiological processes without exerting toxic effects. We report here the identification and characterization of the first mediator of zinc homeostasis in Leishmania infantum, LiZIP3, a member of the ZIP family of divalent metal-ion transporters. The zinc transporter activity of LiZIP3 was first disclosed by its capacity to rescue the growth of Saccharomyces cerevisiae strains deficient in zinc acquisition. Subsequent expression of LiZIP3 in Xenopus laevis oocytes was shown to stimulate the uptake of a broad range of metal ions, among which Zn2+ was the preferred LiZIP3 substrate (K0.5 ≈ 0.1 μM). Evidence that LiZIP3 functions as a zinc importer in L. infantum came from the observations that the protein locates to the cell membrane and that its overexpression leads to augmented zinc internalization. Importantly, expression and cell-surface location of LiZIP3 are lost when parasites face high zinc bioavailability. LiZIP3 decline in response to zinc is regulated at the mRNA level in a process involving (a) short-lived protein(s). Collectively, our data reveal that LiZIP3 enables L. infantum to acquire zinc in a highly regulated manner, hence contributing to zinc homeostasis. PMID:25644708

  10. Lysophosphatidic acid signaling via LPA{sub 1} and LPA{sub 3} regulates cellular functions during tumor progression in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri; Onishi, Yuka [Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Honoki, Kanya [Department of Orthopedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2017-03-01

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA{sub 1} and LPA{sub 3} in cellular functions during tumor progression in pancreatic cancer cells. LPA{sub 1} and LPA{sub 3} knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA{sub 1} and LPA{sub 3} knockdown. In gelatin zymography, LPA{sub 1} and LPA{sub 3} knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence of LPA. Next, to assess whether LPA{sub 1} and LPA{sub 3} regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA{sub 1} and LPA{sub 3} knockdown as well as colony formation. These results suggest that LPA signaling via LPA{sub 1} and LPA{sub 3} play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells. - Highlights: • The cell motile and invasive activities of PANC-1 cells were stimulated by LPA{sub 1} and LPA{sub 3}. • LPA{sub 1} and LPA{sub 3} enhanced MMP-2 activation in PANC-1 cells. • The expressions of LPAR1 and LPAR3 genes were elevated in PANC-1 cells treated with cisplatin. • The cell motile and invasive activities of PANC-1 cells treated with cisplatin were suppressed by LPA{sub 1} and LPA{sub 3} knockdown. • LPA{sub 1} and LPA{sub 3} are involved in the regulation of cellular functions during tumor

  11. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  12. Cellular Response to Ionizing Radiation: A MicroRNA Story

    Science.gov (United States)

    Halimi, Mohammad; Asghari, S. Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Parsian, Hadi

    2012-01-01

    MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment. PMID:24551775

  13. Regulator LdhR and d-Lactate Dehydrogenase LdhA of Burkholderia multivorans Play Roles in Carbon Overflow and in Planktonic Cellular Aggregate Formation.

    Science.gov (United States)

    Silva, Inês N; Ramires, Marcelo J; Azevedo, Lisa A; Guerreiro, Ana R; Tavares, Andreia C; Becker, Jörg D; Moreira, Leonilde M

    2017-10-01

    cause progressive deterioration of lung function that, in some patients, might develop into fatal necrotizing pneumoniae with bacteremia, known as "cepacia syndrome." Burkholderia pathogenesis is multifactorial as they express several virulence factors, form biofilms, and are highly resistant to antimicrobial compounds, making their eradication from the CF patients' airways very difficult. As Burkholderia is commonly found in CF lungs in the form of cell aggregates and biofilms, the need to investigate the mechanisms of cellular aggregation is obvious. In this study, we demonstrate the importance of a d-lactate dehydrogenase and a regulator in regulating carbon overflow, cellular aggregates, and surface-attached biofilm formation. This not only enhances our understanding of Burkholderia pathogenesis but can also lead to the development of drugs against these proteins to circumvent biofilm formation. Copyright © 2017 American Society for Microbiology.

  14. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  15. El nucléolo como un regulador del envejecimiento celular The nucleolus as a regulator of cellular senescence

    Directory of Open Access Journals (Sweden)

    María Rosete

    2007-04-01

    Full Text Available El nucléolo, considerado únicamente como el sitio de síntesis de los ribosomas, actualmente representa una estructura nuclear dinámica que participa en la regulación de importantes procesos celulares. Numerosas evidencias han demostrado que el envejecimiento celular es una de las diversas funciones que son controladas por el nucléolo. Las mutaciones en las proteínas de localización nucleolar promueven el envejecimiento prematuro en levaduras y humanos. La carencia de represión en la transcripción de genes que codifican para el ARNr que se encuentran dañados, y las mutaciones en las helicasas del ADN encargadas de minimizar la formación de círculos extra-cromosómicos del ADN que codifica para el ARNr, provocan modificaciones en la estructura del nucléolo e inducen envejecimiento prematuro en levaduras. De igual manera, en los humanos la carencia de las helicasas del ADN localizadas en el nucléolo y que participan en el mantenimiento de la integridad genómica, favorecen el desarrollo de aquellas enfermedades asociadas con el envejecimiento acelerado. Además, la presencia de algunos componentes de la telomerasa en el nucléolo, indica que parte de la biosíntesis de esta enzima se realiza en esta estructura nuclear, sugiriendo una conexión entre el nucléolo y la síntesis de los telómeros en la regulación del envejecimiento celular. Por otra parte, el nucléolo secuestra proteínas para regular su actividad biológica durante el inicio o término de la vida replicativa celular.The nucleolus has been considered originally only as the site for the ribosome synthesis, but now it is well known that it represents a dynamic nuclear structure involved in important cellular processes. Several evidences have demonstrated that the nucleolus regulates the cellular senescence. Specific mutations on the DNAs codifying for nucleolar proteins induced premature senescence from yeast to human. The failure to repress the genes transcription

  16. Rac1 Regulates the Activity of mTORC1 and mTORC2 and Controls Cellular Size

    Science.gov (United States)

    Saci, Abdelhafid; Cantley, Lewis C.; Carpenter, Christopher L.

    2013-01-01

    SUMMARY Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that exists in two separate complexes, mTORC1 and mTORC2, that function to control cell size and growth in response to growth factors, nutrients, and cellular energy levels. Low molecular weight GTP-binding proteins of the Rheb and Rag families are key regulators of the mTORC1 complex, but regulation of mTORC2 is poorly understood. Here, we report that Rac1, a member of the Rho family of GTPases, is a critical regulator of both mTORC1 and mTORC2 in response to growth-factor stimulation. Deletion of Rac1 in primary cells using an inducible-Cre/Lox approach inhibits basal and growth-factor activation of both mTORC1 and mTORC2. Rac1 appears to bind directly to mTOR and to mediate mTORC1 and mTORC2 localization at specific membranes. Binding of Rac1 to mTOR does not depend on the GTP-bound state of Rac1, but on the integrity of its C-terminal domain. This function of Rac1 provides a means to regulate mTORC1 and mTORC2 simultaneously. PMID:21474067

  17. New features on the environmental regulation of metabolism revealed by modeling the cellular proteomic adaptations induced by light, carbon and inorganic nitrogen in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Stéphanie Gérin

    2016-08-01

    Full Text Available Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate and inorganic nitrogen concentrations (nitrate and ammonium in the culture medium. Statistical design of experiments (DOE enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE. Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle and protein metabolism. The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview

  18. Post-Transcriptional Regulation of KLF4 by High-Risk Human Papillomaviruses Is Necessary for the Differentiation-Dependent Viral Life Cycle.

    Directory of Open Access Journals (Sweden)

    Vignesh Kumar Gunasekharan

    2016-07-01

    Full Text Available Human papillomaviruses (HPVs are epithelial tropic viruses that link their productive life cycles to the differentiation of infected host keratinocytes. A subset of the over 200 HPV types, referred to as high-risk, are the causative agents of most anogenital malignancies. HPVs infect cells in the basal layer, but restrict viral genome amplification, late gene expression, and capsid assembly to highly differentiated cells that are active in the cell cycle. In this study, we demonstrate that HPV proteins regulate the expression and activities of a critical cellular transcription factor, KLF4, through post-transcriptional and post-translational mechanisms. Our studies show that KLF4 regulates differentiation as well as cell cycle progression, and binds to sequences in the upstream regulatory region (URR to regulate viral transcription in cooperation with Blimp1. KLF4 levels are increased in HPV-positive cells through a post-transcriptional mechanism involving E7-mediated suppression of cellular miR-145, as well as at the post-translational level by E6-directed inhibition of its sumoylation and phosphorylation. The alterations in KLF4 levels and functions results in activation and suppression of a subset of KLF4 target genes, including TCHHL1, VIM, ACTN1, and POT1, that is distinct from that seen in normal keratinocytes. Knockdown of KLF4 with shRNAs in cells that maintain HPV episomes blocked genome amplification and abolished late gene expression upon differentiation. While KLF4 is indispensable for the proliferation and differentiation of normal keratinocytes, it is necessary only for differentiation-associated functions of HPV-positive keratinocytes. Increases in KLF4 levels alone do not appear to be sufficient to explain the effects on proliferation and differentiation of HPV-positive cells indicating that additional modifications are important. KLF4 has also been shown to be a critical regulator of lytic Epstein Barr virus (EBV replication

  19. Cellular metabolism regulates contact sites between vacuoles and mitochondria

    NARCIS (Netherlands)

    Hönscher, Carina; Mari, Muriel; Auffarth, Kathrin; Bohnert, Maria; Griffith, Janice; Geerts, Willie; van der Laan, Martin; Cabrera, Margarita; Reggiori, Fulvio; Ungermann, Christian

    2014-01-01

    Emerging evidence suggests that contact sites between different organelles form central hubs in the coordination of cellular physiology. Although recent work has emphasized the crucial role of the endoplasmic reticulum in interorganellar crosstalk, the cooperative behavior of other organelles is

  20. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in ra...

  1. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia.

    Science.gov (United States)

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.

  2. Activation and Regulation of Cellular Eicosanoid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Thomas G. Brock

    2007-01-01

    Full Text Available There is a growing appreciation for the wide variety of physiological responses that are regulated by lipid messengers. One particular group of lipid messengers, the eicosanoids, plays a central role in regulating immune and inflammatory responses in a receptor-mediated fashion. These mediators are related in that they are all derived from one polyunsaturated fatty acid, arachidonic acid. However, the various eicosanoids are synthesized by a wide variety of cell types by distinct enzymatic pathways, and have diverse roles in immunity and inflammation. In this review, the major pathways involved in the synthesis of eicosanoids, as well as key points of regulation, are presented.

  3. Biosensor Architectures for High-Fidelity Reporting of Cellular Signaling

    Science.gov (United States)

    Dushek, Omer; Lellouch, Annemarie C.; Vaux, David J.; Shahrezaei, Vahid

    2014-01-01

    Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling. PMID:25099816

  4. Building synthetic cellular organization

    OpenAIRE

    Polka, Jessica K.; Silver, Pamela A.

    2013-01-01

    The elaborate spatial organization of cells enhances, restricts, and regulates protein–protein interactions. However, the biological significance of this organization has been difficult to study without ways of directly perturbing it. We highlight synthetic biology tools for engineering novel cellular organization, describing how they have been, and can be, used to advance cell biology.

  5. Overexpression of FurA in Anabaena sp. PCC 7120 reveals new targets for this regulator involved in photosynthesis, iron uptake and cellular morphology.

    Science.gov (United States)

    González, Andrés; Bes, M Teresa; Barja, François; Peleato, M Luisa; Fillat, María F

    2010-11-01

    Previous genomic analyses of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 have identified three ferric uptake regulator (Fur) homologs with low sequence identities and probably different functions in the cell. FurA is a constitutive protein that shares the highest homology with Fur from heterotrophic bacteria and appears to be essential for in vitro growth. In this study, we have analysed the effects of FurA overexpression on the Anabaena sp. phenotype and investigated which of the observed alterations were directly operated by FurA. Overexpression of the regulator led to changes in cellular morphology, resulting in shorter filaments with rounded cells of different sizes. The furA-overexpressing strain showed a slower photoautotrophic growth and a marked decrease in the oxygen evolution rate. Overexpression of the regulator also decreased both catalase and superoxide dismutase activities, but did not lead to an increase in the levels of intracellular reactive oxygen species. By combining phenotypic studies, reverse transcription-PCR analyses and electrophoretic mobility shift assays, we identified three novel direct targets of FurA, including genes encoding a siderophore outer membrane transporter (schT), bacterial actins (mreBCD) and the PSII reaction center protein D1 (psbA). The affinity of FurA for these novel targets was markedly affected by the absence of divalent metal ions, confirming previous evidence of a critical role for the metal co-repressor in the function of the regulator in vivo. The results unravel new cellular processes modulated by FurA, supporting its role as a global transcriptional regulator in Anabaena sp. PCC 7120.

  6. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  7. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity.

    Science.gov (United States)

    Liu, Peihong; Du, Yongli; Song, Lianhua; Shen, Jingkang; Li, Qunyi

    2016-08-08

    Protein tyrosine phosphatase 1B (PTP1B) as a key negative regulator of both insulin and leptin receptor pathways has been an attractive therapeutic target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. With the goal of enhancing potency and selectivity of the PTP1B inhibitors, a series of methyl salicylate derivatives as ABC type PTP1B inhibitors (P1-P7) were discovered. More importantly, compound P6 exhibited high potent inhibitory activity (IC50 = 50 nM) for PTP1B with 15-fold selectivity over T-cell PTPase (TCPTP). Further studies on cellular activities revealed that compound P6 could enhance insulin-mediated insulin receptor β (IRβ) phosphorylation and insulin-stimulated glucose uptake. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Cellular stress-induced up-regulation of FMRP promotes cell survival by modulating PI3K-Akt phosphorylation cascades

    Directory of Open Access Journals (Sweden)

    Wells David

    2011-02-01

    Full Text Available Abstract Background Fragile X syndrome (FXS, the most commonly inherited mental retardation and single gene cause of autistic spectrum disorder, occurs when the Fmr1 gene is mutated. The product of Fmr1, fragile X linked mental retardation protein (FMRP is widely expressed in HeLa cells, however the roles of FMRP within HeLa cells were not elucidated, yet. Interacting with a diverse range of mRNAs related to cellular survival regulatory signals, understanding the functions of FMRP in cellular context would provide better insights into the role of this interesting protein in FXS. Using HeLa cells treated with etoposide as a model, we tried to determine whether FMRP could play a role in cell survival. Methods Apoptotic cell death was induced by etoposide treatment on Hela cells. After we transiently modulated FMRP expression (silencing or enhancing by using molecular biotechnological methods such as small hairpin RNA virus-induced knock down and overexpression using transfection with FMRP expression vectors, cellular viability was measured using propidium iodide staining, TUNEL staining, and FACS analysis along with the level of activation of PI3K-Akt pathway by Western blot. Expression level of FMRP and apoptotic regulator BcL-xL was analyzed by Western blot, RT-PCR and immunocytochemistry. Results An increased FMRP expression was measured in etoposide-treated HeLa cells, which was induced by PI3K-Akt activation. Without FMRP expression, cellular defence mechanism via PI3K-Akt-Bcl-xL was weakened and resulted in an augmented cell death by etoposide. In addition, FMRP over-expression lead to the activation of PI3K-Akt signalling pathway as well as increased FMRP and BcL-xL expression, which culminates with the increased cell survival in etoposide-treated HeLa cells. Conclusions Taken together, these results suggest that FMRP expression is an essential part of cellular survival mechanisms through the modulation of PI3K, Akt, and Bcl-xL signal

  9. Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer's disease.

    Science.gov (United States)

    Gu, Xue-Mei; Huang, Han-Chang; Jiang, Zhao-Feng

    2012-10-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder. The pathology of AD includes amyloid-β (Aβ) deposits in neuritic plaques and neurofibrillary tangles composed of hyperphosphorylated tau, as well as neuronal loss in specific brain regions. Increasing epidemiological and functional neuroimaging evidence indicates that global and regional disruptions in brain metabolism are involved in the pathogenesis of this disease. Aβ precursor protein is cleaved to produce both extracellular and intracellular Aβ, accumulation of which might interfere with the homeostasis of cellular metabolism. Mitochondria are highly dynamic organelles that not only supply the main energy to the cell but also regulate apoptosis. Mitochondrial dysfunction might contribute to Aβ neurotoxicity. In this review, we summarize the pathways of Aβ generation and its potential neurotoxic effects on cellular metabolism and mitochondrial dysfunction.

  10. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  11. Single-cell-based system to monitor carrier driven cellular auxin homeostasis

    Science.gov (United States)

    2013-01-01

    Background Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. Results We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN)2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. Conclusions This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin. PMID:23379388

  12. Changes in Cellular mRNA Stability, Splicing, and Polyadenylation through HuR Protein Sequestration by a Cytoplasmic RNA Virus

    Directory of Open Access Journals (Sweden)

    Michael D. Barnhart

    2013-11-01

    Full Text Available The impact of RNA viruses on the posttranscriptional regulation of cellular gene expression is unclear. Sindbis virus causes a dramatic relocalization of the cellular HuR protein from the nucleus to the cytoplasm in infected cells. This is to the result of the expression of large amounts of viral RNAs that contain high-affinity HuR binding sites in their 3′ UTRs effectively serving as a sponge for the HuR protein. Sequestration of HuR by Sindbis virus is associated with destabilization of cellular mRNAs that normally bind HuR and rely on it to regulate their expression. Furthermore, significant changes can be observed in nuclear alternative polyadenylation and splicing events on cellular pre-mRNAs as a result of sequestration of HuR protein by the 3′ UTR of transcripts of this cytoplasmic RNA virus. These studies suggest a molecular mechanism of virus-host interaction that probably has a significant impact on virus replication, cytopathology, and pathogenesis.

  13. Carica Papaya Seed Extract Enhances Cellular Response to Stress ...

    African Journals Online (AJOL)

    Therefore, the present study was carried out to investigate the role of Carica papaya seed (CPS) extract that contains, Benzyl Isothiocyanates, one of the inducers of phase II enzymes in the regulation of cellular stress. The cellular responses were observed in U937 cells (human monocyte/macrophage cell line) at the ...

  14. Cellular roles of ADAM12 in health and disease

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Albrechtsen, Reidar; Couchman, John R

    2008-01-01

    and it is a potential biomarker for breast cancer. It is therefore important to understand ADAM12's functions. Many cellular roles for ADAM12 have been suggested. It is an active metalloprotease, and has been implicated in insulin-like growth factor (IGF) receptor signaling, through cleavage of IGF-binding proteins......, and in epidermal growth factor receptor (EGFR) pathways, via ectodomain shedding of membrane-tethered EGFR ligands. These proteolytic events may regulate diverse cellular responses, such as altered cell differentiation, proliferation, migration, and invasion. ADAM12 may also regulate cell-cell and cell...... to or from the cell interior. These ADAM12-mediated cellular effects appear to be critical events in both biological and pathological processes. This review presents current knowledge on ADAM12 functions gained from in vitro and in vivo observations, describes ADAM12's role in both normal physiology...

  15. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    Science.gov (United States)

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  16. High-strength cellular ceramic composites with 3D microarchitecture.

    Science.gov (United States)

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-02-18

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).

  17. Multi-cellular logistics of collective cell migration.

    Directory of Open Access Journals (Sweden)

    Masataka Yamao

    Full Text Available During development, the formation of biological networks (such as organs and neuronal networks is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.

  18. Compound C prevents Hypoxia-Inducible Factor-1α protein stabilization by regulating the cellular oxygen availability via interaction with Mitochondrial Complex I

    Directory of Open Access Journals (Sweden)

    Hagen Thilo

    2011-04-01

    Full Text Available Abstract The transcription factor Hypoxia-Inducible Factor-1α is a master regulator of the cellular response to low oxygen concentration. Compound C, an inhibitor of AMP-activated kinase, has been reported to inhibit hypoxia dependent Hypoxia-Inducible Factor-1α activation via a mechanism that is independent of AMP-activated kinase but dependent on its interaction with the mitochondrial electron transport chain. The objective of this study is to characterize the interaction of Compound C with the mitochondrial electron transport chain and to determine the mechanism through which the drug influences the stability of the Hypoxia-Inducible Factor-1α protein. We found that Compound C functions as an inhibitor of complex I of the mitochondrial electron transport chain as demonstrated by its effect on mitochondrial respiration. It also prevents hypoxia-induced Hypoxia-Inducible Factor-1α stabilization in a dose dependent manner. In addition, Compound C does not have significant effects on reactive oxygen species production from complex I via both forward and reverse electron flux. This study provides evidence that similar to other mitochondrial electron transport chain inhibitors, Compound C regulates Hypoxia-Inducible Factor-1α stability by controlling the cellular oxygen concentration.

  19. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    International Nuclear Information System (INIS)

    Cameron, Jennifer E.; Fewell, Claire; Yin, Qinyan; McBride, Jane; Wang Xia; Lin Zhen

    2008-01-01

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lower in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers

  20. Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

    Science.gov (United States)

    Reuter, Tanja Y; Medhurst, Annette L; Waisfisz, Quinten; Zhi, Yu; Herterich, Sabine; Hoehn, Holger; Gross, Hans J; Joenje, Hans; Hoatlin, Maureen E; Mathew, Christopher G; Huber, Pia A J

    2003-10-01

    Mutations in one of at least eight different genes cause bone marrow failure, chromosome instability, and predisposition to cancer associated with the rare genetic syndrome Fanconi anemia (FA). The cloning of seven genes has provided the tools to study the molecular pathway disrupted in Fanconi anemia patients. The structure of the genes and their gene products provided few clues to their functional role. We report here the use of 3 FA proteins, FANCA, FANCC, and FANCG, as "baits" in the hunt for interactors to obtain clues for FA protein functions. Using five different human cDNA libraries we screened 36.5x10(6) clones with the technique of the yeast two-hybrid system. We identified 69 proteins which have not previously been linked to the FA pathway as direct interactors of FANCA, FANCC, or FANCG. Most of these proteins are associated with four functional classes including transcription regulation (21 proteins), signaling (13 proteins), oxidative metabolism (10 proteins), and intracellular transport (11 proteins). Interaction with 6 proteins, DAXX, Ran, IkappaBgamma, USP14, and the previously reported SNX5 and FAZF, was additionally confirmed by coimmunoprecipitation and/or colocalization studies. Taken together, our data strongly support the hypothesis that FA proteins are functionally involved in several complex cellular pathways including transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

  1. Down-regulation of cellular FLICE-inhibitory protein (Long Form contributes to apoptosis induced by Hsp90 inhibition in human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Wang Qilin

    2012-12-01

    Full Text Available Abstract Background Cellular FLICE-Inhibitory Protein (long form, c-FLIPL is a critical negative regulator of death receptor-mediated apoptosis. Overexpression of c-FLIPL has been reported in many cancer cell lines and is associated with chemoresistance. In contrast, down-regulation of c-FLIP may drive cancer cells into cellular apoptosis. This study aims to demonstrate that inhibition of the heat shock protein 90 (Hsp90 either by inhibitors geldanamycin/17-N-Allylamino-17-demethoxygeldanamycin (GA/17-AAG or siRNA technique in human lung cancer cells induces c-FLIPL degradation and cellular apoptosis through C-terminus of Hsp70-interacting protein (CHIP-mediated mechanisms. Methods Calu-1 and H157 cell lines (including H157-c-FLIPL overexpressing c-FLIPL and control cell H157-lacZ were treated with 17-AAG and the cell lysates were prepared to detect the given proteins by Western Blot and the cell survival was assayed by SRB assay. CHIP and Hsp90 α/β proteins were knocked down by siRNA technique. CHIP and c-FLIPL plasmids were transfected into cells and immunoprecipitation experiments were performed to testify the interactions between c-FLIPL, CHIP and Hsp90. Results c-FLIPL down-regulation induced by 17-AAG can be reversed with the proteasome inhibitor MG132, which suggested that c-FLIPL degradation is mediated by a ubiquitin-proteasome system. Inhibition of Hsp90α/β reduced c-FLIPL level, whereas knocking down CHIP expression with siRNA technique inhibited c-FLIPL degradation. Furthermore, c-FLIPL and CHIP were co-precipitated in the IP complexes. In addition, overexpression of c-FLIPL can rescue cancer cells from apoptosis. When 17-AAG was combined with an anti-cancer agent celecoxib(CCB, c-FLIPL level declined further and there was a higher degree of caspase activation. Conclusion We have elucidated c-FLIPL degradation contributes to apoptosis induced by Hsp90 inhibition, suggesting c-FLIP and Hsp90 may be the promising combined targets

  2. Quantifying the global cellular thiol-disulfide status

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Roth, Doris; Winther, Jakob R

    2009-01-01

    It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been...... determined. In this study, we have assembled a global picture of the cellular thiol-disulfide status in cultured mammalian cells. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated protein (PSSG) in all cellular protein, including membrane proteins. These data...... cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active...

  3. Lipids in the cell: organisation regulates function.

    Science.gov (United States)

    Santos, Ana L; Preta, Giulio

    2018-06-01

    Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.

  4. The induction and regulation of radiogenic transformation in vitro: Cellular and molecular mechanisms

    International Nuclear Information System (INIS)

    Borek, C.

    1987-01-01

    Rodent and human cells in culture, transformed in vitro by ionizing radiation, ultraviolet light, or chemicals into malignant cells afford us the opportunity to probe into early and late events in the neoplastic process at a cellular and molecular level. Transformation can be regarded as an abnormal expression of cellular genes. The initiating agents disrupt the integrity of the genetic apparatus altering DNA in ways that result in the activation of cellular transforming genes (oncogenes) during some stage of the neoplastic process. Events associated with initiation and promotion may overlap to some degree, but in order for them to occur, cellular permissive conditions must prevail. Permissive factors include thyroid and steroid hormones, specific states of differentiation, certain stages in the cell cycle, specific genetic impairment, and inadequate antioxidants. Genetically susceptible cells require physiological states conducive to transformation. These may differ with age, tissue, and species and in part may be responsible for the observed lower sensitivity of human cells to transformation

  5. Biomechanics of cellular solids.

    Science.gov (United States)

    Gibson, Lorna J

    2005-03-01

    Materials with a cellular structure are widespread in nature and include wood, cork, plant parenchyma and trabecular bone. Natural cellular materials are often mechanically efficient: the honeycomb-like microstructure of wood, for instance, gives it an exceptionally high performance index for resisting bending and buckling. Here we review the mechanics of a wide range of natural cellular materials and examine their role in lightweight natural sandwich structures (e.g. iris leaves) and natural tubular structures (e.g. plant stems or animal quills). We also describe two examples of engineered biomaterials with a cellular structure, designed to replace or regenerate tissue in the body.

  6. A bead-based western for high-throughput cellular signal transduction analyses

    Science.gov (United States)

    Treindl, Fridolin; Ruprecht, Benjamin; Beiter, Yvonne; Schultz, Silke; Döttinger, Anette; Staebler, Annette; Joos, Thomas O.; Kling, Simon; Poetz, Oliver; Fehm, Tanja; Neubauer, Hans; Kuster, Bernhard; Templin, Markus F.

    2016-01-01

    Dissecting cellular signalling requires the analysis of large number of proteins. The DigiWest approach we describe here transfers the western blot to a bead-based microarray platform. By combining gel-based protein separation with immobilization on microspheres, hundreds of replicas of the initial blot are created, thus enabling the comprehensive analysis of limited material, such as cells collected by laser capture microdissection, and extending traditional western blotting to reach proteomic scales. The combination of molecular weight resolution, sensitivity and signal linearity on an automated platform enables the rapid quantification of hundreds of specific proteins and protein modifications in complex samples. This high-throughput western blot approach allowed us to identify and characterize alterations in cellular signal transduction that occur during the development of resistance to the kinase inhibitor Lapatinib, revealing major changes in the activation state of Ephrin-mediated signalling and a central role for p53-controlled processes. PMID:27659302

  7. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  8. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms.

    Science.gov (United States)

    Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana

    2018-01-02

    The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.

  9. The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures.

    Science.gov (United States)

    Patrussi, Laura; Baldari, Cosima T

    2016-01-01

    Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures.

  10. Antiviral and Inflammatory Cellular Signaling Associated with Enterovirus 71 Infection

    Directory of Open Access Journals (Sweden)

    Yuefei Jin

    2018-03-01

    Full Text Available Enterovirus 71 (EV71 infection has become a major threat to global public health, especially in infants and young children. Epidemiological studies have indicated that EV71 infection is responsible for severe and even fatal cases of hand, foot, and mouth disease (HFMD. Accumulated evidence indicates that EV71 infection triggers a plethora of interactive signaling pathways, resulting in host immune evasion and inflammatory response. This review mainly covers the effects of EV71 infection on major antiviral and inflammatory cellular signal pathways. EV71 can activate cellular signaling networks including multiple cell surface and intracellular receptors, intracellular kinases, calcium flux, and transcription factors that regulate antiviral innate immunity and inflammatory response. Cellular signaling plays a critical role in the regulation of host innate immune and inflammatory pathogenesis. Elucidation of antiviral and inflammatory cellular signaling pathways initiated by EV71 will not only help uncover the potential mechanisms of EV71 infection-induced pathogenesis, but will also provide clues for the design of therapeutic strategies against EV71 infection.

  11. Reversible and Dynamic Fluorescence Imaging of Cellular Redox Self-Regulation Using Fast-Responsive Near-Infrared Ge-Pyronines.

    Science.gov (United States)

    Nie, Hailiang; Jing, Jing; Tian, Yong; Yang, Wen; Zhang, Rubo; Zhang, Xiaoling

    2016-04-13

    Cellular self-regulation of reactive oxygen species (ROS) stress via glutathione (GSH) antioxidant repair plays a crucial role in maintaining redox balance, which affects various physiological and pathological pathways. In this work, we developed a simple yet effective strategy for reversible, dynamic, and real-time fluorescence imaging of ROS stress and GSH repair, based on novel Ge-pyronine dyes (GePs). Unlike the current O-pyronine (OP) dye, the fluorescence of GePs can be quenched in GSH reduction and then greatly restored by ROS (e.g., ClO(-), ONOO(-), and HO(•)) oxidation because of their unique affinity toward thiols. The "on-off" and "off-on" fluorescence switch can complete in 10 and 20 s, respectively, and exhibit excellent reversibility in vitro and in cells. GePs also show excitation in the long wavelength from the deep-red to near-infrared (NIR) (621-662 nm) region, high fluorescence quantum yield (Φ(fl) = 0.32-0.44) in aqueous media, and excellent cell permeability. Our results demonstrated that GePs can be used for real-time monitoring of the reversible and dynamic interconversion between ROS oxidation and GSH reduction in living cells. GePs might be a useful tool for investigating various redox-related physiological and pathological pathways.

  12. Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids

    Directory of Open Access Journals (Sweden)

    Kai Ling

    2015-06-01

    Full Text Available Cellular spheroids serving as three-dimensional (3D in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.

  13. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Takahashi, Yutaka, E-mail: takahash@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  14. IGF-I enhances cellular senescence via the reactive oxygen species–p53 pathway

    International Nuclear Information System (INIS)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro; Takahashi, Yutaka

    2012-01-01

    Highlights: ► Cellular senescence plays an important role in tumorigenesis and aging process. ► We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. ► IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. ► These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated β-galactosidase (SA-β-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, γH2AX, the increased levels of p53 and p21 proteins, and activated SA-β-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-β-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  15. The zebrafish miR-462/miR-731 cluster is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations.

    Science.gov (United States)

    Huang, Chun-Xiao; Chen, Nan; Wu, Xin-Jie; Huang, Cui-Hong; He, Yan; Tang, Rong; Wang, Wei-Min; Wang, Huan-Ling

    2015-12-01

    Hypoxia, a unique and essential environmental stress, evokes highly coordinated cellular responses, and hypoxia-inducible factor (HIF) 1 in the hypoxia signaling pathway, an evolutionarily conserved cellular signaling pathway, acts as a master regulator of the transcriptional response to hypoxic stress. MicroRNAs (miRNAs), a major class of posttranscriptional gene expression regulators, also play pivotal roles in orchestrating hypoxia-mediated cellular adaptations. Here, global miRNA expression profiling and quantitative real-time PCR indicated that the up-regulation of the miR-462/miR-731 cluster in zebrafish larvae is induced by hypoxia. It was further validated that miR-462 and miR-731 are up-regulated in a Hif-1α-mediated manner under hypoxia and specifically target ddx5 and ppm1da, respectively. Overexpression of miR-462 and miR-731 represses cell proliferation through blocking cell cycle progress of DNA replication, and induces apoptosis. In situ detection revealed that the miR-462/miR-731 cluster is highly expressed in a consistent and ubiquitous manner throughout the early developmental stages. Additionally, the transcripts become restricted to the notochord, pharyngeal arch, liver, and gut regions from postfertilization d 3 to 5. These data highlight a previously unidentified role of the miR-462/miR-731 cluster as a crucial signaling mediator for hypoxia-mediated cellular adaptations and provide some insights into the potential function of the cluster during embryonic development. © FASEB.

  16. Cellular decomposition in vikalloys

    International Nuclear Information System (INIS)

    Belyatskaya, I.S.; Vintajkin, E.Z.; Georgieva, I.Ya.; Golikov, V.A.; Udovenko, V.A.

    1981-01-01

    Austenite decomposition in Fe-Co-V and Fe-Co-V-Ni alloys at 475-600 deg C is investigated. The cellular decomposition in ternary alloys results in the formation of bcc (ordered) and fcc structures, and in quaternary alloys - bcc (ordered) and 12R structures. The cellular 12R structure results from the emergence of stacking faults in the fcc lattice with irregular spacing in four layers. The cellular decomposition results in a high-dispersion structure and magnetic properties approaching the level of well-known vikalloys [ru

  17. Safety regulation on high-pressure gas and gas business

    International Nuclear Information System (INIS)

    Kim, Du Yeoung; An, Dae Jun

    1978-09-01

    This book is divided into two parts. The first part introduces safety regulation on high-pressure gas, enforcement ordinance on safety regulation about high-pressure gas and enforcement regulation on safety regulation about high-pressure gas. The second part indicates regulations on gas business such as general rules, gas business gas supplies, using land, supervision, supple mentary rules and penalty. It has two appendixes on expected questions and questions during last years.

  18. Cellular proteostasis: degradation of misfolded proteins by lysosomes

    Science.gov (United States)

    Jackson, Matthew P.

    2016-01-01

    Proteostasis refers to the regulation of the cellular concentration, folding, interactions and localization of each of the proteins that comprise the proteome. One essential element of proteostasis is the disposal of misfolded proteins by the cellular pathways of protein degradation. Lysosomes are an important site for the degradation of misfolded proteins, which are trafficked to this organelle by the pathways of macroautophagy, chaperone-mediated autophagy and endocytosis. Conversely, amyloid diseases represent a failure in proteostasis, in which proteins misfold, forming amyloid deposits that are not degraded effectively by cells. Amyloid may then exacerbate this failure by disrupting autophagy and lysosomal proteolysis. However, targeting the pathways that regulate autophagy and the biogenesis of lysosomes may present approaches that can rescue cells from the deleterious effects of amyloidogenic proteins. PMID:27744333

  19. Meta-Analysis of High-Throughput Datasets Reveals Cellular Responses Following Hemorrhagic Fever Virus Infection

    Directory of Open Access Journals (Sweden)

    Gavin C. Bowick

    2011-05-01

    Full Text Available The continuing use of high-throughput assays to investigate cellular responses to infection is providing a large repository of information. Due to the large number of differentially expressed transcripts, often running into the thousands, the majority of these data have not been thoroughly investigated. Advances in techniques for the downstream analysis of high-throughput datasets are providing additional methods for the generation of additional hypotheses for further investigation. The large number of experimental observations, combined with databases that correlate particular genes and proteins with canonical pathways, functions and diseases, allows for the bioinformatic exploration of functional networks that may be implicated in replication or pathogenesis. Herein, we provide an example of how analysis of published high-throughput datasets of cellular responses to hemorrhagic fever virus infection can generate additional functional data. We describe enrichment of genes involved in metabolism, post-translational modification and cardiac damage; potential roles for specific transcription factors and a conserved involvement of a pathway based around cyclooxygenase-2. We believe that these types of analyses can provide virologists with additional hypotheses for continued investigation.

  20. Discovery of novel high potent and cellular active ADC type PTP1B inhibitors with selectivity over TC-PTP via modification interacting with C site.

    Science.gov (United States)

    Du, Yongli; Zhang, Yanhui; Ling, Hao; Li, Qunyi; Shen, Jingkang

    2018-01-20

    PTP1B serving as a key negative regulator of insulin signaling is a novel target for type 2 diabetes and obesity. Modification at ring B of N-{4-[(3-Phenyl-ureido)-methyl]-phenyl}-methane-sulfonamide template to interact with residues Arg47 and Lys41 in the C site of PTP1B by molecular docking aided design resulted in the discovery of a series of novel high potent and selective inhibitors of PTP1B. The structure activity relationship interacting with the C site of PTP1B was well illustrated. Compounds 8 and 18 were shown to be the high potent and most promising PTP1B inhibitors with cellular activity and great selectivity over the highly homologous TCPTP and other PTPs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  2. High Endothelial Venules and Lymphatic Vessels in Tertiary Lymphoid Organs: Characteristics, Functions, and Regulation

    Directory of Open Access Journals (Sweden)

    Nancy H Ruddle

    2016-11-01

    Full Text Available High endothelial venules (HEVs and lymphatic vessels (LVs are essential for the function of the immune system, by providing communication between the body and lymph nodes (LNs, specialized sites of antigen presentation and recognition. HEVs bring in naïve and central memory cells and LVs transport antigen, antigen presenting cells, and lymphocytes in and out of LNs. Tertiary lymphoid organs (TLOs are accumulations of lymphoid and stromal cells that arise and organize at ectopic sites in response to chronic inflammation in autoimmunity, microbial infection, graft rejection, and cancer. TLOs are distinguished from primary lymphoid organs-the thymus and bone marrow, and secondary lymphoid organs (SLOs-the LNs, spleen, and Peyer’s patches, in that they arise in response to inflammatory signals, rather than in ontogeny. TLOs usually do not have a capsule, but are rather contained within the confines of another organ. Their structure, cellular composition, chemokine expression, and vascular and stromal support resemble SLOs and are the defining aspects of TLOs. T and B cells, antigen presenting cells, fibroblast reticular cells and other stromal cells and vascular elements including HEVs and LVs are all typical components of TLOS. A key question is whether the HEVs and LVs play comparable roles and are regulated similarly to those in LNs. Data are presented that support this concept, especially with regard to TLO HEVs. Emerging data suggest that the functions and regulation of TLO LVs are also similar to those in LNs. These observations support the concept that TLOs are not merely cellular accumulations, but are functional entities that provide sites to generate effector cells, and that their HEVs and LVs are crucial elements in those activities.

