WorldWideScience

Sample records for regulating dual-species biofilm

  1. Streptococcus gordonii LuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation with Streptococcus mutans.

    Science.gov (United States)

    Wang, Xiao; Li, Xiaolan; Ling, Junqi

    2017-07-01

    Dental plaques are mixed-species biofilms that are related to the development of dental caries. Streptococcus mutans (S. mutans) is an important cariogenic bacterium that forms mixed-species biofilms with Streptococcus gordonii (S. gordonii), an early colonizer of the tooth surface. The LuxS/autoinducer-2(AI-2) quorum sensing system is involved in the regulation of mixed-species biofilms, and AI-2 is proposed as a universal signal for the interaction between bacterial species. In this work, a S. gordonii luxS deficient strain was constructed to investigate the effect of the S. gordonii luxS gene on dual-species biofilm formed by S. mutans and S. gordonii. In addition, AI-2 was synthesized in vitro by incubating recombinant LuxS and Pfs enzymes of S. gordonii together. The effect of AI-2 on S. mutans single-species biofilm formation and cariogenic virulence gene expression were also assessed. The results showed that luxS disruption in S. gordonii altered dual-species biofilm formation, architecture, and composition, as well as the susceptibility to chlorhexidine. And the in vitro synthesized AI-2 had a concentration-dependent effect on S. mutans biofilm formation and virulence gene expression. These findings indicate that LuxS/AI-2 quorum-sensing system of S. gordonii plays a role in regulating the dual-species biofilm formation with S. mutans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Biofilm formation and disinfectant resistance of Salmonella sp. in mono- and dual-species with Pseudomonas aeruginosa.

    Science.gov (United States)

    Pang, X Y; Yang, Y S; Yuk, H G

    2017-09-01

    This study aimed to evaluate the biofilm formation and disinfectant resistance of Salmonella cells in mono- and dual-species biofilms with Pseudomonas aeruginosa, and to investigate the role of extracellular polymeric substances (EPS) in the protection of biofilms against disinfection treatment. The populations of Salmonella in mono- or dual-species biofilms with P. aeruginosa on stainless steel (SS) coupons were determined before and after exposure to commercial disinfectant, 50 μg ml -1 chlorine or 200 μg ml -1 Ecolab ® Whisper™ V (a blend of four effective quaternary ammonium compounds (QAC)). In addition, EPS amount from biofilms was quantified and biofilm structures were observed using scanning electron microscopy (SEM). Antagonistic interactions between Salmonella and P. aeruginosa resulted in lower planktonic population level of Salmonella, and lower density in dual-species biofilms compared to mono-species biofilms. The presence of P. aeruginosa significantly enhanced disinfectant resistance of S. Typhimurium and S. Enteritidis biofilm cells for 2 days, and led to an average of 50% increase in polysaccharides amount in dual-species biofilms than mono-species biofilms of Salmonella. Microscopy observation showed the presence of large microcolonies covered by EPS in dual-species biofilms but not in mono-species ones. The presence of P. aeruginosa in dual-species culture inhibited the growth of Salmonella cells in planktonic phase and in biofilms, but protected Salmonella cells in biofilms from disinfection treatment, by providing more production of EPS in dual-species biofilms than mono-species ones. This study provides insights into inter-species interaction, with regard to biofilm population dynamics and disinfectant resistance. Thus, a sanitation protocol should be designed considering the protective role of secondary species to pathogens in biofilms on SS surface which has been widely used at food surfaces and manufacturers. © 2017 The Society

  3. Resazurin metabolism assay for root canal disinfectant evaluation on dual-species biofilms

    NARCIS (Netherlands)

    Jiang, L.M.; Hoogenkamp, M.A.; van der Sluis, L.W.M.; Wesselink, P.R.; Crielaard, W.; Deng, D.M.

    2011-01-01

    Introduction Endodontic infections are caused by polymicrobial biofilms. Therefore, novel root canal disinfectants should be evaluated not only on single-species biofilms but also on dual- or mixed-species biofilms. A simple, high-throughput assay is urgently needed for this. In this study, the

  4. Resazurin Metabolism Assay for Root Canal Disinfectant Evaluation on Dual-species Biofilms

    NARCIS (Netherlands)

    Jiang, Lei-Meng; Hoogenkamp, Michel A.; van der Sluis, Lucas W. M.; Wesselink, Paul R.; Crielaard, Wim; Deng, Dong Mei

    Introduction: Endodontic infections are caused by polymicrobial biofilms. Therefore, novel root canal disinfectants should be evaluated not only on single-species biofilms but also on dual- or mixed-species biofilms. A simple, high-throughput assay is urgently needed for this. In this study, the

  5. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm.

    Science.gov (United States)

    Martins, Carlos Henrique Gomes; Pires, Regina Helena; Cunha, Aline Oliveira; Pereira, Cristiane Aparecida Martins; Singulani, Junya de Lacorte; Abrão, Fariza; Moraes, Thais de; Mendes-Giannini, Maria José Soares

    2016-04-01

    Denture liners have physical properties that favour plaque accumulation and colonization by Candida species, irritating oral tissues and causing denture stomatitis. To isolate and determine the incidence of oral Candida species in dental prostheses, oral swabs were collected from the dental prostheses of 66 patients. All the strains were screened for their ability to form biofilms; both monospecies and dual-species combinations were tested. Candida albicans (63 %) was the most frequently isolated microorganism; Candida tropicalis (14 %), Candida glabrata (13 %), Candida rugosa (5 %), Candida parapsilosis (3 %), and Candida krusei (2 %) were also detected. The XTT assay showed that C. albicans SC5314 possessed a biofilm-forming ability significantly higher (p biofilm was less than the total CFU of a monospecies C. albicans biofilm. In contrast to the profuse hyphae verified in monospecies C. albicans biofilms, micrographies showed that the C. albicans/non-albicans Candida biofilms consisted of sparse yeast forms and profuse budding yeast cells that generated a network. These results suggested that C. albicans and the tested Candida species could co-exist in biofilms displaying apparent antagonism. The study provide the first description of C. albicans/C. rugosa mixed biofilm. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Non-Tuberculous Mycobacteria multispecies biofilms in cystic fibrosis: development of an in vitro Mycobacterium abscessus and Pseudomonas aeruginosa dual species biofilm model.

    Science.gov (United States)

    Rodríguez-Sevilla, Graciela; García-Coca, Marta; Romera-García, David; Aguilera-Correa, John Jairo; Mahíllo-Fernández, Ignacio; Esteban, Jaime; Pérez-Jorge, Concepción

    2018-04-01

    Lung disease in cystic fibrosis (CF) is characterized by the progressive colonization of the respiratory tract by different bacteria, which develop polymicrobial biofilms. In the past decades, there has been an increase in the number of CF patients infected with Non-Tuberculous Mycobacteria (NTM). Although Mycobacterium abscessus is the main NTM isolated globally, little is known about M. abscessus multispecies biofilm formation. In the present study we developed an in vitro model to study the phenotypic characteristics of biofilms formed by M. abscessus and Pseudomonas aeruginosa, a major pathogen in CF. For that purpose, dual species biofilms were grown on polycarbonate membranes with a fixed concentration of P. aeruginosa and different inoculums of M. abscessus. The biofilms were sampled at 24, 48, and 72 h and bacteria were quantified in specific media. The results revealed that the increasing initial concentration of M. abscessus in dual species biofilms had an effect on its population only at 24 and 48 h, whereas P. aeruginosa was not affected by the different concentrations used of M. abscessus. Time elapsed increased biofilm formation of both species, specially between 24 and 48 h. According to the results, the conditions to produce a mature dual species biofilm in which the relative species distribution remained stable were 72 h growth of the mixed microbial culture at a 1:1 ratio. A significant decrease in mycobacterial population in dual compared to single species biofilms was found, suggesting that P. aeruginosa has a negative influence on M. abscessus. Finally, in a proof of concept experiment, young and mature dual species biofilms were exposed to clarithromycin. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Metabolic activity, urease production, antibiotic resistance and virulence in dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus

    Science.gov (United States)

    Vandecandelaere, Ilse; Van Nieuwerburgh, Filip; Deforce, Dieter

    2017-01-01

    In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other’s behavior, but additional studies are required necessary to elucidate the exact

  8. Enhanced biofilm formation in dual-species culture of Listeria monocytogenes and Ralstonia insidiosa

    Directory of Open Access Journals (Sweden)

    Yunfeng Xu

    2017-09-01

    Full Text Available In the natural environments microorganisms coexist in communities as biofilms. Since foodborne pathogens have varying abilities to form biofilms, investigation of bacterial interactions in biofilm formation may enhance our understanding of the persistence of these foodborne pathogens in the environment. Thus the objective of this study was to investigate the interactions between Listeria monocytogenes and Ralstonia insidiosa in dual species biofilms. Biofilm development after 24 h was measured using crystal violet in 96-well microtiter plate. Scanning electron microscopy and cell enumeration were employed after growth on stainless steel coupons. When compared with their single species counterparts, the dual species biofilms exhibited a significant increase in biofilm biomass. The number of L. monocytogenes in co-culture biofilms on stainless steel also increased significantly. However, there was no effect on the biofilm formation of L. monocytogenes when cultured with R. insidiosa separated by a semi-permeable membrane-linked compartment or cultured in R. insidiosa cell-free supernatant, indicating that direct cell-cell contact is critical for this interaction.

  9. Molecular Determinants of the Thickened Matrix in a Dual-Species Pseudomonas aeruginosa and Enterococcus faecalis Biofilm.

    Science.gov (United States)

    Lee, Keehoon; Lee, Kang-Mu; Kim, Donggeun; Yoon, Sang Sun

    2017-11-01

    Biofilms are microbial communities that inhabit various surfaces and are surrounded by extracellular matrices (ECMs). Clinical microbiologists have shown that the majority of chronic infections are caused by biofilms, following the introduction of the first biofilm infection model by J. W. Costerton and colleagues (J. Lam, R. Chan, K. Lam, and J. W. Costerton, Infect Immun 28:546-556, 1980). However, treatments for chronic biofilm infections are still limited to surgical removal of the infected sites. Pseudomonas aeruginosa and Enterococcus faecalis are two frequently identified bacterial species in biofilm infections; nevertheless, the interactions between these two species, especially during biofilm growth, are not clearly understood. In this study, we observed phenotypic changes in a dual-species biofilm of P. aeruginosa and E. faecalis , including a dramatic increase in biofilm matrix thickness. For clear elucidation of the spatial distribution of the dual-species biofilm, P. aeruginosa and E. faecalis were labeled with red and green fluorescence, respectively. E. faecalis was located at the lower part of the dual-species biofilm, while P. aeruginosa developed a structured biofilm on the upper part. Mutants with altered exopolysaccharide (EPS) productions were constructed in order to determine the molecular basis for the synergistic effect of the dual-species biofilm. Increased biofilm matrix thickness was associated with EPSs, not extracellular DNA. In particular, Pel and Psl contributed to interspecies and intraspecies interactions, respectively, in the dual-species P. aeruginosa and E. faecalis biofilm. Accordingly, targeting Pel and Psl might be an effective part of eradicating P. aeruginosa polymicrobial biofilms. IMPORTANCE Chronic infection is a serious problem in the medical field. Scientists have observed that chronic infections are closely associated with biofilms, and the vast majority of infection-causing biofilms are polymicrobial. Many studies

  10. Thiazolidinedione-8 alters symbiotic relationship in C. albicans-S. mutans dual species biofilm

    Directory of Open Access Journals (Sweden)

    Mark eFeldman

    2016-02-01

    Full Text Available The small molecule, thiazolidinedione-8 (S-8 was shown to impair biofilm formation of various microbial pathogens, including the fungus Candida albicans and Streptococcus mutans. Previously, we have evaluated the specific molecular mode of S-8 action against C. albicans biofilm-associated pathogenicity. In this study we investigated the influence of S-8 on dual species, C. albicans-S. mutans biofilm. We show that in the presence of S-8 a reduction of the co-species biofilm formation occurred with a major effect on C. albicans. Biofilm biomass and exopolysaccharide (EPS production were significantly reduced by S-8. Moreover, the agent caused oxidative stress associated with a strong induction of reactive oxygen species (ROS and hydrogen peroxide uptake inhibition by a mixed biofilm. In addition, S-8 altered symbiotic relationship between these species by a complex mechanism. Streptococcal genes associated with quorum sensing (comDE and luxS, EPS production (gtfBCD and gbpB, as well as genes related to protection against oxidative stress (nox and sodA were markedly upregulated by S-8. In contrast, fungal genes related to hyphae formation (hwp1, adhesion (als3, hydrophobicity (csh1 and oxidative stress response (sod1, sod2 and cat1 were downregulated in the presence of S-8. In addition, ywp1 gene associated with yeast form of C. albicans was induced by S-8, which is correlated with appearance of mostly yeast cells in S-8 treated dual species biofilms. We concluded that S-8 disturbs symbiotic balance between C. albicans and S. mutans in dual species biofilm.

  11. Enhanced biofilm formation in dual-species culture of Listeria monocytogenes and Ralstonia insidiosa

    Science.gov (United States)

    In the environment, many microorganisms coexist in communities as biofilms. The objective of this study was to investigate the interactions between Listeria monocytogenes and Ralstonia insidiosa in dual species biofilms. Biofilm development was measured using crystal violet in 96-well microtiter pla...

  12. The action of chemical and mechanical stresses on single and dual species biofilm removal of drinking water bacteria.

    Science.gov (United States)

    Gomes, I B; Lemos, M; Mathieu, L; Simões, M; Simões, L C

    2018-08-01

    The presence of biofilms in drinking water distribution systems (DWDS) is a global public health concern as they can harbor pathogenic microorganisms. Sodium hypochlorite (NaOCl) is the most commonly used disinfectant for microbial growth control in DWDS. However, its effect on biofilm removal is still unclear. This work aims to evaluate the effects of the combination of chemical (NaOCl) and mechanical stresses on the removal of single and dual species biofilms of two bacteria isolated from DWDS and considered opportunistic, Acinectobacter calcoaceticus and Stenotrophomonas maltophilia. A rotating cylinder reactor was successfully used for the first time in drinking water biofilm studies with polyvinyl chloride as substratum. The single and dual species biofilms presented different characteristics in terms of metabolic activity, mass, density, thickness and content of proteins and polysaccharides. Their complete removal was not achieved even when a high NaOCl concentrations and an increasing series of shear stresses (from 2 to 23Pa) were applied. In general, NaOCl pre-treatment did not improve the impact of mechanical stress on biofilm removal. Dual species biofilms were colonized mostly by S. maltophilia and were more susceptible to chemical and mechanical stresses than these single species. The most efficient treatment (93% biofilm removal) was the combination of NaOCl at 175mg·l -1 with mechanical stress against dual species biofilms. Of concern was the high tolerance of S. maltophilia to chemical and mechanical stresses in both single and dual species biofilms. The overall results demonstrate the inefficacy of NaOCl on biofilm removal even when combined with high shear stresses. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans

    Science.gov (United States)

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-01-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography–mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen. PMID:24824668

  14. Quantitative proteomic analysis of extracellular matrix extracted from mono- and dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis.

    Science.gov (United States)

    Mohammed, Marwan Mansoor Ali; Pettersen, Veronika Kuchařová; Nerland, Audun H; Wiker, Harald G; Bakken, Vidar

    2017-04-01

    The Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis are members of a complex dental biofilm associated with periodontal disease. In this study, we cultured F. nucleatum and P. gingivalis as mono- and dual-species biofilms, and analyzed the protein composition of the biofilms extracellular polymeric matrix (EPM) by high-resolution liquid chromatography-tandem mass spectrometry. Label-free quantitative proteomic analysis was used for identification of proteins and sequence-based functional characterization for their classification and prediction of possible roles in EPM. We identified 542, 93 and 280 proteins in the matrix of F. nucleatum, P. gingivalis, and the dual-species biofilm, respectively. Nearly 70% of all EPM proteins in the dual-species biofilm originated from F. nucleatum, and a majority of these were cytoplasmic proteins, suggesting an enhanced lysis of F. nucleatum cells. The proteomic analysis also indicated an interaction between the two species: 22 F. nucleatum proteins showed differential levels between the mono and dual-species EPMs, and 11 proteins (8 and 3 from F. nucleatum and P. gingivalis, respectively) were exclusively detected in the dual-species EPM. Oxidoreductases and chaperones were among the most abundant proteins identified in all three EPMs. The biofilm matrices in addition contained several known and hypothetical virulence proteins, which can mediate adhesion to the host cells and disintegration of the periodontal tissues. This study demonstrated that the biofilm matrix of two important periodontal pathogens consists of a multitude of proteins whose amounts and functionalities vary largely. Relatively high levels of several of the detected proteins might facilitate their potential use as targets for the inhibition of biofilm development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Co-Culture with Listeria monocytogenes within a Dual-Species Biofilm Community Strongly Increases Resistance of Pseudomonas putida to Benzalkonium Chloride

    Science.gov (United States)

    Giaouris, Efstathios; Chorianopoulos, Nikos; Doulgeraki, Agapi; Nychas, George-John

    2013-01-01

    Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS), as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC) used in inadequate (sub-lethal) concentration (50 ppm). The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species) did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90%) of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE) analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation. PMID:24130873

  16. Co-culture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride.

    Directory of Open Access Journals (Sweden)

    Efstathios Giaouris

    Full Text Available Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS, as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC used in inadequate (sub-lethal concentration (50 ppm. The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90% of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation.

  17. Impact of Delftia tsuruhatensis and Achromobacter xylosoxidans on Escherichia coli dual-species biofilms treated with antibiotic agents

    DEFF Research Database (Denmark)

    Azevedo, Andreia S; Almeida, Carina; Pereira, Bruno

    2016-01-01

    Recently it was demonstrated that for urinary tract infections species with a lower or unproven pathogenic potential, such as Delftia tsuruhatensis and Achromobacter xylosoxidans, might interact with conventional pathogenic agents such as Escherichia coli. Here, single- and dual-species biofilms...... of these microorganisms were characterized in terms of microbial composition over time, the average fitness of E. coli, the spatial organization and the biofilm antimicrobial profile. The results revealed a positive impact of these species on the fitness of E. coli and a greater tolerance to the antibiotic agents....... In dual-species biofilms exposed to antibiotics, E. coli was able to dominate the microbial consortia in spite of being the most sensitive strain. This is the first study demonstrating the protective effect of less common species over E. coli under adverse conditions imposed by the use of antibiotic...

  18. Impact of Delftia tsuruhatensis and Achromobacter xylosoxidans on Escherichia coli dual-species biofilms treated with antibiotic agents.

    Science.gov (United States)

    Azevedo, Andreia S; Almeida, Carina; Pereira, Bruno; Melo, Luís F; Azevedo, Nuno F

    2016-01-01

    Recently it was demonstrated that for urinary tract infections species with a lower or unproven pathogenic potential, such as Delftia tsuruhatensis and Achromobacter xylosoxidans, might interact with conventional pathogenic agents such as Escherichia coli. Here, single- and dual-species biofilms of these microorganisms were characterized in terms of microbial composition over time, the average fitness of E. coli, the spatial organization and the biofilm antimicrobial profile. The results revealed a positive impact of these species on the fitness of E. coli and a greater tolerance to the antibiotic agents. In dual-species biofilms exposed to antibiotics, E. coli was able to dominate the microbial consortia in spite of being the most sensitive strain. This is the first study demonstrating the protective effect of less common species over E. coli under adverse conditions imposed by the use of antibiotic agents.

  19. Effect of dietary sugars on dual-species biofilms of Streptococcus mutans and Streptococcus sobrinus – a pilot study

    Directory of Open Access Journals (Sweden)

    Rosa Virginia Dutra de OLIVEIRA

    Full Text Available Abstract Introduction Frequent consumption of sugars and the presence of Streptococcus mutans and Streptococcus sobrinus are correlated with higher caries experience. Objective The aim of this pilot study was to elucidate the effect of different fermentable carbohydrates on biomass formation and acidogenicity of S. mutans and S. sobrinus biofilms. Material and method Single and dual-species biofilms of S. mutans ATCC 25175 and S. sobrinus ATCC 27607 were grown at the bottom of microtiter plates at equal concentrations for 24 h at 37 °C under micro-aerobic atmosphere. Carbohydrates were added at 2% concentration: maltose, sucrose, glucose and lactose. BHI Broth (0.2% glucose was used as negative control. Acidogenicity was assessed by measuring the pH of spent culture medium after 24 h, immediately after refreshing the culture medium and for the next 1 h and 2 h. Crystal violet staining was used as an indicator of the total attached biofilm biomass after 24 h incubation. Data were analyzed by two-way ANOVA followed by Bonferroni post hoc test. Significance level was set at 5%. Result All carbohydrates resulted in higher biomass formation in single- and dual-species biofilms when compared to the control group. Sucrose, lactose and maltose showed higher acidogenicity than the control group in both single- and dual-species biofilms after 24 h. Conclusion These findings indicate that the type of biofilm (single- or dual-species and the carbohydrate used may influence the amount of biomass formed and rate of pH reduction.

  20. Influence of fluoride on the bacterial composition of a dual-species biofilm composed of Streptococcus mutans and Streptococcus oralis.

    Science.gov (United States)

    Jung, Ji-Eun; Cai, Jian-Na; Cho, Sung-Dae; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-10-01

    Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.

  1. Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces.

    Science.gov (United States)

    Daneshvar Alavi, Hessam Edin; Truelstrup Hansen, Lisbeth

    2013-01-01

    This study investigated the dynamics of static biofilm formation (100% RH, 15 °C, 48-72 h) and desiccation survival (43% RH, 15 °C, 21 days) of Listeria monocytogenes, in dual species biofilms with the common spoilage bacteria, Pseudomonas fluorescens, Serratia proteamaculans and Shewanella baltica, on the surface of food grade stainless steel. The Gram-negative bacteria reduced the maximum biofilm population of L. monocytogenes in dual species biofilms and increased its inactivation during desiccation. However, due to the higher desiccation resistance of Listeria relative to P. fluorescens and S. baltica, the pathogen survived in greater final numbers. In contrast, S. proteamaculans outcompeted the pathogen during the biofilm formation and exhibited similar desiccation survival, causing the N21 days of Serratia to be ca 3 Log10(CFU cm(-2)) greater than that of Listeria in the dual species biofilm. Microscopy revealed biofilm morphologies with variable amounts of exopolymeric substance and the presence of separate microcolonies. Under these simulated food plant conditions, the fate of L. monocytogenes during formation of mixed biofilms and desiccation depended on the implicit characteristics of the co-cultured bacterium.

  2. Tooth enamel surface micro-hardness with dual species Streptococcus biofilm after exposure to Java turmeric (Curcuma xanthorrhiza Roxb.) extract

    Science.gov (United States)

    Isjwara, F. R. G.; Hasanah, S. N.; Utami, Sri; Suniarti, D. F.

    2017-08-01

    Streptococcus biofilm on tooth surfaces can decrease mouth environment pH, thus causing enamel demineralization that can lead to dental caries. Java Turmeric extract has excellent antibacterial effects and can maintain S. mutans biofilm pH at neutral levels for 4 hours. To analyze the effect of Java Turmeric extract on tooth enamel micro-hardness, the Java Turmeric extract was added on enamel tooth samples with Streptococcus dual species biofilm (S. sanguinis and S. mutans). The micro-hardness of enamel was measured by Knoop Hardness Tester. Results showed that Curcuma xanthorrhiza Roxb. could not maintain tooth enamel surface micro-hardness. It is concluded that Java Turmeric extract ethanol could not inhibit the hardness of enamel with Streptococcus dual species biofilm.

  3. Tolerance development in Listeria monocytogenes-Escherichia coli dual-species biofilms after sublethal exposures to pronase-benzalkonium chloride combined treatments.

    Science.gov (United States)

    Rodríguez-López, Pedro; Cabo, Marta López

    2017-10-01

    This study was designed to assess the effects that sublethal exposures to pronase (PRN) and benzalkonium chloride (BAC) combined treatments have on Listeria monocytogenes-Escherichia coli dual-species biofilms grown on stainless steel in terms of tolerance development (TD) to these compounds. Additionally, fluorescence microscopy was used to observe the changes of the biofilm structure. PRN-BAC exposure was carried out using three different approaches and TD was evaluated treating biofilms with a final 100 μg/ml PRN followed by 50 μg/ml BAC combined treatment. Results showed that exposure to PRN-BAC significantly decreased the number of adhered L. monocytogenes (P reduction values were generally lower in L. monocytogenes compared to E. coli. Additionally, microscopy images showed an altered morphology produced by sublethal PRN-BAC in exposed L. monocytogenes-E. coli dual-species biofilms compared to control samples. Results also demonstrated that L. monocytogenes-E. coli dual-species biofilms are able to develop tolerance to PRN-BAC combined treatments depending on way they have been previously exposed. Moreover, they suggest that the generation of bacterial tolerance should be included as a parameter for sanitation procedures design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Maricarmen Iñiguez-Moreno

    Full Text Available Abstract The aim of this study was evaluated the biofilm formation by Staphylococcus aureus 4E and Salmonella spp. under mono and dual-species biofilms, onto stainless steel 316 (SS and polypropylene B (PP, and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite. The biofilms were developed by immersion of the surfaces in TSB by 10 d at 37 °C. The results showed that in monospecies biofilms the type of surface not affected the cellular density (p > 0.05. However, in dual-species biofilms on PP the adhesion of Salmonella spp. was favored, 7.61 ± 0.13 Log10 CFU/cm2, compared with monospecies biofilms onto the same surface, 5.91 ± 0.44 Log10 CFU/cm2 (p < 0.05. The mono and dual-species biofilms were subjected to disinfection treatments; and the most effective disinfectant was peracetic acid (3500 ppm, reducing by more than 5 Log10 CFU/cm2, while the least effective was cetrimonium bromide. In addition, S. aureus 4E and Salmonella spp. were more resistant to the disinfectants in mono than in dual-species biofilms (p < 0.05. Therefore, the interspecies interactions between S. aureus 4E and Salmonella spp. had a negative effect on the antimicrobial resistance of each microorganism, compared with the monospecies biofilms.

  5. Evaluation of intraspecies interactions in biofilm formation by Methylobacterium species isolated from pink-pigmented household biofilms.

    Science.gov (United States)

    Xu, Fang-Fang; Morohoshi, Tomohiro; Wang, Wen-Zhao; Yamaguchi, Yuka; Liang, Yan; Ikeda, Tsukasa

    2014-01-01

    Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified Methylobacterium as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that Methylobacterium was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus Methylobacterium. Although all of the Methylobacterium isolates formed low-level biofilms, the amount of the biofilms formed by Methylobacterium sp. P-1M and P-18S was significantly increased by co-culturing with other Methylobacterium strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms.

  6. Influence of Helicobacter pylori culture supernatant on the ecological balance of a dual-species oral biofilm.

    Science.gov (United States)

    Zhang, Wenling; Deng, Xiaohong; Zhou, Xuedong; Hao, Yuqing; Li, Yuqing

    2018-01-01

    Dental caries is a chronic progressive disease occurring in the tooth hard tissue due to multiple factors, in which bacteria are the initial cause. Both Streptococcus mutans and Streptococcus sanguinis are main members of oral biofilm. Helicobacter pylori may also be detected in dental plaque, playing an important role in the development of dental caries. The aim of this study was to investigate the effect of H. pylori culture supernatant on S. mutans and S. sanguinis dual-species biofilm and to evaluate its potential ability on affecting dental health. The effect of H. pylori supernatant on single-species and dual-species biofilm was measured by colony forming units counting and fluorescence in situ hybridization (FISH) assay, respectively. The effect of H. pylori supernatant on S. mutans and S. sanguinis extracellular polysaccharides (EPS) production was measured by both confocal laser scanning microscopy observation and anthrone-sulfuric acid method. The effect of H. pylori supernatant on S. mutans gene expression was measured by quantitative real-time PCR (qRT-PCR) assays. H. pylori supernatant could inhibit both S. mutans and S. sanguinis biofilm formation and EPS production. S. sanguinis inhibition rate was significantly higher than that of S. mutans. Finally, S. mutans bacteriocin and acidogenicity related genes expression were affected by H. pylori culture supernatant. Our results showed that H. pylori could destroy the balance between S. mutans and S. sanguinis in oral biofilm, creating an advantageous environment for S. mutans, which became the dominant bacteria, promoting the formation and development of dental caries.

  7. Influence of Helicobacter pylori culture supernatant on the ecological balance of a dual-species oral biofilm

    Directory of Open Access Journals (Sweden)

    Wenling Zhang

    2018-02-01

    Full Text Available Abstract Dental caries is a chronic progressive disease occurring in the tooth hard tissue due to multiple factors, in which bacteria are the initial cause. Both Streptococcus mutans and Streptococcus sanguinis are main members of oral biofilm. Helicobacter pylori may also be detected in dental plaque, playing an important role in the development of dental caries. Objective The aim of this study was to investigate the effect of H. pylori culture supernatant on S. mutans and S. sanguinis dual-species biofilm and to evaluate its potential ability on affecting dental health. Material and methods The effect of H. pylori supernatant on single-species and dual-species biofilm was measured by colony forming units counting and fluorescence in situ hybridization (FISH assay, respectively. The effect of H. pylori supernatant on S. mutans and S. sanguinis extracellular polysaccharides (EPS production was measured by both confocal laser scanning microscopy observation and anthrone-sulfuric acid method. The effect of H. pylori supernatant on S. mutans gene expression was measured by quantitative real-time PCR (qRT-PCR assays. Results H. pylori supernatant could inhibit both S. mutans and S. sanguinis biofilm formation and EPS production. S. sanguinis inhibition rate was significantly higher than that of S. mutans. Finally, S. mutans bacteriocin and acidogenicity related genes expression were affected by H. pylori culture supernatant. Conclusion Our results showed that H. pylori could destroy the balance between S. mutans and S. sanguinis in oral biofilm, creating an advantageous environment for S. mutans, which became the dominant bacteria, promoting the formation and development of dental caries.

  8. Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite.

    Science.gov (United States)

    Iñiguez-Moreno, Maricarmen; Gutiérrez-Lomelí, Melesio; Guerrero-Medina, Pedro Javier; Avila-Novoa, María Guadalupe

    The aim of this study was evaluated the biofilm formation by Staphylococcus aureus 4E and Salmonella spp. under mono and dual-species biofilms, onto stainless steel 316 (SS) and polypropylene B (PP), and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite. The biofilms were developed by immersion of the surfaces in TSB by 10 d at 37°C. The results showed that in monospecies biofilms the type of surface not affected the cellular density (p>0.05). However, in dual-species biofilms on PP the adhesion of Salmonella spp. was favored, 7.61±0.13Log 10 CFU/cm 2 , compared with monospecies biofilms onto the same surface, 5.91±0.44Log 10 CFU/cm 2 (pdisinfection treatments; and the most effective disinfectant was peracetic acid (3500ppm), reducing by more than 5Log 10 CFU/cm 2 , while the least effective was cetrimonium bromide. In addition, S. aureus 4E and Salmonella spp. were more resistant to the disinfectants in mono than in dual-species biofilms (p<0.05). Therefore, the interspecies interactions between S. aureus 4E and Salmonella spp. had a negative effect on the antimicrobial resistance of each microorganism, compared with the monospecies biofilms. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans.

    Science.gov (United States)

    Pammi, Mohan; Liang, Rong; Hicks, John; Mistretta, Toni-Ann; Versalovic, James

    2013-11-14

    Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S. epidermidis and C. albicans.

  10. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans

    Science.gov (United States)

    2013-01-01

    Background Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Results Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Conclusions Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S

  11. Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium

    Directory of Open Access Journals (Sweden)

    Zezhang T. Wen

    2017-12-01

    Full Text Available Like Streptococcus mutans, lactobacilli are commonly isolated from carious sites, although their exact role in caries development remains unclear. This study used mixed-species models to analyze biofilm formation by major groups of oral lactobacilli, including L. casei, L. fermentum, L. rhamnosus, L. salivarius ssp. salivarius, and L. gasseri. The results showed that lactobacilli did not form good biofilms when grown alone, although differences existed between different species. When grown together with S. mutans, biofilm formation by L. gasseri and L. rhamnosus was increased by 2-log (P < 0.001, while biofilms by L. fermentum reduced by >1-log (P < 0.001. L. casei enhanced biofilm formation by ~2-log when grown with S. mutans wild-type, but no such effects were observed with S. mutans deficient of glucosyltransferase GtfB and adhesin P1. Both S. mutans and L. casei in dual-species enhanced resistance to acid killing with increases of survival rate by >1-log (P < 0.001, but drastically reduced the survival rates following exposure to hydrogen peroxide (P < 0.001, as compared to the respective mono-species cultures. When analyzed by RNA-seq, more than 134 genes were identified in S. mutans in dual-species with L. casei as either up- or down-regulated when compared to those grown alone. The up-regulated genes include those for superoxide dismutase, NADH oxidase, and members of the mutanobactin biosynthesis cluster. Among the down-regulated genes were those for GtfB and alternative sigma factor SigX. These results further suggest that interactions between S. mutans and oral lactobacilli are species-specific and may have significant impact on cariogenic potential of the community.

  12. Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium

    Science.gov (United States)

    Wen, Zezhang T.; Liao, Sumei; Bitoun, Jacob P.; De, Arpan; Jorgensen, Ashton; Feng, Shihai; Xu, Xiaoming; Chain, Patrick S. G.; Caufield, Page W.; Koo, Hyun; Li, Yihong

    2017-01-01

    Like Streptococcus mutans, lactobacilli are commonly isolated from carious sites, although their exact role in caries development remains unclear. This study used mixed-species models to analyze biofilm formation by major groups of oral lactobacilli, including L. casei, L. fermentum, L. rhamnosus, L. salivarius ssp. salivarius, and L. gasseri. The results showed that lactobacilli did not form good biofilms when grown alone, although differences existed between different species. When grown together with S. mutans, biofilm formation by L. gasseri and L. rhamnosus was increased by 2-log (P 1-log (P mutans wild-type, but no such effects were observed with S. mutans deficient of glucosyltransferase GtfB and adhesin P1. Both S. mutans and L. casei in dual-species enhanced resistance to acid killing with increases of survival rate by >1-log (P mutans in dual-species with L. casei as either up- or down-regulated when compared to those grown alone. The up-regulated genes include those for superoxide dismutase, NADH oxidase, and members of the mutanobactin biosynthesis cluster. Among the down-regulated genes were those for GtfB and alternative sigma factor SigX. These results further suggest that interactions between S. mutans and oral lactobacilli are species-specific and may have significant impact on cariogenic potential of the community. PMID:29326887

  13. Differential Biofilm Formation and Chemical Disinfection Resistance of Sessile Cells of Listeria monocytogenes Strains under Monospecies and Dual-Species (with Salmonella enterica) Conditions

    Science.gov (United States)

    Kostaki, Maria; Chorianopoulos, Nikos; Braxou, Elli; Nychas, George-John

    2012-01-01

    This study aimed to investigate the possible influence of bacterial intra- and interspecies interactions on the ability of Listeria monocytogenes and Salmonella enterica to develop mixed-culture biofilms on an abiotic substratum, as well as on the subsequent resistance of sessile cells to chemical disinfection. Initially, three strains from each species were selected and left to attach and form biofilms on stainless steel (SS) coupons incubated at 15°C for 144 h, in periodically renewable tryptone soy broth (TSB), under either monoculture or mixed-culture (mono-/dual-species) conditions. Following biofilm formation, mixed-culture sessile communities were subjected to 6-min disinfection treatments with (i) benzalkonium chloride (50 ppm), (ii) sodium hypochlorite (10 ppm), (iii) peracetic acid (10 ppm), and (iv) a mixture of hydrogen peroxide (5 ppm) and peracetic acid (5 ppm). Results revealed that both species reached similar biofilm counts (ca. 105 CFU cm−2) and that, in general, interspecies interactions did not have any significant effect either on the biofilm-forming ability (as this was assessed by agar plating enumeration of the mechanically detached biofilm bacteria) or on the antimicrobial resistance of each individual species. Interestingly, pulsed-field gel electrophoresis (PFGE) analysis clearly showed that the three L. monocytogenes strains did not contribute at the same level either to the formation of mixed-culture sessile communities (mono-/dual species) or to their antimicrobial recalcitrance. Additionally, the simultaneous existence inside the biofilm structure of S. enterica cells seemed to influence the occurrence and resistance pattern of L. monocytogenes strains. In sum, this study highlights the impact of microbial interactions taking place inside a mixed-culture sessile community on both its population dynamics and disinfection resistance. PMID:22307304

  14. Quantifying the combined effects of pronase and benzalkonium chloride in removing late-stage Listeria monocytogenes-Escherichia coli dual-species biofilms.

    Science.gov (United States)

    Rodríguez-López, Pedro; Puga, Carmen H; Orgaz, Belén; Cabo, Marta L

    2017-09-01

    This work presents the assessment of the effectivity of a pronase (PRN)-benzalkonium chloride (BAC) sequential treatment in removing Listeria monocytogenes-Escherichia coli dual-species biofilms grown on stainless steel (SS) using fluorescence microscopy and plate count assays. The effects of PRN-BAC on the occupied area (OA) by undamaged cells in 168 h dual-species samples were determined using a first-order factorial design. Empirical equations significantly (r 2 = 0.927) described a negative individual effect of BAC and a negative interactive effect of PRN-BAC achieving OA reductions up to 46%. After treatment, high numbers of remaining attached and released viable and cultivable E. coli cells were detected in PRN-BAC combinations when low BAC concentrations were used. Therefore, at appropriate BAC doses, in addition to biofilm removal, sequential application of PRN and BAC represents an appealing strategy for pathogen control on SS surfaces while hindering the dispersion of live cells into the environment.

  15. Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance

    Directory of Open Access Journals (Sweden)

    Saravanan ePeriasamy

    2015-08-01

    Full Text Available Pseudomonas aeruginosa PAO1 produces three polysaccharides, alginate, Psl and Pel that play distinct roles in attachment and biofilm formation for monospecies biofilms. Considerably less is known about their role in the development of mixed species biofilm communities. This study has investigated the roles of alginate, Psl and Pel during biofilm formation of P. aeruginosa in a defined and experimentally informative mixed species biofilm community, consisting of P. aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae. Loss of the Psl polysaccharide had the biggest impact on the integration of P. aeruginosa in the mixed species biofilms, where the percent composition of the psl mutant was significantly lower (0.06% than its wild-type parent (2.44%. In contrast, loss of the Pel polysaccharide had no impact on mixed species biofilm development. Loss of alginate or its overproduction resulted in P. aeruginosa representing 8.4% and 18.11%, respectively, of the mixed species biofilm. Dual species biofilms of P. aeruginosa and K. pneumoniae were not affected by loss of alginate, Pel or Psl, while the mucoid P. aeruginosa strain achieved a greater biomass than its parent strain. When P. aeruginosa was grown with P. protegens, loss of the Pel or alginate polysaccharides resulted in biofilms that were not significantly different from biofilms formed by the wild-type PAO1. In contrast, overproduction of alginate resulted in biofilms that were comprised of 35-40% of P. aeruginosa, which was significantly higher than the wild-type (5-20%. Loss of the Psl polysaccharide significantly reduced the percentage composition of P. aeruginosa in dual species biofilms with P. protegens (<1%. Loss of the Psl polysaccharide significantly disrupted the communal stress resistance of the three species biofilms. Thus, the polysaccharide composition of an individual species significantly impacts mixed species biofilm development and the emergent properties of such

  16. Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium.

    Science.gov (United States)

    Wen, Zezhang T; Liao, Sumei; Bitoun, Jacob P; De, Arpan; Jorgensen, Ashton; Feng, Shihai; Xu, Xiaoming; Chain, Patrick S G; Caufield, Page W; Koo, Hyun; Li, Yihong

    2017-01-01

    Like Streptococcus mutans , lactobacilli are commonly isolated from carious sites, although their exact role in caries development remains unclear. This study used mixed-species models to analyze biofilm formation by major groups of oral lactobacilli, including L. casei, L. fermentum, L. rhamnosus, L. salivarius ssp. salivarius , and L. gasseri . The results showed that lactobacilli did not form good biofilms when grown alone, although differences existed between different species. When grown together with S. mutans , biofilm formation by L. gasseri and L. rhamnosus was increased by 2-log ( P L. fermentum reduced by >1-log ( P L. casei enhanced biofilm formation by ~2-log when grown with S. mutans wild-type, but no such effects were observed with S. mutans deficient of glucosyltransferase GtfB and adhesin P1. Both S. mutans and L. casei in dual-species enhanced resistance to acid killing with increases of survival rate by >1-log ( P survival rates following exposure to hydrogen peroxide ( P L. casei as either up- or down-regulated when compared to those grown alone. The up-regulated genes include those for superoxide dismutase, NADH oxidase, and members of the mutanobactin biosynthesis cluster. Among the down-regulated genes were those for GtfB and alternative sigma factor SigX. These results further suggest that interactions between S. mutans and oral lactobacilli are species-specific and may have significant impact on cariogenic potential of the community.

  17. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa : an in vitro study

    NARCIS (Netherlands)

    van der Waal, S. V.; van der Sluis, L. W. M.; Ozok, A. R.; Exterkate, R. A. M.; van Marle, J.; Wesselink, P. R.; de Soet, J. J.

    2011-01-01

    van der Waal SV, van der Sluis LWM, Ozok AR, Exterkate RAM, van Marle J, Wesselink PR, de Soet JJ. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa: an in vitro study. International Endodontic Journal, 44, 11101117, 2011. Aim To

  18. Antibiofilm Effect of DNase against Single and Mixed Species Biofilm

    Science.gov (United States)

    Sharma, Komal

    2018-01-01

    Biofilms are aggregates of microorganisms that coexist in socially coordinated micro-niche in a self-produced polymeric matrix on pre-conditioned surfaces. The biofilm matrix reduces the efficacy of antibiofilm strategies. DNase degrades the extracellular DNA (e-DNA) present in the matrix, rendering the matrix weak and susceptible to antimicrobials. In the current study, the effect of DNase I was evaluated during biofilm formation (pre-treatment), on preformed biofilms (post-treatment) and both (dual treatment). The DNase I pre-treatment was optimized for P. aeruginosa PAO1 (model biofilm organism) at 10 µg/mL and post-treatment at 10 µg/mL with 15 min of contact duration. Inclusion of Mg2+ alongside DNase I post-treatment resulted in 90% reduction in biofilm within only 5 min of contact time (irrespective of age of biofilm). On extension of these findings, DNase I was found to be less effective against mixed species biofilm than individual biofilms. DNase I can be used as potent antibiofilm agent and with further optimization can be effectively used for biofilm prevention and reduction in situ. PMID:29562719

  19. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2011-01-01

    every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi......Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually......-species biofilm formation will facilitate the development of methods for combating bacterial biofilms in clinical, environmental, industrial, and agricultural areas. The most recent advances in the understanding of multi-species biofilms are summarized and discussed in the review....

  20. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms

    Science.gov (United States)

    He, Jinzhi; Kim, Dongyeop; Zhou, Xuedong; Ahn, Sang-Joon; Burne, Robert A.; Richards, Vincent P.; Koo, Hyun

    2017-01-01

    Early childhood caries (ECC), which can lead to rampant tooth-decay that is painful and costly to treat, is one of the most prevalent infectious diseases affecting children worldwide. Previous studies support that interactions between Streptococcus mutans and Candida albicans are associated with the pathogenesis of ECC. The presence of Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro, although the molecular basis for these behaviors is undefined. Using an established co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology analysis, the majority of up-regulated genes were related to carbohydrate transport and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed the increases in carbohydrate metabolism, with elevated amounts of formate in the culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered transcription of S. mutans signal transduction (comC and ciaRH) genes associated with fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins) and CRISPR were down-regulated. Collectively, the data provide a comprehensive insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel insights into how bacterial–fungal interactions may enhance the severity of dental caries. PMID:28642749

  1. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms

    Directory of Open Access Journals (Sweden)

    Jinzhi He

    2017-06-01

    Full Text Available Early childhood caries (ECC, which can lead to rampant tooth-decay that is painful and costly to treat, is one of the most prevalent infectious diseases affecting children worldwide. Previous studies support that interactions between Streptococcus mutans and Candida albicans are associated with the pathogenesis of ECC. The presence of Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro, although the molecular basis for these behaviors is undefined. Using an established co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology analysis, the majority of up-regulated genes were related to carbohydrate transport and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed the increases in carbohydrate metabolism, with elevated amounts of formate in the culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered transcription of S. mutans signal transduction (comC and ciaRH genes associated with fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins and CRISPR were down-regulated. Collectively, the data provide a comprehensive insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel insights into how bacterial–fungal interactions may enhance the severity of dental caries.

  2. Dual-species biofilm of Listeria monocytogenes and Escherichia coli on stainless steel surface.

    Science.gov (United States)

    de Grandi, Aline Zago; Pinto, Uelinton Manoel; Destro, Maria Teresa

    2018-04-12

    Listeria monocytogenes is a Gram-positive bacterium commonly associated with foodborne diseases. Due its ability to survive under adverse environmental conditions and to form biofilm, this bacterium is a major concern for the food industry, since it can compromise sanitation procedures and increase the risk of post-processing contamination. Little is known about the interaction between L. monocytogenes and Gram-negative bacteria on biofilm formation. Thus, in order to evaluate this interaction, Escherichia coli and L. monocytogenes were tested for their ability to form biofilms together or in monoculture. We also aimed to evaluate the ability of L. monocytogenes 1/2a and its isogenic mutant strain (ΔprfA ΔsigB) to form biofilm in the presence of E. coli. We assessed the importance of the virulence regulators, PrfA and σ B , in this process since they are involved in many aspects of L. monocytogenes pathogenicity. Biofilm formation was assessed using stainless steel AISI 304 #4 slides immersed into brain heart infusion broth, reconstituted powder milk and E. coli preconditioned medium at 25 °C. Our results indicated that a higher amount of biofilm was formed by the wild type strain of L. monocytogenes than by its isogenic mutant, indicating that prfA and sigB are important for biofilm development, especially maturation under our experimental conditions. The presence of E. coli or its metabolites in preconditioned medium did not influence biofilm formation by L. monocytogenes. Our results confirm the possibility of concomitant biofilm formation by L. monocytogenes and E. coli, two bacteria of major significance in the food industry.