  3. Regulation of taurine transport systems by protein kinase CK2 in mammalian cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry; Hansen, Daniel Bloch

    2011-01-01

    regulate the cellular content of the major cellular organic osmolyte, taurine with emphasis on CK2 mediated regulation of active taurine uptake and volume-sensitive taurine release. Furthermore, we discuss how CK2-mediated regulation of taurine homeostasis is potentially involved in cellular functions...

  4. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice.

    NARCIS (Netherlands)

    Escande, C.; Chini, C.C.; Nin, V.; Dykhouse, K.M.; Novak, C.M.; Levine, J.; Deursen, J.M.A. van; Gores, G.J.; Chen, J.; Lou, Z.; Chini, E.N.

    2010-01-01

    The enzyme sirtuin 1 (SIRT1) is a critical regulator of many cellular functions, including energy metabolism. However, the precise mechanisms that modulate SIRT1 activity remain unknown. As SIRT1 activity in vitro was recently found to be negatively regulated by interaction with the deleted in

  5. Iron Oxide Nanoparticles Stimulates Extra-Cellular Matrix Production in Cellular Spheroids

    Directory of Open Access Journals (Sweden)

    Megan Casco

    2017-01-01

    Full Text Available Nanotechnologies have been integrated into drug delivery, and non-invasive imaging applications, into nanostructured scaffolds for the manipulation of cells. The objective of this work was to determine how the physico-chemical properties of magnetic nanoparticles (MNPs and their spatial distribution into cellular spheroids stimulated cells to produce an extracellular matrix (ECM. The MNP concentration (0.03 mg/mL, 0.1 mg/mL and 0.3 mg/mL, type (magnetoferritin, shape (nanorod—85 nm × 425 nm and incorporation method were studied to determine each of their effects on the specific stimulation of four ECM proteins (collagen I, collagen IV, elastin and fibronectin in primary rat aortic smooth muscle cell. Results demonstrated that as MNP concentration increased there was up to a 6.32-fold increase in collagen production over no MNP samples. Semi-quantitative Immunohistochemistry (IHC results demonstrated that MNP type had the greatest influence on elastin production with a 56.28% positive area stain compared to controls and MNP shape favored elastin stimulation with a 50.19% positive area stain. Finally, there are no adverse effects of MNPs on cellular contractile ability. This study provides insight on the stimulation of ECM production in cells and tissues, which is important because it plays a critical role in regulating cellular functions.

  6. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    Science.gov (United States)

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. Copyright © 2016 the American Physiological Society.

  7. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    Science.gov (United States)

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  8. Thermal conductivity of high-porosity cellular-pore biocarbon prepared from sapele wood

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Kartenko, N. F.; Sharenkova, N. V.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Jezowski, A.; Mucha, J.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.

    2009-10-01

    This paper reports on measurements (in the temperature range T = 5-300 K) of the thermal conductivity κ( T) and electrical conductivity σ( T) of the high-porosity (˜63 vol %) amorphous biocarbon preform with cellular pores, prepared by pyrolysis of sapele wood at the carbonization temperature 1000°C. The preform at 300 K was characterized using X-ray diffraction analysis. Nanocrystallites 11-30 Å in ize were shown to participate in the formation of the carbon network of sapele wood preforms. The dependences κ( T) and σ( T) were measured for the samples cut across and along empty cellular pore channels, which are aligned with the tree growth direction. Thermal conductivity measurements performed on the biocarbon sapele wood preform revealed a temperature dependence of the phonon thermal conductivity that is not typical of amorphous (and X-ray amorphous) materials. The electrical conductivity σ was found to increase with the temperature increasing from 5 to 300 K. The results obtained were analyzed.

  9. Adipocyte size and cellular expression of caveolar proteins analyzed by confocal microscopy

    DEFF Research Database (Denmark)

    Hulstrøm, Veronica; Prats Gavalda, Clara; Vinten, Jørgen

    2013-01-01

    Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1 and caveo......Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1...

  10. Expressions of toll-like receptors 2 and 4, and relative cellular ...

    African Journals Online (AJOL)

    for regulation of the immune system. Their cellular factors are TNF-α, IFN-γ, IL-2, IL-6 and. IL-10. Th1 cells induce cellular response reaction and inflammatory reaction, but Th2 cell promote immunity of body fluids and resist parasitic infections; these two types of cells maintain balance in the immune system [20]. HIV infection.

  11. Acetyl-CoA carboxylase in Reuber hepatoma cells: variation in enzyme activity, insulin regulation, and cellular lipid content.

    Science.gov (United States)

    Bianchi, A; Evans, J L; Nordlund, A C; Watts, T D; Witters, L A

    1992-01-01

    Reuber hepatoma cells are useful cultured lines for the study of insulin action, lipid and lipoprotein metabolism, and the regulation of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid biosynthesis. During investigations in different clonal lines of these cells, we have uncovered marked intercellular variability in the activity, enzyme content, and insulin regulation of ACC paralleled by differences in cellular neutral lipid (triglyceride) content. Two contrasting clonal lines, Fao and H356A-1, have been studied in detail. Several features distinguish these two lines, including differences in ACC activity and enzyme kinetics, the content of the two major hepatic ACC isozymes (Mr 280,000 and 265,000 Da) and their heteroisozymic complex, the extent of ACC phosphorylation, and the ability of ACC to be activated on stimulation by insulin and insulinomimetic agonists. As studied by Nile Red staining and fluorescence-activated cell sorting, these two lines also display marked differences in neutral lipid content, which correlates with both basal levels of ACC activity and inhibition of ACC by the fatty acid analog, 5-(tetradecyloxy)-2-furoic acid (TOFA). These results emphasize the importance of characterization of any particular clonal line of Reuber cells for studies of enzyme regulation, substrate metabolism, and hormone action. With respect to ACC, studies in contrasting clonal lines of Reuber cells could provide valuable clues to understanding both the complex mechanisms of intracellular ACC regulation in the absence and presence of hormones and its regulatory role(s) in overall hepatic lipid metabolism.

  12. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p

    DEFF Research Database (Denmark)

    Moxley, Joel F.; Jewett, Michael Christopher; Antoniewicz, Maciek R.

    2009-01-01

    . However, the potential of systems biology approaches is limited by difficulties in integrating metabolic measurements across the functional levels of the cell despite their being most closely linked to cellular phenotype. To address this limitation, we developed a model-based approach to correlate m......RNA and metabolic flux data that combines information from both interaction network models and flux determination models. We started by quantifying 5,764 mRNAs, 54 metabolites, and 83 experimental C-13-based reaction fluxes in continuous cultures of yeast under stress in the absence or presence of global regulator...... of metabolic flux (i.e., use of different reaction pathways) by transcriptional regulation and metabolite interaction density (i.e., level of pairwise metabolite-protein interactions) as a key biosynthetic control determinant. Furthermore, this model predicted flux rewiring in studies of follow...

  13. Cellular High-Energy Cavitation Trauma - Description of a Novel In Vitro Trauma Model in Three Different Cell Types.

    Science.gov (United States)

    Cao, Yuli; Risling, Mårten; Malm, Elisabeth; Sondén, Anders; Bolling, Magnus Frödin; Sköld, Mattias K

    2016-01-01

    The mechanisms involved in traumatic brain injury have yet to be fully characterized. One mechanism that, especially in high-energy trauma, could be of importance is cavitation. Cavitation can be described as a process of vaporization, bubble generation, and bubble implosion as a result of a decrease and subsequent increase in pressure. Cavitation as an injury mechanism is difficult to visualize and model due to its short duration and limited spatial distribution. One strategy to analyze the cellular response of cavitation is to employ suitable in vitro models. The flyer-plate model is an in vitro high-energy trauma model that includes cavitation as a trauma mechanism. A copper fragment is accelerated by means of a laser, hits the bottom of a cell culture well causing cavitation, and shock waves inside the well and cell medium. We have found the flyer-plate model to be efficient, reproducible, and easy to control. In this study, we have used the model to analyze the cellular response to microcavitation in SH-SY5Y neuroblastoma, Caco-2, and C6 glioma cell lines. Mitotic activity in neuroblastoma and glioma was investigated with BrdU staining, and cell numbers were calculated using automated time-lapse imaging. We found variations between cell types and between different zones surrounding the lesion with these methods. It was also shown that the injured cell cultures released S-100B in a dose-dependent manner. Using gene expression microarray, a number of gene families of potential interest were found to be strongly, but differently regulated in neuroblastoma and glioma at 24 h post trauma. The data from the gene expression arrays may be used to identify new candidates for biomarkers in cavitation trauma. We conclude that our model is useful for studies of trauma in vitro and that it could be applied in future treatment studies.

  14. Regulation of Autophagy by Kinases

    International Nuclear Information System (INIS)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets

  15. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  16. Regulation of Autophagy by Kinases

    Science.gov (United States)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets. PMID:24212825

  17. Regulation of Autophagy by Kinases

    Directory of Open Access Journals (Sweden)

    Savitha Sridharan

    2011-06-01

    Full Text Available Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  18. Cellular Stoichiometry of Methyl-Accepting Chemotaxis Proteins in Sinorhizobium meliloti.

    Science.gov (United States)

    Zatakia, Hardik M; Arapov, Timofey D; Meier, Veronika M; Scharf, Birgit E

    2018-03-15

    The chemosensory system in Sinorhizobium meliloti has several important deviations from the widely studied enterobacterial paradigm. To better understand the differences between the two systems and how they are optimally tuned, we determined the cellular stoichiometry of the methyl-accepting chemotaxis proteins (MCPs) and the histidine kinase CheA in S. meliloti Quantitative immunoblotting was used to determine the total amount of MCPs and CheA per cell in S. meliloti The MCPs are present in the cell in high abundance (McpV), low abundance (IcpA, McpU, McpX, and McpW), and very low abundance (McpY and McpZ), whereas McpT was below the detection limit. The approximate cellular ratio of these three receptor groups is 300:30:1. The chemoreceptor-to-CheA ratio is 23.5:1, highly similar to that seen in Bacillus subtilis (23:1) and about 10 times higher than that in Escherichia coli (3.4:1). Different from E. coli , the high-abundance receptors in S. meliloti are lacking the carboxy-terminal NWETF pentapeptide that binds the CheR methyltransferase and CheB methylesterase. Using transcriptional lacZ fusions, we showed that chemoreceptors are positively controlled by the master regulators of motility, VisNR and Rem. In addition, FlbT, a class IIA transcriptional regulator of flagellins, also positively regulates the expression of most chemoreceptors except for McpT and McpY, identifying chemoreceptors as class III genes. Taken together, these results demonstrate that the chemosensory complex and the adaptation system in S. meliloti deviates significantly from the established enterobacterial paradigm but shares some similarities with B. subtilis IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti is of great agricultural importance because of its nitrogen-fixing properties, which enhances growth of its plant symbiont, alfalfa. Chemotaxis provides a competitive advantage for bacteria to sense their environment and interact with their eukaryotic hosts. For a better

  19. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  20. Time scale of diffusion in molecular and cellular biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2014-01-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function. (topical review)

  1. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  2. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0419 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal...inappropriate cell growth, fluid secretion, and dysregulation of cellular energy metabolism. The enzyme AMPK regulates a number of cellular pathways, including

  3. Understanding regulation of microRNAs on intestine regeneration in the sea cucumber Apostichopus japonicus using high-throughput sequencing.

    Science.gov (United States)

    Sun, Lina; Sun, Jingchun; Li, Xiaoni; Zhang, Libin; Yang, Hongsheng; Wang, Qing

    2017-06-01

    The sea cucumber, as a member of the Echinodermata, has the capacity to restore damaged organs and body parts, which has always been a key scientific issue. MicroRNAs (miRNAs), a class of short noncoding RNAs, play important roles in regulating gene expression. In the present study, we applied high-throughput sequencing to investigate alterations of miRNA expression in regenerative intestine compared to normal intestine. A total of 73 differentially expressed miRNAs were obtained, including 59 up-regulated miRNAs and 14 down-regulated miRNAs. Among these molecules, Aja-miR-1715-5p, Aja-miR-153, Aja-miR-252a, Aja-miR-153-5p, Aja-miR-252b, Aja-miR-2001, Aja-miR-64d-3p, and Aja-miR-252-5p were differentially expressed over 10-fold at 3days post-evisceration (dpe). Notably, real-time PCR revealed that Aja-miR-1715-5p was up-regulated 1390-fold at 3dpe. Moreover, putative target gene co-expression analyses, gene ontology, and pathway analyses suggest that these miRNAs play important roles in specific cellular events (cell proliferation, migration, and apoptosis), metabolic regulation, and energy redistribution. These results will provide a basis for future studies of miRNA regulation in sea cucumber regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  5. Curcumin exhibits anti-tumor effect and attenuates cellular migration via Slit-2 mediated down-regulation of SDF-1 and CXCR4 in endometrial adenocarcinoma cells.

    Science.gov (United States)

    Sirohi, Vijay Kumar; Popli, Pooja; Sankhwar, Pushplata; Kaushal, Jyoti Bala; Gupta, Kanchan; Manohar, Murli; Dwivedi, Anila

    2017-06-01

    Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  7. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance

    Science.gov (United States)

    Loh, Kim; Fukushima, Atsushi; Zhang, Xinmei; Galic, Sandra; Briggs, Dana; Enriori, Pablo J.; Simonds, Stephanie; Wiede, Florian; Reichenbach, Alexander; Hauser, Christine; Sims, Natalie A.; Bence, Kendra K.; Zhang, Sheng; Zhang, Zhong-Yin; Kahn, Barbara B.; Neel, Benjamin G.; Andrews, Zane B.; Cowley, Michael A.; Tiganis, Tony

    2011-01-01

    SUMMARY In obesity, anorectic responses to leptin are diminished, giving rise to the concept of ‘leptin resistance’. Increased expression of protein tyrosine phosphatase 1B (PTP1B) has been associated with the attenuation of leptin signaling and development of cellular leptin resistance. Here we report that hypothalamic levels of the tyrosine phosphatase TCPTP are also elevated in obesity to attenuate the leptin response. We show that mice that lack TCPTP in neuronal cells have enhanced leptin sensitivity and are resistant to high fat diet-induced weight gain and the development of leptin resistance. Also, intracerebroventricular administration of a TCPTP inhibitor enhances leptin signaling and responses in mice. Moreover, the combined deletion of TCPTP and PTP1B in neuronal cells has additive effects in the prevention of diet-induced obesity. Our results identify TCPTP as a critical negative regulator of hypothalamic leptin signaling and causally link elevated TCPTP to the development of cellular leptin resistance in obesity. PMID:22000926

  8. Mitochondrial activity in the regulation of stem cell self-renewal and differentiation.

    Science.gov (United States)

    Khacho, Mireille; Slack, Ruth S

    2017-12-01

    Mitochondria are classically known as the essential energy producers in cells. As such, the activation of mitochondrial metabolism upon cellular differentiation was deemed a necessity to fuel the high metabolic needs of differentiated cells. However, recent studies have revealed a direct role for mitochondrial activity in the regulation of stem cell fate and differentiation. Several components of mitochondrial metabolism and respiration have now been shown to regulate different aspects of stem cell differentiation through signaling, transcriptional, proteomic and epigenetic modulations. In light of these findings mitochondrial metabolism is no longer considered a consequence of cellular differentiation, but rather a key regulatory mechanism of this process. This review will focus on recent progress that defines mitochondria as the epicenters for the regulation of stem cell fate decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  10. Cellular Angiofibroma of the Nasopharynx.

    Science.gov (United States)

    Erdur, Zülküf Burak; Yener, Haydar Murat; Yilmaz, Mehmet; Karaaltin, Ayşegül Batioğlu; Inan, Hakki Caner; Alaskarov, Elvin; Gozen, Emine Deniz

    2017-11-01

    Angiofibroma is a common tumor of the nasopharynx region but cellular type is extremely rare in head and neck. A 13-year-old boy presented with frequent epistaxis and nasal obstruction persisting for 6 months. According to the clinical symptoms and imaging studies juvenile angiofibroma was suspected. Following angiographic embolization total excision of the lesion by midfacial degloving approach was performed. Histological examination revealed that the tumor consisted of staghorn blood vessels and irregular fibrous stroma. Stellate fibroblasts with small pyknotic to large vesicular nuclei were seen in a highly cellular stroma. These findings identified cellular angiofibroma mimicking juvenile angiofibroma. This article is about a very rare patient of cellular angiofibroma of nasopharynx.

  11. Regulation of HTLV-1 Tax Stability, Cellular Trafficking and NF-κB Activation by the Ubiquitin-Proteasome Pathway

    Science.gov (United States)

    Lavorgna, Alfonso; Harhaj, Edward William

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%–5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis. PMID:25341660

  12. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour

    Science.gov (United States)

    Fokkelman, Michiel; Balcıoğlu, Hayri E.; Klip, Janna E.; Yan, Kuan; Verbeek, Fons J.; Danen, Erik H. J.; van de Water, Bob

    2016-01-01

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518

  13. Implications of TGFβ on transcriptome and cellular biofunctions of palatal mesenchyme

    Directory of Open Access Journals (Sweden)

    Xiujuan eZhu

    2012-04-01

    Full Text Available Development of the palate comprises sequential stages of growth, elevation and fusion of the palatal shelves. The mesenchymal component of palates plays a major role in early phases of palatogenesis, such as growth and elevation. Failure in these steps may result in cleft palate, the second most common birth defect in the world. These early stages of palatogenesis require precise and chronological orchestration of key physiological processes, such as growth, proliferation, differentiation, migration, and apoptosis. There is compelling evidence for the vital role of TGFβ-mediated regulation of palate development. We hypothesized that the isoforms of TGFβ regulate different cellular biofunctions of the palatal mesenchyme to various extents. Human embryonic palatal mesenchyme (HEPM cells were treated with TGFβ1, β2, and β3 for microarray-based gene expression studies in order to identify the roles of TGFβ in the transcriptome of the palatal mesenchyme. Following normalization and modeling of 28,869 human genes, 566 transcripts were detected as differentially expressed in TGFβ-treated HEPM cells. Out of these altered transcripts, 234 of them were clustered in cellular biofunctions, including growth and proliferation, development, morphology, movement, cell cycle, and apoptosis. Biological interpretation and network analysis of the genes active in cellular biofunctions were performed using IPA. Among the differentially expressed genes, 11 of them were previously identified as being crucial for palatogenesis (EDN1, INHBA, LHX8, PDGFC, PIGA, RUNX1, SNAI1, SMAD3, TGFβ1, TGFβ2, and TGFβR1. These genes were used for a merged interaction network with cellular behaviors. Overall, we have determined that more than 2% of human transcripts were differentially expressed in response to TGFβ treatment in HEPM cells. Our results suggest that both TGFβ1 and TGFβ2 orchestrate major cellular biofunctions within the palatal mesenchyme in vitro by

  14. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities.

    Science.gov (United States)

    Lapek, John D; Greninger, Patricia; Morris, Robert; Amzallag, Arnaud; Pruteanu-Malinici, Iulian; Benes, Cyril H; Haas, Wilhelm

    2017-10-01

    The formation of protein complexes and the co-regulation of the cellular concentrations of proteins are essential mechanisms for cellular signaling and for maintaining homeostasis. Here we use isobaric-labeling multiplexed proteomics to analyze protein co-regulation and show that this allows the identification of protein-protein associations with high accuracy. We apply this 'interactome mapping by high-throughput quantitative proteome analysis' (IMAHP) method to a panel of 41 breast cancer cell lines and show that deviations of the observed protein co-regulations in specific cell lines from the consensus network affects cellular fitness. Furthermore, these aberrant interactions serve as biomarkers that predict the drug sensitivity of cell lines in screens across 195 drugs. We expect that IMAHP can be broadly used to gain insight into how changing landscapes of protein-protein associations affect the phenotype of biological systems.

  15. Inter-cellular transport of ran GTPase.

    Directory of Open Access Journals (Sweden)

    Deepak Khuperkar

    Full Text Available Ran, a member of the Ras-GTPase superfamily, has a well-established role in regulating the transport of macromolecules across the nuclear envelope (NE. Ran has also been implicated in mitosis, cell cycle progression, and NE formation. Over-expression of Ran is associated with various cancers, although the molecular mechanism underlying this phenomenon is unclear. Serendipitously, we found that Ran possesses the ability to move from cell-to-cell when transiently expressed in mammalian cells. Moreover, we show that the inter-cellular transport of Ran is GTP-dependent. Importantly, Ran displays a similar distribution pattern in the recipient cells as that in the donor cell and co-localizes with the Ran binding protein Nup358 (also called RanBP2. Interestingly, leptomycin B, an inhibitor of CRM1-mediated export, or siRNA mediated depletion of CRM1, significantly impaired the inter-cellular transport of Ran, suggesting a function for CRM1 in this process. These novel findings indicate a possible role for Ran beyond nucleo-cytoplasmic transport, with potential implications in inter-cellular communication and cancers.

  16. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  17. Stability of the composites: NiAl - cellular high-melting point metal

    International Nuclear Information System (INIS)

    Belomyttsev, M.Yu.; Kozlov, D.A.

    2006-01-01

    For sintered composite materials (CM) NiAl-W and NiAl-W-Mo the structure and mechanical properties are studied. A comparative analysis of the effect of hot deformation by compression at 1000-1300 Deg C on the integrity of microsamples themselves and tungsten shells of NiAl granules in CM with a cellular structure is accomplished. Local chemical composition of a NiAl/refractory metal interface in CM with cellular structure and free of it is determined. A CM structural state effect on compression yield strength at 1000 Deg C is estimated. The treatment is proposed which permits approaching cellular structured CM oxidation resistance at 1000-1100 Deg C to the level of heat stability of unalloyed NiAl or its alloy with Hf [ru

  18. Modelling the structure of a ceRNA-theoretical, bipartite microRNA-mRNA interaction network regulating intestinal epithelial cellular pathways using R programming.

    Science.gov (United States)

    Robinson, J M; Henderson, W A

    2018-01-12

    We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.

  19. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    International Nuclear Information System (INIS)

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki

    2007-01-01

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway

  20. N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells.

    Science.gov (United States)

    Gu, Shiyan; Sun, Donglei; Dai, Huangmei; Zhang, Zunzhen

    2018-04-20

    N 6 -methyladenosine (m 6 A) modification is implicated to play an important role in cellular biological processes, but its regulatory mechanisms in arsenite-induced carcinogenesis are largely unknown. Here, human bronchial epithelial (HBE) cells were chronically treated with 2.5 μM arsenite sodium (NaAsO 2 ) for about 13 weeks and these cells were identified with malignant phenotype which was demonstrated by increased levels of cellular proliferation, percentages of plate colony formation and soft agar clone formation, and high potential of resistance to apoptotic induction. Our results firstly demonstrated that m 6 A modification on RNA was significantly increased in arsenite-transformed cells and this modification may be synergistically regulated by methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), Wilms tumor 1-associated protein (WTAP) and Fat mass and obesity-associated protein (FTO). In addition, knocking down of METTL3 in arsenite-transformed cells can dramatically reverse the malignant phenotype, which was manifested by lower percentages of clone and colony formation as well as higher rates of apoptotic induction. Given the critical roles of miRNAs in cellular proliferation and apoptosis, miRNAs regulated by m 6 A in arsenite-transformed cells were analyzed by Venn diagram and KEGG pathway in this study. The results showed that these m 6 A-mediated miRNAs can regulate pathways which are closely associated with cellular proliferation and apoptosis, implicating that these miRNAs may be the critical bridge by which m 6 A mediates dysregulation of cell survival and apoptosis in arsenite-transformed cells. Taken together, our results firstly demonstrated the significant role of m 6 A in the prevention of tumor occurrence and progression induced by arsenite. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Wrecked regulation of intrinsically disordered proteins in diseases: Pathogenicity of deregulated regulators

    Directory of Open Access Journals (Sweden)

    Vladimir N. Uversky

    2014-07-01

    Full Text Available Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs are typically related to regulation, signaling and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.

  2. Tropomodulins and tropomyosins - organizers of cellular microcompartments.

    Science.gov (United States)

    Fath, Thomas

    2013-02-01

    Eukaryotic cells show a remarkable compartmentalization into compartments such as the cell nucleus, the Golgi apparatus, the endoplasmic reticulum, and endosomes. However, organelle structures are not the only means by which specialized compartments are formed. Recent research shows a critical role for diverse actin filament populations in defining functional compartments, here referred to as microcompartments, in a wide range of cells. These microcompartments are involved in regulating fundamental cellular functions including cell motility, plasma membrane organization, and cellular morphogenesis. In this overview, the importance of two multigene families of actin-associated proteins, tropomodulins and tropomyosins, their interactions with each other, and a large number of other proteins will be discussed in the context of generating specialized actin-based microcompartments.

  3. Diverse Regulators of Human Ribosome Biogenesis Discovered by Changes in Nucleolar Number

    Directory of Open Access Journals (Sweden)

    Katherine I. Farley-Barnes

    2018-02-01

    Full Text Available Ribosome biogenesis is a highly regulated, essential cellular process. Although studies in yeast have established some of the biological principles of ribosome biogenesis, many of the intricacies of its regulation in higher eukaryotes remain unknown. To understand how ribosome biogenesis is globally integrated in human cells, we conducted a genome-wide siRNA screen for regulators of nucleolar number. We found 139 proteins whose depletion changed the number of nucleoli per nucleus from 2–3 to only 1 in human MCF10A cells. Follow-up analyses on 20 hits found many (90% to be essential for the nucleolar functions of rDNA transcription (7, pre-ribosomal RNA (pre-rRNA processing (16, and/or global protein synthesis (14. This genome-wide analysis exploits the relationship between nucleolar number and function to discover diverse cellular pathways that regulate the making of ribosomes and paves the way for further exploration of the links between ribosome biogenesis and human disease.

  4. Involvement of the iron regulatory protein from Eisenia andrei earthworms in the regulation of cellular iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Petra Procházková

    Full Text Available Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs of the 5'- or 3'-untranslated regions (UTR of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP. The earthworm IRE site in 5'-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant.

  5. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    Science.gov (United States)

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5′- or 3′-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5′-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant. PMID:25279857

  6. Regulation of ROCK Activity in Cancer

    Science.gov (United States)

    Morgan-Fisher, Marie; Wewer, Ulla M.

    2013-01-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)–loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  7. Leading research on artificial techniques controlling cellular function; Saibo zoshoku seigyo gijutsu no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Advanced research and its applicability were surveyed to apply the advanced functional cells to industry. The basic target was set to develop, produce, control and utilize the functional cells, such as intelligent materials and self-regulation bioreactors. The regulation factors regarding apotosis, which is a process of cell suicide programmed within the cell itself of multicellular organisms, cell cycle and aging/ageless were investigated. Furthermore, the function of regulatory factors was investigated at the protein level. Injection of factors regulating cellular function and tissue engineering required for the regulation of cell proliferation were investigated. Tissue engineering is considered to be the intracellular regulation by gene transduction and the extracellular regulation by culture methods, such as coculture. Analysis methods for cell proliferation and function of living cells were investigated using the probes recognizing molecular structure. Novel biomaterials, artificial organ systems, cellular therapy and useful materials were investigated for utilizing the regulation techniques of cell proliferation. 425 refs., 85 figs., 9 tabs.

  8. The nucleolus—guardian of cellular homeostasis and genome integrity.

    Science.gov (United States)

    Grummt, Ingrid

    2013-12-01

    All organisms sense and respond to conditions that stress their homeostasis by downregulating the synthesis of rRNA and ribosome biogenesis, thus designating the nucleolus as the central hub in coordinating the cellular stress response. One of the most intriguing roles of the nucleolus, long regarded as a mere ribosome-producing factory, is its participation in monitoring cellular stress signals and transmitting them to the RNA polymerase I (Pol I) transcription machinery. As rRNA synthesis is a most energy-consuming process, switching off transcription of rRNA genes is an effective way of saving the energy required to maintain cellular homeostasis during acute stress. The Pol I transcription machinery is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production which, in turn, guides cell growth and proliferation. This review focuses on the mechanisms that link cell physiology to rDNA silencing, a prerequisite for nucleolar integrity and cell survival.

  9. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    Directory of Open Access Journals (Sweden)

    Rajib Saha

    2016-05-01

    Full Text Available Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H, and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium.

  10. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    Science.gov (United States)

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  11. Origami interleaved tube cellular materials

    International Nuclear Information System (INIS)

    Cheung, Kenneth C; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-01-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis. (paper)

  12. Origami interleaved tube cellular materials

    Science.gov (United States)

    Cheung, Kenneth C.; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-09-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis.

  13. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels

    Science.gov (United States)

    Khetan, Sudhir; Guvendiren, Murat; Legant, Wesley R.; Cohen, Daniel M.; Chen, Christopher S.; Burdick, Jason A.

    2013-05-01

    Although cell-matrix adhesive interactions are known to regulate stem cell differentiation, the underlying mechanisms, in particular for direct three-dimensional encapsulation within hydrogels, are poorly understood. Here, we demonstrate that in covalently crosslinked hyaluronic acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by the generation of degradation-mediated cellular traction, independently of cell morphology or matrix mechanics. hMSCs within HA hydrogels of equivalent elastic moduli that permit (restrict) cell-mediated degradation exhibited high (low) degrees of cell spreading and high (low) tractions, and favoured osteogenesis (adipogenesis). Moreover, switching the permissive hydrogel to a restrictive state through delayed secondary crosslinking reduced further hydrogel degradation, suppressed traction, and caused a switch from osteogenesis to adipogenesis in the absence of changes to the extended cellular morphology. Furthermore, inhibiting tension-mediated signalling in the permissive environment mirrored the effects of delayed secondary crosslinking, whereas upregulating tension induced osteogenesis even in the restrictive environment.

  14. Cell cycle regulation of hematopoietic stem or progenitor cells.

    Science.gov (United States)

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  15. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  16. Ripk3 regulates cardiac microvascular reperfusion injury: The role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration.

    Science.gov (United States)

    Zhou, Hao; Wang, Jin; Zhu, Pingjun; Hu, Shunying; Ren, Jun

    2018-05-01

    Ripk3-mediated cellular apoptosis is a major contributor to the pathogenesis of myocardial ischemia reperfusion (IR) injury. However, the mechanisms by which Ripk3 influences microvascular homeostasis and endothelial apoptosis are not completely understood. In this study, loss of Ripk3 inhibited endothelial apoptosis, alleviated luminal swelling, maintained microvasculature patency, reduced the expression of adhesion molecules and limited the myocardial inflammatory response. In vitro, Ripk3 deficiency protected endothelial cells from apoptosis and migratory arrest induced by HR injury. Mechanistically, Ripk3 had the ability to migrate onto the endoplasmic reticulum (ER), leading to ER damage, as evidenced by increased IP3R and XO expression. The higher IP3R content was associated with cellular calcium overload, and increased XO expression was involved in cellular oxidative injury. Furthermore, IP3R-mediated calcium overload and XO-dependent oxidative damage were able to initiate cellular apoptosis. More importantly, IP3R and XO also caused F-actin degradation into G-actin via post-transcriptional modification of cofilin, impairing the formation of the filopodia and limiting the migratory response of endothelial cells. Altogether, our data confirmed that Ripk3 was involved in microvascular IR injury via regulation of IP3R-mediated calcium overload, XO-dependent oxidative damage and filopodia-related cellular migration, ultimately leading to endothelial apoptosis and migratory inhibition. These findings provide a potential target for treating cardiac microcirculatory IR injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Nuclear Phosphatidylinositol-Phosphate Type I Kinase α-Coupled Star-PAP Polyadenylation Regulates Cell Invasion.

    Science.gov (United States)

    A P, Sudheesh; Laishram, Rakesh S

    2018-03-01

    Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3'-end processing and expression of pre-mRNAs encoding key anti-invasive factors ( KISS1R , CDH1 , NME1 , CDH13 , FEZ1 , and WIF1 ) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP-PIPKIα-mediated 3'-end processing as a key anti-invasive mechanism in breast cancer. Copyright © 2018 A.P. and Laishram.

  18. The CPT1C 5'UTR contains a repressing upstream open reading frame that is regulated by cellular energy availability and AMPK.

    Directory of Open Access Journals (Sweden)

    Ines Lohse

    Full Text Available BACKGROUND: Translational control is utilized as a means of regulating gene expression in many species. In most cases, posttranscriptional regulatory mechanisms play an important role in stress response pathways and can lead to dysfunctional physiology if blocked by mutations. Carnitine Palmitoyltransferase 1 C (CPT1C, the brain-specific member of the CPT 1 family, has previously been shown to be involved in regulating metabolism in situations of energy surplus. PRINCIPAL FINDINGS: Sequence analysis of the CPT1C mRNA revealed that it contains an upstream open reading frame (uORF in the 5' UTR of its mRNA. Using CPT1C 5' UTR/luciferase constructs, we investigated the role of the uORF in translational regulation. The results presented here show that translation from the CPT1C main open reading frame (mORF is repressed by the presence of the uORF, that this repression is relieved in response to specific stress stimuli, namely glucose deprivation and palmitate-BSA treatment, and that AMPK inhibition can relieve this uORF-dependent repression. SIGNIFICANCE: The fact that the mORF regulation is relieved in response to a specific set of stress stimuli rather than general stress response, hints at an involvement of CPT1C in cellular energy-sensing pathways and provides further evidence for a role of CPT1C in hypothalamic regulation of energy homeostasis.

  19. Anchoring Proteins as Regulators of Signaling Pathways

    Science.gov (United States)

    Perino, Alessia; Ghigo, Alessandra; Scott, John D.; Hirsch, Emilio

    2012-01-01

    Spatial and temporal organization of signal transduction is coordinated through the segregation of signaling enzymes in selected cellular compartments. This highly evolved regulatory mechanism ensures the activation of selected enzymes only in the vicinity of their target proteins. In this context, cAMP-responsive triggering of protein kinase A is modulated by a family of scaffold proteins referred to as A-kinase anchoring proteins. A-kinase anchoring proteins form the core of multiprotein complexes and enable simultaneous but segregated cAMP signaling events to occur in defined cellular compartments. In this review we will focus on the description of A-kinase anchoring protein function in the regulation of cardiac physiopathology. PMID:22859670

  20. Steroidogenesis and early response gene expression in MA-10 Leydig tumor cells following heterologous receptor down-regulation and cellular desensitization

    Directory of Open Access Journals (Sweden)

    Tsuey-Ming Chen

    2016-03-01

    Full Text Available The Leydig tumor cell line, MA-10, expresses the luteinizing hormone receptor, a G protein-coupled receptor that, when activated with luteinizing hormone or chorionic gonadotropin (CG, stimulates cAMP production and subsequent steroidogenesis, notably progesterone. These cells also respond to epidermal growth factor (EGF and phorbol esters with increased steroid biosynthesis. In order to probe the intracellular pathways along with heterologous receptor down-regulation and cellular desensitization, cells were preincubated with EGF or phorbol esters and then challenged with CG, EGF, dibutryl-cyclic AMP, and a phorbol ester. Relative receptor numbers, steroid biosynthesis, and expression of the early response genes, JUNB and c-FOS, were measured. It was found that in all cases but one receptor down-regulation and decreased progesterone production were closely coupled under the conditions used; the exception involved preincubation of the cells with EGF followed by addition of CG where the CG-mediated stimulation of steroidogenesis was considerably lower than the level of receptor down-regulation. In a number of instances JUNB and c-FOS expression paralleled the decreases in receptor number and progesterone production, while in some cases these early response genes were affected little if at all by the changes in receptor number. This finding may indicate that even low levels of activated signaling kinases, e.g. protein kinase A, protein kinase C, or receptor tyrosine kinase, may suffice to yield good expression of JUNB and c-FOS, or it may suggest alternative pathways for regulating expression of these two early response genes.

  1. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases.

    Science.gov (United States)

    Bhattacharjee, Ashima; Chakraborty, Kaustav; Shukla, Aditya

    2017-10-18

    Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.

  2. Biomimetic approaches to modulate cellular adhesion in biomaterials: A review.

    Science.gov (United States)

    Rahmany, Maria B; Van Dyke, Mark

    2013-03-01

    Natural extracellular matrix (ECM) proteins possess critical biological characteristics that provide a platform for cellular adhesion and activation of highly regulated signaling pathways. However, ECM-based biomaterials can have several limitations, including poor mechanical properties and risk of immunogenicity. Synthetic biomaterials alleviate the risks associated with natural biomaterials but often lack the robust biological activity necessary to direct cell function beyond initial adhesion. A thorough understanding of receptor-mediated cellular adhesion to the ECM and subsequent signaling activation has facilitated development of techniques that functionalize inert biomaterials to provide a biologically active surface. Here we review a range of approaches used to modify biomaterial surfaces for optimal receptor-mediated cell interactions, as well as provide insights into specific mechanisms of downstream signaling activation. In addition to a brief overview of integrin receptor-mediated cell function, so-called "biomimetic" techniques reviewed here include (i) surface modification of biomaterials with bioadhesive ECM macromolecules or specific binding motifs, (ii) nanoscale patterning of the materials and (iii) the use of "natural-like" biomaterials. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans.

    Science.gov (United States)

    Li, Xichuan; Du, Wei; Zhao, Jingwen; Zhang, Lilin; Zhu, Zhiyan; Jiang, Linghuo

    2010-06-01

    Rck2p is the Hog1p-MAP kinase-activated protein kinase required for the attenuation of protein synthesis in response to an osmotic challenge in Saccharomyces cerevisiae. Rck2p also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. In this study, we demonstrate that the deletion of CaRCK2 renders C. albicans cells sensitive to, and CaRck2p translocates from the cytosol to the nucleus in response to, cell wall stresses caused by Congo red, Calcoflor White, elevated heat and zymolyase. However, the kinase activity of CaRck2p is not required for the cellular response to these cell wall stresses. Furthermore, transcripts of cell wall protein-encoding genes CaBGL2, CaHWP1 and CaXOG1 are reduced in C. albicans cells lacking CaRCK2. The deletion of CaRCK2 also reduces the in vitro filamentation of C. albicans and its virulence in a mouse model of systemic candidasis. The kinase activity of CaRck2p is required for the virulence, but not for the in vitro filamentation, in C. albicans. Therefore, Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen C. albicans.

  4. Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID.

    Directory of Open Access Journals (Sweden)

    Quy Le

    2015-09-01

    Full Text Available AID (Activation Induced Deaminase deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome.

  5. TOR Complexes and the Maintenance of Cellular Homeostasis.

    Science.gov (United States)

    Eltschinger, Sandra; Loewith, Robbie

    2016-02-01

    The Target of Rapamycin (TOR) is a conserved serine/threonine (ser/thr) kinase that functions in two, distinct, multiprotein complexes called TORC1 and TORC2. Each complex regulates different aspects of eukaryote growth: TORC1 regulates cell volume and/or mass by influencing protein synthesis and turnover, while TORC2, as detailed in this review, regulates cell surface area by influencing lipid production and intracellular turgor. TOR complexes function in feedback loops, implying that downstream effectors are also likely to be involved in upstream regulation. In this regard, the notion that TORCs function primarily as mediators of cellular and organismal homeostasis is fundamentally different from the current, predominate view of TOR as a direct transducer of extracellular biotic and abiotic signals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. New approach to modulate retinal cellular toxic effects of high glucose using marine epa and dha

    Directory of Open Access Journals (Sweden)

    Fagon Roxane

    2011-06-01

    Full Text Available Abstract Background Protective effects of omega-3 fatty acids against cellular damages of high glucose were studied on retinal pigmented epithelial (RPE cells. Methods Retinal epithelial cells were incubated with omega-3 marine oils rich in EPA and DHA and then with high glucose (25 mM for 48 hours. Cellular responses were compared to normal glucose (5 mM: intracellular redox status, reactive oxygen species (ROS, mitochondrial succinate deshydrogenase activity, inflammatory cytokines release and caveolin-1 expression were evaluated using microplate cytometry, ELISA and flow cytometry techniques. Fatty acids incorporation in retinal cell membranes was analysed using chromatography. Results Preincubation of the cells with fish oil decreased ROS overproduction, mitochondrial alterations and TNFα release. These protective effects could be attributed to an increase in caveolin-1 expression induced by marine oil. Conclusion Marine formulations rich in omega-3 fatty acids represent a promising therapeutic approach for diabetic retinopathy.

  7. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    OpenAIRE

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundam...

  8. Assessing cellular toxicities in fibroblasts upon exposure to lipid-based nanoparticles: a high content analysis approach

    International Nuclear Information System (INIS)

    Solmesky, Leonardo J; Weil, Miguel; Shuman, Michal; Goldsmith, Meir; Peer, Dan

    2011-01-01

    Lipid-based nanoparticles (LNPs) are widely used for the delivery of drugs and nucleic acids. Although most of them are considered safe, there is confusing evidence in the literature regarding their potential cellular toxicities. Moreover, little is known about the recovery process cells undergo after a cytotoxic insult. We have previously studied the systemic effects of common LNPs with different surface charge (cationic, anionic, neutral) and revealed that positively charged LNPs ((+)LNPs) activate pro-inflammatory cytokines and induce interferon response by acting as an agonist of Toll-like receptor 4 on immune cells. In this study, we focused on the response of human fibroblasts exposed to LNPs and their cellular recovery process. To this end, we used image-based high content analysis (HCA). Using this strategy, we were able to show simultaneously, in several intracellular parameters, that fibroblasts can recover from the cytotoxic effects of (+)LNPs. The use of HCA opens new avenues in understanding cellular response and nanotoxicity and may become a valuable tool for screening safe materials for drug delivery and tissue engineering.

  9. Assessing cellular toxicities in fibroblasts upon exposure to lipid-based nanoparticles: a high content analysis approach

    Science.gov (United States)

    Solmesky, Leonardo J.; Shuman, Michal; Goldsmith, Meir; Weil, Miguel; Peer, Dan

    2011-12-01

    Lipid-based nanoparticles (LNPs) are widely used for the delivery of drugs and nucleic acids. Although most of them are considered safe, there is confusing evidence in the literature regarding their potential cellular toxicities. Moreover, little is known about the recovery process cells undergo after a cytotoxic insult. We have previously studied the systemic effects of common LNPs with different surface charge (cationic, anionic, neutral) and revealed that positively charged LNPs ((+)LNPs) activate pro-inflammatory cytokines and induce interferon response by acting as an agonist of Toll-like receptor 4 on immune cells. In this study, we focused on the response of human fibroblasts exposed to LNPs and their cellular recovery process. To this end, we used image-based high content analysis (HCA). Using this strategy, we were able to show simultaneously, in several intracellular parameters, that fibroblasts can recover from the cytotoxic effects of (+)LNPs. The use of HCA opens new avenues in understanding cellular response and nanotoxicity and may become a valuable tool for screening safe materials for drug delivery and tissue engineering.

  10. Potential Cellular Signatures of Viral Infections in Human Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    J. Mikovits

    2001-01-01

    Full Text Available Expression profiling of cellular genes was performed using a 10,000 cDNA human gene array in order to identify expression changes following chronic infection of human hematopoietic cells with Kapsosi’s Sarcoma -associated Virus (KSHV also known as Human Herpesvirus 8 (HHV8 and Human T cell leukemia virus-1 (HTLV-1. We performed cell-free {\\it in vitro} infection of primary bone marrow derived CD34+ cells using semi-purified HHV8 and a mature IL-2 dependent T cell line, KIT 225, using highly concentrated viral stocks prepared from an infectious molecular clone of HTLV-1. Thirty days post infection, mRNA was isolated from infected cultures and uninfected controls and submitted for microarray analysis. More than 400 genes were differentially expressed more than two-fold following HHV8 infection of primary bone marrow derived CD34+ cells. Of these 400, interferon regulatory factor 4 (IRF4, cyclin B2, TBP-associated factor, eukaryotic elongation factor and pim 2 were up-regulated more than 3.5 fold. In contrast, less than 100 genes were differentially expressed more than two-fold following chronic infection of a mature T cell line with HTLV-1. Of these, only cdc7 was up-regulated more than 3.5 fold. These data may provide insight into cellular signatures of infection useful for diagnosis of infection as well as potential targets for therapeutic intervention.

  11. Regulation of ROCK Activity in Cancer

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-01-01

    , these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer.......Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key...... regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active...

  12. Evolution and regulation of cellular periodic processes: a role for paralogues

    DEFF Research Database (Denmark)

    Trachana, Kalliopi; Jensen, Lars Juhl; Bork, Peer

    2010-01-01

    performed the first systematic comparison in three organisms (Homo sapiens, Arabidopsis thaliana and Saccharomyces cerevisiae) by using public microarray data. We observed that although diurnal-regulated and ultradian-regulated genes are not generally cell-cycle-regulated, they tend to have cell...

  13. The influence of cellular structures on flow stress of high strength components manufactured using SLM

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    Additive manufacturing has shown significant improvement in material and machines for high-quality solid freeform fabrication processes such as selective laser melting (SLM). In particular, manufacturing lattice structures using the SLM procedure is of interest. This research examines the effect...... of cellular materials on compression strength. The specimens are manufactured additively using industrial 3D printing systems from high-strength alloy. The material has the right mechanical properties for manufacturing tool components. This includes samples with solid and lattice structures. The Compression...

  14. A Cellular Automata-based Model for Simulating Restitution Property in a Single Heart Cell.

    Science.gov (United States)

    Sabzpoushan, Seyed Hojjat; Pourhasanzade, Fateme

    2011-01-01

    Ventricular fibrillation is the cause of the most sudden mortalities. Restitution is one of the specific properties of ventricular cell. The recent findings have clearly proved the correlation between the slope of restitution curve with ventricular fibrillation. This; therefore, mandates the modeling of cellular restitution to gain high importance. A cellular automaton is a powerful tool for simulating complex phenomena in a simple language. A cellular automaton is a lattice of cells where the behavior of each cell is determined by the behavior of its neighboring cells as well as the automata rule. In this paper, a simple model is depicted for the simulation of the property of restitution in a single cardiac cell using cellular automata. At first, two state variables; action potential and recovery are introduced in the automata model. In second, automata rule is determined and then recovery variable is defined in such a way so that the restitution is developed. In order to evaluate the proposed model, the generated restitution curve in our study is compared with the restitution curves from the experimental findings of valid sources. Our findings indicate that the presented model is not only capable of simulating restitution in cardiac cell, but also possesses the capability of regulating the restitution curve.

  15. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress.

    Science.gov (United States)

    Raben, Nina; Puertollano, Rosa

    2016-10-06

    In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.

  16. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Catriona, E-mail: catriona.kelly@qub.ac.uk [SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine (United Kingdom); Flatt, Peter R.; McClenaghan, Neville H. [SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine (United Kingdom)

    2010-08-20

    Research highlights: {yields} TGP52 cells display enhanced functionality in pseudoislet form. {yields} Somatostatin content was reduced, but secretion increased in high glucose conditions. {yields} Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  17. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    International Nuclear Information System (INIS)

    Kelly, Catriona; Flatt, Peter R.; McClenaghan, Neville H.

    2010-01-01

    Research highlights: → TGP52 cells display enhanced functionality in pseudoislet form. → Somatostatin content was reduced, but secretion increased in high glucose conditions. → Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  18. A high-throughput sample preparation method for cellular proteomics using 96-well filter plates.

    Science.gov (United States)

    Switzar, Linda; van Angeren, Jordy; Pinkse, Martijn; Kool, Jeroen; Niessen, Wilfried M A

    2013-10-01

    A high-throughput sample preparation protocol based on the use of 96-well molecular weight cutoff (MWCO) filter plates was developed for shotgun proteomics of cell lysates. All sample preparation steps, including cell lysis, buffer exchange, protein denaturation, reduction, alkylation and proteolytic digestion are performed in a 96-well plate format, making the platform extremely well suited for processing large numbers of samples and directly compatible with functional assays for cellular proteomics. In addition, the usage of a single plate for all sample preparation steps following cell lysis reduces potential samples losses and allows for automation. The MWCO filter also enables sample concentration, thereby increasing the overall sensitivity, and implementation of washing steps involving organic solvents, for example, to remove cell membranes constituents. The optimized protocol allowed for higher throughput with improved sensitivity in terms of the number of identified cellular proteins when compared to an established protocol employing gel-filtration columns. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. TGF-β1 targets a microRNA network that regulates cellular adhesion and migration in renal cancer.

    Science.gov (United States)

    Bogusławska, Joanna; Rodzik, Katarzyna; Popławski, Piotr; Kędzierska, Hanna; Rybicka, Beata; Sokół, Elżbieta; Tański, Zbigniew; Piekiełko-Witkowska, Agnieszka

    2018-01-01

    In our previous study we found altered expression of 19 adhesion-related genes in renal tumors. In this study we hypothesized that disturbed expression of adhesion-related genes could be caused by microRNAs: short, non-coding RNAs that regulate gene expression. Here, we found that expression of 24 microRNAs predicted to target adhesion-related genes was disturbed in renal tumors and correlated with expression of their predicted targets. miR-25-3p, miR-30a-5p, miR-328 and miR-363-3p directly targeted adhesion-related genes, including COL5A1, COL11A1, ITGA5, MMP16 and THBS2. miR-363-3p and miR-328 inhibited proliferation of renal cancer cells, while miR-25-3p inhibited adhesion, promoted proliferation and migration of renal cancer cells. TGF-β1 influenced the expression of miR-25-3p, miR-30a-5p, and miR-328. The analyzed microRNAs, their target genes and TGF-β1 formed a network of strong correlations in tissue samples from renal cancer patients. The expression signature of microRNAs linked with TGF-β1 levels correlated with poor survival of renal cancer patients. The results of our study suggest that TGF-β1 coordinates the expression of microRNA network that regulates cellular adhesion in cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking.

    Science.gov (United States)

    Bridges, Robert J; Bradbury, Neil A

    2018-01-01

    The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.

  1. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire.

    Science.gov (United States)

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H

    2013-10-03

    Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method, we analyzed over 1,500 single cells throughout the mouse hematopoietic system and illustrate its utility for revealing important biological insights. The comprehensive single cell data set permits mapping of the mouse hematopoietic stem cell differentiation hierarchy by computational lineage progression analysis. Further profiling of 180 intracellular regulators enabled construction of a genetic network to assign the earliest differentiation event during hematopoietic lineage specification. Analysis of acute myeloid leukemia elicited by MLL-AF9 uncovered a distinct cellular hierarchy containing two independent self-renewing lineages with different clonal activities. The strategy has broad applicability in other cellular systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Cellular recycling of proteins in seed dormancy alleviation and germination

    Directory of Open Access Journals (Sweden)

    Krystyna Oracz

    2016-07-01

    Full Text Available Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway (UPP is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant’s photosynthetic tissues have been well characterized since many years, but in nonphotosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is

  3. The CORVET complex: compositions, function, and impact on cellular behaviour

    NARCIS (Netherlands)

    Jonker, CTH

    2016-01-01

    The endolysosomal system is positioned on the crossroad of the intracellular and extracellular environment and is therefore crucial to regulate many cellular processes. Proper function of the endolysosomal system greatly depends on the concept of membrane identity; the controlled protein and lipid

  4. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions.

    Science.gov (United States)

    Wolfe, Annie; Phipps, Kara; Weitao, Tao

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

  5. Understanding Regulation of Metabolism through Feasibility Analysis

    NARCIS (Netherlands)

    Nikerel, I.E.; Berkhout, J.; Hu, F.; Teusink, B.; Reinders, M.J.T.; De Ridder, D.

    2012-01-01

    Understanding cellular regulation of metabolism is a major challenge in systems biology. Thus far, the main assumption was that enzyme levels are key regulators in metabolic networks. However, regulation analysis recently showed that metabolism is rarely controlled via enzyme levels only, but

  6. Tension and robustness in multitasking cellular networks.

    Directory of Open Access Journals (Sweden)

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  7. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    Science.gov (United States)

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.

  8. Dosimetric applications of cellular electrophysiological changes under high- and low-LET irradiation in health physics

    International Nuclear Information System (INIS)

    Steinhausler, F.; Hofmann, W.; Eckl, P.; Pohl-Ruling, J.

    1980-01-01

    The first step of interaction of radiation with any biological target occurs at the cellular level, especially at the cell membrane. This results in a Linear Energy Transfer (LET)-dependent deposition of energy at membrane substructures, where the supramolecular arrangement of components represents highly sensitive targets for ionizing radiation, e.g. the natural membrane lipid component. As part of a current research project on the influence of low level effects of ionizing radiation on biophysical cellular parameters, changes of electrical properties of irradiated cell membranes were studied for their suitability as biological dosimeters. Normal human embryonic lung cells (Flow 2002) and transformed human lung cells (WI-38/SV13) were exposed to ionizing radiation with LET ranging from 10 to over 100 keV/μm. With the use of micromanipulators, glass-micro-electrodes in a special headstage were used to determine intracellular electrical activity at different time intervals after irradiation of the cells. Population density of the irradiated cell colonies was varied in order to determine the influence of contact inhibition and intercellular communication on the observable radiation induced effect. Dose- and dose rate-dependent variation of cellular membrane resting potential and membrane resistance are discussed for both normal and malignant human cells. (author)

  9. Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis.

    Science.gov (United States)

    Carroll, Bernadette; Korolchuk, Viktor I; Sarkar, Sovan

    2015-10-01

    Maintenance of amino acid homeostasis is important for healthy cellular function, metabolism and growth. Intracellular amino acid concentrations are dynamic; the high demand for protein synthesis must be met with constant dietary intake, followed by cellular influx, utilization and recycling of nutrients. Autophagy is a catabolic process via which superfluous or damaged proteins and organelles are delivered to the lysosome and degraded to release free amino acids into the cytoplasm. Furthermore, autophagy is specifically activated in response to amino acid starvation via two key signaling cascades: the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and the general control nonderepressible 2 (GCN2) pathways. These pathways are key regulators of the integration between anabolic (amino acid depleting) and catabolic (such as autophagy which is amino acid replenishing) processes to ensure intracellular amino acid homeostasis. Here, we discuss the key roles that amino acids, along with energy (ATP, glucose) and oxygen, are playing in cellular growth and proliferation. We further explore how sophisticated methods are employed by cells to sense intracellular amino acid concentrations, how amino acids can act as a switch to dictate the temporal and spatial activation of anabolic and catabolic processes and how autophagy contributes to the replenishment of free amino acids, all to ensure cell survival. Relevance of these molecular processes to cellular and organismal physiology and pathology is also discussed.

  10. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Alexander V., E-mail: a.zhdanov@ucc.ie [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland); Waters, Alicia H.C. [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland); Golubeva, Anna V. [Alimentary Pharmabiotic Centre, University College Cork, Bioscience Institute, Western Road, Cork (Ireland); Papkovsky, Dmitri B. [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland)

    2015-01-01

    Changes in availability and utilisation of O{sub 2} and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O{sub 2}. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O{sub 2} and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O{sub 2} and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O{sub 2} and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells.

  11. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    International Nuclear Information System (INIS)

    Zhdanov, Alexander V.; Waters, Alicia H.C.; Golubeva, Anna V.; Papkovsky, Dmitri B.

    2015-01-01

    Changes in availability and utilisation of O 2 and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O 2 . Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O 2 and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O 2 and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O 2 and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells

  12. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.

    Science.gov (United States)

    Rueda, Elda M; Johnson, Jerry E; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J; Sigel, Irena; Chaney, Shawnta Y; Fox, Donald A

    2016-01-01

    The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The

  13. Cellular therapies: Day by day, all the way.

    Science.gov (United States)

    Atilla, Erden; Kilic, Pelin; Gurman, Gunhan

    2018-04-18

    Tremendous effort and knowledge have elucidated a new era of 'cellular therapy,' also called "live" or "living" drugs. There are currently thousands of active clinical trials that are ongoing, seeking hope for incurable conditions thanks to the increased accessibility and reliability of gene editing and cellular reprogramming. Accomplishments in various adoptive T cell immunotherapies and chimeric antigen receptor (CART) T cell therapies oriented researchers to the field. Cellular therapies are believed to be the next generation of curative therapeutics in many ways, the classification and nomenclature for these applications have not yet reached a consensus. Trends in recent years are moving towards making tissues and cell processes only in centers with production permits. It is quite promising that competent authorities have increased licensing activities of tissue and cell establishments in their countries, under good practice (GxP) rules, and preclinical and clinical trials involving cell-based therapies have led to significant investments. Despite the initiatives undertaken and the large budgets that have been allocated, only limited success has been achieved in cellular therapy compared to conventional drug development. Cost, and cost effectiveness, are important issues for these novel therapies to meet unmet clinical needs, and there are still many scientific, translational, commercializational, and ethical questions that do not have answers. The main objectives of this review is to underline the current position of cellular therapies in research, highlight the timely topic of immunotherapy and chimeric antigen receptor (CAR) T-cell treatment, and compile information related to regulations and marketing of cellular therapeutic approaches worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway.

    Science.gov (United States)

    Zhao, Shuzhi; Li, Jun; Wang, Na; Zheng, Bingqing; Li, Tao; Gu, Qing; Xu, Xun; Zheng, Zhi

    2015-10-01

    Inflammation is a major contributing factor in the development of diabetic microvascular complications, regardless of whether improved glycaemic control is achieved. Studies have increasingly indicated that fenofibrate, a lipid‑lowering therapeutic agent in clinical use, exerts a potential anti‑inflammatory effect, which is mediated by sirtuin 1 (SIRT1; an NAD+‑dependent deacetylase) in endothelial cells. The aim of the present study was to investigate the inhibitory effect of fenofibrate on metabolic memory (via the regulation of SIRT1), and inflammatory responses in cell and animal models of diabetic retinopathy (DR). The data demonstrated that high glucose treatment in human retinal endothelial cells (HRECs) inhibited the expression and deacetylase activity of SIRT1. The reduction of SIRT1 expression and deacetylase activity persisted following a return to normal glucose levels. Furthermore, nuclear factor‑κB expression was observed to be negatively correlated with SIRT1 expression and activity in HRECs under high glucose levels and the subsequent return to normal glucose levels. Fenofibrate treatment abrogated these changes. Knockdown of SIRT1 attenuated the effect of fenofibrate on high glucose‑induced NF‑κB expression. In addition, fenofibrate upregulated SIRT1 expression through peroxisome proliferator‑activated receptor α in high glucose‑induced metabolic memory. These findings indicate that fenofibrate is important in anti‑inflammatory processes and suppresses the cellular metabolic memory of high glucose‑induced stress via the SIRT1‑dependent signalling pathway. Thus, treatment with fenofibrate may offer a promising therapeutic strategy for halting the development of DR and other complications of diabetes.

  15. Magnetogenetics: Remote Control of Cellular Signaling with Magnetic Fields

    Science.gov (United States)

    Sauer, Jeremy P.

    Means for temporally regulating gene expression and cellular activity are invaluable for elucidating the underlying physiological processes and have therapeutic implications. Here we report the development of a system for remote regulation of gene expression by low frequency radiowaves (RF) or by a static magnetic field. We accomplished this by first adding iron oxide nanoparticles - either exogenously or as genetically encoded ferritin/ferric oxyhydroxide particle. These particles have been designed with affinity to the plasma membrane ion channel Transient Receptor Potential Vanilloid 1 (TRPV1) by a conjugated antibody. Application of a magnetic field stimulates the particle to gate the ion channel and this, in turn, initiates calcium-dependent transgene expression. We first demonstrated in vitro that TRPV1 can be actuated to cause calcium flux into the cell by directly applying a localized magnetic field. In mice expressing these genetically encoded components, application of external magnetic field caused remote stimulation of insulin transgene expression and significantly lowered blood glucose. In addition, we are investigating mechanisms by which iron oxide nanoparticles can absorb RF, and transduce this energy to cause channel opening. This robust, repeatable method for remote cellular regulation in vivo may ultimately have applications in basic science, as well as in technology and therapeutics.

  16. High expression of the taurine transporter TauT in primary cilia of NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Voss, Jesper W.; Teilmann, Stefan C.

    2005-01-01

    Taurine, present in high concentrations in various mammalian cells, is essential for regulation of cell volume, cellular oxidative status as well as the cellular Ca2+ homeostasis. Cellular taurine content is a balance between active uptake through the saturable, Na+-dependent taurine transporter...... TauT expression and (iii) long-term exposure to hypertonic taurine medium, i.e., growth medium supplemented with 100 mM taurine, reduces ciliary TauT expression. These results point to an important role of taurine in the regulation of physiological processes located to the primary cilium....

  17. Mapping whole-brain activity with cellular resolution by light-sheet microscopy and high-throughput image analysis (Conference Presentation)

    Science.gov (United States)

    Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.

    2016-03-01

    Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.

  18. Understanding Biological Regulation Through Synthetic Biology.

    Science.gov (United States)

    Bashor, Caleb J; Collins, James J

    2018-03-16

    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  19. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface

    Directory of Open Access Journals (Sweden)

    Rabiatul Basria SMN Mydin

    2017-01-01

    Full Text Available Cell growth and proliferative activities on titania nanotube arrays (TNA have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.

  20. Matriptase autoactivation is tightly regulated by the cellular chemical environments.

    Directory of Open Access Journals (Sweden)

    Jehng-Kang Wang

    Full Text Available The ability of cells to rapidly detect and react to alterations in their chemical environment, such as pH, ionic strength and redox potential, is essential for cell function and survival. We present here evidence that cells can respond to such environmental alterations by rapid induction of matriptase autoactivation. Specifically, we show that matriptase autoactivation can occur spontaneously at physiological pH, and is significantly enhanced by acidic pH, both in a cell-free system and in living cells. The acid-accelerated autoactivation can be attenuated by chloride, a property that may be part of a safety mechanism to prevent unregulated matriptase autoactivation. Additionally, the thio-redox balance of the environment also modulates matriptase autoactivation. Using the cell-free system, we show that matriptase autoactivation is suppressed by cytosolic reductive factors, with this cytosolic suppression being reverted by the addition of oxidizing agents. In living cells, we observed rapid induction of matriptase autoactivation upon exposure to toxic metal ions known to induce oxidative stress, including CoCl2 and CdCl2. The metal-induced matriptase autoactivation is suppressed by N-acetylcysteine, supporting the putative role of altered cellular redox state in metal induced matriptase autoactivation. Furthermore, matriptase knockdown rendered cells more susceptible to CdCl2-induced cell death compared to control cells. This observation implies that the metal-induced matriptase autoactivation confers cells with the ability to survive exposure to toxic metals and/or oxidative stress. Our results suggest that matriptase can act as a cellular sensor of the chemical environment of the cell that allows the cell to respond to and protect itself from changes in the chemical milieu.

  1. Implication of Ca2+ in the Regulation of Replicative Life Span of Budding Yeast*

    OpenAIRE

    Tsubakiyama, Ryohei; Mizunuma, Masaki; Gengyo, Anri; Yamamoto, Josuke; Kume, Kazunori; Miyakawa, Tokichi; Hirata, Dai

    2011-01-01

    In eukaryotic cells, Ca2+-triggered signaling pathways are used to regulate a wide variety of cellular processes. Calcineurin, a highly conserved Ca2+/calmodulin-dependent protein phosphatase, plays key roles in the regulation of diverse biological processes in organisms ranging from yeast to humans. We isolated a mutant of the SIR3 gene, implicated in the regulation of life span, as a suppressor of the Ca2+ sensitivity of zds1Δ cells in the budding yeast Saccharomyces cerevisiae. Therefore, ...

  2. Spectral and Energy Efficiencies in mmWave Cellular Networks for Optimal Utilization

    Directory of Open Access Journals (Sweden)

    Abdulbaset M. Hamed

    2018-01-01

    Full Text Available Millimeter wave (mmWave spectrum has been proposed for use in commercial cellular networks to relieve the already severely congested microwave spectrum. Thus, the design of an efficient mmWave cellular network has gained considerable importance and has to take into account regulations imposed by government agencies with regard to global warming and sustainable development. In this paper, a dense mmWave hexagonal cellular network with each cell consisting of a number of smaller cells with their own Base Stations (BSs is presented as a solution to meet the increasing demand for a variety of high data rate services and growing number of users of cellular networks. Since spectrum and power are critical resources in the design of such a network, a framework is presented that addresses efficient utilization of these resources in mmWave cellular networks in the 28 and 73 GHz bands. These bands are already an integral part of well-known standards such as IEEE 802.15.3c, IEEE 802.11ad, and IEEE 802.16.1. In the analysis, a well-known accurate mmWave channel model for Line of Sight (LOS and Non-Line of Sight (NLOS links is used. The cellular network is analyzed in terms of spectral efficiency, bit/s, energy efficiency, bit/J, area spectral efficiency, bit/s/m2, area energy efficiency, bit/J/m2, and network latency, s/bit. These efficiency metrics are illustrated, using Monte Carlo simulation, as a function of Signal-to-Noise Ratio (SNR, channel model parameters, user distance from BS, and BS transmission power. The efficiency metrics for optimum deployment of cellular networks in 28 and 73 GHz bands are identified. Results show that 73 GHz band achieves better spectrum efficiency and the 28 GHz band is superior in terms of energy efficiency. It is observed that while the latter band is expedient for indoor networks, the former band is appropriate for outdoor networks.

  3. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide

    OpenAIRE

    Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.

    2011-01-01

    Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, w...

  4. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration.

    Science.gov (United States)

    Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L

    2017-08-01

    Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pre-clinical analysis of changes in intra-cellular biochemistry of glioblastoma multiforme (GBM) cells due to c-Myc silencing.

    Science.gov (United States)

    Rajagopalan, Vishal; Vaidyanathan, Muthukumar; Janardhanam, Vanisree Arambakkam; Bradner, James E

    2014-10-01

    Glioblastoma Multiforme (GBM) is an aggressive form of brain Tumor that has few cures. In this study, we analyze the anti-proliferative effects of a new molecule JQ1 against GBMs induced in Wistar Rats. JQ1 is essentially a Myc inhibitor. c-Myc is also known for altering the biochemistry of a tumor cell. Therefore, the study is intended to analyze certain other oncogenes associated with c-Myc and also the change in cellular biochemistry upon c-Myc inhibition. The quantitative analysis of gene expression gave a co-expressive pattern for all the three genes involved namely; c-Myc, Bcl-2, and Akt. The cellular biochemistry analysis by transmission electron microscopy revealed high glycogen and lipid aggregation in Myc inhibited cells and excessive autophagy. The study demonstrates the role of c-Myc as a central metabolic regulator and Bcl-2 and Akt assisting in extending c-Myc half-life as well as in regulation of autophagy, so as to regulate cell survival on the whole. The study also demonstrates that transient treatment by JQ1 leads to aggressive development of tumor and therefore, accelerating death, emphasizing the importance of dosage fixation, and duration for clinical use in future.

  6. Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation.

    Science.gov (United States)

    Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo; Lee, Jong Eun

    2016-11-01

    Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.

  7. BRD4 Phosphorylation Regulates HPV E2-Mediated Viral Transcription, Origin Replication, and Cellular MMP-9 Expression

    Directory of Open Access Journals (Sweden)

    Shwu-Yuan Wu

    2016-08-01

    Full Text Available Post-translational modification can modulate protein conformation and alter binding partner recruitment within gene regulatory regions. Here, we report that bromodomain-containing protein 4 (BRD4, a transcription co-factor and chromatin regulator, uses a phosphorylation-induced switch mechanism to recruit E2 protein encoded by cancer-associated human papillomavirus (HPV to viral early gene and cellular matrix metalloproteinase-9 (MMP-9 promoters. Enhanced MMP-9 expression, induced upon keratinocyte differentiation, occurs via BRD4-dependent recruitment of active AP-1 and NF-κB to their target sequences. This is triggered by replacement of AP-1 family members JunB and JunD by c-Jun and by re-localization of NF-κB from the cytoplasm to the nucleus. In addition, BRD4 phosphorylation is critical for E2- and origin-dependent HPV DNA replication. A class of phospho-BRD4-targeting compounds, distinct from the BET bromodomain inhibitors, effectively blocks BRD4 phosphorylation-specific functions in transcription and factor recruitment.

  8. Regulation of Ras exchange factors and cellular localization of Ras activation by lipid messengers in T cells

    Directory of Open Access Journals (Sweden)

    Jesse E. Jun

    2013-09-01

    Full Text Available The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and SOS-family GEFs.Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood.One large group of biomolecules critically involved in the control of Ras-GEFs´functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.

  9. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Giovanni Dalmasso

    Full Text Available Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis and the removal of damaged mitochondria by selective autophagy (mitophagy. While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1 mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2 restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3 maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4 our model suggests sources of, and stress conditions

  10. Regulation of transport processes across the tonoplast

    Science.gov (United States)

    Neuhaus, H. Ekkehard; Trentmann, Oliver

    2014-01-01

    In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g., due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation. PMID:25309559

  11. The AAA+ ATPase p97, a cellular multitool.

    Science.gov (United States)

    Stach, Lasse; Freemont, Paul S

    2017-08-17

    The AAA+ (ATPases associated with diverse cellular activities) ATPase p97 is essential to a wide range of cellular functions, including endoplasmic reticulum-associated degradation, membrane fusion, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and chromatin-associated processes, which are regulated by ubiquitination. p97 acts downstream from ubiquitin signaling events and utilizes the energy from ATP hydrolysis to extract its substrate proteins from cellular structures or multiprotein complexes. A multitude of p97 cofactors have evolved which are essential to p97 function. Ubiquitin-interacting domains and p97-binding domains combine to form bi-functional cofactors, whose complexes with p97 enable the enzyme to interact with a wide range of ubiquitinated substrates. A set of mutations in p97 have been shown to cause the multisystem proteinopathy inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia. In addition, p97 inhibition has been identified as a promising approach to provoke proteotoxic stress in tumors. In this review, we will describe the cellular processes governed by p97, how the cofactors interact with both p97 and its ubiquitinated substrates, p97 enzymology and the current status in developing p97 inhibitors for cancer therapy. © 2017 The Author(s).

  12. Cellular growth in plants requires regulation of cell wall biochemistry.

    Science.gov (United States)

    Chebli, Youssef; Geitmann, Anja

    2017-02-01

    Cell and organ morphogenesis in plants are regulated by the chemical structure and mechanical properties of the extracellular matrix, the cell wall. The two primary load bearing components in the plant cell wall, the pectin matrix and the cellulose/xyloglucan network, are constantly remodelled to generate the morphological changes required during plant development. This remodelling is regulated by a plethora of loosening and stiffening agents such as pectin methyl-esterases, calcium ions, expansins, and glucanases. The tight spatio-temporal regulation of the activities of these agents is a sine qua non condition for proper morphogenesis at cell and tissue levels. The pectin matrix and the cellulose-xyloglucan network operate in concert and their behaviour is mutually dependent on their chemical, structural and mechanical modifications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway.

    Science.gov (United States)

    Zhao, Shuzhi; Li, Tao; Li, Jun; Lu, Qianyi; Han, Changjing; Wang, Na; Qiu, Qinghua; Cao, Hui; Xu, Xun; Chen, Haibing; Zheng, Zhi

    2016-03-01

    The mechanisms underlying the cellular metabolic memory induced by high glucose remain unclear. Here, we sought to determine the effects of microRNAs (miRNAs) on metabolic memory in diabetic retinopathy. The miRNA microarray was used to examine human retinal endothelial cells (HRECs) following exposure to normal glucose (N) or high glucose (H) for 1 week or transient H for 2 days followed by N for another 5 days (H→N). Levels of sirtuin 1 (SIRT1) and acetylated-nuclear factor κB (Ac-NF-κB) were examined following transfection with miR-23b-3p inhibitor or with SIRT1 small interfering (si)RNA in the H→N group, and the apoptotic HRECs were determined by flow cytometry. Retinal tissues from diabetic rats were similarly studied following intravitreal injection of miR-23b-3p inhibitor. Chromatin immunoprecipitation (ChIP) analysis was performed to detect binding of NF-κB p65 to the potential binding site of the miR-23b-27b-24-1 gene promoter in HRECs. High glucose increased miR-23b-3p expression, even after the return to normal glucose. Luciferase assays identified SIRT1 as a target mRNA of miR-23b-3p. Reduced miR-23b-3p expression inhibited Ac-NF-κB expression by rescuing SIRT1 expression and also relieved the effect of metabolic memory induced by high glucose in HRECs. The results were confirmed in the retina using a diabetic rat model of metabolic memory. High glucose facilitated the recruitment of NF-κB p65 and promoted transcription of the miR-23b-27b-24-1 gene, which can be suppressed by decreasing miR-23b-3p expression. These studies identify a novel mechanism whereby miR-23b-3p regulates high-glucose-induced cellular metabolic memory in diabetic retinopathy through a SIRT1-dependent signalling pathway.

  14. Deciphering cellular morphology and biocompatibility using polymer microarrays

    International Nuclear Information System (INIS)

    Pernagallo, Salvatore; Unciti-Broceta, Asier; DIaz-Mochon, Juan Jose; Bradley, Mark

    2008-01-01

    A quantitative and qualitative analysis of cellular adhesion, morphology and viability is essential in understanding and designing biomaterials such as those involved in implant surfaces or as tissue-engineering scaffolds. As a means to simultaneously perform these studies in a high-throughput (HT) manner, we report a normalized protocol which allows the rapid analysis of a large number of potential cell binding substrates using polymer microarrays and high-content fluorescence microscopy. The method was successfully applied to the discovery of optimal polymer substrates from a 214-member polyurethane library with mouse fibroblast cells (L929), as well as simultaneous evaluation of cell viability and cellular morphology. Analysis demonstrated high biocompatibility of the binding polymers and permitted the identification of several different cellular morphologies, showing that specific polymer interactions may provoke changes in cell shape. In addition, SAR studies showed a clear correspondence between cellular adhesion and polymer structure. The approach can be utilized to perform multiple experiments (up to 1024 single experiments per slide) in a highly reproducible manner, leading to the generation of vast amounts of data in a short time period (48-72 h) while reducing dramatically the quantities of polymers, reagents and cells used

  15. Selfish cellular networks and the evolution of complex organisms.

    Science.gov (United States)

    Kourilsky, Philippe

    2012-03-01

    Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. Cellular Mechanisms of Action of Drug Abuse on Olfactory Neurons

    Directory of Open Access Journals (Sweden)

    Thomas Heinbockel

    2015-12-01

    Full Text Available Cannabinoids (Δ9-tetrahydrocannabinol are the active ingredient of marijuana (cannabis which is the most commonly abused illicit drug in the USA. In addition to being known and used as recreational drugs, cannabinoids are produced endogenously by neurons in the brain (endocannabinoids and serve as important signaling molecules in the nervous system and the rest of the body. Cannabinoids have been implicated in bodily processes both in health and disease. Recent pharmacological and physiological experiments have described novel aspects of classic brain signaling mechanisms or revealed unknown mechanisms of cellular communication involving the endocannabinoid system. While several forms of signaling have been described for endocannabinoids, the most distinguishing feature of endocannabinoids is their ability to act as retrograde messengers in neural circuits. Neurons in the main olfactory bulb express high levels of cannabinoid receptors. Here, we describe the cellular mechanisms and function of this novel brain signaling system in regulating neural activity at synapses in olfactory circuits. Results from basic research have the potential to provide the groundwork for translating the neurobiology of drug abuse to the realm of the pharmacotherapeutic treatment of addiction, specifically marijuana substance use disorder.

  17. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    Science.gov (United States)

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Lysosomal Re-acidification Prevents Lysosphingolipid-Induced Lysosomal Impairment and Cellular Toxicity.

    Directory of Open Access Journals (Sweden)

    Christopher J Folts

    2016-12-01

    Full Text Available Neurodegenerative lysosomal storage disorders (LSDs are severe and untreatable, and mechanisms underlying cellular dysfunction are poorly understood. We found that toxic lipids relevant to three different LSDs disrupt multiple lysosomal and other cellular functions. Unbiased drug discovery revealed several structurally distinct protective compounds, approved for other uses, that prevent lysosomal and cellular toxicities of these lipids. Toxic lipids and protective agents show unexpected convergence on control of lysosomal pH and re-acidification as a critical component of toxicity and protection. In twitcher mice (a model of Krabbe disease [KD], a central nervous system (CNS-penetrant protective agent rescued myelin and oligodendrocyte (OL progenitors, improved motor behavior, and extended lifespan. Our studies reveal shared principles relevant to several LSDs, in which diverse cellular and biochemical disruptions appear to be secondary to disruption of lysosomal pH regulation by specific lipids. These studies also provide novel protective strategies that confer therapeutic benefits in a mouse model of a severe LSD.