  3. Characterization and Optimization of Dual Anaerobic/Aerobic Biofilm Process

    National Research Council Canada - National Science Library

    Togna, A

    1997-01-01

    The purpose of this Phase I STTR effort was to develop and characterize a dual anaerobic/aerobic biofilm process that promotes anaerobic reductive dehalogenation and aerobic cometabolic biodegradation...

  4. Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry.

    Science.gov (United States)

    Charlebois, Audrey; Jacques, Mario; Boulianne, Martine; Archambault, Marie

    2017-04-01

    Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Recently, it was shown to form mono-species biofilms, a structured community of bacterial cells enclosed in a self-produced extracellular matrix. Biofilms have been associated with tolerance to antibiotics, disinfectants, and physical and environmental stresses. Very little is known about the tolerance of C. perfringens biofilm toward disinfectants. In the present study, susceptibilities of C. perfringens biofilms to five types of commonly used disinfectants on farms and in food processing environments were analysed. In this paper, we show that C. perfringens mono-species biofilms can protect the bacterial cells from the action of potassium monopersulfate, quaternary ammonium chloride, hydrogen peroxide and glutaraldehyde solutions. However, sodium hypochlorite solution was shown to be effective on C. perfringens biofilms. Our investigation of dual-species biofilms of C. perfringens with the addition of Staphylococcus aureus or Escherichia coli demonstrated that overall, the mono-species biofilm of C. perfringens was more tolerant to all disinfectants than the dual-species biofilms. For the anaerobic grown biofilms, the mono-species biofilm of C. perfringens was more tolerant to sodium hypochlorite and quaternary ammonium chloride than the dual-species biofilms of C. perfringens with S. aureus or E. coli. This study demonstrates that C. perfringens biofilm is an effective protection mechanism to disinfectants commonly used on farms and in food processing environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Dynamics of Mixed- Candida Species Biofilms in Response to Antifungals.

    Science.gov (United States)

    Vipulanandan, G; Herrera, M; Wiederhold, N P; Li, X; Mintz, J; Wickes, B L; Kadosh, D

    2018-01-01

    Oral infections caused by Candida species, the most commonly isolated human fungal pathogen, are frequently associated with biofilms. Although Candida albicans is the predominant organism found in patients with oral thrush, a biofilm infection, there is an increasing incidence of oral colonization and infections caused by non- albicans Candida species, including C. glabrata, C. dubliniensis, and C. tropicalis, which are frequently more resistant to antifungal treatment. While single-species Candida biofilms have been well studied, considerably less is known about the dynamics of mixed- Candida species biofilms and how these dynamics are altered by antifungal treatment. To address these questions, we developed a quantitative polymerase chain reaction-based approach to determine the precise species composition of mixed- Candida species biofilms formed by clinical isolates and laboratory strains in the presence and absence of clinically relevant concentrations of 3 commonly used antifungals: fluconazole, caspofungin, and amphotericin B. In monospecies biofilms, fluconazole exposure favored growth of C. glabrata and C. tropicalis, while caspofungin generally favored significant growth of all species to a varying degree. Fluconazole was not effective against preformed mixed- Candida species biofilms while amphotericin B was potent. As a general trend, in mixed- Candida species biofilms, C. albicans lost dominance in the presence of antifungals. Interestingly, presence in mixed versus monospecies biofilms reduced susceptibility to amphotericin B for C. tropicalis and C. glabrata. Overall, our data suggest that antifungal treatment favors the growth of specific non- albicans Candida species in mixed- Candida species biofilms.

  6. Influence of Helicobacter pylori culture supernatant on the ecological balance of a dual-species oral biofilm

    OpenAIRE

    Wenling Zhang; Xiaohong Deng; Xuedong Zhou; Yuqing Hao; Yuqing Li

    2018-01-01

    Abstract Dental caries is a chronic progressive disease occurring in the tooth hard tissue due to multiple factors, in which bacteria are the initial cause. Both Streptococcus mutans and Streptococcus sanguinis are main members of oral biofilm. Helicobacter pylori may also be detected in dental plaque, playing an important role in the development of dental caries. Objective The aim of this study was to investigate the effect of H. pylori culture supernatant on S. mutans and S. sanguinis dual...

  7. Multi-species biofilm of Candida albicans and non-Candida albicans Candida species on acrylic substrate

    Directory of Open Access Journals (Sweden)

    Apurva K Pathak

    2012-02-01

    Full Text Available OBJECTIVE: In polymicrobial biofilms bacteria extensively interact with Candida species, but the interaction among the different species of the Candida is yet to be completely evaluated. In the present study, the difference in biofilm formation ability of clinical isolates of four species of Candida in both single-species and multi-species combinations on the surface of dental acrylic resin strips was evaluated. MATERIAL AND METHODS: The species of Candida, isolated from multiple species oral candidiasis of the neutropenic patients, were used for the experiment. Organisms were cultured on Sabouraud dextrose broth with 8% glucose (SDB. Biofilm production on the acrylic resins strips was determined by crystal violet assay. Student's t-test and ANOVA were used to compare in vitro biofilm formation for the individual species of Candida and its different multi-species combinations. RESULTS: In the present study, differences between the mean values of the biofilm-forming ability of individual species (C. glabrata>C. krusei>C. tropicalis>C. albicans and in its multi-species' combinations (the highest for C. albicans with C. glabrata and the lowest for all the four species combination were reported. CONCLUSIONS: The findings of this study showed that biofilm-forming ability was found greater for non-Candida albicans Candida species (NCAC than for C. albicans species with intra-species variation. Presence of C. albicans in multi-species biofilms increased, whereas; C. tropicalis decreased the biofilm production with all other NCAC species.

  8. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation.

    Directory of Open Access Journals (Sweden)

    Julia Mallegol

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila (Lp and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (Δlpg2644 is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS. In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL, may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface.

  9. Confocal Raman microscopy for identification of bacterial species in biofilms

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  10. Streptococcus mutans Protein Synthesis during Mixed-Species Biofilm Development by High-Throughput Quantitative Proteomics

    Science.gov (United States)

    Klein, Marlise I.; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M.; Yates, John R.; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (Pmutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other

  11. Listeria monocytogenes-carrying consortia in food industry. Composition, subtyping and numerical characterisation of mono-species biofilm dynamics on stainless steel.

    Science.gov (United States)

    Rodríguez-López, Pedro; Saá-Ibusquiza, Paula; Mosquera-Fernández, Maruxa; López-Cabo, Marta

    2015-08-03

    In order to find out how real Listeria monocytogenes-carrying biofilms are in industrial settings, a total of 270 environmental samples belonging to work surfaces from fish (n = 123), meat (n = 75) and dairy industries (n = 72) were analysed in order to detect L. monocytogenes. 12 samples were positive for L. monocytogenes and a total of 18 different species were identified as accompanying microbiota in fish and meat industry. No L. monocytogenes was found in samples from dairy industry. Molecular characterisation combining results of AscI and ApaI macrorestriction PFGE assays yielded 7 different subtypes of L. monocytogenes sharing in 71.43% of cases the same serogroup (1/2a-3a). Results from dynamic numerical characterisation between L. monocytogenes monospecies biofilms on stainless steel (SS) using MATLAB-based tool BIOFILMDIVER demonstrated that except in isolate A1, in which a significant increase in the percentage of covered area (CA), average diffusion distance (ADD) and maximum diffusion distance (MDD) was observed after 120 h of culture, no significant differences were observed in the dynamics of the rest of the L. monocytogenes isolates. Quantitative dual-species biofilm association experiments performed on SS indicated that L. monocytogenes cell counts presented lower values in mixed-species cultures with certain species at 24 and 48 h compared with mono-species culture. However, they remained unaltered after 72 h except when co-cultured with Serratia fonticola which presented differences in all sampling times and was also the dominant species within the dual-species biofilm. When considering frequency of appearance of accompanying species, an ecological distribution was demonstrated as Escherichia coli appeared to be the most abundant in fish industry and Carnobacterium spp. in meat industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions.

    Science.gov (United States)

    Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries.

  13. The influence of oral Veillonella species on biofilms formed by Streptococcus species.

    Science.gov (United States)

    Mashima, Izumi; Nakazawa, Futoshi

    2014-08-01

    Oral Veillonella, Veillonella atypica, Veillonella denticariosi, Veillonella dispar, Veillonella parvula, Veillonella rogosae, and Veillonella tobetsuensis are known as early colonizers in oral biofilm formation. To investigate the role of oral Veillonella, biofilms formed by the co-culture of Streptococcus gordonii, Streptococcus mutans, Streptococcus salivarius, or Streptococcus sanguinis, with oral Veillonella were examined at the species level. The amount of biofilm formed by S. mutans, S. gordonii, and S. salivarius in the presence of the six Veillonella species was greater than that formed in the control experiments, with the exception of S. mutans with V. dispar. In contrast, in the case of biofilm formation by S. sanguinis, the presence of Veillonella species reduced the amount of the biofilm, with the exception of V. parvula and V. dispar. The time-dependent changes in the amount of biofilm and the number of planktonic cells were grouped into four patterns over the 24 combinations. Only that of S. gordonii with V. tobetsuensis showed a unique pattern. These results indicate that the mode of action of this combination differed from that of the other combinations with respect to biofilm formation. It is possible that there may be several factors involved in the interaction between Streptococcus and Veillonella species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Identification of different bacterial species in biofilms using confocal Raman microscopy

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2010-11-01

    Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ~2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.

  15. Mimicking disinfection and drying of biofilms in contaminated endoscopes

    NARCIS (Netherlands)

    Kovaleva, J.; Degener, J. E.; van der Mei, H. C.

    2010-01-01

    The effects of peracetic acid-based (PAA) disinfectant with, and without, additional drying on Candida albicans, Candida parapsilosis, Pseudomonas aeruginosa and Stenotrophomonas maltophilia, isolated from contaminated flexible endoscopes, in single-and dual-species biofilms were studied. Biofilms

  16. Fusion protein-based biofilm fabrication composed of recombinant azurin–myoglobin for dual-level biomemory application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek [Research Institute for Basic Science, Sogang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Chung, Yong-Ho; Yoon, Jinho [Department of Chemical and Biomolecular Engineering, Sogang University, Heukseok-dong, Dongjak-gu, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Min, Junhong [School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.kr [Department of Chemical and Biomolecular Engineering, Sogang University, Heukseok-dong, Dongjak-gu, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of)

    2014-11-30

    Graphical abstract: - Highlights: • We developed the fusion protein-based biofilm on the inorganic surface. • For making the fusion protein, the recombinant azurin and the myoglobin was conjugated by the native chemical ligation method. • The developed fusion protein shows unique electrochemical property. • The proposed fusion protein biofilm appears to be a good method for dual-level biomemory device. - Abstract: In the present study, a fusion protein-based biofilm composed of a recombinant azurin–myoglobin (Azu-Myo) has been developed and confirmed its original electrochemical property for dual-level biomemory device application. For this purpose, the azurin was modified with cysteine residues for direct immobilization and conjugation. Then, the recombinant azurin was conjugated with the myoglobin via a sulfo-SMCC bifunctional linker using the chemical ligation method (CLM). The SDS-PAGE and UV–vis spectroscopy were performed to examine the fusion protein conjugates. The prepared Azu-Myo fusion protein was self-assembled onto Au substrate for the biofilm fabrication. Then, the atomic force microscopy (AFM) was used to confirm the immobilization and the surface-enhanced Raman spectroscopy (SERS) was carried out to the surface analysis. Also, the cyclic voltammetry (CV) was carried out to observe an electrochemical property of fabricated biofilm. As a result, the two pair of redox potential values was obtained for dual-level biomemory device application. Then, the dual-level biomemory function was verified by the multi-potential chronoamperometry (MPCA). The results indicate a new fabrication method and material combination for advances in bioelectronic device development.

  17. Fusion protein-based biofilm fabrication composed of recombinant azurin–myoglobin for dual-level biomemory application

    International Nuclear Information System (INIS)

    Lee, Taek; Chung, Yong-Ho; Yoon, Jinho; Min, Junhong; Choi, Jeong-Woo

    2014-01-01

    Graphical abstract: - Highlights: • We developed the fusion protein-based biofilm on the inorganic surface. • For making the fusion protein, the recombinant azurin and the myoglobin was conjugated by the native chemical ligation method. • The developed fusion protein shows unique electrochemical property. • The proposed fusion protein biofilm appears to be a good method for dual-level biomemory device. - Abstract: In the present study, a fusion protein-based biofilm composed of a recombinant azurin–myoglobin (Azu-Myo) has been developed and confirmed its original electrochemical property for dual-level biomemory device application. For this purpose, the azurin was modified with cysteine residues for direct immobilization and conjugation. Then, the recombinant azurin was conjugated with the myoglobin via a sulfo-SMCC bifunctional linker using the chemical ligation method (CLM). The SDS-PAGE and UV–vis spectroscopy were performed to examine the fusion protein conjugates. The prepared Azu-Myo fusion protein was self-assembled onto Au substrate for the biofilm fabrication. Then, the atomic force microscopy (AFM) was used to confirm the immobilization and the surface-enhanced Raman spectroscopy (SERS) was carried out to the surface analysis. Also, the cyclic voltammetry (CV) was carried out to observe an electrochemical property of fabricated biofilm. As a result, the two pair of redox potential values was obtained for dual-level biomemory device application. Then, the dual-level biomemory function was verified by the multi-potential chronoamperometry (MPCA). The results indicate a new fabrication method and material combination for advances in bioelectronic device development

  18. Distinct gene expression profile of Xanthomonas retroflexus engaged in synergistic multispecies biofilm formation

    DEFF Research Database (Denmark)

    Hansen, Lea Benedicte Skov; Ren, Dawei; Burmølle, Mette

    2017-01-01

    biofilms. This study presents a comparative gene expression analysis of the Xanthomonas retroflexus transcriptome when grown in a single-species biofilm and in dual-and four-species consortia with Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus. The results revealed...

  19. Biofilm Formation by Pseudallescheria/Scedosporium Species: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Rodrigo Rollin-Pinheiro

    2017-08-01

    Full Text Available Pseudallescheria/Scedosporium species are medically important fungi that are present in soil and human impacted areas and capable of causing a wide spectrum of diseases in humans. Although little is known about their pathogenesis, their growth process and infection routes are very similar to those of Aspergillus species, which grow as biofilms in invasive infections. All nine strains tested here displayed the ability to grow as biofilms in vitro and to produce a dense network of interconnected hyphae on both polystyrene and the surfaces of central venous catheters, but with different characteristics. Scedosporium boydii and S. aurantiacum clinical isolates were able to form biofilms faster than the corresponding environmental strains, as evidenced in kinetic assays for S. boydii and CLSM for S. aurantiacum. Biofilms formed by Pseudallescheria/Scedosporium species had significantly higher resistance to the class of antifungal azole than was observed in planktonic cells, indicating a protective role for this structure. In addition, the clinical S. aurantiacum isolate that formed the most robust biofilms was also more virulent in a larvae Galleria mellonella infection model, suggesting that the ability to form biofilms enhances virulence in Pseudallescheria/Scedosporium species.

  20. Development of a laboratory model of a phototroph-heterotroph mixed-species biofilm at the stone/air interface

    Directory of Open Access Journals (Sweden)

    Federica eVilla

    2015-11-01

    Full Text Available Recent scientific investigations have shed light on the ecological importance and physiological complexity of subaerial biofilms (SABs inhabiting lithic surfaces. In the field of sustainable cultural heritage (CH preservation, mechanistic approaches aimed at investigation of the spatiotemporal patterns of interactions between the biofilm, the stone, and the atmosphere are of outstanding importance. However, these interactions have proven difficult to explore with field experiments due to the inaccessibility of samples, the complexity of the ecosystem under investigation and the temporal resolution of the experiments.To overcome these limitations, we aimed at developing a unifying methodology to reproduce a fast-growing, phototroph-heterotroph mixed species biofilm at the stone/air interface. Our experiments underscore the ability of the dual-species SAB model to capture functional traits characteristic of biofilms inhabiting lithic substrate such as: i microcolonies of aggregated bacteria; ii network like structure following surface topography; iii cooperation between phototrophs and heterotrophs and cross feeding processes; iv ability to change the chemical parameters that characterize the microhabitats; v survival under desiccation and vi biocide tolerance. With its advantages in control, replication, range of different experimental scenarios and matches with the real ecosystem, the developed model system is a powerful tool to advance our mechanistic understanding of the stone-biofilm-atmosphere interplay in different environments.

  1. Cleaning and Disinfection of Bacillus cereus Biofilm.

    Science.gov (United States)

    Deal, Amanda; Klein, Dan; Lopolito, Paul; Schwarz, John Spencer

    2016-01-01

    Methodology has been evolving for the testing of disinfectants against bacterial single-species biofilms, as the difficulty of biofilm remediation continues to gain much-needed attention. Bacterial single-species biofilm contamination presents a real risk to good manufacturing practice-regulated industries. However, mixed-species biofilms and biofilms containing bacterial spores remain an even greater challenge for cleaning and disinfection. Among spore-forming microorganisms frequently encountered in pharmaceutical manufacturing areas, the spores of Bacillus cereus are often determined to be the hardest to disinfect and eradicate. One of the reasons for the low degree of susceptibility to disinfection is the ability of these spores to be encapsulated within an exopolysachharide biofilm matrix. In this series of experiments, we evaluated the disinfectant susceptibility of B. cereus biofilms relative to disassociated B. cereus spores and biofilm from a non-spore-forming species. Further, we assessed the impact that pre-cleaning has on increasing that susceptibility. Methodology has been evolving for the testing of disinfectants against bacterial single-species biofilms, as the difficulty of biofilm remediation continues to gain much-needed attention. Bacterial single-species biofilm contamination presents a real risk to good manufacturing practice-regulated industries. However, mixed-species biofilms and biofilms containing bacterial spores remain an even greater challenge for cleaning and disinfection. Among spore-forming microorganisms frequently encountered in pharmaceutical manufacturing areas, the spores of Bacillus cereus are often determined to be the hardest to disinfect and eradicate. One of the reasons for the low degree of susceptibility to disinfection is the ability of these spores to be encapsulated within an exopolysachharide biofilm matrix. In this series of experiments, we evaluated the disinfectant susceptibility of B. cereus biofilms relative to

  2. Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Tamura, S; Yonezawa, H; Motegi, M; Nakao, R; Yoneda, S; Watanabe, H; Yamazaki, T; Senpuku, H

    2009-04-01

    The effects of Streptococcus salivarius on the competence-stimulating peptide (CSP)-dependent biofilm formation by Streptococcus mutans were investigated. Biofilms were grown on 96-well microtiter plates coated with salivary components in tryptic soy broth without dextrose supplemented with 0.25% sucrose. Biofilm formations were stained using safranin and quantification of stained biofilms was performed by measuring absorbance at 492 nm. S. mutans formed substantial biofilms, whereas biofilms of S. salivarius were formed poorly in the medium conditions used. Furthermore, in combination cultures, S. salivarius strongly inhibited biofilm formation when cultured with S. mutans. This inhibition occurred in the early phase of biofilm formation and was dependent on inactivation of the CSP of S. mutans, which is associated with competence, biofilm formation, and antimicrobial activity of the bacterium, and is induced by expression of the comC gene. Comparisons between the S. mutans clinical strains FSC-3 and FSC-3DeltaglrA in separate dual-species cultures with S. salivarius indicated that the presence of the bacitracin transport ATP-binding protein gene glrA caused susceptibility to inhibition of S. mutans biofilm formation by S. salivarius, and was also associated with the regulation of CSP production by com gene-dependent quorum sensing systems. It is considered that regulation of CSP by glrA in S. mutans and CSP inactivation by S. salivarius are important functions for cell-to-cell communication between biofilm bacteria and oral streptococci such as S. salivarius. Our results provide useful information for understanding the ecosystem of oral streptococcal biofilms, as well as the competition between and coexistence of multiple species in the oral cavity.

  3. Burkholderia contaminans Biofilm Regulating Operon and Its Distribution in Bacterial Genomes.

    Science.gov (United States)

    Voronina, Olga L; Kunda, Marina S; Ryzhova, Natalia N; Aksenova, Ekaterina I; Semenov, Andrey N; Romanova, Yulia M; Gintsburg, Alexandr L

    2016-01-01

    Biofilm formation by Burkholderia spp. is a principal cause of lung chronic infections in cystic fibrosis patients. A "lacking biofilm production" (LBP) strain B. contaminans GIMC4587:Bct370-19 has been obtained by insertion modification of clinical strain with plasposon mutagenesis. It has an interrupted transcriptional response regulator (RR) gene. The focus of our investigation was a two-component signal transduction system determination, including this RR. B. contaminans clinical and LBP strains were analyzed by whole genome sequencing and bioinformatics resources. A four-component operon (BiofilmReg) has a key role in biofilm formation. The relative location (i.e., by being separated by another gene) of RR and histidine kinase genes is unique in BiofilmReg. Orthologs were found in other members of the Burkholderiales order. Phylogenetic analysis of strains containing BiofilmReg operons demonstrated evidence for earlier inheritance of a three-component operon. During further evolution one lineage acquired a fourth gene, whereas others lost the third component of the operon. Mutations in sensor domains have created biodiversity which is advantageous for adaptation to various ecological niches. Different species Burkholderia and Achromobacter strains all demonstrated similar BiofilmReg operon structure. Therefore, there may be an opportunity to develop a common drug which is effective for treating all these causative agents.

  4. The Yin and Yang of SagS: Distinct Residues in the HmsP Domain of SagS Independently Regulate Biofilm Formation and Biofilm Drug Tolerance

    Science.gov (United States)

    Dingemans, Jozef; Poudyal, Bandita

    2018-01-01

    ABSTRACT The formation of inherently drug-tolerant biofilms by the opportunistic pathogen Pseudomonas aeruginosa requires the sensor-regulator hybrid SagS, with ΔsagS biofilms being unstructured and exhibiting increased antimicrobial susceptibility. Recent findings indicated SagS to function as a switch to control biofilm formation and drug tolerance independently. Moreover, findings suggested the periplasmic sensory HmsP domain of SagS is likely to be the control point in the regulation of biofilm formation and biofilm cells transitioning to a drug-tolerant state. We thus asked whether specific amino acid residues present in the HmsP domain contribute to the switch function of SagS. HmsP domain residues were therefore subjected to alanine replacement mutagenesis to identify substitutions that block the sensory function(s) of SagS, which is apparent by attached cells being unable to develop mature biofilms and/or prevent transition to an antimicrobial-resistant state. Mutant analyses revealed 32 residues that only contribute to blocking one sensory function. Moreover, amino acid residues affecting attachment and subsequent biofilm formation but not biofilm tolerance also impaired histidine kinase signaling via BfiS. In contrast, residues affecting biofilm drug tolerance but not attachment and subsequent biofilm formation negatively impacted BrlR transcription factor levels. Structure prediction suggested the two sets of residues affecting sensory functions are located in distinct areas that were previously described as being involved in ligand binding interactions. Taken together, these studies identify the molecular basis for the dual regulatory function of SagS. IMPORTANCE The membrane-bound sensory protein SagS plays a pivotal role in P. aeruginosa biofilm formation and biofilm cells gaining their heightened resistance to antimicrobial agents, with SagS being the control point at which both pathways diverge. Here, we demonstrate for the first time that the two

  5. Synergy in biofilm formation between Fusobacterium nucleatum and Prevotella species.

    Science.gov (United States)

    Okuda, Tamaki; Kokubu, Eitoyo; Kawana, Tomoko; Saito, Atsushi; Okuda, Katsuji; Ishihara, Kazuyuki

    2012-02-01

    The formation of biofilm by anaerobic, Gram-negative bacteria in the subgingival crevice plays an important role in the development of chronic periodontitis. The aim of this study was to characterize the role of coaggregation between Fusobacterium nucleatum and Prevotella species in biofilm formation. Coaggregation between F. nucleatum and Prevotella species was determined by visual assay. Effect of co-culture of the species on biofilm formation was assessed by crystal violet staining. Effect of soluble factor on biofilm formation was also examined using culture supernatant and two-compartment co-culture separated by a porous membrane. Production of autoinducer-2 (AI-2) by the organisms was evaluated using Vibrio harveyi BB170. Cells of all F. nucleatum strains coaggregated with Prevotella intermedia or Prevotella nigrescens with a score of 1-4. Addition of ethylenediamine tetraacetic acid or l-lysine inhibited coaggregation. Coaggregation disappeared after heating of P. intermedia or P. nigrescens cells, or Proteinase K treatment of P. nigrescens cells. Co-culture of F. nucleatum ATCC 25586 with P. intermedia or P. nigrescens strains increased biofilm formation compared with single culture (p culture with culture supernatant of these strains, however, did not enhance biofilm formation by F. nucleatum. Production of AI-2 in Prevotella species was not related to enhancement of biofilm formation by F. nucleatum. These findings indicate that physical contact by coaggregation of F. nucleatum strains with P. intermedia or P. nigrescens plays a key role in the formation of biofilm by these strains. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Physiological differentiation within a single-species biofilm fueled by serpentinization.

    Science.gov (United States)

    Brazelton, William J; Mehta, Mausmi P; Kelley, Deborah S; Baross, John A

    2011-01-01

    Carbonate chimneys at the Lost City hydrothermal field are coated in biofilms dominated by a single phylotype of archaea known as Lost City Methanosarcinales. In this study, we have detected surprising physiological complexity in single-species biofilms, which is typically indicative of multispecies biofilm communities. Multiple cell morphologies were visible within the biofilms by transmission electron microscopy, and some cells contained intracellular membranes that may facilitate methane oxidation. Both methane production and oxidation were detected at 70 to 80°C and pH 9 to 10 in samples containing the single-species biofilms. Both processes were stimulated by the presence of hydrogen (H(2)), indicating that methane production and oxidation are part of a syntrophic interaction. Metagenomic data included a sequence encoding AMP-forming acetyl coenzyme A synthetase, indicating that acetate may play a role in the methane-cycling syntrophy. A wide range of nitrogen fixation genes were also identified, many of which were likely acquired via lateral gene transfer (LGT). Our results indicate that cells within these single-species biofilms may have differentiated into multiple physiological roles to form multicellular communities linked by metabolic interactions and LGT. Communities similar to these Lost City biofilms are likely to have existed early in the evolution of life, and we discuss how the multicellular characteristics of ancient hydrogen-fueled biofilm communities could have stimulated ecological diversification, as well as unity of biochemistry, during the earliest stages of cellular evolution. Our previous work at the Lost City hydrothermal field has shown that its carbonate chimneys host microbial biofilms dominated by a single uncultivated "species" of archaea. In this paper, we integrate evidence from these previous studies with new data on the metabolic activity and cellular morphology of these archaeal biofilms. We conclude that the archaeal biofilm

  7. Complex Interplay between FleQ, Cyclic Diguanylate and Multiple σ Factors Coordinately Regulates Flagellar Motility and Biofilm Development in Pseudomonas putida.

    Directory of Open Access Journals (Sweden)

    Alicia Jiménez-Fernández

    Full Text Available Most bacteria alternate between a free living planktonic lifestyle and the formation of structured surface-associated communities named biofilms. The transition between these two lifestyles requires a precise and timely regulation of the factors involved in each of the stages that has been likened to a developmental process. Here we characterize the involvement of the transcriptional regulator FleQ and the second messenger cyclic diguanylate in the coordinate regulation of multiple functions related to motility and surface colonization in Pseudomonas putida. Disruption of fleQ caused strong defects in flagellar motility, biofilm formation and surface attachment, and the ability of this mutation to suppress multiple biofilm-related phenotypes associated to cyclic diguanylate overproduction suggests that FleQ mediates cyclic diguanylate signaling critical to biofilm growth. We have constructed a library containing 94 promoters potentially involved in motility and biofilm development fused to gfp and lacZ, screened this library for FleQ and cyclic diguanylate regulation, and assessed the involvement of alternative σ factors σN and FliA in the transcription of FleQ-regulated promoters. Our results suggest a dual mode of action for FleQ. Low cyclic diguanylate levels favor FleQ interaction with σN-dependent promoters to activate the flagellar cascade, encompassing the flagellar cluster and additional genes involved in cyclic diguanylate metabolism, signal transduction and gene regulation. On the other hand, characterization of the FleQ-regulated σN- and FliA-independent PlapA and PbcsD promoters revealed two disparate regulatory mechanisms leading to a similar outcome: the synthesis of biofilm matrix components in response to increased cyclic diguanylate levels.

  8. Transfer of bacteria between stainless steel and chicken meat: A CLSM and DGGE study of biofilms

    Directory of Open Access Journals (Sweden)

    Christine C. Gaylarde

    2016-08-01

    Full Text Available This study aimed to assess the interaction between bacteria and food processing surfaces using novel methods. Microbial cross contamination between stainless steel, a common food processing material, and raw chicken was studied using microbiological culture, specialized microscope and molecular techniques. Confocal laser scanning microscopy (CLSM allowed the visualization of biofilms containing single or dual species of Escherichia coli O157:H7, Salmonella typhimurium, Bacillus cereus, Staphylococcus aureus and Pseudomonas aeruginosa, formed after 6 days’ incubation on stainless steel or 4h on raw chicken. The results provided information on intra-biofilm location and stratification of species within dual species biofilms. Top-to-bottom Z-stack images revealed that, on both materials, S. typhimurium and E. coli attached concurrently, the former in greater numbers. E. coli and B. cereus segregated on steel, E. coli more frequent near the metal surface, B. cereus almost the only species in outer layers. Few cells of S. aureus, found at all depths, were seen in the 2.9 µm thick biofilm on steel with E. coli. Greatest attachment was shown by P. aeruginosa, followed by S. typhimurium, E. coli and finally Gram positive species. Large amounts of EPS in P. aeruginosa biofilms made visualization difficult on both materials, but especially on chicken meat, a limitation of this technique. Nevertheless, CLSM was useful for determining time sequence of adhesion and species makeup of thin biofilms. The technique showed that five min contact between bacterially-contaminated chicken and sterile steel resulted in greatest transfer of P. aeruginosa, followed by S. typhimurium. This was confirmed using DGGE. Gram positive bacteria transferred poorly. A biofilm containing 2.3 × 105  cfu·cm−2 B. cereus on steel transferred an undetectable number of cells to chicken after 5 min contact. This species was unable to form biofilm on chicken when incubated for 4 h

  9. Nanoparticles for Control of Biofilms of Acinetobacter Species

    Directory of Open Access Journals (Sweden)

    Richa Singh

    2016-05-01

    Full Text Available Biofilms are the cause of 80% of microbial infections. Acinetobacter species have emerged as multi- and pan-drug-resistant bacteria and pose a great threat to human health. These act as nosocomial pathogens and form excellent biofilms, both on biotic and abiotic surfaces, leading to severe infections and diseases. Various methods have been developed for treatment and control of Acinetobacter biofilm including photodynamic therapy, radioimmunotherapy, prophylactic vaccines and antimicrobial peptides. Nanotechnology, in the present scenario, offers a promising alternative. Nanomaterials possess unique properties, and multiple bactericidal mechanisms render them more effective than conventional drugs. This review intends to provide an overview of Acinetobacter biofilm and the significant role of various nanoparticles as anti-biofouling agents, surface-coating materials and drug-delivery vehicles for biofilm control and treatment of Acinetobacter infections.

  10. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species.

    Science.gov (United States)

    Tan, Yulong; Leonhard, Matthias; Moser, Doris; Schneider-Stickler, Berit

    2016-09-20

    Although most cases of candidiasis have been attributed to Candida albicans, non-C. albicans Candida species have been isolated in increasing numbers in patients. In this study, we determined the inhibition of carboxymethyl chitosan (CM-chitosan) on single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida parapsilosis, Candida krusei and Candida glabrata. Biofilm by all tested species in microtiter plates were inhibited nearly 70%. CM-chitosan inhibited mixed species biofilm in microtiter plates and also on medical materials surfaces. To investigate the mechanism, the effect of CM-chitosan on cell viability and biofilm growth was employed. CM-chitosan inhibited Candida planktonic growth as well as adhesion. Further biofilm formation was inhibited with CM-chitosan added at 90min, 12h or 24h after biofilm initiation. CM-chitosan was not only able to inhibit the metabolic activity of Candida cells, but was also active upon the establishment and the development of biofilms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Micro-scale intermixing: a requisite for stable and synergistic co-establishment in a four-species biofilm.

    Science.gov (United States)

    Liu, Wenzheng; Russel, Jakob; Burmølle, Mette; Sørensen, Søren J; Madsen, Jonas S

    2018-04-18

    Microorganisms frequently coexist in complex multispecies communities, where they distribute non-randomly, reflective of the social interactions that occur. It is therefore important to understand how social interactions and local spatial organization influences multispecies biofilm succession. Here the localization of species pairs was analyzed in three dimensions in a reproducible four-species biofilm model, to study the impact of spatial positioning of individual species on the temporal development of the community. We found, that as the biofilms developed, species pairs exhibited distinct intermixing patterns unique to the four-member biofilms. Higher biomass and more intermixing were found in four-species biofilms compared to biofilms with fewer species. Intriguingly, in local regions within the four member biofilms where Microbacterium oxydans was scant, both biomass and intermixing of all species were lowered, compared to regions where M. oxydans was present at typical densities. Our data suggest that Xanthomonas retroflexus and M. oxydans, both low abundant biofilm-members, intermixed continuously during the development of the four-species biofilm, hereby facilitating their own establishment. In turn, this seems to have promoted distinct spatial organization of Stenotrophomonas rhizophila and Paenibacillus amylolyticus enabling enhanced growth of all four species. Here local intermixing of bacteria advanced the temporal development of a multi-species biofilm.

  12. The Porphyromonas gingivalis ferric uptake regulator orthologue binds hemin and regulates hemin-responsive biofilm development.

    Directory of Open Access Journals (Sweden)

    Catherine A Butler

    Full Text Available Porphyromonas gingivalis is a Gram-negative pathogen associated with the biofilm-mediated disease chronic periodontitis. P. gingivalis biofilm formation is dependent on environmental heme for which P. gingivalis has an obligate requirement as it is unable to synthesize protoporphyrin IX de novo, hence P. gingivalis transports iron and heme liberated from the human host. Homeostasis of a variety of transition metal ions is often mediated in Gram-negative bacteria at the transcriptional level by members of the Ferric Uptake Regulator (Fur superfamily. P. gingivalis has a single predicted Fur superfamily orthologue which we have designated Har (heme associated regulator. Recombinant Har formed dimers in the presence of Zn2+ and bound one hemin molecule per monomer with high affinity (Kd of 0.23 µM. The binding of hemin resulted in conformational changes of Zn(IIHar and residue 97Cys was involved in hemin binding as part of a predicted -97C-98P-99L- hemin binding motif. The expression of 35 genes was down-regulated and 9 up-regulated in a Har mutant (ECR455 relative to wild-type. Twenty six of the down-regulated genes were previously found to be up-regulated in P. gingivalis grown as a biofilm and 11 were up-regulated under hemin limitation. A truncated Zn(IIHar bound the promoter region of dnaA (PGN_0001, one of the up-regulated genes in the ECR455 mutant. This binding decreased as hemin concentration increased which was consistent with gene expression being regulated by hemin availability. ECR455 formed significantly less biofilm than the wild-type and unlike wild-type biofilm formation was independent of hemin availability. P. gingivalis possesses a hemin-binding Fur orthologue that regulates hemin-dependent biofilm formation.

  13. Dual function of the McaS small RNA in controlling biofilm formation

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel Girke; Thomason, Maureen K.; Havelund, Johannes

    2013-01-01

    , and biofilm formation. Moreover, ectopic McaS expression leads to induction of two additional CsrA-repressed genes encoding diguanylate cyclases. Collectively, our study shows that McaS is a dual-function sRNA with roles in the two major post-transcriptional regulons controlled by the RNA-binding proteins Hfq...

  14. Portrait of Candida Species Biofilm Regulatory Network Genes.

    Science.gov (United States)

    Araújo, Daniela; Henriques, Mariana; Silva, Sónia

    2017-01-01

    Most cases of candidiasis have been attributed to Candida albicans, but Candida glabrata, Candida parapsilosis and Candida tropicalis, designated as non-C. albicans Candida (NCAC), have been identified as frequent human pathogens. Moreover, Candida biofilms are an escalating clinical problem associated with significant rates of mortality. Biofilms have distinct developmental phases, including adhesion/colonisation, maturation and dispersal, controlled by complex regulatory networks. This review discusses recent advances regarding Candida species biofilm regulatory network genes, which are key components for candidiasis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Species-independent attraction to biofilms through electrical signaling

    Science.gov (United States)

    Humphries, Jacqueline; Xiong, Liyang; Liu, Jintao; Prindle, Arthur; Yuan, Fang; Arjes, Heidi A.; Tsimring, Lev; Süel, Gürol M.

    2017-01-01

    Summary Bacteria residing within biofilm communities can coordinate their behavior through cell-to-cell signaling. However, it remains unclear if these signals can also influence the behavior of distant cells that are not part of the community. Using a microfluidic approach, we find that potassium ion channel-mediated electrical signaling generated by a Bacillus subtilis biofilm can attract distant cells. Integration of experiments and mathematical modeling indicates that extracellular potassium emitted from the biofilm alters the membrane potential of distant cells, thereby directing their motility. This electrically-mediated attraction appears to be a generic mechanism that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to the electrical signal released by the B. subtilis biofilm. Cells within a biofilm community can thus not only coordinate their own behavior, but also influence the behavior of diverse bacteria at a distance through long-range electrical signaling. PMID:28086091

  16. CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA.

    Directory of Open Access Journals (Sweden)

    Stephan P Willias

    Full Text Available The natural transmission of Yersinia pestis is reliant upon biofilm blockage of the flea vector. However, the environmentally-responsive adaptive regulators which facilitate Y. pestis biofilm production in accordance with the flea midgut milieu are not well understood. We seek to establish the impact of available carbon source metabolism and storage upon Y. pestis biofilm production. Our findings demonstrate that Y. pestis biofilm production is subject to carbon catabolite regulation in which the presence of glucose impairs biofilm production; whereas, the sole metabolism of alternate carbon sources promotes robust biofilm formation. This observation is facilitated by the cAMP receptor protein, CRP. In accordance with a stark growth defect, deletion of crp in both CO92 and KIM6+ Y. pestis strains significantly impaired biofilm production when solely utilizing alternate carbon sources. Media supplementation with cAMP, a small-molecule activator of CRP, did not significantly alter Y. pestis biofilm production. Furthermore, CRP did not alter mRNA abundance of previously-characterized hms biofilm synthesis and regulation factors. Therefore, our findings indicate CRP does not confer a direct stimulatory effect, but may indirectly promote Y. pestis biofilm production by facilitating the alternate carbon source expression profile. Additionally, we assessed the impact of the carbon storage regulator protein, CsrA, upon Y. pestis biofilm production. Contrary to what has been described for E. coli, Y. pestis biofilm formation was found to be enhanced by CsrA. Regardless of media composition and available carbon source, deletion of csrA significantly impaired Y. pestis biofilm production. CsrA was found to promote Y. pestis biofilm production independent of glycogen regulation. Loss of csrA did not significantly alter relative hmsH, hmsP, or hmsT mRNA abundance. However, deletion of hmsP in the csrA-deficient mutant enabled excessive biofilm production

  17. Synergistic Interactions within a Multispecies Biofilm Enhance Individual Species Protection against Grazing by a Pelagic Protozoan

    Directory of Open Access Journals (Sweden)

    Prem K. Raghupathi

    2018-01-01

    Full Text Available Biofilm formation has been shown to confer protection against grazing, but little information is available on the effect of grazing on biofilm formation and protection in multispecies consortia. With most biofilms in nature being composed of multiple bacterial species, the interactions and dynamics of a multispecies bacterial biofilm subject to grazing by a pelagic protozoan predator were investigated. To this end, a mono and multispecies biofilms of four bacterial soil isolates, namely Xanthomonas retroflexus, Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus, were constructed and subjected to grazing by the ciliate Tetrahymena pyriformis. In monocultures, grazing strongly reduced planktonic cell numbers in P. amylolyticus and S. rhizophila and also X. retroflexus. At the same time, cell numbers in the underlying biofilms increased in S. rhizophila and X. retroflexus, but not in P. amylolyticus. This may be due to the fact that while grazing enhanced biofilm formation in the former two species, no biofilm was formed by P. amylolyticus in monoculture, either with or without grazing. In four-species biofilms, biofilm formation was higher than in the best monoculture, a strong biodiversity effect that was even more pronounced in the presence of grazing. While cell numbers of X. retroflexus, S. rhizophila, and P. amylolyticus in the planktonic fraction were greatly reduced in the presence of grazers, cell numbers of all three species strongly increased in the biofilm. Our results show that synergistic interactions between the four-species were important to induce biofilm formation, and suggest that bacterial members that produce more biofilm when exposed to the grazer not only protect themselves but also supported other members which are sensitive to grazing, thereby providing a “shared grazing protection” within the four-species biofilm model. Hence, complex interactions shape the dynamics of the biofilm and

  18. The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes.

    Science.gov (United States)

    Lemon, Katherine P; Freitag, Nancy E; Kolter, Roberto

    2010-08-01

    Listeria monocytogenes is a food-borne facultative intracellular pathogen. It is widespread in the environment and has several distinct life-styles. The key transcriptional activator PrfA positively regulates L. monocytogenes virulence genes to mediate the transition from extracellular, flagellum-propelled cell to intracellular pathogen. Here we report the first evidence that PrfA also has a significant positive impact on extracellular biofilm formation. Mutants lacking prfA were defective in surface-adhered biofilm formation. The DeltaprfA mutant exhibited wild-type flagellar motility, and its biofilm defect occurred after initial surface adhesion. We also observed that mutations that led to the constitutive expression of PrfA-dependent virulence genes had a minimal impact on biofilm formation. Furthermore, biofilm development was enhanced in a mutant encoding a PrfA protein variant unable to fully transition from the extracellular form to the virulent, intracellular activity conformation. These results indicate that PrfA positively regulates biofilm formation and suggest that PrfA has a global role in modulating the life-style of L. monocytogenes. The requirement of PrfA for optimal biofilm formation may provide selective pressure to maintain this critical virulence regulator when L. monocytogenes is outside host cells in the environment.

  19. An In Vitro Model for Candida albicans–Streptococcus gordonii Biofilms on Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Daniel Montelongo-Jauregui

    2018-06-01

    Full Text Available The oral cavity serves as a nutrient-rich haven for over 600 species of microorganisms. Although many are essential to maintaining the oral microbiota, some can cause oral infections such as caries, periodontitis, mucositis, and endodontic infections, and this is further exacerbated with dental implants. Most of these infections are mixed species in nature and associated with a biofilm mode of growth. Here, after optimization of different parameters including cell density, growth media, and incubation conditions, we have developed an in vitro model of C. albicans–S. gordonii mixed-species biofilms on titanium discs that is relevant to infections of peri-implant diseases. Our results indicate a synergistic effect for the development of biofilms when both microorganisms were seeded together, confirming the existence of beneficial, mutualistic cross-kingdom interactions for biofilm formation. The morphological and architectural features of these dual-species biofilms formed on titanium were determined using scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM. Mixed biofilms formed on titanium discs showed a high level of resistance to combination therapy with antifungal and antibacterial drugs. This model can serve as a platform for further analyses of complex fungal/bacterial biofilms and can also be applied to screening of new drug candidates against mixed-species biofilms.

  20. Interaction of legionella pneumophila and helicobacter pylori with bacterial species isolated from drinking water biofilms

    Directory of Open Access Journals (Sweden)

    Azevedo Nuno F

    2011-03-01

    Full Text Available Abstract Background It is well established that Legionella pneumophila is a waterborne pathogen; by contrast, the mode of Helicobacter pylori transmission remains unknown but water seems to play an important role. This work aims to study the influence of five microorganisms isolated from drinking water biofilms on the survival and integration of both of these pathogens into biofilms. Results Firstly, both pathogens were studied for auto- and co-aggregation with the species isolated from drinking water; subsequently the formation of mono and dual-species biofilms by L. pneumophila or H. pylori with the same microorganisms was investigated. Neither auto- nor co-aggregation was observed between the microorganisms tested. For biofilm studies, sessile cells were quantified in terms of total cells by SYTO 9 staining, viable L. pneumophila or H. pylori cells were quantified using 16 S rRNA-specific peptide nucleic acid (PNA probes and cultivable cells by standard culture techniques. Acidovorax sp. and Sphingomonas sp. appeared to have an antagonistic effect on L. pneumophila cultivability but not on the viability (as assessed by rRNA content using the PNA probe, possibly leading to the formation of viable but noncultivable (VBNC cells, whereas Mycobacterium chelonae increased the cultivability of this pathogen. The results obtained for H. pylori showed that M. chelonae and Sphingomonas sp. help this pathogen to maintain cultivability for at least 24 hours. Conclusions It appears that M. chelonae may have an important role in the survival of both pathogens in drinking water. This work also suggests that the presence of some microorganisms can decrease the cultivability of L. pneumophila but not the viability which indicates that the presence of autochthonous microorganisms can lead to misleading results when the safety of water is assessed by cultivable methods alone.

  1. Lab-scale preparations of Candida albicans and dual Candida albicans-Candida glabrata biofilms on the surface of medical-grade polyvinyl chloride (PVC) perfusion tube using a modified gravity-supported free-flow biofilm incubator (GS-FFBI).

    Science.gov (United States)

    Shao, Jing; Lu, KeQiao; Tian, Ge; Cui, YanYan; Yan, YuanYuan; Wang, TianMing; Zhang, XinLong; Wang, ChangZhong

    2015-02-01

    The assembly of a man-made gravity-supported free-flow biofilm incubator (GS-FFBI) was described, which was composed of a gas cushion injector and four incubators. The GS-FFBI had the characteristics of (i) a bottom-up flow direction, and (ii) lab-scale biofilm preparation without the use of a multichannel pump. Two opportunistic fungal strains, namely Candida albicans and Candida glabrata, were employed to incubate C. albicans and dual C. albicans-C. glabrata biofilms on the surface of medical-grade polyvinyl chloride perfusion tube. In terms of the results from {2, 3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide} (XTT) assay, dry weight measurement, colony-forming unit counting, susceptibility test, and scanning electron microscopy, it was demonstrated that GS-FFBI could form both stable single and dual Candida biofilms with no significant variations among the four incubators or the three daily incubations within 21h, and could operate for at least 96h smoothly with no contamination of stock medium. The results also indicated, for the first time, that C. albicans and C. glabrata might be co-existent competitively and symbiotically in the dual biofilms with flowing media. GS-FFBI would be a useful device to study in vitro morphological and physiological features of microbial biofilms in the medical settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Two-component system VicRK regulates functions associated with establishment of Streptococcus sanguinis in biofilms.

    Science.gov (United States)

    Moraes, Julianna J; Stipp, Rafael N; Harth-Chu, Erika N; Camargo, Tarsila M; Höfling, José F; Mattos-Graner, Renata O

    2014-12-01

    Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRKSs regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Dynamics of biofilm formation and the interaction between Candida albicans and methicillin-susceptible (MSSA) and -resistant Staphylococcus aureus (MRSA).

    Science.gov (United States)

    Zago, Chaiene Evelin; Silva, Sónia; Sanitá, Paula Volpato; Barbugli, Paula Aboud; Dias, Carla Maria Improta; Lordello, Virgínia Barreto; Vergani, Carlos Eduardo

    2015-01-01

    Polymicrobial biofilms are an understudied and a clinically relevant problem. This study evaluates the interaction between C. albicans, and methicillin- susceptible (MSSA) and resistant (MRSA) S. aureus growing in single- and dual-species biofilms. Single and dual species adhesion (90 min) and biofilms (12, 24, and 48 h) were evaluated by complementary methods: counting colony-forming units (CFU mL-1), XTT-reduction, and crystal violet staining (CV). The secretion of hydrolytic enzymes by the 48 h biofilms was also evaluated using fluorimetric kits. Scanning electron microscopy (SEM) was used to assess biofilm structure. The results from quantification assays were compared using two-way ANOVAs with Tukey post-hoc tests, while data from enzymatic activities were analyzed by one-way Welch-ANOVA followed by Games-Howell post hoc test (α = 0.05). C. albicans, MSSA and MRSA were able to adhere and to form biofilm in both single or mixed cultures. In general, all microorganisms in both growth conditions showed a gradual increase in the number of cells and metabolic activity over time, reaching peak values between 12 h and 48 h (ρ<0.05). C. albicans single- and dual-biofilms had significantly higher total biomass values (ρ<0.05) than single biofilms of bacteria. Except for single MRSA biofilms, all microorganisms in both growth conditions secreted proteinase and phospholipase-C. SEM images revealed extensive adherence of bacteria to hyphal elements of C. albicans. C. albicans, MSSA, and MRSA can co-exist in biofilms without antagonism and in an apparent synergistic effect, with bacteria cells preferentially associated to C. albicans hyphal forms.

  4. Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron

    DEFF Research Database (Denmark)

    Breugelmans, Philip; Barken, Kim Bundvig; Tolker-Nielsen, Tim

    2008-01-01

    influence on the triple-species biofilm architecture. This architecture was dependent on the carbon source supplied, as the biofilm architecture of WDL1 growing on alternative carbon sources was different from that observed under linuron-fed conditions. Linuron-fed triple-species consortium biofilms....... These observations indicate that the spatial organization in the linuron-fed consortium biofilm reflected the metabolic interactions within the consortium....

  5. Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology

    Science.gov (United States)

    2017-01-01

    ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that

  6. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa.

    Science.gov (United States)

    Sakuragi, Yumiko; Kolter, Roberto

    2007-07-01

    Quorum sensing (QS) has been previously shown to play an important role in the development of Pseudomonas aeruginosa biofilms (D. G. Davies et al., Science 280:295-298, 1998). Although QS regulation of swarming and DNA release has been shown to play important roles in biofilm development, regulation of genes directly involved in biosynthesis of biofilm matrix has not been described. Here, transcription of the pel operon, essential for the production of a glucose-rich matrix exopolysaccharide, is shown to be greatly reduced in lasI and rhlI mutants. Chemical complementation of the lasI mutant with 3-oxo-dodecanoyl homoserine lactone restores pel transcription to the wild-type level and biofilm formation ability. These findings thus connect QS signaling and transcription of genes responsible for biofilm matrix biosynthesis.

  7. Interactions between Candida albicans and Candida glabrata in biofilms: Influence of the strain type, culture medium and glucose supplementation.

    Science.gov (United States)

    Hosida, Thayse Yumi; Cavazana, Thamires Priscila; Henriques, Mariana; Pessan, Juliano Pelim; Delbem, Alberto Carlos Botazzo; Monteiro, Douglas Roberto

    2018-04-01

    The relationship among Candida species may be influenced by several factors. Thus, this study evaluated the interactions between Candida albicans and Candida glabrata in biofilms, varying the strain type, culture medium and glucose supplementation. Biofilms were formed for 48 hours in Sabouraud dextrose broth (SDB) or RPMI 1640, supplemented with 0%, 1% or 5% glucose. Each strain of C. albicans was combined with two strains of C. glabrata, generating four biofilm associations, which were quantified by colony-forming units (CFUs), total biomass and metabolic activity. Data were analysed by ANOVA and Tukey's HSD test (α = 0.05). For CFUs, all associations were classified as indifferent for biofilms formed in RPMI 1640, while for SDB the interactions were antagonistic for C. albicans and indifferent for C. glabrata. The association of reference strains resulted in a dual-species biofilm with biomass significantly higher than that observed for each single biofilm developed in SDB. The metabolic activity of dual-species biofilms did not significantly differ from that found for single ones, except for co-culture of the reference strains. Glucose supplementation and culture media had a significant influence on all parameters. In conclusion, the strain type, culture medium and glucose supplementation influenced the interactions between C. albicans and C. glabrata. © 2017 Blackwell Verlag GmbH.

  8. Recent advances in dental biofilm: impacts of microbial interactions on the biofilm ecology and pathogenesis

    Directory of Open Access Journals (Sweden)

    Yung-Hua Li

    2017-05-01

    Full Text Available The human oral cavity is a complex ecosystem harboring hundreds species of microbes that are largely living on the tooth surfaces as dental biofilms. Most microbes in dental biofilms promote oral health by stimulating the immune system or by preventing invasion of pathogens. Species diversity, high cell density and close proximity of cells are typical of life in dental biofilms, where microbes interact with each other and develop complex interactions that can be either competitive or cooperative. Competition between species is a well-recognized ecological force to drive microbial metabolism, species diversity and evolution. However, it was not until recently that microbial cooperative activities are also recognized to play important roles in microbial physiology and ecology. Importantly, these interactions profoundly affect the overall biomass, function, diversity and the pathogenesis in dental biofilms. It is now recognized that every human body contains a personalized oral microbiome that is essential to maintaining the oral health. Remarkably, the indigenous species in dental biofilms often maintain a relatively stable and harmless relationship with the host, despite regular exposure to environmental perturbations and the host defense factors. Such stability or homeostasis results from a dynamic balance of microbial-microbial and microbial-host interactions. Under certain circumstances, however, the homeostasis may breakdown, predisposing a site to diseases. In this review, we describe several examples of microbial interactions and their impacts on the homeostasis and pathogenesis of dental biofilms. We hope to encourage research on microbial interactions in the regulation of the homeostasis in biofilms.

  9. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa

    Science.gov (United States)

    Pusic, Petra; Tata, Muralidhar; Wolfinger, Michael T.; Sonnleitner, Elisabeth; Häussler, Susanne; Bläsi, Udo

    2016-12-01

    Pseudomonas aeruginosa (PA) can thrive in anaerobic biofilms in the lungs of cystic fibrosis (CF) patients. Here, we show that CrcZ is the most abundant PA14 RNA bound to the global regulator Hfq in anoxic biofilms grown in cystic fibrosis sputum medium. Hfq was crucial for anoxic biofilm formation. This observation complied with an RNAseq based transcriptome analysis and follow up studies that implicated Hfq in regulation of a central step preceding denitrification. CrcZ is known to act as a decoy that sequesters Hfq during relief of carbon catabolite repression, which in turn alleviates Hfq-mediated translational repression of catabolic genes. We therefore inferred that CrcZ indirectly impacts on biofilm formation by competing for Hfq. This hypothesis was supported by the findings that over-production of CrcZ mirrored the biofilm phenotype of the hfq deletion mutant, and that deletion of the crcZ gene augmented biofilm formation. To our knowledge, this is the first example where competition for Hfq by CrcZ cross-regulates an Hfq-dependent physiological process unrelated to carbon metabolism.

  10. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Wilson, Melanie; Lewis, Michael; Del-Bel-Cury, Altair Antoninha; da Silva, Wander José; Williams, David W

    2016-01-01

    Whilst Candida albicans occurs in peri-implant biofilms, its role in peri-implantitis remains unclear. This study therefore examined the virulence of C. albicans in mixed-species biofilms on titanium surfaces. Biofilms of C. albicans (Ca), C. albicans with streptococci (Streptococcus sanguinis, S. mutans) (Ca-Ss-Sm) and those incorporating Porphyromonas gingivalis (Ca-Pg and Ca-Ss-Sm-Pg) were developed. Expression of C. albicans genes associated with adhesion (ALS1, ALS3, HWP1) and hydrolytic enzymes (SAP2, SAP4, SAP6, PLD1) was measured and hyphal production by C. albicans quantified. Compared with Ca biofilms, significant (pbiofilms containing streptococci (Ca-Ss-Sm). In Ca-Pg biofilms, down-regulation of HWP1 and SAP4 expression, with reduced hyphal production occurred. Ca-Ss-Sm-Pg biofilms had increased hyphal proportions and up-regulation of ALS3, SAP2 and SAP6. In conclusion, C. albicans expressed virulence factors in biofilms that could contribute to peri-implantitis, but this was dependent on associated bacterial species.

  11. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Liao, Julie; Schurr, Michael J; Sauer, Karin

    2013-08-01

    A defining characteristic of biofilms is antibiotic tolerance that can be up to 1,000-fold greater than that of planktonic cells. In Pseudomonas aeruginosa, biofilm tolerance to antimicrobial agents requires the biofilm-specific MerR-type transcriptional regulator BrlR. However, the mechanism by which BrlR mediates biofilm tolerance has not been elucidated. Genome-wide transcriptional profiling indicated that brlR was required for maximal expression of genes associated with antibiotic resistance, in particular those encoding the multidrug efflux pumps MexAB-OprM and MexEF-OprN. Chromatin immunoprecipitation (ChIP) analysis revealed a direct regulation of these genes by BrlR, with DNA binding assays confirming BrlR binding to the promoter regions of the mexAB-oprM and mexEF-oprN operons. Quantitative reverse transcriptase PCR (qRT-PCR) analysis further indicated BrlR to be an activator of mexAB-oprM and mexEF-oprN gene expression. Moreover, immunoblot analysis confirmed increased MexA abundance in cells overexpressing brlR. Inactivation of both efflux pumps rendered biofilms significantly more susceptible to five different classes of antibiotics by affecting MIC but not the recalcitrance of biofilms to killing by bactericidal agents. Overexpression of either efflux pump in a ΔbrlR strain partly restored tolerance of ΔbrlR biofilms to antibiotics. Expression of brlR in mutant biofilms lacking both efflux pumps partly restored antimicrobial tolerance of biofilms to wild-type levels. Our results indicate that BrlR acts as an activator of multidrug efflux pumps to confer tolerance to P. aeruginosa biofilms and to resist the action of antimicrobial agents.

  12. Candida albicans Biofilms Do Not Trigger Reactive Oxygen Species and Evade Neutrophil Killing

    Science.gov (United States)

    Xie, Zhihong; Thompson, Angela; Sobue, Takanori; Kashleva, Helena; Xu, Hongbin; Vasilakos, John; Dongari-Bagtzoglou, Anna

    2012-01-01

    Neutrophils are found within Candida albicans biofilms in vivo and could play a crucial role in clearing the pathogen from biofilms forming on catheters and mucosal surfaces. Our goal was to compare the antimicrobial activity of neutrophils against developing and mature C. albicans biofilms and identify biofilm-specific properties mediating resistance to immune cells. Antibiofilm activity was measured with the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)2H-tetrazolium-5-carboxanilide assay and a molecular Candida viability assay. Reactive oxygen species generation was assessed by measuring fluorescence of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester in preloaded neutrophils. We found that mature biofilms were resistant to leukocytic killing and did not trigger reactive oxygen species, even though neutrophils retained their viability and functional activation potential. Beta-glucans found in the extracellular matrix negatively affected antibiofilm activities. We conclude that these polymers act as a decoy mechanism to prevent neutrophil activation and that this represents an important innate immune evasion mechanism of C. albicans biofilms. PMID:23033146

  13. Competitive Interactions in Mixed-Species Biofilms Containing the Marine Bacterium Pseudoalteromonas tunicata

    Science.gov (United States)

    Rao, Dhana; Webb, Jeremy S.; Kjelleberg, Staffan

    2005-01-01

    Pseudoalteromonas tunicata is a biofilm-forming marine bacterium that is often found in association with the surface of eukaryotic organisms. It produces a range of extracellular inhibitory compounds, including an antibacterial protein (AlpP) thought to be beneficial for P. tunicata during competition for space and nutrients on surfaces. As part of our studies on the interactions between P. tunicata and the epiphytic bacterial community on the marine plant Ulva lactuca, we investigated the hypothesis that P. tunicata is a superior competitor compared with other bacteria isolated from the plant. A number of U. lactuca bacterial isolates were (i) identified by 16S rRNA gene sequencing, (ii) characterized for the production of or sensitivity to extracellular antibacterial proteins, and (iii) labeled with a fluorescent color tag (either the red fluorescent protein DsRed or green fluorescent protein). We then grew single- and mixed-species bacterial biofilms containing P. tunicata in glass flow cell reactors. In pure culture, all the marine isolates formed biofilms containing microcolony structures within 72 h. However, in mixed-species biofilms, P. tunicata removed the competing strain unless its competitor was relatively insensitive to AlpP (Pseudoalteromonas gracilis) or produced strong inhibitory activity against P. tunicata (Roseobacter gallaeciensis). Moreover, biofilm studies conducted with an AlpP− mutant of P. tunicata indicated that the mutant was less competitive when it was introduced into preestablished biofilms, suggesting that AlpP has a role during competitive biofilm formation. When single-species biofilms were allowed to form microcolonies before the introduction of a competitor, these microcolonies coexisted with P. tunicata for extended periods of time before they were removed. Two marine bacteria (R. gallaeciensis and P. tunicata) were superior competitors in this study. Our data suggest that this dominance can be attributed to the ability of

  14. Phosphorylation of the Bacillus subtilis Replication Controller YabA Plays a Role in Regulation of Sporulation and Biofilm Formation.

    Science.gov (United States)

    García García, Tránsito; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Correia Santos, Sara; Henry, Céline; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise; Poncet, Sandrine

    2018-01-01

    Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.

  15. Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation

    Directory of Open Access Journals (Sweden)

    Yu-Tze Horng

    2018-04-01

    Full Text Available Background/Purpose: Klebsiella pneumoniae is one of the leading causes of device-related infections (DRIs, which are associated with attachment of bacteria to these devices to form a biofilm. The latter is composed of not only bacteria but also extracellular polymeric substances (EPSes consisting of extracellular DNAs, polysaccharides, and other macromolecules. The phosphoenolpyruvate (PEP:carbohydrate phosphotransferase system (PTS regulates diverse processes of bacterial physiology. In the genome of K. pneumoniae MGH 78578, we found an uncharacterized enzyme II complex homolog of PTS: KPN00353 (EIIA homolog, KPN00352 (EIIB homolog, and KPN00351 (EIIC homolog. The aim of this study was to characterize the potential physiological role of KPN00353, KPN00352, and KPN00351 in biofilm formation by K. pneumoniae. Methods/Results: We constructed the PTS mutants and recombinant strains carrying the gene(s of PTS. The recombinant K. pneumoniae strain overexpressing KPN00353–KPN00352–KPN00351 produced more extracellular matrix than did the vector control according to transmission and scanning electron microscopy. Judging by quantification of biofilm formation, of extracellular DNA (eDNA, and of capsular polysaccharide, the recombinant strain overexpressing KPN00353-KPN00352-KPN00351 produced more biofilm and capsular polysaccharide after overnight culture and more eDNA in the log phase as compared to the vector control. Conclusion: The genes, KPN00353–KPN00352–KPN00351, encode a putative enzyme II complex in PTS and positively regulate biofilm formation by enhancing production of eDNA and capsular polysaccharide in K. pneumoniae. Five proteins related to chaperones, to the citric acid cycle, and to quorum sensing are upregulated by the KPN00353–KPN00352–KPN00351 system. Keywords: Klebsiella, PTS, Biofilm, eDNA, Polysaccharide

  16. Cranberry Flavonoids Modulate Cariogenic Properties of Mixed-Species Biofilm through Exopolysaccharides-Matrix Disruption.

    Directory of Open Access Journals (Sweden)

    Dongyeop Kim

    Full Text Available The exopolysaccharides (EPS produced by Streptococcus mutans-derived glucosyltransferases (Gtfs are essential virulence factors associated with the initiation of cariogenic biofilms. EPS forms the core of the biofilm matrix-scaffold, providing mechanical stability while facilitating the creation of localized acidic microenvironments. Cranberry flavonoids, such as A-type proanthocyanidins (PACs and myricetin, have been shown to inhibit the activity of Gtfs and EPS-mediated bacterial adhesion without killing the organisms. Here, we investigated whether a combination of cranberry flavonoids disrupts EPS accumulation and S. mutans survival using a mixed-species biofilm model under cariogenic conditions. We also assessed the impact of cranberry flavonoids on mechanical stability and the in situ pH at the biofilm-apatite interface. Topical application of an optimized combination of PACs oligomers (100-300 μM with myricetin (2 mM twice daily was used to simulate treatment regimen experienced clinically. Treatments with cranberry flavonoids effectively reduced the insoluble EPS content (>80% reduction vs. vehicle-control; p<0.001, while hindering S. mutans outgrowth within mixed-species biofilms. As a result, the 3D architecture of cranberry-treated biofilms was severely compromised, showing a defective EPS-matrix and failure to develop microcolonies on the saliva-coated hydroxyapatite (sHA surface. Furthermore, topical applications of cranberry flavonoids significantly weaken the mechanical stability of the biofilms; nearly 90% of the biofilm was removed from sHA surface after exposure to a shear stress of 0.449 N/m2 (vs. 36% removal in vehicle-treated biofilms. Importantly, in situ pH measurements in cranberry-treated biofilms showed significantly higher pH values (5.2 ± 0.1 at the biofilm-apatite interface vs. vehicle-treated biofilms (4.6 ± 0.1. Altogether, the data provide important insights on how cranberry flavonoids treatments modulate

  17. Behavior of Listeria monocytogenes in a multi-species biofilm with Enterococcus faecalis and Enterococcus faecium and control through sanitation procedures.

    Science.gov (United States)

    da Silva Fernandes, Meg; Kabuki, Dirce Yorika; Kuaye, Arnaldo Yoshiteru

    2015-05-04

    The formation of mono-species biofilm (Listeria monocytogenes) and multi-species biofilms (Enterococcus faecium, Enterococcus faecalis, and L. monocytogenes) was evaluated. In addition, the effectiveness of sanitation procedures for the control of the multi-species biofilm also was evaluated. The biofilms were grown on stainless steel coupons at various incubation temperatures (7, 25 and 39°C) and contact times (0, 1, 2, 4, 6 and 8 days). In all tests, at 7°C, the microbial counts were below 0.4 log CFU/cm(2) and not characteristic of biofilms. In mono-species biofilm, the counts of L. monocytogenes after 8 days of contact were 4.1 and 2.8 log CFU/cm(2) at 25 and 39°C, respectively. In the multi-species biofilms, Enterococcus spp. were present at counts of 8 log CFU/cm(2) at 25 and 39°C after 8 days of contact. However, the L. monocytogenes in multi-species biofilms was significantly affected by the presence of Enterococcus spp. and by temperature. At 25°C, the growth of L. monocytogenes biofilms was favored in multi-species cultures, with counts above 6 log CFU/cm(2) after 8 days of contact. In contrast, at 39°C, a negative effect was observed for L. monocytogenes biofilm growth in mixed cultures, with a significant reduction in counts over time and values below 0.4 log CFU/cm(2) starting at day 4. Anionic tensioactive cleaning complemented with another procedure (acid cleaning, disinfection or acid cleaning+disinfection) eliminated the multi-species biofilms under all conditions tested (counts of all micro-organismsbiofilms under all tested conditions (counts of the all microorganisms biofilms under all the test conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus.

    Science.gov (United States)

    Sahukhal, Gyan S; Batte, Justin L; Elasri, Mohamed O

    2015-02-01

    Staphylococcus aureus is an important human pathogen that causes nosocomial and community-acquired infections. One of the most important aspects of staphylococcal infections is biofilm development within the host, which renders the bacterium resistant to the host's immune response and antimicrobial agents. Biofilm development is very complex and involves several regulators that ensure cell survival on surfaces within the extracellular polymeric matrix. Previously, we identified the msaABCR operon as an additional positive regulator of biofilm formation. In this study, we define the regulatory pathway by which msaABCR controls biofilm formation. We demonstrate that the msaABCR operon is a negative regulator of proteases. The control of protease production mediates the processing of the major autolysin, Atl, and thus regulates the rate of autolysis. In the absence of the msaABCR operon, Atl is processed by proteases at a high rate, leading to increased cell death and a defect in biofilm maturation. We conclude that the msaABCR operon plays a key role in maintaining the balance between autolysis and growth within the staphylococcal biofilm. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms.

    Directory of Open Access Journals (Sweden)

    Paula Jorge

    Full Text Available Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST combined with the AMP temporin A (TEMP-A, citropin 1.1 (CIT-1.1 and tachyplesin I linear analogue (TP-I-L was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated.

  20. Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system

    KAUST Repository

    Zhang, Wei Peng

    2014-10-17

    Studies focusing on biofilm assembly in deep-sea environments are rarely conducted. To examine the effects of substrate type on microbial community assembly, biofilms were developed on different substrates for different durations at two locations in the Red Sea: in a brine pool and in nearby bottom water (NBW) adjacent to the Thuwal cold seep II. The composition of the microbial communities in 51 biofilms and water samples were revealed by classification of pyrosequenced 16S rRNA gene amplicons. Together with the microscopic characteristics of the biofilms, the results indicate a stronger selection effect by the substrates on the microbial assembly in the brine pool compared with the NBW. Moreover, the selection effect by substrate type was stronger in the early stages compared with the later stages of the biofilm development. These results are consistent with the hypotheses proposed in the framework of species sorting theory, which states that the power of species sorting during microbial community assembly is dictated by habitat conditions, duration and the structure of the source community. Therefore, the results of this study shed light on the control strategy underlying biofilm-associated marine fouling and provide supporting evidence for ecological theories important for understanding the formation of deep-sea biofilms.

  1. Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system

    KAUST Repository

    Zhang, Wei Peng; Wang, Yong; Tian, Ren Mao; Bougouffa, Salim; Yang, Bo; Cao, Hui Luo; Zhang, Gen; Wong, Yue Him; Xu, Wei; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Zhang, Xixiang; Qian, Pei-Yuan

    2014-01-01

    Studies focusing on biofilm assembly in deep-sea environments are rarely conducted. To examine the effects of substrate type on microbial community assembly, biofilms were developed on different substrates for different durations at two locations in the Red Sea: in a brine pool and in nearby bottom water (NBW) adjacent to the Thuwal cold seep II. The composition of the microbial communities in 51 biofilms and water samples were revealed by classification of pyrosequenced 16S rRNA gene amplicons. Together with the microscopic characteristics of the biofilms, the results indicate a stronger selection effect by the substrates on the microbial assembly in the brine pool compared with the NBW. Moreover, the selection effect by substrate type was stronger in the early stages compared with the later stages of the biofilm development. These results are consistent with the hypotheses proposed in the framework of species sorting theory, which states that the power of species sorting during microbial community assembly is dictated by habitat conditions, duration and the structure of the source community. Therefore, the results of this study shed light on the control strategy underlying biofilm-associated marine fouling and provide supporting evidence for ecological theories important for understanding the formation of deep-sea biofilms.

  2. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting

    KAUST Repository

    Zhang, Weipeng; Tian, Renmao; Yang, Bo; Cao, Huiluo; Cai, Lin; Chen, Lianguo; Zhou, Guowei; Sun, Jingya; Zhang, Xixiang; Al-Suwailem, Abdulaziz M.; Qian, Pei-Yuan

    2015-01-01

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of the present study sheds new light on microbial community assembly in special habitats and bridges a gap in species sorting theory.

  3. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting

    KAUST Repository

    Zhang, Weipeng

    2015-11-28

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of the present study sheds new light on microbial community assembly in special habitats and bridges a gap in species sorting theory.

  4. Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control.

    Science.gov (United States)

    Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram; Covelli, Antonio S; Westler, William M; Azadi, Parastoo; Nett, Jeniel; Mitchell, Aaron P; Andes, David R

    2018-04-03

    Candida biofilms resist the effects of available antifungal therapies. Prior studies with Candida albicans biofilms show that an extracellular matrix mannan-glucan complex (MGCx) contributes to antifungal sequestration, leading to drug resistance. Here we implement biochemical, pharmacological, and genetic approaches to explore a similar mechanism of resistance for the three most common clinically encountered non- albicans Candida species (NAC). Our findings reveal that each Candida species biofilm synthesizes a mannan-glucan complex and that the antifungal-protective function of this complex is conserved. Structural similarities extended primarily to the polysaccharide backbone (α-1,6-mannan and β-1,6-glucan). Surprisingly, biochemical analysis uncovered stark differences in the branching side chains of the MGCx among the species. Consistent with the structural analysis, similarities in the genetic control of MGCx production for each Candida species also appeared limited to the synthesis of the polysaccharide backbone. Each species appears to employ a unique subset of modification enzymes for MGCx synthesis, likely accounting for the observed side chain diversity. Our results argue for the conservation of matrix function among Candida spp. While biogenesis is preserved at the level of the mannan-glucan complex backbone, divergence emerges for construction of branching side chains. Thus, the MGCx backbone represents an ideal drug target for effective pan- Candida species biofilm therapy. IMPORTANCE Candida species, the most common fungal pathogens, frequently grow as a biofilm. These adherent communities tolerate extremely high concentrations of antifungal agents, due in large part, to a protective extracellular matrix. The present studies define the structural, functional, and genetic similarities and differences in the biofilm matrix from the four most common Candida species. Each species synthesizes an extracellular mannan-glucan complex (MGCx) which

  5. Active species delivered by dielectric barrier discharge filaments to bacteria biofilms on the surface of apple

    International Nuclear Information System (INIS)

    Cheng, He; Liu, Xin; Lu, Xinpei; Liu, Dawei

    2016-01-01

    The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm from the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μm scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6–7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.

  6. Active species delivered by dielectric barrier discharge filaments to bacteria biofilms on the surface of apple

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, He; Liu, Xin; Lu, Xinpei [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Dawei, E-mail: ldw636@msn.com [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an (China)

    2016-07-15

    The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm from the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μm scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6–7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.

  7. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Tolker-Nielsen, Tim

    2006-01-01

    Microbial biofilm formation often causes problems in medical and industrial settings, and knowledge about the factors that are involved in biofilm development and dispersion is useful for creating strategies to control the processes. In this report, we present evidence that proteins with GGDEF...... and EAL domains are involved in the regulation of biofilm formation and biofilm dispersion in Pseudomonas putida. Overexpression in P. putida of the Escherichia coli YedQ protein, which contains a GGDEF domain, resulted in increased biofilm formation. Overexpression in P. putida of the E. coli Yhj......H protein, which contains an EAL domain, strongly inhibited biofilm formation. Induction of YhjH expression in P. putida cells situated in established biofilms led to rapid dispersion of the biofilms. These results support the emerging theme that GGDEF-domain and EAL-domain proteins are involved...

  8. Phosphorylation of the Bacillus subtilis Replication Controller YabA Plays a Role in Regulation of Sporulation and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Tránsito García García

    2018-03-01

    Full Text Available Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.

  9. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting.

    Science.gov (United States)

    Zhang, Weipeng; Tian, Renmao; Bo, Yang; Cao, Huiluo; Cai, Lin; Chen, Lianguo; Zhou, Guowei; Sun, Jin; Zhang, Xixiang; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2016-05-01

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep-sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of this study shed new light on microbial community assembly in special habitats and bridge a gap in species sorting theory. © 2015 John Wiley & Sons Ltd.

  10. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in Staphylococcus aureus.

    Science.gov (United States)

    Figueiredo, Agnes Marie Sá; Ferreira, Fabienne Antunes; Beltrame, Cristiana Ossaille; Côrtes, Marina Farrel

    2017-09-01

    Staphylococcus aureus biofilms represent a unique micro-environment that directly contribute to the bacterial fitness within hospital settings. The accumulation of this structure on implanted medical devices has frequently caused the development of persistent and chronic S. aureus-associated infections, which represent an important social and economic burden worldwide. ica-independent biofilms are composed of an assortment of bacterial products and modulated by a multifaceted and overlapping regulatory network; therefore, biofilm composition can vary among S. aureus strains. In the microniches formed by biofilms-produced by a number of bacterial species and composed by different structural components-drug refractory cell subpopulations with distinct physiological characteristics can emerge and result in therapeutic failures in patients with recalcitrant bacterial infections. In this review, we highlight the importance of biofilms in the development of persistence and chronicity in some S. aureus diseases, the main molecules associated with ica-independent biofilm development and the regulatory mechanisms that modulate ica-independent biofilm production, accumulation, and dispersion.

  11. Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB

    DEFF Research Database (Denmark)

    Fazli, Mustafa; Rybtke, Morten Levin; Steiner, Elisabeth

    2017-01-01

    Knowledge about the molecular mechanisms that are involved in the regulation of biofilm formation is essential for the development of biofilm-control measures. It is well established that the nucleotide second messenger cyclic diguanosine monophosphate (c-di-GMP) is a positive regulator of biofilm...... formation in many bacteria, but more knowledge about c-di-GMP effectors is needed. We provide evidence that c-di-GMP, the alternative sigma factor RpoN (σ54), and the enhancer-binding protein BerB play a role in biofilm formation of Burkholderia cenocepacia by regulating the production of a biofilm......-stabilizing exopolysaccharide. Our findings suggest that BerB binds c-di-GMP, and activates RpoN-dependent transcription of the berA gene coding for a c-di-GMP-responsive transcriptional regulator. An increased level of the BerA protein in turn induces the production of biofilm-stabilizing exopolysaccharide in response to high...

  12. Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients: Correlation between cell surface hydrophobicity and biofilm forming activities.

    Science.gov (United States)

    Muadcheingka, Thaniya; Tantivitayakul, Pornpen

    2015-06-01

    The purposes of this investigation were to study the prevalence of Candida albicans and non-albicans Candida (NAC) species from oral candidiasis patients and evaluate the cell surface hydrophobicity (CSH) and biofilm forming capacity of the clinical isolates Candida species from oral cavity. This study identified a total of 250 Candida strains isolated from 207 oral candidiasis patients with PCR-RFLP technique. CSH value, total biomass of biofilm and biofilm forming ability of 117 oral Candida isolates were evaluated. C. albicans (61.6%) was still the predominant species in oral candidiasis patients with and without denture wearer, respectively, followed by C. glabrata (15.2%), C. tropicalis (10.4%), C. parapsilosis (3.2%), C. kefyr (3.6%), C. dubliniensis (2%), C. lusitaniae (2%), C. krusei (1.6%), and C. guilliermondii (0.4%). The proportion of mixed colonization with more than one Candida species was 18% from total cases. The relative CSH value and biofilm biomass of NAC species were greater than C. albicans (poral isolates NAC species had biofilm forming ability, whereas 78% of C. albicans were biofilm formers. Furthermore, the significant difference of relative CSH values between biofilm formers and non-biofilm formers was observed in the NAC species (poral cavity was gradually increasing. The possible contributing factors might be high cell surface hydrophobicity and biofilm forming ability. The relative CSH value could be a putative factor for determining biofilm formation ability of the non-albicans Candida species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Planktonic growth and biofilm formation profiles in Candida haemulonii species complex.

    Science.gov (United States)

    Ramos, Lívia S; Oliveira, Simone S C; Souto, Xênia M; Branquinha, Marta H; Santos, André L S

    2017-10-01

    Candida haemulonii species complex have emerged as multidrug-resistant yeasts able to cause fungemia worldwide. However, very little is known regarding their physiology and virulence factors. In this context, planktonic growth and biofilm formation of Brazilian clinical isolates of Candida haemulonii (n = 5), Candida duobushaemulonii (n = 4), and Candida haemulonii var. vulnera (n = 3) were reported. Overall, the fungal planktonic growth curves in Sabouraud dextrose broth reached the exponential phase in 48 h at 37°C. All the clinical isolates formed biofilm on polystyrene in a time-dependent event, as judged by the parameters evaluated: biomass (crystal violet staining), metabolic activity (XTT reduction), and extracellular matrix (safranin incorporation). No statistically significant differences were observed when the average measurements among the three Candida species were compared regarding both planktonic and biofilm lifestyles; however, typical isolate-specific differences were clearly noticed in fungal growth kinetics. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The CpAL quorum sensing system regulates production of hemolysins CPA and PFO to build Clostridium perfringens biofilms.

    Science.gov (United States)

    Vidal, Jorge E; Shak, Joshua R; Canizalez-Roman, Adrian

    2015-06-01

    Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. The CpAL Quorum Sensing System Regulates Production of Hemolysins CPA and PFO To Build Clostridium perfringens Biofilms

    Science.gov (United States)

    Shak, Joshua R.; Canizalez-Roman, Adrian

    2015-01-01

    Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. PMID:25824838

  16. Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates.

    Science.gov (United States)

    Nunes, Jorge Meneses; Bizerra, Fernando César; Ferreira, Renata Carmona E; Colombo, Arnaldo Lopes

    2013-01-01

    Rhodotorula species are emergent fungal pathogens capable of causing invasive infections, primarily fungemia. They are particularly problematic in immunosuppressed patients when using a central venous catheter. In this study, we evaluated the species distribution of 51 clinical and 8 environmental Rhodotorula species isolates using the ID32C system and internal transcribed spacer (ITS) sequencing. Antifungal susceptibility testing and biofilm formation capability using a crystal violet staining assay were performed. Using ITS sequencing as the gold standard, the clinical isolates were identified as follows: 44 R. mucilaginosa isolates, 2 R. glutinis isolates, 2 R. minuta isolates, 2 R. dairenensis isolates, and 1 Rhodosporidium fluviale isolate. The environmental isolates included 7 R. mucilaginosa isolates and 1 R. slooffiae isolate. Using the ID32C system, along with a nitrate assimilation test, only 90.3% of the isolates tested were correctly identified. In the biofilm formation assay, R. mucilaginosa and R. minuta exhibited greater biofilm formation ability compared to the other Rhodotorula species; the clinical isolates of R. mucilaginosa showed greater biofilm formation compared to the environmental isolates (P = 0.04). Amphotericin B showed good in vitro activity (MIC ≤ 1 μg/ml) against planktonic cells, whereas voriconazole and posaconazole showed poor activity (MIC(50)/MIC(90), 2/4 μg/ml). Caspofungin and fluconazole MICs were consistently high for all isolates tested (≥64 μg/ml and ≥ 4 μg/ml, respectively). In this study, we emphasized the importance of molecular methods to correctly identify Rhodotorula species isolates and non-R. mucilaginosa species in particular. The antifungal susceptibility profile reinforces amphotericin B as the antifungal drug of choice for the treatment of Rhodotorula infections. To our knowledge, this is the first study evaluating putative differences in the ability of biofilm formation among different Rhodotorula

  17. SarA is a negative regulator of Staphylococcus epidermidis biofilm formation

    DEFF Research Database (Denmark)

    Martin, Christer; Heinze, C.; Busch, M.

    2012-01-01

    Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant-associated infections. Nonetheless, large proportions of invasive S. epidermidis isolates fail to show accumulative biofilm growth in vitro. We here tested the hypothesis that this apparent paradox is related...... virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via over-expression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed...... to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from up-regulation of metalloprotease SepA, leading to boosted processing of major autolysin AtlE, in turn inducing augmented autolysis and release of chromosomal DNA. Hence, this study identifies sarA as a negative...

  18. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman

    2015-08-01

    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  19. Relative contributions of norspermidine synthesis and signaling pathways to the regulation of Vibrio cholerae biofilm formation.

    Directory of Open Access Journals (Sweden)

    Caitlin K Wotanis

    Full Text Available The polyamine norspermidine is one of the major polyamines synthesized by Vibrionales and has also been found in various aquatic organisms. Norspermidine is among the environmental signals that positively regulate Vibrio cholerae biofilm formation. The NspS/MbaA signaling complex detects extracellular norspermidine and mediates the response to this polyamine. Norspermidine binding to the NspS periplasmic binding protein is thought to inhibit the phosphodiesterase activity of MbaA, increasing levels of the biofilm-promoting second messenger cyclic diguanylate monophosphate, thus enhancing biofilm formation. V. cholerae can also synthesize norspermidine using the enzyme NspC as well as import it from the environment. Deletion of the nspC gene was shown to reduce accumulation of bacteria in biofilms, leading to the conclusion that intracellular norspermidine is also a positive regulator of biofilm formation. Because V. cholerae uses norspermidine to synthesize the siderophore vibriobactin it is possible that intracellular norspermidine is required to obtain sufficient amounts of iron, which is also necessary for robust biofilm formation. The objective of this study was to assess the relative contributions of intracellular and extracellular norspermidine to the regulation of biofilm formation in V. cholerae. We show the biofilm defect of norspermidine synthesis mutants does not result from an inability to produce vibriobactin as vibriobactin synthesis mutants do not have diminished biofilm forming abilities. Furthermore, our work shows that extracellular, but not intracellular norspermidine, is mainly responsible for promoting biofilm formation. We establish that the NspS/MbaA signaling complex is the dominant mediator of biofilm formation in response to extracellular norspermidine, rather than norspermidine synthesized by NspC or imported into the cell.

  20. Species-Specific and Drug-Specific Differences in Susceptibility of Candida Biofilms to Echinocandins: Characterization of Less Common Bloodstream Isolates

    Science.gov (United States)

    Simitsopoulou, Maria; Peshkova, Pavla; Tasina, Efthymia; Katragkou, Aspasia; Kyrpitzi, Daniela; Velegraki, Aristea; Walsh, Thomas J.

    2013-01-01

    Candida species other than Candida albicans are increasingly recognized as causes of biofilm-associated infections. This is a comprehensive study that compared the in vitro activities of all three echinocandins against biofilms formed by different common and infrequently identified Candida isolates. We determined the activities of anidulafungin (ANID), caspofungin (CAS), and micafungin (MFG) against planktonic cells and biofilms of bloodstream isolates of C. albicans (15 strains), Candida parapsilosis (6 strains), Candida lusitaniae (16 strains), Candida guilliermondii (5 strains), and Candida krusei (12 strains) by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. Planktonic and biofilm MICs were defined as ≥50% fungal damage. Planktonic cells of all Candida species were susceptible to the three echinocandins, with MICs of ≤1 mg/liter. By comparison, differences in the MIC profiles of biofilms in response to echinocandins existed among the Candida species. Thus, C. lusitaniae and C. guilliermondii biofilms were highly recalcitrant to all echinocandins, with MICs of ≥32 mg/liter. In contrast, the MICs of all three echinocandins for C. albicans and C. krusei biofilms were relatively low (MICs ≤ 1 mg/liter). While echinocandins exhibited generally high MICs against C. parapsilosis biofilms, MFG exhibited the lowest MICs against these isolates (4 mg/liter). A paradoxical growth effect was observed with CAS concentrations ranging from 8 to 64 mg/liter against C. albicans and C. parapsilosis biofilms but not against C. krusei, C. lusitaniae, or C. guilliermondii. While non-albicans Candida planktonic cells were susceptible to all echinocandins, there were drug- and species-specific differences in susceptibility among biofilms of the various Candida species, with C. lusitaniae and C. guilliermondii exhibiting profiles of high MICs of the three echinocandins. PMID:23529739

  1. SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans.

    Science.gov (United States)

    Senpuku, Hidenobu; Yonezawa, Hideo; Yoneda, Saori; Suzuki, Itaru; Nagasawa, Ryo; Narisawa, Naoki

    2018-02-01

    The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Extracellular polymeric substances affect the responses of multi-species biofilms in the presence of sulfamethizole.

    Science.gov (United States)

    Wang, Longfei; Li, Yi; Wang, Li; Zhang, Huanjun; Zhu, Mengjie; Zhang, Peisheng; Zhu, Xiaoxiao

    2018-04-01

    The occurrence and transportation of antibiotics in biofilms from natural and engineered sources have attracted increasing interests. Nevertheless, the effects of extracellular polymeric substances (EPS) on the responses of biofilms to the exposure to antibiotics are not clear. In this study, the effects of EPS on the sorption and biological responses to one representative antibiotic, sulfamethizole (STZ), in model biofilms were investigated. Proteins dominated the interactions between the EPS and the STZ and the EPS from a moving bed biofilm reactor exhibited the strongest interaction with the STZ. The EPS served as important reservoirs for the STZ and the tested biofilms all showed reduced sorption capacities for the STZ after the EPS were extracted. The respiratory rates and typical enzymatic activities were reduced after the EPS were extracted. High-throughput 16S rRNA gene sequencing results confirmed that the bacterial community in the biofilm without the EPS was more vulnerable to antibiotic shock as indicated by the community diversity and richness indices. A greater increase in the abundance of susceptible species was observed in the natural biofilm. The results comprehensively suggested that the EPS played important role in biosorption of STZ and alleviated the direct damage of the antibiotic to the cells; in addition the extent of the bacterial community response was associated with the origins of the biofilms. Our study provided details on the responses of multi-species biofilms to the exposure to an antibiotic and highlighted the role of the EPS in interacting with the antibiotic, thereby providing a deeper understanding of the bioremediation of antibiotics in real-life natural and engineered biofilm systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Antimicrobial Nisin Acts Against Saliva Derived Multi-Species Biofilms without Cytotoxicity to Human Oral Cells

    Directory of Open Access Journals (Sweden)

    Yvonne Lorraine Kapila

    2015-06-01

    Full Text Available Objectives: Nisin is a lantibiotic widely used for the preservation of food and beverages. Recently, investigators have reported that nisin may have clinical applications for treating bacterial infections. The aim of this study was to investigate the effects of ultra pure food grade Nisin ZP (> 95% purity on taxonomically diverse bacteria common to the human oral cavity and saliva derived multi-species oral biofilms, and to discern the toxicity of nisin against human cells relevant to the oral cavity. Methods: The MICs and MBCs of taxonomically distinct oral bacteria were determined using agar and broth dilution methods. To assess the effects of nisin on biofilms, two model systems were utilized: a static and a controlled flow microfluidic system. Biofilms were inoculated with pooled human saliva and fed filter-sterilized saliva for 20-22 h at 37°C. Nisin effects on cellular apoptosis and proliferation were evaluated using acridine orange/ethidium bromide fluorescent nuclear staining and lactate dehydrogenase activity assays. Results: Nisin inhibited planktonic growth of oral bacteria at low concentrations (2.5 – 50 μg/ml. Nisin also retarded development of multi-species biofilms at concentrations ≥ 1 μg/ml. Specifically, under biofilm model conditions, nisin interfered with biofilm development and reduced biofilm biomass and thickness in a dose-dependent manner. The treatment of pre-formed biofilms with nisin resulted in dose- and time-dependent disruption of the biofilm architecture along with decreased bacterial viability. Human cells relevant to the oral cavity were unaffected by the treatment of nisin at anti-biofilm concentrations and showed no signs of apoptotic changes unless treated with much higher concentrations (> 200 μg/ml. Conclusions: This work highlights the potential therapeutic value of high purity food grade nisin to inhibit the growth of oral bacteria and the development of biofilms relevant to oral diseases.

  4. Comparison of biofilm ecology supporting growth of individual Naegleria species in a drinking water distribution system.