  19. Role of the blood service in cellular therapy.

    Science.gov (United States)

    Rebulla, Paolo; Giordano, Rosaria

    2012-05-01

    Cellular therapy is a novel form of medical or surgical treatment using cells in place of or in addition to traditional chemical drugs. The preparation of cellular products - called advanced therapy medicinal products - ATMP in Europe, requires compliance with good manufacturing practices (GMP). Based on long-term experience in blood component manufacturing, product traceability and hemovigilance, selected blood services may represent ideal settings for the development and experimental use of ATMP. International harmonization of the protocols and procedures for the preparation of ATMP is of paramount importance to facilitate the development of multicenter clinical trials with adequate sample size, which are urgently needed to determine the clinical efficacy of ATMP. This article describes European regulations on cellular therapy and summarizes the activities of the 'Franco Calori' Cell Factory, a GMP unit belonging to the department of regenerative medicine of a large public university hospital, which acquired a certification for the GMP production of ATMP in 2007 and developed nine experimental clinical protocols during 2003-2011. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  20. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.

    Science.gov (United States)

    Checa, Sara; Rausch, Manuel K; Petersen, Ansgar; Kuhl, Ellen; Duda, Georg N

    2015-01-01

    Physical cues play a fundamental role in a wide range of biological processes, such as embryogenesis, wound healing, tumour invasion and connective tissue morphogenesis. Although it is well known that during these processes, cells continuously interact with the local extracellular matrix (ECM) through cell traction forces, the role of these mechanical interactions on large scale cellular and matrix organization remains largely unknown. In this study, we use a simple theoretical model to investigate cellular and matrix organization as a result of mechanical feedback signals between cells and the surrounding ECM. The model includes bi-directional coupling through cellular traction forces to deform the ECM and through matrix deformation to trigger cellular migration. In addition, we incorporate the mechanical contribution of matrix fibres and their reorganization by the cells. We show that a group of contractile cells will self-polarize at a large scale, even in homogeneous environments. In addition, our simulations mimic the experimentally observed alignment of cells in the direction of maximum stiffness and the building up of tension as a consequence of cell and fibre reorganization. Moreover, we demonstrate that cellular organization is tightly linked to the mechanical feedback loop between cells and matrix. Cells with a preference for stiff environments have a tendency to form chains, while cells with a tendency for soft environments tend to form clusters. The model presented here illustrates the potential of simple physical cues and their impact on cellular self-organization. It can be used in applications where cell-matrix interactions play a key role, such as in the design of tissue engineering scaffolds and to gain a basic understanding of pattern formation in organogenesis or tissue regeneration.

  1. Cellular energy allocation of pistachio green stink bug, Brachynema ...

    African Journals Online (AJOL)

    The purpose of this study is to determine the effects of pyriproxyfen (an insect growth regulator compound) on cellular energy allocation of a heterometabolous insect, Brachynema germari Kol. The fifth instar of this insect was treated with 0, 20, 60, 100, 200 and 500 mg l-1 formulation of pyriproxyfen (Admiral 10EC) and the ...

  2. Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Science.gov (United States)

    McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.

    2014-01-01

    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to

  3. Cellular Response to Doping of High Porosity Foamed Alumina with Ca, P, Mg, and Si

    Directory of Open Access Journals (Sweden)

    Edwin Soh

    2015-03-01

    Full Text Available Foamed alumina was previously synthesised by direct foaming of sulphate salt blends varying ammonium mole fraction (AMF, foaming heating rate and sintering temperature. The optimal product was produced with 0.33AMF, foaming at 100 °C/h and sintering at 1600 °C. This product attained high porosity of 94.39%, large average pore size of 300 µm and the highest compressive strength of 384 kPa. To improve bioactivity, doping of porous alumina by soaking in dilute or saturated solutions of Ca, P, Mg, CaP or CaP + Mg was done. Saturated solutions of Ca, P, Mg, CaP and CaP + Mg were made with excess salt in distilled water and decanted. Dilute solutions were made by diluting the 100% solution to 10% concentration. Doping with Si was done using the sol gel method at 100% concentration only. Cell culture was carried out with MG63 osteosarcoma cells. Cellular response to the Si and P doped samples was positive with high cell populations and cell layer formation. The impact of doping with phosphate produced a result not previously reported. The cellular response showed that both Si and P doping improved the biocompatibility of the foamed alumina.

  4. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    International Nuclear Information System (INIS)

    Renis, M.; Malfa, G.; Tomasello, B.; Borghesi, M.; Schettino, G.; Favetta, M.; Romano, F.; Cirrone, G. A. P.; Manti, L.

    2013-01-01

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/μm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately

  5. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Renis, M.; Malfa, G.; Tomasello, B. [Drug Sciences Department, University of Catania, Catania (Italy); Borghesi, M.; Schettino, G. [Queen' s University Belfast, Northern Ireland (United Kingdom); Favetta, M.; Romano, F.; Cirrone, G. A. P. [National Institute for Nuclear Physics (INFN-LNS), Catania (Italy); Manti, L. [Physics Science Department, University of Naples Federico II, Naples, and National Institute for Nuclear Physics (INFN), Naples (Italy)

    2013-07-26

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/μm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately

  6. Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Interacts with Nsp9 and Cellular DHX9 To Regulate Viral RNA Synthesis.

    Science.gov (United States)

    Liu, Long; Tian, Jiao; Nan, Hao; Tian, Mengmeng; Li, Yuan; Xu, Xiaodong; Huang, Baicheng; Zhou, Enmin; Hiscox, Julian A; Chen, Hongying

    2016-06-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein is the main component of the viral capsid to encapsulate viral RNA, and it is also a multifunctional protein involved in the regulation of host cell processes. Nonstructural protein 9 (Nsp9) is the RNA-dependent RNA polymerase that plays a critical role in viral RNA transcription and replication. In this study, we demonstrate that PRRSV N protein is bound to Nsp9 by protein-protein interaction and that the contacting surface on Nsp9 is located in the two predicted α-helixes formed by 48 residues at the C-terminal end of the protein. Mutagenesis analyses identified E646, E608, and E611 on Nsp9 and Q85 on the N protein as the pivotal residues participating in the N-Nsp9 interaction. By overexpressing the N protein binding fragment of Nsp9 in infected Marc-145 cells, the synthesis of viral RNAs, as well as the production of infectious progeny viruses, was dramatically inhibited, suggesting that Nsp9-N protein association is involved in the process of viral RNA production. In addition, we show that PRRSV N interacts with cellular RNA helicase DHX9 and redistributes the protein into the cytoplasm. Knockdown of DHX9 increased the ratio of short subgenomic mRNAs (sgmRNAs); in contrast, DHX9 overexpression benefited the synthesis of longer sgmRNAs and the viral genomic RNA (gRNA). These results imply that DHX9 is recruited by the N protein in PRRSV infection to regulate viral RNA synthesis. We postulate that N and DHX9 may act as antiattenuation factors for the continuous elongation of nascent transcript during negative-strand RNA synthesis. It is unclear whether the N protein of PRRSV is involved in regulation of the viral RNA production process. In this report, we demonstrate that the N protein of the arterivirus PRRSV participates in viral RNA replication and transcription through interacting with Nsp9 and its RdRp and recruiting cellular RNA helicase to promote the production of

  7. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Science.gov (United States)

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Protein-protein interactions within the ensemble, eukaryotic V-ATPase, and its concerted interactions with cellular machineries.

    Science.gov (United States)

    Balakrishna, Asha Manikkoth; Manimekalai, Malathy Sony Subramanian; Grüber, Gerhard

    2015-10-01

    The V1VO-ATPase (V-ATPase) is the important proton-pump in eukaryotic cells, responsible for pH-homeostasis, pH-sensing and amino acid sensing, and therefore essential for cell growths and metabolism. ATP-cleavage in the catalytic A3B3-hexamer of V1 has to be communicated via several so-called central and peripheral stalk units to the proton-pumping VO-part, which is membrane-embedded. A unique feature of V1VO-ATPase regulation is its reversible disassembly of the V1 and VO domain. Actin provides a network to hold the V1 in proximity to the VO, enabling effective V1VO-assembly to occur. Besides binding to actin, the 14-subunit V-ATPase interacts with multi-subunit machineries to form cellular sensors, which regulate the pH in cellular compartments or amino acid signaling in lysosomes. Here we describe a variety of subunit-subunit interactions within the V-ATPase enzyme during catalysis and its protein-protein assembling with key cellular machineries, essential for cellular function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. DIII-D ICRF high voltage power supply regulator upgrade

    International Nuclear Information System (INIS)

    Cary, W.P.; Burley, B.L.; Grosnickle, W.H.

    1997-11-01

    For reliable operation and component protection, of the 2 MW 30--120 MHz ICRF Amplifier System on DIII-D, it is desirable for the amplifier to respond to high VSWR conditions as rapidly as possible. This requires a rapid change in power which also means a rapid change in the high voltage power supply current demands. An analysis of the power supply's regulator dynamics was needed to verify its expected operation during such conditions. Based on this information it was found that a new regulator with a larger dynamic range and some anticipation capability would be required. This paper will discuss the system requirements, the as-delivered regulator performance, and the improved performance after installation of the new regulator system. It will also be shown how this improvement has made the amplifier perform at higher power levels more reliably

  10. SEPTIN2 and STATHMIN Regulate CD99-Mediated Cellular Differentiation in Hodgkin's Lymphoma.

    Directory of Open Access Journals (Sweden)

    Wenjing Jian

    Full Text Available Hodgkin's lymphoma (HL is a lymphoid neoplasm characterized by Hodgkin's and Reed-Sternberg (H/RS cells, which is regulated by CD99. We previously reported that CD99 downregulation led to the transformation of murine B lymphoma cells (A20 into cells with an H/RS phenotype, while CD99 upregulation induced differentiation of classical Hodgkin's lymphoma (cHL cells (L428 into terminal B-cells. However, the molecular mechanism remains unclear. In this study, using fluorescence two-dimensional differential in-gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS, we have analyzed the alteration of protein expression following CD99 upregulation in L428 cells as well as downregulation of mouse CD99 antigen-like 2 (mCD99L2 in A20 cells. Bioinformatics analysis showed that SEPTIN2 and STATHMIN, which are cytoskeleton proteins, were significantly differentially expressed, and chosen for further validation and functional analysis. Differential expression of SEPTIN2 was found in both models and was inversely correlated with CD99 expression. STATHMIN was identified in the A20 cell line model and its expression was positively correlated with that of CD99. Importantly, silencing of SEPTIN2 with siRNA substantially altered the cellular cytoskeleton in L428 cells. The downregulation of STATHMIN by siRNA promoted the differentiation of H/RS cells toward terminal B-cells. These results suggest that SEPTIN2-mediated cytoskeletal rearrangement and STATHMIN-mediated differentiation may contribute to changes in cell morphology and differentiation of H/RS cells with CD99 upregulation in HL.

  11. Cellular and Chemical Neuroscience of Mammalian Sleep

    OpenAIRE

    Datta, Subimal

    2010-01-01

    Extraordinary strides have been made toward understanding the complexities and regulatory mechanisms of sleep over the past two decades, thanks to the help of rapidly evolving technologies. At its most basic level, mammalian sleep is a restorative process of the brain and body. Beyond its primary restorative purpose, sleep is essential for a number of vital functions. Our primary research interest is to understand the cellular and molecular mechanisms underlying the regulation of sleep and it...

  12. A cryptosystem based on elementary cellular automata

    Science.gov (United States)

    Abdo, A. A.; Lian, Shiguo; Ismail, I. A.; Amin, M.; Diab, H.

    2013-01-01

    Based on elementary cellular automata, a new image encryption algorithm is proposed in this paper. In this algorithm, a special kind of periodic boundary cellular automata with unity attractors is used. From the viewpoint of security, the number of cellular automata attractor states are changed with respect to the encrypted image, and different key streams are used to encrypt different plain images. The cellular neural network with chaotic properties is used as the generator of a pseudo-random key stream. Theoretical analysis and experimental results have both confirmed that the proposed algorithm possesses high security level and good performances against differential and statistical attacks. The comparison with other existing schemes is given, which shows the superiority of the proposal scheme.

  13. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    Science.gov (United States)

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  14. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  15. The cellular mastermind(?) – Mechanotransduction and the nucleus

    Science.gov (United States)

    Kaminski, Ashley; Fedorchak, Gregory R.; Lammerding, Jan

    2015-01-01

    Cells respond to mechanical stimulation by activation of specific signaling pathways and genes that allow the cell to adapt to its dynamic physical environment. How cells sense the various mechanical inputs and translate them into biochemical signals remains an area of active investigation. Recent reports suggest that the cell nucleus may be directly implicated in this cellular mechanotransduction process. In this chapter, we discuss how forces applied to the cell surface and cytoplasm induce changes in nuclear structure and organization, which could directly affect gene expression, while also highlighting the complex interplay between nuclear structural proteins and transcriptional regulators that may further modulate mechanotransduction signaling. Taken together, these findings paint a picture of the nucleus as a central hub in cellular mechanotransduction—both structurally and biochemically—with important implications in physiology and disease. PMID:25081618

  16. Influence of extra-cellular and intra-cellular acting thiol oxidants on the 45calcium uptake by the islets of Langerhans of the rat

    International Nuclear Information System (INIS)

    Haegele, R.G.

    1981-01-01

    The glucose-stimulated calcium uptake by the islets of Langerhans is dependent on the intra-cellular GSH/GSSG ratios. The inhibition of calcium uptake is not the consequence of a direct oxidation of membrane-fixed thiol groups. In contrast, direct oxidation of extra cellular thiols leads to an increase in calcium uptake when intra-cellular oxidation is simultaneously prevented. Since this effect only occurs at high intra-cellular GSH/GSSG ratios it can be assumed that the redox state of extra-cellular thiols is dependent on the redox state of the intra-cellular GSH/GSSG ratios. These findings support the theory that the oxidation of extra-cellular thiols by thiol oxidants leads to an increase in calcium uptake and that the extent of uptake is higher, the more the redox state of the extra-cellular thiols tends towards the reduced state prior to oxidation. (orig./MG) [de

  17. Biomolecular condensates: organizers of cellular biochemistry.

    Science.gov (United States)

    Banani, Salman F; Lee, Hyun O; Hyman, Anthony A; Rosen, Michael K

    2017-05-01

    Biomolecular condensates are micron-scale compartments in eukaryotic cells that lack surrounding membranes but function to concentrate proteins and nucleic acids. These condensates are involved in diverse processes, including RNA metabolism, ribosome biogenesis, the DNA damage response and signal transduction. Recent studies have shown that liquid-liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates. With this physical framework, it is now possible to explain how the assembly, composition, physical properties and biochemical and cellular functions of these important structures are regulated.

  18. Cellular and tissue expression of DAPIT, a phylogenetically conserved peptide

    Directory of Open Access Journals (Sweden)

    H. Kontro

    2012-05-01

    Full Text Available DAPIT (Diabetes Associated Protein in Insulin-sensitive Tissues is a small, phylogenetically conserved, 58 amino acid peptide that was previously shown to be down-regulated at mRNA level in insulin-sensitive tissues of type 1 diabetes rats. In this study we characterize a custom made antibody against DAPIT and confirm the mitochondrial presence of DAPIT on cellular level. We also show that DAPIT is localized in lysosomes of HUVEC and HEK 293T cells. In addition, we describe the histological expression of DAPIT in several tissues of rat and man and show that it is highly expressed especially in cells with high aerobic metabolism and epithelial cells related to active transport of nutrients and ions. We propose that DAPIT, in addition to indicated subunit of mitochondrial F-ATPase, is also a subunit of lysosomal V-ATPase suggesting that it is a common component in different proton pumps.

  19. High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles

    Science.gov (United States)

    Regmi, Raju; Mohan, Kavya; Mondal, Partha Pratim

    2014-09-01

    Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro- to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine.

  20. Regulation of transport processes across the tonoplast membrane

    Directory of Open Access Journals (Sweden)

    Oliver eTrentmann

    2014-09-01

    Full Text Available In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g. due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.

  1. An integrated approach to elucidate the intra-viral and viral-cellular protein interaction networks of a gamma-herpesvirus.

    Directory of Open Access Journals (Sweden)

    Shaoying Lee

    2011-10-01

    Full Text Available Genome-wide yeast two-hybrid (Y2H screens were conducted to elucidate the molecular functions of open reading frames (ORFs encoded by murine γ-herpesvirus 68 (MHV-68. A library of 84 MHV-68 genes and gene fragments was generated in a Gateway entry plasmid and transferred to Y2H vectors. All possible pair-wise interactions between viral proteins were tested in the Y2H assay, resulting in the identification of 23 intra-viral protein-protein interactions (PPIs. Seventy percent of the interactions between viral proteins were confirmed by co-immunoprecipitation experiments. To systematically investigate virus-cellular protein interactions, the MHV-68 Y2H constructs were screened against a cellular cDNA library, yielding 243 viral-cellular PPIs involving 197 distinct cellar proteins. Network analyses indicated that cellular proteins targeted by MHV-68 had more partners in the cellular PPI network and were located closer to each other than expected by chance. Taking advantage of this observation, we scored the cellular proteins based on their network distances from other MHV-68-interacting proteins and segregated them into high (Y2H-HP and low priority/not-scored (Y2H-LP/NS groups. Significantly more genes from Y2H-HP altered MHV-68 replication when their expression was inhibited with siRNAs (53% of genes from Y2H-HP, 21% of genes from Y2H-LP/NS, and 16% of genes randomly chosen from the human PPI network; p<0.05. Enriched Gene Ontology (GO terms in the Y2H-HP group included regulation of apoptosis, protein kinase cascade, post-translational protein modification, transcription from RNA polymerase II promoter, and IκB kinase/NFκB cascade. Functional validation assays indicated that PCBP1, which interacted with MHV-68 ORF34, may be involved in regulating late virus gene expression in a manner consistent with the effects of its viral interacting partner. Our study integrated Y2H screening with multiple functional validation approaches to create

  2. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    NARCIS (Netherlands)

    Hjorth, J.J.J.; Dawitz, J.; Kroon, T.; da Silva Dias Pires, J.H.; Dassen, V.J.; Berkhout, J.A.; Emperador Melero, J.; Nadadhur, A.G.; Alevra, M.; Toonen, R.F.G.; Heine, V.M.; Mansvelder, H.D.; Meredith, R.M.

    2016-01-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell

  3. High-resolution fiber-optic microendoscopy for in situ cellular imaging.

    Science.gov (United States)

    Pierce, Mark; Yu, Dihua; Richards-Kortum, Rebecca

    2011-01-11

    Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ. With these systems, however, the required infrastructure is complex and expensive, involving scanning laser systems and complex light sources. Here we present a protocol for the design and assembly of a high-resolution microendoscope which can be built in a day using off-the-shelf components for under US$5,000. The platform offers flexibility in terms of image resolution, field-of-view, and operating wavelength, and we describe how these parameters can be easily modified to meet the specific needs of the end user. We and others have explored the use of the high-resolution microendoscope (HRME) in in vitro cell culture, in excised and living animal tissues, and in human tissues in vivo. Users have reported the use of several different fluorescent contrast agents, including proflavine, benzoporphyrin-derivative monoacid ring A (BPD-MA), and fluoroscein, all of which have received full, or investigational approval from the FDA for use in human subjects. High-resolution microendoscopy, in the form described here, may appeal to a wide range of researchers working in the basic and clinical sciences. The technique offers an effective and economical approach which complements traditional benchtop microscopy, by enabling the user to perform high-resolution, longitudinal imaging in situ.

  4. Identification of driving network of cellular differentiation from single sample time course gene expression data

    Science.gov (United States)

    Chen, Ye; Wolanyk, Nathaniel; Ilker, Tunc; Gao, Shouguo; Wang, Xujing

    Methods developed based on bifurcation theory have demonstrated their potential in driving network identification for complex human diseases, including the work by Chen, et al. Recently bifurcation theory has been successfully applied to model cellular differentiation. However, there one often faces a technical challenge in driving network prediction: time course cellular differentiation study often only contains one sample at each time point, while driving network prediction typically require multiple samples at each time point to infer the variation and interaction structures of candidate genes for the driving network. In this study, we investigate several methods to identify both the critical time point and the driving network through examination of how each time point affects the autocorrelation and phase locking. We apply these methods to a high-throughput sequencing (RNA-Seq) dataset of 42 subsets of thymocytes and mature peripheral T cells at multiple time points during their differentiation (GSE48138 from GEO). We compare the predicted driving genes with known transcription regulators of cellular differentiation. We will discuss the advantages and limitations of our proposed methods, as well as potential further improvements of our methods.

  5. Cellular modeling of fault-tolerant multicomputers

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G

    1987-01-01

    Work described was concerned with a novel method for investigation of fault tolerance in large regular networks of computers. Motivation was to provide a technique useful in rapid evaluation of highly reliable systems that exploit the low cost and ease of volume production of simple microcomputer components. First, a system model and simulator based upon cellular automata are developed. This model is characterized by its simplicity and ease of modification when adapting to new types of network. Second, in order to test and verify the predictive capabilities of the cellular system, a more-detailed simulation is performed based upon an existing computational model, that of the Transputer. An example application is used to exercise various systems designed using the cellular model. Using this simulator, experimental results are obtained both for existing well-understood configurations and for more novel types also developed here. In all cases it was found that the cellular model and simulator successfully predicted the ranking in reliability improvement of the systems studied.

  6. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment.

    Science.gov (United States)

    Kim, Bong Cho; Lee, Hyung Chul; Lee, Je-Jung; Choi, Chang-Min; Kim, Dong-Kwan; Lee, Jae Cheol; Ko, Young-Gyu; Lee, Jae-Seon

    2012-11-14

    Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence.

  7. MicroRNAs - A New Generation Molecular Targets for Treating Cellular Diseases

    OpenAIRE

    Paulmurugan, Ramasamy

    2013-01-01

    MicroRNAs (miRNAs) are a unique class of non-coding, small RNAs, similar to mRNAs, transcribed by cells, but for entirely different reasons. While mRNAs are transcribed to code for proteins, miRNAs are produced to regulate the production of proteins from mRNAs. miRNAs are central components that tightly and temporally regulating gene expression in cells. Dysregulation of miRNAs expressions in cellular pathogenesis, including cancer, has been reported, and it clearly supports the importance of...

  8. Cellular mRNA decay factors involved in the hepatitis C virus life cycle

    OpenAIRE

    Mina Ibarra, Leonardo Bruno

    2010-01-01

    The group of positive strand RNA ((+)RNA) viruses includes numerous plant, animal and human pathogens such as the hepatitis C virus (HCV). Their viral genomes mimic cellular mRNAs, however, besides acting as messengers for translation of viral proteins, they also act as templates for viral replication. Since these two functions are mutually exclusive, a key step in the replication of all (+) RNA viruses is the regulated exit of the genomic RNAs from the cellular translation machinery to the v...

  9. Managing the cellular redox hub in photosynthetic organisms.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2012-02-01

    Light-driven redox chemistry is a powerful source of redox signals that has a decisive input into transcriptional control within the cell nucleus. Like photosynthetic electron transport pathways, the respiratory electron transport chain exerts a profound control over gene function, in order to balance energy (reductant and ATP) supply with demand, while preventing excessive over-reduction or over-oxidation that would be adversely affect metabolism. Photosynthetic and respiratory redox chemistries are not merely housekeeping processes but they exert a controlling influence over every aspect of plant biology, participating in the control of gene transcription and translation, post-translational modifications and the regulation of assimilatory reactions, assimilate partitioning and export. The number of processes influenced by redox controls and signals continues to increase as do the components that are recognized participants in the associated signalling pathways. A step change in our understanding of the overall importance of the cellular redox hub to plant cells has occurred in recent years as the complexity of the management of the cellular redox hub in relation to metabolic triggers and environmental cues has been elucidated. This special issue describes aspects of redox regulation and signalling at the cutting edge of current research in this dynamic and rapidly expanding field. © 2011 Blackwell Publishing Ltd.

  10. HDACi: cellular effects, opportunities for restorative dentistry.

    LENUS (Irish Health Repository)

    Duncan, H F

    2011-12-01

    Acetylation of histone and non-histone proteins alters gene expression and induces a host of cellular effects. The acetylation process is homeostatically balanced by two groups of cellular enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HAT activity relaxes the structure of the human chromatin, rendering it transcriptionally active, thereby increasing gene expression. In contrast, HDAC activity leads to gene silencing. The enzymatic balance can be \\'tipped\\' by histone deacetylase inhibitors (HDACi), leading to an accumulation of acetylated proteins, which subsequently modify cellular processes including stem cell differentiation, cell cycle, apoptosis, gene expression, and angiogenesis. There is a variety of natural and synthetic HDACi available, and their pleiotropic effects have contributed to diverse clinical applications, not only in cancer but also in non-cancer areas, such as chronic inflammatory disease, bone engineering, and neurodegenerative disease. Indeed, it appears that HDACi-modulated effects may differ between \\'normal\\' and transformed cells, particularly with regard to reactive oxygen species accumulation, apoptosis, proliferation, and cell cycle arrest. The potential beneficial effects of HDACi for health, resulting from their ability to regulate global gene expression by epigenetic modification of DNA-associated proteins, also offer potential for application within restorative dentistry, where they may promote dental tissue regeneration following pulpal damage.

  11. Fluoxetine up-regulates expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in hippocampus-derived neural stem cell

    International Nuclear Information System (INIS)

    Chiou, S.-H.; Chen, S.-J.; Peng, C-H.; Chang, Y.-L.; Ku, H.-H.; Hsu, W.-M.; Ho, Larry L.-T.; Lee, C.-H.

    2006-01-01

    Fluoxetine is a widely used antidepressant compound which inhibits the reuptake of serotonin in the central nervous system. Recent studies have shown that fluoxetine can promote neurogenesis and improve the survival rate of neurons. However, whether fluoxetine modulates the proliferation or neuroprotection effects of neural stem cells (NSCs) needs to be elucidated. In this study, we demonstrated that 20 μM fluoxetine can increase the cell proliferation of NSCs derived from the hippocampus of adult rats by MTT test. The up-regulated expression of Bcl-2, Bcl-xL and the cellular FLICE-inhibitory protein (c-FLIP) in fluoxetine-treated NSCs was detected by real-time RT-PCR. Our results further showed that fluoxetine protects the lipopolysaccharide-induced apoptosis in NSCs, in part, by activating the expression of c-FLIP. Moreover, c-FLIP induction by fluoxetine requires the activation of the c-FLIP promoter region spanning nucleotides -414 to -133, including CREB and SP1 sites. This effect appeared to involve the phosphatidylinositol-3-kinase-dependent pathway. Furthermore, fluoxetine treatment significantly inhibited the induction of proinflammatory factor IL-1β, IL-6, and TNF-α in the culture medium of LPS-treated NSCs (p < 0.01). The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that fluoxentine increased the functional production of serotonin in NSCs. Together, these data demonstrate the specific activation of c-FLIP by fluoxetine and indicate the novel role of fluoxetine for neuroprotection in the treatment of depression

  12. High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs.

    Science.gov (United States)

    Di Corato, Riccardo; Gazeau, Florence; Le Visage, Catherine; Fayol, Delphine; Levitz, Pierre; Lux, François; Letourneur, Didier; Luciani, Nathalie; Tillement, Olivier; Wilhelm, Claire

    2013-09-24

    Recent advances in cell therapy and tissue engineering opened new windows for regenerative medicine, but still necessitate innovative noninvasive imaging technologies. We demonstrate that high-resolution magnetic resonance imaging (MRI) allows combining cellular-scale resolution with the ability to detect two cell types simultaneously at any tissue depth. Two contrast agents, based on iron oxide and gadolinium oxide rigid nanoplatforms, were used to "tattoo" endothelial cells and stem cells, respectively, with no impact on cell functions, including their capacity for differentiation. The labeled cells' contrast properties were optimized for simultaneous MRI detection: endothelial cells and stem cells seeded together in a polysaccharide-based scaffold material for tissue engineering appeared respectively in black and white and could be tracked, at the cellular level, both in vitro and in vivo. In addition, endothelial cells labeled with iron oxide nanoparticles could be remotely manipulated by applying a magnetic field, allowing the creation of vessel substitutes with in-depth detection of individual cellular components.

  13. A randomized controlled trial on the effectiveness of strength training on clinical and muscle cellular outcomes in patients with prostate cancer during androgen deprivation therapy: rationale and design

    International Nuclear Information System (INIS)

    Thorsen, Lene; Nilsen, Tormod S; Raastad, Truls; Courneya, Kerry S; Skovlund, Eva; Fosså, Sophie D

    2012-01-01

    Studies indicate that strength training has beneficial effects on clinical health outcomes in prostate cancer patients during androgen deprivation therapy. However, randomized controlled trials are needed to scientifically determine the effectiveness of strength training on the muscle cell level. Furthermore, close examination of the feasibility of a high-load strength training program is warranted. The Physical Exercise and Prostate Cancer (PEPC) trial is designed to determine the effectiveness of strength training on clinical and muscle cellular outcomes in non-metastatic prostate cancer patients after high-dose radiotherapy and during ongoing androgen deprivation therapy. Patients receiving androgen deprivation therapy for 9-36 months combined with external high-dose radiotherapy for locally advanced prostate cancer are randomized to an exercise intervention group that receives a 16 week high-load strength training program or a control group that is encouraged to maintain their habitual activity level. In both arms, androgen deprivation therapy is continued until the end of the intervention period. Clinical outcomes are body composition (lean body mass, bone mineral density and fat mass) measured by Dual-energy X-ray Absorptiometry, serological outcomes, physical functioning (muscle strength and cardio-respiratory fitness) assessed with physical tests and psycho-social functioning (mental health, fatigue and health-related quality of life) assessed by questionnaires. Muscle cellular outcomes are a) muscle fiber size b) regulators of muscle fiber size (number of myonuclei per muscle fiber, number of satellite cells per muscle fiber, number of satellite cells and myonuclei positive for androgen receptors and proteins involved in muscle protein degradation and muscle hypertrophy) and c) regulators of muscle fiber function such as proteins involved in cellular stress and mitochondrial function. Muscle cellular outcomes are measured on muscle cross sections and

  14. Predicting cellular growth from gene expression signatures.

    Directory of Open Access Journals (Sweden)

    Edoardo M Airoldi

    2009-01-01

    Full Text Available Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

  15. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes.

    Directory of Open Access Journals (Sweden)

    Mehul S Suthar

    2013-02-01

    Full Text Available The actions of the RIG-I like receptor (RLR and type I interferon (IFN signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV. In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen and nonpermissive (liver tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs(-/- × Ifnar(-/- mice revealed the loss of expression of several key components within the natural killer (NK cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs(-/- × Ifnar(-/- infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue

  16. O-GlcNAc regulates NEDD4-1 stability via caspase-mediated pathway

    International Nuclear Information System (INIS)

    Jiang, Kuan; Bai, Bingyang; Ta, Yajie; Zhang, Tingling; Xiao, Zikang; Wang, Peng George; Zhang, Lianwen

    2016-01-01

    O-GlcNAc modification of cytosolic and nuclear proteins regulates essential cellular processes such as stress responses, transcription, translation, and protein degradation. Emerging evidence indicates O-GlcNAcylation has a dynamic interplay with ubiquitination in cellular regulation. Here, we report that O-GlcNAc indirectly targets a vital E3 ubiquitin ligase enzyme of NEDD4-1. The protein level of NEDD4-1 is accordingly decreased following an increase of overall O-GlcNAc level upon PUGNAc or glucosamine stimulation. O-GlcNAc transferase (OGT) knockdown, overexpression and mutation results confirm that the stability of NEDD4-1 is negatively regulated by cellular O-GlcNAc. Moreover, the NEDD4-1 degradation induced by PUGNAc or GlcN is significantly inhibited by the caspase inhibitor. Our study reveals a regulation mechanism of NEDD4-1 stability by O-GlcNAcylation. - Highlights: • Reduced NEDD4-1 correlates with increased overall O-GlcNAc level. • OGT negatively regulates NEDD4-1 stability. • O-GlcNAc regulates NEDD4-1 through caspase-mediated pathway.

  17. Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.

    Science.gov (United States)

    Lebar, Tina; Jerala, Roman

    2018-01-01

    Transcriptional regulation lies at the center of many cellular processes and is the result of cellular response to different external and internal signals. Control of transcription of selected genes enables an unprecedented access to shape the cellular response. While orthogonal transcription factors from bacteria, yeast, plants, or other cells have been used to introduce new cellular logic into mammalian cells, the discovery of designable modular DNA binding domains, such as Transcription Activator-Like Effectors (TALEs) and the CRISPR system, enable targeting of almost any selected DNA sequence. Fusion or conditional association of DNA targeting domain with transcriptional effector domains enables controlled regulation of almost any endogenous or ectopic gene. Moreover, the designed regulators can be linked into genetic circuits to implement complex responses, such as different types of Boolean functions and switches. In this chapter, we describe the protocols for achieving efficient transcriptional regulation with TALE- and CRISPR-based designed transcription factors in mammalian cells.

  18. Hydroxylamine derivatives for regulation of spermine and spermidine metabolism.

    Science.gov (United States)

    Khomutov, M A; Weisell, J; Hyvönen, M; Keinänen, T A; Vepsäläinen, J; Alhonen, L; Khomutov, A R; Kochetkov, S N

    2013-12-01

    The biogenic polyamines spermine, spermidine, and their precursor putrescine are present in micro-to-millimolar concentrations in all cell types and are vitally important for their normal growth. High intracellular content of spermine and spermidine determines the multiplicity of the cellular functions of the polyamines. Many of these functions are not well characterized at the molecular level, ensuring the ongoing development of this field of biochemistry. Tumor cells have elevated polyamine level if compared with normal cells, and this greatly stimulates the search for new opportunities to deplete the intracellular pool of spermine and spermidine resulting in decrease in cell growth and even cell death. O-Substituted hydroxylamines occupy their own place among chemical regulators of the activity of the enzymes of polyamine metabolism. Varying the structure of the alkyl substituent made it possible to obtain within one class of chemical compounds highly effective inhibitors and regulators of the activity of all the enzymes of putrescine, spermine and spermidine metabolism (with the exception of FAD-dependent spermine oxidase and acetylpolyamine oxidase), effectors of the polyamine transport system, and even actively transported in cells "proinhibitor" of ornithine decarboxylase. Some principles for the design of specific inhibitors of these enzymes as well as the peculiarities of cellular effects of corresponding O-substituted hydroxylamines are discussed.

  19. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors.

    Science.gov (United States)

    Barupala, Dulmini P; Dzul, Stephen P; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L

    2016-02-15

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Cellular phone use while driving at night.

    Science.gov (United States)

    Vivoda, Jonathon M; Eby, David W; St Louis, Renée M; Kostyniuk, Lidia P

    2008-03-01

    Use of a cellular phone has been shown to negatively affect one's attention to the driving task, leading to an increase in crash risk. At any given daylight hour, about 6% of US drivers are actively talking on a hand-held cell phone. However, previous surveys have focused only on cell phone use during the day. Driving at night has been shown to be a riskier activity than driving during the day. The purpose of the current study was to assess the rate of hand-held cellular phone use while driving at night, using specialized night vision equipment. In 2006, two statewide direct observation survey waves of nighttime cellular phone use were conducted in Indiana utilizing specialized night vision equipment. Combined results of driver hand-held cellular phone use from both waves are presented in this manuscript. The rates of nighttime cell phone use were similar to results found in previous daytime studies. The overall rate of nighttime hand-held cellular phone use was 5.8 +/- 0.6%. Cellular phone use was highest for females and for younger drivers. In fact, the highest rate observed during the study (of 11.9%) was for 16-to 29-year-old females. The high level of cellular phone use found within the young age group, coupled with the increased crash risk associated with cellular phone use, nighttime driving, and for young drivers in general, suggests that this issue may become an important transportation-related concern.

  1. Mechanisms and Regulation of Intestinal Absorption of Water-soluble Vitamins: Cellular and Molecular Aspects

    DEFF Research Database (Denmark)

    Nexø, Ebba; Said, Hamid M

    2012-01-01

    The water-soluble vitamins represent a group of structurally and functionally unrelated compounds that share the common feature of being essential for normal cellular functions, growth, and development. With the exception of some endogenous production of niacin, human cells cannot synthesize...

  2. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy.

    Science.gov (United States)

    Vlahakis, Ariadne; Graef, Martin; Nunnari, Jodi; Powers, Ted

    2014-07-22

    The highly conserved Target of Rapamycin (TOR) kinase is a central regulator of cell growth and metabolism in response to nutrient availability. TOR functions in two structurally and functionally distinct complexes, TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2). Through TORC1, TOR negatively regulates autophagy, a conserved process that functions in quality control and cellular homeostasis and, in this capacity, is part of an adaptive nutrient deprivation response. Here we demonstrate that during amino acid starvation TOR also operates independently as a positive regulator of autophagy through the conserved TORC2 and its downstream target protein kinase, Ypk1. Under these conditions, TORC2-Ypk1 signaling negatively regulates the Ca(2+)/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing eIF2α kinase, Gcn2, and to promote autophagy. Our work reveals that the TORC2 pathway regulates autophagy in an opposing manner to TORC1 to provide a tunable response to cellular metabolic status.

  3. Cellular and chemical neuroscience of mammalian sleep.

    Science.gov (United States)

    Datta, Subimal

    2010-05-01

    Extraordinary strides have been made toward understanding the complexities and regulatory mechanisms of sleep over the past two decades thanks to the help of rapidly evolving technologies. At its most basic level, mammalian sleep is a restorative process of the brain and body. Beyond its primary restorative purpose, sleep is essential for a number of vital functions. Our primary research interest is to understand the cellular and molecular mechanisms underlying the regulation of sleep and its cognitive functions. Here I will reflect on our own research contributions to 50 years of extraordinary advances in the neurobiology of slow-wave sleep (SWS) and rapid eye movement (REM) sleep regulation. I conclude this review by suggesting some potential future directions to further our understanding of the neurobiology of sleep. Copyright 2010 Elsevier B.V. All rights reserved.