    Science.gov (United States)

    Puzon, Geoffrey J; Wylie, Jason T; Walsh, Tom; Braun, Kalan; Morgan, Matthew J

    2017-04-01

    Free-living amoebae (FLA) are common components of microbial communities in drinking water distribution systems (DWDS). FLA are of clinical importance both as pathogens and as reservoirs for bacterial pathogens, so identifying the conditions promoting amoebae colonisation of DWDSs is an important public health concern for water utilities. We used high-throughput amplicon sequencing to compare eukaryotic and bacterial communities associated with DWDS biofilms supporting distinct FLA species (Naegleria fowleri, N. lovaniensis or Vermamoeba sp.) at sites with similar physical/chemical conditions. Eukaryote and bacterial communities were characteristics of different FLA species presence, and biofilms supporting Naegleria growth had higher bacterial richness and higher abundance of Proteobacteria, Bacteroidetes (bacteria), Nematoda and Rotifera (eukaryota). The eukaryotic community in the biofilms had the greatest difference in relation to the presence of N. fowleri, while the bacterial community identified individual bacterial families associated with the presence of different Naegleria species. Our results demonstrate that ecogenomics data provide a powerful tool for studying the microbial and meiobiotal content of biofilms, and, in these samples can effectively discriminate biofilm communities supporting pathogenic N. fowleri. The identification of microbial species associated with N. fowleri could further be used in the management and control of N. fowleri in DWDS. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Regulation of biofilm formation in Shewanella oneidensis by BpfA, BpfG, and BpfD

    Directory of Open Access Journals (Sweden)

    Guangqi eZhou

    2015-08-01

    Full Text Available Bacteria switch between two distinct life styles -- planktonic (free living and biofilm forming -- in keeping with their ever-changing environment. Such switch involves sophisticated signaling and tight regulation, which provides a fascinating portal for studying gene function and orchestrated protein interactions. In this work, we investigated the molecular mechanism underlying biofilm formation in S. oneidensis MR-1, an environmentally important model bacterium renowned for respiratory diversities, and uncovered a gene cluster coding for seven proteins involved in this process. The three key proteins, BpfA, BpfG, and BpfD, were studied in detail for the first time. BpfA directly participates in biofilm formation as extracellular glue; BpfG is not only indispensable for BpfA export during biofilm forming but also functions to turn BpfA into active form for biofilm dispersing. BpfD regulates biofilm development by interacting with both BpfA and BpfG, likely in response to signal molecule c-di-GMP. In addition, we found that 1:1 stoichiometry between BpfD and BpfG is critical for biofilm formation. Furthermore, we demonstrated that a biofilm over-producing phenotype can be induced by C116S mutation but not loss of BpfG.

  6. Exopolysaccharides regulate calcium flow in cariogenic biofilms

    Science.gov (United States)

    Varenganayil, Muth M.; Decho, Alan W.

    2017-01-01

    Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS) provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya’s agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC) by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR) spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC). Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries. PMID:29023506

  7. Exopolysaccharides regulate calcium flow in cariogenic biofilms.

    Directory of Open Access Journals (Sweden)

    Monika Astasov-Frauenhoffer

    Full Text Available Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya's agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC. Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries.

  8. Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candida Albicans Caries Biofilm.

    Science.gov (United States)

    Krzyściak, Wirginia; Kościelniak, Dorota; Papież, Monika; Vyhouskaya, Palina; Zagórska-Świeży, Katarzyna; Kołodziej, Iwona; Bystrowska, Beata; Jurczak, Anna

    2017-11-14

    The aim of the study was to evaluate the anti-cariogenic effects of Lactobacillus salivarius by reducing pathogenic species and biofilm mass in a double-species biofilm model. Coexistence of S. mutans with C. albicans can cause dental caries progression or recurrence of the disease in the future. Fifty-nine children with diagnosed early childhood caries (ECC) were recruited onto the study. The condition of the children's dentition was defined according to the World Health Organization guidelines. The participants were divided into children with initial enamel demineralization and children showing dentin damage. The study was performed on the S. mutans and C. albicans clinical strains, isolated from dental plaque of patients with ECC. The effect of a probiotic containing Lactobacillus salivarius on the ability of S. mutans and C. albicans to produce a double-species biofilm was investigated in an in vitro model. The biomass of the formed/non-degraded biofilm was analyzed on the basis of its crystal violet staining. The number of colonies of S. mutans and C. albicans (CFU/mL, colony forming units/mL) forming the biofilm was determined. Microorganism morphology in the biofilm was evaluated using a scanning electron microscope (SEM). In vitro analysis demonstrated that the presence of S. mutans increased the number of C. albicans colonies (CFU/mL); the double-species biofilm mass and hyphal forms produced in it by the yeast. L. salivarius inhibited the cariogenic biofilm formation of C. albicans and S. mutans . Under the influence of the probiotic; the biofilm mass and the number of S. mutans ; C. albicans and S. mutans with C. albicans colonies in the biofilm was decreased. Moreover; it can be noted that after the addition of the probiotic; fungi did not form hyphae or germ tubes of pathogenic potential. These results suggest that L. salivarius can secrete intermediates capable of inhibiting the formation of cariogenic S. mutans and C. albicans biofilm; and may

  9. Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candida Albicans Caries Biofilm

    Directory of Open Access Journals (Sweden)

    Wirginia Krzyściak

    2017-11-01

    Full Text Available The aim of the study was to evaluate the anti-cariogenic effects of Lactobacillus salivarius by reducing pathogenic species and biofilm mass in a double-species biofilm model. Coexistence of S. mutans with C. albicans can cause dental caries progression or recurrence of the disease in the future. Fifty-nine children with diagnosed early childhood caries (ECC were recruited onto the study. The condition of the children’s dentition was defined according to the World Health Organization guidelines. The participants were divided into children with initial enamel demineralization and children showing dentin damage. The study was performed on the S. mutans and C. albicans clinical strains, isolated from dental plaque of patients with ECC. The effect of a probiotic containing Lactobacillus salivarius on the ability of S. mutans and C. albicans to produce a double-species biofilm was investigated in an in vitro model. The biomass of the formed/non-degraded biofilm was analyzed on the basis of its crystal violet staining. The number of colonies of S. mutans and C. albicans (CFU/mL, colony forming units/mL forming the biofilm was determined. Microorganism morphology in the biofilm was evaluated using a scanning electron microscope (SEM. In vitro analysis demonstrated that the presence of S. mutans increased the number of C. albicans colonies (CFU/mL; the double-species biofilm mass and hyphal forms produced in it by the yeast. L. salivarius inhibited the cariogenic biofilm formation of C. albicans and S. mutans. Under the influence of the probiotic; the biofilm mass and the number of S. mutans; C. albicans and S. mutans with C. albicans colonies in the biofilm was decreased. Moreover; it can be noted that after the addition of the probiotic; fungi did not form hyphae or germ tubes of pathogenic potential. These results suggest that L. salivarius can secrete intermediates capable of inhibiting the formation of cariogenic S. mutans and C. albicans biofilm

  10. Beta- Lactam Antibiotics Stimulate Biofilm Formation in Non-Typeable Haemophilus influenzae by Up-Regulating Carbohydrate Metabolism

    Science.gov (United States)

    Wu, Siva; Li, Xiaojin; Gunawardana, Manjula; Maguire, Kathleen; Guerrero-Given, Debbie; Schaudinn, Christoph; Wang, Charles; Baum, Marc M.; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. PMID:25007395

  11. Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid

    NARCIS (Netherlands)

    Veen, van der S.; Abee, T.

    2011-01-01

    We investigated the formation of single and mixed species biofilms of Listeria monocytogenes strains EGD-e and LR-991, with Lactobacillus plantarum WCFS1 as secondary species, and their resistance to the disinfectants benzalkonium chloride and peracetic acid. Modulation of growth, biofilm formation,

  12. Staphylococcus aureus Quorum Regulator SarA Targeted Compound, 2-[(Methylaminomethyl]phenol Inhibits Biofilm and Down-Regulates Virulence Genes

    Directory of Open Access Journals (Sweden)

    P. Balamurugan

    2017-07-01

    Full Text Available Staphylococcus aureus is a widely acknowledged Gram-positive pathogen for forming biofilm and virulence gene expressions by quorum sensing (QS, a cell to cell communication process. The quorum regulator SarA of S. aureus up-regulates the expression of many virulence factors including biofilm formation to mediate pathogenesis and evasion of the host immune system in the late phases of growth. Thus, inhibiting the production or blocking SarA protein might influence the down-regulation of biofilm and virulence factors. In this context, here we have synthesized 2-[(Methylaminomethyl]phenol, which was specifically targeted toward the quorum regulator SarA through in silico approach in our previous study. The molecule has been evaluated in vitro to validate its antibiofilm activity against clinical S. aureus strains. In addition, antivirulence properties of the inhibitor were confirmed with the observation of a significant reduction in the expression of representative virulence genes like fnbA, hla and hld that are governed under S. aureus QS. Interestingly, the SarA targeted inhibitor showed negligible antimicrobial activity and markedly reduced the minimum inhibitory concentration of conventional antibiotics when used in combination making it a more attractive lead for further clinical tests.

  13. Spermidine promotes Bacillus subtilis biofilm formation by activating expression of the matrix regulator slrR.

    Science.gov (United States)

    Hobley, Laura; Li, Bin; Wood, Jennifer L; Kim, Sok Ho; Naidoo, Jacinth; Ferreira, Ana Sofia; Khomutov, Maxim; Khomutov, Alexey; Stanley-Wall, Nicola R; Michael, Anthony J

    2017-07-21

    Ubiquitous polyamine spermidine is not required for normal planktonic growth of Bacillus subtilis but is essential for robust biofilm formation. However, the structural features of spermidine required for B. subtilis biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient B. subtilis mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation. Intracellular biosynthesis of another spermidine analogue, aminopropylcadaverine, from exogenously supplied homoagmatine also restored biofilm formation. The differential ability of C-methylated spermidine analogues to functionally replace spermidine in biofilm formation indicated that the aminopropyl moiety of spermidine is more sensitive to C -methylation, which it is essential for biofilm formation, but that the length and symmetry of the molecule is not critical. Transcriptomic analysis of a spermidine-depleted B. subtilis speD mutant uncovered a nitrogen-, methionine-, and S -adenosylmethionine-sufficiency response, resulting in repression of gene expression related to purine catabolism, methionine and S -adenosylmethionine biosynthesis and methionine salvage, and signs of altered membrane status. Consistent with the spermidine requirement in biofilm formation, single-cell analysis of this mutant indicated reduced expression of the operons for production of the exopolysaccharide and TasA protein biofilm matrix components and SinR antagonist slrR Deletion of sinR or ectopic expression of slrR in the spermidine-deficient Δ speD background restored biofilm formation, indicating that spermidine is required for expression of the biofilm regulator slrR Our results indicate that spermidine functions in biofilm development by activating transcription of the biofilm matrix exopolysaccharide and TasA operons through the regulator slrR . © 2017 by The American Society for Biochemistry and

  14. [Involvement of the global regulators GrrS, RpoS, and SplIR in formation of biofilms in Serratia plymuthica].

    Science.gov (United States)

    Zaĭtseva, Iu V; Voloshina, P V; Liu, X; Ovadis, M I; Berg, G; Chernin, L S; Khmel', I A

    2010-05-01

    Most bacteria exist in the natural environment as biofilms, multicellular communities attached to hard surfaces. Biofilms have a characteristic architecture and are enclosed in the exopolymer matrix. Bacterial cells in biofilms are extremely resistant to antibacterial factors. It was shown in this work that the GrrA/GrrS system of global regulators of gene expression and the sigma S subunit of RNA polymerase (RpoS) play a significant role in positive regulation of biofilm formation in the rhizospheric bacterium Serratia plymuthica IC1270. Inactivation of grrS and rpoS genes resulted in an up to six-to-sevenfold and four-to-fivefold reduction in biofilm formation, respectively. Mutations in the grrS gene decreased the capacity of the bacterium for swarming motility. The splIR Quorum Sensing (QS) system was shown to negatively influence the biofilm formation. Transfer of the recombinant plasmid containing cloned genes splI/splR of S. plymuthica HRO-C48 into S. plymuthica IC1270 cells led to a twofold decrease of their ability to form biofilms. Inactivation of the splI gene coding for the synthase of N-acyl-homoserine lactones in S. plymuthica HRO-C48 resulted in a 2-2.5-fold increase in the level of biofilm formation, whereas the inclusion of plasmid carrying the cloned splI/splR genes into these mutant cells restored the biofilm formation to the normal level. The results obtained demonstrate that the formation of biofilms in S. plymuthica is positively regulated by the GrrA/GrrS and RpoS global regulators and is negatively regulated by the SplIR QS system.

  15. The effect of selected plant extracts on the development of single-species dental biofilms

    International Nuclear Information System (INIS)

    Rahim, Z.H.; Shaikh, S.; Razak, A.; Ismail, W.N.H.W.

    2014-01-01

    To determine the effect of a mixture of plant extracts on the adherence and retention of bacteria in dental biofilm. Study Design: Experimental study. Place and Duration of Study:Department of Oral Biology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia, from December 2009 to December 2011. Methodology: For determination of adhering ability, experimental pellicle was first treated with the Plant Extracts Mixture (PEM) before inoculating it with individual bacterial species ( S. mitis / S. sanguinis / S. mutans). For the determination of retention ability, the procedure was repeated with the experimental pellicle being inoculated first with the individual bacterial species and then treating it with the PEM. These two experiments were repeated with deionized distilled water (negative control) and Thymol (0.64%) (positive control). The bacterial populations in biofilms for the two experiments were expressed as Colony Forming Unit (CFU) / mL x 10/sup 4/ and the corresponding values were expressed as mean +- SD. Results: The effect of the Plant Extracts Mixture (PEM) for the two experiments was compared with that of Thymol and deionized distilled water. It was shown that there is a reduced adherence of bacteria to PEM-treated and Thymol (0.064%) treated experimental pellicle compared with the negative control (p < 0.001). It was also found that the retention of bacteria in both treated biofilms is also lower than that of negative control (p = 0.001). Conclusion: Plant Extracts Mixture (PEM) may influence the development of dental biofilm by affecting the adhering and retention capacities of the bacterial species in the dental biofilms. (author)

  16. Beta- lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Siva Wu

    Full Text Available Non-typeable Haemophilus influenzae (NTHi is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.

  17. An in vitro Model for Oral Mixed Biofilms of Candida albicans and Streptococcus gordonii in Synthetic Saliva

    Directory of Open Access Journals (Sweden)

    Daniel eMontelongo-Jauregui

    2016-05-01

    Full Text Available As a member of the normal human oral microbiota, the fungus C. albicans is often found in association with Streptococcus gordonii, a member of dental plaque forming bacteria. Evidence suggests that S. gordonii serves as a facilitator of C. albicans adherence to dental tissues, which represents a clinically relevant problem, particularly for immunocompromised individuals that could subsequently develop fungal infections. In this study we describe the development of a relatively simple and economical in vitro model that allows for the growth of mixed bacterial/fungal biofilms in 96-well microtiter plates. We have applied this method to test and compare the growth characteristics of single and dual species biofilms in traditional microbiological media versus a synthetic saliva medium (basal medium mucin, BMM that more closely resembles physiological conditions within the oral cavity. Results indicated a synergistic effect for the formation of biofilms when both microorganisms were seeded together under all conditions tested. The structural and architectural features of the resulting biofilms were further characterized using scanning electron microscopy (SEM and confocal scanning laser microscopy (CSLM. We also performed drug susceptibility assays against single and mixed species biofilms using commonly used antifungals and antibacterial antibiotics, both in monotherapy and in combination therapy, for a direct comparison of resistance against antimicrobial treatment. As expected, mixed species biofilms displayed higher levels of resistance to antimicrobial treatment at every dose tested in both traditional media and BMM synthetic saliva, as compared to single-species biofilms.

  18. Biofilm formation by designed co-cultures of Caldicellulosiruptor species as a means to improve hydrogen productivity.

    Science.gov (United States)

    Pawar, Sudhanshu S; Vongkumpeang, Thitiwut; Grey, Carl; van Niel, Ed Wj

    2015-01-01

    Caldicellulosiruptor species have gained a reputation as being among the best microorganisms to produce hydrogen (H2) due to possession of a combination of appropriate features. However, due to their low volumetric H2 productivities (Q H2), Caldicellulosiruptor species cannot be considered for any viable biohydrogen production process yet. In this study, we evaluate biofilm forming potential of pure and co-cultures of Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor owensensis in continuously stirred tank reactors (CSTR) and up-flow anaerobic (UA) reactors. We also evaluate biofilms as a means to retain biomass in the reactor and its influence on Q H2. Moreover, we explore the factors influencing the formation of biofilm. Co-cultures of C. saccharolyticus and C. owensensis form substantially more biofilm than formed by C. owensensis alone. Biofilms improved substrate conversion in both of the reactor systems, but improved the Q H2 only in the UA reactor. When grown in the presence of each other's culture supernatant, both C. saccharolyticus and C. owensensis were positively influenced on their individual growth and H2 production. Unlike the CSTR, UA reactors allowed retention of C. saccharolyticus and C. owensensis when subjected to very high substrate loading rates. In the UA reactor, maximum Q H2 (approximately 20 mmol · L(-1)  · h(-1)) was obtained only with granular sludge as the carrier material. In the CSTR, stirring negatively affected biofilm formation. Whereas, a clear correlation was observed between elevated (>40 μM) intracellular levels of the secondary messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and biofilm formation. In co-cultures C. saccharolyticus fortified the trade of biofilm formation by C. owensensis, which was mediated by elevated levels of c-di-GMP in C. owensensis. These biofilms were effective in retaining biomass of both species in the reactor and improving Q H2 in a UA reactor using

  19. Physics of biofilms: the initial stages of biofilm formation and dynamics

    International Nuclear Information System (INIS)

    Lambert, Guillaume; Bergman, Andrew; Zhang, Qiucen; Bortz, David; Austin, Robert

    2014-01-01

    One of the physiological responses of bacteria to external stress is to assemble into a biofilm. The formation of a biofilm greatly increases a bacterial population's resistance to a hostile environment by shielding cells, for example, from antibiotics. In this paper, we describe the conditions necessary for the emergence of biofilms in natural environments and relate them to the emergence of biofilm formation inside microfluidic devices. We show that competing species of Escherichia coli bacteria form biofilms to spatially segregate themselves in response to starvation stress, and use in situ methods to characterize the physical properties of the biofilms. Finally, we develop a microfluidic platform to study the inter-species interactions and show how biofilm-mediated genetic interactions can improve a species’ resistance to external stress. (paper)

  20. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  1. Transcriptional Profiling of Biofilm Regulators Identified by an Overexpression Screen in Saccharomyces cerevisiae

    Science.gov (United States)

    Cromie, Gareth A.; Tan, Zhihao; Hays, Michelle; Sirr, Amy; Jeffery, Eric W.; Dudley, Aimée M.

    2017-01-01

    Biofilm formation by microorganisms is a major cause of recurring infections and removal of biofilms has proven to be extremely difficult given their inherent drug resistance . Understanding the biological processes that underlie biofilm formation is thus extremely important and could lead to the development of more effective drug therapies, resulting in better infection outcomes. Using the yeast Saccharomyces cerevisiae as a biofilm model, overexpression screens identified DIG1, SFL1, HEK2, TOS8, SAN1, and ROF1/YHR177W as regulators of biofilm formation. Subsequent RNA-seq analysis of biofilm and nonbiofilm-forming strains revealed that all of the overexpression strains, other than DIG1 and TOS8, were adopting a single differential expression profile, although induced to varying degrees. TOS8 adopted a separate profile, while the expression profile of DIG1 reflected the common pattern seen in most of the strains, plus substantial DIG1-specific expression changes. We interpret the existence of the common transcriptional pattern seen across multiple, unrelated overexpression strains as reflecting a transcriptional state, that the yeast cell can access through regulatory signaling mechanisms, allowing an adaptive morphological change between biofilm-forming and nonbiofilm states. PMID:28673928

  2. Differential regulation of c-di-GMP metabolic enzymes by environmental signals modulates biofilm formation in Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Gai-Xian eRen

    2016-06-01

    Full Text Available Cyclic diguanylate (c-di-GMP is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs, HmsT and HmsD and one phosphodiesterase (PDE, HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD and HmsP in Y. pestis. Biofilm formation was higher in the presence of nonlethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfonate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulates their DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  3. Pseudomonas biofilm matrix composition and niche biology

    Science.gov (United States)

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  4. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation

    OpenAIRE

    Moreira, Ricardo N.; Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs; Arraiano, Cecília M.

    2017-01-01

    The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms...

  5. Mixed species biofilms of Fusobacterium necrophorum and Porphyromonas levii impair the oxidative response of bovine neutrophils in vitro.

    Science.gov (United States)

    Lockhart, Joey S; Buret, Andre G; Ceri, Howard; Storey, Douglas G; Anderson, Stefanie J; Morck, Douglas W

    2017-10-01

    Biofilms composed of anaerobic bacteria can result in persistent infections and chronic inflammation. Host immune cells have difficulties clearing biofilm-related infections and this can result in tissue damage. Neutrophils are a vital component of the innate immune system and help clear biofilms. The comparative neutrophilic response to biofilms versus planktonic bacteria remains incompletely understood, particularly in the context of mixed infections. The objective of this study was to generate mixed species anaerobic bacterial biofilms composed of two opportunistic pathogens, Fusobacterium necrophorum and Porphyromonas levii, and evaluate neutrophil responses to extracellular fractions from both biofilms and planktonic cell co-cultures of the same bacteria. Purified bovine neutrophils exposed to culture supernatants from mixed species planktonic bacteria showed elevated oxidative activity compared to neutrophils exposed to biofilms composed of the same bacteria. Bacterial lipopolysaccharide plays a significant role in the stimulation of neutrophils; biofilms produced substantially more lipopolysaccharide than planktonic bacteria under these experimental conditions. Removal of lipopolysaccharide significantly reduced neutrophil oxidative response to culture supernatants of planktonic bacteria. Oxidative responses to LPS-removed biofilm supernatants and LPS-removed planktonic cell supernatants were similar. The limited neutrophil response to biofilm bacteria observed in this study supports the reduced ability of the innate immune system to eradicate biofilm-associated infections. Lipopolysaccharide is likely important in neutrophil response; however, the presence of other extracellular, immune modifying molecules in the bacterial media also appears to be important in altering neutrophil function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Efficacy of cleansing agents in killing microorganisms in mixed species biofilms present on silicone facial prostheses-an in vitro study

    NARCIS (Netherlands)

    Ariani, Nina; Visser, Anita; Teulings, Margot R. I. M.; Dijk, Melissa; Rahardjo, Tri Budi W.; Vissink, Arjan; van der Mei, Henny C.

    2015-01-01

    The purpose of this study was to assess the efficacy of different cleansing agents in killing mixed species biofilms on silicone facial prostheses. Two bacterial and three yeast strains, isolated from silicone facial prostheses, were selected for the mixed species biofilms. A variety of agents used

  7. Impact of modified diamond-like carbon coatings on the spatial organization and disinfection of mixed-biofilms composed of Escherichia coli and Pantoea agglomerans industrial isolates.

    Science.gov (United States)

    Gomes, L C; Deschamps, J; Briandet, R; Mergulhão, F J

    2018-07-20

    This work investigated the effects of diamond-like carbon (DLC) coatings on the architecture and biocide reactivity of dual-species biofilms mimicking food processing contaminants. Biofilms were grown using industrial isolates of Escherichia coli and Pantoea agglomerans on bare stainless steel (SST) and on two DLC surface coatings (a-C:H:Si:O designated by SICON® and a-C:H:Si designated by SICAN) in order to evaluate their antifouling activities. Quantification and spatial organization in single- and dual-species biofilms were examined by confocal laser scanning microscopy (CLSM) using a strain specific labelling procedure. Those assays revealed that the E. coli isolate exhibited a higher adhesion to the modified surfaces and a decreased susceptibility to disinfectant in presence of P. agglomerans than alone in axenic culture. While SICON® reduced the short-term growth of E. coli in axenic conditions, both DLC surfaces increased the E. coli colonization in presence of P. agglomerans. However, both modified surfaces triggered a significantly higher log reduction of E. coli cells within mixed-species biofilms, thus the use of SICON® and SICAN surfaces may be a good approach to facilitate the disinfection process in critical areas of food processing plants. This study presents a new illustration of the importance of interspecies interactions in surface-associated community functions, and of the need to evaluate the effectiveness of hygienic strategies with relevant multi-species consortia. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Dual-species biofilms formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing plants

    Science.gov (United States)

    Biofilm formation is a mechanism adapted by many microorganisms that enhances the survival in stressful environments. In food processing facilities, bacterial strains with strong biofilm forming capacities are more likely to survive the daily cleaning and disinfection. Foodborne bacterial pathogens,...

  9. Growth regulation of Legionella Pneumophila in biofilms and amoebae; Wachstumsregulation von Legionella Pneumophila in Biofilmen und Amoeben

    Energy Technology Data Exchange (ETDEWEB)

    Hilbi, H.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of studies made on the regulation of the growth of Legionella Pneumophila bacteria in biofilms and amoebae. In a first project, the formation of biofilms by Legionella Pneumophila bacteria was analysed in static and dynamic systems using a complex growth medium. Under static and dynamic clinical and environmental conditions, the adherence of the biofilms on polystyrene tissue was studied. This was also examined under dynamic flow conditions. In a second part of the project, the regulation of growth of Legionella Pneumophila in amoebae was examined in that changes were made to the genome of the bacteria. The importance of the work for the de-activation of Legionella Pneumophila bacteria in biofilms is noted in the conclusions of the report.

  10. Listeria monocytogenes impact on mature or old Pseudomonas fluorescens biofilms during growth at 4 and 20ºC

    Directory of Open Access Journals (Sweden)

    Puga eCH

    2016-02-01

    Full Text Available Changes in spatial organization, as observed by confocal laser scanning microscopy (CLSM, viable cell content, biovolume and substratum surface coverage of the biofilms formed on glass by Pseudomonas fluorescens resulting from co-culture with Listeria monocytogenes, were examined. Two strains of L. monocytogenes, two culture temperatures and two biofilm developmental stages were investigated. Both L. monocytogenes strains, a persistently sampled isolate (collected repeatedly along 3 years from a meat factory and Scott A, induced shrinkage in matrix volume, both at 20ºC and 4ºC, in mature or old biofilms, without loss of P. fluorescens cell count per surface unit. The nearly homogeneous pattern of surface coverage shown by mono-species P. fluorescens biofilms, turned into more irregular layouts in co-culture with L. monocytogenes. The upper layer of both mono and dual-species biofilms turned to predominantly consist of matrix, with plenty of viable cells underneath, in old biofilms cultured at 20ºC, but not in those grown at 4ºC. Between 15 and 56% of the substratum area was covered by biofilm, the extent depending on temperature, time and L. monocytogenes strain. Real biofilms in food-related surfaces may thus be very heterogeneous regarding their superficial components, i.e. those more accessible to disinfectants. It is therefore a hygienic challenge to choose an adequate agent to disrupt them.

  11. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut processing plant

    Science.gov (United States)

    Biofilm forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been ...

  12. FtsEX-CwlO regulates biofilm formation by a plant-beneficial rhizobacterium Bacillus velezensis SQR9.

    Science.gov (United States)

    Li, Qing; Li, Zunfeng; Li, Xingxing; Xia, Liming; Zhou, Xuan; Xu, Zhihui; Shao, Jiahui; Shen, Qirong; Zhang, Ruifu

    2018-04-01

    Bacillus velezensis strain SQR9 is a well-investigated rhizobacterium with an outstanding ability to colonize roots, enhance plant growth and suppress soil-borne diseases. The recognition that biofilm formation by plant-beneficial bacteria is crucial for their root colonization and function has resulted in increased interest in understanding molecular mechanisms related to biofilm formation. Here, we report that the gene ftsE, encoding the ATP-binding protein of an FtsEX ABC transporter, is required for efficient SQR9 biofilm formation. FtsEX has been reported to regulate the atolysin CwlO. We provided evidence that FtsEX-CwlO was involved in the regulation of SQR9 biofilm formation; however, this effect has little to do with CwlO autolysin activity. We propose that regulation of biofilm formation by CwlO was exerted through the spo0A pathway, since transcription of spo0A cascade genes was altered and their downstream extracellular matrix genes were downregulated in SQR9 ftsE/cwlO deletion mutants. CwlO was also shown to interact physically with KinB/KinD. CwlO may therefore interact with KinB/KinD to interfere with the spo0A pathway. This study revealed that FtsEX-CwlO plays a previously undiscovered regulatory role in biofilm formation by SQR9 that may enhance root colonization and plant-beneficial functions of SQR9 and other beneficial rhizobacteria as well. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation.

    Science.gov (United States)

    Moreira, Ricardo N; Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs; Arraiano, Cecília M

    2017-09-19

    The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms leading to similar phenotypes. Here, we establish the importance of the balance between these two factors for accurate regulation of the transition between the planktonic and sessile lifestyles. This balance is achieved by negative-feedback regulation of BolA and c-di-GMP. BolA not only contributes directly to the motility of bacteria but also regulates the expression of diguanylate cyclases and phosphodiesterases. This expression modulation influences the synthesis and degradation of c-di-GMP, while this signaling metabolite has a negative influence in bolA mRNA transcription. Finally, we present evidence of the dominant role of BolA in biofilm, showing that, even in the presence of elevated c-di-GMP levels, biofilm formation is reduced in the absence of BolA. C-di-GMP is one of the most important bacterial second messengers involved in several cellular processes, including virulence, cell cycle regulation, biofilm formation, and flagellar synthesis. In this study, we unravelled a direct connection between the bolA morphogene and the c-di-GMP signaling molecule. We show the important cross-talk that occurs between these two molecular regulators during the transition between the motile/planktonic and adhesive/sessile lifestyles in Escherichia coli This work provides important clues that can be helpful in the development of new strategies, and the results can be applied to other organisms with relevance for human health. IMPORTANCE Bacterial cells have evolved several

  14. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species.

    Science.gov (United States)

    Brinkman, Cassandra L; Schmidt-Malan, Suzannah M; Karau, Melissa J; Greenwood-Quaintance, Kerryl; Hassett, Daniel J; Mandrekar, Jayawant N; Patel, Robin

    2016-01-01

    Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the 'electricidal effect', in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of biofilms or cell death and to investigate the role that reactive oxygen species (ROS) play in the observed effect. Using confocal and electron microscopy and flow cytometry, we found that direct current (DC) leads to cell death and changes in the architecture of biofilms formed by Gram-positive and Gram-negative bacteria. Reactive oxygen species (ROS) appear to play a role in DC-associated cell death, as there was an increase in ROS-production by Staphylococcus aureus and Staphylococcus epidermidis biofilms following exposure to DC. An increase in the production of ROS response enzymes catalase and superoxide dismutase (SOD) was observed for S. aureus, S. epidermidis and Pseudomonas aeruginosa biofilms following exposure to DC. Additionally, biofilms were protected from cell death when supplemented with antioxidants and oxidant scavengers, including catalase, mannitol and Tempol. Knocking out SOD (sodAB) in P. aeruginosa led to an enhanced DC effect. Microarray analysis of P. aeruginosa PAO1 showed transcriptional changes in genes related to the stress response and cell death. In conclusion, the electricidal effect results in death of bacteria in biofilms, mediated, at least in part, by production of ROS.

  15. ANTIBIOFILM EFFECTS of Citrus limonum and Zingiber officinale Oils on BIOFILM FORMATION of Klebsiella ornithinolytica, Klebsiella oxytoca and Klebsiella terrigena SPECIES.

    Science.gov (United States)

    Avcioglu, Nermin Hande; Sahal, Gulcan; Bilkay, Isil Seyis

    2016-01-01

    Microbial cells growing in biofilms, play a huge role in the spread of antimicrobial resistance. In this study, biofilm formation of Klebsiella strains belonging to 3 different Klebsiella species ( K. ornithinolytica , K. oxytoca and K. terrigena ), cooccurences' effect on biofilm formation amount and anti-biofilm effects of Citrus limon and Zingiber officinale essential oils on biofilm formations of highest biofilm forming K. ornithinolytica , K. oxytoca and K. terrigena strains were determined. Anti-biofilm effects of Citrus limon and Zingiber officinale essential oils on biofilm formations of highest biofilm forming K. ornithinolytica , K. oxytoca and K. terrigena strains were investigated. 57% of K. ornithinolytica strains and 50% of K. oxytoca strains were found as Strong Biofilm Forming (SBF), there wasn't any SBF strain in K. terrigena species. In addition to this, clinical materials of urine and sperm were found as the most frequent clinical materials for strong biofilm forming K. ornithinolytica and K. oxytoca isolations respectively (63%; 100%) Secondly, all K. ornithinolytica strains isolated from surgical intensive care unit and all K. oxytoca strains isolated from service units of urology were found as SBF. Apart from these, although the amount of biofilm, formed by co-occurence of K. ornithinolytica - K. oxytoca and K. oxytoca - K. terrigena were more than the amount ofbiofilm formed by themselves separately, biofilm formation amount of co-occurrence of K. ornitholytica - K. terrigena strains was lower than biofilm formation amount of K. ornithinolytica but higher than biofilm formation amount of K. terrigena . The antibiofilm effects of Citrus limonum and Zingiber officinale essential oils could be used against biofilm Klebsiella aquired infections.

  16. Transported biofilms and their influence on subsequent macrofouling colonization.

    Science.gov (United States)

    Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B

    2017-05-01

    Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.

  17. Chemical sanitizers to control biofilms formed by two Pseudomonas species on stainless steel surface

    Directory of Open Access Journals (Sweden)

    Danila Soares Caixeta

    2012-03-01

    Full Text Available The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1 when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.

  18. Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization

    Directory of Open Access Journals (Sweden)

    Wenzheng Liu

    2016-08-01

    Full Text Available Interspecies interactions are essential for the persistence and development of any kind of complex community, and microbial biofilms are no exception. Multispecies biofilms are structured and spatially defined communities that have received much attention due to their omnipresence in natural environments. Species residing in these complex bacterial communities usually interact both intra- and interspecifically. Such interactions are considered to not only be fundamental in shaping overall biomass and the spatial distribution of cells residing in multispecies biofilms, but also to result in coordinated regulation of gene expression in the different species present. These communal interactions often lead to emergent properties in biofilms, such as enhanced tolerance against antibiotics, host immune responses and other stresses, which have been shown to provide benefits to all biofilm members not only the enabling sub-populations. However, the specific molecular mechanisms of cellular processes affecting spatial organization, and vice versa, are poorly understood and very complex to unravel. Therefore, detailed description of the spatial organization of individual bacterial cells in multispecies communities can be an alternative strategy to reveal the nature of interspecies interactions of constituent species. Closing the gap between visual observation and biological processes may become crucial for resolving biofilm related problems, which is of utmost importance to environmental, industrial, and clinical implications. This review briefly presents the state of the art of studying interspecies interactions and spatial organization of multispecies communities, aiming to support theoretical and practical arguments for further advancement of this field.

  19. Bacillus subtilis biofilm induction by plant polysaccharides.

    Science.gov (United States)

    Beauregard, Pascale B; Chai, Yunrong; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-04-23

    Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant.

  20. Specific plant induced biofilm formation in Methylobacterium species

    Science.gov (United States)

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  1. Regulation of Biofilm Formation by Hfq is Influenced by Presence of Plasmid pCD1 in Yersinia Pestis Biovar Microtus

    Directory of Open Access Journals (Sweden)

    Huiying Yang

    2017-10-01

    Full Text Available Yersinia pestis synthesizes the attached biofilms in the flea gut to promotethe flea-borne transmission of this deadly pathogen. Bellows et al. reported that the posttranscriptional regulator Hfq inhibites biofilm formation in apCD1− derivative of Y. pestis CO92, however, we found that Hfq stimulates biofilm production in a microtus strain of Y. pestis with the typical plasmids, including pCD1. When we cured pCD1 from this strain, the biofilm phenotype was in accordance with that reported by Bellows et al., indicating that the unknown pCD1-associated factors modulating the regulatory pathways of Y. pestis biofilm formation. Further gene regulation experiments using relevant pCD1+ Y. pestis strains disclose that Hfq positively regulates the expression of hmsHFRS and hmsT encoding a diguanylate cyclase while negatively regulates the expression of hmsP encoding the sole phosphodiesterase. However, Hfq has no regulatory effect on the expression of hmsCDE at the mRNA and protein levels. Our results suggest that we should be cautious to make conclusion from results based on the pCD1-cured Y. pestis.

  2. Effect of Lactoferrin on Oral Biofilm Formation

    Science.gov (United States)

    2009-10-01

    effect of Lf on the early stages of single-species and multi- species oral biofilm development. Streptococcus gordonii (Sg), Streptococcus mutans ...and biofilm development by Pseudomonas aeruginosa and Streptococcus mutans have been demonstrated, limited studies have been conducted on its effect...the effect of Lf on the early stages of single- species and multi-species oral biofilm development. Streptococcus gordonii, Streptococcus mutans

  3. Surprisingly high substrate specificities observed in complex biofilms

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Kindaichi, Tomonori; Kragelund, Caroline

    The behavior of microorganisms in natural ecosystems (e.g. biofilms) differs significantly from laboratory studies. In nature microorganisms experience alternating periods of surplus nutrients, nutrient-limitation, and starvation. Literature data suggests that to survive and compete successfully......, microorganisms can regulate their metabolism expressing wide range of uptake and catabolic systems. However, ecophysiological studies of natural biofilms indicate that bacteria are very specialized in their choice of substrate, so even minor changes in substrate composition can affect the community composition...... by selection for different specialized species. We hypothesized that bacteria growing in natural environment express strongly conserved substrate specificity which is independent on short-term (few hours) variations in growth conditions. In this study, biofilm from Aalborg wastewater treatment plant was used...

  4. Investigate Nasal Colonize Staphylococcus Species Biofilm Produced

    Directory of Open Access Journals (Sweden)

    Cemil Demir

    2014-03-01

    Full Text Available Aim: 127 S.aureus and 65 CoNS strains were isolated from patients noses%u2019. To produce a biofilm ability was investigated using three different methods. Slime-positive and negative staphylococcies%u2019 resistance were evaluated against different antibiotics. Material and Method: Swap samples puted 7% blood agar. Staphylococcus aureus and coagulase-negative staphylococci (CoNS isolates biofilm produced ability were investigated using Congo Red Agar (CRA, microplates (MP and Standard Tube (ST methods. In addition to that, presence of antibiotic resistance of the staphylococcal isolates are determined agar disc diffusion method. Results: The rate of biofilm producing Staphylococcus spp strains was found to be 72.4%, 67.7%, and 62.9%, respectively with CRA, MP, and ST tests. There was no significant relationship among the tests (p>0.05. In addition, antibiotic resistance of Staphylococcus spp. against various antibiotics was also determined by the agar disk diffusion method. Resistance rates of biofilm positive (BP Staphylococcus spp for penicilin G, ampicilin, amocycilin/clavulanic acid, tetracyclin, eritromycin, gentamycin, and enrofloxacin 71.7%, 69.7%, 6.2%, 20.7%, 21.4%, 1.4%, and 0.7%, respectively. Resistance rates of biofilm negative (BN spp for 42.6%, 23.4%, 4.3%, 14.9%, 19.1%, 0.0%, 0.0% respectively. All Staphylococcus isolates were found to be susceptible to vancomycin and teicaplonin. Although BP strains antibiotic resistance rates were observed higher than BN strains. But resistance rates were not found statistically significant (p>0.05. Discussion: CRA is the reliablity and specifity method to determine Staphylococcus spp. biofilm produce ability.

  5. 15 review article biofilm, dental unit water line and its control

    African Journals Online (AJOL)

    Dr Oboro VO

    Several methods of decreasing the level of contamination in DUWL have been proposed. ..... AI-. 2 is invloved in mixed-species biofilm formation and interspecies gene regulation (16). .... sensing: more than just a numbers game. Curr. Opin.

  6. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    Science.gov (United States)

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Biofilm inhibition activity of compounds isolated from two Eunicea species collected at the Caribbean Sea

    Directory of Open Access Journals (Sweden)

    Yenny Martínez Díaz

    Full Text Available Abstract Biofilm has a primary role in the pathogenesis of diseases and in the attachment of multicellular organisms to a fouled surface. Because of that, the control of bacterial biofilms has been identified as an important target. In the present study, five lipid compounds isolated from soft coral Eunicea sp. and three terpenoids together with a mixture of sterols from Eunicea fusca collected at the Colombian Caribbean Sea showed different effectiveness against biofilm formation by three marine bacteria associated with immersed fouled surfaces, Ochrobactrum pseudogringnonense,Alteromona macleodii and Vibrio harveyi, and against two known biofilm forming bacteria, Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 25923. The pure compounds were characterized by NMR, HRESI-MS, HRGC-MS and optical rotation. The most effective compounds were batyl alcohol (1 and fuscoside E peracetate (6, acting against four strains without affecting their microbial growth. Compound 1 showed biofilm inhibition greater than 30% against A. macleodii, and up to 60% against O. pseudogringnonense,V. harveyi and S. aureus. Compound 6 inhibited O. pseudogringnonense and V. harveyi between 25 and 50%, and P. aeruginosa or S. aureus up to 60% at 0.5 mg/ml. The results suggest that these compounds exhibit specific biofilm inhibition with lower antimicrobial effect against the bacterial species assayed.

  8. A theoretical approach to dual practice regulations in the health sector.

    Science.gov (United States)

    González, Paula; Macho-Stadler, Inés

    2013-01-01

    Internationally, there is wide cross-country heterogeneity in government responses to dual practice in the health sector. This paper provides a uniform theoretical framework to analyze and compare some of the most common regulations. We focus on three interventions: banning dual practice, offering rewarding contracts to public physicians, and limiting dual practice (including both limits to private earnings of dual providers and limits to involvement in private activities). An ancillary objective of the paper is to investigate whether regulations that are optimal for developed countries are adequate for developing countries as well. Our results offer theoretical support for the desirability of different regulations in different economic environments. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Porphyromonas gingivalis and Treponema denticola synergistic polymicrobial biofilm development.

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    Full Text Available Chronic periodontitis has a polymicrobial biofilm aetiology and interactions between key bacterial species are strongly implicated as contributing to disease progression. Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia have all been implicated as playing roles in disease progression. P. gingivalis cell-surface-located protease/adhesins, the gingipains, have been suggested to be involved in its interactions with several other bacterial species. The aims of this study were to determine polymicrobial biofilm formation by P. gingivalis, T. denticola and T. forsythia, as well as the role of P. gingivalis gingipains in biofilm formation by using a gingipain null triple mutant. To determine homotypic and polymicrobial biofilm formation a flow cell system was employed and the biofilms imaged and quantified by fluorescent in situ hybridization using DNA species-specific probes and confocal scanning laser microscopy imaging. Of the three species, only P. gingivalis and T. denticola formed mature, homotypic biofilms, and a strong synergy was observed between P. gingivalis and T. denticola in polymicrobial biofilm formation. This synergy was demonstrated by significant increases in biovolume, average biofilm thickness and maximum biofilm thickness of both species. In addition there was a morphological change of T. denticola in polymicrobial biofilms when compared with homotypic biofilms, suggesting reduced motility in homotypic biofilms. P. gingivalis gingipains were shown to play an essential role in synergistic polymicrobial biofilm formation with T. denticola.

  10. Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms

    KAUST Repository

    Zhu, Xiuping

    2012-08-01

    Higher current densities produced in microbial fuel cells and other bioelectrochemical systems are associated with the presence of various Geobacter species. A number of electron transfer components are involved in extracellular electron transfer by the model exoelectrogen, Geobacter sulfurreducens. It has previously been shown that 5 main oxidation peaks can be identified in cyclic voltammetry scans. It is shown here that 7 separate oxidation peaks emerged over relatively long periods of time when a larger range of set potentials was used to acclimate electroactive biofilms. The potentials of oxidation peaks obtained with G. sulfurreducens biofilms acclimated at 0.60 V (vs. Ag/AgCl) were different from those that developed at - 0.46 V, and both of their peaks were different from those obtained for biofilms incubated at - 0.30 V, 0 V, and 0.30 V. These results expand the known range of potentials for which G. sulfurreducens produces identifiable oxidation peaks that could be important for extracellular electron transfer. © 2012 Elsevier B.V.

  11. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  12. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...... infections in humans. Biofilm is also interesting from an evolutionary standpoint, as an example of primitive multicellularity. By using a genome-wide screen of yeast deletion mutants, I show that 71 genes are essential for biofilm formation. Two-thirds of these genes are required for transcription of FLO11......, but only a small subset is previously described as regulators of FLO11. These results reveal that the regulation of biofilm formation and FLO11 is even more complex than what has previously been described. I find that the molecular program for biofilm formation shares many essential components with two...

  13. Succession and seasonal variation in epilithic biofilms on artificial reefs in culture waters of the sea cucumber Apostichopus japonicus

    Science.gov (United States)

    Liu, Liming; Du, Rongbin; Zhang, Xiaoling; Dong, Shuanglin; Sun, Shichun

    2017-01-01

    Periphytic biofilms in aquaculture waters are thought to improve water quality, provide an additional food source, and improve the survival and growth of some reared animals. In the Asia- Pacific region, particularly in China, artificial reefs are commonly used in the commercial farming of sea cucumbers. However, few studies have examined the epilithic biofilms on the artificial reefs. To gain a better understanding of the succession of epilithic biofilms and their ecological processes in sea cucumber culture waters, two experiments were conducted in culture waters of the sea cucumber Apostichopus japonicus in Rongcheng, China, using artificial test panels. On the test panels of succession experiment, more than 67 species were identified in the biofilms. On the test panels of seasonal variation experiment, more than 46 species were recorded in the biofilms. In both experiments, communities of epilithic biofilms were dominated by diatoms, green algae and the annelid Spirorbis sp. In the initial colonization, the dominant diatoms were Cocconeis sp., Amphora spp. and Nitzschia closterium in June, which were succeeded by species of Navicula, Cocconeis and Nitzschia (July to September), and then by Licmophora abbreviata, Nitzschia closterium and Synedra spp. in the following months. A diatom bloom in the autumn and filamentous green algae burst in the summer were also observed. Ecological indices well annotated the succession and seasonal changes in epilithic communities. Multidimensional scaling (MDS) analysis found significant differences in diatom community composition among months and seasons. Fast growth of biofilms was observed in the summer and autumn, whereas the biomass of summer biofilms was largely made up of filamentous green algae. Present results show that the components of epilithic biofilms are mostly optimal foods of A. japonicus, suggesting that biofilms on artificial reefs may contribute important nutritional sources for sea cucumbers during their

  14. Synergistic interaction in dual-species biofilms formation by Escherichia coli O157:H7 and Ralstonia spp

    Science.gov (United States)

    Introduction: Ralstonia spp., a heterotrophic bacterium that are isolated from produce processing environments as part of the native microflora, have strong potentials for formaing biofilms on various surfaces. When co-cultured, Escherichia coli O157:H7 (EcO157) and Ralstonia spp. displayed a synerg...

  15. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus.

    Science.gov (United States)

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species.

  16. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    Science.gov (United States)

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  17. Candida Biofilms: Threats, Challenges, and Promising Strategies

    Directory of Open Access Journals (Sweden)

    Mafalda Cavalheiro

    2018-02-01

    Full Text Available Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.

  18. Candida Biofilms: Threats, Challenges, and Promising Strategies.

    Science.gov (United States)

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis , and Candida parapsilosis , highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.

  19. Candida Biofilms: Threats, Challenges, and Promising Strategies

    Science.gov (United States)

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed. PMID:29487851

  20. Biofilm Development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction or terminat......During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction...... or termination of biofilm matrix production via the second messenger molecule c-di-GMP. In between initiation and termination of biofilm formation we have defined specific biofilm stages, but the currently available evidence suggests that these transitions are mainly governed by adaptive responses......, and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  1. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    Science.gov (United States)

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a p rogrammed c ell l ysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  2. Conductive properties of methanogenic biofilms.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Liu, Hong

    2018-02-01

    Extracellular electron transfer between syntrophic partners needs to be efficiently maintained in methanogenic environments. Direct extracellular electron transfer via electrical current is an alternative to indirect hydrogen transfer but requires construction of conductive extracellular structures. Conductive mechanisms and relationship between conductivity and the community composition in mixed-species methanogenic biofilms are not well understood. The present study investigated conductive behaviors of methanogenic biofilms and examined the correlation between biofilm conductivity and community composition between different anaerobic biofilms enriched from the same inoculum. Highest conductivity observed in methanogenic biofilms was 71.8±4.0μS/cm. Peak-manner response of conductivity upon changes over a range of electrochemical potentials suggests that electron transfer in methanogenic biofilms occurs through redox driven super-exchange. The strong correlation observed between biofilm conductivity and Geobacter spp. in the metabolically diverse anaerobic communities suggests that the efficiency of DEET may provide pressure for microbial communities to select for species that can produce electrical conduits. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electrochemical activities of Geobacter biofilms growing on electrodes with various potentials

    International Nuclear Information System (INIS)

    Li, Dao-Bo; Huang, Yu-Xi; Li, Jie; Li, Ling-Li; Tian, Li-Jiao; Yu, Han-Qing

    2017-01-01

    Highlights: • Dependence of current generation on potentials by G. sulfurreducens is complex with the optimum at +0.1 V. • Unfavorable spatial distribution of biological activity within the biofilm at high potentials limits the current generation. • Same cytochrome c species are used for electron transfer in the biofilms developed at all potentials. - Abstract: Exoelectrogenic bacteria (EEB) play a central role in bioenergy recovery, biogeochemistry of elements, and polluting remediation. The electrochemical activity of EEB biofilm on electrode was proven to be dependent on the electrode potential, but the mechanism behind such a phenomenon is unclear. In this work, Geobacter sulfurreducens biofilms were developed at potentials ranging from −0.1 V to +0.6 V vs. standard hydrogen electrode to explore the profiles of potential regulation on G. sulfurreducens biofilm development and the electrochemical activity. We found that elevating the developing potential could improve the current generation by G. sulfurreducens biofilm until +0.1 V. At higher potentials less current was generated, although more biomass was formed on the electrode. The same cytochrome c species were synthesized for electron transfer in all biofilms, independent of the developing potential. Electrochemical experimental results and redox-sensitive staining imagings proved that the biofilms developed at +0.2 V–+0.4 V had greater cytochrome c contents and reducing capacities than the others. Current generation at high potentials was likely to be limited by both the metabolic rate and the electron transfer kinetics. These findings are useful for tuning the electrochemical activity of biofilm in catalyzing redox processes or generating electricity, which is crucial for the environmental and electrochemical application of EEB.

  4. Streptococcus pyogenes biofilms – formation, biology,and clinical relevance

    Directory of Open Access Journals (Sweden)

    Tomas eFiedler

    2015-02-01

    Full Text Available Streptococcus pyogenes (group A streptococci, GAS is an exclusive human bacterial pathogen. The virulence potential of this species is tremendous. Interactions with humans range from asymptomatic carriage over mild and superficial infections of skin and mucosal membranes up to systemic purulent toxic-invasive disease manifestations. Particularly the latter are a severe threat for predisposed patients and lead to significant death tolls worldwide. This places GAS among the most important Gram-positive bacterial pathogens. Many recent reviews have highlighted the GAS repertoire of virulence factors, regulators and regulatory circuits/networks that enable GAS to colonize the host and to deal with all levels of the host immune defense. This covers in vitro and in vivo studies, including animal infection studies based on mice and more relevant, macaque monkeys. It is now appreciated that GAS, like many other bacterial species, do not necessarily exclusively live in a planktonic lifestyle. GAS is capable of microcolony and biofilm formation on host cells and tissues. We are now beginning to understand that this feature significantly contributes to GAS pathogenesis. In this review we will discuss the current knowledge on GAS biofilm formation, the biofilm-phenotype associated virulence factors, regulatory aspects of biofilm formation, the clinical relevance, and finally contemporary treatment regimens and future treatment options.

  5. Depth-Resolved Nanospray Desorption Electrospray Ionization Mass Spectrometry in Biofilms

    Science.gov (United States)

    2015-11-16

    metabolites and possibly proteins from biofilms at different depth. A microcapillary system was developed and tested for this goal. The...demonstrated that a dual microcapillary system can be used to collect nanoliter sample from the biofilms at 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Spectrometry in Biofilms The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official

  6. Influence of Culture Media on Biofilm Formation by Candida Species and Response of Sessile Cells to Antifungals and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Isela Serrano-Fujarte

    2015-01-01

    Full Text Available The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs. Biofilms were observed by scanning electron microscopy (SEM and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%, C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%, while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.

  7. Influence of culture media on biofilm formation by Candida species and response of sessile cells to antifungals and oxidative stress.

    Science.gov (United States)

    Serrano-Fujarte, Isela; López-Romero, Everardo; Reyna-López, Georgina Elena; Martínez-Gámez, Ma Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.

  8. Influence of Culture Media on Biofilm Formation by Candida Species and Response of Sessile Cells to Antifungals and Oxidative Stress

    Science.gov (United States)

    Serrano-Fujarte, Isela; Reyna-López, Georgina Elena; Martínez-Gámez, Ma. Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient. PMID:25705688

  9. Impact of Hydrodynamics on Oral Biofilm Strength

    NARCIS (Netherlands)

    Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.

    2009-01-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of

  10. Lipopeptide biosurfactants from Paenibacillus polymyxa inhibit single and mixed species biofilms.

    Science.gov (United States)

    Quinn, Gerry A; Maloy, Aaron P; McClean, Stephen; Carney, Brian; Slater, John W

    2012-01-01

    Although biofilms are recognised as important in microbial colonisation, solutions to their inhibition are predominantly based on planktonic assays. These solutions have limited efficacy against biofilms. Here, a series of biofilm-orientated tests were used to identify anti-biofilm compounds from marine micro-flora. This led to the isolation of a complex of anti-biofilm compounds from an extract of Paenibacillus polymyxa (PPE). A combination of rpHPLC and mass spectrometry identified the principle components of PPE as fusaricidin B (LI-FO4b) and polymyxin D1, with minor contributions from surfactins. This complex (PPE) reduced the biofilm biomass of Bacillus subtilis, Micrococcus luteus, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus bovis. In contrast, ampicillin was only effective against S. aureus. PPE also inhibited a self-assembling marine biofilm (SAMB) in co-incubation assays by 99.3% ± 1.9 and disrupted established SAMB by 72.4% ± 4.4, while ampicillin showed no significant reduction. The effectiveness of this complex of lipopeptides against single and multispecies biofilms suggests a future role in biofilm prevention strategies.

  11. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis

    DEFF Research Database (Denmark)

    Lappann, M.; Claus, H.; van Alen, T.

    2010-01-01

    formation, whereas biofilm formation of cc with low point prevalence (ST-8 cc and ST-11 cc) was eDNA-independent. For initial biofilm formation, a ST-32 cc type strain, but not a ST-11 type strain, utilized eDNA. The release of eDNA was mediated by lytic transglycosylase and cytoplasmic N......-acetylmuramyl-l-alanine amidase genes. In late biofilms, outer membrane phospholipase A-dependent autolysis, which was observed in most cc, but not in ST-8 and ST-11 strains, was required for shear force resistance of microcolonies. Taken together, N. meningitidis evolved two different biofilm formation strategies, an e....... On the contrary, spreaders (ST-11 and ST-8 cc) are unable to use eDNA for biofilm formation and might compensate for poor colonization properties by high transmission rates....

  12. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures.

    Science.gov (United States)

    Parker, Jennifer K; Chen, Hongyu; McCarty, Sara E; Liu, Lawrence Y; De La Fuente, Leonardo

    2016-05-01

    The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Candida species isolated from different body sites and their antifungal susceptibility pattern: Cross-analysis of Candida albicans and Candida glabrata biofilms.

    Science.gov (United States)

    Cataldi, Valentina; Di Campli, Emanuela; Fazii, Paolo; Traini, Tonino; Cellini, Luigina; Di Giulio, Mara

    2017-08-01

    Candida species are regular commensal in humans, but-especially in immunocompromised patients-they represent opportunistic pathogens giving rise to systemic infection. The aim of the present work was to isolate and characterize for their antifungal profile Candida species from different body sites and to analyze the biofilms produced by C. albicans and C. glabrata isolates. Eighty-one strains of Candida species from 77 patients were identified. Epidemiological study showed that the most isolated species were C. albicans (44), C. glabrata (13) and C. parapsilosis (13) mainly from Hematology, Infectious Diseases, Medicine, Neonatology and Oncology Divisions, the majority of the biological samples were swabs (44) and blood cultures (16). The analysis of the biofilm formation was performed at 24 and 48-hours comparing resistant and susceptible strains of C. albicans to resistant and susceptible strains of C. glabrata. Candida albicans has a greater ability to form biofilm compared to C. glabrata, both in the susceptible and resistant strains reaching maturity after 24 hours with a complex structure composed of blastospores, pseudohyphae, and hyphae embedded in a matrix. On the contrary, C. glabrata biofilm was composed exclusively of blastospores that in the resistant strain, after 24 hours, were organized in a compact multilayer different to the discontinuous structure observed in the susceptible analyzed strains. In conclusion, the increasing of the incidence of Candida species infection together with their emerging drug resistance also related to the biofilm forming capability underline the need to monitor their distribution and susceptibility patterns for improving the surveillance and for a correct management of the infection. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections

    DEFF Research Database (Denmark)

    Burmølle, Mette; Thomsen, Trine Rolighed; Fazli, Mustafa

    2010-01-01

    It has become evident that aggregation or biofilm formation is an important survival mechanism for bacteria in almost any environment. In this review, we summarize recent visualizations of bacterial aggregates in several chronic infections (chronic otitis media, cystic fibrosis, infection due...... to permanent tissue fillers and chronic wounds) both as to distribution (such as where in the wound bed) and organization (monospecies or multispecies microcolonies). We correlate these biofilm observations to observations of commensal biofilms (dental and intestine) and biofilms in natural ecosystems (soil......). The observations of the chronic biofilm infections point toward a trend of low bacterial diversity and sovereign monospecies biofilm aggregates even though the infection in which they reside are multispecies. In contrast to this, commensal and natural biofilm aggregates contain multiple species that are believed...

  15. Biofilm inhibitors that target amyloid proteins.

    Science.gov (United States)

    Romero, Diego; Sanabria-Valentín, Edgardo; Vlamakis, Hera; Kolter, Roberto

    2013-01-24

    Bacteria establish stable communities, known as biofilms, that are resistant to antimicrobials. Biofilm robustness is due to the presence of an extracellular matrix, which for several species-among them Bacillus subtilis-includes amyloid-like protein fibers. In this work, we show that B. subtilis biofilms can be a simple and reliable tool for screening of molecules with antiamyloid activity. We identified two molecules, AA-861 and parthenolide, which efficiently inhibited biofilms by preventing the formation of amyloid-like fibers. Parthenolide also disrupted pre-established biofilms. These molecules also impeded the formation of biofilms of other bacterial species that secrete amyloid proteins, such as Bacillus cereus and Escherichia coli. Furthermore, the identified molecules decreased the conversion of the yeast protein New1 to the prion state in a heterologous host, indicating the broad range of activity of the molecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Alternative Mating Type Configurations (a/α versus a/a or α/α) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways

    Science.gov (United States)

    Srikantha, Thyagarajan; Huang, Guanghua; Garnaas, Adam M.; Soll, David R.

    2011-01-01

    Similar multicellular structures can evolve within the same organism that may have different evolutionary histories, be controlled by different regulatory pathways, and play similar but nonidentical roles. In the human fungal pathogen Candida albicans, a quite extraordinary example of this has occurred. Depending upon the configuration of the mating type locus (a/α versus a/a or α/α), C. albicans forms alternative biofilms that appear similar morphologically, but exhibit dramatically different characteristics and are regulated by distinctly different signal transduction pathways. Biofilms formed by a/α cells are impermeable to molecules in the size range of 300 Da to 140 kDa, are poorly penetrated by human polymorphonuclear leukocytes (PMNs), and are resistant to antifungals. In contrast, a/a or α/α biofilms are permeable to molecules in this size range, are readily penetrated by PMNs, and are susceptible to antifungals. By mutational analyses, a/α biofilms are demonstrated to be regulated by the Ras1/cAMP pathway that includes Ras1→Cdc35→cAMP(Pde2—|)→Tpk2(Tpk1)→Efg1→Tec1→Bcr1, and a/a biofilms by the MAP kinase pathway that includes Mfα→Ste2→ (Ste4, Ste18, Cag1)→Ste11→Hst7→Cek2(Cek1)→Tec1. These observations suggest the hypothesis that while the upstream portion of the newly evolved pathway regulating a/a and α/α cell biofilms was derived intact from the upstream portion of the conserved pheromone-regulated pathway for mating, the downstream portion was derived through modification of the downstream portion of the conserved pathway for a/α biofilm formation. C. albicans therefore forms two alternative biofilms depending upon mating configuration. PMID:21829325

  17. Dynamics of biofilm formation by Listeria monocytogenes on stainless steel under mono-species and mixed-culture simulated fish processing conditions and chemical disinfection challenges.

    Science.gov (United States)

    Papaioannou, Eleni; Giaouris, Efstathios D; Berillis, Panagiotis; Boziaris, Ioannis S

    2018-02-21

    The progressive ability of a six-strains L. monocytogenes cocktail to form biofilm on stainless steel (SS), under fish-processing simulated conditions, was investigated, together with the biocide tolerance of the developed sessile communities. To do this, the pathogenic bacteria were left to form biofilms on SS coupons incubated at 15°C, for up to 240h, in periodically renewable model fish juice substrate, prepared by aquatic extraction of sea bream flesh, under both mono-species and mixed-culture conditions. In the latter case, L. monocytogenes cells were left to produce biofilms together with either a five-strains cocktail of four Pseudomonas species (fragi, savastanoi, putida and fluorescens), or whole fish indigenous microflora. The biofilm populations of L. monocytogenes, Pseudomonas spp., Enterobacteriaceae, H 2 S producing and aerobic plate count (APC) bacteria, both before and after disinfection, were enumerated by selective agar plating, following their removal from surfaces through bead vortexing. Scanning electron microscopy was also applied to monitor biofilm formation dynamics and anti-biofilm biocidal actions. Results revealed the clear dominance of Pseudomonas spp. bacteria in all the mixed-culture sessile communities throughout the whole incubation period, with the in parallel sole presence of L. monocytogenes cells to further increase (ca. 10-fold) their sessile growth. With respect to L. monocytogenes and under mono-species conditions, its maximum biofilm population (ca. 6logCFU/cm 2 ) was reached at 192h of incubation, whereas when solely Pseudomonas spp. cells were also present, its biofilm formation was either slightly hindered or favored, depending on the incubation day. However, when all the fish indigenous microflora was present, biofilm formation by the pathogen was greatly hampered and never exceeded 3logCFU/cm 2 , while under the same conditions, APC biofilm counts had already surpassed 7logCFU/cm 2 by the end of the first 96h of

  18. Single-species versus dual-species probiotic supplementation as an emerging therapeutic strategy for obesity.

    Science.gov (United States)

    Karimi, G; Jamaluddin, R; Mohtarrudin, N; Ahmad, Z; Khazaai, H; Parvaneh, M

    2017-10-01

    Recent studies have reported beneficial effects of specific probiotics on obesity. However, the difference in the anti-obesity effects of probiotics as single species and dual species is still uncertain. Therefore, we aimed to compare the efficacy of single and dual species of bacteria on markers of obesity in high-fat diet-induced obese rats. A total of 40 male Sprague-Dawley rats were assigned to one of five groups of varying diets as follows: standard diet, high fat diet (HFD), HFD supplemented with Lactobacillus casei strain Shirota, HFD supplemented with Bifidobacterium longum and HFD supplemented with a mixture of these two bacterial species. After 15 weeks of supplementation, the animals were examined for changes in body weight, body fat, total count of bacteria in fecal, blood serum lipid profile, leptin, adiponectin and inflammatory biomarkers. Histological analysis of the liver and adipose tissue was performed and the hepatic mRNA expression levels of genes related to lipid metabolism were measured. It was found that probiotic supplementation of either B. longum or a mixture of B. longum and LcS bacteria significantly reduced weight and triglycerides in the HFD groups. Supplementation of B. longum bacteria showed better results in terms of modulating leptin level, fat mass, adipocyte size and lipoprotein lipase expression, as well as increasing adiponectin and peroxisome proliferator-activated receptors-γ expression compared to dual species of bacteria. No significant differences were observed in the total count of fecal bacteria, glucose and inflammatory biomarker levels between supplemented groups. B. longum supplementation in obesity was more beneficial in metabolic profile changes than the mixture species. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B

  19. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates: BIOFILM DISTRIBUTION AND RATE SCALING

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng [Institute of Surface-Earth System Science, Tianjin University, Tianjin China; Pacific Northwest National Laboratory, Richland WA USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland WA USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen China; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland WA USA; School of Earth Science and Engineering, Nanjing University, Nanjing China; Bailey, Vanessa L. [Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models, and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  20. Relative Abundances of Candida albicans and Candida glabrata in In Vitro Coculture Biofilms Impact Biofilm Structure and Formation.

    Science.gov (United States)

    Olson, Michelle L; Jayaraman, Arul; Kao, Katy C

    2018-04-15

    Candida is a member of the normal human microbiota and often resides on mucosal surfaces such as the oral cavity or the gastrointestinal tract. In addition to their commensality, Candida species can opportunistically become pathogenic if the host microbiota is disrupted or if the host immune system becomes compromised. An important factor for Candida pathogenesis is its ability to form biofilm communities. The two most medically important species- Candida albicans and Candida glabrata -are often coisolated from infection sites, suggesting the importance of Candida coculture biofilms. In this work, we report that biofilm formation of the coculture population depends on the relative ratio of starting cell concentrations of C. albicans and C. glabrata When using a starting ratio of C. albicans to C. glabrata of 1:3, ∼6.5- and ∼2.5-fold increases in biofilm biomass were observed relative to those of a C. albicans monoculture and a C. albicans / C. glabrata ratio of 1:1, respectively. Confocal microscopy analysis revealed the heterogeneity and complex structures composed of long C. albicans hyphae and C. glabrata cell clusters in the coculture biofilms, and reverse transcription-quantitative PCR (qRT-PCR) studies showed increases in the relative expression of the HWP1 and ALS3 adhesion genes in the C. albicans / C. glabrata 1:3 biofilm compared to that in the C. albicans monoculture biofilm. Additionally, only the 1:3 C. albicans / C. glabrata biofilm demonstrated an increased resistance to the antifungal drug caspofungin. Overall, the results suggest that interspecific interactions between these two fungal pathogens increase biofilm formation and virulence-related gene expression in a coculture composition-dependent manner. IMPORTANCE Candida albicans and Candida glabrata are often coisolated during infection, and the occurrence of coisolation increases with increasing inflammation, suggesting possible synergistic interactions between the two Candida species in

  1. Fate of deposited cells in an aerobic binary bacterial biofilm

    International Nuclear Information System (INIS)

    Banks, M.K.

    1989-01-01

    A biofilm is a matrix of microbial cells and their extracellular products that is associated with a solid surface. Previous studies on biofilm development have employed only dissolved compounds as growth limiting substrates, without the influence of microbial species invading from the bulk liquid. The goal of this research project was to quantify the kinetics of processes governing suspended biomass turnover in biofilm systems, and the accompanying effects of suspended cell deposition on biofilm population dynamics. Experiments were conducted with two species of bacteria, Pseudomonas putida ATCC 11172 grown on glucose, and Hyphomicrobium ZV620 grown on methanol. Cryptic growth and particulate hydrolysis studies were evaluated, using combinations of these two bacteria, by measuring the uptake of radiolabelled cell lysis products, under batch conditions. Biofilms studies were performed to investigate bacterial deposition, continual biofilm removal by shear induced erosion, and biofilm ecology. Biofilms were developed in a flow cell reactor, under laminar flow conditions. Bacterial species were differentiated by radioactively labelling each species with their carbon substrate. A mathematical model was developed to predict the biofilm ecology of mixed cultures. The equations developed predict biofilm accumulation, as well as substrate and oxygen consumption. Results indicate that cryptic growth will occur for bacteria growing on their own species soluble lysis products and in some cases, bacteria growing on the soluble lysis products of other species. Particulate hydrolysis only occurred for Pseudomonas putida growing on Pseudomonas putida lysis products, but the lack of particulate hydrolysis occurring in the other studies may have been due to the short experimental period

  2. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species

    Science.gov (United States)

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G. A.; Yeoh, Yun Kit; Donose, Bogdan C.; Webb, Richard I.; Parsons, Jeremy; Liao, Webber; Sagulenko, Evgeny; Lakshmanan, Prakash; Hugenholtz, Philip; Schmidt, Susanne; Ragan, Mark A.

    2016-01-01

    Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere. PMID:27869215

  3. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling.

    Science.gov (United States)

    Wang, Ying; Branicky, Robyn; Noë, Alycia; Hekimi, Siegfried

    2018-04-18

    Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling. © 2018 Wang et al.

  4. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    Bacterial biofilms, often composed of multiple species and genetically distinct strains, develop under complex influences of cell-cell interactions. Although detailed knowledge about the mechanisms underlying formation of single-species laboratory biofilms has emerged, little is known about...... the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting...

  5. Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395

    DEFF Research Database (Denmark)

    Prol García, María Jesús; D'Alvise, Paul; Rygaard, Anita Mac

    2014-01-01

    Aims The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth as multice......Aims The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth...... as multicellular aggregates or biofilms at the air–liquid interface and is induced on single cell level upon attachment. Methods and Results A mutant library was created by Tn5 transposon insertion and 22 TDA-positive (brown) mutants with decreased biofilm formation or adhesion, and eight TDA-negative (white...... that are likely involved in EPS/LPS production, motility and chemotaxis, and redox regulation play a role in biofilm formation and/or adhesion in P. inhibens DSM17395. Conclusions Cell aggregation and biofilm formation are not physiological prerequisites for TDA production. Significance and Impact of the Study...

  6. A novel dual-feed low-dropout regulator

    International Nuclear Information System (INIS)

    Duan Zhikui; Hu Jianguo; Ding Yi; Lu Chong; Ding Yanyu; Wang Deming; Tan Hongzhou

    2015-01-01

    A novel dual-feed (DF) low-dropout (LDO) is presented. The DF-LDO adopts dual control loops to maintain the output voltage. The dual control loops include a feedback loop and a feedforward loop. There is an equilibrium point in dual control loops, and the equilibrium point is the output voltage of the DF-LDO. In addition, the transient performance is optimized by adjusting the damping ratio and natural frequency. With a 1 μF decoupling capacitor, the proposed DF-LDO is fabricated in a 0.18 μm CMOS process and its output voltage is 1.5 V. When the workload changes from 100 μA to 100 mA in 100 ns, load regulation of 7 mV for a 100 mA step is achieved, the settling time is 997 ns and the undershoot is 12.8 mV; when the workload changes from 100 mA to 100 μA in 100 ns, the settling time is 249 ns with an imperceptible overshoot. (paper)

  7. Streptococcus mutans copper chaperone, CopZ, is critical for biofilm formation and competitiveness.

    Science.gov (United States)

    Garcia, S S; Du, Q; Wu, H

    2016-12-01

    The oral cavity is a dynamic environment characterized by hundreds of bacterial species, saliva, and an influx of nutrients and metal ions such as copper. Although there is a physiologic level of copper in the saliva, the oral cavity is often challenged with an influx of copper ions. At high concentrations copper is toxic and must therefore be strictly regulated by pathogens for them to persist and cause disease. The cariogenic pathogen Streptococcus mutans manages excess copper using the copYAZ operon that encodes a negative DNA-binding repressor (CopY), the P1-ATPase copper exporter (CopA), and the copper chaperone (CopZ). These hypothetical roles of the copYAZ operon in regulation and copper transport to receptors led us to investigate their contribution to S. mutans virulence. Mutants defective in the copper chaperone CopZ, but not CopY or CopA, were impaired in biofilm formation and competitiveness against commensal streptococci. Characterization of the CopZ mutant biofilm revealed a decreased secretion of glucosyltransferases and reduced expression of mutacin genes. These data suggest that the function of copZ on biofilm and competitiveness is independent of copper resistance and CopZ is a global regulator for biofilm and other virulence factors. Further characterization of CopZ may lead to the identification of new biofilm pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Activities of Fluconazole, Caspofungin, Anidulafungin, and Amphotericin B on Planktonic and Biofilm Candida Species Determined by Microcalorimetry

    Science.gov (United States)

    Maiolo, Elena Maryka; Furustrand Tafin, Ulrika; Borens, Olivier

    2014-01-01

    We investigated the activities of fluconazole, caspofungin, anidulafungin, and amphotericin B against Candida species in planktonic form and biofilms using a highly sensitive assay measuring growth-related heat production (microcalorimetry). C. albicans, C. glabrata, C. krusei, and C. parapsilosis were tested, and MICs were determined by the broth microdilution method. The antifungal activities were determined by isothermal microcalorimetry at 37°C in RPMI 1640. For planktonic Candida, heat flow was measured in the presence of antifungal dilutions for 24 h. Candida biofilm was formed on porous glass beads for 24 h and exposed to serial dilutions of antifungals for 24 h, and heat flow was measured for 48 h. The minimum heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration reducing the heat flow peak by ≥50% (≥90% for amphotericin B) at 24 h for planktonic Candida and at 48 h for Candida biofilms (measured also at 24 h). Fluconazole (planktonic MHICs, 0.25 to >512 μg/ml) and amphotericin B (planktonic MHICs, 0.25 to 1 μg/ml) showed higher MHICs than anidulafungin (planktonic MHICs, 0.015 to 0.5 μg/ml) and caspofungin (planktonic MHICs, 0.125 to 0.5 μg/ml). Against Candida species in biofilms, fluconazole's activity was reduced by >1,000-fold compared to its activity against the planktonic counterparts, whereas echinocandins and amphotericin B mainly preserved their activities. Fluconazole induced growth of planktonic C. krusei at sub-MICs. At high concentrations of caspofungin (>4 μg/ml), paradoxical growth of planktonic C. albicans and C. glabrata was observed. Microcalorimetry enabled real-time evaluation of antifungal activities against planktonic and biofilm Candida organisms. It can be used in the future to evaluate new antifungals and antifungal combinations and to study resistant strains. PMID:24566186

  9. Effects of xylitol on xylitol-sensitive versus xylitol-resistant Streptococcus mutans strains in a three-species in vitro biofilm.

    Science.gov (United States)

    Marttinen, Aino M; Ruas-Madiedo, Patricia; Hidalgo-Cantabrana, Claudio; Saari, Markku A; Ihalin, Riikka A; Söderling, Eva M

    2012-09-01

    We studied the effects of xylitol on biofilms containing xylitol-resistant (Xr) and xylitol-sensitive (Xs) Streptococcus mutans, Actinomyces naeslundii and S. sanguinis. The biofilms were grown for 8 and 24 h on hydroxyapatite discs. The viable microorganisms were determined by plate culturing techniques and fluorescence in situ hybridization (FISH) was performed using a S. mutans-specific probe. Extracellular cell-bound polysaccharides (EPS) were determined by spectrofluorometry from single-species S. mutans biofilms. In the presence of 5 % xylitol, the counts of the Xs S. mutans decreased tenfold in the young (8 h) biofilm (p Xr strains, and FISH confirmed these results. No differences were detected in the EPS production of the Xs S. mutans grown with or without xylitol, nor between Xr and Xs S. mutans strains. Thus, it seems that xylitol did not affect the EPS synthesis of the S. mutans strains. Since the Xr S. mutans strains, not inhibited by xylitol, showed no xylitol-induced decrease in the biofilms, we conclude that growth inhibition could be responsible for the decrease of the counts of the Xs S. mutans strains in the clinically relevant young biofilms.

  10. Formation of In Vitro Mixed-Species Biofilms by Lactobacillus pentosus and Yeasts Isolated from Spanish-Style Green Table Olive Fermentations.

    Science.gov (United States)

    León-Romero, Ángela; Domínguez-Manzano, Jesús; Garrido-Fernández, Antonio; Arroyo-López, Francisco Noé; Jiménez-Díaz, Rufino

    2016-01-15

    The present work details the in vitro interactions between Lactobacillus pentosus and yeast strains isolated from table olive processing to form mixed biofilms. Among the different pairs assayed, the strongest biofilms were obtained from L. pentosus and Candida boidinii strain cocultures. However, biofilm formation was inhibited in the presence of d-(+)-mannose. In addition, biofilm formation by C. boidinii monoculture was stimulated in the absence of cell-cell contact with L. pentosus. Scanning electron microscopy revealed that a sort of "sticky" material formed by the yeasts contributed to substrate adherence. Hence, the data obtained in this work suggest that yeast-lactobacilli biofilms may be favored by the presence of a specific mate of yeast and L. pentosus, and that more than one mechanism might be implicated in the biofilm formation. This knowledge will help in the design of appropriate mixed starter cultures of L. pentosus-yeast species pairs that are able to improve the quality and safety of Spanish-style green table olive processing. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies.

    Science.gov (United States)

    Taylor, Patrick K; Yeung, Amy T Y; Hancock, Robert E W

    2014-12-10

    The growth of bacteria as structured aggregates termed biofilms leads to their protection from harsh environmental conditions such as physical and chemical stresses, shearing forces, and limited nutrient availability. Because of this highly adapted ability to survive adverse environmental conditions, bacterial biofilms are recalcitrant to antibiotic therapies and immune clearance. This is particularly problematic in hospital settings where biofilms are a frequent cause of chronic and device-related infections and constitute a significant burden on the health-care system. The major therapeutic strategy against infections is the use of antibiotics, which, due to adaptive resistance, are often insufficient to clear biofilm infections. Thus, novel biofilm-specific therapies are required. Specific features of biofilm development, such as surface adherence, extracellular matrix formation, quorum sensing, and highly regulated biofilm maturation and dispersal are currently being studied as targets to be exploited in the development of novel biofilm-specific treatments. Using Pseudomonas aeruginosa for illustrative purposes, this review highlights the antibiotic resistance mechanisms of biofilms, and discusses current research into novel biofilm-specific therapies. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Biofilm formation in Escherichia coli cra mutants is impaired due to down-regulation of curli biosynthesis.

    Science.gov (United States)

    Reshamwala, Shamlan M S; Noronha, Santosh B

    2011-10-01

    Cra is a pleiotropic regulatory protein that controls carbon and energy flux in enteric bacteria. Recent studies have shown that Cra also regulates other cell processes and influences biofilm formation. The purpose of the present study was to investigate the role of Cra in biofilm formation in Escherichia coli. Congo red-binding studies suggested that curli biosynthesis is impaired in cra mutants. Microarray analysis of wild-type and mutant E. coli cultivated in conditions promoting biofilm formation revealed that the curli biosynthesis genes, csgBAC and csgDEFG, are poorly expressed in the mutant, suggesting that transcription of genes required for curli production is regulated by Cra. Four putative Cra-binding sites were identified in the curli intergenic region, which were experimentally validated by performing electromobility shift assays. Site-directed mutagenesis of three Cra-binding sites in the promoter region of the csgDEFG operon suggests that Cra activates transcription of this operon upon binding to operator regions both downstream and upstream of the transcription start site. Based on the Cra-binding sites identified in this and other studies, the Cra consensus sequence is refined.

  13. Insights into xanthomonas axonopodis pv. Citri biofilm through proteomics

    KAUST Repository

    Zimaro, Tamara

    2013-08-07

    Background: Xanthomonas axonopodis pv. Citri (X. a. pv. Citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. Citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results: In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. Citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. Citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. Citri mature biofilm and planktonic cells were evaluated by

  14. Genetic Control of Conventional and Pheromone-Stimulated Biofilm Formation in Candida albicans

    Science.gov (United States)

    Lin, Ching-Hsuan; Kabrawala, Shail; Fox, Emily P.; Nobile, Clarissa J.; Johnson, Alexander D.; Bennett, Richard J.

    2013-01-01

    Candida albicans can stochastically switch between two phenotypes, white and opaque. Opaque cells are the sexually competent form of C. albicans and therefore undergo efficient polarized growth and mating in the presence of pheromone. In contrast, white cells cannot mate, but are induced – under a specialized set of conditions – to form biofilms in response to pheromone. In this work, we compare the genetic regulation of such “pheromone-stimulated” biofilms with that of “conventional” C. albicans biofilms. In particular, we examined a network of six transcriptional regulators (Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1) that mediate conventional biofilm formation for their potential roles in pheromone-stimulated biofilm formation. We show that four of the six transcription factors (Bcr1, Brg1, Rob1, and Tec1) promote formation of both conventional and pheromone-stimulated biofilms, indicating they play general roles in cell cohesion and biofilm development. In addition, we identify the master transcriptional regulator of pheromone-stimulated biofilms as C. albicans Cph1, ortholog of Saccharomyces cerevisiae Ste12. Cph1 regulates mating in C. albicans opaque cells, and here we show that Cph1 is also essential for pheromone-stimulated biofilm formation in white cells. In contrast, Cph1 is dispensable for the formation of conventional biofilms. The regulation of pheromone- stimulated biofilm formation was further investigated by transcriptional profiling and genetic analyses. These studies identified 196 genes that are induced by pheromone signaling during biofilm formation. One of these genes, HGC1, is shown to be required for both conventional and pheromone-stimulated biofilm formation. Taken together, these observations compare and contrast the regulation of conventional and pheromone-stimulated biofilm formation in C. albicans, and demonstrate that Cph1 is required for the latter, but not the former. PMID:23637598

  15. Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor.

    Science.gov (United States)

    Ma, Lan; Wang, Fengwu; Yu, Yuanchun; Liu, Junzhuo; Wu, Yonghong

    2018-01-01

    This work studied Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. Periphytic biofilms immobilized in a tubular bioreactor were used to remove Cu from wastewater with different Cu concentrations. Results showed that periphytic biofilms had a high removal efficiency (max. 99%) at a hydraulic retention time (HRT) of 12h under initial Cu concentrations of 2.0 and 10.0mgL -1 . Periphyton quickly adapted to Cu stress by regulating the community composition. Species richness, evenness and carbon metabolic diversity of the periphytic community increased when exposed to Cu. Diatoms, green algae, and bacteria (Gammaproteobacteria and Bacteroidia) were the dominant microorganisms and responsible for Cu removal. This study indicates that periphytic biofilms are promising in Cu removal from wastewater due to their strong adaptation capacity to Cu toxicity and also provides valuable information for understanding the relationships between microbial communities and heavy metal stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Novel model for multispecies biofilms that uses rigid gas-permeable lenses.

    Science.gov (United States)

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Ebersole, Jeffrey L; Novak, Karen F

    2011-05-01

    Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues.

  17. Fate of Salmonella Typhimurium in laboratory-scale drinking water biofilms

    CSIR Research Space (South Africa)

    Schaefer, Lisa M

    2013-08-01

    Full Text Available biofilms in monoculture and the fate and persistence of Salmonella in a mixed aquatic biofilm was examined. In monoculture S. Typhimurium formed loosely structured biofilms. Salmonella colonized established multi-species drinking water biofilms within 24...

  18. Auto Poisoning of the Respiratory Chain by a Quorum Sensing Regulated Molecule Favors Biofilm Formation and Antibiotic Tolerance

    Science.gov (United States)

    Hazan, Ronen; Que, Yok Ai; Maura, Damien; Strobel, Benjamin; Majcherczyk, Paul Anthony; Hopper, Laura Rose; Wilbur, David J.; Hreha, Teri N.; Barquera, Blanca; Rahme, Laurence G.

    2015-01-01

    Summary Bacterial programmed cell death and quorum sensing are direct examples of prokaryote group behaviors, wherein cells coordinate their actions to function cooperatively like one organism for the benefit of the whole culture. We demonstrate here that 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), a Pseudomonas aeruginosa quorum sensing -regulated low-molecular-weight excreted molecule, and triggers autolysis by self-perturbing the electron transfer reactions of the cytochrome bc1 complex. HQNO induces specific self-poisoning by disrupting the flow of electrons through the respiratory chain at the cytochrome bc1 complex, causing a leak of reducing equivalents to O2 whereby electrons that would normally be passed to cytochrome c are donated directly to O2. The subsequent mass production of reactive oxygen species (ROS) reduces membrane potential and disrupts membrane integrity, causing bacterial cell autolysis and DNA release. DNA subsequently promotes biofilm formation and increases antibiotic tolerance to beta-lactams, suggesting that HQNO-dependent cell autolysis is advantageous to the bacterial populations. These data both identify a new programmed cell death system, and a novel role for HQNO as a critical-inducer of biofilm formation and antibiotic tolerance. This newly identified pathway suggests intriguing mechanistic similarities with the initial mitochondrial-mediated steps of eukaryotic apoptosis. PMID:26776731

  19. Council regulation of the European dual use regulation. A never ending story?

    International Nuclear Information System (INIS)

    Feldmann, Ulrike

    2018-01-01

    For the first time, the EC Council Regulation of 19 December 1994 established a Community regime for the control of exports of dual-use items. In 2000, the first major revision of the dual-use regime came into force, subjecting not only sensitive material, i.e. plutonium and highly enriched uranium, but also the entire category 0 (nuclear material, installations, equipment) to a licensing requirement for intra-Community shipments. This revision was revised a few months later due to inappropriate content by removing a small proportion of nuclear goods. A further comprehensive new revision was published in 2009. However, the EU Commission's current proposal to revise Annex IV of the regulation does not do justice to the objective of free trade of goods and the maintenance of the competitiveness of European industry from the point of view of the European nuclear industry, as well as from the point of view of the non-nuclear industry in the EU.

  20. Biofilm models of polymicrobial infection.

    Science.gov (United States)

    Gabrilska, Rebecca A; Rumbaugh, Kendra P

    2015-01-01

    Interactions between microbes are complex and play an important role in the pathogenesis of infections. These interactions can range from fierce competition for nutrients and niches to highly evolved cooperative mechanisms between different species that support their mutual growth. An increasing appreciation for these interactions, and desire to uncover the mechanisms that govern them, has resulted in a shift from monomicrobial to polymicrobial biofilm studies in different disease models. Here we provide an overview of biofilm models used to study select polymicrobial infections and highlight the impact that the interactions between microbes within these biofilms have on disease progression. Notable recent advances in the development of polymicrobial biofilm-associated infection models and challenges facing the study of polymicrobial biofilms are addressed.

  1. Biofilms in churches built in grottoes

    International Nuclear Information System (INIS)

    Cennamo, Paola; Montuori, Naomi; Trojsi, Giorgio; Fatigati, Giancarlo; Moretti, Aldo

    2016-01-01

    We investigated microorganisms dwelling on rocks, walls and paintings in two votive chapels built in grottoes in the Region of Campania, Italy. One grotto was near the coast in an area with a Mediterranean climate, and the other grotto was inland on a mountain in an area with a cold continental climate. Color and distribution of biofilms in various areas of the grottoes were examined. Microbial components of biofilms were identified by light and electron microscopy and by molecular techniques (DNA analyses and Automatic rRNA Intergenic Spacer Analysis). Biofilms were also analyzed by X-ray diffraction to detect inorganic constituents deriving from rocks in the grottoes and walls of the churches and by X-ray fluorescence to detect the elements that made up the pigments of the mural paintings; optical cross sections were used to observe their relationships with substrata. Species of eubacteria, cyanobacteria and green algae were identified. Some of these species occurred in both grottoes, while others were exclusive to only one of the grottoes. The diversity of species, their common or exclusive occurrence in the grottoes, the relationships among microbial communities and the differences in color and distribution of biofilms were discussed on the basis of the different climatic factors affecting the two grottoes and the different inorganic components of substrata. - Highlights: • Biofilms concur to the degradation of cultural heritage. • Microorganisms cause esthetic and structural damage in votive churches. • Biofilm features vary on different substrata, as limestone, plaster and paintings. • Features of biofilms mainly depend on environmental conditions. • Molecular biology techniques are indispensable in the study of biodegradation.

  2. Biofilms in churches built in grottoes

    Energy Technology Data Exchange (ETDEWEB)

    Cennamo, Paola, E-mail: paola.cennamo@unisob.na.it [Facoltà di Lettere, Università degli Studi Suor Orsola Benincasa di Napoli, Via Santa Caterina da Siena 37, 80135 Naples (Italy); Montuori, Naomi [Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Foria 223, 80139 Naples (Italy); Trojsi, Giorgio; Fatigati, Giancarlo [Facoltà di Lettere, Università degli Studi Suor Orsola Benincasa di Napoli, Via Santa Caterina da Siena 37, 80135 Naples (Italy); Moretti, Aldo [Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Foria 223, 80139 Naples (Italy)

    2016-02-01

    We investigated microorganisms dwelling on rocks, walls and paintings in two votive chapels built in grottoes in the Region of Campania, Italy. One grotto was near the coast in an area with a Mediterranean climate, and the other grotto was inland on a mountain in an area with a cold continental climate. Color and distribution of biofilms in various areas of the grottoes were examined. Microbial components of biofilms were identified by light and electron microscopy and by molecular techniques (DNA analyses and Automatic rRNA Intergenic Spacer Analysis). Biofilms were also analyzed by X-ray diffraction to detect inorganic constituents deriving from rocks in the grottoes and walls of the churches and by X-ray fluorescence to detect the elements that made up the pigments of the mural paintings; optical cross sections were used to observe their relationships with substrata. Species of eubacteria, cyanobacteria and green algae were identified. Some of these species occurred in both grottoes, while others were exclusive to only one of the grottoes. The diversity of species, their common or exclusive occurrence in the grottoes, the relationships among microbial communities and the differences in color and distribution of biofilms were discussed on the basis of the different climatic factors affecting the two grottoes and the different inorganic components of substrata. - Highlights: • Biofilms concur to the degradation of cultural heritage. • Microorganisms cause esthetic and structural damage in votive churches. • Biofilm features vary on different substrata, as limestone, plaster and paintings. • Features of biofilms mainly depend on environmental conditions. • Molecular biology techniques are indispensable in the study of biodegradation.

  3. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis

    Science.gov (United States)

    Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe

    2017-01-01

    The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms. PMID:28617843

  4. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis.

    Science.gov (United States)

    Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe; Chai, Yunrong

    2017-01-01

    The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms.

  5. Candida Biofilms: Development, Architecture, and Resistance

    Science.gov (United States)

    CHANDRA, JYOTSNA; MUKHERJEE, PRANAB K.

    2015-01-01

    Intravascular device–related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis–associated infections and also are commonly isolated from contact lens–related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms. PMID:26350306

  6. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits...... and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...

  7. Periphytic biofilms: A promising nutrient utilization regulator in wetlands.

    Science.gov (United States)

    Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R

    2018-01-01

    Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [FUNCTION OF INTERCELLULAR ADHESION A, FIBRINOGEN BINDING PROTEIN, AND ACCUMULATION-ASSOCIATED PROTEIN GENES IN FORMATION OF STAPHYLOCOCCUS EPIDERMIDIS-CANDIDA ALBICANS MIXED SPECIES BIOFILMS].