  4. The Na{sup +}/K{sup +} -pump in rat peritoneal mast cells: Some aspects of regulatio of activity and cellular fusion

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, T. [Odense Univ., Dept. of Pharmacology, Inst. of Medical Biology, The Faculty of Health Scineces (Denmark)

    1995-12-31

    The mast cell contains potent mediators of inflammation which are released after IgE-directed and non-IgE-directed stimulation of the cell. This highly specialized cell is therefore ascribed a role in the pathogenesis of disease states in which the inflammatory response plays a role for the development of the clinical symptoms. Thus, besides being of interest in basic research, studies of the cellular processes leading to release of inflammatory mediators from the mast cell also also have important clinical implications. The aim of the present work has been to document the existence of the Na{sup +}/K{sup +}-pump in rat peritoneal mast cells, to investigate the regulation of the pump activity and to explore whether modulation of the pump activity interferes with the cellular stimulus/secretion coupling mechanism. The Na{sup +}/K{sup +}-pump activity following stimulation of the mast cell was also investigated. The pump activity was assessed as the ouabain-sensitive cellular potassium uptake with {sup 86}Rb{sup +} as a tracer for potassium. The histamine release from the mast cell following IgE-directed and non-IgE-directed stimulation of the cell was used as a parameter of cellular degranulation. Histamine was measured by spectrofluorometry. Besides describing aspects of the function and regulation of the Na{sup +}/K{sup +}-pump in the rat peritoneal mast cell, this thesis points to the potential role of sodium transport mechanisms in mast cell physiology. Pharmacological manipulations of such transport mechanisms might in the future add to the treatment of allergic diseases. (au) 253 refs.

  5. Cellular Mechanisms of Somatic Stem Cell Aging

    Science.gov (United States)

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  6. A multi-scale convolutional neural network for phenotyping high-content cellular images.

    Science.gov (United States)

    Godinez, William J; Hossain, Imtiaz; Lazic, Stanley E; Davies, John W; Zhang, Xian

    2017-07-01

    Identifying phenotypes based on high-content cellular images is challenging. Conventional image analysis pipelines for phenotype identification comprise multiple independent steps, with each step requiring method customization and adjustment of multiple parameters. Here, we present an approach based on a multi-scale convolutional neural network (M-CNN) that classifies, in a single cohesive step, cellular images into phenotypes by using directly and solely the images' pixel intensity values. The only parameters in the approach are the weights of the neural network, which are automatically optimized based on training images. The approach requires no a priori knowledge or manual customization, and is applicable to single- or multi-channel images displaying single or multiple cells. We evaluated the classification performance of the approach on eight diverse benchmark datasets. The approach yielded overall a higher classification accuracy compared with state-of-the-art results, including those of other deep CNN architectures. In addition to using the network to simply obtain a yes-or-no prediction for a given phenotype, we use the probability outputs calculated by the network to quantitatively describe the phenotypes. This study shows that these probability values correlate with chemical treatment concentrations. This finding validates further our approach and enables chemical treatment potency estimation via CNNs. The network specifications and solver definitions are provided in Supplementary Software 1. william_jose.godinez_navarro@novartis.com or xian-1.zhang@novartis.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. Cellular retinoic acid bioavailability in various pathologies and its therapeutic implication.

    Science.gov (United States)

    Osanai, Makoto

    2017-06-01

    Retinoic acid (RA), an active metabolite of vitamin A, is a critical signaling molecule in various cell types. We found that RA depletion caused by expression of the RA-metabolizing enzyme CYP26A1 promotes carcinogenesis, implicating CYP26A1 as a candidate oncogene. Several studies of CYP26s have suggested that the biological effect of RA on target cells is primarily determined by "cellular RA bioavailability", which is defined as the RA level in an individual cell, rather than by the serum concentration of RA. Consistently, stellate cells store approximately 80% of vitamin A in the body, and the state of cellular RA bioavailability regulates their function. Based on the similarities between stellate cells and astrocytes, we demonstrated that retinal astrocytes regulate tight junction-based endothelial integrity in a paracrine manner. Since diabetic retinopathy is characterized by increased vascular permeability in its early pathogenesis, RA normalized retinal astrocytes that are compromised in diabetes, resulting in suppression of vascular leakiness. RA also attenuated the loss of the epithelial barrier in murine experimental colitis. The concept of "cellular RA bioavailability" in various diseases will be directed at understanding various pathologies caused by RA insufficiency, implying the potential feasibility of a therapeutic strategy targeting the stellate cell system. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  8. Cyclosporin A associated helicase-like protein facilitates the association of hepatitis C virus RNA polymerase with its cellular cyclophilin B.

    Directory of Open Access Journals (Sweden)

    Kengo Morohashi

    Full Text Available BACKGROUND: Cyclosporin A (CsA is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. PRINCIPAL FINDINGS: Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL, possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB, known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. CONCLUSIONS: We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.

  9. Cyclosporin A associated helicase-like protein facilitates the association of hepatitis C virus RNA polymerase with its cellular cyclophilin B.

    Science.gov (United States)

    Morohashi, Kengo; Sahara, Hiroeki; Watashi, Koichi; Iwabata, Kazuki; Sunoki, Takashi; Kuramochi, Kouji; Takakusagi, Kaori; Miyashita, Hiroki; Sato, Noriyuki; Tanabe, Atsushi; Shimotohno, Kunitada; Kobayashi, Susumu; Sakaguchi, Kengo; Sugawara, Fumio

    2011-04-29

    Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.

  10. Mcl-1 Ubiquitination: Unique Regulation of an Essential Survival Protein

    Directory of Open Access Journals (Sweden)

    Barbara Mojsa

    2014-05-01

    Full Text Available Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFβ-TrCP, SCFFbw7 and Trim17 and one deubiquitinase (e.g., USP9X, that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

  11. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    Science.gov (United States)

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Innovative cellular distance structures from polymeric and metallic threads

    Science.gov (United States)

    Wieczorek, F.; Trümper, W.; Cherif, C.

    2017-10-01

    Knitting allows a high individual adaptability of the geometry and properties of flat-knitted spacer fabrics. This offers advantages for the specific adjustment of the mechanical properties of innovative composites based on highly viscous matrix systems such as bone cement, elastomer or foam and cellular reinforcing structures made from e. g. polymeric monofilaments or metallic wires. The prerequisite is the availability of binding solutions for highly productive production of functional, cellular, self-stabilized spacer flat knitted fabrics as supporting and functionalized structures.

  13. Oxygen concentration modulates cellular senescence and autophagy in human trophoblast cells.

    Science.gov (United States)

    Seno, Kotomi; Tanikawa, Nao; Takahashi, Hironori; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito; Shirasuna, Koumei

    2018-02-15

    We investigated the effect of oxygen concentrations on cellular senescence and autophagy and examined the role of autophagy in human trophoblast cells. Human first-trimester trophoblast cells (Sw.71) were incubated under 21%, 5%, or 1% O 2 concentrations for 24 hours. We examined the extent of senescence caused using senescence-associated β-galactosidase (SA-β-Gal) and senescence-associated secretory phenotype (SASP) as markers. Moreover, we examined the role of autophagy in causing cellular senescence using an autophagy inhibitor (3-methyladenine, 3MA). Physiological normoxia (5% O 2 ) decreased SA-β-Gal-positive cells and SASP including interleukin-6 (IL-6) and IL-8 compared with cultured cells in 21% O 2 . Pathophysiological hypoxia (1% O 2 ) caused cytotoxicity, including extracellular release of ATP and lactate dehydrogenase, and decreased senescence phenotypes. 3MA-treated trophoblast cells significantly suppressed senescence markers (SA-β-Gal-positive cells and SASP secretion) in O 2 -independent manner. We conclude that O 2 concentration modulates cellular senescence phenotypes regulating autophagy in the human trophoblast cells. Moreover, inhibiting autophagy suppresses cellular senescence, suggesting that autophagy contributes to oxygen stress-induced cellular senescence. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The Quiescent Cellular State is Arf/p53-Dependent and Associated with H2AX Downregulation and Genome Stability

    Directory of Open Access Journals (Sweden)

    Mitsuko Masutani

    2012-05-01

    Full Text Available Cancer is a disease associated with genomic instability and mutations. Excluding some tumors with specific chromosomal translocations, most cancers that develop at an advanced age are characterized by either chromosomal or microsatellite instability. However, it is still unclear how genomic instability and mutations are generated during the process of cellular transformation and how the development of genomic instability contributes to cellular transformation. Recent studies of cellular regulation and tetraploidy development have provided insights into the factors triggering cellular transformation and the regulatory mechanisms that protect chromosomes from genomic instability.

  15. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler

    Science.gov (United States)

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-05-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated.

  16. Human papillomavirus 16E6 and NFX1-123 potentiate notch signaling and differentiation without activating cellular arrest

    Energy Technology Data Exchange (ETDEWEB)

    Vliet-Gregg, Portia A.; Hamilton, Jennifer R. [Center for Global Infectious Disease Research, Seattle Children' s Research Institute, 1900 Ninth Ave., Seattle, WA 98101 (United States); Katzenellenbogen, Rachel A., E-mail: rkatzen@uw.edu [Center for Global Infectious Disease Research, Seattle Children' s Research Institute, 1900 Ninth Ave., Seattle, WA 98101 (United States); Department of Pediatrics, Division of Adolescent Medicine, University of Washington, Seattle WA (United States)

    2015-04-15

    High-risk human papillomavirus (HR HPV) oncoproteins bind host cell proteins to dysregulate and uncouple apoptosis, senescence, differentiation, and growth. These pathways are important for both the viral life cycle and cancer development. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and they collaboratively increase the growth and differentiation master regulator, Notch1. In 16E6 expressing keratinocytes (16E6 HFKs), the Notch canonical pathway genes Hes1 and Hes5 were increased with overexpression of NFX1-123, and their expression was directly linked to the activation or blockade of the Notch1 receptor. Keratinocyte differentiation genes Keratin 1 and Keratin 10 were also increased, but in contrast their upregulation was only indirectly associated with Notch1 receptor stimulation and was fully unlinked to growth arrest, increased p21{sup Waf1/CIP1}, or decreased proliferative factor Ki67. This leads to a model of 16E6, NFX1-123, and Notch1 differently regulating canonical and differentiation pathways and entirely uncoupling cellular arrest from increased differentiation. - Highlights: • 16E6 and NFX1-123 increased the Notch canonical pathway through Notch1. • 16E6 and NFX1-123 increased the differentiation pathway indirectly through Notch1. • 16E6 and NFX1-123 increased differentiation gene expression without growth arrest. • Increased NFX1-123 with 16E6 may create an ideal cellular phenotype for HPV.

  17. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide

    Science.gov (United States)

    Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.

    2011-01-01

    Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, we found that Saccharomyces cerevisiae cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H2O2. Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H2O2. The data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H2O2 and other cellular proteins plays a secondary role. PMID:21282621

  18. PDGF-AA-induced filamentous mitochondria benefit dermal papilla cells in cellular migration.

    Science.gov (United States)

    Mifude, C; Kaseda, K

    2015-06-01

    Human dermal papilla cells (HDPCs) play essential roles in hair follicular morphogenesis and postnatal hair growth cycles. Previous reports demonstrated that platelet-derived growth factor-AA (PDGF-AA) enhanced the formation of dermal condensates in hair follicular development. Additionally, PDGF-AA induces/maintains the anagen phase of the hair cycle. It is likely that mitochondrial morphology and functions are tightly coupled with maintenance of these energy-demanding activities. However, little is known about the mitochondrial regulation in HDPCs. Thus, we investigated the PDGF-involved mitochondrial regulation in HDPCs. The mitochondrial morphologies of HDPCs were examined in the presence or absence of PDGF-AA under a fluorescent microscope. ATP production and cellular motility were investigated. The relationship between mitochondrial morphology and the cellular functions was discussed. We observed that primary HDPCs contained mitochondria with filamentous and/or rounded morphologies. Both types of mitochondria showed similar membrane potentials. Interestingly, in the presence of PDGF-AA, but not PDGF-BB, the balance between the two morphologies shifted towards the filamentous form. Concomitantly, both mitochondrial enzymatic activity and total cellular ATP level were augmented by PDGF-AA. These two parameters were closely correlated, suggesting the mitochondrial involvement in the PDGF-augmented ATP production. Moreover, PDGF-AA accelerated the migration of HDPCs in a gap-filling assay, but did not change the rate of cellular proliferation. Notably, filamentous mitochondria dominated migrating HDPCs. PDGF-AA benefits HDPCs in the process of migration, by increasing the number of filamentous mitochondria. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Activity-regulated genes as mediators of neural circuit plasticity.

    Science.gov (United States)

    Leslie, Jennifer H; Nedivi, Elly

    2011-08-01

    Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Hepatitis C virus core protein regulates p300/CBP co-activation function. Possible role in the regulation of NF-AT1 transcriptional activity

    International Nuclear Information System (INIS)

    Gomez-Gonzalo, Marta; Benedicto, Ignacio; Carretero, Marta; Lara-Pezzi, Enrique; Maldonado-Rodriguez, Alejandra; Moreno-Otero, Ricardo; Lai, Michael M.C.; Lopez-Cabrera, Manuel

    2004-01-01

    Hepatitis C virus (HCV) core is a viral structural protein; it also participates in some cellular processes, including transcriptional regulation. However, the mechanisms of core-mediated transcriptional regulation remain poorly understood. Oncogenic virus proteins often target p300/CBP, a known co-activator of a wide variety of transcription factors, to regulate the expression of cellular and viral genes. Here we demonstrate, for the first time, that HCV core protein interacts with p300/CBP and enhances both its acetyl-transferase and transcriptional activities. In addition, we demonstrate that nuclear core protein activates the NH 2 -terminal transcription activation domain (TAD) of NF-AT1 in a p300/CBP-dependent manner. We propose a model in which core protein regulates the co-activation function of p300/CBP and activates NF-AT1, and probably other p300/CBP-regulated transcription factors, by a novel mechanism involving the regulation of the acetylation state of histones and/or components of the transcriptional machinery

  1. Research advances in cellular immunotherapy for primary hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    ZHANG Ye

    2014-09-01

    Full Text Available The present therapy for primary hepatocellular carcinoma (HCC consists of surgery as well as local radiotherapy and chemotherapy. However, the majority of patients are susceptible to recurrence after comprehensive treatment, and the overall treatment outcome is not ideal due to the lack of effective drugs and strategies. Increasing evidence has demonstrated that the immune system is closely related to the development, progression, metastasis, and recurrence of HCC. Thus, immune therapy, especially cellular immunotherapy, could regulate immune function and induce specific antitumor immunity to achieve the goal of controlling HCC and reducing its recurrence and metastasis, which has become an essential part in the comprehensive treatment of HCC. The findings in preclinical and clinical studies on cellular immunotherapy for HCC data are reviewed, and the current problems are discussed.

  2. Cellular automata in cytoskeletal lattices

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S A; Watt, R C; Hameroff, S R

    1984-01-01

    Cellular automata (CA) activities could mediate biological regulation and information processing via nonlinear electrodynamic effects in cytoskeletal lattice arrays. Frohlich coherent oscillations and other nonlinear mechanisms may effect discrete 10/sup -10/ to 10/sup -11/ s interval events which result in dynamic patterns in biolattices such as cylindrical protein polymers: microtubules (MT). Structural geometry and electrostatic forces of MT subunit dipole oscillations suggest neighbor rules among the hexagonally packed protein subunits. Computer simulations using these suggested rules and MT structural geometry demonstrate CA activities including dynamical and stable self-organizing patterns, oscillators, and traveling gliders. CA activities in MT and other cytoskeletal lattices may have important biological regulatory functions. 23 references, 6 figures, 1 table.

  3. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  4. Acrolein-exposed normal human lung fibroblasts in vitro: cellular senescence, enhanced telomere erosion, and degradation of Werner's syndrome protein.

    Science.gov (United States)

    Jang, Jun-Ho; Bruse, Shannon; Huneidi, Salam; Schrader, Ronald M; Monick, Martha M; Lin, Yong; Carter, A Brent; Klingelhutz, Aloysius J; Nyunoya, Toru

    2014-09-01

    Acrolein is a ubiquitous environmental hazard to human health. Acrolein has been reported to activate the DNA damage response and induce apoptosis. However, little is known about the effects of acrolein on cellular senescence. We examined whether acrolein induces cellular senescence in cultured normal human lung fibroblasts (NHLF). We cultured NHLF in the presence or absence of acrolein and determined the effects of acrolein on cell proliferative capacity, senescence-associated β-galactosidase activity, the known senescence-inducing pathways (e.g., p53, p21), and telomere length. We found that acrolein induced cellular senescence by increasing both p53 and p21. The knockdown of p53 mediated by small interfering RNA (siRNA) attenuated acrolein-induced cellular senescence. Acrolein decreased Werner's syndrome protein (WRN), a member of the RecQ helicase family involved in DNA repair and telomere maintenance. Acrolein-induced down-regulation of WRN protein was rescued by p53 knockdown or proteasome inhibition. Finally, we found that acrolein accelerated p53-mediated telomere shortening. These results suggest that acrolein induces p53-mediated cellular senescence accompanied by enhanced telomere attrition and WRN protein down-regulation.

  5. Stochastic Model of Vesicular Sorting in Cellular Organelles

    Science.gov (United States)

    Vagne, Quentin; Sens, Pierre

    2018-02-01

    The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intracellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations, considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values lead to fast sorting but result in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well-defined sorted compartments but sorting is exponentially slow. Our results suggest an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components and highlight the importance of stochastic effects for the steady-state organization of intracellular compartments.

  6. Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS).

    Science.gov (United States)

    Yong, K J; Scott, D J

    2015-03-01

    Directed evolution is a powerful method for engineering proteins towards user-defined goals and has been used to generate novel proteins for industrial processes, biological research and drug discovery. Typical directed evolution techniques include cellular display, phage display, ribosome display and water-in-oil compartmentalization, all of which physically link individual members of diverse gene libraries to their translated proteins. This allows the screening or selection for a desired protein function and subsequent isolation of the encoding gene from diverse populations. For biotechnological and industrial applications there is a need to engineer proteins that are functional under conditions that are not compatible with these techniques, such as high temperatures and harsh detergents. Cellular High-throughput Encapsulation Solubilization and Screening (CHESS), is a directed evolution method originally developed to engineer detergent-stable G proteins-coupled receptors (GPCRs) for structural biology. With CHESS, library-transformed bacterial cells are encapsulated in detergent-resistant polymers to form capsules, which serve to contain mutant genes and their encoded proteins upon detergent mediated solubilization of cell membranes. Populations of capsules can be screened like single cells to enable rapid isolation of genes encoding detergent-stable protein mutants. To demonstrate the general applicability of CHESS to other proteins, we have characterized the stability and permeability of CHESS microcapsules and employed CHESS to generate thermostable, sodium dodecyl sulfate (SDS) resistant green fluorescent protein (GFP) mutants, the first soluble proteins to be engineered using CHESS. © 2014 Wiley Periodicals, Inc.

  7. Influence of income on tertiary students acquisition of cellular products

    Directory of Open Access Journals (Sweden)

    G. A.P Drotsky

    2007-12-01

    Full Text Available Purpose: The purpose of the article is to determine whether there are any differences between high and low-income group students in their selection of a cellular phone brand or network operator. Design/Methodology/Approach: Four hypotheses are set to determine if there are any significant differences between the two income groups in current decision-making. It is established that there exist no significant difference between high and low-income students in their selection of cellular phones and network operators. The levels of agreement or disagreement on various statements do, however, give an indication of the importance that students place on aspects that they view as important when acquiring a cellular phone or network operator. Findings: In the article, it is established that no significant differences exist between the two income groups. The levels of agreement or disagreement indicate the importance that subscription method, social value, service quality and branding has on student decision-making. Implications: The article provides a better understanding of the influence that income plays in student's decision-making in acquiring cellular products and services. Possible future research in student cellular usage can be guided through the information obtained in this article. Originality/Value: The article provides information to cellular network operators, service providers and cellular phone manufactures regarding the influence of income on students' acquisition of cellular products and services. Information from the article can assist in the establishment of marketing plans for the student market by these role players.

  8. Cellular gravity

    NARCIS (Netherlands)

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  9. Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits.

    Science.gov (United States)

    Mattson, M P; Chan, S L

    2001-10-01

    Calcium is one of the most important intracellular messengers in the brain, being essential for neuronal development, synaptic transmission and plasticity, and the regulation of various metabolic pathways. The findings reviewed in the present article suggest that calcium also plays a prominent role in the pathogenesis of Alzheimer's disease (AD). Associations between the pathological hallmarks ofAD (neurofibrillary tangles [NFT] and amyloid plaques) and perturbed cellular calcium homeostasis have been established in studies of patients, and in animal and cell culture models of AD. Studies of the effects of mutations in the beta-amyloid precursor protein (APP) and presenilins on neuronal plasticity and survival have provided insight into the molecular cascades that result in synaptic dysfunction and neuronal degeneration in AD. Central to the neurodegenerative process is the inability of neurons to properly regulate intracellular calcium levels. Increased levels of amyloid beta-peptide (Abeta) induce oxidative stress, which impairs cellular ion homeostasis and energy metabolism and renders neurons vulnerable to apoptosis and excitotoxicity. Subtoxic levels of Abeta may induce synaptic dysfunction by impairing multiple signal transduction pathways. Presenilin mutations perturb calcium homeostasis in the endoplasmic reticulum in a way that sensitizes neurons to apoptosis and excitotoxicity; links between aberrant calcium regulation and altered APP processing are emerging. Environmental risk factors for AD are being identified and may include high calorie diets, folic acid insufficiency, and a low level of intellectual activity (bad habits); in each case, the environmental factor impacts on neuronal calcium homeostasis. Low calorie diets and intellectual activity may guard against AD by stimulating production of neurotrophic factors and chaperone proteins. The emerging picture of the cell and molecular biology of AD is revealing novel preventative and therapeutic

  10. Down-regulation of viral replication by adenoviral-mediated expression of siRNA against cellular cofactors for hepatitis C virus

    International Nuclear Information System (INIS)

    Zhang Jing; Yamada, Osamu; Sakamoto, Takashi; Yoshida, Hiroshi; Iwai, Takahiro; Matsushita, Yoshihisa; Shimamura, Hideo; Araki, Hiromasa; Shimotohno, Kunitada

    2004-01-01

    Small interfering RNA (siRNA) is currently being evaluated not only as a powerful tool for functional genomics, but also as a potentially promising therapeutic agent for cancer and infectious diseases. Inhibitory effect of siRNA on viral replication has been demonstrated in multiple pathogenic viruses. However, because of the high sequence specificity of siRNA-mediated RNA degradation, antiviral efficacy of siRNA directed to viral genome will be largely limited by emergence of escape variants resistant to siRNA due to high mutation rates of virus, especially RNA viruses such as poliovirus and hepatitis C virus (HCV). To investigate the therapeutic feasibility of siRNAs specific for the putative cellular cofactors for HCV, we constructed adenovirus vectors expressing siRNAs against La, polypyrimidine tract-binding protein (PTB), subunit gamma of human eukaryotic initiation factors 2B (eIF2Bγ), and human VAMP-associated protein of 33 kDa (hVAP-33). Adenoviral-mediated expression of siRNAs markedly diminished expression of the endogenous genes, and silencing of La, PTB, and hVAP-33 by siRNAs substantially blocked HCV replication in Huh-7 cells. Thus, our studies demonstrate the feasibility and potential of adenoviral-delivered siRNAs specific for cellular cofactors in combating HCV infection, which can be used either alone or in combination with siRNA against viral genome to prevent the escape of mutant variants and provide additive or synergistic anti-HCV effects

  11. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Science.gov (United States)

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  12. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Directory of Open Access Journals (Sweden)

    Debashis Barik

    2016-12-01

    Full Text Available The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  13. Influence of Macromolecular Biosynthesis on Cellular Autolysis in Streptococcus faecalis

    Science.gov (United States)

    Sayare, Mitchel; Daneo-Moore, Lolita; Shockman, Gerald D.

    1972-01-01

    The addition of several different antibiotics to growing cultures of Streptococcus faecalis, ATCC 9790, was found to inhibit autolysis of cells in sodium phosphate buffer. When added to exponential-phase cultures, mitomycin C (0.4 μg/ml) or phenethyl alcohol (3 mg/ml) inhibited deoxyribonucleic acid synthesis, but did not appreciably affect the rate of cellular autolysis. Addition of chloramphenicol (10 μg/ml), tetracycline (0.5 μg/ml), puromycin (25 μg/ml), or 5-azacytidine (5 μg/ml) to exponential-phase cultures inhibited protein synthesis and profoundly decreased the rate of cellular autolysis. Actinomycin D (0.075 μg/ml) and rifampin (0.01 μg/ml), both inhibitors of ribonucleic acid (RNA) synthesis, also reduced the rate of cellular autolysis. However, the inhibitory effect of actinomycin D and rifampin on cellular autolysis was more closely correlated with their concomitant secondary inhibition of protein synthesis than with the more severe inhibition of RNA synthesis. The dose-dependent inhibition of protein synthesis by 5-azacytidine was quickly diluted out of a growing culture. Reversal of inhibition was accompanied by a disproportionately rapid increase in the ability of cells to autolyze. Thus, inhibition of the ability of cells to autolyze can be most closely related to inhibition of protein synthesis. Furthermore, the rapidity of the response of cellular autolysis to inhibitors of protein synthesis suggests that regulation is exerted at the level of autolytic enzyme activity and not enzyme synthesis. PMID:4116754

  14. [Pain and emotional dysregulation: Cellular memory due to pain].

    Science.gov (United States)

    Narita, Minoru; Watanabe, Moe; Hamada, Yusuke; Tamura, Hideki; Ikegami, Daigo; Kuzumaki, Naoko; Igarashi, Katsuhide

    2015-08-01

    Genetic factors are involved in determinants for the risk of psychiatric disorders, and neurological and neurodegenerative diseases. Chronic pain stimuli and intense pain have effects at a cellular and/or gene expression level, and will eventually induce "cellular memory due to pain", which means that tissue damage, even if only transient, can elicit epigenetically abnormal transcription/translation and post-translational modification in related cells depending on the degree or kind of injury or associated conditions. Such cell memory/transformation due to pain can cause an abnormality in a fundamental intracellular response, such as a change in the three-dimensional structure of DNA, transcription, or translation. On the other hand, pain is a multidimensional experience with sensory-discriminative and motivational-affective components. Recent human brain imaging studies have examined differences in activity in the nucleus accumbens between controls and patients with chronic pain, and have revealed that the nucleus accumbens plays a role in predicting the value of a noxious stimulus and its offset, and in the consequent changes in the motivational state. In this review, we provide a very brief overview of a comprehensive understanding of chronic pain associated with emotional dysregulation due to transcriptional regulation, epigenetic modification and miRNA regulation.

  15. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance

    OpenAIRE

    Kaushik, Susmita; Rodriguez-Navarro, Jose Antonio; Arias, Esperanza; Kiffin, Roberta; Sahu, Srabani; Schwartz, Gary J.; Cuervo, Ana Maria; Singh, Rajat

    2011-01-01

    Macroautophagy is a lysosomal degradative pathway that maintains cellular homeostasis by turning over cellular components. Here, we demonstrate a role for autophagy in hypothalamic agouti-related peptide (AgRP) neurons in the regulation of food intake and energy balance. We show that starvation-induced hypothalamic autophagy mobilizes neuron-intrinsic lipids to generate endogenous free fatty acids, which in turn regulate AgRP levels. The functional consequences of inhibiting autophagy are the...

  16. Domain 4 (D4 of Perfringolysin O to Visualize Cholesterol in Cellular Membranes—The Update

    Directory of Open Access Journals (Sweden)

    Masashi Maekawa

    2017-03-01

    Full Text Available The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine. Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4 of Perfringolysin O (PFO, theta toxin, a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.

  17. Domain 4 (D4) of Perfringolysin O to Visualize Cholesterol in Cellular Membranes-The Update.

    Science.gov (United States)

    Maekawa, Masashi

    2017-03-03

    The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking) in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine). Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4) of Perfringolysin O (PFO, theta toxin), a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.

  18. Hepatitis A virus cellular receptor 2 (HAVCR2) is decreased with viral infection and regulates pro-labour mediators OA.

    Science.gov (United States)

    Liong, Stella; Lim, Ratana; Barker, Gillian; Lappas, Martha

    2017-07-01

    Intrauterine infection caused by viral infection has been implicated to contribute to preterm birth. Hepatitis A virus cellular receptor 2 (HAVCR2) regulates inflammation in non-gestational tissues in response to viral infection. The aims of this study were to determine the effect of: (i) viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) on HAVCR2 expression; and (ii) HAVCR2 silencing by siRNA (siHAVCR2) in primary amnion and myometrial cells on poly(I:C)-induced inflammation. In human foetal membranes and myometrium, HAVCR2 mRNA and protein expression was decreased when exposed to poly(I:C). Treatment of primary amnion and myometrial cells with poly(I:C) significantly increased the expression and release of pro-inflammatory cytokines TNF, IL1A, IL1B and IL6; the expression of chemokines CXCL8 and CCL2; the expression and secretion of adhesion molecules ICAM1 and VCAM1; and PTGS2 and PTGFR mRNA expression and the release of prostaglandin PGF 2α . This increase was significantly augmented in cells transfected with siHAVCR2. Furthermore, mRNA expression of anti-inflammatory cytokines IL4 and IL10 was significantly decreased. Collectively, our data suggest that HAVCR2 regulates cytokines, chemokines, prostaglandins and cell adhesion molecules in the presence of viral infection. This suggests a potential for HAVCR2 activators as therapeutics for the management of preterm birth associated with viral infections. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. 2012 Gordon Research Conference on Cellular and Molecular Fungal Biology, Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Judith [Univ. of Minnesota, Minneapolis, MN (United States)

    2012-06-22

    The Gordon Research Conference on Cellular and Molecular Fungal Biology was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

  20. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models.

    Science.gov (United States)

    Hannan, Shabab B; Dräger, Nina M; Rasse, Tobias M; Voigt, Aaron; Jahn, Thomas R

    2016-04-01

    Abnormal tau accumulations were observed and documented in post-mortem brains of patients affected by Alzheimer's disease (AD) long before the identification of mutations in the Microtubule-associated protein tau (MAPT) gene, encoding the tau protein, in a different neurodegenerative disease called Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). The discovery of mutations in the MAPT gene associated with FTDP-17 highlighted that dysfunctions in tau alone are sufficient to cause neurodegeneration. Invertebrate models have been diligently utilized in investigating tauopathies, contributing to the understanding of cellular and molecular pathways involved in disease etiology. An important discovery came with the demonstration that over-expression of human tau in Drosophila leads to premature mortality and neuronal dysfunction including neurodegeneration, recapitulating some key neuropathological features of the human disease. The simplicity of handling invertebrate models combined with the availability of a diverse range of experimental resources make these models, in particular Drosophila a powerful invertebrate screening tool. Consequently, several large-scale screens have been performed using Drosophila, to identify modifiers of tau toxicity. The screens have revealed not only common cellular and molecular pathways, but in some instances the same modifier has been independently identified in two or more screens suggesting a possible role for these modifiers in regulating tau toxicity. The purpose of this review is to discuss the genetic modifier screens on tauopathies performed in Drosophila and C. elegans models, and to highlight the common cellular and molecular pathways that have emerged from these studies. Here, we summarize results of tau toxicity screens providing mechanistic insights into pathological alterations in tauopathies. Key pathways or modifiers that have been identified are associated with a broad range of processes

  1. UVA and UVB Irradiation Differentially Regulate microRNA Expression in Human Primary Keratinocytes

    Science.gov (United States)

    Kraemer, Anne; Chen, I-Peng; Henning, Stefan; Faust, Alexandra; Volkmer, Beate; Atkinson, Michael J.; Moertl, Simone; Greinert, Ruediger

    2013-01-01

    MicroRNA (miRNA)-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2), which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis. PMID:24391759

  2. UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes.

    Directory of Open Access Journals (Sweden)

    Anne Kraemer

    Full Text Available MicroRNA (miRNA-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2, which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis.

  3. Small RNA profiling of influenza A virus-infected cells identifies miR-449b as a regulator of histone deacetylase 1 and interferon beta.

    Directory of Open Access Journals (Sweden)

    William A Buggele

    Full Text Available The mammalian antiviral response relies on the alteration of cellular gene expression, to induce the production of antiviral effectors and regulate their activities. Recent research has indicated that virus infections can induce the accumulation of cellular microRNA (miRNA species that influence the stability of host mRNAs and their protein products. To determine the potential for miRNA regulation of cellular responses to influenza A virus infection, small RNA profiling was carried out using next generation sequencing. Comparison of miRNA expression profiles in uninfected human A549 cells to cells infected with influenza A virus strains A/Udorn/72 and A/WSN/33, revealed virus-induced changes in miRNA abundance. Gene expression analysis identified mRNA targets for a cohort of highly inducible miRNAs linked to diverse cellular functions. Experiments demonstrate that the histone deacetylase, HDAC1, can be regulated by influenza-inducible miR-449b, resulting in altered mRNA and protein levels. Expression of miR-449b enhances virus and poly(I:C activation of the IFNβ promoter, a process known to be negatively regulated by HDAC1. These findings demonstrate miRNA induction by influenza A virus infection and elucidate an example of miRNA control of antiviral gene expression in human cells, defining a role for miR-449b in regulation of HDAC1 and antiviral cytokine signaling.

  4. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis.

    Science.gov (United States)

    Millard, E E; Srivastava, K; Traub, L M; Schaffer, J E; Ory, D S

    2000-12-08

    The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.

  5. Cellular commitment in the developing cerebellum

    Science.gov (United States)

    Marzban, Hassan; Del Bigio, Marc R.; Alizadeh, Javad; Ghavami, Saeid; Zachariah, Robby M.; Rastegar, Mojgan

    2014-01-01

    The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum. PMID:25628535

  6. Cellular Commitment in the Developing Cerebellum

    Directory of Open Access Journals (Sweden)

    Hassan eMarzban

    2015-01-01

    Full Text Available The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we then discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.

  7. Roles and regulation of Epstein-Barr virus microRNAs

    NARCIS (Netherlands)

    Hooykaas, M.J.G.

    2016-01-01

    MicroRNAs are posttranscriptional gene regulators that play important roles in many cellular processes. These short non-coding RNA molecules regulate gene expression by binding to complementary target mRNAs, thereby inducing RNA destabilization and inhibition of translation. Several DNA viruses

  8. Imaging the lipidome: omega-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins.

    Science.gov (United States)

    Hannoush, Rami N; Arenas-Ramirez, Natalia

    2009-07-17

    Fatty acylation or lipid modification of proteins controls their cellular activation and diverse roles in physiology. It mediates protein-protein and protein-membrane interactions and plays an important role in regulating cellular signaling pathways. Currently, there is need for visualizing lipid modifications of proteins in cells. Herein we report novel chemical probes based on omega-alkynyl fatty acids for biochemical detection and cellular imaging of lipid-modified proteins. Our study shows that omega-alkynyl fatty acids of varying chain length are metabolically incorporated onto cellular proteins. Using fluorescence imaging, we describe the subcellular distribution of lipid-modified proteins across a panel of different mammalian cell lines and during cell division. Our results demonstrate that this methodology is a useful diagnostic tool for analyzing the lipid content of cellular proteins and for studying the dynamic behavior of lipid-modified proteins in various disease or physiological states.

  9. Proteomic investigation of Vibrio alginolyticus challenged Caenorhabditis elegans revealed regulation of cellular homeostasis proteins and their role in supporting innate immune system.

    Science.gov (United States)

    Durai, Sellegounder; Singh, Nirpendra; Kundu, Suman; Balamurugan, Krishnaswamy

    2014-08-01

    Caenorhabditis elegans has been the preferred model system for many investigators to study pathogenesis. In the present investigation, regulation of C. elegans proteome was explored against V. alginolyticus infection using quantitative proteomics approach. Proteins were separated using 2D-DIGE and the differentially regulated proteins were identified using PMF and MALDI TOF/TOF analysis. The results thus obtained were validated using Western blotting for candidate proteins. The corresponding transcriptional regulation was quantified subsequently using real-time PCR. Interaction network for candidate proteins was predicted using search tool for the retrieval of interacting genes/proteins (STRING) and functional validation was performed using respective mutant strains. Out of the 25 proteins identified, 21 proteins appeared to be upregulated while four were downregulated. Upregulated proteins included those involved in stress-response (PDI-2, HSP-6), immune-response (protein kinase -18, GST-8) and energy-production (ATP-2) while proteins involved in structural maintenance (IFB-2) and lipid metabolism (SODH-1) were downregulated. The roles of these players in the host system during Vibrio infection was analyzed in vivo using wild type and mutant C. elegans. Survival assays using mutants lacking pdi-2, ire-1, and xbp-1 displayed enhanced susceptibility to V. alginolyticus. Cellular stress generated by V. alginolyticus was determined using ROS assay. This is the first report of proteome changes in C. elegans against V. alginolyticus challenge and highlights the significance of unfolded protein response (UPR) pathway during bacterial infection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gravitational Effects on Cellular Flame Structure

    Science.gov (United States)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  11. Motion Analysis of Thumb in Cellular Phone Use

    Directory of Open Access Journals (Sweden)

    Naotaka Sakai

    2010-01-01

    Full Text Available The thumb motion of 10 normal subjects during cellular phone use was measured using a reflective marker detection system to compare the maximum, minimum and range of flexion angles of the interphalangeal (IP, metacarpophalangeal (MP and carpometacarpal (CM joints. Two micro-reflective markers 3 mm in diameter were each placed on the dorsal surface of the distal phalanx, basal phalanx and metacarpal bone of the thumb. Three markers were placed on the dorsal hand in order to define the dorsal hand plane. Each subject pushed the 12 keys of a folding cellular phone with an 85-mm-long and 40-mm-wide keypad, sequentially from ‘1’ to ‘#’, and the pushing motion was recorded by six infrared video cameras for 12 seconds, using the VICON 612 system. The mean maximum flexion angle of the MP joint was significantly (p < .05 larger than the CM joint, and the mean minimum flexion angle of the CM joint was significantly (p < .01 smaller than the IP and MP joints. The mean range of motion of the IP joint was significantly (p < .05 larger than the MP and the CM joints. In a comparison of different key-pushing motions, only the CM joint was significantly (p < .05 larger in its range of motion. In conclusion, thumb motion on pushing the keys of the cellular phone was produced mainly by the MP and the CM joints. In addition, the ability to reach keys in different areas of the cellular phone keypad is regulated by changing the flexion angle of the CM joint.

  12. Study on the development of safety regulations for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Wei Fangxin

    2012-01-01

    The development of regulations under Regulations on Safety Management of Radioactive Waste has become necessary as the issuance of it. The regulations related to geological disposal of high-level radioactive waste can promote the progress of research and development on geological disposal of high-level radioactive waste in China. This paper has present suggestions on development of regulations on geological disposal of high-level radioactive waste by analyzing development of safety regulations on geological disposal of high-level radioactive waste in foreign countries and problems occurred in China and discussed important issues related to the development of safety regulations on geological disposal of high-level radioactive waste. (author)

  13. PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Ravikrishna Ramanujam

    2010-05-01

    Full Text Available Cyclic AMP-dependent pathways mediate the communication between external stimuli and the intracellular signaling machinery, thereby influencing important aspects of cellular growth, morphogenesis and differentiation. Crucial to proper function and robustness of these signaling cascades is the strict regulation and maintenance of intracellular levels of cAMP through a fine balance between biosynthesis (by adenylate cyclases and hydrolysis (by cAMP phosphodiesterases. We functionally characterized gene-deletion mutants of a high-affinity (PdeH and a low-affinity (PdeL cAMP phosphodiesterase in order to gain insights into the spatial and temporal regulation of cAMP signaling in the rice-blast fungus Magnaporthe oryzae. In contrast to the expendable PdeL function, the PdeH activity was found to be a key regulator of asexual and pathogenic development in M. oryzae. Loss of PdeH led to increased accumulation of intracellular cAMP during vegetative and infectious growth. Furthermore, the pdeHDelta showed enhanced conidiation (2-3 fold, precocious appressorial development, loss of surface dependency during pathogenesis, and highly reduced in planta growth and host colonization. A pdeHDelta pdeLDelta mutant showed reduced conidiation, exhibited dramatically increased (approximately 10 fold cAMP levels relative to the wild type, and was completely defective in virulence. Exogenous addition of 8-Br-cAMP to the wild type simulated the pdeHDelta defects in conidiation as well as in planta growth and development. While a fully functional GFP-PdeH was cytosolic but associated dynamically with the plasma membrane and vesicular compartments, the GFP-PdeL localized predominantly to the nucleus. Based on data from cAMP measurements and Real-Time RTPCR, we uncover a PdeH-dependent biphasic regulation of cAMP levels during early and late stages of appressorial development in M. oryzae. We propose that PdeH-mediated sustenance and dynamic regulation of cAMP signaling

  14. High Variability in Cellular Stoichiometry of Carbon, Nitrogen, and Phosphorus Within Classes of Marine Eukaryotic Phytoplankton Under Sufficient Nutrient Conditions.

    Science.gov (United States)

    Garcia, Nathan S; Sexton, Julie; Riggins, Tracey; Brown, Jeff; Lomas, Michael W; Martiny, Adam C

    2018-01-01

    Current hypotheses suggest that cellular elemental stoichiometry of marine eukaryotic phytoplankton such as the ratios of cellular carbon:nitrogen:phosphorus (C:N:P) vary between phylogenetic groups. To investigate how phylogenetic structure, cell volume, growth rate, and temperature interact to affect the cellular elemental stoichiometry of marine eukaryotic phytoplankton, we examined the C:N:P composition in 30 isolates across 7 classes of marine phytoplankton that were grown with a sufficient supply of nutrients and nitrate as the nitrogen source. The isolates covered a wide range in cell volume (5 orders of magnitude), growth rate (temperature (2-24°C). Our analysis indicates that C:N:P is highly variable, with statistical model residuals accounting for over half of the total variance and no relationship between phylogeny and elemental stoichiometry. Furthermore, our data indicated that variability in C:P, N:P, and C:N within Bacillariophyceae (diatoms) was as high as that among all of the isolates that we examined. In addition, a linear statistical model identified a positive relationship between diatom cell volume and C:P and N:P. Among all of the isolates that we examined, the statistical model identified temperature as a significant factor, consistent with the temperature-dependent translation efficiency model, but temperature only explained 5% of the total statistical model variance. While some of our results support data from previous field studies, the high variability of elemental ratios within Bacillariophyceae contradicts previous work that suggests that this cosmopolitan group of microalgae has consistently low C:P and N:P ratios in comparison with other groups.

  15. Cellular MR Imaging

    Directory of Open Access Journals (Sweden)

    Michel Modo

    2005-07-01

    Full Text Available Cellular MR imaging is a young field that aims to visualize targeted cells in living organisms. In order to provide a different signal intensity of the targeted cell, they are either labeled with MR contrast agents in vivo or prelabeled in vitro. Either (ultrasmall superparamagnetic iron oxide [(USPIO] particles or (polymeric paramagnetic chelates can be used for this purpose. For in vivo cellular labeling, Gd3+- and Mn2+- chelates have mainly been used for targeted hepatobiliary imaging, and (USPIO-based cellular imaging has been focused on imaging of macrophage activity. Several of these magneto-pharmaceuticals have been FDA-approved or are in late-phase clinical trials. As for prelabeling of cells in vitro, a challenge has been to induce a sufficient uptake of contrast agents into nonphagocytic cells, without affecting normal cellular function. It appears that this issue has now largely been resolved, leading to an active research on monitoring the cellular biodistribution in vivo following transplantation or transfusion of these cells, including cell migration and trafficking. New applications of cellular MR imaging will be directed, for instance, towards our understanding of hematopoietic (immune cell trafficking and of novel guided (stem cell-based therapies aimed to be translated to the clinic in the future.

  16. Cyclic cellular automata in 3D

    International Nuclear Information System (INIS)

    Reiter, Clifford A.

    2011-01-01

    Highlights: → We explore the self-organization of cyclic cellular automata in 3D. → Von Neumann, Moore and two types of intermediate neighborhoods are investigated. → Random neighborhoods self organize through phases into complex nested structures. → Demons are seen to have many alternatives in 3D. - Abstract: Cyclic cellular automata in two dimensions have long been intriguing because they self organize into spirals and that behavior can be analyzed. The form for the patterns that develop is highly dependent upon the form of the neighborhood. We extend this work to three dimensional cyclic cellular automata and observe self organization dependent upon the neighborhood type. This includes neighborhood types intermediate between Von Neumann and Moore neighborhoods. We also observe that the patterns include nested shells with the appropriate forms but that the nesting is far more complex than the spirals that occur in two dimensions.

  17. Matrix regulators in neural stem cell functions.

    Science.gov (United States)

    Wade, Anna; McKinney, Andrew; Phillips, Joanna J

    2014-08-01

    Neural stem/progenitor cells (NSPCs) reside within a complex and dynamic extracellular microenvironment, or niche. This niche regulates fundamental aspects of their behavior during normal neural development and repair. Precise yet dynamic regulation of NSPC self-renewal, migration, and differentiation is critical and must persist over the life of an organism. In this review, we summarize some of the major components of the NSPC niche and provide examples of how cues from the extracellular matrix regulate NSPC behaviors. We use proteoglycans to illustrate the many diverse roles of the niche in providing temporal and spatial regulation of cellular behavior. The NSPC niche is comprised of multiple components that include; soluble ligands, such as growth factors, morphogens, chemokines, and neurotransmitters, the extracellular matrix, and cellular components. As illustrated by proteoglycans, a major component of the extracellular matrix, the NSPC, niche provides temporal and spatial regulation of NSPC behaviors. The factors that control NSPC behavior are vital to understand as we attempt to modulate normal neural development and repair. Furthermore, an improved understanding of how these factors regulate cell proliferation, migration, and differentiation, crucial for malignancy, may reveal novel anti-tumor strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    Science.gov (United States)

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging. Copyright © 2016. Published by Elsevier Inc.

  19. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors.

    Science.gov (United States)

    Smith, Jeffrey S; Rajagopal, Sudarshan

    2016-04-22

    The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging.

    Science.gov (United States)

    Hussain, Sahid; Won, Nayoun; Nam, Jutaek; Bang, Jiwon; Chung, Hyokyun; Kim, Sungjee

    2009-07-13

    True colors: High-quality InP and InP/ZnS quantum dots (QDs) are obtained by means of a simple one-pot method in the presence of polyethylene glycol (PEG). Rapid and size-controlled reactions lead to highly crystalline and nearly monodisperse QDs at relatively low temperatures. The particles emit from cyan blue to far-red, and are successfully used in cellular imaging (see figure).

  1. Reduced labor and condensed schedules with cellular concrete solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lavis, D. [CEMATRIX Inc., Calgary, AB (Canada)

    2008-07-01

    This paper discussed the use of cellular concrete materials in oil sands tank base foundation systems, shallow buried utility insulation systems, roadways, slabs, and buried modules. The concrete is formed from Portland cement, water, specialized pre-formed foaming agents, and air mixed in controlled proportions. Fly ash and polypropylene or glass fibers can also be used as additions. Cellular concrete can often be used to speed up construction and minimize labour requirements. Cellular concrete can be cast-in-place, and has soil-stabilizing and self-compacting features. The concrete can be produced and placed on-site at rates exceeding 120 cubic meters per hour. Cellular concrete can be pumped into place over long distances through flexible hoses. A case study comparing the cellular concrete to traditional plastic foam insulation was used to demonstrate the equivalency and adequacy of insulation, structural properties and installation costs. The study showed that although the cellular concrete had a high installation cost, greater compressive strength was gained. The concrete was self-levelling and did not require compaction or vibration. The use of the cellular concrete resulted in an accelerated construction schedule. 6 refs., 2 tabs., 6 figs.

  2. Cellular stress induces a protective sleep-like state in C. elegans.

    Science.gov (United States)

    Hill, Andrew J; Mansfield, Richard; Lopez, Jessie M N G; Raizen, David M; Van Buskirk, Cheryl

    2014-10-20

    Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Downregulation of Melanoma Cell Adhesion Molecule (MCAM/CD146) Accelerates Cellular Senescence in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Jin, Hye Jin; Kwon, Ji Hye; Kim, Miyeon; Bae, Yun Kyung; Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun; Jeon, Hong Bae

    2016-04-01

    Therapeutic applications of mesenchymal stem cells (MSCs) for treating various diseases have increased in recent years. To ensure that treatment is effective, an adequate MSC dosage should be determined before these cells are used for therapeutic purposes. To obtain a sufficient number of cells for therapeutic applications, MSCs must be expanded in long-term cell culture, which inevitably triggers cellular senescence. In this study, we investigated the surface markers of human umbilical cord blood-derived MSCs (hUCB-MSCs) associated with cellular senescence using fluorescence-activated cell sorting analysis and 242 cell surface-marker antibodies. Among these surface proteins, we selected the melanoma cell adhesion molecule (MCAM/CD146) for further study with the aim of validating observed expression differences and investigating the associated implications in hUCB-MSCs during cellular senescence. We observed that CD146 expression markedly decreased in hUCB-MSCs following prolonged in vitro expansion. Using preparative sorting, we found that hUCB-MSCs with high CD146 expression displayed high growth rates, multilineage differentiation, expression of stemness markers, and telomerase activity, as well as significantly lower expression of the senescence markers p16, p21, p53, and senescence-associated β-galactosidase, compared with that observed in hUCB-MSCs with low-level CD146 expression. In contrast, CD146 downregulation with small interfering RNAs enhanced the senescence phenotype. In addition, CD146 suppression in hUCB-MSCs caused downregulation of other cellular senescence regulators, including Bmi-1, Id1, and Twist1. Collectively, our results suggest that CD146 regulates cellular senescence; thus, it could be used as a therapeutic marker to identify senescent hUCB-MSCs. One of the fundamental requirements for mesenchymal stem cell (MSC)-based therapies is the expansion of MSCs during long-term culture because a sufficient number of functional cells is required

  4. Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Rumi; En, Atsuki; Ukekawa, Ryo [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Miki, Kensuke [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048 (Japan); Fujii, Michihiko, E-mail: mifuji@yokohama-cu.ac.jp [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ayusawa, Dai [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048 (Japan)

    2016-05-13

    5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.

  5. A cellular automata model of bone formation.

    Science.gov (United States)

    Van Scoy, Gabrielle K; George, Estee L; Opoku Asantewaa, Flora; Kerns, Lucy; Saunders, Marnie M; Prieto-Langarica, Alicia

    2017-04-01

    Bone remodeling is an elegantly orchestrated process by which osteocytes, osteoblasts and osteoclasts function as a syncytium to maintain or modify bone. On the microscopic level, bone consists of cells that create, destroy and monitor the bone matrix. These cells interact in a coordinated manner to maintain a tightly regulated homeostasis. It is this regulation that is responsible for the observed increase in bone gain in the dominant arm of a tennis player and the observed increase in bone loss associated with spaceflight and osteoporosis. The manner in which these cells interact to bring about a change in bone quality and quantity has yet to be fully elucidated. But efforts to understand the multicellular complexity can ultimately lead to eradication of metabolic bone diseases such as osteoporosis and improved implant longevity. Experimentally validated mathematical models that simulate functional activity and offer eventual predictive capabilities offer tremendous potential in understanding multicellular bone remodeling. Here we undertake the initial challenge to develop a mathematical model of bone formation validated with in vitro data obtained from osteoblastic bone cells induced to mineralize and quantified at 26 days of culture. A cellular automata model was constructed to simulate the in vitro characterization. Permutation tests were performed to compare the distribution of the mineralization in the cultures and the distribution of the mineralization in the mathematical models. The results of the permutation test show the distribution of mineralization from the characterization and mathematical model come from the same probability distribution, therefore validating the cellular automata model. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Programmable cellular arrays. Faults testing and correcting in cellular arrays

    International Nuclear Information System (INIS)

    Cercel, L.

    1978-03-01

    A review of some recent researches about programmable cellular arrays in computing and digital processing of information systems is presented, and includes both combinational and sequential arrays, with full arbitrary behaviour, or which can realize better implementations of specialized blocks as: arithmetic units, counters, comparators, control systems, memory blocks, etc. Also, the paper presents applications of cellular arrays in microprogramming, in implementing of a specialized computer for matrix operations, in modeling of universal computing systems. The last section deals with problems of fault testing and correcting in cellular arrays. (author)

  7. Development of a new cellular solid breeder for enhanced tritium production

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Williams, Brian; Ghoniem, Nasr; Ghoniem, Adam; Shimada, Masashi; Ying, Alice

    2016-01-01

    Highlights: • A new cellular solid breeder is presented with 2 to 3× the thermal conductivity and substantially higher density (∼90%) compared with pebble beds. • The cellular solid breeder contains an internal network of interconnected open micro-channels (∼50 –100 μm diam.) for efficient tritium release. • Cellular breeders are made by melt-infiltrating Li-based ceramic materials into an open-cell carbon foam followed by removal of the foam. • High temperature (750 °C and 40 °C/mm) cyclic compression tests demonstrated good structural integrity (no cracking) and low Young’s modulus of of <5 GPa. • Deuterium absorption–desorption release rates were comparable with those from pebble beds with similar characteristic T-diffusion lengths. - Abstract: A new high-performance cellular solid breeder is presented that has several times the thermal conductivity and is substantially denser compared with sphere-packed breeder beds. The cellular breeder is fabricated using a patented process of melt-infiltrating ceramic breeder material into an open-cell carbon foam. Following solidification the carbon foam is removed by oxidation. This process results in a near 90% dense robust freestanding breeder in a block configuration with an internal network of open interconnected micro-channels for tritium release. The network of interconnected micro-channels was investigated using X-ray tomography. Aside from increased density and thermal conductivity relative to pebble beds, high temperature sintering is eliminated and thermal durability is increased. Cellular breeder morphology, thermal conductivity, specific heat, porosity levels, high temperature mechanical properties, and deuterium charging-desorption rates are presented.

  8. Development of a new cellular solid breeder for enhanced tritium production

    Energy Technology Data Exchange (ETDEWEB)

    Sharafat, Shahram, E-mail: sharams@gmail.com [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States); Williams, Brian [Ultramet, Pacoima, CA 91331-2210 (United States); Ghoniem, Nasr [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States); Ghoniem, Adam [Digital Materials Solutions, Inc., Westwood, CA 90024 (United States); Shimada, Masashi [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Ying, Alice [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States)

    2016-11-01

    Highlights: • A new cellular solid breeder is presented with 2 to 3× the thermal conductivity and substantially higher density (∼90%) compared with pebble beds. • The cellular solid breeder contains an internal network of interconnected open micro-channels (∼50 –100 μm diam.) for efficient tritium release. • Cellular breeders are made by melt-infiltrating Li-based ceramic materials into an open-cell carbon foam followed by removal of the foam. • High temperature (750 °C and 40 °C/mm) cyclic compression tests demonstrated good structural integrity (no cracking) and low Young’s modulus of of <5 GPa. • Deuterium absorption–desorption release rates were comparable with those from pebble beds with similar characteristic T-diffusion lengths. - Abstract: A new high-performance cellular solid breeder is presented that has several times the thermal conductivity and is substantially denser compared with sphere-packed breeder beds. The cellular breeder is fabricated using a patented process of melt-infiltrating ceramic breeder material into an open-cell carbon foam. Following solidification the carbon foam is removed by oxidation. This process results in a near 90% dense robust freestanding breeder in a block configuration with an internal network of open interconnected micro-channels for tritium release. The network of interconnected micro-channels was investigated using X-ray tomography. Aside from increased density and thermal conductivity relative to pebble beds, high temperature sintering is eliminated and thermal durability is increased. Cellular breeder morphology, thermal conductivity, specific heat, porosity levels, high temperature mechanical properties, and deuterium charging-desorption rates are presented.

  9. Cognitive radio networks efficient resource allocation in cooperative sensing, cellular communications, high-speed vehicles, and smart grid

    CERN Document Server

    Jiang, Tao; Cao, Yang

    2015-01-01

    PrefaceAcknowledgmentsAbout the AuthorsIntroductionCognitive Radio-Based NetworksOpportunistic Spectrum Access NetworksCognitive Radio Networks with Cooperative SensingCognitive Radio Networks for Cellular CommunicationsCognitive Radio Networks for High-Speed VehiclesCognitive Radio Networks for a Smart GridContent and OrganizationTransmission Slot Allocation in an Opportunistic Spectrum Access NetworkSingle-User Single-Channel System ModelProbabilistic Slot Allocation SchemeOptimal Probabilistic Slot AllocationBaseline PerformanceExponential DistributionHyper-Erlang DistributionPerformance An

  10. Inhibition of microRNA-153 protects neurons against ischemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO-1 signaling.

    Science.gov (United States)

    Ji, Qiong; Gao, Jianbo; Zheng, Yan; Liu, Xueli; Zhou, Qiangqiang; Shi, Canxia; Yao, Meng; Chen, Xia

    2017-07-01

    MicroRNAs are emerging as critical regulators in cerebral ischemia/reperfusion injury; however, their exact roles remain poorly understood. miR-153 is reported to be a neuron-related miRNA involved in neuroprotection. In this study, we aimed to investigate the precise role of miR-153 in regulating neuron survival during cerebral ischemia/reperfusion injury using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that miR-153 was significantly upregulated in neurons subjected to OGD/R treatment. Inhibition of miR-153 significantly attenuated OGD/R-induced injury and oxidative stress in neurons. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-153. Inhibition of miR-153 significantly promoted the expression of Nrf2 and heme oxygenase-1 (HO-1). However, silencing of Nrf2 significantly blocked the protective effects of miR-153 inhibition. Our study indicates that the inhibition of miR-153 protects neurons against OGD/R-induced injury by regulating Nrf2/HO-1 signaling and suggests a potential therapeutic target for cerebral ischemia/reperfusion injury. © 2017 Wiley Periodicals, Inc.

  11. Ceruloplasmin Oxidation, a Feature of Parkinson's Disease CSF, Inhibits Ferroxidase Activity and Promotes Cellular Iron Retention

    KAUST Repository

    Olivieri, S.; Conti, A.; Iannaccone, S.; Cannistraci, C. V.; Campanella, A.; Barbariga, M.; Codazzi, F.; Pelizzoni, I.; Magnani, G.; Pesca, M.; Franciotta, D.; Cappa, S. F.; Alessio, M.

    2011-01-01

    Parkinson's disease is a neurodegenerative disorder characterized by oxidative stress and CNS iron deposition. Ceruloplasmin is an extracellular ferroxidase that regulates cellular iron loading and export, and hence protects tissues from oxidative

  12. High Severity Wildfire Effect On Rainfall Infiltration And Runoff: A Cellular Automata Based Simulation

    Science.gov (United States)

    Vergara-Blanco, J. E.; Leboeuf-Pasquier, J.; Benavides-Solorio, J. D. D.

    2017-12-01

    A simulation software that reproduces rainfall infiltration and runoff for a storm event in a particular forest area is presented. A cellular automaton is utilized to represent space and time. On the time scale, the simulation is composed by a sequence of discrete time steps. On the space scale, the simulation is composed of forest surface cells. The software takes into consideration rain intensity and length, individual forest cell soil absorption capacity evolution, and surface angle of inclination. The software is developed with the C++ programming language. The simulation is executed on a 100 ha area within La Primavera Forest in Jalisco, Mexico. Real soil texture for unburned terrain and high severity wildfire affected terrain is employed to recreate the specific infiltration profile. Historical rainfall data of a 92 minute event is used. The Horton infiltration equation is utilized for infiltration capacity calculation. A Digital Elevation Model (DEM) is employed to reproduce the surface topography. The DEM is displayed with a 3D mesh graph where individual surface cells can be observed. The plot colouring renders water content development at the cell level throughout the storm event. The simulation shows that the cumulative infiltration and runoff which take place at the surface cell level depend on the specific storm intensity, fluctuation and length, overall terrain topography, cell slope, and soil texture. Rainfall cumulative infiltration for unburned and high severity wildfire terrain are compared: unburned terrain exhibits a significantly higher amount of rainfall infiltration.It is concluded that a cellular automaton can be utilized with a C++ program to reproduce rainfall infiltration and runoff under diverse soil texture, topographic and rainfall conditions in a forest setting. This simulation is geared for an optimization program to pinpoint the locations of a series of forest land remediation efforts to support reforestation or to minimize runoff.

  13. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4

    Science.gov (United States)

    Huggins, Christopher J.; Mayekar, Manasi K.; Martin, Nancy; Saylor, Karen L.; Gonit, Mesfin; Jailwala, Parthav; Kasoji, Manjula; Haines, Diana C.; Quiñones, Octavio A.

    2015-01-01

    The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg−/− mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg−/− mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg−/− mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells. PMID:26667036

  14. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.

    Science.gov (United States)

    Seo, Pil Joon; Mas, Paloma

    2014-01-01

    The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.

  15. The study of selective accumulation of radionuclides cesium 137, strontium 90 and cerium 144 in the cellular compartments of charophyta algae

    International Nuclear Information System (INIS)

    Marchyulenene, D.P.; Moteyunene, E.B.; Gudavichene, N.A.; Polikarpov, G.G.

    1976-01-01

    The study of the accumulation of 137 Cs, 90 Sr and 144 Ce in separate compartments of Chara algae (cellular wall, protoplasm, vacuoles), testifies to the fact that the entrance and accumulation level of the radionuclides depend upon the selective permeability of the cellular wall and plasmalemma, which is regulated both by the ratio of the chemical analogues of the radionuclides in the medium, and by the level of cellular metabolism [fr

  16. 47 CFR 22.970 - Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone...

    Science.gov (United States)

    2010-10-01

    ...-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. 22.970 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.970 Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. (a) Definition...

  17. The Chromatin Regulator Brpf1 Regulates Embryo Development and Cell Proliferation*

    Science.gov (United States)

    You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs. PMID:25773539

  18. Contribution of cellular autolysis to tissular functions during plant development

    OpenAIRE

    Escamez, Sacha; Tuominen, Hannele

    2017-01-01

    Plant development requires specific cells to be eliminated in a predictable and genetically regulated manner referred to as programmed cell death (PCD). However, the target cells do not merely die but they also undergo autolysis to degrade their cellular corpses. Recent progress in understanding developmental cell elimination suggests that distinct proteins execute PCD sensu stricto and autolysis. In addition, cell death alone and cell dismantlement can fulfill different functions. Hence, it ...

  19. A symphony of regulations centered on p63 to control development of ectoderm-derived structures.

    Science.gov (United States)

    Guerrini, Luisa; Costanzo, Antonio; Merlo, Giorgio R

    2011-01-01

    The p53-related transcription factor p63 is critically important for basic cellular functions during development of the ectoderm and derived structure and tissues, including skin, limb, palate, and hair. On the one side, p63 is required to sustain the proliferation of keratinocyte progenitors, while on the other side it is required for cell stratification, commitment to differentiate, cell adhesion, and epithelial-mesenchymal signaling. Molecules that are components or regulators of the p63 pathway(s) are rapidly being identified, and it comes with no surprise that alterations in the p63 pathway lead to congenital conditions in which the skin and other ectoderm-derived structures are affected. In this paper, we summarize the current knowledge of the molecular and cellular regulations centered on p63, derived from the comprehension of p63-linked human diseases and the corresponding animal models, as well as from cellular models and high-throughput molecular approaches. We point out common themes and features, that allow to speculate on the possible role of p63 downstream events and their potential exploitation in future attempts to correct the congenital defect in preclinical studies.

  20. p53-Dependent Nestin Regulation Links Tumor Suppression to Cellular Plasticity in Liver Cancer

    DEFF Research Database (Denmark)

    Tschaharganeh, Darjus F; Xue, Wen; Calvisi, Diego F

    2014-01-01

    The p53 tumor suppressor coordinates a series of antiproliferative responses that restrict the expansion of malignant cells, and as a consequence, p53 is lost or mutated in the majority of human cancers. Here, we show that p53 restricts expression of the stem and progenitor-cell-associated protei...... by p53 restricts cellular plasticity and tumorigenesis in liver cancer....

  1. Handover management in dense cellular networks: A stochastic geometry approach

    KAUST Repository

    Arshad, Rabe; Elsawy, Hesham; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.

  2. Handover management in dense cellular networks: A stochastic geometry approach

    KAUST Repository

    Arshad, Rabe

    2016-07-26

    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations\\' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users\\' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.

  3. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  4. 1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening.

    Science.gov (United States)

    Park, Jong Seok; Aziz, Moez Karim; Li, Sensen; Chi, Taiyun; Grijalva, Sandra Ivonne; Sung, Jung Hoon; Cho, Hee Cheol; Wang, Hua

    2018-02-01

    This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample. The proposed system is fabricated in a standard 130-nm CMOS process. Rat cardiomyocytes are successfully cultured on-chip. Measured high-resolution optical opacity images, extracellular potential recordings, biphasic current stimulations, and cellular impedance images demonstrate the unique advantages of the system for holistic cell characterization and drug screening. Furthermore, this paper demonstrates the use of optical detection on the on-chip cultured cardiomyocytes to real-time track their cyclic beating pattern and beating rate.

  5. Regulation of p21ras activity

    DEFF Research Database (Denmark)

    Lowy, D R; Zhang, K; DeClue, J E

    1992-01-01

    The ras genes encode GTP/GDP-binding proteins that participate in mediating mitogenic signals from membrane tyrosine kinases to downstream targets. The activity of p21ras is determined by the concentration of GTP-p21ras, which is tightly regulated by a complex array of positive and negative control...... mechanisms. GAP and NF1 can negatively regulate p21ras activity by stimulating hydrolysis of GTP bound to p21ras. Other cellular factors can positively regulate p21ras by stimulating GDP/GTP exchange....

  6. Identification of essential sequences for cellular localization in BRMS1 metastasis suppressor.

    Directory of Open Access Journals (Sweden)

    José Rivera

    Full Text Available BACKGROUND: Breast cancer metastasis suppressor 1 (BRMS1 reduces the number and the size of secondary tumours in a mouse model without affecting the growth of the primary foci upon its re-expression. Knockdown of BRMS1 expression associates with metastasis. The molecular details on BRMS1 mechanism of action include its ability to function as a transcriptional co-repressor and consistently BRMS1 has been described as a predominantly nuclear protein. Since cellular distribution could represent a potential mechanism of regulation, we wanted to characterize BRMS1 sequence motifs that might regulate its cellular distribution. According to its amino acids sequence, BRMS1 contain two putative nuclear localization signals, however none of them has been proved to work so far. METHODOLOGY/PRINCIPAL FINDINGS: By using well known in vivo assays to detect both nuclear import and export signal, we have characterized, in the present study, one functional nuclear localisation signal as necessary and sufficient to promote nuclear transport. Additionally, the outcome of a directed yeast two-hybrid assay identify importin alpha6 as a specific partner of BRMS1 thus speculating that BRMS1 nuclear import could be specifically mediated by the reported nuclear transporter. Besides, the combination of a computational searching approach along the utilization of a nuclear export assay, identified a functional motif within the BRMS1 sequence responsible for its nuclear export, that resulted not affected by the highly specific CRM1 inhibitor Leptomycin-B. Interspecies heterokaryon assay demonstrate the capability of BRMS1 to shuttle between the nuclear and cytosolic compartments CONCLUSIONS/SIGNIFICANCE: Our results show for the first time that BRMS1 contains both nuclear import and export signals enabling its nucleo-cytoplasmic shuttling. These findings contributes new data for the understanding of the BRMS1 functions and allow us to speculate that this phenomenon could

  7. Arginine vasopressin increases cellular free calcium concentration and adenosine 3',5'-monophosphate production in rat renal papillary collecting tubule cells in culture

    International Nuclear Information System (INIS)

    Ishikawa, S.; Okada, K.; Saito, T.

    1988-01-01

    The role of calcium (Ca) in the cellular action of arginine vasopressin (AVP) was examined in rat renal papillary collecting tubule cells in culture. AVP increased both the cellular free Ca concentration ([Ca2+]i) using fura-2, and cAMP production in a dose-dependent manner. AVP-induced cellular Ca mobilization was totally blocked by the antagonist to the antidiuretic action of AVP, and somewhat weakened by the antagonist to the vascular action of AVP. 1-Deamino-8-D-AVP (dDAVP). an antidiuretic analog of AVP, also increased [Ca2+] significantly. Cellular Ca mobilization was not obtained with cAMP, forskolin (a diterpene activator of adenylate cyclase), or phorbol-12-myristate-13-acetate. The early phase of [Ca2+]i depended on the intracellular Ca pool, since an AVP-induced rise in [Ca2+]i was obtained in cells pretreated with Ca-free medium containing 1 mM EGTA, verapamil, or cobalt, which blocked cellular Ca uptake. Also, AVP increased 45 Ca2+ influx during the initial 10 min, which initiated the sustained phase of cellular Ca mobilization. However, cellular cAMP production induced by AVP during the 10-min observation period was diminished in the cells pretreated with Ca-free medium, verapamil, or cobalt, but was still significantly higher than the basal level. This was also diminished by a high Ca concentration in medium. These results indicate that 1) AVP concomitantly regulates cellular free Ca as well as its second messenger cAMP production; 2) AVP-induced elevation of cellular free Ca is dependent on both the cellular Ca pool and extracellular Ca; and 3) there is an optimal level of extracellular Ca to modulate the AVP action in renal papillary collecting tubule cells

  8. Np9, a cellular protein of retroviral ancestry restricted to human, chimpanzee and gorilla, binds and regulates ubiquitin ligase MDM2

    Science.gov (United States)

    Heyne, Kristina; Kölsch, Kathrin; Bruand, Marine; Kremmer, Elisabeth; Grässer, Friedrich A; Mayer, Jens; Roemer, Klaus

    2015-01-01

    Humans and primates are long-lived animals with long reproductive phases. One factor that appears to contribute to longevity and fertility in humans, as well as to cancer-free survival, is the transcription factor and tumor suppressor p53, controlled by its main negative regulator MDM2. However, p53 and MDM2 homologs are found throughout the metazoan kingdom from Trichoplacidae to Hominidae. Therefore the question arises, if p53/MDM2 contributes to the shaping of primate features, then through which mechanisms. Previous findings have indicated that the appearances of novel p53-regulated genes and wild-type p53 variants during primate evolution are important in this context. Here, we report on another mechanism of potential relevance. Human endogenous retrovirus K subgroup HML-2 (HERV-K(HML-2)) type 1 proviral sequences were formed in the genomes of the predecessors of contemporary Hominoidea and can be identified in the genomes of Nomascus leucogenys (gibbon) up to Homo sapiens. We previously reported on an alternative splicing event in HERV-K(HML-2) type 1 proviruses that can give rise to nuclear protein of 9 kDa (Np9). We document here the evolution of Np9-coding capacity in human, chimpanzee and gorilla, and show that the C-terminal half of Np9 binds directly to MDM2, through a domain of MDM2 that is known to be contacted by various cellular proteins in response to stress. Np9 can inhibit the MDM2 ubiquitin ligase activity toward p53 in the cell nucleus, and can support the transactivation of genes by p53. Our findings point to the possibility that endogenous retrovirus protein Np9 contributes to the regulation of the p53-MDM2 pathway specifically in humans, chimpanzees and gorillas. PMID:26103464

  9. Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage

    DEFF Research Database (Denmark)

    Batth, Tanveer S; Olsen, Jesper V

    2016-01-01

    Protein phosphorylation, a process in which kinases modify serines, threonines, and tyrosines with phosphoryl groups is of major importance in eukaryotic biology. Protein phosphorylation events are key initiators of signaling responses which determine cellular outcomes after environmental...... and metabolic stimuli, and are thus highly regulated. Therefore, studying the mechanism of regulation by phosphorylation, and pinpointing the exact site of phosphorylation on proteins is of high importance. This protocol describes in detail a phosphoproteomics workflow for ultra-deep coverage by fractionating...

  10. Human more complex than mouse at cellular level.

    Directory of Open Access Journals (Sweden)

    Alexander E Vinogradov

    Full Text Available The family of transcription factors with the C2H2 zinc finger domain is expanding in the evolution of vertebrates, reaching its highest numbers in the mammals. The question arises: whether an increased amount of these transcription factors is related to embryogenesis, nervous system, pathology or more of them are expressed in individual cells? Among mammals, the primates have a more complex anatomical structure than the rodents (e.g., brain. In this work, I show that a greater number of C2H2-ZF genes are expressed in the human cells than in the mouse cells. The effect is especially pronounced for C2H2-ZF genes accompanied with the KRAB domain. The relative difference between the numbers of C2H2-ZF(-KRAB genes in the human and mouse cellular transcriptomes even exceeds their difference in the genomes (i.e. a greater subset of existing in the genome genes is expressed in the human cellular transcriptomes compared to the mouse transcriptomes. The evolutionary turnover of C2H2-ZF(-KRAB genes acts in the direction of the revealed phenomenon, i.e. gene duplication and loss enhances the difference in the relative number of C2H2-ZF(-KRAB genes between human and mouse cellular transcriptomes. A higher amount of these genes is expressed in the brain and embryonic cells (compared with other tissues, whereas a lower amount--in the cancer cells. It is specifically the C2H2-ZF transcription factors whose repertoire is poorer in the cancer and richer in the brain (other transcription factors taken together do not show this trend. These facts suggest that increase of anatomical complexity is accompanied by a more complex intracellular regulation involving these transcription factors. Malignization is associated with simplification of this regulation. These results agree with the known fact that human cells are more resistant to oncogenic transformation than mouse cells. The list of C2H2-ZF genes whose suppression might be involved in malignization is provided.

  11. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.

    Science.gov (United States)

    Sorokin, Andrey

    2016-01-01

    The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.

  12. 47 CFR 22.909 - Cellular markets.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular markets...

  13. Cellular characterization of human dermal fibroblasts, focus on mitochondria and maple syrup urine disease

    DEFF Research Database (Denmark)

    Fernandez-Guerra, Paula

    and functions are expressed in HDFs’ culture environment. Studies of molecular disease mechanisms often point to the involvement of mitochondria. Mitochondria are involved in the regulation of cell cycle and programmed cell death as well as cellular stress responses because they are the main producers...

  14. Regulation of gene expression in Escherichia coli and its bacteriophage

    International Nuclear Information System (INIS)

    Higgins, C.F.

    1986-01-01

    This chapter reviews the study of prokaryotic gene expression beginning with a look at the regulation of the lactose operon and the mechanism of attenuation in the tryptophan operon to the more recent development of recombinant DNA technology. The chapter deals almost entirely with escherichia coli and its bacteriophage. The only experimental technique which the authors explore in some detail is the construction and use of gene and operon fusions which have revolutionized the study of gene expression. Various mechanisms by which E. Coli regulate the cellular levels of individual messenger-RNA species are described. Translational regulation of the cellular levels of messenger-RNA include signals encoded within the messenger-RNA molecule itself and regulatory molecules which interact with the messenger-RNA and alter it translational efficiency

  15. Regulation of heterotrimeric G-protein signaling by NDPK/NME proteins and caveolins: an update.

    Science.gov (United States)

    Abu-Taha, Issam H; Heijman, Jordi; Feng, Yuxi; Vettel, Christiane; Dobrev, Dobromir; Wieland, Thomas

    2018-02-01

    Heterotrimeric G proteins are pivotal mediators of cellular signal transduction in eukaryotic cells and abnormal G-protein signaling plays an important role in numerous diseases. During the last two decades it has become evident that the activation status of heterotrimeric G proteins is both highly localized and strongly regulated by a number of factors, including a receptor-independent activation pathway of heterotrimeric G proteins that does not involve the classical GDP/GTP exchange and relies on nucleoside diphosphate kinases (NDPKs). NDPKs are NTP/NDP transphosphorylases encoded by the nme/nm23 genes that are involved in a variety of cellular events such as proliferation, migration, and apoptosis. They therefore contribute, for example, to tumor metastasis, angiogenesis, retinopathy, and heart failure. Interestingly, NDPKs are translocated and/or upregulated in human heart failure. Here we describe recent advances in the current understanding of NDPK functions and how they have an impact on local regulation of G-protein signaling.

  16. Developmental regulation of nucleolus size during Drosophila eye differentiation.

    Directory of Open Access Journals (Sweden)

    Nicholas E Baker

    Full Text Available When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.

  17. Developmental regulation of nucleolus size during Drosophila eye differentiation.

    Science.gov (United States)

    Baker, Nicholas E

    2013-01-01

    When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.