    Science.gov (United States)

    Wang, Xiaoyan; Chen, Ying; Huang, Yunchao; Zhou, Youquan; Zhao, Guangqiang; Ye, Lianhua; Lei, Yujie; Tang, Qi

    2015-01-01

    To explore the function of intercellular adhesion A (icaA), fibrinogen binding protein (fbe), and accumulation-associated protein (aap) genes in formation of Staphylococcus epidermidis-Candida albicans mixed species biofilms. The experiment was divided into 3 groups: single culture of Staphylococcus epidermidis ATCC35984 (S. epidermidis group) or Candida albicans ATCC10231 (C. albicans group), and co-culture of two strains (mixed group) to build in vitro biofilm model. Biofilm mass was detected by crystal violet semi-quantitative adherence assay at 2, 4, 6, 8, 12, 24, 48, and 72 hours after incubation. XTT assay was performed to determine the growth kinetics in the same time. Scanning electron microscopy (SEM) was used to observe the ultrastructure of the biofilms after 24 and 72 hours of incubation. The expressions of icaA, fbe, and aap genes were analyzed by real-time fluorescent quantitative PCR. Crystal violet semi-quantitative adherence assay showed that the biofilms thickened at 12 hours in the S. epidermidis and mixed groups; after co-cultured for 72 hours the thickness of biofilm in mixed group was more than that in the S. epidermidis group, and there was significant difference between 2 groups at the other time (P 0.05). In C. albicans group, the biofilm started to grow at 12 hours of cultivation, but the thickness of the biofilm was significantly lower than that in the mixed group in all the time points (P 0.05) except at 12 hours (P 0.05); the A value of mixed group was significantly higher than that of the C. albicans group after 6 hours (P biofilms with complex structure formed in all groups. The real-time fluorescent quantitative PCR showed the expressions of fbe, icaA, and aap genes in mixed group increased 1.93, 1.52, and 1.46 times respectively at 72 hours compared with the S. epidermidis group (P biofilms have more complex structure and are thicker than single species biofilms of Staphylococcus epidermidis or Candida albicans, which is related to

  9. Population dynamics, antibiotics resistance and biofilm formation of Aeromonas and Vibrio species isolated from aquatic sources in Northern Malaysia.

    Science.gov (United States)

    Odeyemi, Olumide A; Ahmad, Asmat

    2017-02-01

    This study aimed to compare population dynamics, antibiotic resistance and biofilm formation of Aeromonas and Vibrio species from seawater and sediment collected from Northern Malaysia. Isolates with different colony morphology were characterized using both biochemical and molecular methods before testing for antibiotic resistance and biofilm formation. Results obtained from this study showed that in Kedah, the population of Aeromonas isolated from sediment was highest in Pantai Merdeka (8.22 log CFU/ml), Pulau Bunting recorded the highest population of Aeromonas from sediment (8.43 log CFU/g). It was observed that Vibrio species isolated from seawater and sediment were highest in Kuala Sanglang (9.21 log CFU/ml). In Kuala Perlis, the population of Aeromonas isolated from seawater was highest in Jeti (7.94 log CFU/ml). Highest population of Aeromonas from sediment was recorded in Kampong Tanah Baru (7.99 log CFU/g). It was observed that Vibrio species isolated from seawater was highest in Padang Benta (8.42 log CFU/g) while Jeti Kuala Perlis had highest population of Vibrio isolated from sediment. It was observed that location does not influence population of Aeromonas. The results of the independent t - test revealed that there was no significant relationship between location and population of Vibrio (df = 10, t = 1.144, p > 0.05). The occurrence of biofilm formation and prevalence of antibiotic resistant Aeromonas and Vibrio species in seawater and sediment pose danger to human and aquatic animals' health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. l-Methionine anti-biofilm activity against Pseudomonas aeruginosa is enhanced by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor.

    Science.gov (United States)

    Cho, Do-Yeon; Lim, Dong-Jin; Mackey, Calvin; Weeks, Christopher G; Peña Garcia, Jaime A; Skinner, Daniel; Grayson, Jessica W; Hill, Harrison S; Alexander, David K; Zhang, Shaoyan; Woodworth, Bradford A

    2018-05-01

    Biofilms may contribute to refractory chronic rhinosinusitis (CRS), as they lead to antibiotic resistance and failure of effective clinical treatment. l-Methionine is an amino acid with reported biofilm-inhibiting properties. Ivacaftor is a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator with mild antimicrobial activity via inhibition of bacterial DNA gyrase and topoisomerase IV. The objective of this study was to evaluate whether co-treatment with ivacaftor and l-methionine can reduce the formation of Pseudomonas aeruginosa biofilms. P aeruginosa (PAO-1 strain) biofilms were studied in the presence of l-methionine and/or ivacaftor. For static biofilm assays, PAO-1 was cultured in a 48-well plate for 72 hours with stepwise combinations of these agents. Relative biofilm inhibitions were measured according to optical density of crystal violet stain at 590 nm. Live/dead assays (BacTiter-Glo™ assay, Promega) were imaged with laser scanning confocal microscopy. An agar diffusion test was used to confirm antibacterial effects of the drugs. l-Methionine (0.5 μM) significantly reduced PAO-1 biofilm mass (32.4 ± 18.0%; n = 4; p l-methionine (two-way analysis of variane, p = 0.0415) compared with corresponding concentrations of l-methionine alone. Ivacaftor enhanced the anti-biofilm activity of l-methionine against the PAO-1 strain of P aeruginosa. Further studies evaluating the efficacy of ivacaftor/l-methionine combinations for P aeruginosa sinusitis are planned. © 2018 ARS-AAOA, LLC.

  11. Novel Model for Multispecies Biofilms That Uses Rigid Gas-Permeable Lenses ▿

    Science.gov (United States)

    Peyyala, Rebecca; Kirakodu, Sreenatha S.; Ebersole, Jeffrey L.; Novak, Karen F.

    2011-01-01

    Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues. PMID:21421785

  12. Impact of early colonizers on in vitro subgingival biofilm formation.

    Directory of Open Access Journals (Sweden)

    Thomas W Ammann

    Full Text Available The aim of this study was to investigate the impact of early colonizing species on the structure and the composition of the bacterial community developing in a subgingival 10-species biofilm model system. The model included Streptococcus oralis, Streptococcus anginosus, Actinomycesoris, Fusobacterium nucleatum subsp. nucleatum, Veillonella dispar, Campylobacter rectus, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Based on literature, we considered Streptococcus oralis, Streptococcus anginosus, and Actinomyces oris as early colonizers and examined their role in the biofilms by either a delayed addition to the consortium, or by not inoculating at all the biofilms with these species. We quantitatively evaluated the resulting biofilms by real-time quantitative PCR and further compared the structures using confocal laser scanning microscopy following fluorescence in situ hybridisation. The absence of the early colonizers did not hinder biofilm formation. The biofilms reached the same total counts and developed to normal thickness. However, quantitative shifts in the abundances of individual species were observed. In the absence of streptococci, the overall biofilm structure appeared looser and more dispersed. Moreover, besides a significant increase of P. intermedia and a decrease of P. gingivalis , P. intermedia appeared to form filamented long chains that resembled streptococci. A. oris, although growing to significantly higher abundance in absence of streptococci, did not have a visible impact on the biofilms. Hence, in the absence of the early colonizers, there is a pronounced effect on P. intermedia and P. gingivalis that may cause distinct shifts in the structure of the biofilm. Streptococci possibly facilitate the establishment of P. gingivalis into subgingival biofilms, while in their absence P. intermedia became more dominant and forms elongated chains.

  13. Adhesion, biofilm formation, cell surface hydrophobicity and antifungal planktonic susceptibility: relationship among Candida spp.

    Directory of Open Access Journals (Sweden)

    Ana Isabel Silva-Dias

    2015-03-01

    Full Text Available We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4.Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain´s site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion.Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.

  14. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp.

    Science.gov (United States)

    Silva-Dias, Ana; Miranda, Isabel M; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cidália; Rodrigues, Acácio G

    2015-01-01

    We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4. Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However, the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain's site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion. Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii, and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.

  15. Voice Prosthetic Biofilm Formation and Candida Morphogenic Conversions in Absence and Presence of Different Bacterial Strains and Species on Silicone-Rubber

    NARCIS (Netherlands)

    van der Mei, Henny C.; Buijssen, Kevin J. D. A.; van der Laan, Bernard F. A. M.; Ovchinnikova, Ekatarina; Geertsema-Doornbusch, Gesinda I.; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J.

    2014-01-01

    Morphogenic conversion of Candida from a yeast to hyphal morphology plays a pivotal role in the pathogenicity of Candida species. Both Candida albicans and Candida tropicalis, in combination with a variety of different bacterial strains and species, appear in biofilms on silicone-rubber voice

  16. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ-Grown Dental Biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Ibsen, Casper Jon Steenberg; Birkedal, Henrik

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary......-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either...... calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects...

  17. New weapons to fight old enemies: novel strategies for the (biocontrol of bacterial biofilms in the food industry

    Directory of Open Access Journals (Sweden)

    Laura Maria Coughlan

    2016-10-01

    Full Text Available Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances (EPS, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc., although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses

  18. Coupling genetic and chemical microbiome profiling reveals heterogeneity of archaeome and bacteriome in subsurface biofilms that are dominated by the same archaeal species.

    Directory of Open Access Journals (Sweden)

    Alexander J Probst

    Full Text Available Earth harbors an enormous portion of subsurface microbial life, whose microbiome flux across geographical locations remains mainly unexplored due to difficult access to samples. Here, we investigated the microbiome relatedness of subsurface biofilms of two sulfidic springs in southeast Germany that have similar physical and chemical parameters and are fed by one deep groundwater current. Due to their unique hydrogeological setting these springs provide accessible windows to subsurface biofilms dominated by the same uncultivated archaeal species, called SM1 Euryarchaeon. Comparative analysis of infrared imaging spectra demonstrated great variations in archaeal membrane composition between biofilms of the two springs, suggesting different SM1 euryarchaeal strains of the same species at both aquifer outlets. This strain variation was supported by ultrastructural and metagenomic analyses of the archaeal biofilms, which included intergenic spacer region sequencing of the rRNA gene operon. At 16S rRNA gene level, PhyloChip G3 DNA microarray detected similar biofilm communities for archaea, but site-specific communities for bacteria. Both biofilms showed an enrichment of different deltaproteobacterial operational taxonomic units, whose families were, however, congruent as were their lipid spectra. Consequently, the function of the major proportion of the bacteriome appeared to be conserved across the geographic locations studied, which was confirmed by dsrB-directed quantitative PCR. Consequently, microbiome differences of these subsurface biofilms exist at subtle nuances for archaea (strain level variation and at higher taxonomic levels for predominant bacteria without a substantial perturbation in bacteriome function. The results of this communication provide deep insight into the dynamics of subsurface microbial life and warrant its future investigation with regard to metabolic and genomic analyses.

  19. Bacterial biofilm and associated infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jamal

    2018-01-01

    Full Text Available Microscopic entities, microorganisms that drastically affect human health need to be thoroughly investigated. A biofilm is an architectural colony of microorganisms, within a matrix of extracellular polymeric substance that they produce. Biofilm contains microbial cells adherent to one-another and to a static surface (living or non-living. Bacterial biofilms are usually pathogenic in nature and can cause nosocomial infections. The National Institutes of Health (NIH revealed that among all microbial and chronic infections, 65% and 80%, respectively, are associated with biofilm formation. The process of biofilm formation consists of many steps, starting with attachment to a living or non-living surface that will lead to formation of micro-colony, giving rise to three-dimensional structures and ending up, after maturation, with detachment. During formation of biofilm several species of bacteria communicate with one another, employing quorum sensing. In general, bacterial biofilms show resistance against human immune system, as well as against antibiotics. Health related concerns speak loud due to the biofilm potential to cause diseases, utilizing both device-related and non-device-related infections. In summary, the understanding of bacterial biofilm is important to manage and/or to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm formation and its implications in human health and disease.

  20. The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae.

    Science.gov (United States)

    Shikuma, Nicholas J; Davis, Kimberly R; Fong, Jiunn N C; Yildiz, Fitnat H

    2013-05-01

    Vibrio cholerae inhabits aquatic environments and colonizes the human digestive tract to cause the disease cholera. In these environments, V. cholerae copes with fluctuations in salinity and osmolarity by producing and transporting small, organic, highly soluble molecules called compatible solutes, which counteract extracellular osmotic pressure. Currently, it is unclear how V. cholerae regulates the expression of genes important for the biosynthesis or transport of compatible solutes in response to changing salinity or osmolarity conditions. Through a genome-wide transcriptional analysis of the salinity response of V. cholerae, we identified a transcriptional regulator we name CosR for compatible solute regulator. The expression of cosR is regulated by ionic strength and not osmolarity. A transcriptome analysis of a ΔcosR mutant revealed that CosR represses genes involved in ectoine biosynthesis and compatible solute transport in a salinity-dependent manner. When grown in salinities similar to estuarine environments, CosR activates biofilm formation and represses motility independently of its function as an ectoine regulator. This is the first study to characterize a compatible solute regulator in V. cholerae and couples the regulation of osmotic tolerance with biofilm formation and motility. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.

    LENUS (Irish Health Repository)

    2009-03-01

    The expression of the ERG1, ERG3, ERG7, ERG9, ERG11 and ERG25 genes in response to incubation with fluconazole and biofilm formation was investigated using reverse-transcription PCR and real-time PCR in Candida albicans and Candida dubliniensis clinical isolates. The viability of biofilm was measured using an 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay and confocal scanning laser microscopy (CSLM). Expression of the ERG11 gene was found to be low or moderate and it was regulated by fluconazole addition more so than by biofilm formation. Very low or non-detectable expression of ERG1, ERG7 and ERG25 genes was detected in C. albicans. The expression of the ERG9 increased in the presence of fluconazole in some isolates. Following incubation with fluconazole, formation of biofilm by C. dubliniensis was coupled with up-regulation of the ERG3 and ERG25 genes as have been observed previously in C. albicans. Planktonic cells of both Candida species released from biofilm displayed similar resistance mechanisms to fluconazole like attached cells. The XTT reduction assay and CSLM revealed that although incubation with fluconazole decreased the biofilm thickness, these were still comprised metabolically active cells able to disseminate and produce biofilm. Our data indicate that biofilm represents a highly adapted community reflecting the individuality of clinical isolates.

  2. The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349

    DEFF Research Database (Denmark)

    Fazli, Mustafa; McCarthy, Yvonne; Givskov, Michael

    2013-01-01

    In Burkholderia cenocepacia, the second messenger cyclic diguanosine monophosphate (c-di-GMP) has previously been shown to positively regulate biofilm formation and the expression of cellulose and type-I fimbriae genes through binding to the transcriptional regulator Bcam1349. Here, we provide...... evidence that cellulose and type-I fimbriae are not involved in B. cenocepacia biofilm formation in flow chambers, and we identify a novel Bcam1349/c-di-GMP-regulated exopolysaccharide gene cluster which is essential for B. cenocepacia biofilm formation. Overproduction of Bcam1349 in trans promotes wrinkly...... matrix exopolysaccharide and to be essential for flow-chamber biofilm formation. We demonstrate that Bcam1349 binds to the promoter region of genes in the Bcam1330-Bcam1341 cluster and that this binding is enhanced by the presence of c-di-GMP. Furthermore, we demonstrate that overproduction of both c-di-GMP...

  3. Inhibition and dispersal of Agrobacterium tumefaciens biofilms by a small diffusible Pseudomonas aeruginosa exoproduct(s).

    Science.gov (United States)

    Hibbing, Michael E; Fuqua, Clay

    2012-06-01

    Environmental biofilms often contain mixed populations of different species. In these dense communities, competition between biofilm residents for limited nutrients such as iron can be fierce, leading to the evolution of competitive factors that affect the ability of competitors to grow or form biofilms. We have discovered a compound(s) present in the conditioned culture fluids of Pseudomonas aeruginosa that disperses and inhibits the formation of biofilms produced by the facultative plant pathogen Agrobacterium tumefaciens. The inhibitory activity is strongly induced when P. aeruginosa is cultivated in iron-limited conditions, but it does not function through iron sequestration. In addition, the production of the biofilm inhibitory activity is not regulated by the global iron regulatory protein Fur, the iron-responsive extracytoplasmic function σ factor PvdS, or three of the recognized P. aeruginosa quorum-sensing systems. In addition, the compound(s) responsible for the inhibition and dispersal of A. tumefaciens biofilm formation is likely distinct from the recently identified P. aeruginosa dispersal factor, cis-2-decenoic acid (CDA), as dialysis of the culture fluids showed that the inhibitory compound was larger than CDA and culture fluids that dispersed and inhibited biofilm formation by A. tumefaciens had no effect on biofilm formation by P. aeruginosa.

  4. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  5. The biofilm matrix destabilizers, EDTA and DNaseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin.

    Science.gov (United States)

    Cavaliere, Rosalia; Ball, Jessica L; Turnbull, Lynne; Whitchurch, Cynthia B

    2014-08-01

    Nontypeable Hemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that causes chronic biofilm infections of the ears and airways. The biofilm matrix provides structural integrity to the biofilm and protects biofilm cells from antibiotic exposure by reducing penetration of antimicrobial compounds into the biofilm. Extracellular DNA (eDNA) has been found to be a major matrix component of biofilms formed by many species of Gram-positive and Gram-negative bacteria, including NTHi. Interestingly, the cation chelator ethylenediaminetetra-acetic acid (EDTA) has been shown to reduce the matrix strength of biofilms of several bacterial species as well as to have bactericidal activity against various pathogens. EDTA exerts its antimicrobial activity by chelating divalent cations necessary for growth and membrane stability and by destabilizing the matrix thus enhancing the detachment of bacterial cells from the biofilm. In this study, we have explored the role of divalent cations in NTHi biofilm development and stability. We have utilized in vitro static and continuous flow models of biofilm development by NTHi to demonstrate that magnesium cations enhance biofilm formation by NTHi. We found that the divalent cation chelator EDTA is effective at both preventing NTHi biofilm formation and at treating established NTHi biofilms. Furthermore, we found that the matrix destablilizers EDTA and DNaseI increase the susceptibility of NTHi biofilms to ampicillin and ciprofloxacin. Our observations indicate that DNaseI and EDTA enhance the efficacy of antibiotic treatment of NTHi biofilms. These observations may lead to new strategies that will improve the treatment options available to patients with chronic NTHi infections. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Biofilms on Hospital Shower Hoses: Characterization and ...

    Science.gov (United States)

    Although the source of drinking water used in hospitals is commonly, biofilms on water pipelines are refuge to bacteria that survive different disinfection strategies. Drinking water (DW) biofilms are well known to harbor opportunistic pathogens, however, these biofilm communities remain poorly characterized by culture-independent approaches that circumvent the limitations of conventional monitoring efforts. Hence, the frequency of pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants and/or chlorine residuals in the water supply remain speculative, but directly impact public health. The aim of this study was to characterize the composition of microbial communities growing on five hospital shower hoses using both culture-dependent and culture-independent techniques. Two different sequence-based methods were used to characterize the bacterial fractions: 16S rRNA gene sequencing of bacterial cultures and next generation sequencing of metagenomes. Based on the metagenomic data, we found that Mycobacterium-like species was the abundant bacterial taxa that overlapped among the five samples. We also recovered the draft genome of a novel Mycobacterium species, closely related to opportunistic pathogenic nontuberculous mycobacteria, M. rhodesiae and M. tusciae, in addition to other, less abundant species. In contrast, the cultured fraction was mostly affiliated to Proteobacteria, such as members of the Sphingomonas, Blastomonas and Porph

  7. [Nitrogen oxide is involved in the regulation of the Fe-S cluster assembly in proteins and the formation of biofilms by Escherichia coli cells].

    Science.gov (United States)

    Vasil'eva, S V; Streltsova, D A; Starostina, I A; Sanina, N A

    2013-01-01

    The functions of nitrogen oxide (NO) in the regulation of the reversible processes of Fe-S cluster assembly in proteins and the formation of Escherichia coli biofilms have been investigated. S-nitrosoglutathione (GSNO) and crystalline nitrosyl complexes of iron with sulfur-containing aliphatic ligands cisaconite (CisA) and penaconite have been used as NO donors for the first time. Wild-type E. coli cells of the strain MC4100, mutants deltaiscA and deltasufA, and the double paralog mutant deltaiscA/sufA with deletions in the alternative pathways of Fe2+ supply for cluster assembly (all derived from the above-named strain) were used in this study. Plankton growth of bacterial cultures, the mass of mature biofilms, and the expression of the SoxRS[2Fe-2S] regulon have been investigated and shown to depend on strain genotype, the process of Fe-S cluster assembly in iron-sulfur proteins, NO donor structure, and the presence of Fe2+ chelator ferene in the incubation medium. The antibiotic ciprofloxacine (CF) was used as an inhibitor of E. coli biofilm formation in the positive control. NO donors regulating Fe-S cluster assembly in E. coli have been shown to control plankton growth of the cultures and the process of mature biofilm formation; toxic doses of NO caused a dramatic (3- to 4-fold) stimulation of cell entry into biofilms as a response to nitrosative stress; NO donors CisA and GSNO in physiological concentrations suppressed the formation of mature biofilms, and the activity of these compounds was comparable to that of CE Regulation of both Fe-S cluster assembly in iron-sulfur proteins and biofilm formation by NO is indicative of the connection between these processes in E. coli.

  8. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry.

    Science.gov (United States)

    Coughlan, Laura M; Cotter, Paul D; Hill, Colin; Alvarez-Ordóñez, Avelino

    2016-01-01

    Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated

  9. AhrC and Eep Are Biofilm Infection-Associated Virulence Factors in Enterococcus faecalis

    Science.gov (United States)

    Guiton, Pascale S.; Barnes, Aaron M. T.; Manias, Dawn A.; Chuang-Smith, Olivia N.; Kohler, Petra L.; Spaulding, Adam R.; Hultgren, Scott J.; Schlievert, Patrick M.; Dunny, Gary M.

    2013-01-01

    Enterococcus faecalis is part of the human intestinal microbiome and is a prominent cause of health care-associated infections. The pathogenesis of many E. faecalis infections, including endocarditis and catheter-associated urinary tract infection (CAUTI), is related to the ability of clinical isolates to form biofilms. To identify chromosomal genetic determinants responsible for E. faecalis biofilm-mediated infection, we used a rabbit model of endocarditis to test strains with transposon insertions or in-frame deletions in biofilm-associated loci: ahrC, argR, atlA, opuBC, pyrC, recN, and sepF. Only the ahrC mutant was significantly attenuated in endocarditis. We demonstrate that the transcriptional regulator AhrC and the protease Eep, which we showed previously to be an endocarditis virulence factor, are also required for full virulence in murine CAUTI. Therefore, AhrC and Eep can be classified as enterococcal biofilm-associated virulence factors. Loss of ahrC caused defects in early attachment and accumulation of biofilm biomass. Characterization of ahrC transcription revealed that the temporal expression of this locus observed in wild-type cells promotes initiation of early biofilm formation and the establishment of endocarditis. This is the first report of AhrC serving as a virulence factor in any bacterial species. PMID:23460519

  10. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Webb, J.S.; Rao, D.

    2006-01-01

    from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact......Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated...... synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed...

  11. The Biofilm Community-Rebels with a Cause.

    Science.gov (United States)

    Aruni, A Wilson; Dou, Yuetan; Mishra, Arunima; Fletcher, Hansel M

    2015-03-01

    Oral Biofilms are one of the most complex and diverse ecosystem developed by successive colonization of more than 600 bacterial taxa. Development starts with the attachment of early colonizers such as Actinomyces species and oral streptococci on the acquired pellicle and tooth enamel. These bacteria not only adhere to tooth surface but also interact with each other and lay foundation for attachment of bridging colonizer such as Fusobacterium nucleatum followed by late colonizers including the red complex species: Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola -the founders of periodontal disease. As the biofilm progresses from supragingival sites to subgingival sites, the environment changes from aerobic to anaerobic thus favoring the growth of mainly Gram-negative obligate anaerobes while restricting the growth of the early Gram-positive facultative aerobes. Microbes present at supragingival level are mainly related to gingivitis and root-caries whereas subgingival species advance the destruction of teeth supporting tissues and thus causing periodontitis. This review summarizes our present understanding and recent developments on the characteristic features of supra- and subgingival biofilms, interaction between different genera and species of bacteria constituting these biofilms and draws our attention to the role of some of the recently discovered members of the oral community.

  12. Council regulation of the European dual use regulation. A never ending story?; Die Novellierung der europaeischen Dual-Use Verordnung. Eine unendliche Geschichte?

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Ulrike

    2018-01-15

    For the first time, the EC Council Regulation of 19 December 1994 established a Community regime for the control of exports of dual-use items. In 2000, the first major revision of the dual-use regime came into force, subjecting not only sensitive material, i.e. plutonium and highly enriched uranium, but also the entire category 0 (nuclear material, installations, equipment) to a licensing requirement for intra-Community shipments. This revision was revised a few months later due to inappropriate content by removing a small proportion of nuclear goods. A further comprehensive new revision was published in 2009. However, the EU Commission's current proposal to revise Annex IV of the regulation does not do justice to the objective of free trade of goods and the maintenance of the competitiveness of European industry from the point of view of the European nuclear industry, as well as from the point of view of the non-nuclear industry in the EU.

  13. Impact of growth conditions and role of sigB on Listeria monocytogenes fitness in single and mixed biofilms cultured with Lactobacillus plantarum

    NARCIS (Netherlands)

    Saa Ibusquiza, P.; Nierop Groot, M.N.; Deban Valles, A.; Abee, T.; Besten, den H.M.W.

    2015-01-01

    The role of sigB, a major transcriptional regulator of stress response genes, was assessed in formation of single and mixed species biofilms of Listeria monocytogenes EGD-e and Lactobacillus plantarum WCFS1 as secondary species at 20 °C and 30 °C using different medium compositions (nutrient-rich

  14. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro.

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Yadav

    Full Text Available Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC. In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell

  15. Anti-Biofilm and Immunomodulatory Activities of Peptides That Inhibit Biofilms Formed by Pathogens Isolated from Cystic Fibrosis Patients

    Directory of Open Access Journals (Sweden)

    César de la Fuente-Núñez

    2014-10-01

    Full Text Available Cystic fibrosis (CF patients often acquire chronic respiratory tract infections due to Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc species. In the CF lung, these bacteria grow as multicellular aggregates termed biofilms. Biofilms demonstrate increased (adaptive resistance to conventional antibiotics, and there are currently no available biofilm-specific therapies. Using plastic adherent, hydroxyapatite and flow cell biofilm models coupled with confocal and scanning electron microscopy, it was demonstrated that an anti-biofilm peptide 1018 prevented biofilm formation, eradicated mature biofilms and killed biofilms formed by a wide range of P. aeruginosa and B. cenocepacia clinical isolates. New peptide derivatives were designed that, compared to their parent peptide 1018, showed similar or decreased anti-biofilm activity against P. aeruginosa biofilms, but increased activity against biofilms formed by the Gram-positive bacterium methicillin resistant Staphylococcus aureus. In addition, some of these new peptide derivatives retained the immunomodulatory activity of 1018 since they induced the production of the chemokine monocyte chemotactic protein-1 (MCP-1 and suppressed lipopolysaccharide-mediated tumor necrosis factor-α (TNF-α production by human peripheral blood mononuclear cells (PBMC and were non-toxic towards these cells. Peptide 1018 and its derivatives provide promising leads for the treatment of chronic biofilm infections and hyperinflammatory lung disease in CF patients.

  16. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Rosanna ePapa

    2015-12-01

    Full Text Available Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules.The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules.The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules

  17. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness.

    Science.gov (United States)

    Lee, Keehoon; Yoon, Sang Sun

    2017-06-28

    A biofilm is a community of microbes that typically inhabit on surfaces and are encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environment and influence our lives tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients, including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicate the eradication of the biofilm infection, leading to the development of chronic infections. In this review, we discuss the history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms on their own or in association with other bacterial species ( i.e. , multispecies biofilms) are discussed in detail.

  18. Effect of tt-farnesol and myricetin on in vitro biofilm formed by Streptococcus mutans and Candida albicans.

    Science.gov (United States)

    Rocha, Guilherme Roncari; Florez Salamanca, Elkin Jahir; de Barros, Ana Letícia; Lobo, Carmélia Isabel Vitorino; Klein, Marlise Inêz

    2018-02-14

    Dental caries is considered a multifactorial disease, in which microorganisms play an important role. The diet is decisive in the biofilm formation because it provides the necessary resources for cellular growth and exopolysaccharides synthesis. Exopolysaccharides are the main components of the extracellular matrix (ECM). The ECM provides a 3D structure, support for the microorganisms and form diffusion-limited environments (acidic niches) that cause demineralization of the dental enamel. Streptococcus mutans is the main producer of exopolysaccharides. Candida albicans is detected together with S. mutans in biofilms associated with severe caries lesions. Thus, this study aimed to determine the effect of tt-farnesol and myricetin topical treatments on cariogenic biofilms formed by Streptococcus mutans and Candida albicans. In vitro dual-species biofilms were grown on saliva-coated hydroxyapatite discs, using tryptone-yeast extract broth with 1% sucrose (37 °C, 5% CO 2 ). Twice-daily topical treatments were performed with: vehicle (ethanol 15%, negative control), 2 mM myricetin, 4 mM tt-farnesol, myricetin + tt-farnesol, myricetin + tt-farnesol + fluoride (250 ppm), fluoride, and chlorhexidine digluconate (0.12%; positive control). After 67 h, biofilms were evaluated to determine biofilm biomass, microbial population, and water-soluble and -insoluble exopolysaccharides in the ECM. Only the positive control yielded a reduced quantity of biomass and microbial population, while tt-farnesol treatment was the least efficient in reducing C. albicans population. The combination therapy myricetin + farnesol + fluoride significantly reduced water-soluble exopolysaccharides in the ECM (vs. negative control; p < 0.05; ANOVA one-way, followed by Tukey's test), similarly to the positive control. Therefore, the combination therapy negatively influenced an important virulence trait of cariogenic biofilms. However, the concentrations of both myricetin and tt

  19. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ Grown Dental Biofilms.

    Science.gov (United States)

    Schlafer, Sebastian; Ibsen, Casper J S; Birkedal, Henrik; Nyvad, Bente

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects of repeated ex vivo treatment with calcium-phosphate-osteopontin particles were observed. Particle treatment resulted in a 32% lower amount of biofilm formed (p Biofilm pH was significantly higher upon particle treatment, both shortly after the addition of glucose and after 30 min of incubation with glucose (p biofilms as well as the remineralizing potential of the particles. © 2016 S. Karger AG, Basel.

  20. KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms.

    Science.gov (United States)

    Aguilar, Claudio; Vlamakis, Hera; Guzman, Alejandra; Losick, Richard; Kolter, Roberto

    2010-05-18

    Bacillus subtilis cells form multicellular biofilm communities in which spatiotemporal regulation of gene expression occurs, leading to differentiation of multiple coexisting cell types. These cell types include matrix-producing and sporulating cells. Extracellular matrix production and sporulation are linked in that a mutant unable to produce matrix is delayed for sporulation. Here, we show that the delay in sporulation is not due to a growth advantage of the matrix-deficient mutant under these conditions. Instead, we show that the link between matrix production and sporulation is through the Spo0A signaling pathway. Both processes are regulated by the phosphorylated form of the master transcriptional regulator Spo0A. When cells have low levels of phosphorylated Spo0A (Spo0A~P), matrix genes are expressed; however, at higher levels of Spo0A~P, sporulation commences. We have found that Spo0A~P levels are maintained at low levels in the matrix-deficient mutant, thereby delaying expression of sporulation-specific genes. This is due to the activity of one of the components of the Spo0A phosphotransfer network, KinD. A deletion of kinD suppresses the sporulation defect of matrix mutants, while its overproduction delays sporulation. Our data indicate that KinD displays a dual role as a phosphatase or a kinase and that its activity is linked to the presence of extracellular matrix in the biofilms. We propose a novel role for KinD in biofilms as a checkpoint protein that regulates the onset of sporulation by inhibiting the activity of Spo0A until matrix, or a component therein, is sensed.

  1. Evaluation of the biofilm forming ability and its associated genes in Staphylococcus species isolates from bovine mastitis in Argentinean dairy farms.

    Science.gov (United States)

    Felipe, Verónica; Morgante, Carolina A; Somale, Paola S; Varroni, Florencia; Zingaretti, María L; Bachetti, Romina A; Correa, Silvia G; Porporatto, Carina

    2017-03-01

    Staphylococcus aureus and coagulase-negative staphylococci (CNS) are important causes of intramammary infection in dairy cattle, and their ability to produce biofilm is considered an important virulence property in the pathogenesis of mastitis. However, the published date on mechanisms and factors involved in infection persistence in the mammary gland remains unclear. The aim of this study was to investigate whether the main Staphylococcus species involved in bovine intramammary infections possess specific characteristics that promote colonization of the udder. We evaluated the biofilm-forming ability and distribution of adhesion- and biofilm-associated genes of Staphylococcus spp. isolated from bovine mastitis infected animals in Argentinean dairy farms. For this purpose, the phenotypic biofilm formation ability of 209 Staphylococcus spp. from bovine mastitis was investigated. All isolates produced biofilm in vitro, being 35,0% and 45,0% of the 127 S. aureus or 51,0% and 29,0% of the 82 CNS strong and moderate biofilm producers respectively. All S. aureus samples were PCR-positive for icaA, icaD, clfA, clfB and fnbpA genes, 76.3% were positive for fnbpB gene and 11.0% were positive for bap gene. In CNS isolates, the positive rates for icaA and icaD were 73.2%, while for clfA, clfB, fnbpA fnbpB and bap genes the percentage were lower. The results demonstrate that in Staphylococcus spp. biofilm formation, the polysaccharide and the adhesion- and biofilm-associated genes are of overall importance on bovine mastitis in Argentina. Therefore, future works should focus on these pathogenic specific factors for the development of more effective therapies of control, being essential to consider the ability of isolates to produce biofilm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Maria; Bjarnsholt, Thomas; Givskov, Michael

    2014-01-01

    biofilms, which protect the aggregated, biopolymer-embedded bacteria from the detrimental actions of antibiotic treatments and host immunity. A key component in the protection against innate immunity is rhamnolipid, which is a quorum sensing (QS)-regulated virulence factor. QS is a cell-to-cell signaling...... mechanism used to coordinate expression of virulence and protection of aggregated biofilm cells. Rhamnolipids are known for their ability to cause hemolysis and have been shown to cause lysis of several cellular components of the human immune system, for example, macrophages and polymorphonuclear leukocytes...

  3. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans.

    Science.gov (United States)

    Liu, Shiyu; Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin; Cheng, Lei; Li, Mingyun

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans , and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.

  4. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors.

    Directory of Open Access Journals (Sweden)

    Dana Ziuzina

    Full Text Available The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS-regulated virulence factors, such as pyocyanin, elastase (Las B and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated 'inpack' using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence

  5. Pb and Hg heavy metal tolerance of single- and mixedspecies biofilm (Rhodotorula mucilaginosa and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Buzejić Anica

    2016-01-01

    Full Text Available The aim of this study was to examine heavy metal tolerance (lead (Pb2+ and mercury (Hg2+ of single- and mixed-species biofilms, formed by yeast Rhodotorula mucilaginosa and bacteria Escherichia coli LM1. Single- and mixed-species biofilms were quantified by crystal violet test and the absorbance was measured using microplate reader (OD570. The minimal inhibitory concentration (MIC and the minimal lethal concentration (MLC were determined and the results were confirmed by fluorescence microscopy. The significant difference in lead tolerance was observed between the mixed- and the single-species biofilms. The MIC of lead (Pb2+ for the examined biofilms (E. coli LM1, R. mucilaginosa and R. mucilaginosa / E. coli was recorded at concentrations of 4000 μg/ml, 4000 μg/ml and 16000 μg/ml, respectively. The MIC of mercury (Hg2+ for the biofilms was noticed at concentrations of 31.25 μg/ml, 250 μg/ml and 250 μg/ml, respectively. Standard antibiotics (amphotericin B and tetracycline were used as positive control. Results obtained for single-species biofilms were compared in between and with the results obtained for mixed-species biofilm. The tolerance of the mixed- species biofilm was higher in comparison to the singlespecies biofilms and the results were confirmed by a fluoresecence microscope. The obtained results suggest that the R. mucilaginosa / E. coli biofilm may have a potential to be used in bioremediation of wastewaters contaminated with lead and mercury.

  6. Staphylococcus aureus sarA regulates inflammation and colonization during central nervous system biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jessica N Snowden

    Full Text Available Infection is a frequent and serious complication following the treatment of hydrocephalus with CSF shunts, with limited therapeutic options because of biofilm formation along the catheter surface. Here we evaluated the possibility that the sarA regulatory locus engenders S. aureus more resistant to immune recognition in the central nervous system (CNS based on its reported ability to regulate biofilm formation. We utilized our established model of CNS catheter-associated infection, similar to CSF shunt infections seen in humans, to compare the kinetics of bacterial titers, cytokine production and inflammatory cell influx elicited by wild type S. aureus versus an isogenic sarA mutant. The sarA mutant was more rapidly cleared from infected catheters compared to its isogenic wild type strain. Consistent with this finding, several pro-inflammatory cytokines and chemokines, including IL-17, CXCL1, and IL-1β were significantly increased in the brain following infection with the sarA mutant versus wild type S. aureus, in agreement with the fact that the sarA mutant displayed impaired biofilm growth and favored a planktonic state. Neutrophil influx into the infected hemisphere was also increased in the animals infected with the sarA mutant compared to wild type bacteria. These changes were not attributable to extracellular protease activity, which is increased in the context of SarA mutation, since similar responses were observed between sarA and a sarA/protease mutant. Overall, these results demonstrate that sarA plays an important role in attenuating the inflammatory response during staphylococcal biofilm infection in the CNS via a mechanism that remains to be determined.

  7. Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool

    KAUST Repository

    Zhang, Weipeng

    2015-07-14

    The biology of biofilm in deep-sea environments is barely being explored. Here, biofilms were developed at the brine pool (characterized by limited carbon sources) and the normal bottom water adjacent to Thuwal cold seeps. Comparative metagenomics based on 50 Gb datasets identified polysaccharide degradation, nitrate reduction, and proteolysis as enriched functional categories for brine biofilms. The genomes of two dominant species: a novel deltaproteobacterium and a novel epsilonproteobacterium in the brine biofilms were reconstructed. Despite rather small genome sizes, the deltaproteobacterium possessed enhanced polysaccharide fermentation pathways, whereas the epsilonproteobacterium was a versatile nitrogen reactor possessing nar, nap and nif gene clusters. These metabolic functions, together with specific regulatory and hypersaline-tolerant genes, made the two bacteria unique compared with their close relatives including those from hydrothermal vents. Moreover, these functions were regulated by biofilm development, as both the abundance and the expression level of key functional genes were higher in later-stage biofilms, and co-occurrences between the two dominant bacteria were demonstrated. Collectively, unique mechanisms were revealed: i) polysaccharides fermentation, proteolysis interacted with nitrogen cycling to form a complex chain for energy generation; ii) remarkably, exploiting and organizing niche-specific functions would be an important strategy for biofilm-dependent adaptation to the extreme conditions.

  8. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus

    Science.gov (United States)

    Liu, Qian; Wang, Xing; Qin, Juanxiu; Cheng, Sen; Yeo, Won-Sik; He, Lei; Ma, Xiaowei; Liu, Xiaoyun; Li, Min; Bae, Taeok

    2017-01-01

    Biofilm causes hospital-associated infections on indwelling medical devices. In Staphylococcus aureus, Biofilm formation is controlled by intricately coordinated network of regulating systems, of which the ATP-dependent protease ClpP shows an inhibitory effect. Here, we demonstrate that the inhibitory effect of ClpP on biofilm formation is through Agr and the cell wall hydrolase Sle1. Biofilm formed by clpP mutant consists of proteins and extracellular DNA (eDNA). The increase of the protein was, at least in part, due to the reduced protease activity of the mutant, which was caused by the decreased activity of agr. On the other hand, the increase of eDNA was due to increased cell lysis caused by the higher level of Sle1. Indeed, as compared with wild type, the clpP mutant excreted an increased level of eDNA, and showed higher sensitivity to Triton-induced autolysis. The deletion of sle1 in the clpP mutant decreased the biofilm formation, the level of eDNA, and the Triton-induced autolysis to wild-type levels. Despite the increased biofilm formation capability, however, the clpP mutant showed significantly reduced virulence in a murine model of subcutaneous foreign body infection, indicating that the increased biofilm formation capability cannot compensate for the intrinsic functions of ClpP during infection. PMID:28555174

  9. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2017-05-01

    Full Text Available Biofilm causes hospital-associated infections on indwelling medical devices. In Staphylococcus aureus, Biofilm formation is controlled by intricately coordinated network of regulating systems, of which the ATP-dependent protease ClpP shows an inhibitory effect. Here, we demonstrate that the inhibitory effect of ClpP on biofilm formation is through Agr and the cell wall hydrolase Sle1. Biofilm formed by clpP mutant consists of proteins and extracellular DNA (eDNA. The increase of the protein was, at least in part, due to the reduced protease activity of the mutant, which was caused by the decreased activity of agr. On the other hand, the increase of eDNA was due to increased cell lysis caused by the higher level of Sle1. Indeed, as compared with wild type, the clpP mutant excreted an increased level of eDNA, and showed higher sensitivity to Triton-induced autolysis. The deletion of sle1 in the clpP mutant decreased the biofilm formation, the level of eDNA, and the Triton-induced autolysis to wild-type levels. Despite the increased biofilm formation capability, however, the clpP mutant showed significantly reduced virulence in a murine model of subcutaneous foreign body infection, indicating that the increased biofilm formation capability cannot compensate for the intrinsic functions of ClpP during infection.

  10. Sucrose substitutes affect the cariogenic potential of Streptococcus mutans biofilms.

    Science.gov (United States)

    Durso, S C; Vieira, L M; Cruz, J N S; Azevedo, C S; Rodrigues, P H; Simionato, M R L

    2014-01-01

    Streptococcus mutans is considered the primary etiologic agent of dental caries and contributes significantly to the virulence of dental plaque, especially in the presence of sucrose. To avoid the role of sucrose on the virulence factors of S. mutans, sugar substitutes are commonly consumed because they lead to lower or no production of acids and interfere with biofilm formation. This study aimed to investigate the contribution of sugar substitutes in the cariogenic potential of S. mutans biofilms. Thus, in the presence of sucrose, glucose, sucralose and sorbitol, the biofilm mass was quantified up to 96 h, the pH of the spent culture media was measured, the expression of biofilm-related genes was determined, and demineralization challenge experiments were conduct in enamel fragments. The presence of sugars or sugar substitutes profoundly affected the expression of spaP, gtfB, gtfC, gbpB, ftf, vicR and vicX in either biofilm or planktonic cells. The substitution of sucrose induced a down-regulation of most genes involved in sucrose-dependent colonization in biofilm cells. When the ratio between the expression of biofilm and planktonic cells was considered, most of those genes were down-regulated in biofilm cells in the presence of sugars and up-regulated in the presence of sugar substitutes. However, sucralose but not sorbitol fulfilled the purpose of reducing the cariogenic potential of the diet since it induced the biofilm formation with the lowest biomass, did not change the pH of the medium and led to the lowest lesion depth in the cariogenic challenge.

  11. Interactions in multispecies biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Ren, Dawei; Bjarnsholt, Thomas

    2014-01-01

    The recent focus on complex bacterial communities has led to the recognition of interactions across species boundaries. This is particularly pronounced in multispecies biofilms, where synergistic interactions impact the bacterial distribution and overall biomass produced. Importantly, in a number...... of settings, the interactions in a multispecies biofilm affect its overall function, physiology, or surroundings, by resulting in enhanced resistance, virulence, or degradation of pollutants, which is of significant importance to human health and activities. The underlying mechanisms causing these synergistic...

  12. Co-existence in multispecies biofilm communities

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng

    of these emergent properties which are relevant to as diverse areas as clinical settings and natural systems. In this thesis, I have attempted to contribute to our knowledge on the multispecies interactions with a special focus on biofilm communities. I was especially interested in how co-existing species affect...... each other and in understanding the key mechanisms and interactions involved. In the introduction of this thesis the most important concepts of multi-species interactions and biofilm development are explained. After this the topic changes to the various ways of examining community interactions...... and production. The analysis was further extended in manuscript 3, in which the effect of social interac-tions on biofilm formation in multispecies co-cultures isolated from a diverse range of environments was examined. The question raised was whether the interspecific interactions of co-existing bacteria...

  13. Differentiation of Microbial Species and Strains in Coculture Biofilms by Multivariate Analysis of Laser Desorption Postionization Mass Spectra

    Energy Technology Data Exchange (ETDEWEB)

    University of Illinois at Chicago; Montana State University; Bhardwaj, Chhavi; Cui, Yang; Hofstetter, Theresa; Liu, Suet Yi; Bernstein, Hans C.; Carlson, Ross P.; Ahmed, Musahid; Hanley, Luke

    2013-04-01

    7.87 to 10.5 eV vacuum ultraviolet (VUV) photon energies were used in laser desorption postionization mass spectrometry (LDPI-MS) to analyze biofilms comprised of binary cultures of interacting microorganisms. The effect of photon energy was examined using both tunable synchrotron and laser sources of VUV radiation. Principal components analysis (PCA) was applied to the MS data to differentiate species in Escherichia coli-Saccharomyces cerevisiae coculture biofilms. PCA of LDPI-MS also differentiated individual E. coli strains in a biofilm comprised of two interacting gene deletion strains, even though these strains differed from the wild type K-12 strain by no more than four gene deletions each out of approximately 2000 genes. PCA treatment of 7.87 eV LDPI-MS data separated the E. coli strains into three distinct groups two ?pure? groups and a mixed region. Furthermore, the ?pure? regions of the E. coli cocultures showed greater variance by PCA when analyzed by 7.87 eV photon energies than by 10.5 eV radiation. Comparison of the 7.87 and 10.5 eV data is consistent with the expectation that the lower photon energy selects a subset of low ionization energy analytes while 10.5 eV is more inclusive, detecting a wider range of analytes. These two VUV photon energies therefore give different spreads via PCA and their respective use in LDPI-MS constitute an additional experimental parameter to differentiate strains and species.