  18. Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation

    Science.gov (United States)

    2012-01-01

    Background Although Campylobacter jejuni is consistently ranked as one of the leading causes of bacterial diarrhea worldwide, the mechanisms by which C. jejuni causes disease and how they are regulated have yet to be clearly defined. The global regulator, CsrA, has been well characterized in several bacterial genera and is known to regulate a number of independent pathways via a post transcriptional mechanism, but remains relatively uncharacterized in the genus Campylobacter. Previously, we reported data illustrating the requirement for CsrA in several virulence related phenotypes of C. jejuni strain 81–176, indicating that the Csr pathway is important for Campylobacter pathogenesis. Results We compared the Escherichia coli and C. jejuni orthologs of CsrA and characterized the ability of the C. jejuni CsrA protein to functionally complement an E. coli csrA mutant. Phylogenetic comparison of E. coli CsrA to orthologs from several pathogenic bacteria demonstrated variability in C. jejuni CsrA relative to the known RNA binding domains of E. coli CsrA and in several amino acids reported to be involved in E. coli CsrA-mediated gene regulation. When expressed in an E. coli csrA mutant, C. jejuni CsrA succeeded in recovering defects in motility, biofilm formation, and cellular morphology; however, it failed to return excess glycogen accumulation to wild type levels. Conclusions These findings suggest that C. jejuni CsrA is capable of efficiently binding some E. coli CsrA binding sites, but not others, and provide insight into the biochemistry of C. jejuni CsrA. PMID:23051923

  19. Expression of human papilloma virus type 16 E5 protein in amelanotic melanoma cells regulates endo-cellular pH and restores tyrosinase activity

    Directory of Open Access Journals (Sweden)

    Coccia Raffaella

    2009-01-01

    Full Text Available Abstract Background Melanin synthesis, the elective trait of melanocytes, is regulated by tyrosinase activity. In tyrosinase-positive amelanotic melanomas this rate limiting enzyme is inactive because of acidic endo-melanosomal pH. The E5 oncogene of the Human Papillomavirus Type 16 is a small transmembrane protein with a weak transforming activity and a role during the early steps of viral infections. E5 has been shown to interact with 16 kDa subunit C of the trans-membrane Vacuolar ATPase proton pump ultimately resulting in its functional suppressions. However, the cellular effects of such an interaction are still under debate. With this work we intended to explore whether the HPV16 E5 oncoprotein does indeed interact with the vacuolar ATPase proton pump once expressed in intact human cells and whether this interaction has functional consequences on cell metabolism and phenotype. Methods The expression of the HPV16-E5 oncoproteins was induced in two Tyrosinase-positive amelanotic melanomas (the cell lines FRM and M14 by a retroviral expression construct. Modulation of the intracellular pH was measured with Acridine orange and fluorescence microscopy. Expression of tyrosinase and its activity was followed by RT-PCR, Western Blot and enzyme assay. The anchorage-independence growth and the metabolic activity of E5 expressing cells were also monitored. Results We provide evidence that in the E5 expressing cells interaction between E5 and V-ATPase determines an increase of endo-cellular pH. The cellular alkalinisation in turn leads to the post-translational activation of tyrosinase, melanin synthesis and phenotype modulation. These effects are associated with an increased activation of tyrosine analogue anti-blastic drugs. Conclusion Once expressed within intact human cells the HPV16-E5 oncoprotein does actually interact with the vacuolar V-ATPase proton pump and this interaction induces a number of functional effects. In amelanotic melanomas these

  20. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    Science.gov (United States)

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  1. Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants

    OpenAIRE

    Jing, H. -C.; Hebeler, R.; Oeljeklaus, S.; Sitek, B.; Stuehler, K.; Meyer, H. E.; Sturre, M. J. G.; Hille, J.; Warscheid, B.; Dijkwel, P. P.; Stühler, K.

    2008-01-01

    Reactive oxygen species (ROS) are the inevitable by-products of essential cellular metabolic and physiological activities. Plants have developed sophisticated gene networks of ROS generation and scavenging systems. However, ROS regulation is still poorly understood. Here, we report that mutations in the Arabidopsis CPR5/OLD1 gene may cause early senescence through deregulation of the cellular redox balance. Genetic analysis showed that blocking stress-related hormonal signalling pathways, suc...

  2. United States regulations for institutional controls at high-level waste repositories

    International Nuclear Information System (INIS)

    Piccone, Josephine

    2015-01-01

    The United States regulations for disposal of spent nuclear fuel and high-level radioactive waste are found at Title 10 of the Code of Federal Regulations (10 CFR) Parts 60 and 63, which cover deep geologic disposal at a generic site and at Yucca Mountain, Nevada, respectively. As an independent regulator, the US Nuclear Regulatory Commission (NRC) is responsible for licensing and oversight of a high-level waste repository in the United States. The licensing approach for disposal has discreet decisions, made by the NRC, that include approval of construction authorisation, approval to receive and possess high-level radioactive waste, and approval for permanent closure. For construction authorisation approval, the applicant must provide a description of the programme to be used to maintain the records. The NRC will have an active oversight role during the construction and operation period, which can be on the order of 100 years for the facility before permanent closure. The oversight activities are part of the active institutional controls, and serve as a means of conveying knowledge for that initial period, given that this will likely involve multiple generations of workers for both the implementer and the regulator. Additionally, the NRC provides requirements for the physical protection of stored spent nuclear fuel and high-level radioactive waste at 10 CFR Chap. 73.51. For permanent closure approval, the applicant must provide a detailed description of the measures to be employed-such as land use controls, construction of monuments, and preservation of records. The NRC's regulatory role in any licensing action is to apply the applicable regulations and guidance, and to review applications for proposed actions to determine if compliance with regulations has been achieved. The burden of proof is on the applicant or licensee to show that the proposed action is safe, to demonstrate that regulations are met, and to ensure continued compliance with the regulations

  3. Autophagy regulated by miRNAs in colorectal cancer progression and resistance

    Directory of Open Access Journals (Sweden)

    Andrew Fesler

    2017-01-01

    Full Text Available The catabolic process of autophagy is an essential cellular function that allows for the breakdown and recycling of cellular macromolecules. In recent years, the impact of epigenetic regulation of autophagy by noncoding miRNAs has been recognized in human cancer. In colorectal cancer, autophagy plays critical roles in cancer progression as well as resistance to chemotherapy, and recent evidence demonstrates that miRNAs are directly involved in mediating these functions. In this review, we focus on the recent advancements in the field of miRNA regulation of autophagy in colorectal cancer.

  4. Small nucleoli are a cellular hallmark of longevity.

    Science.gov (United States)

    Tiku, Varnesh; Jain, Chirag; Raz, Yotam; Nakamura, Shuhei; Heestand, Bree; Liu, Wei; Späth, Martin; Suchiman, H Eka D; Müller, Roman-Ulrich; Slagboom, P Eline; Partridge, Linda; Antebi, Adam

    2016-08-30

    Animal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa.

  5. Redox regulation in cancer stem cells

    Science.gov (United States)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  6. Gene regulation by MAP kinase cascades

    DEFF Research Database (Denmark)

    Fiil, Berthe Katrine; Petersen, Klaus; Petersen, Morten

    2009-01-01

    Mitogen-activated protein kinase (MAPK) cascades are signaling modules that transduce extracellular stimuli to a range of cellular responses. Research in yeast and metazoans has shown that MAPK-mediated phosphorylation directly or indirectly regulates the activity of transcription factors. Plant ...

  7. High-Performance Liquid Chromatography (HPLC)-Based Detection and Quantitation of Cellular c-di-GMP.

    Science.gov (United States)

    Petrova, Olga E; Sauer, Karin

    2017-01-01

    The modulation of c-di-GMP levels plays a vital role in the regulation of various processes in a wide array of bacterial species. Thus, investigation of c-di-GMP regulation requires reliable methods for the assessment of c-di-GMP levels and turnover. Reversed-phase high-performance liquid chromatography (RP-HPLC) analysis has become a commonly used approach to accomplish these goals. The following describes the extraction and HPLC-based detection and quantification of c-di-GMP from Pseudomonas aeruginosa samples, a procedure that is amenable to modifications for the analysis of c-di-GMP in other bacterial species.

  8. Cellular automata approach to investigation of high burn-up structures in nuclear reactor fuel

    International Nuclear Information System (INIS)

    Akishina, E.P.; Ivanov, V.V.; Kostenko, B.F.

    2005-01-01

    Micrographs of uranium dioxide (UO 2 ) corresponding to exposure times in reactor during 323, 953, 971, 1266 and 1642 full power days were investigated. The micrographs were converted into digital files isomorphous to cellular automata (CA) checkerboards. Such a representation of the fuel structure provides efficient tools for its dynamics simulation in terms of primary 'entities' imprinted in the micrographs. Besides, it also ensures a possibility of very effective micrograph processing by CA means. Interconnection between the description of fuel burn-up development and some exactly soluble models is ascertained. Evidences for existence of self-organization in the fuel at high burn-ups were established. The fractal dimension of microstructures is found to be an important characteristic describing the degree of radiation destructions

  9. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis

    OpenAIRE

    Horner, Michael A.; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M.; Thummel, Carl S.

    2009-01-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-choleste...

  10. RNA-Mediated Regulation of HMGA1 Function

    Directory of Open Access Journals (Sweden)

    Arndt G. Benecke

    2015-05-01

    Full Text Available The high mobility group protein A1 (HMGA1 is a master regulator of chromatin structure mediating its major gene regulatory activity by direct interactions with A/T-rich DNA sequences located in the promoter and enhancer regions of a large variety of genes. HMGA1 DNA-binding through three AT-hook motifs results in an open chromatin structure and subsequently leads to changes in gene expression. Apart from its significant expression during development, HMGA1 is over-expressed in virtually every cancer, where HMGA1 expression levels correlate with tumor malignancy. The exogenous overexpression of HMGA1 can lead to malignant cell transformation, assigning the protein a key role during cancerogenesis. Recent studies have unveiled highly specific competitive interactions of HMGA1 with cellular and viral RNAs also through an AT-hook domain of the protein, significantly impacting the HMGA1-dependent gene expression. In this review, we discuss the structure and function of HMGA1-RNA complexes during transcription and epigenomic regulation and their implications in HMGA1-related diseases.

  11. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  12. Mechanisms and cellular functions of intramembrane proteases.

    Science.gov (United States)

    Urban, Siniša

    2013-12-01

    The turn of the millennium coincided with the branding of a fundamentally different class of enzyme - proteases that reside immersed inside the membrane. This new field was the convergence of completely separate lines of research focused on cholesterol homeostasis, Alzheimer's disease, and developmental genetics. None intended their ultimate path, but soon became a richly-integrated fabric for an entirely new field: regulated intramembrane proteolysis. Our aim in this Special Issue is to focus on the ancient and nearly ubiquitous enzymes that catalyze this unexpected yet important reaction. The pace of progress has been dramatic, resulting in a rapidly-expanding universe of known cellular functions, and a paradigm shift in the biochemical understanding of these once heretical enzymes. More recently, the first therapeutic successes have been attained by targeting an intramembrane protease. We consider these advances and identify oncoming opportunities in four parts: growing spectra of cellular roles, insights into biochemical mechanisms, therapeutic strategies, and newly-emerging topics. Recent studies also expose challenges for the future, including non-linear relationships between substrate identification and physiological functions, and the need for potent and specific, not broad-class, inhibitors. © 2013.

  13. Improving self-regulated learning junior high school students through computer-based learning

    Science.gov (United States)

    Nurjanah; Dahlan, J. A.

    2018-05-01

    This study is back grounded by the importance of self-regulated learning as an affective aspect that determines the success of students in learning mathematics. The purpose of this research is to see how the improvement of junior high school students' self-regulated learning through computer based learning is reviewed in whole and school level. This research used a quasi-experimental research method. This is because individual sample subjects are not randomly selected. The research design used is Pretest-and-Posttest Control Group Design. Subjects in this study were students of grade VIII junior high school in Bandung taken from high school (A) and middle school (B). The results of this study showed that the increase of the students' self-regulated learning who obtain learning with computer-based learning is higher than students who obtain conventional learning. School-level factors have a significant effect on increasing of the students' self-regulated learning.

  14. Redox Regulation of Mitochondrial Function

    Science.gov (United States)

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  15. Bringing the light to high throughput screening: use of optogenetic tools for the development of recombinant cellular assays

    Science.gov (United States)

    Agus, Viviana; Di Silvio, Alberto; Rolland, Jean Francois; Mondini, Anna; Tremolada, Sara; Montag, Katharina; Scarabottolo, Lia; Redaelli, Loredana; Lohmer, Stefan

    2015-03-01

    The use of light-activated proteins represents a powerful tool to control biological processes with high spatial and temporal precision. These so called "optogenetic" technologies have been successfully validated in many recombinant systems, and have been widely applied to the study of cellular mechanisms in intact tissues or behaving animals; to do that, complex, high-intensity, often home-made instrumentations were developed to achieve the optimal power and precision of light stimulation. In our study we sought to determine if this optical modulation can be obtained also in a miniaturized format, such as a 384-well plate, using the instrumentations normally dedicated to fluorescence analysis in High Throughput Screening (HTS) activities, such as for example the FLIPR (Fluorometric Imaging Plate Reader) instrument. We successfully generated optogenetic assays for the study of different ion channel targets: the CaV1.3 calcium channel was modulated by the light-activated Channelrhodopsin-2, the HCN2 cyclic nucleotide gated (CNG) channel was modulated by the light activated bPAC adenylyl cyclase, and finally the genetically encoded voltage indicator ArcLight was efficiently used to measure potassium, sodium or chloride channel activity. Our results showed that stable, robust and miniaturized cellular assays can be developed using different optogenetic tools, and efficiently modulated by the FLIPR instrument LEDs in a 384-well format. The spatial and temporal resolution delivered by this technology might enormously advantage the early stages of drug discovery, leading to the identification of more physiological and effective drug molecules.

  16. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids

    International Nuclear Information System (INIS)

    Spilsberg, Bjorn; Hanada, Kentaro; Sandvig, Kirsten

    2005-01-01

    Diphtheria toxin is translocated across cellular membranes when receptor-bound toxin is exposed to low pH. To study the role of sphingolipids for toxin translocation, both a mutant cell line lacking the first enzyme in de novo sphingolipid synthesis, serine palmitoyltransferase, and a specific inhibitor of the same enzyme, myriocin, were used. The serine palmitoyltransferase-deficient cell line (LY-B) was found to be 10-15 times more sensitive to diphtheria toxin than the genetically complemented cell line (LY-B/cLCB1) and the wild-type cell line (CHO-K1), both when toxin translocation directly across the plasma membrane was induced by exposing cells with surface-bound toxin to low pH, and when the toxin followed its normal route via acidified endosomes into the cytosol. Toxin binding was similar in these three cell lines. Furthermore, inhibition of serine palmitoyltransferase activity by addition of myriocin sensitized the two control cell lines (LY-B/cLCB1 and CHO-K1) to diphtheria toxin, whereas, as expected, no effect was observed in cells lacking serine palmitoyltransferase (LY-B). In conclusion, diphtheria toxin translocation is facilitated by depletion of membrane sphingolipids

  17. Antioxidant responses and cellular adjustments to oxidative stress.

    Science.gov (United States)

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-12-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Copyright © 2015. Published by Elsevier B.V.

  18. Linearizable cellular automata

    International Nuclear Information System (INIS)

    Nobe, Atsushi; Yura, Fumitaka

    2007-01-01

    The initial value problem for a class of reversible elementary cellular automata with periodic boundaries is reduced to an initial-boundary value problem for a class of linear systems on a finite commutative ring Z 2 . Moreover, a family of such linearizable cellular automata is given

  19. Performance of high-temperature superconducting band-pass filters with high selectivity for base transceiver applications of digital cellular communication systems

    Science.gov (United States)

    Kwak, J. S.; Lee, J. H.; Kim, C. O.; Hong, J. P.; Han, S. K.; Char, K.

    2002-07-01

    Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5 × 17 × 41 mm3. The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge.

  20. Performance of high-temperature superconducting band-pass filters with high selectivity for base transceiver applications of digital cellular communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J.S.; Lee, J.H.; Kim, C.O.; Hong, J.P. [Department of Physics, Hanyang University, Seoul (Korea, Republic of); Han, S.K.; Char, K. [RFtron Inc., Seoul (Korea, Republic of)

    2002-07-01

    Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5x17x41 mm{sup 3}. The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge. (author)

  1. Performance of high-temperature superconducting band-pass filters with high selectivity for base transceiver applications of digital cellular communication systems

    International Nuclear Information System (INIS)

    Kwak, J.S.; Lee, J.H.; Kim, C.O.; Hong, J.P.; Han, S.K.; Char, K.

    2002-01-01

    Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5x17x41 mm 3 . The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge. (author)

  2. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  3. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.

    Science.gov (United States)

    Katzir, Yair; Stolovicki, Elad; Stern, Shay; Braun, Erez

    2012-01-01

    The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is the emergence of a yet

  5. Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning.

    Science.gov (United States)

    Kobayashi, Hirofumi; Lei, Cheng; Wu, Yi; Mao, Ailin; Jiang, Yiyue; Guo, Baoshan; Ozeki, Yasuyuki; Goda, Keisuke

    2017-09-29

    In the last decade, high-content screening based on multivariate single-cell imaging has been proven effective in drug discovery to evaluate drug-induced phenotypic variations. Unfortunately, this method inherently requires fluorescent labeling which has several drawbacks. Here we present a label-free method for evaluating cellular drug responses only by high-throughput bright-field imaging with the aid of machine learning algorithms. Specifically, we performed high-throughput bright-field imaging of numerous drug-treated and -untreated cells (N = ~240,000) by optofluidic time-stretch microscopy with high throughput up to 10,000 cells/s and applied machine learning to the cell images to identify their morphological variations which are too subtle for human eyes to detect. Consequently, we achieved a high accuracy of 92% in distinguishing drug-treated and -untreated cells without the need for labeling. Furthermore, we also demonstrated that dose-dependent, drug-induced morphological change from different experiments can be inferred from the classification accuracy of a single classification model. Our work lays the groundwork for label-free drug screening in pharmaceutical science and industry.

  6. Epigenetic Regulation of Monocyte and Macrophage Function

    NARCIS (Netherlands)

    Hoeksema, Marten A.; de Winther, Menno P. J.

    2016-01-01

    Monocytes and macrophages are key players in tissue homeostasis and immune responses. Epigenetic processes tightly regulate cellular functioning in health and disease. Recent Advances: Recent technical developments have allowed detailed characterizations of the transcriptional circuitry underlying

  7. The PTEN protein: cellular localization and post-translational regulation.

    Science.gov (United States)

    Leslie, Nick R; Kriplani, Nisha; Hermida, Miguel A; Alvarez-Garcia, Virginia; Wise, Helen M

    2016-02-01

    The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphatase dephosphorylates PIP3, the lipid product of the class I PI 3-kinases, and suppresses the growth and proliferation of many cell types. It has been heavily studied, in large part due to its status as a tumour suppressor, the loss of function of which is observed through diverse mechanisms in many tumour types. Here we present a concise review of our understanding of the PTEN protein and highlight recent advances, particularly in our understanding of its localization and regulation by ubiquitination and SUMOylation. © 2016 Authors; published by Portland Press Limited.

  8. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2016-09-01

    Full Text Available Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase. Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline that may be potential for antiviral indication (e.g. anti-Ebola. In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  9. Post-transcriptional regulation of vascular endothelial growth factor: Implications for tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Peter S Yoo; Abby L Mulkeen; Charles H Cha

    2006-01-01

    Vascular endothelial growth factor (VEGF) is a potent secreted mitogen critical for physiologic and tumor angiogenesis. Regulation of VEGF occurs at several levels, including transcription, mRNA stabilization,translation, and differential cellular localization of various isoforms. Recent advances in our understanding of posttranscriptional regulation of VEGF include identification of the stabilizing mRNA binding protein, HuR, and the discovery of internal ribosomal entry sites in the 5'UTR of the VEGF mRNA. Monoclonal anti-VEGF antibody was recently approved for use in humans, but suffers from the need for high systemic doses. RNA interference (RNAi)technology is being used in vitro and in animal models with promising results. Here, we review the literature on post-transcriptional regulation of VEGF and describe recent progress in targeting these mechanisms for therapeutic benefit.

  10. A p300 and SIRT1 Regulated Acetylation Switch of C/EBPα Controls Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Mohamad A. Zaini

    2018-01-01

    Full Text Available Summary: Cellular metabolism is a tightly controlled process in which the cell adapts fluxes through metabolic pathways in response to changes in nutrient supply. Among the transcription factors that regulate gene expression and thereby cause changes in cellular metabolism is the basic leucine-zipper (bZIP transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα. Protein lysine acetylation is a key post-translational modification (PTM that integrates cellular metabolic cues with other physiological processes. Here, we show that C/EBPα is acetylated by the lysine acetyl transferase (KAT p300 and deacetylated by the lysine deacetylase (KDAC sirtuin1 (SIRT1. SIRT1 is activated in times of energy demand by high levels of nicotinamide adenine dinucleotide (NAD+ and controls mitochondrial biogenesis and function. A hypoacetylated mutant of C/EBPα induces the transcription of mitochondrial genes and results in increased mitochondrial respiration. Our study identifies C/EBPα as a key mediator of SIRT1-controlled adaption of energy homeostasis to changes in nutrient supply. : Zaini et al. show that the transcription factor C/EBPα is acetylated by p300 and deacetylated by the lysine deacetylase SIRT1. Hypoacetylated C/EBPα induces the transcription of mitochondrial genes and results in increased mitochondrial respiration. C/EBPα is a key mediator of SIRT1-controlled adaption of energy homeostasis to changes in nutrient supply. Keywords: C/EBPα, SIRT1, p300, lysine acetylation, mitochondrial function, cellular metabolism, NAD+, gene regulation

  11. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.

    Science.gov (United States)

    Lill, Roland; Hoffmann, Bastian; Molik, Sabine; Pierik, Antonio J; Rietzschel, Nicole; Stehling, Oliver; Uzarska, Marta A; Webert, Holger; Wilbrecht, Claudia; Mühlenhoff, Ulrich

    2012-09-01

    Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Design and evaluation of cellular power converter architectures

    Science.gov (United States)

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed

  13. Cellular 5G Access for Massive Internet of Things

    DEFF Research Database (Denmark)

    Madueño, Germán Corrales; Pratas, Nuno; Stefanovic, Cedomir

    2017-01-01

    The Internet of Things (IoT) refers to the paradigm of physical and virtual “things” that communicate and collaborate over the Internet, with minimal or no human intervention. There are multiple ways in which an IoT device can be connected to the Internet. Cellular technologies are seen as viable...... candidates in this respect, due to their maturity, worldwide availability and the use of reserved spectrum. However, current cellular systems are not well-equipped to efficiently and reliably support IoT traffic, particularly in the radio access part, as they are designed for low number of high......-rate connections and not for high number of low-rate IoT connections. In this chapter we outline the main features of the IoT traffic types, review operation of the current cellular access and provide some guidelines how to address its shortcomings and evolve it in order to support IoT services. However...

  14. UV laser-ablated surface textures as potential regulator of cellular response.

    Science.gov (United States)

    Chandra, Prafulla; Lai, Karen; Sung, Hak-Joon; Murthy, N Sanjeeva; Kohn, Joachim

    2010-06-01

    Textured surfaces obtained by UV laser ablation of poly(ethylene terephthalate) films were used to study the effect of shape and spacing of surface features on cellular response. Two distinct patterns, cones and ripples with spacing from 2 to 25 μm, were produced. Surface features with different shapes and spacings were produced by varying pulse repetition rate, laser fluence, and exposure time. The effects of the surface texture parameters, i.e., shape and spacing, on cell attachment, proliferation, and morphology of neonatal human dermal fibroblasts and mouse fibroblasts were studied. Cell attachment was the highest in the regions with cones at ∼4 μm spacing. As feature spacing increased, cell spreading decreased, and the fibroblasts became more circular, indicating a stress-mediated cell shrinkage. This study shows that UV laser ablation is a useful alternative to lithographic techniques to produce surface patterns for controlling cell attachment and growth on biomaterial surfaces.

  15. Negative Regulation of STAT3 Protein-mediated Cellular Respiration by SIRT1 Protein

    DEFF Research Database (Denmark)

    Bernier, Michel; Paul, Rajib K; Martin-Montalvo, Alejandro

    2011-01-01

    those of wild-type controls. Comparison of profiles of phospho-antibody array data indicated that the deletion of SirT1 was accompanied by constitutive activation of the pro-inflammatory NF-¿B pathway, which is key for STAT3 induction and increased cellular respiration in Sirt1-KO cells. Thus, SIRT1...... cells exhibited higher mitochondrial respiration as compared with wild-type MEFs. Two independent approaches, including ectopic expression of SIRT1 and siRNA-mediated knockdown of STAT3, led to reduction in intracellular ATP levels and increased lactate production in Sirt1-KO cells that were approaching...

  16. A high-throughput cellular assay to quantify the p53-degradation activity of E6 from different human papillomavirus types.

    Science.gov (United States)

    Gagnon, David; Archambault, Jacques

    2015-01-01

    A subset of human papillomaviruses (HPVs), known as the high-risk types, are the causative agents of cervical cancer and other malignancies of the anogenital region and oral mucosa. The capacity of these viruses to induce cancer and to immortalize cells in culture relies in part on a critical function of their E6 oncoprotein, that of promoting the poly-ubiquitination of the cellular tumor suppressor protein p53 and its subsequent degradation by the proteasome. Here, we describe a cellular assay to measure the p53-degradation activity of E6 from different HPV types. This assay is based on a translational fusion of p53 to Renilla luciferase (Rluc-p53) that remains sensitive to degradation by high-risk E6 and whose steady-state levels can be accurately measured in standard luciferase assays. The p53-degradation activity of any E6 protein can be tested and quantified in transiently transfected cells by determining the amount of E6-expression vector required to reduce by half the levels of RLuc-p53 luciferase activity (50 % effective concentration [EC50]). The high-throughput and quantitative nature of this assay makes it particularly useful to compare the p53-degradation activities of E6 from several HPV types in parallel.

  17. Autophagy Facilitates IFN-γ-induced Jak2-STAT1 Activation and Cellular Inflammation*

    Science.gov (United States)

    Chang, Yu-Ping; Tsai, Cheng-Chieh; Huang, Wei-Ching; Wang, Chi-Yun; Chen, Chia-Ling; Lin, Yee-Shin; Kai, Jui-In; Hsieh, Chia-Yuan; Cheng, Yi-Lin; Choi, Pui-Ching; Chen, Shun-Hua; Chang, Shih-Ping; Liu, Hsiao-Sheng; Lin, Chiou-Feng

    2010-01-01

    Autophagy is regulated for IFN-γ-mediated antimicrobial efficacy; however, its molecular effects for IFN-γ signaling are largely unknown. Here, we show that autophagy facilitates IFN-γ-activated Jak2-STAT1. IFN-γ induces autophagy in wild-type but not in autophagy protein 5 (Atg5−/−)-deficient mouse embryonic fibroblasts (MEFs), and, autophagy-dependently, IFN-γ induces IFN regulatory factor 1 and cellular inflammatory responses. Pharmacologically inhibiting autophagy using 3-methyladenine, a known inhibitor of class III phosphatidylinositol 3-kinase, confirms these effects. Either Atg5−/− or Atg7−/− MEFs are, independent of changes in IFN-γ receptor expression, resistant to IFN-γ-activated Jak2-STAT1, which suggests that autophagy is important for IFN-γ signal transduction. Lentivirus-based short hairpin RNA for Atg5 knockdown confirmed the importance of autophagy for IFN-γ-activated STAT1. Without autophagy, reactive oxygen species increase and cause SHP2 (Src homology-2 domain-containing phosphatase 2)-regulated STAT1 inactivation. Inhibiting SHP2 reversed both cellular inflammation and the IFN-γ-induced activation of STAT1 in Atg5−/− MEFs. Our study provides evidence that there is a link between autophagy and both IFN-γ signaling and cellular inflammation and that autophagy, because it inhibits the expression of reactive oxygen species and SHP2, is pivotal for Jak2-STAT1 activation. PMID:20592027

  18. Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.

    Science.gov (United States)

    Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana

    2017-05-01

    Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  19. Proposal to regulate human exposure limits to electromagnetic fields produced by cellular telephony systems in Costa Rica

    International Nuclear Information System (INIS)

    Gomez Lizano, Cristian; Calvo Horth, Gustavo; Dompe Gamboa, Pablo; Ramirez Rodriguez, David; Retana Duran, Elias; Gutierrez Chinchilla, Jose Alcides

    2008-01-01

    Modern society has presented an epic technology development in recent years, driven strongly by communications networks: from micro environments such as personal area networks passing by cell phone to the global Internet network. The communications established in real-time are increasingly, a necessary input. However, the growing demand for communications services and in particularly mobile phone, has meant that the environment is altered by the large number of signals generated by electromagnetic fields that transmit high volumes of energy, which saturate the electromagnetic spectrum, these waves of energy called no ionizing energy. The World Health Organization, through the International Energy Agency Nonionizing (ICNIRP for its acronym in English), has conducted in recent years researches on the effects of the health of people exposed to nonionizing energy; also, have existed proposals regulating these exposure levels. Nonionizing electromagnetic fields are investigated, focusing on transmitting equipment for mobile phone systems in Costa Rica and electromagnetic safety criteria of exposure, both occupational as of general public. The electromagnetism basic concepts and parameters related with nonionizing radiations research are referenced, among them can be mentioned the relationship between the electric field E, the magnetic field H and the power density S. Other concepts such as near-field region, far-field region, exposure zones and specified absorption rate SAR, are also defined. A mathematical fundament is presented showing the relationships between the concepts explained. Guidelines for calculating the power density are provided by means of a theoretical estimate from parameters of transmitting equipment. Also, the procedures for calculating the spatial and temporal averaging are set out and a brief overview is made of epidemiological and biological effects caused by radio frequency radiation. The existing rules at the international level are analyzed to

  20. Adamantyl Glycosphingolipids Provide a New Approach to the Selective Regulation of Cellular Glycosphingolipid Metabolism*

    OpenAIRE

    Kamani, Mustafa; Mylvaganam, Murugesapillai; Tian, Robert; Rigat, Brigitte; Binnington, Beth; Lingwood, Clifford

    2011-01-01

    Mammalian glycosphingolipid (GSL) precursor monohexosylceramides are either glucosyl- or galactosylceramide (GlcCer or GalCer). Most GSLs derive from GlcCer. Substitution of the GSL fatty acid with adamantane generates amphipathic mimics of increased water solubility, retaining receptor function. We have synthesized adamantyl GlcCer (adaGlcCer) and adamantyl GalCer (adaGalCer). AdaGlcCer and adaGalCer partition into cells to alter GSL metabolism. At low dose, adaGlcCer increased cellular GSLs...

  1. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity.

    Science.gov (United States)

    Ding, Mei; Wang, Xin

    2017-12-01

    The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.

  2. Regulation and drive system for high rep-rate magnetic-pulse compressors

    International Nuclear Information System (INIS)

    Birx, D.L.; Cook, E.G.; Hawkins, S.; Meyers, A.; Reginato, L.L.; Schmidt, J.A.; Smith, M.W.

    1982-01-01

    The essentially unlimited rep-rate capability of non-linear magnetic systems has imposed strict requirements on the drive system which initiates the pulse compression. An order of magnitude increase in the rep-rates achieved by the Advanced Test Accelerator (ATA) gas blown system is not difficult to achieve in the magnetic compressor. The added requirement of having a high degree of regulation at the higher rep-rates places strict requirements on the triggerable switch for charging and de-Queing. A novel feedback technique which applies the proper bias to a magnetic core by comparing a reference voltage to the charging voltage eases considerably the regulation required to achieve low jitter in magnetic compression. The performance of the high rep-rate charging and regulation systems will be described in the following pages

  3. Cellular Chaperones As Therapeutic Targets in ALS to Restore Protein Homeostasis and Improve Cellular Function

    Directory of Open Access Journals (Sweden)

    Bernadett Kalmar

    2017-09-01

    Full Text Available Heat shock proteins (Hsps are ubiquitously expressed chaperone proteins that enable cells to cope with environmental stresses that cause misfolding and denaturation of proteins. With aging this protein quality control machinery becomes less effective, reducing the ability of cells to cope with damaging environmental stresses and disease-causing mutations. In neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS, such mutations are known to result in protein misfolding, which in turn results in the formation of intracellular aggregates cellular dysfunction and eventual neuronal death. The exact cellular pathology of ALS and other neurodegenerative diseases has been elusive and thus, hindering the development of effective therapies. However, a common scheme has emerged across these “protein misfolding” disorders, in that the mechanism of disease involves one or more aspects of proteostasis; from DNA transcription, RNA translation, to protein folding, transport and degradation via proteosomal and autophagic pathways. Interestingly, members of the Hsp family are involved in each of these steps facilitating normal protein folding, regulating the rate of protein synthesis and degradation. In this short review we summarize the evidence that suggests that ALS is a disease of protein dyshomeostasis in which Hsps may play a key role. Overwhelming evidence now indicates that enabling protein homeostasis to cope with disease-causing mutations might be a successful therapeutic strategy in ALS, as well as other neurodegenerative diseases. Novel small molecule co-inducers of Hsps appear to be able to achieve this aim. Arimoclomol, a hydroxylamine derivative, has shown promising results in cellular and animal models of ALS, as well as other protein misfolding diseases such as Inclusion Body Myositis (IBM. Initial clinical investigations of Arimoclomol have shown promising results. Therefore, it is possible that the long series of

  4. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes

    DEFF Research Database (Denmark)

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy

    2013-01-01

    to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance...... is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription...

  5. Actin retrograde flow controls natural killer cell response by regulating the conformation state of SHP-1.

    Science.gov (United States)

    Matalon, Omri; Ben-Shmuel, Aviad; Kivelevitz, Jessica; Sabag, Batel; Fried, Sophia; Joseph, Noah; Noy, Elad; Biber, Guy; Barda-Saad, Mira

    2018-03-01

    Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin-myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between β-actin and the SH2-domain-containing protein tyrosine phosphatase-1 (SHP-1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP-1 in additional cellular systems. © 2018 The Authors.

  6. Quantitative analysis of proteome and lipidome dynamics reveals functional regulation of global lipid metabolism

    DEFF Research Database (Denmark)

    Casanovas, Albert; Sprenger, Richard R; Tarasov, Kirill

    2015-01-01

    Elucidating how and to what extent lipid metabolism is remodeled under changing conditions is essential for understanding cellular physiology. Here, we analyzed proteome and lipidome dynamics to investigate how regulation of lipid metabolism at the global scale supports remodeling of cellular...

  7. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    Science.gov (United States)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  8. An Overview and Analysis of Mobile Internet Protocols in Cellular Environments.

    Science.gov (United States)

    Chao, Han-Chieh

    2001-01-01

    Notes that cellular is the inevitable future architecture for the personal communication service system. Discusses the current cellular support based on Mobile Internet Protocol version 6 (Ipv6) and points out the shortfalls of using Mobile IP. Highlights protocols especially for mobile management schemes which can optimize a high-speed mobile…

  9. The Interplay between Feedback and Buffering in Cellular Homeostasis.

    Science.gov (United States)

    Hancock, Edward J; Ang, Jordan; Papachristodoulou, Antonis; Stan, Guy-Bart

    2017-11-22

    Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Yoga and Emotion Regulation in High School Students: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Leslie A. Daly

    2015-01-01

    Full Text Available Middle adolescents (15–17 years old are prone to increased risk taking and emotional instability. Emotion dysregulation contributes to a variety of psychosocial difficulties in this population. A discipline such as yoga offered during school may increase emotion regulation, but research in this area is lacking. This study was designed to evaluate the impact of a yoga intervention on the emotion regulation of high school students as compared to physical education (PE. In addition, the potential mediating effects of mindful attention, self-compassion, and body awareness on the relationship between yoga and emotion regulation were examined. High school students were randomized to participate in a 16-week yoga intervention (n=19 or regular PE (n=18. Pre-post data analyses revealed that emotion regulation increased significantly in the yoga group as compared to the PE group (F (1,32 = 7.50, p=.01, and eta2 = .19. No significant relationship was discovered between the changes in emotion regulation and the proposed mediating variables. Preliminary results suggest that yoga increases emotion regulation capacities of middle adolescents and provides benefits beyond that of PE alone.

  11. Ion Channels Involved in Cell Volume Regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay

    2011-01-01

    regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation......This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume...

  12. Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics.

    Science.gov (United States)

    Pietzke, Matthias; Zasada, Christin; Mudrich, Susann; Kempa, Stefan

    2014-01-01

    Cellular metabolism is highly dynamic and continuously adjusts to the physiological program of the cell. The regulation of metabolism appears at all biological levels: (post-) transcriptional, (post-) translational, and allosteric. This regulatory information is expressed in the metabolome, but in a complex manner. To decode such complex information, new methods are needed in order to facilitate dynamic metabolic characterization at high resolution. Here, we describe pulsed stable isotope-resolved metabolomics (pSIRM) as a tool for the dynamic metabolic characterization of cellular metabolism. We have adapted gas chromatography-coupled mass spectrometric methods for metabolomic profiling and stable isotope-resolved metabolomics. In addition, we have improved robustness and reproducibility and implemented a strategy for the absolute quantification of metabolites. By way of examples, we have applied this methodology to characterize central carbon metabolism of a panel of cancer cell lines and to determine the mode of metabolic inhibition of glycolytic inhibitors in times ranging from minutes to hours. Using pSIRM, we observed that 2-deoxyglucose is a metabolic inhibitor, but does not directly act on the glycolytic cascade.

  13. Acrolein-Exposed Normal Human Lung Fibroblasts in Vitro: Cellular Senescence, Enhanced Telomere Erosion, and Degradation of Werner’s Syndrome Protein

    Science.gov (United States)

    Jang, Jun-Ho; Bruse, Shannon; Huneidi, Salam; Schrader, Ronald M.; Monick, Martha M.; Lin, Yong; Carter, A. Brent; Klingelhutz, Aloysius J.

    2014-01-01

    Background: Acrolein is a ubiquitous environmental hazard to human health. Acrolein has been reported to activate the DNA damage response and induce apoptosis. However, little is known about the effects of acrolein on cellular senescence. Objectives: We examined whether acrolein induces cellular senescence in cultured normal human lung fibroblasts (NHLF). Methods: We cultured NHLF in the presence or absence of acrolein and determined the effects of acrolein on cell proliferative capacity, senescence-associated β-galactosidase activity, the known senescence-inducing pathways (e.g., p53, p21), and telomere length. Results: We found that acrolein induced cellular senescence by increasing both p53 and p21. The knockdown of p53 mediated by small interfering RNA (siRNA) attenuated acrolein-induced cellular senescence. Acrolein decreased Werner’s syndrome protein (WRN), a member of the RecQ helicase family involved in DNA repair and telomere maintenance. Acrolein-induced down-regulation of WRN protein was rescued by p53 knockdown or proteasome inhibition. Finally, we found that acrolein accelerated p53-mediated telomere shortening. Conclusions: These results suggest that acrolein induces p53-mediated cellular senescence accompanied by enhanced telomere attrition and WRN protein down-regulation. Citation: Jang JH, Bruse S, Huneidi S, Schrader RM, Monick MM, Lin Y, Carter AB, Klingelhutz AJ, Nyunoya T. 2014. Acrolein-exposed normal human lung fibroblasts in vitro: cellular senescence, enhanced telomere erosion, and degradation of Werner’s syndrome protein. Environ Health Perspect 122:955–962; http://dx.doi.org/10.1289/ehp.1306911 PMID:24747221

  14. Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects.