  14. Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation.

    Science.gov (United States)

    Tan, Yulong; Leonhard, Matthias; Ma, Su; Schneider-Stickler, Berit

    2016-11-01

    Non-albicans Candida species have been isolated in increasing numbers in patients. Moreover, they are adept at forming biofilms. This study analyzed biofilm formation of clinically isolated non-albicans Candida, including Candida tropicalis, Candida krusei and Candida parapsilosis under the influence of different growth media (RPMI 1640, YPD and BHI) and several culture variables (inoculum concentration, incubation period and feeding conditions). The results showed that culture conditions strongly influenced non-albicans Candida species biofilm formation. YPD and BHI resulted in larger amount of biofilm formation with higher metabolic activity of biofilms. Furthermore, the growth media seems to have varying effects on adhesion and biofilm development. Growth conditions may also influence biofilm formation, which was enhanced when starting the culture with a larger inoculum, longer incubation period and using a fed-batch system. Therefore, the potential influences of external environmental factors should be considered when studying the non-albicans Candida biofilms in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Dual Roles of FmtA in Staphylococcus aureus Cell Wall Biosynthesis and Autolysis

    Science.gov (United States)

    Qamar, Aneela

    2012-01-01

    The fmtA gene is a member of the Staphylococcus aureus core cell wall stimulon. The FmtA protein interacts with β-lactams through formation of covalent species. Here, we show that FmtA has weak d-Ala-d-Ala-carboxypeptidase activity and is capable of covalently incorporating C14-Gly into cell walls. The fluorescence microscopy study showed that the protein is localized to the cell division septum. Furthermore, we show that wall teichoic acids interact specifically with FmtA and mediate recruitment of FmtA to the S. aureus cell wall. Subjection of S. aureus to FmtA concentrations of 0.1 μM or less induces autolysis and biofilm production. This effect requires the presence of wall teichoic acids. At FmtA concentrations greater than 0.2 μM, autolysis and biofilm formation in S. aureus are repressed and growth is enhanced. Our findings indicate dual roles of FmtA in S. aureus growth, whereby at low concentrations, FmtA may modulate the activity of the major autolysin (AtlA) of S. aureus and, at high concentrations, may participate in synthesis of cell wall peptidoglycan. These two roles of FmtA may reflect dual functions of FmtA in the absence and presence of cell wall stress, respectively. PMID:22564846

  16. Maggot excretions inhibit biofilm formation on biomaterials.

    Science.gov (United States)

    Cazander, Gwendolyn; van de Veerdonk, Mariëlle C; Vandenbroucke-Grauls, Christina M J E; Schreurs, Marco W J; Jukema, Gerrolt N

    2010-10-01

    Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm formation. We studied biofilm formation of Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella oxytoca, Enterococcus faecalis, and Enterobacter cloacae on polyethylene, titanium, and stainless steel. We compared the quantities of biofilm formation between the bacterial species on the various biomaterials and the quantity of biofilm formation after various incubation times. Maggot excretions/secretions were added to existing biofilms to examine their effect. Comb-like models of the biomaterials, made to fit in a 96-well microtiter plate, were incubated with bacterial suspension. The formed biofilms were stained in crystal violet, which was eluted in ethanol. The optical density (at 595 nm) of the eluate was determined to quantify biofilm formation. Maggot excretions/secretions were pipetted in different concentrations to (nonstained) 7-day-old biofilms, incubated 24 hours, and finally measured. The strongest biofilms were formed by S. aureus and S. epidermidis on polyethylene and the weakest on titanium. The highest quantity of biofilm formation was reached within 7 days for both bacteria. The presence of excretions/secretions reduced biofilm formation on all biomaterials. A maximum of 92% of biofilm reduction was measured. Our observations suggest maggot excretions/secretions decrease biofilm formation and could provide a new treatment for biofilm formation on infected biomaterials.

  17. Identification, antifungal resistance profile, in vitro biofilm formation and ultrastructural characteristics of Candida species isolated from diabetic foot patients in Northern India.

    Science.gov (United States)

    Kumar, D; Banerjee, T; Chakravarty, J; Singh, S K; Dwivedi, A; Tilak, R

    2016-01-01

    Diabetic foot ulcers are a serious cause of diagnostic and therapeutic concern. The following study was undertaken to determine the fungal causes of diabetic foot ulcers, with their phenotypic and genotypic characterisation. A total of 155 diabetic foot ulcers were studied for 1 year. Deep tissue specimen was collected from the wounds, and crushed samples were plated on Sabouraud dextrose agar with chloramphenicol (0.05 g). Identification was done by growth on cornmeal agar, germ tube formation and urease test. For molecular identification, conserved portion of the 18S rDNA region, the adjacent internal transcribed spacer 1 (ITS1) and a portion of the 28S rDNA region were amplified, using the ITS1 and ITS2 primers. Antifungal susceptibility against voriconazole, fluconazole and amphotericin B was determined by standard broth microdilution method. Biofilm formation was studied in three steps. First, on the surface of wells of microtiter plates followed by quantification of growth by fungal metabolism measurement. Finally, biofilms were analysed by scanning electron microscopy (SEM). Fungal aetiology was found in 75 patients (48.38%). All were identified as Candida species (100%). The prevalence of different species was Candida tropicalis (34.6%), Candida albicans (29.3%), Candida krusei (16.0%), Candida parapsilosis (10.6%), Candida glabrata (9.33%). All were susceptible to amphotericin B (100%). On microtiter plate, all the isolates were viable within 48 h showing biofilms. The metabolic activity of cells in the biofilm increased with cellular mass, especially in the first 24 h. On SEM, majority showed budding yeast form. Non-albicans Candida spp. with potential biofilm forming ability are emerging as a predominant cause of diabetic foot ulcers.

  18. Biofilm formation and antibiotic production in Ruegeria mobilis are influenced by intracellular concentrations of cyclic dimeric guanosinmonophosphate

    DEFF Research Database (Denmark)

    D'Alvise, Paul; Magdenoska, Olivera; Melchiorsen, Jette

    2014-01-01

    species Ruegeria mobilis are associated with intracellular concentrations of the signal compound cyclic dimeric guanosinmonophosphate (c-di-GMP), which in bacteria regulates transitions between motile and sessile life stages. Genes for diguanylate cyclases and phosphodiesterases, which are involved in c-di-GMP...... signalling, were found in the genome of R. mobilis strain F1926. Ion pair chromatography-tandem mass spectrometry revealed 20-fold higher c-di-GMP concentrations per cell in biofilm-containing cultures than in planktonic cells. An introduced diguanylate cyclase gene increased c-di-GMP and enhanced biofilm...... formation and production of the potent antibiotic tropodithietic acid (TDA). An introduced phosphodiesterase gene decreased c-di-GMP and reduced biofilm formation and TDA production. tdaC, a key gene for TDA biosynthesis, was expressed only in attached or biofilm-forming cells, and expression was induced...

  19. The ABC of Biofilm Drug Tolerance: the MerR-Like Regulator BrlR Is an Activator of ABC Transport Systems, with PA1874-77 Contributing to the Tolerance of Pseudomonas aeruginosa Biofilms to Tobramycin.

    Science.gov (United States)

    Poudyal, Bandita; Sauer, Karin

    2018-02-01

    A hallmark of biofilms is their tolerance to killing by antimicrobial agents. In Pseudomonas aeruginosa , biofilm drug tolerance requires the c-di-GMP-responsive MerR transcriptional regulator BrlR. However, the mechanism by which BrlR mediates biofilm drug tolerance has not been elucidated. Here, we demonstrate that BrlR activates the expression of at least 7 ABC transport systems, including the PA1874-PA1875-PA1876-PA1877 (PA1874-77) operon, with chromatin immunoprecipitation and DNA binding assays confirming BrlR binding to the promoter region of PA1874-77. Insertional inactivation of the 7 ABC transport systems rendered P. aeruginosa PAO1 biofilms susceptible to tobramycin or norfloxacin. Susceptibility was linked to drug accumulation, with BrlR contributing to norfloxacin accumulation in a manner dependent on multidrug efflux pumps and the PA1874-77 ABC transport system. Inactivation of the respective ABC transport system, furthermore, eliminated the recalcitrance of biofilms to killing by tobramycin but not norfloxacin, indicating that drug accumulation is not linked to biofilm drug tolerance. Our findings indicate for the first time that BrlR, a MerR-type transcriptional activator, activates genes encoding several ABC transport systems, in addition to multiple multidrug efflux pump genes. Moreover, our data confirm a BrlR target contributing to drug tolerance, likely countering the prevailing dogma that biofilm tolerance arises from a multiplicity of factors. Copyright © 2018 American Society for Microbiology.

  20. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Sternberg, Claus

    2005-01-01

    The biofilm lifestyle, where microbial cells are aggregated because of expression of cell-to-cell interconnecting compounds, is believed to be of paramount importance to microbes in the environment. Because microbes must be able to alternate between sessile and planktonic states, it is anticipated...... that they must be able to regulate their ability to form biofilm and to dissolve biofilm. We present an investigation of a biofilm dissolution process occurring in flow-chamber-grown Pseudomonas putida biofilms. Local starvation-induced biofilm dissolution appears to be an integrated part of P. putida biofilm...... development that causes characteristic structural rearrangements. Rapid global dissolution of entire P. putida biofilms was shown to occur in response to carbon starvation. Genetic analysis suggested that the adjacent P. putida genes PP0164 and PP0165 play a role in P. putida biofilm formation and dissolution...

  1. Biofilms in Endodontics—Current Status and Future Directions

    Science.gov (United States)

    Neelakantan, Prasanna; Romero, Monica; Vera, Jorge; Daood, Umer; Khan, Asad U.; Yan, Aixin; Cheung, Gary Shun Pan

    2017-01-01

    Microbiota are found in highly organized and complex entities, known as biofilms, the characteristics of which are fundamentally different from microbes in planktonic suspensions. Root canal infections are biofilm mediated. The complexity and variability of the root canal system, together with the multi-species nature of biofilms, make disinfection of this system extremely challenging. Microbial persistence appears to be the most important factor for failure of root canal treatment and this could further have an impact on pain and quality of life. Biofilm removal is accomplished by a chemo-mechanical process, using specific instruments and disinfecting chemicals in the form of irrigants and/or intracanal medicaments. Endodontic research has focused on the characterization of root canal biofilms and the clinical methods to disrupt the biofilms in addition to achieving microbial killing. In this narrative review, we discuss the role of microbial biofilms in endodontics and review the literature on the role of root canal disinfectants and disinfectant-activating methods on biofilm removal. PMID:28800075

  2. Biofilms in Endodontics-Current Status and Future Directions.

    Science.gov (United States)

    Neelakantan, Prasanna; Romero, Monica; Vera, Jorge; Daood, Umer; Khan, Asad U; Yan, Aixin; Cheung, Gary Shun Pan

    2017-08-11

    Microbiota are found in highly organized and complex entities, known as biofilms, the characteristics of which are fundamentally different from microbes in planktonic suspensions. Root canal infections are biofilm mediated. The complexity and variability of the root canal system, together with the multi-species nature of biofilms, make disinfection of this system extremely challenging. Microbial persistence appears to be the most important factor for failure of root canal treatment and this could further have an impact on pain and quality of life. Biofilm removal is accomplished by a chemo-mechanical process, using specific instruments and disinfecting chemicals in the form of irrigants and/or intracanal medicaments. Endodontic research has focused on the characterization of root canal biofilms and the clinical methods to disrupt the biofilms in addition to achieving microbial killing. In this narrative review, we discuss the role of microbial biofilms in endodontics and review the literature on the role of root canal disinfectants and disinfectant-activating methods on biofilm removal.

  3. Candida Species Biofilms’ Antifungal Resistance

    Science.gov (United States)

    Silva, Sónia; Rodrigues, Célia F.; Araújo, Daniela; Rodrigues, Maria Elisa; Henriques, Mariana

    2017-01-01

    Candida infections (candidiasis) are the most prevalent opportunistic fungal infection on humans and, as such, a major public health problem. In recent decades, candidiasis has been associated to Candida species other than Candida albicans. Moreover, biofilms have been considered the most prevalent growth form of Candida cells and a strong causative agent of the intensification of antifungal resistance. As yet, no specific resistance factor has been identified as the sole responsible for the increased recalcitrance to antifungal agents exhibited by biofilms. Instead, biofilm antifungal resistance is a complex multifactorial phenomenon, which still remains to be fully elucidated and understood. The different mechanisms, which may be responsible for the intrinsic resistance of Candida species biofilms, include the high density of cells within the biofilm, the growth and nutrient limitation, the effects of the biofilm matrix, the presence of persister cells, the antifungal resistance gene expression and the increase of sterols on the membrane of biofilm cells. Thus, this review intends to provide information on the recent advances about Candida species biofilm antifungal resistance and its implication on intensification of the candidiasis. PMID:29371527

  4. Crenarchaeal biofilm formation under extreme conditions.

    Directory of Open Access Journals (Sweden)

    Andrea Koerdt

    Full Text Available BACKGROUND: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments. METHODOLOGY: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells. CONCLUSION: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

  5. Effect of antibacterial dental adhesive on multispecies biofilms formation.

    Science.gov (United States)

    Zhang, K; Wang, S; Zhou, X; Xu, H H K; Weir, M D; Ge, Y; Li, M; Wang, S; Li, Y; Xu, X; Zheng, L; Cheng, L

    2015-04-01

    Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P biofilms compared with control group (P biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial properties to serve as "bioactive" adhesive materials and revealed its potential value for antibiofilm and anticaries clinical applications. © International & American Associations for Dental Research 2015.

  6. Preventive effects of a phospholipid polymer coating on PMMA on biofilm formation by oral streptococci

    Science.gov (United States)

    Shibata, Yukie; Yamashita, Yoshihisa; Tsuru, Kanji; Ishihara, Kazuhiko; Fukazawa, Kyoko; Ishikawa, Kunio

    2016-12-01

    The regulation of biofilm formation on dental materials such as denture bases is key to oral health. Recently, a biocompatible phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) coating, was reported to inhibit sucrose-dependent biofilm formation by Streptococcus mutans, a cariogenic bacterium, on the surface of poly(methyl methacrylate) (PMMA) denture bases. However, S. mutans is a minor component of the oral microbiome and does not play an important role in biofilm formation in the absence of sucrose. Other, more predominant oral streptococci must play an indispensable role in sucrose-independent biofilm formation. In the present study, the effect of PMB coating on PMMA was evaluated using various oral streptococci that are known to be initial colonizers during biofilm formation on tooth surfaces. PMB coating on PMMA drastically reduced sucrose-dependent tight biofilm formation by two cariogenic bacteria (S. mutans and Streptococcus sobrinus), among seven tested oral streptococci, as described previously [N. Takahashi, F. Iwasa, Y. Inoue, H. Morisaki, K. Ishihara, K. Baba, J. Prosthet. Dent. 112 (2014) 194-203]. Streptococci other than S. mutans and S. sobrinus did not exhibit tight biofilm formation even in the presence of sucrose. On the other hand, all seven species of oral streptococci exhibited distinctly reduced glucose-dependent soft biofilm retention on PMB-coated PMMA. We conclude that PMB coating on PMMA surfaces inhibits biofilm attachment by initial colonizer oral streptococci, even in the absence of sucrose, indicating that PMB coating may help maintain clean conditions on PMMA surfaces in the oral cavity.

  7. Biofilm production and beta-lactamic resistance in Brazilian Staphylococcus aureus isolates from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Viviane Figueira Marques

    Full Text Available Abstract Staphylococcus spp. play an important role in the etiology of bovine mastitis. Staphylococcus aureus is considered the most relevant species due to the production of virulence factors such as slime, which is required for biofilm formation. This study aimed to evaluate biofilm production and its possible relation to beta-lactamic resistance in 20 S. aureus isolates from bovine mastitic milk. The isolates were characterized by pheno-genotypic and MALDI TOF-MS assays and tested for genes such as icaA, icaD, bap, agr RNAIII, agr I, agr II, agr III, and agr IV, which are related to slime production and its regulation. Biofilm production in microplates was evaluated considering the intervals determined along the bacterial growth curve. In addition, to determine the most suitable time interval for biofilm analysis, scanning electron microscopy was performed. Furthermore, genes such as mecA and blaZ that are related to beta-lactamic resistance and oxacillin susceptibility were tested. All the studied isolates were biofilm producers and mostly presented icaA and icaD. The Agr type II genes were significantly prevalent. According to the SEM, gradual changes in the bacterial arrangement were observed during biofilm formation along the growth curve phases, and the peak was reached at the stationary phase. In this study, the penicillin resistance was related to the production of beta-lactamase, and the high minimal bactericidal concentration for cefoxitin was possibly associated with biofilm protection. Therefore, further studies are warranted to better understand biofilm formation, possibly contributing to our knowledge about bacterial resistance in vivo.

  8. Sticking together: building a biofilm the Bacillus subtilis way.

    Science.gov (United States)

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2013-03-01

    Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long served as a robust model organism to examine the molecular mechanisms of biofilm formation, and a number of studies have revealed that this process is regulated by several integrated pathways. In this Review, we focus on the molecular mechanisms that control B. subtilis biofilm assembly, and then briefly summarize the current state of knowledge regarding biofilm disassembly. We also discuss recent progress that has expanded our understanding of B. subtilis biofilm formation on plant roots, which are a natural habitat for this soil bacterium.

  9. [Biofilms and their significance in medical microbiology].

    Science.gov (United States)

    Cernohorská, L; Votava, M

    2002-11-01

    Microorganisms are able to adhere to various surfaces and to form there a three-dimensional structure known as biofilm. In biofilms, microbial cells show characteristics and behaviours different from those of plankton cells. Intercellular signalizations of the quorum-sensing type regulate interaction between members of the biofilm. Bacteria embedded in the biofilm can escape and form well known planktonic forms, that are obviously only a part of the bacterial life cycle. Bacteria adhere also to medically important surfaces such as catheters, either urinary or intravenous ones, artificial heart valves, orthopedic implants and so on and contribute to device-related infections like cystitis, catheter-related sepsis, endocarditis etc. Once a biofilm has been established on a surface, the bacteria harboured inside are less exposed to the host's immune response and less susceptible to antibiotics. As an important cause of nosocomial infections the biofilm must remain in the centre of the microbiologist's attention.

  10. Gas Flows in Dual Active Galactic Nuclei

    Science.gov (United States)

    Mueller Sanchez, Francisco; Comerford, Julia M.; Davies, Richard; Treister, Ezequiel; Privon, George C.; Nevin, Becky

    2018-06-01

    Dual Active Galactic Nuclei (AGN) are the Rosetta stone to understand the role of galaxy mergers in triggering nuclear activity and regulating black hole (BH) and galaxy growth. But very little is known about the physical processes required to effectively trigger AGN activity and regulate the growth of the two BHs. The work I will present here characterizes for the first time the properties of the stars, gas (molecular, ionized, and highly-ionized) and dust in all the confirmed dual AGN at z prototypical merger system NGC 6240: vigorous star formation, two AGNs, outflowing winds of ionized gas, rippling dust and gas lanes, and tidal tails. In this galaxy, we observe for the first time a dual outflow of different species of gas: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. This shows that stellar feedback and supermassive black hole feedback can work in tandem to regulate the stellar growth of a galaxy after a merger event. These results open a new door to studies of dual AGN and AGN pairs in general, and enable dual AGN to be used, for the first time, for studies of galaxy evolution.

  11. Neutrophil extracellular trap formation in supragingival biofilms.

    Science.gov (United States)

    Hirschfeld, Josefine; Dommisch, Henrik; Skora, Philipp; Horvath, Gabor; Latz, Eicke; Hoerauf, Achim; Waller, Tobias; Kawai, Toshihisa; Jepsen, Søren; Deschner, James; Bekeredjian-Ding, Isabelle

    2015-01-01

    Oral biofilms are the causative agents of the highly prevalent oral diseases periodontitis and caries. Additionally, the host immune response is thought to play a critical role in disease onset. Neutrophils are known to be a key host response factor to bacterial challenge on host surfaces. Release of neutrophil extracellular traps (NETs) as a novel antimicrobial defense strategy has gained increasing attention in the past years. Here, we investigated the influx of neutrophils into the dental plaque and the ability of oral bacteria to trigger intra-biofilm release of NETs and intracellular proteins. Supragingival biofilms and whole saliva were sampled from systemically healthy subjects participating in an experimental gingivitis study. Biofilms were analysed by immunofluorescence followed by confocal and fluorescence microscopy. Moreover, concentrations of cytokines and immune-associated proteins in biofilm suspensions and saliva were assessed by ELISA. Neutrophils obtained from blood were stimulated with twelve bacterial species isolated from cultured biofilms or with lipopolysaccharide to monitor NET formation. Neutrophils, NETs, neutrophil-associated proteins (myeloperoxidase, elastase-2, cathepsin G, cathelicidin LL-37), interleukin-8, interleukin-1β and tumor necrosis factor were detected within plaque samples and saliva. All tested bacterial species as well as the polymicrobial samples isolated from the plaque of each donor induced release of NETs and interleukin-8. The degree of NET formation varied among different subjects and did not correlate with plaque scores or clinical signs of local inflammation. Our findings indicate that neutrophils are attracted towards dental biofilms, in which they become incorporated and where they are stimulated by microbes to release NETs and immunostimulatory proteins. Thus, neutrophils and NETs may be involved in host biofilm control, although their specific role needs to be further elucidated. Moreover, inter

  12. Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond.

    Science.gov (United States)

    Golby, Susanne; Ceri, Howard; Gieg, Lisa M; Chatterjee, Indranil; Marques, Lyriam L R; Turner, Raymond J

    2012-01-01

    Bitumen extraction from the oil sands of Alberta has resulted in millions of cubic meters of waste stored on-site in tailings ponds. Unique microbial ecology is expected in these ponds, which may be key to their bioremediation potential. We considered that direct culturing of microbes from a tailings sample as biofilms could lead to the recovery of microbial communities that provide good representation of the ecology of the tailings. Culturing of mixed species biofilms in vitro using the Calgary Biofilm Device (CBD) under aerobic, microaerobic, and anaerobic growth conditions was successful both with and without the addition of various growth nutrients. Denaturant gradient gel electrophoresis and 16S rRNA gene pyrotag sequencing revealed that unique mixed biofilm communities were recovered under each incubation condition, with the dominant species belonging to Pseudomonas, Thauera, Hydrogenophaga, Rhodoferax, and Acidovorax. This work used an approach that allowed organisms to grow as a biofilm directly from a sample collected of their environment, and the biofilms cultivated in vitro were representative of the endogenous environmental community. For the first time, representative environmental mixed species biofilms have been isolated and grown under laboratory conditions from an oil sands tailings pond environment and a description of their composition is provided.

  13. Identification, antifungal resistance profile, in vitro biofilm formation and ultrastructural characteristics of Candida species isolated from diabetic foot patients in Northern India

    Directory of Open Access Journals (Sweden)

    D Kumar

    2016-01-01

    Full Text Available Purpose: Diabetic foot ulcers are a serious cause of diagnostic and therapeutic concern. The following study was undertaken to determine the fungal causes of diabetic foot ulcers, with their phenotypic and genotypic characterisation. Materials and Methods: A total of 155 diabetic foot ulcers were studied for 1 year. Deep tissue specimen was collected from the wounds, and crushed samples were plated on Sabouraud dextrose agar with chloramphenicol (0.05 g. Identification was done by growth on cornmeal agar, germ tube formation and urease test. For molecular identification, conserved portion of the 18S rDNA region, the adjacent internal transcribed spacer 1 (ITS1 and a portion of the 28S rDNA region were amplified, using the ITS1 and ITS2 primers. Antifungal susceptibility against voriconazole, fluconazole and amphotericin B was determined by standard broth microdilution method. Biofilm formation was studied in three steps. First, on the surface of wells of microtiter plates followed by quantification of growth by fungal metabolism measurement. Finally, biofilms were analysed by scanning electron microscopy (SEM. Results: Fungal aetiology was found in 75 patients (48.38%. All were identified as Candida species (100%. The prevalence of different species was Candida tropicalis (34.6%, Candida albicans (29.3%, Candida krusei (16.0%, Candida parapsilosis (10.6%, Candida glabrata (9.33%. All were susceptible to amphotericin B (100%. On microtiter plate, all the isolates were viable within 48 h showing biofilms. The metabolic activity of cells in the biofilm increased with cellular mass, especially in the first 24 h. On SEM, majority showed budding yeast form. Conclusion: Non-albicans Candida spp. with potential biofilm forming ability are emerging as a predominant cause of diabetic foot ulcers.

  14. Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants?

    Directory of Open Access Journals (Sweden)

    Philippe eGiegé

    2012-09-01

    Full Text Available Mitochondria heavily depend on the coordinated expression of both mitochondrial and nuclear genomes because some of their most significant activities are held by multi-subunit complexes composed of both mitochondrial and nuclear encoded proteins. Thus, precise communication and signaling pathways are believed to exist between the two compartments. Proteins dual localized to both mitochondria and the nucleus make excellent candidates for a potential involvement in the envisaged communication. Here, we review the identified instances of dual localized nucleo-mitochondrial proteins with an emphasis on plant proteins and discuss their functions, which are seemingly mostly related to gene expression regulation. We discuss whether dual localization could be achieved by dual targeting and / or by re-localization and try to apprehend the signals required for the respective processes. Finally, we propose that in some instances, dual localized mitochondrial and nuclear proteins might act as retrograde signaling molecules for mitochondrial biogenesis.

  15. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate.

    Science.gov (United States)

    Wang, Xiaoling; Wang, Guoqing; Hao, Mudong

    2015-01-01

    Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick's first law, and Monod's kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates.

  16. Differential growth of wrinkled biofilms

    Science.gov (United States)

    Espeso, D. R.; Carpio, A.; Einarsson, B.

    2015-02-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.

  17. A dynamic-biased dual-loop-feedback CMOS LDO regulator with fast transient response

    International Nuclear Information System (INIS)

    Wang Han; Sun Maomao

    2014-01-01

    This paper presents a low-dropout regulator (LDO) for portable applications with dual-loop feedback and a dynamic bias circuit. The dual-loop feedback structure is adopted to reduce the output voltage spike and the response time of the LDO. The dynamic bias circuit enhances the slew rate at the gate of the power transistor. In addition, an adaptive miller compensation technique is employed, from which a single pole system is realized and over a 59° phase margin is achieved under the full range of the load current. The proposed LDO has been implemented in a 0.6-μm CMOS process. From the experimental results, the regulator can operate with a minimum dropout voltage of 200 mV at a maximum 300 mA load and I Q of 113 μA. The line regulation and load regulation are improved to 0.1 mV/V and 3.4 μV/mA due to the sufficient loop gain provided by the dual feedback loops. Under a full range load current step, the voltage spikes and the recovery time of the proposed LDO is reduced to 97 mV and 0.142 μs respectively. (semiconductor integrated circuits)

  18. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia

    DEFF Research Database (Denmark)

    Fazli, Mustafa; O'Connell, Aileen; Nilsson, Martin

    2011-01-01

    Burkholderia cenocepacia is an opportunistic respiratory pathogen that can cause severe infections in immune-compromised individuals and is associated with poor prognosis for patients suffering from cystic fibrosis. The second messenger cyclic diguanosine monophosphate (c-di-GMP) has been shown...... to control a wide range of functions in bacteria, but little is known about these regulatory mechanisms in B. cenocepacia. Here we investigated the role that c-di-GMP plays in the regulation of biofilm formation and virulence in B. cenocepacia. Elevated intracellular levels of c-di-GMP promoted wrinkly...... colony, pellicle and biofilm formation in B. cenocepacia. A screen for transposon mutants unable to respond to elevated levels of c-di-GMP led to the identification of the mutant bcam1349 that did not display increased biofilm and pellicle formation with excessive c-di-GMP levels, and displayed a biofilm...

  19. To be or not to be planktonic? Self-inhibition of biofilm development.

    Science.gov (United States)

    Nagar, Elad; Schwarz, Rakefet

    2015-05-01

    The transition between planktonic growth and biofilm formation represents a tightly regulated developmental shift that has substantial impact on cell fate. Here, we highlight different mechanisms through which bacteria limit their own biofilm development. The mechanisms involved in these self-inhibition processes include: (i) regulation by secreted small molecules, which govern intricate signalling cascades that eventually decrease biofilm development, (ii) extracellular polysaccharides capable of modifying the physicochemical properties of the substratum and (iii) extracellular DNA that masks an adhesive structure. These mechanisms, which rely on substances produced by the bacterium and released into the extracellular milieu, suggest regulation at the communal level. In addition, we provide specific examples of environmental cues (e.g. blue light or glucose level) that trigger a cellular response reducing biofilm development. All together, we describe a diverse array of mechanisms underlying self-inhibition of biofilm development in different bacteria and discuss possible advantages of these processes. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Cold Plasmas for Biofilm Control: Opportunities and Challenges.

    Science.gov (United States)

    Gilmore, Brendan F; Flynn, Padrig B; O'Brien, Séamus; Hickok, Noreen; Freeman, Theresa; Bourke, Paula

    2018-06-01

    Bacterial biofilm infections account for a major proportion of chronic and medical device associated infections in humans, yet our ability to control them is compromised by their inherent tolerance to antimicrobial agents. Cold atmospheric plasma (CAP) represents a promising therapeutic option. CAP treatment of microbial biofilms represents the convergence of two complex phenomena: the production of a chemically diverse mixture of reactive species and intermediates, and their interaction with a heterogeneous 3D interface created by the biofilm extracellular polymeric matrix. Therefore, understanding these interactions and physiological responses to CAP exposure are central to effective management of infectious biofilms. We review the unique opportunities and challenges for translating CAP to the management of biofilms. Copyright © 2018. Published by Elsevier Ltd.

  1. Evaluation of CAMP-Like Effect, Biofilm Formation, and Discrimination of Candida africana from Vaginal Candida albicans Species

    Directory of Open Access Journals (Sweden)

    Keyvan Pakshir

    2017-01-01

    Full Text Available Candida africana as a species recovered from female genital specimens is highly close to C. albicans. The present study was conducted to discriminate C. africana from presumptive vaginal C. albicans strains by molecular assay and evaluate their hemolysin activity, biofilm formation, and cohemolytic effect (CAMP with vaginal bacterial flora. A total of 110 stock vaginal C. albicans isolates were examined by HWP1 gene amplification. Hemolysin activity and the ability of biofilm formation were evaluated by blood plate assay and visual detection methods, respectively. Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus agalactiae were used to evaluate the CAMP-like effects in Sabouraud blood agar media. Based on the size of the amplicons (941 bp, all isolates were identified as C. albicans. All samples were able to produce beta-hemolysin. Moreover, 69 out of 110 of the isolates (62.7% were biofilm-positive, 54 out of 110 Candida isolates (49% demonstrated cohemolytic effects with S. agalactiae, and 48 out of 110 showed this effect with S. aureus (43.6%. All isolates were CAMP-negative with S. epidermidis. We detected all isolates as Candida albicans and almost half of the isolates were CAMP-positive with S. aureus and S. agalactiae, suggesting that these bacteria increase the pathogenicity of Candida in vaginal candidiasis.

  2. Evaluation of CAMP-Like Effect, Biofilm Formation, and Discrimination of Candida africana from Vaginal Candida albicans Species

    Science.gov (United States)

    Bordbar, Mahboubeh; Nouraei, Hasti; Khodadadi, Hossein

    2017-01-01

    Candida africana as a species recovered from female genital specimens is highly close to C. albicans. The present study was conducted to discriminate C. africana from presumptive vaginal C. albicans strains by molecular assay and evaluate their hemolysin activity, biofilm formation, and cohemolytic effect (CAMP) with vaginal bacterial flora. A total of 110 stock vaginal C. albicans isolates were examined by HWP1 gene amplification. Hemolysin activity and the ability of biofilm formation were evaluated by blood plate assay and visual detection methods, respectively. Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus agalactiae were used to evaluate the CAMP-like effects in Sabouraud blood agar media. Based on the size of the amplicons (941 bp), all isolates were identified as C. albicans. All samples were able to produce beta-hemolysin. Moreover, 69 out of 110 of the isolates (62.7%) were biofilm-positive, 54 out of 110 Candida isolates (49%) demonstrated cohemolytic effects with S. agalactiae, and 48 out of 110 showed this effect with S. aureus (43.6%). All isolates were CAMP-negative with S. epidermidis. We detected all isolates as Candida albicans and almost half of the isolates were CAMP-positive with S. aureus and S. agalactiae, suggesting that these bacteria increase the pathogenicity of Candida in vaginal candidiasis. PMID:29318048

  3. Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae.

    Science.gov (United States)

    Johnson, Jeremiah G; Murphy, Caitlin N; Sippy, Jean; Johnson, Tylor J; Clegg, Steven

    2011-07-01

    Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression.

  4. Type 3 Fimbriae and Biofilm Formation Are Regulated by the Transcriptional Regulators MrkHI in Klebsiella pneumoniae▿

    Science.gov (United States)

    Johnson, Jeremiah G.; Murphy, Caitlin N.; Sippy, Jean; Johnson, Tylor J.; Clegg, Steven

    2011-01-01

    Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression. PMID:21571997

  5. Bacterial Biofilms in Jones Tubes.

    Science.gov (United States)

    Ahn, Eric S; Hauck, Matthew J; Kirk Harris, Jonathan; Robertson, Charles E; Dailey, Roger A

    To investigate the presence and microbiology of bacterial biofilms on Jones tubes (JTs) by direct visualization with scanning electron microscopy and polymerase chain reaction (PCR) of representative JTs, and to correlate these findings with inflammation and/or infection related to the JT. In this study, prospective case series were performed. JTs were recovered from consecutive patients presenting to clinic for routine cleaning or recurrent irritation/infection. Four tubes were processed for scanning electron microscopy alone to visualize evidence of biofilms. Two tubes underwent PCR alone for bacterial quantification. One tube was divided in half and sent for scanning electron microscopy and PCR. Symptoms related to the JTs were recorded at the time of recovery. Seven tubes were obtained. Five underwent SEM, and 3 out of 5 showed evidence of biofilms (60%). Two of the 3 biofilms demonstrated cocci and the third revealed rods. Three tubes underwent PCR. The predominant bacteria identified were Pseudomonadales (39%), Pseudomonas (16%), and Staphylococcus (14%). Three of the 7 patients (43%) reported irritation and discharge at presentation. Two symptomatic patients, whose tubes were imaged only, revealed biofilms. The third symptomatic patient's tube underwent PCR only, showing predominantly Staphylococcus (56%) and Haemophilus (36%) species. Two of the 4 asymptomatic patients also showed biofilms. All symptomatic patients improved rapidly after tube exchange and steroid antibiotic drops. Bacterial biofilms were variably present on JTs, and did not always correlate with patients' symptoms. Nevertheless, routine JT cleaning is recommended to treat and possibly prevent inflammation caused by biofilms.

  6. Clinical Infectious Outcomes Associated with Biofilm-related Infections: a Retrospective Chart Review

    Science.gov (United States)

    2015-06-07

    infectious outcomes. Methods: 221 clinical isolates collected from 2005 to 2012 and previously characterized for biofilm formation were studied. Clinical...chronic infection on multivariate analysis. Conclusions: Bacteria species, but not clinical characteristics, were associated with biofilm formation on...the implication of biofilms in a majority of human infections [2]. Biofilm formation also has been linked with poor wound healing [3], burn wound

  7. Mature Biofilm Degradation by Potential Probiotics: Aggregatibacter actinomycetemcomitans versus Lactobacillus spp.

    Directory of Open Access Journals (Sweden)

    Norzawani Jaffar

    Full Text Available The biofilm degradation of Aggregatibacter actinomycetemcomitans is essential as a complete periodontal disease therapy, and here we show the effects of potential probiotic bacteria such as Lactobacillus spp. for the biofilm of several serotypes of A. actinomycetemcomitans strains. Eight of the 13 species showed the competent biofilm degradation of ≥ 90% reduction in biofilm values in A. actinomycetemcomitans Y4 (serotype b as well as four of the seven species for the biofilm of A. actinomycetemcomitans OMZ 534 (serotype e. In contrast, the probiotic bacteria did not have a big impact for the degradation of A. actinomycetemcomitans SUNY 75 (serotype a biofilm. The dispersed A. actinomycetemcomitans Y4 cells through the biofilm detachment were still viable and plausible factors for the biofilm degradation were not due to the lactic acid and low pH conditions. The three enzymes, protease, lipase, and amylase may be responsible for the biofilm degradation; in particular, lipase was the most effective enzyme for the biofilm degradation of A. actinomycetemcomitans Y4 along with the protease activity which should be also important for the other serotypes. Remarkable lipase enzyme activities were detected from some of the potential probiotics and a supporting result using a lipase inhibitor presented corroborating evidence that lipase activity is one of the contributing factors for biofilm degradation outside of the protease which is also another possible factor for the biofilm of the other serotype of A. actinomycetemcomitans strains. On the other hand, the biofilm of A. actinomycetemcomitans SUNY 75 (serotype a was not powerfully degraded by the lipase enzyme because the lipase inhibitor was slightly functional for only two of potential probiotics.

  8. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  9. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    2015-01-01

    Full Text Available Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick’s first law, and Monod’s kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates.

  10. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates

    Science.gov (United States)

    Yan, Zhifeng; Liu, Chongxuan; Liu, Yuanyuan; Bailey, Vanessa L.

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  11. Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms

    DEFF Research Database (Denmark)

    Dragoš, Anna; Lakshmanan, Nivedha; Martin, Marivic

    2018-01-01

    variants. These variants can settle in alternative biofilm niches and develop new types of interactions that greatly influence population productivity. Here, we explore the evolutionary diversification of pellicle biofilms of the Gram positive, spore-forming bacterium Bacillus subtilis. We discover that......-similarly to other species-B. subtilis diversifies into distinct colony variants. These variants dramatically differ in biofilm formation abilities and expression of biofilm-related genes. In addition, using a quantitative approach, we reveal striking differences in surface complexity and hydrophobicity...

  12. Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Ren, Dawei

    The coexistence of hugely diverse microbes in most environments highlights the intricate interactions in microbial communities, which are central to their properties, such as productivity, stability and the resilience to disturbance. Biofilm, in environmental habitats, is such a spatially...... multispecies biofilm models, oral microbial community, also known as “dental plaque” is thoroughly investigated as a focal point to describe the interspecies interactions [1]. However, owing to the lack of a reliable high throughput and quantitative approach for exploring the interplay between multiple...... bacterial species, the study to elucidate the impact of interaction networks on the multispecies biofilms in natural ecosystems, especially in soil, is still at an early stage. The diverse patterns of interactions within the mixed communities as well as the predatorprey relationship between protozoa...

  13. Interactions between multiple filaments and bacterial biofilms on the surface of an apple

    Science.gov (United States)

    He, CHENG; Maoyuan, XU; Shuhui, PAN; Xinpei, LU; Dawei, LIU

    2018-04-01

    In this paper, the interactions between two dielectric barrier discharge (DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. The model is described by the proper governing equations of air DBD at atmospheric pressure and room temperature. The electric field in the computing domain and the self-consistent transportation of reactive species between a cathode and biofilms on the surface of an apple are realized by solving a Poisson equation and continuity equations. The electron temperature is solved by the electron energy conservation equation. The conductivity and permittivity of bacterial biofilms are considered, and the shapes of the bacterial biofilms are irregular in the uncertainty and randomness of colony growth. The distribution of the electrons suggests that two plasma channels divide into three plasma channels when the streamer are 1 mm from the biofilms. The toe-shapes of the biofilms and the simultaneous effect of two streamer heads result in a high electric field around the biofilms, therefore the stronger ionization facilitates the major part of two streamers combined into one streamer and three streamers arise. The distribution of the reactive oxygen species and the reactive nitrogen species captured by time fluences are non-uniform due to the toe-shaped bacterial biofilms. However, the plasma can intrude into the cavities in the adjacent biofilms due to the μm-scale mean free path. The two streamers case has a larger treatment area and realizes the simultaneous treatment of three biofilms compared with one streamer case.

  14. Understanding the fundamental mechanisms of biofilms development and dispersal: BIAM (Biofilm Intensity and Architecture Measurement), a new tool for studying biofilms as a function of their architecture and fluorescence intensity.

    Science.gov (United States)

    Baudin, Marine; Cinquin, Bertrand; Sclavi, Bianca; Pareau, Dominique; Lopes, Filipa

    2017-09-01

    Confocal laser scanning microscopy (CLSM) is one of the most relevant technologies for studying biofilms in situ. Several tools have been developed to investigate and quantify the architecture of biofilms. However, an approach to quantify correctly the evolution of intensity of a fluorescent signal as a function of the structural parameters of a biofilm is still lacking. Here we present a tool developed in the ImageJ open source software that can be used to extract both structural and fluorescence intensity from CLSM data: BIAM (Biofilm Intensity and Architecture Measurement). This is of utmost significance when studying the fundamental mechanisms of biofilm growth, differentiation and development or when aiming to understand the effect of external molecules on biofilm phenotypes. In order to provide an example of the potential of such a tool in this study we focused on biofilm dispersion. cis-2-Decenoic acid (CDA) is a molecule known to induce biofilm dispersion of multiple bacterial species. The mechanisms by which CDA induces dispersion are still poorly understood. To investigate the effects of CDA on biofilms, we used a reporter strain of Escherichia coli (E. coli) that expresses the GFPmut2 protein under control of the rrnBP1 promoter. Experiments were done in flow cells and image acquisition was made with CLSM. Analysis carried out using the new tool, BIAM, indicates that CDA affects the fluorescence intensity of the biofilm structures as well as biofilm architectures. Indeed, our results demonstrate that CDA removes more than 35% of biofilm biovolume and suggest that it results in an increase of the biofilm's mean fluorescence intensity (MFI) by more than 26% compared to the control biofilm in the absence of CDA. Copyright © 2017. Published by Elsevier B.V.

  15. Biofilm Formation and Resistance to Fungicides in Clinically Relevant Members of the Fungal Genus Fusarium

    Directory of Open Access Journals (Sweden)

    Hafize Sav

    2018-01-01

    Full Text Available Clinically relevant members of the fungal genus, Fusarium, exhibit an extraordinary genetic diversity and cause a wide spectrum of infections in both healthy individuals and immunocompromised patients. Generally, Fusarium species are intrinsically resistant to all systemic antifungals. We investigated whether the presence or absence of the ability to produce biofilms across and within Fusarium species complexes is linked to higher resistance against antifungals. A collection of 41 Fusarium strains, obtained from 38 patients with superficial and systemic infections, and three infected crops, were tested, including 25 species within the Fusarium fujikuroi species complex, 14 from the Fusarium solani species complex (FSSC, one Fusarium dimerum species complex, and one Fusarium oxysporum species complex isolate. Of all isolates tested, only seven strains from two species of FSSC, five F. petroliphilum and two F. keratoplasticum strains, recovered from blood, nail scrapings, and nasal biopsy samples, could produce biofilms under the tested conditions. In the liquid culture tested, sessile biofilm-forming Fusarium strains exhibited elevated minimum inhibitory concentrations (MICs for amphotericin B, voriconazole, and posaconazole, compared to their planktonic counterparts, indicating that the ability to form biofilm may significantly increase resistance. Collectively, this suggests that once a surface adherent biofilm has been established, therapies designed to kill planktonic cells of Fusarium are ineffective.

  16. Biofilm antifungal susceptibility of Candida urine isolated from ambulatory patients

    Directory of Open Access Journals (Sweden)

    Débora da Luz Becker

    2016-07-01

    Full Text Available Background and Objectives: the association between the biofilm formations an antifungal resistance has been suggested to be an important factor in the pathogenesis of several Candida species. Besides, studies have included invasive candidiasis from hospitalized patients; however there are few studies that evaluated the species distribution, antifungal susceptibility and biofilm formation of Candida species isolated from ambulatory patients. Thus, the aim of this study was to evaluate whether biofilm producing contributes to antifungal resistance in Candida isolates from urine sample obtained from ambulatory patients. Methods: During one year, 25 urine samples positive for yeast were collected, stored and plated on agar supplemented with chloramphenicol and Sabouread left at room temperature for 5 days for subsequent: 52% (13/25 were C. albicans, 36% (9/25 C. tropicalis, 8% (2/25 C. krusei and 4% (1/25 C. parapsilosis. Results: The ability to form biofilm was detected in 23 (92% of the yeast studied and 15.4% (2/13 of C. albicans were fluconazole (FLU and ketoconazole (KET resistant, while 11.1% (1/9 of C. tropicalis were ketoconazole resistant and were anidulafungin (ANI non-susceptible. Conclusion: our results showed the high capacity for biofilm formation among Candida isolates from ambulatory patients.