    Science.gov (United States)

    Juling, Sabine; Niedzwiecka, Alicia; Böhmert, Linda; Lichtenstein, Dajana; Selve, Sören; Braeuning, Albert; Thünemann, Andreas F; Krause, Eberhard; Lampen, Alfonso

    2017-11-03

    The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment.

  15. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations

    DEFF Research Database (Denmark)

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena

    2014-01-01

    isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca2+ overload evoked by 59 m....... In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca2+ overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca2......+-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient...

  16. Mitochondrial regulation of cell death: a phylogenetically conserved control

    Directory of Open Access Journals (Sweden)

    Lorenzo Galluzzi

    2016-02-01

    Full Text Available Mitochondria are fundamental for eukaryotic cells as they participate in critical catabolic and anabolic pathways. Moreover, mitochondria play a key role in the signal transduction cascades that precipitate many (but not all regulated variants of cellular demise. In this short review, we discuss the differential implication of mitochondria in the major forms of regulated cell death.

  17. Dynamic behavior of cellular materials and cellular structures: Experiments and modeling

    Science.gov (United States)

    Gao, Ziyang

    Cellular solids, including cellular materials and cellular structures (CMS), have attracted people's great interests because of their low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They offer potential for lightweight structures, energy absorption, thermal management, etc. Therefore, the studies of cellular solids have become one of the hottest research fields nowadays. From energy absorption point of view, any plastically deformed structures can be divided into two types (called type I and type II), and the basic cells of the CMS may take the configurations of these two types of structures. Accordingly, separated discussions are presented in this thesis. First, a modified 1-D model is proposed and numerically solved for a typical type II structure. Good agreement is achieved with the previous experimental data, hence is used to simulate the dynamic behavior of a type II chain. Resulted from different load speeds, interesting collapse modes are observed, and the parameters which govern the cell's post-collapse behavior are identified through a comprehensive non-dimensional analysis on general cellular chains. Secondly, the MHS specimens are chosen as an example of type I foam materials because of their good uniformity of the cell geometry. An extensive experimental study was carried out, where more attention was paid to their responses to dynamic loadings. Great enhancement of the stress-strain curve was observed in dynamic cases, and the energy absorption capacity is found to be several times higher than that of the commercial metal foams. Based on the experimental study, finite elemental simulations and theoretical modeling are also conducted, achieving good agreements and demonstrating the validities of those models. It is believed that the experimental, numerical and analytical results obtained in the present study will certainly deepen the understanding of the unsolved fundamental issues on the mechanical behavior of

  18. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  19. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775

  20. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    International Nuclear Information System (INIS)

    Eldawud, Reem; Dinu, Cerasela Zoica; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. (paper)

  1. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  2. Histone deacetylases as regulators of inflammation and immunity.

    Science.gov (United States)

    Shakespear, Melanie R; Halili, Maria A; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J

    2011-07-01

    Histone deacetylases (HDACs) remove an acetyl group from lysine residues of target proteins to regulate cellular processes. Small-molecule inhibitors of HDACs cause cellular growth arrest, differentiation and/or apoptosis, and some are used clinically as anticancer drugs. In animal models, HDAC inhibitors are therapeutic for several inflammatory diseases, but exacerbate atherosclerosis and compromise host defence. Loss of HDAC function has also been linked to chronic lung diseases in humans. These contrasting effects might reflect distinct roles for individual HDACs in immune responses. Here, we review the current understanding of innate and adaptive immune pathways that are regulated by classical HDAC enzymes. The objective is to provide a rationale for targeting (or not targeting) individual HDAC enzymes with inhibitors for future immune-related applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Molecular and cellular endocrinology of the testis

    International Nuclear Information System (INIS)

    Stefanini, M.; Conti, M.; Geremia, R.; Ziparo, E.

    1986-01-01

    This volume contains the Proceedings of the IV European Workshop on Molecular and Cellular Endocrinology of the Testis held in Capri (Italy) between the 9th and 12th April 1986. The workshop was organized in several symposia related to some of the most relevant aspects of the regulation of testicular function. Main topics were the role of cell interactions, the mechanisms of signal transduction, gene expression and metabolic response of somatic cells as well as differentiation of germ cells. One session was devoted to prostaglandins in the male reproductive system and to brief discussions on interstitial fluid and on antispermatogenic compounds. In this book only the main lectures and some selected short papers are presented. (Auth.)

  4. Cellular and molecular mechanisms coordinating pancreas development.

    Science.gov (United States)

    Bastidas-Ponce, Aimée; Scheibner, Katharina; Lickert, Heiko; Bakhti, Mostafa

    2017-08-15

    The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer. © 2017. Published by The Company of Biologists Ltd.

  5. Imaging of cellular spread on a three-dimensional scaffold by means of a novel cell-labeling technique for high-resolution computed tomography

    NARCIS (Netherlands)

    Thimm, B.W.; Hofmann, S.; Schneider, P.; Carretta, R.; Müller, R.

    2012-01-01

    Computed tomography (CT) represents a truly three-dimensional (3D) imaging technique that can provide high-resolution images on the cellular level. Thus, one approach to detect single cells is X-ray absorption-based CT, where cells are labeled with a dense, opaque material providing the required

  6. Statistical mechanics of cellular automata

    International Nuclear Information System (INIS)

    Wolfram, S.

    1983-01-01

    Cellular automata are used as simple mathematical models to investigate self-organization in statistical mechanics. A detailed analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions approx. =1.59 or approx. =1.69. With ''random'' initial configurations, the irreversible character of the cellular automaton evolution leads to several self-organization phenomena. Statistical properties of the structures generated are found to lie in two universality classes, independent of the details of the initial state or the cellular automaton rules. More complicated cellular automata are briefly considered, and connections with dynamical systems theory and the formal theory of computation are discussed

  7. Investigating the Regulation of Estrogen Receptor-Mediated Transcription

    National Research Council Canada - National Science Library

    Thackray, Varykina

    2002-01-01

    ...-mediated regulation of specific target genes are still lacking. We have developed an estrogen responsive system in the fruit fly, Drosophila melanogaster in order to explore the functional interactions between ER and other cellular proteins...

  8. Investigating the Regulation of Estrogen Receptor-Mediated Transcription

    National Research Council Canada - National Science Library

    Thackray, Varykina

    2001-01-01

    ...-mediated regulation of specific target genes are still lacking. We have developed an estrogen responsive system in the fruit fly, Drosophila melanogaster in order to explore the functional interactions between ER and other cellular proteins...

  9. Wireless Cellular Mobile Communications

    OpenAIRE

    Zalud, V.

    2002-01-01

    In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...

  10. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function

    Science.gov (United States)

    McNamee, Eóin N.; Johnson, Darlynn Korns; Homann, Dirk

    2014-01-01

    Oxygen is a molecule that is central to cellular respiration and viability, yet there are multiple physiologic and pathological contexts in which cells experience conditions of insufficient oxygen availability, a state known as hypoxia. Given the metabolic challenges of a low oxygen environment, hypoxia elicits a range of adaptive responses at the cellular, tissue, and systemic level to promote continued survival and function. Within this context, T lymphocytes are a highly migratory cell type of the adaptive immune system that frequently encounters a wide range of oxygen tensions in both health and disease. It is now clear that oxygen availability regulates T cell differentiation and function, a response orchestrated in large part by the hypoxia-inducible factor transcription factors. Here, we discuss the physiologic scope of hypoxia and hypoxic signaling, the contribution of these pathways in regulating T cell biology, and current gaps in our understanding. Finally, we discuss how emerging therapies that modulate the hypoxic response may offer new modalities to alter T cell function and the outcome of acute and chronic pathologies. PMID:22961658

  11. Digital Cellular Solid Pressure Vessels: A Novel Approach for Human Habitation in Space

    Science.gov (United States)

    Cellucci, Daniel; Jenett, Benjamin; Cheung, Kenneth C.

    2017-01-01

    It is widely assumed that human exploration beyond Earth's orbit will require vehicles capable of providing long duration habitats that simulate an Earth-like environment - consistent artificial gravity, breathable atmosphere, and sufficient living space- while requiring the minimum possible launch mass. This paper examines how the qualities of digital cellular solids - high-performance, repairability, reconfigurability, tunable mechanical response - allow the accomplishment of long-duration habitat objectives at a fraction of the mass required for traditional structural technologies. To illustrate the impact digital cellular solids could make as a replacement to conventional habitat subsystems, we compare recent proposed deep space habitat structural systems with a digital cellular solids pressure vessel design that consists of a carbon fiber reinforced polymer (CFRP) digital cellular solid cylindrical framework that is lined with an ultra-high molecular weight polyethylene (UHMWPE) skin. We use the analytical treatment of a linear specific modulus scaling cellular solid to find the minimum mass pressure vessel for a structure and find that, for equivalent habitable volume and appropriate safety factors, the use of digital cellular solids provides clear methods for producing structures that are not only repairable and reconfigurable, but also higher performance than their conventionally manufactured counterparts.

  12. Cellular phone interference with the operation of mechanical ventilators.

    Science.gov (United States)

    Shaw, Cheryl I; Kacmarek, Robert M; Hampton, Rickey L; Riggi, Vincent; El Masry, Ashraf; Cooper, Jeffrey B; Hurford, William E

    2004-04-01

    To determine whether a cellular phone would interfere with the operation of mechanical ventilators. Laboratory study. University medical center. Fourteen mechanical ventilators. We evaluated change in operation and malfunction of the mechanical ventilators. The cellular phone (Nokia 6120i) was computer controlled, operating at 828.750 MHz analog modulation. It was operated at 16, 40, 100, 250, and 600 mW, 30 cm from the floor and 30, 15, and ventilator. Six of the 14 ventilators tested malfunctioned when a cellular phone at maximum power output was placed ventilating when the cellular phone at maximum power output was placed ventilator. One ventilator doubled the ventilatory rate and another increased the displayed tidal volume from 350 to 1033 mL. In one of the infant ventilators, displayed tidal volume increased from 21 to 100 mL. In another ventilator, the high respiratory rate alarm sounded but the rate had not changed. In a controlled laboratory setting, cellular phones placed in close proximity to some commercially available intensive care ventilators can cause malfunctions, including irrecoverable cessation of ventilation. This is most likely to occur if the cellular phone is or =3 feet from all medical devices. The current electromagnetic compatibility standards for mechanical ventilators are inadequate to prevent malfunction. Manufacturers should ensure that their products are not affected by wireless technology even when placed immediately next to the device.

  13. MSAT and cellular hybrid networking

    Science.gov (United States)

    Baranowsky, Patrick W., II

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  14. TNF and TNF Receptor Superfamily Members in HIV infection: New Cellular Targets for Therapy?

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2013-01-01

    Full Text Available Tumor necrosis factor (TNF and TNF receptors (TNFR superfamily members are engaged in diverse cellular phenomena such as cellular proliferation, morphogenesis, apoptosis, inflammation, and immune regulation. Their role in regulating viral infections has been well documented. Viruses have evolved with numerous strategies to interfere with TNF-mediated signaling indicating the importance of TNF and TNFR superfamily in viral pathogenesis. Recent research reports suggest that TNF and TNFRs play an important role in the pathogenesis of HIV. TNFR signaling modulates HIV replication and HIV proteins interfere with TNF/TNFR pathways. Since immune activation and inflammation are the hallmark of HIV infection, the use of TNF inhibitors can have significant impact on HIV disease progression. In this review, we will describe how HIV infection is modulated by signaling mediated through members of TNF and TNFR superfamily and in turn how these latter could be targeted by HIV proteins. Finally, we will discuss the emerging therapeutics options based on modulation of TNF activity that could ultimately lead to the cure of HIV-infected patients.

  15. Feedback regulation between autophagy and PKA.

    Science.gov (United States)

    Torres-Quiroz, Francisco; Filteau, Marie; Landry, Christian R

    2015-01-01

    Protein kinase A (PKA) controls diverse cellular processes and homeostasis in eukaryotic cells. Many processes and substrates of PKA have been described and among them are direct regulators of autophagy. The mechanisms of PKA regulation and how they relate to autophagy remain to be fully understood. We constructed a reporter of PKA activity in yeast to identify genes affecting PKA regulation. The assay systematically measures relative protein-protein interactions between the regulatory and catalytic subunits of the PKA complex in a systematic set of genetic backgrounds. The candidate PKA regulators we identified span multiple processes and molecular functions (autophagy, methionine biosynthesis, TORC signaling, protein acetylation, and DNA repair), which themselves include processes regulated by PKA. These observations suggest the presence of many feedback loops acting through this key regulator. Many of the candidate regulators include genes involved in autophagy, suggesting that not only does PKA regulate autophagy but that autophagy also sends signals back to PKA.

  16. Protein phosphorylation in bcterial signaling and regulation

    KAUST Repository

    Mijakovic, Ivan

    2016-01-26

    In 2003, it was demonstrated for the first time that bacteria possess protein-tyrosine kinases (BY-kinases), capable of phosphorylating other cellular proteins and regulating their activity. It soon became apparent that these kinases phosphorylate a number of protein substrates, involved in different cellular processes. More recently, we found out that BY-kinases can be activated by several distinct protein interactants, and are capable of engaging in cross-phosphorylation with other kinases. Evolutionary studies based on genome comparison indicate that BY-kinases exist only in bacteria. They are non-essential (present in about 40% bacterial genomes), and their knockouts lead to pleiotropic phenotypes, since they phosphorylate many substrates. Surprisingly, BY-kinase genes accumulate mutations at an increased rate (non-synonymous substitution rate significantly higher than other bacterial genes). One direct consequence of this phenomenon is no detectable co-evolution between kinases and their substrates. Their promiscuity towards substrates thus seems to be “hard-wired”, but why would bacteria maintain such promiscuous regulatory devices? One explanation is the maintenance of BY-kinases as rapidly evolving regulators, which can readily adopt new substrates when environmental changes impose selective pressure for quick evolution of new regulatory modules. Their role is clearly not to act as master regulators, dedicated to triggering a single response, but they might rather be employed to contribute to fine-tuning and improving robustness of various cellular responses. This unique feature makes BY-kinases a potentially useful tool in synthetic biology. While other bacterial kinases are very specific and their signaling pathways insulated, BY-kinase can relatively easily be engineered to adopt new substrates and control new biosynthetic processes. Since they are absent in humans, and regulate some key functions in pathogenic bacteria, they are also very promising

  17. Cellular energy metabolism in T-lymphocytes.

    Science.gov (United States)

    Gaber, Timo; Strehl, Cindy; Sawitzki, Birgit; Hoff, Paula; Buttgereit, Frank

    2015-01-01

    Energy homeostasis is a hallmark of cell survival and maintenance of cell function. Here we focus on the impact of cellular energy metabolism on T-lymphocyte differentiation, activation, and function in health and disease. We describe the role of transcriptional and posttranscriptional regulation of lymphocyte metabolism on immune functions of T cells. We also summarize the current knowledge about T-lymphocyte adaptations to inflammation and hypoxia, and the impact on T-cell behavior of pathophysiological hypoxia (as found in tumor tissue, chronically inflamed joints in rheumatoid arthritis and during bone regeneration). A better understanding of the underlying mechanisms that control immune cell metabolism and immune response may provide therapeutic opportunities to alter the immune response under conditions of either immunosuppression or inflammation, potentially targeting infections, vaccine response, tumor surveillance, autoimmunity, and inflammatory disorders.

  18. Recent insights into Protein Phosphatase 2A structure and regulation: the reasons why PP2A is no longer considered as a lazy passive housekeeping enzyme

    Directory of Open Access Journals (Sweden)

    Martin, M.

    2010-01-01

    Full Text Available Although intracellular signal transduction is often portrayed as a protein kinase "domino effect", the counterbalancing function of phosphatases, and thus the control of phosphatase activity, is equally relevant to proper regulation of cellular function. Protein Phosphatase 2A (PP2A is a widely expressed family of protein phosphatases made of a core dimer, composed of a catalytic (C subunit and a structural (A subunit, in association with a third variable regulatory (B subunit. Although viewed as a constitutive housekeeping enzyme in the past, PP2A is a highly regulated phosphatase and is emerging as an important regulator of multiple cellular processes involving protein phosphorylation. The regulation of PP2A is mainly accomplished by the identity of the regulatory B-type subunit, which determines substrate specificity, subcellular localization and catalytic activity of the PP2A holoenzyme. In agreement with this, recent findings on the structure and post-translational modifications of PP2A emphasize the importance of PP2A holoenzyme composition in its regulation and pleiotropic activities.

  19. Top-down cellular pyramids

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A Y; Rosenfeld, A

    1983-10-01

    A cellular pyramid is an exponentially tapering stack of arrays of processors (cells), where each cell is connected to its neighbors (siblings) on its own level, to a parent on the level above, and to its children on the level below. It is shown that in some situations, if information flows top-down only, from fathers to sons, then a cellular pyramid may be no faster than a one-level cellular array; but it may be possible to use simpler cells in the pyramid case. 23 references.

  20. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-01-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear how NAD+ and NAD+ intermediates shuttle between different

  1. Cellular concrete: a potential load-bearing insulation for cryogenic applications

    International Nuclear Information System (INIS)

    Richard, T.G.; Dobogai, J.A.; Gerhardt, T.D.; Young, W.C.

    1975-01-01

    The need for low cost, low thermal conductivity, high strength insulation suitable for cryogenic applications is becoming more evident. An investigation of the potential of cellular concretes to fulfill this function was initiated. A review of the thermal and mechanical characteristics of foamed plastics and cellular concrete is presented along with relative cost comparisons. Test data from preliminary investigations is presented to define the influence of material constituents, density, and temperature on the mechanical and thermal response of cellular concrete. Specimen densities range from 0.64 to 1.44 gr/cc. The influence of temperature variations from 22 0 C to -196 0 C is reported for selected densities

  2. Differential Regulation of cGMP Signaling in Human Melanoma Cells at Altered Gravity: Simulated Microgravity Down-Regulates Cancer-Related Gene Expression and Motility

    Science.gov (United States)

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hemmersbach, Ruth; Gerzer, Rupert

    2018-03-01

    Altered gravity is known to affect cellular function by changes in gene expression and cellular signaling. The intracellular signaling molecule cyclic guanosine-3',5'-monophosphate (cGMP), a product of guanylyl cyclases (GC), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) or natriuretic peptide-activated GC (GC-A/GC-B), is involved in melanocyte response to environmental stress. NO-sGC-cGMP signaling is operational in human melanocytes and non-metastatic melanoma cells, whereas up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are found in metastatic melanoma cells, the deadliest skin cancer. Here, we investigated the effects of altered gravity on the mRNA expression of NOS isoforms, sGC, GC-A/GC-B and multidrug resistance-associated proteins 4/5 (MRP4/MRP5) as selective cGMP exporters in human melanoma cells with different metastatic potential and pigmentation. A specific centrifuge (DLR, Cologne Germany) was used to generate hypergravity (5 g for 24 h) and a fast-rotating 2-D clinostat (60 rpm) to simulate microgravity values ≤ 0.012 g for 24 h. The results demonstrate that hypergravity up-regulates the endothelial NOS-sGC-MRP4/MRP5 pathway in non-metastatic melanoma cells, but down-regulates it in simulated microgravity when compared to 1 g. Additionally, the suppression of sGC expression and activity has been suggested to correlate inversely to tumor aggressiveness. Finally, hypergravity is ineffective in highly metastatic melanoma cells, whereas simulated microgravity down-regulates predominantly the expression of the cancer-related genes iNOS and GC-A/GC-B (shown additionally on protein levels) as well as motility in comparison to 1 g. The results suggest that future studies in real microgravity can benefit from considering GC-cGMP signaling as possible factor for melanocyte transformation.

  3. FPGA Implementation of one-dimensional and two-dimensional cellular automata

    International Nuclear Information System (INIS)

    D'Antone, I.

    1999-01-01

    This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA)

  4. MEMS capacitive force sensors for cellular and flight biomechanics

    International Nuclear Information System (INIS)

    Sun Yu; Nelson, Bradley J

    2007-01-01

    Microelectromechanical systems (MEMS) are playing increasingly important roles in facilitating biological studies. They are capable of providing not only qualitative but also quantitative information on the cellular, sub-cellular and organism levels, which is instrumental to understanding the fundamental elements of biological systems. MEMS force sensors with their high bandwidth and high sensitivity combined with their small size, in particular, have found a role in this domain, because of the importance of quantifying forces and their effect on the function and morphology of many biological structures. This paper describes our research in the development of MEMS capacitive force sensors that have already demonstrated their effectiveness in the areas of cell mechanics and Drosophila flight dynamics studies. (review article)

  5. Amplitude-phase characteristics of regulators of high -speed automobile diesels

    OpenAIRE

    Тырловой, С. И.

    2009-01-01

    The regulator frequency response has been analyzed to work out a strategy for repairing and renewal of fuel equipment used by foreign high-speed automobile diesels. For taking into consideration the heavy gradients of kinetic energy of the regulator elements the Lagrange equation of the second kind that includes the partial derivative of kinetic energy along the axis of motion of a gauge clutch was used.  Such a record, which was not kept for the known models, allowed for considerable clarifi...

  6. Understanding cytoskeleton regulators in glioblastoma multiforme for therapy design

    Directory of Open Access Journals (Sweden)

    Masoumi S

    2016-09-01

    Full Text Available Samaneh Masoumi,1,*, Aditya Harisankar,2,* Aileen Gracias,3 Fabian Bachinger,1 Temesgen Fufa,1,4 Gayathri Chandrasekar,5 Frank Gaunitz,4 Julian Walfridsson,2 Satish S Kitambi1 1Department of Microbiology Tumor and Cell Biology, 2Center for Hematology and Regenerative Medicine, Department of Medicine, 3Department of Neuroscience, Karolinska Institutet, Solna, Sweden; 4Department of Neurosurgery, University Hospital, Leipzig, Germany; 5Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden *These authors contributed equally to this work Abstract: The cellular cytoskeleton forms the primary basis through which a cell governs the changes in size, shape, migration, proliferation, and forms the primary means through which the cells respond to their environment. Indeed, cell and tissue morphologies are used routinely not only to grade tumors but also in various high-content screening methods with an aim to identify new small molecules with therapeutic potential. This study examines the expression of various cytoskeleton regulators in glioblastoma multiforme (GBM. GBM is a very aggressive disease with a low life expectancy even after chemo- and radiotherapy. Cancer cells of GBM are notorious for their invasiveness, ability to develop resistance to chemo- and radiotherapy, and to form secondary site tumors. This study aims to gain insight into cytoskeleton regulators in GBM cells and to understand the effect of various oncology drugs, including temozolomide, on cytoskeleton regulators. We compare the expression of various cytoskeleton regulators in GBM-derived tumor and normal tissue, CD133-postive and -negative cells from GBM and neural cells, and GBM stem-like and differentiated cells. In addition, the correlation between the expression of cytoskeleton regulators with the clinical outcome was examined to identify genes associated with longer patient survival. This was followed by a small molecule screening with US Food and Drug

  7. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ahrum [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Neufeld, Thomas P. [Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States); Choe, Joonho, E-mail: jchoe@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2015-12-04

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.

  8. Anodic Aluminum Oxide (AAO) Membranes for Cellular Devices

    Science.gov (United States)

    Ventura, Anthony P.

    Anodic Aluminum Oxide (AAO) membranes can be fabricated with a highly tunable pore structure making them a suitable candidate for cellular hybrid devices with single-molecule selectivity. The objective of this study was to characterize the cellular response of AAO membranes with varying pore sizes to serve as a proof-of-concept for an artificial material/cell synapse system. AAO membranes with pore diameters ranging from 34-117 nm were achieved via anodization at a temperature of -1°C in a 2.7% oxalic acid electrolyte. An operating window was established for this setup to create membranes with through-pore and disordered pore morphologies. C17.2 neural stem cells were seeded onto the membranes and differentiated via serum withdrawal. The data suggests a highly tunable correlation between AAO pore diameter and differentiated cell populations. Analysis of membranes before and after cell culture indicated no breakdown of the through-pore structure. Immunocytochemistry (ICC) showed that AAO membranes had increased neurite outgrowth when compared to tissue culture treated (TCT) glass, and neurite outgrowth varied with pore diameter. Additionally, lower neuronal percentages were found on AAO as compared to TCT glass; however, neuronal population was also found to vary with pore diameter. Scanning electron microscopy (SEM) and ICC images suggested the presence of a tissue-like layer with a mixed-phenotype population. AAO membranes appear to be an excellent candidate for cellular devices, but more work must be completed to understand the surface chemistry of the AAO membranes as it relates to cellular response.

  9. Modeling the cost and benefit of proteome regulation in a growing bacterial cell

    Science.gov (United States)

    Sharma, Pooja; Pratim Pandey, Parth; Jain, Sanjay

    2018-07-01

    Escherichia coli cells differentially regulate the production of metabolic and ribosomal proteins in order to stay close to an optimal growth rate in different environments, and exhibit the bacterial growth laws as a consequence. We present a simple mathematical model of a growing-dividing cell in which an internal dynamical mechanism regulates the allocation of proteomic resources between different protein sectors. The model allows an endogenous determination of the growth rate of the cell as a function of cellular and environmental parameters, and reproduces the bacterial growth laws. We use the model and its variants to study the balance between the cost and benefit of regulation. A cost is incurred because cellular resources are diverted to produce the regulatory apparatus. We show that there is a window of environments or a ‘niche’ in which the unregulated cell has a higher fitness than the regulated cell. Outside this niche there is a large space of constant and time varying environments in which regulation is an advantage. A knowledge of the ‘niche boundaries’ allows one to gain an intuitive understanding of the class of environments in which regulation is an advantage for the organism and which would therefore favour the evolution of regulation. The model allows us to determine the ‘niche boundaries’ as a function of cellular parameters such as the size of the burden of the regulatory apparatus. This class of models may be useful in elucidating various tradeoffs in cells and in making in-silico predictions relevant for synthetic biology.

  10. Lysine Deacetylases and Regulated Glycolysis in Macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Iyer, Abishek; Cheng, Catherine Youting; Das Gupta, Kaustav; Singhal, Amit; Fairlie, David P; Sweet, Matthew J

    2018-06-01

    Regulated cellular metabolism has emerged as a fundamental process controlling macrophage functions, but there is still much to uncover about the precise signaling mechanisms involved. Lysine acetylation regulates the activity, stability, and/or localization of metabolic enzymes, as well as inflammatory responses, in macrophages. Two protein families, the classical zinc-dependent histone deacetylases (HDACs) and the NAD-dependent HDACs (sirtuins, SIRTs), mediate lysine deacetylation. We describe here mechanisms by which classical HDACs and SIRTs directly regulate specific glycolytic enzymes, as well as evidence that links these protein deacetylases to the regulation of glycolysis-related genes. In these contexts, we discuss HDACs and SIRTs as key control points for regulating immunometabolism and inflammatory outputs from macrophages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Ectopic AP4 expression induces cellular senescence via activation of p53 in long-term confluent retinal pigment epithelial cells.

    Science.gov (United States)

    Wang, Yiping; Wong, Matthew Man-Kin; Zhang, Xiaojian; Chiu, Sung-Kay

    2015-11-15

    When cells are grown to confluence, cell-cell contact inhibition occurs and drives the cells to enter reversible quiescence rather than senescence. Confluent retinal pigment epithelial (RPE) cells exhibiting contact inhibition was used as a model in this study to examine the role of overexpression of transcription factor AP4, a highly expressed transcription factor in many types of cancer, in these cells during long-term culture. We generated stable inducible RPE cell clones expressing AP4 or AP4 without the DNA binding domain (DN-AP4) and observed that, when cultured for 24 days, RPE cells with a high level of AP4 exhibit a large, flattened morphology and even cease proliferating; these changes were not observed in DN-AP4-expressing cells or non-induced cells. In addition, AP4-expressing cells exhibited senescence-associated β-galactosidase activity and the senescence-associated secretory phenotype. We demonstrated that the induced cellular senescence was mediated by enhanced p53 expression and that AP4 regulates the p53 gene by binding directly to two of the three E-boxes present on the promoter of the p53 gene. Moreover, we showed that serum is essential for AP4 in inducing p53-associated cellular senescence. Collectively, we showed that overexpression of AP4 mediates cellular senescence involving in activation of p53 in long-term post-confluent RPE cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Visualizing Escherichia coli sub-cellular structure using sparse deconvolution Spatial Light Interference Tomography.

    Directory of Open Access Journals (Sweden)

    Mustafa Mir

    Full Text Available Studying the 3D sub-cellular structure of living cells is essential to our understanding of biological function. However, tomographic imaging of live cells is challenging mainly because they are transparent, i.e., weakly scattering structures. Therefore, this type of imaging has been implemented largely using fluorescence techniques. While confocal fluorescence imaging is a common approach to achieve sectioning, it requires fluorescence probes that are often harmful to the living specimen. On the other hand, by using the intrinsic contrast of the structures it is possible to study living cells in a non-invasive manner. One method that provides high-resolution quantitative information about nanoscale structures is a broadband interferometric technique known as Spatial Light Interference Microscopy (SLIM. In addition to rendering quantitative phase information, when combined with a high numerical aperture objective, SLIM also provides excellent depth sectioning capabilities. However, like in all linear optical systems, SLIM's resolution is limited by diffraction. Here we present a novel 3D field deconvolution algorithm that exploits the sparsity of phase images and renders images with resolution beyond the diffraction limit. We employ this label-free method, called deconvolution Spatial Light Interference Tomography (dSLIT, to visualize coiled sub-cellular structures in E. coli cells which are most likely the cytoskeletal MreB protein and the division site regulating MinCDE proteins. Previously these structures have only been observed using specialized strains and plasmids and fluorescence techniques. Our results indicate that dSLIT can be employed to study such structures in a practical and non-invasive manner.

  13. Cellular automata analysis and applications

    CERN Document Server

    Hadeler, Karl-Peter

    2017-01-01

    This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward to simulate but hard to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction of cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of different topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification). These classifications suggest to cluster cel...

  14. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos.

    Science.gov (United States)

    Kuhn, Hallie; Sopko, Richelle; Coughlin, Margaret; Perrimon, Norbert; Mitchison, Tim

    2015-11-15

    Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome. © 2015. Published by The Company of Biologists Ltd.

  15. The role of nuclear factor κB in the cellular response to different radiation qualities

    International Nuclear Information System (INIS)

    Koch, Kristina

    2013-01-01

    line was characterized concerning proliferation, cell cycle progression and gene expression. Additionally, the effects of the RelA knockdown on cell cycle progression, cellular survival and gene expression after exposure to low and high LET radiation were investigated. It was shown that activation of NF-κB depends on radiation quality and quantity. Experiments with chemical inhibitors revealed that NF-κB activation by ionizing radiation is strictly ATM dependent and degradation of the NF-κB inhibitor IκB by the proteasome is essential for both the classical and genotoxic stress-induced NF-κB pathway. Absence of NF-κB dimers containing RelA resulted in a prolonged lag-phase but did not affect cell cycle progression significantly in untreated cells. After irradiation, a dose and radiation quality dependent arrest in the G2 phase of the cell cycle occurred and also upon downregulation of RelA expression. RelA knockdown resulted in higher sensitivity of HEK cells to the killing effect of X-irradiation. In contrast, RelA knockdown did not further reduce the cellular survival after heavy ion exposure. Further, NF-κB target genes were not inducible in the RelA knockdown cell line. NF-κB-dependent gene expression rely on radiation dose and LET. Chemokine expression (e.g. CXCL1, 2, 8 and 10) was induced in a proportional manner to radiation quality and quantity, emphasizing the role of NF-κB in the bystander effect. These NF-κB regulated genes are interesting targets for countermeasure development against the effects of space radiation.

  16. The role of nuclear factor κB in the cellular response to different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Kristina

    2013-04-11

    line was characterized concerning proliferation, cell cycle progression and gene expression. Additionally, the effects of the RelA knockdown on cell cycle progression, cellular survival and gene expression after exposure to low and high LET radiation were investigated. It was shown that activation of NF-κB depends on radiation quality and quantity. Experiments with chemical inhibitors revealed that NF-κB activation by ionizing radiation is strictly ATM dependent and degradation of the NF-κB inhibitor IκB by the proteasome is essential for both the classical and genotoxic stress-induced NF-κB pathway. Absence of NF-κB dimers containing RelA resulted in a prolonged lag-phase but did not affect cell cycle progression significantly in untreated cells. After irradiation, a dose and radiation quality dependent arrest in the G2 phase of the cell cycle occurred and also upon downregulation of RelA expression. RelA knockdown resulted in higher sensitivity of HEK cells to the killing effect of X-irradiation. In contrast, RelA knockdown did not further reduce the cellular survival after heavy ion exposure. Further, NF-κB target genes were not inducible in the RelA knockdown cell line. NF-κB-dependent gene expression rely on radiation dose and LET. Chemokine expression (e.g. CXCL1, 2, 8 and 10) was induced in a proportional manner to radiation quality and quantity, emphasizing the role of NF-κB in the bystander effect. These NF-κB regulated genes are interesting targets for countermeasure development against the effects of space radiation.

  17. The Biochemistry and Regulation of S100A10: A Multifunctional Plasminogen Receptor Involved in Oncogenesis

    Directory of Open Access Journals (Sweden)

    Patricia A. Madureira

    2012-01-01

    Full Text Available The plasminogen receptors mediate the production and localization to the cell surface of the broad spectrum proteinase, plasmin. S100A10 is a key regulator of cellular plasmin production and may account for as much as 50% of cellular plasmin generation. In parallel to plasminogen, the plasminogen-binding site on S100A10 is highly conserved from mammals to fish. S100A10 is constitutively expressed in many cells and is also induced by many diverse factors and physiological stimuli including dexamethasone, epidermal growth factor, transforming growth factor-α, interferon-γ, nerve growth factor, keratinocyte growth factor, retinoic acid, and thrombin. Therefore, S100A10 is utilized by cells to regulate plasmin proteolytic activity in response to a wide diversity of physiological stimuli. The expression of the oncogenes, PML-RARα and KRas, also stimulates the levels of S100A10, suggesting a role for S100A10 in pathophysiological processes such as in the oncogenic-mediated increases in plasmin production. The S100A10-null mouse model system has established the critical role that S100A10 plays as a regulator of fibrinolysis and oncogenesis. S100A10 plays two major roles in oncogenesis, first as a regulator of cancer cell invasion and metastasis and secondly as a regulator of the recruitment of tumor-associated cells, such as macrophages, to the tumor site.

  18. Risk perception and public concerns of electromagnetic waves from cellular phones in Korea.

    Science.gov (United States)

    Kim, Kyunghee; Kim, Hae-Joon; Song, Dae Jong; Cho, Yong Min; Choi, Jae Wook

    2014-05-01

    In this study, the difference between the risk perception of electromagnetic waves from cellular phones and the risk perception of other factors such as environment and food was analyzed. The cause of the difference in the psychological and social factors that affect the group with high risk perception of electromagnetic waves was also analyzed. A questionnaire survey on the risk perception of electromagnetic waves from cellular phones was carried out on 1001 subjects (men and women) over the age of 20. In the group with high risk perception of electromagnetic waves from cellular phones, women had higher risk perception than men. Logistic regression analysis, where the group with high risk perception of electromagnetic waves and the group with low risk perception were used as dependent variables, indicated that the risk perception of electromagnetic waves in women was 1.815 times statistically significantly higher than the risk perception of men (95% CI: 1.340-2.457). Also, high risk perception of electromagnetic waves from cellular phones was observed when the subjects considered that they had more personal knowledge (OR: 1.416, 95% CI: 1.216-1.648), that the seriousness of the risk to future generations was high (OR: 1.410, 95% CI: 1.234-1.611), and their outrage for the occurrence of accidents related to electromagnetic waves was high (OR: 1.460, 95% CI: 1.264-1.686). The results of this study need to be sufficiently considered and reflected in designing the risk communication strategies and communication methods for the preventive measures and advice on electromagnetic waves from cellular phones. © 2014 Wiley Periodicals, Inc.

  19. WetA bridges cellular and chemical development in Aspergillus flavus.

    Directory of Open Access Journals (Sweden)

    Ming-Yueh Wu

    Full Text Available Bridging cellular reproduction and survival is essential for all life forms. Aspergillus fungi primarily reproduce by forming asexual spores called conidia, whose formation and maturation is governed by the central genetic regulatory circuit BrlA→AbaA→WetA. Here, we report that WetA is a multi-functional regulator that couples spore differentiation and survival, and governs proper chemical development in Aspergillus flavus. The deletion of wetA results in the formation of conidia with defective cell walls and no intra-cellular trehalose, leading to reduced stress tolerance, a rapid loss of viability, and disintegration of spores. WetA is also required for normal vegetative growth, hyphal branching, and production of aflatoxins. Targeted and genome-wide expression analyses reveal that WetA exerts feedback control of brlA and that 5,700 genes show altered mRNA levels in the mutant conidia. Functional category analyses of differentially expressed genes in ΔwetA RNA-seq data indicate that WetA contributes to spore integrity and maturity by properly regulating the metabolic pathways of trehalose, chitin, α-(1,3-glucan, β-(1,3-glucan, melanin, hydrophobins, and secondary metabolism more generally. Moreover, 160 genes predicted to encode transcription factors are differentially expressed by the absence of wetA, suggesting that WetA may play a global regulatory role in conidial development. Collectively, we present a comprehensive model for developmental control that bridges spore differentiation and survival in A. flavus.

  20. Molecular biophysics: detection and characterization of damage in molecular, cellular, and physiological systems

    International Nuclear Information System (INIS)

    Danyluk, S.S.

    1979-01-01

    This section contains summaries of research on the detection and characterization of damage in molecular, cellular, and physiological systems. Projects under investigation in this section include: chemical synthesis of nucleic acid derivatives; structural and conformational properties of biological molecules in solution; crystallographic and chemical studies of immunoglobulin structure; instrument design and development for x-ray and neutron scattering studies of biological molecules; and chromobiology and circadian regulation