  17. Strategies for prevention and treatment of staphylococcal biofilms

    DEFF Research Database (Denmark)

    Meyer, Rikke Louise

    Biofilm formation by bacteria that colonize biomedical implants cause infections that cannot be eradicated by antibiotic therapy. Bacteria in biofilms are tolerant to every antibiotic known today, and this tolerance is partly due to their low metabolic activity, the occurrence of persister cells...... in biofilms. Innovative biomaterials may at best delay biofilm formation and an important question in this context is to understand how the material can contribute to more successful antibiotic treatment by not providing the cues that trigger the onset of antibiotic tolerance in the attached bacteria...... treatments that more effectively tackle biofilm infections. We have explored how the combination of antibiotic therapy with matrix-targeting enzymes can enhance the efficacy of antibiotics. The matrix composition is highly variable among different bacterial species, and this strategy will not produce a one...

  18. Combinatorial Cis-regulation in Saccharomyces Species

    Directory of Open Access Journals (Sweden)

    Aaron T. Spivak

    2016-03-01

    Full Text Available Transcriptional control of gene expression requires interactions between the cis-regulatory elements (CREs controlling gene promoters. We developed a sensitive computational method to identify CRE combinations with conserved spacing that does not require genome alignments. When applied to seven sensu stricto and sensu lato Saccharomyces species, 80% of the predicted interactions displayed some evidence of combinatorial transcriptional behavior in several existing datasets including: (1 chromatin immunoprecipitation data for colocalization of transcription factors, (2 gene expression data for coexpression of predicted regulatory targets, and (3 gene ontology databases for common pathway membership of predicted regulatory targets. We tested several predicted CRE interactions with chromatin immunoprecipitation experiments in a wild-type strain and strains in which a predicted cofactor was deleted. Our experiments confirmed that transcription factor (TF occupancy at the promoters of the CRE combination target genes depends on the predicted cofactor while occupancy of other promoters is independent of the predicted cofactor. Our method has the additional advantage of identifying regulatory differences between species. By analyzing the S. cerevisiae and S. bayanus genomes, we identified differences in combinatorial cis-regulation between the species and showed that the predicted changes in gene regulation explain several of the species-specific differences seen in gene expression datasets. In some instances, the same CRE combinations appear to regulate genes involved in distinct biological processes in the two different species. The results of this research demonstrate that (1 combinatorial cis-regulation can be inferred by multi-genome analysis and (2 combinatorial cis-regulation can explain differences in gene expression between species.

  19. Wound biofilms: lessons learned from oral biofilms

    OpenAIRE

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relati...

  20. Interplay of Bacterial Interactions and Spatial Organisation in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Liu, Wenzheng

    -tispecies biofilms, which provides theoretical and practical arguments for further ad-vancement of this field. Here, a reproducible four-species biofilm, composed of Stenotrophomonas rhizophila, Xan-thomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus, was established to study the effect...

  1. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.; Byrne, H.; Osborne, J.; Pitt-Francis, J.; Gavaghan, D.; Quintard, M.

    2013-01-01

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate

  2. Multi-species trace gas sensing with dual-wavelength QCLs

    Science.gov (United States)

    Hundt, P. Morten; Tuzson, Béla; Aseev, Oleg; Liu, Chang; Scheidegger, Philipp; Looser, Herbert; Kapsalidis, Filippos; Shahmohammadi, Mehran; Faist, Jérôme; Emmenegger, Lukas

    2018-06-01

    Instrumentation for environmental monitoring of gaseous pollutants and greenhouse gases tends to be complex, expensive, and energy demanding, because every compound measured relies on a specific analytical technique. This work demonstrates an alternative approach based on mid-infrared laser absorption spectroscopy with dual-wavelength quantum cascade lasers (QCLs). The combination of two dual- and one single-DFB QCL yields high-precision measurements of CO (0.08 ppb), CO2 (100 ppb), NH3 (0.02 ppb), NO (0.4 ppb), NO2 (0.1 ppb), N2O (0.045 ppb), and O3 (0.11 ppb) simultaneously in a compact setup (45 × 45 cm2). The lasers are driven time-multiplexed in intermittent continuous wave mode with a repetition rate of 1 kHz. The individual spectra are real-time averaged (1 s) by an FPGA-based data acquisition system. The instrument was assessed for environmental monitoring and benchmarked with reference instrumentation to demonstrate its potential for compact multi-species trace gas sensing.

  3. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal

    DEFF Research Database (Denmark)

    Harmsen, Morten; Yang, Liang; Pamp, Sünje Johanna

    2010-01-01

    We review the recent advances in the understanding of the Pseudomonas aeruginosa biofilm lifestyle from studies using in vitro laboratory setups such as flow chambers and microtiter trays. Recent work sheds light on the role of nutrients, motility, and quorum sensing in structure formation in P....... aeruginosa biofilms. The second messenger, c-di-GMP, is established as an important regulator of the synthesis of polysaccharide and protein components of the biofilm matrix. Extracellular DNA is shown to be an essential component of the biofilm matrix. It has become apparent that biofilm formation involves...... interactions between different subpopulations. The molecular mechanisms underlying the tolerance of biofilm bacteria to antimicrobial agents are beginning to be unraveled, and new knowledge has been obtained regarding the environmental cues and regulatory mechanisms involved in biofilm dispersal....

  4. Biofilms.

    Science.gov (United States)

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-07-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. Using these bacteria as examples, we discuss the key features of biofilms as well as mechanisms by which extracellular signals trigger biofilm formation.

  5. Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms

    KAUST Repository

    Zhu, Xiuping; Yates, Matthew D.; Logan, Bruce E.

    2012-01-01

    larger range of set potentials was used to acclimate electroactive biofilms. The potentials of oxidation peaks obtained with G. sulfurreducens biofilms acclimated at 0.60 V (vs. Ag/AgCl) were different from those that developed at - 0.46 V, and both

  6. Spatial transcriptomes within the Pseudomonas aeruginosa biofilm architecture.

    Science.gov (United States)

    Heacock-Kang, Yun; Sun, Zhenxin; Zarzycki-Siek, Jan; McMillan, Ian A; Norris, Michael H; Bluhm, Andrew P; Cabanas, Darlene; Fogen, Dawson; Vo, Hung; Donachie, Stuart P; Borlee, Bradley R; Sibley, Christopher D; Lewenza, Shawn; Schurr, Michael J; Schweizer, Herbert P; Hoang, Tung T

    2017-12-01

    Bacterial cooperative associations and dynamics in biofilm microenvironments are of special interest in recent years. Knowledge of localized gene-expression and corresponding bacterial behaviors within the biofilm architecture at a global scale has been limited, due to a lack of robust technology to study limited number of cells in stratified layers of biofilms. With our recent pioneering developments in single bacterial cell transcriptomic analysis technology, we generated herein an unprecedented spatial transcriptome map of the mature in vitro Pseudomonas aeruginosa biofilm model, revealing contemporaneous yet altered bacterial behaviors at different layers within the biofilm architecture (i.e., surface, middle and interior of the biofilm). Many genes encoding unknown functions were highly expressed at the biofilm-solid interphase, exposing a critical gap in the knowledge of their activities that may be unique to this interior niche. Several genes of unknown functions are critical for biofilm formation. The in vivo importance of these unknown proteins was validated in invertebrate (fruit fly) and vertebrate (mouse) models. We envisage the future value of this report to the community, in aiding the further pathophysiological understanding of P. aeruginosa biofilms. Our approach will open doors to the study of bacterial functional genomics of different species in numerous settings. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  7. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.

    Science.gov (United States)

    Mathieu, L; Bertrand, I; Abe, Y; Angel, E; Block, J C; Skali-Lami, S; Francius, G

    2014-05-15

    Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., 600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200 μm(3)). Changes in the cohesive

  8. Sporulation of Bacillus spp. within biofilms: a potential source of contamination in food processing environments.

    Science.gov (United States)

    Faille, C; Bénézech, T; Midelet-Bourdin, G; Lequette, Y; Clarisse, M; Ronse, G; Ronse, A; Slomianny, C

    2014-06-01

    Bacillus strains are often isolated from biofilms in the food industries. Previous works have demonstrated that sporulation could occur in biofilms, suggesting that biofilms would be a significant source of food contamination with spores. In this study, we investigated the properties of mono-species and mixed Bacillus biofilms and the ability of Bacillus strains to sporulate inside biofilms. Bacillus strains were able to form mono-species biofilms on stainless steel coupons, with up to 90% spores after a 48 h-incubation. These spores were highly resistant to cleaning but were easily transferred to agar, mimicking the cross-contamination of food, thereby suggesting that biofilms would be of particular concern due to a potential for Bacillus spore food contamination. This hypothesis was strengthened by the fact that Bacillus strains were able to form mixed biofilms with resident strains and that sporulation still occurred easily in these complex structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Differential effects of antifungal agents on expression of genes related to formation of Candida albicans biofilms.

    Science.gov (United States)

    Chatzimoschou, Athanasios; Simitsopoulou, Maria; Antachopoulos, Charalampos; Walsh, Thomas J; Roilides, Emmanuel

    2016-01-01

    The purpose of this study was to analyse specific molecular mechanisms involved in the intrinsic resistance of C. albicans biofilms to antifungals. We investigated the transcriptional profile of three genes (BGL2, SUN41, ECE1) involved in Candida cell wall formation in response to voriconazole or anidulafungin after the production of intermediate and mature biofilms. C. albicans M61, a well-documented biofilm producer strain, was used for the development of intermediate (12 h and 18 h) and completely mature biofilms (48 h). After exposure of cells from each biofilm growth mode to voriconazole (128 and 512 mg l(-1)) or anidulafungin (0.25 and 1 mg l(-1)) for 12-24 h, total RNA samples extracted from biofilm cells were analysed by RT-PCR. The voriconazole and anidulafungin biofilm MIC was 512 and 0.5 mg l(-1) respectively. Anidulafungin caused significant up-regulation of SUN41 (3.7-9.3-fold) and BGL2 (2.2-2.8 fold) in intermediately mature biofilms; whereas, voriconazole increased gene expression in completely mature biofilms (SUN41 2.3-fold, BGL2 2.1-fold). Gene expression was primarily down-regulated by voriconazole in intermediately, but not completely mature biofilms. Both antifungals caused down-regulation of ECE1 in intermediately mature biofilms. © 2015 Blackwell Verlag GmbH.

  10. Detection of biofilm production of Yersinia enterocolitica strains isolated from infected children and comparative antimicrobial susceptibility of biofilm versus planktonic forms.

    Science.gov (United States)

    Ioannidis, A; Kyratsa, A; Ioannidou, V; Bersimis, S; Chatzipanagiotou, S

    2014-06-01

    The ability of Yersinia species to produce biofilms has not been hitherto systematically studied, although there is evidence, that Y. enterocolitica is able to form biofilms on inanimate surfaces. The present study aimed to detect the production of biofilms by 60 clinical strains of Y. enterocolitica and to compare the antimicrobial susceptibility of planktonic versus biofilm-forming bacteria. Y. enterocolitica strains were collected from stool and blood cultures collected from β-thalassaemic children, with gastroenteritis and/or septicemia. The isolated bacterial strains were grouped by biotyping and serotyping and the antimicrobial susceptibility of the planktonic forms was investigated by MIC determination. Biofilm formation was detected by the use of silicone disks and for the biofilm forming strains the minimum inhibitory concentration for bacterial regrowth (MICBR) of 11 clinically important antimicrobials was determined. The presence of the waaE, a gene reported to be related with biofilm formation was investigated in all the strains. All of 60 strains were positive for biofilm production by the use of silicone disks. The great majority of the biofilm forms were resistant to all the antimicrobials. In antimicrobial concentrations far higher than the CLSI breakpoints, bacterial regrowth from the biofilms was still possible. None of the strains bore the waaE gene. These results, indicate that biofilm formation by Y. enterocolitica might be an inherent feature. The presence of biofilms increased dramatically the MICBR in all antimicrobials. The way in which biofilms could contribute to Y. enterocolitica pathogenicity in humans is a matter needing further investigation.

  11. Chitosanase purified from bacterial isolate Bacillus licheniformis of ruined vegetables displays broad spectrum biofilm inhibition.

    Science.gov (United States)

    Muslim, Sahira Nsayef; Al-Kadmy, Israa M S; Hussein, Nadheema Hammood; Mohammed Ali, Alaa Naseer; Taha, Buthainah Mohammed; Aziz, Sarah Naji; Kheraif, Abdulaziz Abdullah Al; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar

    2016-11-01

    A number of bacterial species produces chitosanases which has variety of applications because of its high biodegradability, non-toxicity and antimicrobial assets. In the present study chitosanase is purified from new bacterial species Bacillus licheniformis from spoiled vegetable. This novel strain of Bacillus licheniformis isolated from spoilt cucumber and pepper samples has the ability to produce the chitosanase enzyme when grown on chitosan substrate. Study also examined its antibiofilm properties against diverse bacterial species with biofilm forming ability. The purified chitosanase inhibited the biofilm formation ability for all Gram-negative and Gram-positive biofilm-forming bacteria [biofilm producers] tested in this study in congo red agar and microtiter plate's methods. Highly antibiofilm activity of chitosanase was recorded against Pseudomonas aeruginosa followed by Klebsiella pneumoniae with reduction of biofilm formation upto 22 and 29%, respectively compared with [100] % of control. Biofilm formation has multiple role including ability to enhance resistance and self-protection from external stress. This chitosanase has promising benefit as antibiofilm agent against biofilm forming pathogenic bacteria and has promising application as alternative antibiofilm agents to combat the growing number of multidrug resistant pathogen-associated infections, especially in situation where biofilms are involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Identification of Streptococcus sanguinis Genes Required for Biofilm Formation and Examination of Their Role in Endocarditis Virulence▿

    OpenAIRE

    Ge, Xiuchun; Kitten, Todd; Chen, Zhenming; Lee, Sehmi P.; Munro, Cindy L.; Xu, Ping

    2008-01-01

    Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previousl...

  13. The pulsed light inactivation of veterinary relevant microbial biofilms ...

    African Journals Online (AJOL)

    Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.

  14. Synergistic inhibition of Streptococcal biofilm by ribose and xylitol.

    Science.gov (United States)

    Lee, Heon-Jin; Kim, Se Chul; Kim, Jinkyung; Do, Aejin; Han, Se Yeong; Lee, Bhumgey David; Lee, Hyun Ho; Lee, Min Chan; Lee, So Hui; Oh, Taejun; Park, Sangbin; Hong, Su-Hyung

    2015-02-01

    Streptococcus mutans and Streptococcus sobrinus are the major causative agents of human dental caries. Therefore, the removal or inhibition of these streptococcal biofilms is essential for dental caries prevention. In the present study, we evaluated the effects of ribose treatment alone or in combination with xylitol on streptococcal biofilm formation for both species. Furthermore, we examined the expression of genes responsible for dextran-dependent aggregation (DDAG). In addition, we investigated whether ribose affects the biofilm formation of xylitol-insensitive streptococci, which results from long-term exposure to xylitol. The viability of streptococci biofilms formed in a 24-well polystyrene plate was quantified by fluorescent staining with the LIVE/DEAD bacterial viability and counting kit, which was followed by fluorescence activated cell sorting analysis. The effects of ribose and/or xylitol on the mRNA expression of DDAG-responsible genes, gbpC and dblB, was evaluated by RT-qPCR. Our data showed that ribose and other pentose molecules significantly inhibited streptococcal biofilm formation and the expression of DDAG-responsible genes. In addition, co-treatment with ribose and xylitol decreased streptococcal biofilm formation to a further extent than ribose or xylitol treatment alone in both streptococcal species. Furthermore, ribose attenuated the increase of xylitol-insensitive streptococcal biofilm, which results in the reduced difference of biofilm formation between S. mutans that are sensitive and insensitive to xylitol. These data suggest that pentose may be used as an additive for teeth-protective materials or in sweets. Furthermore, ribose co-treatment with xylitol might help to increase the anti-cariogenic efficacy of xylitol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. When the swimming gets tough, the tough form a biofilm.

    Science.gov (United States)

    Belas, Robert

    2013-10-01

    Bacteria live either as independent planktonic cells or as members of surface-attached communities called biofilms. Motility and biofilm development are mutually exclusive events, and control of the phase of this 'swim-or-stick' switch involves the ability of the bacterium to sense and respond appropriately to a surface. Cairns et al. (2013) report that the Bacillus subtilis flagellum functions in surface-sensing. Using mutants of B. subtilis that prevent flagellum rotation, they measured the expression and activity of DegU, the response regulator of the two-component DegS-DegU circuit. DegU activity and degU transcription increased when flagellum rotation was prevented, and were dependent on the DegS kinase. Inhibiting flagellar rotation by overexpressing the EpsE flagellar 'clutch' or addition of anti-flagellin antiserum also increased degU transcription and activity. These results suggest B. subtilis senses restriction of flagellum rotation as the cell nears a surface. Inhibition of the flagellum activates the DegS-DegU circuit to turn on biofilm formation, i.e. the flagellum is acting as a mechanosensor of surfaces. B. subtilis joins an ever-expanding group of bacteria, including species of Vibrio, Proteus and Caulobacter that use the flagellum as a surface sensor. © 2013 John Wiley & Sons Ltd.

  16. Coexistence facilitates interspecific biofilm formation in complex microbial communities

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Røder, Henriette Lyng; Russel, Jakob

    2016-01-01

    Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However......, the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased...

  17. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response.

    Science.gov (United States)

    de Carvalho Dias, Kassia; Barbugli, Paula Aboud; de Patto, Fernanda; Lordello, Virginia Barreto; de Aquino Penteado, Letícia; Medeiros, Alexandra Ivo; Vergani, Carlos Eduardo

    2017-06-30

    The objective of this study was to better understand the effects of soluble factors from biofilm of single- and mixed-species Candida albicans (C. albicans) and methicillin-sensitive Staphylococcus aureus (MSSA) cultures after 36 h in culture on keratinocytes (NOK-si and HaCaT) and macrophages (J774A.1). Soluble factors from biofilms of C. albicans and MSSA were collected and incubated with keratinocytes and macrophages, which were subsequently evaluated by cell viability assays (MTT). Lactate dehydrogenase (LDH) enzyme release was measured to assess cell membrane damage to keratinocytes. Cells were analysed by brightfield microscopy after 2 and 24 h of exposure to the soluble factors from biofilm. Cell death was detected by labelling apoptotic cells with annexin V and necrotic cells with propidium iodide (PI) and was visualized via fluorescence microscopy. Soluble factors from biofilm were incubated with J774A.1 cells for 24 h; the subsequent production of NO and the cytokines IL-6 and TNF-α was measured by ELISA. The cell viability assays showed that the soluble factors of single-species C. albicans cultures were as toxic as the soluble factors from biofilm of mixed cultures, whereas the soluble factors of MSSA cultures were less toxic than those of C. albicans or mixed cultures. The soluble factors from biofilm of mixed cultures were the most toxic to the NOK-si and HaCaT cells, as confirmed by analyses of PI labelling and cell morphology. Soluble factors from biofilm of single-species MSSA and mixed-species cultures induced the production of IL-6, NO and TNF-α by J744A.1 macrophages. The production of IL-6 and NO induced by the soluble factors from biofilm of mixed cultures was lower than that induced by the soluble factors from biofilm of single-species MSSA cultures, whereas the soluble factors from biofilm of C. albicans cultures induced only low levels of NO. Soluble factors from 36-h-old biofilm of C. albicans and MSSA cultures promoted cell death and

  18. Spatial Patterns in Biofilm Diversity across Hierarchical Levels of River-Floodplain Landscapes.

    Directory of Open Access Journals (Sweden)

    Marc Peipoch

    Full Text Available River-floodplain systems are among the most diverse and productive ecosystems, but the effects of biophysical complexity at multiple scales on microbial biodiversity have not been studied. Here, we investigated how the hierarchical organization of river systems (i.e., region, floodplain, zone, habitats, and microhabitats influences epilithic biofilm community assemblage patterns by characterizing microbial communities using 16S rRNA gene sequence data and analyzing bacterial species distribution across local and regional scales. Results indicate that regional and local environmental filters concurrently sort bacterial species, suggesting that spatial configuration of epilithic biofilms resembles patterns of larger organisms in floodplain ecosystems. Along the hierarchical organization of fluvial systems, floodplains constitute a vector of maximum environmental heterogeneity and consequently act as a major landscape filter for biofilm species. Thus, river basins and associated floodplains may simply reflect very large scale 'patches' within which environmental conditions select for community composition of epilithic biofilms.

  19. Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm.

    Science.gov (United States)

    Chen, Guangcun; Lin, Huirong; Chen, Xincai

    2016-12-28

    Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a 75 μm thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling Cu₃(PO₄)₂ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were Cu₃(PO₄)₂-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% Cu₃(PO₄)₂, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

  20. Biofilm-forming capacity in biogenic amine-producing bacteria isolated from dairy products.

    Directory of Open Access Journals (Sweden)

    Maria eDiaz

    2016-05-01

    Full Text Available Biofilms on the surface of food industry equipment are reservoirs of potentially food-contaminating bacteria - both spoilage and pathogenic. However, the capacity of biogenic amine (BA-producers to form biofilms has remained largely unexamined. BAs are low molecular weight, biologically active compounds that in food can reach concentrations high enough to be a toxicological hazard. Fermented foods, especially some types of cheese, accumulate the highest BA concentrations of all. The present work examines the biofilm-forming capacity of 56 BA-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri and 7 Lactobacillus parabuchneri, all isolated from dairy products. Strains of all the tested species - except for L. vaginalis - were able to produce biofilms on polystyrene and adhered to stainless steel. However, the biomass produced in biofilms was strain-dependent. These results suggest that biofilms may provide a route via which fermented foods can become contaminated by BA-producing microorganisms.

  1. Dual PD Control Regulation with Nonlinear Compensation for a Ball and Plate System

    Directory of Open Access Journals (Sweden)

    Sergio Galvan-Colmenares

    2014-01-01

    Full Text Available The normal proportional derivative (PD control is modified to a new dual form for the regulation of a ball and plate system. First, to analyze this controller, a novel complete nonlinear model of the ball and plate system is obtained. Second, an asymptotic stable dual PD control with a nonlinear compensation is developed. Finally, the experimental results of ball and plate system are provided to verify the effectiveness of the proposed methodology.

  2. The efficacy of sewage influent-isolated bacteriophages on Pseudomonas aeruginosa in a mixed-species biofilm

    KAUST Repository

    Yap, Scott

    2016-12-01

    The growth of environmentally persistent biofilms in cooling towers causes several associated problems, including microbiologically-induced corrosion (MIC) and biofouling. Current chemical control methods are not only ineffective against biofilms and costly to procure, they also have downstream environmental impacts when released untreated, or incur additional treatment costs. Bacteriophages are alternative biofilm control agents that have the potential to be more effective, cheaper to produce and yet have a more benign effect on the environment. In this study, biofilms grown under conditions simulating seawater fed cooling towers were characterized and the differences in growth and community make-up across time and different substrates were assessed. An MIC associated bacterium common in cooling tower water, P. aeruginosa, was chosen. Seven bacteriophage strains found to be effective against the chosen bacterium were isolated from wastewater influent. The relative effectiveness of these strains was measured against P. aeruginosa across different salinities. Separate biofilms fed with P. aeruginosa enriched seawater were characterized and the effectiveness of the isolated strains, singly and in cocktails, against the enriched biofilms was measured.

  3. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  4. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum.

    Science.gov (United States)

    Croxatto, Antony; Chalker, Victoria J; Lauritz, Johan; Jass, Jana; Hardman, Andrea; Williams, Paul; Cámara, Miguel; Milton, Debra L

    2002-03-01

    Vibrio anguillarum possesses at least two N-acylhomoserine lactone (AHL) quorum-sensing circuits, one of which is related to the luxMN system of Vibrio harveyi. In this study, we have cloned an additional gene of this circuit, vanT, encoding a V. harveyi LuxR-like transcriptional regulator. A V. anguillarum Delta vanT null mutation resulted in a significant decrease in total protease activity due to loss of expression of the metalloprotease EmpA, but no changes in either AHL production or virulence. Additional genes positively regulated by VanT were identified from a plasmid-based gene library fused to a promoterless lacZ. Three lacZ fusions (serA::lacZ, hpdA-hgdA::lacZ, and sat-vps73::lacZ) were identified which exhibited decreased expression in the Delta vanT strain. SerA is similar to 3-phosphoglycerate dehydrogenases and catalyzes the first step in the serine-glycine biosynthesis pathway. HgdA has identity with homogentisate dioxygenases, and HpdA is homologous to 4-hydroxyphenylpyruvate dioxygenases (HPPDs) involved in pigment production. V. anguillarum strains require an active VanT to produce high levels of an L-tyrosine-induced brown color via HPPD, suggesting that VanT controls pigment production. Vps73 and Sat are related to Vibrio cholerae proteins encoded within a DNA locus required for biofilm formation. A V. anguillarum Delta vanT mutant and a mutant carrying a polar mutation in the sat-vps73 DNA locus were shown to produce defective biofilms. Hence, a new member of the V. harveyi LuxR transcriptional activator family has been characterized in V. anguillarum that positively regulates serine, metalloprotease, pigment, and biofilm production.

  5. Dendrimers and polyamino-phenolic ligands: activity of new molecules against Legionella pneumophila biofilms.

    Directory of Open Access Journals (Sweden)

    Elisa eAndreozzi

    2016-03-01

    Full Text Available Legionnaires’ disease is a potentially fatal pneumonia caused by Legionella pneumophila, an aquatic bacterium often found within the biofilm niche. In man-made water systems microbial biofilms increase the resistance of legionella to disinfection, posing a significant threat to public health. Disinfection methods currently used in water systems have been shown to be ineffective against legionella over the long-term, allowing recolonization by the biofilm-protected microorganisms. In this study, the anti-biofilm activity of previously fabricated polyamino-phenolic ligands and polyamidoamine dendrimers was investigated against legionella mono-species and multi-species biofilms formed by L. pneumophila in association with other bacteria that can be found in tap water (Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae. Bacterial ability to form biofilms was verified using a crystal violet colorimetric assay and testing cell viability by real-time quantitative PCR and Plate Count assay. The concentration of the chemicals tested as anti-biofilm agents was chosen based on cytotoxicity assays: the highest non-cytotoxic chemical concentration was used for biofilm inhibition assays, with dendrimer concentration ten-fold higher than polyamino-phenolic ligands. While Macrophen and Double Macrophen were the most active substances among polyamino-phenolic ligands, dendrimers were overall two-fold more effective than all other compounds with a reduction up to 85% and 73% of legionella and multi-species biofilms, respectively. Chemical interaction with matrix molecules is hypothesized, based on SEM images and considering the low or absent anti-microbial activity on planktonic bacteria showed by flow cytometry. These data suggest that the studied compounds, especially dendrimers, could be considered as novel molecules in the design of research projects aimed at the development of efficacious anti-biofilm disinfection

  6. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms.

    LENUS (Irish Health Repository)

    Hamilton, Shea

    2009-12-11

    Abstract Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria have demonstrated that biofilm growth triggers the expression of specific sets of genes, compared with planktonic cells. Until now, most gene expression studies of Salmonella have focused on the effect of infection-relevant stressors on virulence or the comparison of mutant and wild-type bacteria. However little is known about the physiological responses taking place inside a Salmonella biofilm. Results We have determined the transcriptomic and proteomic profiles of biofilms of Salmonella enterica serovar Typhimurium. We discovered that 124 detectable proteins were differentially expressed in the biofilm compared with planktonic cells, and that 10% of the S. Typhimurium genome (433 genes) showed a 2-fold or more change in the biofilm compared with planktonic cells. The genes that were significantly up-regulated implicated certain cellular processes in biofilm development including amino acid metabolism, cell motility, global regulation and tolerance to stress. We found that the most highly down-regulated genes in the biofilm were located on Salmonella Pathogenicity Island 2 (SPI2), and that a functional SPI2 secretion system regulator (ssrA) was required for S. Typhimurium biofilm formation. We identified STM0341 as a gene of unknown function that was needed for biofilm growth. Genes involved in tryptophan (trp) biosynthesis and transport were up-regulated in the biofilm. Deletion of trpE led to decreased bacterial attachment and this biofilm defect was restored by

  7. DNA-microarrays identification of Streptococcus mutans genes associated with biofilm thickness

    Directory of Open Access Journals (Sweden)

    Feldman Mark

    2008-12-01

    Full Text Available Abstract Background A biofilm is a complex community of microorganisms that develop on surfaces in diverse environments. The thickness of the biofilm plays a crucial role in the physiology of the immobilized bacteria. The most cariogenic bacteria, mutans streptococci, are common inhabitants of a dental biofilm community. In this study, DNA-microarray analysis was used to identify differentially expressed genes associated with the thickness of S. mutans biofilms. Results Comparative transcriptome analyses indicated that expression of 29 genes was differentially altered in 400- vs. 100-microns depth and 39 genes in 200- vs. 100-microns biofilms. Only 10 S. mutans genes showed differential expression in both 400- vs. 100-microns and 200- vs. 100-microns biofilms. All of these genes were upregulated. As sucrose is a predominant factor in oral biofilm development, its influence was evaluated on selected genes expression in the various depths of biofilms. The presence of sucrose did not noticeably change the regulation of these genes in 400- vs. 100-microns and/or 200- vs. 100-microns biofilms tested by real-time RT-PCR. Furthermore, we analyzed the expression profile of selected biofilm thickness associated genes in the luxS- mutant strain. The expression of those genes was not radically changed in the mutant strain compared to wild-type bacteria in planktonic condition. Only slight downregulation was recorded in SMU.2146c, SMU.574, SMU.609, and SMU.987 genes expression in luxS- bacteria in biofilm vs. planktonic environments. Conclusion These findings reveal genes associated with the thickness of biofilms of S. mutans. Expression of these genes is apparently not regulated directly by luxS and is not necessarily influenced by the presence of sucrose in the growth media.

  8. Recolonization of laser-ablated bacterial biofilm.

    Science.gov (United States)

    Nandakumar, Kanavillil; Obika, Hideki; Utsumi, Akihiro; Toshihiko, Ooie; Yano, Tetsuo

    2004-01-20

    The recolonization of laser-ablated bacterial monoculture biofilm was studied in the laboratory by using a flow-cytometer system. The marine biofilm-forming bacterium Pseudoalteromonas carrageenovora was used to develop biofilms on titanium coupons. Upon exposure to a low-power pulsed irradiation from an Nd:YAG laser, the coupons with biofilm were significantly reduced both in terms of total viable count (TVC) and area cover. The energy density used for a pulse of 5 ns was 0.1 J/cm(2) and the durations of irradiation exposure were 5 and 10 min. When placed in a flow of dilute ZoBell marine broth medium (10%) the laser-destructed bacterial film in a flow-cytometer showed significant recovery over a period of time. The flow of medium was regulated at 3.2 ml/min. The increase in area cover and TVC, however, was significantly less than that observed for nonirradiated control (t-test, Precolonization compared to control was thought be due to the lethal and sublethal impacts of laser irradiation on bacteria. This observation thus provided data on the online recolonization speed of biofilm, which is important when considering pulsed laser irradiation as an ablating technique of biofilm formation and removal in natural systems. Copyright 2003 Wiley Periodicals, Inc.

  9. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo.

    Science.gov (United States)

    Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Li, Yong; Krysan, Damian J; Koo, Hyun

    2017-06-01

    Candida albicans is frequently detected with heavy infection by Streptococcus mutans in plaque-biofilms from children with early-childhood caries (ECC). This cross-kingdom biofilm contains an extensive matrix of extracellular α-glucans that is produced by an exoenzyme (GtfB) secreted by S. mutans. Here, we report that mannans located on the outer surface of C. albicans cell-wall mediates GtfB binding, enhancing glucan-matrix production and modulating bacterial-fungal association within biofilms formed in vivo. Using single-molecule atomic force microscopy, we determined that GtfB binds with remarkable affinity to mannans and to the C. albicans surface, forming a highly stable and strong bond (1-2 nN). However, GtfB binding properties to C. albicans was compromised in strains defective in O-mannan (pmt4ΔΔ) or N-mannan outer chain (och1ΔΔ). In particular, the binding strength of GtfB on och1ΔΔ strain was severely disrupted (>3-fold reduction vs. parental strain). In turn, the GtfB amount on the fungal surface was significantly reduced, and the ability of C. albicans mutant strains to develop mixed-species biofilms with S. mutans was impaired. This phenotype was independent of hyphae or established fungal-biofilm regulators (EFG1, BCR1). Notably, the mechanical stability of the defective biofilms was weakened, resulting in near complete biomass removal by shear forces. In addition, these in vitro findings were confirmed in vivo using a rodent biofilm model. Specifically, we observed that C. albicans och1ΔΔ was unable to form cross-kingdom biofilms on the tooth surface of rats co-infected with S. mutans. Likewise, co-infection with S. mutans defective in GtfB was also incapable of forming mixed-species biofilms. Taken together, the data support a mechanism whereby S. mutans-secreted GtfB binds to the mannan layer of C. albicans to promote extracellular matrix formation and their co-existence within biofilms. Enhanced understanding of GtfB-Candida interactions

  10. Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton.

    Science.gov (United States)

    Townsley, Loni; Sison Mangus, Marilou P; Mehic, Sanjin; Yildiz, Fitnat H

    2016-07-15

    The ability to sense and adapt to temperature fluctuation is critical to the aquatic survival, transmission, and infectivity of Vibrio cholerae, the causative agent of the disease cholera. Little information is available on the physiological changes that occur when V. cholerae experiences temperature shifts. The genome-wide transcriptional profile of V. cholerae upon a shift in human body temperature (37°C) to lower temperatures, 15°C and 25°C, which mimic those found in the aquatic environment, was determined. Differentially expressed genes included those involved in the cold shock response, biofilm formation, type VI secretion, and virulence. Analysis of a mutant lacking the cold shock gene cspV, which was upregulated >50-fold upon a low-temperature shift, revealed that it regulates genes involved in biofilm formation and type VI secretion. CspV controls biofilm formation through modulation of the second messenger cyclic diguanylate and regulates type VI-mediated interspecies killing in a temperature-dependent manner. Furthermore, a strain lacking cspV had significant defects for attachment and type VI-mediated killing on the surface of the aquatic crustacean Daphnia magna Collectively, these studies reveal that cspV is a major regulator of the temperature downshift response and plays an important role in controlling cellular processes crucial to the infectious cycle of V. cholerae Little is known about how human pathogens respond and adapt to ever-changing parameters of natural habitats outside the human host and how environmental adaptation alters dissemination. Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, experiences fluctuations in temperature in its natural aquatic habitats and during the infection process. Furthermore, temperature is a critical environmental signal governing the occurrence of V. cholerae and cholera outbreaks. In this study, we showed that V. cholerae reprograms its transcriptome in response to

  11. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    Directory of Open Access Journals (Sweden)

    Iqbal Ahmad

    2017-04-01

    Full Text Available Quorum sensing (QS is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC and gas chromatography–mass spectrometry (GC-MS analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%, total protease (56%, pyocyanin (89%, chitinase (55%, exopolysaccharide production (58% and swarming motility (74% in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82% over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy.

  12. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    Science.gov (United States)

    Husain, Fohad M.; Ahmad, Iqbal; Al-thubiani, Abdullah S.; Abulreesh, Hussein H.; AlHazza, Ibrahim M.; Aqil, Farrukh

    2017-01-01

    Quorum sensing (QS) is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango) has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML) extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC) and gas chromatography–mass spectrometry (GC-MS) analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%), total protease (56%), pyocyanin (89%), chitinase (55%), exopolysaccharide production (58%) and swarming motility (74%) in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82%) over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy. PMID:28484444

  13. Speciation and Biofilm Production of Coagulase Negative Staphylococcal Isolates from Clinically Significant Specimens and their Antibiogram

    Directory of Open Access Journals (Sweden)

    S. S. Vijayasri Badampudi

    2016-04-01

    Full Text Available Background: Coagulase Negative Staphylococci (CONS are increasingly recognized as significant nosocomial pathogens. Their ability of biofilm formation and multiple drug resistance are causing serious human infections. Aim and Objectives: To isolate, identify, speciate clinically significant CONS from various specimens, to study antibiotic resistance pattern and biofilm production. Material and Methods: Specimens were collected aseptically, processed and identified upto the species level by a simple scheme of tests urease, novobiocin resistance, mannose and mannitol fermentation, ornithine decarboxylase. Antibiotic sensitivity was done with special reference to methicillin resistance. Biofilm formation was detected by Congo Red Agar (CRA method and Tube Method (TM. Results: Study groupOf 100 isolates majority were pus (40, followed by urine (28, blood (16, CSF (5, body fluids (4 and catheter tips and implants (7. The most common species isolated was S. epidermidis (40% followed by S. haemolyticus (26%, S. saprophyticus (15%, S. schleiferi (13%, S. simulans (2%, S. cohnii (2% and S. warneri and S. capitis each 1%. Resistance to penicillin was 91% followed by ampicillin (79%, cotrimoxazole (67%. Methicillin resistance was 72%. Biofilm producers were 69% by CRAmethod and 33% by TM with majority species S. epidermidis (82.5%- CRA and 55%-TM. Biofilm production was significantly associated with MRCONS (p value 0.0036. Control group-Of 30 isolates were S. epidermidis 66.6% followed by S. haemolyticus (16.66%. Biofilm producers were 53.33% by CRA method and 26.65% by TM with majority species S. epidermidis (65%-CRA and 30%-TM.Methicillin resistance was 26.6%. Conclusion: Clinical significance of CONS is increasing day by day, so there is a need for accurate identification to species level and their antibiogram to avoid multidrug resistance. Biofilm producing CONS species pose a risk and CRA method for screening biofilm can be used in all conventional

  14. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian S; Dueholm, Morten S

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...... hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm...

  15. Bacterial biofilm formation in different surfaces of food industries

    Directory of Open Access Journals (Sweden)

    Karine Angélica Dalla Costa

    2017-06-01

    Full Text Available The term biofilm describes the sessile microbial life form, characterized by microorganism adhesion to any surface and with the production of extracellular polymeric substances. In food industries, the formation of biofilms results in serious problems, since it can be a contamination source of the food product, compromising the final product quality and consumer health. The aim of this study was to verify the adhesion of biofilms (sessile cells of pathogenic and/or deteriorating bacteria against surfaces of the food industry. The bacterial species tested were Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, Listeria monocytogenes ATCC 19117 and Salmonella Typhimurium ATCC 14028. It was used stainless steel and polypropylene coupons as contact surfaces. The results demonstrated that P. aeruginosa and S. Typhimurium showed higher biofilm formation capacity. Statistically, there was no difference in count of P. aeruginosa and S. Typhimurium (p > 0.05 cells. The same occurred between L. monocytogenes and S. aureus. However, the counts of P. aeruginosa and S. Typhimurium cells were statistically higher than S. aureus and L. monocytogenes (p < 0.05. By means of scanning electron microscopy it was also found increased adhesion of P. aeruginosa. The results revealed that P. aeruginosa was the bacterial species with higher biofilm formation capacity among the others.

  16. Biofilm Formation As a Response to Ecological Competition.

    Directory of Open Access Journals (Sweden)

    Nuno M Oliveira

    2015-07-01

    Full Text Available Bacteria form dense surface-associated communities known as biofilms that are central to their persistence and how they affect us. Biofilm formation is commonly viewed as a cooperative enterprise, where strains and species work together for a common goal. Here we explore an alternative model: biofilm formation is a response to ecological competition. We co-cultured a diverse collection of natural isolates of the opportunistic pathogen Pseudomonas aeruginosa and studied the effect on biofilm formation. We show that strain mixing reliably increases biofilm formation compared to unmixed conditions. Importantly, strain mixing leads to strong competition: one strain dominates and largely excludes the other from the biofilm. Furthermore, we show that pyocins, narrow-spectrum antibiotics made by other P. aeruginosa strains, can stimulate biofilm formation by increasing the attachment of cells. Side-by-side comparisons using microfluidic assays suggest that the increase in biofilm occurs due to a general response to cellular damage: a comparable biofilm response occurs for pyocins that disrupt membranes as for commercial antibiotics that damage DNA, inhibit protein synthesis or transcription. Our data show that bacteria increase biofilm formation in response to ecological competition that is detected by antibiotic stress. This is inconsistent with the idea that sub-lethal concentrations of antibiotics are cooperative signals that coordinate microbial communities, as is often concluded. Instead, our work is consistent with competition sensing where low-levels of antibiotics are used to detect and respond to the competing genotypes that produce them.

  17. In situ rheology of yeast biofilms.

    Science.gov (United States)

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation.

  18. Comparative Proteomic Analysis Provides insight into the Key Proteins as Possible Targets Involved in Aspirin Inhibiting Biofilm Formation of Staphylococcus xylosus

    Directory of Open Access Journals (Sweden)

    Chang-Geng Xu

    2017-08-01

    Full Text Available Staphylococcus xylosus is an opportunistic pathogen that causes infection in humans and cow mastitis. And S. xylosus possesses a strong ability to form biofilms in vitro. As biofilm formation facilitates resistance to antimicrobial agents, the discovery of new medicinal properties for classic drugs is highly desired. Aspirin, which is the most common active component of non-steroidal anti-inflammatory compounds, affects the biofilm-forming capacity of various bacterial species. We have found that aspirin effectively inhibits biofilm formation of S. xylosus by Crystal violet (CV staining and scanning electron microscopy analyses. The present study sought to elucidate possible targets of aspirin in suppressing S. xylosus biofilm formation. Based on an isobaric tag for relative and absolute quantitation (iTRAQ fold-change of >1.2 or <0.8 (P-value < 0.05, 178 differentially expressed proteins, 111 down-regulated and 67 up-regulated, were identified after application of aspirin to cells at a 1/2 minimal inhibitory concentration. Gene ontology analysis indicated enrichment in metabolic processes for the majority of the differentially expressed proteins. We then used the Kyoto Encyclopedia of Genes and Genomes (KEGG pathway database to analyze a large number of differentially expressed proteins and identified genes involved in biosynthesis of amino acids pathway, carbon metabolism (pentose phosphate and glycolytic pathways, tricarboxylic acid cycle and nitrogen metabolism (histidine metabolism. These novel proteins represent candidate targets in aspirin-mediated inhibition of S. xylosus biofilm formation at sub-MIC levels. The findings lay the foundation for further studies to identify potential aspirin targets.

  19. AhpA is a peroxidase expressed during biofilm formation in Bacillus subtilis.

    Science.gov (United States)

    Zwick, Joelie V; Noble, Sarah; Ellaicy, Yasser K; Coe, Gabrielle Dierker; Hakey, Dylan J; King, Alyssa N; Sadauskas, Alex J; Faulkner, Melinda J

    2017-02-01

    Organisms growing aerobically generate reactive oxygen species such as hydrogen peroxide. These reactive oxygen molecules damage enzymes and DNA, potentially causing cell death. In response, Bacillus subtilis produces at least nine potential peroxide-scavenging enzymes; two belong to the alkylhydroperoxide reductase (Ahp) class of peroxidases. Here, we explore the role of one of these Ahp homologs, AhpA. While previous studies demonstrated that AhpA can scavenge peroxides and thus defend cells against peroxides, they did not clarify when during growth the cell produces AhpA. The results presented here show that the expression of ahpA is regulated in a manner distinct from that of the other peroxide-scavenging enzymes in B. subtilis. While the primary Ahp, AhpC, is expressed during exponential growth and stationary phase, these studies demonstrate that the expression of ahpA is dependent on the transition-state regulator AbrB and the sporulation and biofilm formation transcription factor Spo0A. Furthermore, these results show that ahpA is specifically expressed during biofilm formation, and not during sporulation or stationary phase, suggesting that derepression of ahpA by AbrB requires a signal other than those present upon entry into stationary phase. Despite this expression pattern, ahpA mutant strains still form and maintain robust biofilms, even in the presence of peroxides. Thus, the role of AhpA with regard to protecting cells within biofilms from environmental stresses is still uncertain. These studies highlight the need to further study the Ahp homologs to better understand how they differ from one another and the unique roles they may play in oxidative stress resistance. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Proteomics of drug resistance in Candida glabrata biofilms.

    Science.gov (United States)

    Seneviratne, C Jayampath; Wang, Yu; Jin, Lijian; Abiko, Y; Samaranayake, Lakshman P

    2010-04-01

    Candida glabrata is a fungal pathogen that causes a variety of mucosal and systemic infections among compromised patient populations with higher mortality rates. Previous studies have shown that biofilm mode of the growth of the fungus is highly resistant to antifungal agents compared with the free-floating or planktonic mode of growth. Therefore, in the present study, we used 2-D DIGE to evaluate the differential proteomic profiles of C. glabrata under planktonic and biofilm modes of growth. Candida glabrata biofilms were developed on polystyrene surfaces and age-matched planktonic cultures were obtained in parallel. Initially, biofilm architecture, viability, and antifungal susceptibility were evaluated. Differentially expressed proteins more than 1.5-fold in DIGE analysis were subjected to MS/MS. The transcriptomic regulation of these biomarkers was evaluated by quantitative real-time PCR. Candida glabrata biofilms were highly resistant to the antifungals and biocides compared with the planktonic mode of growth. Candida glabrata biofilm proteome when compared with its planktonic proteome showed upregulation of stress response proteins, while glycolysis enzymes were downregulated. Similar trend could be observed at transcriptomic level. In conclusion, C. glabrata biofilms possess higher amount of stress response proteins, which may potentially contribute to the higher antifungal resistance seen in C. glabrata biofilms.

  1. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors.

    Science.gov (United States)

    Subramenium, Ganapathy Ashwinkumar; Vijayakumar, Karuppiah; Pandian, Shunmugiah Karutha

    2015-08-01

    The present study explores the efficacy of limonene, a cyclic terpene found in the rind of citrus fruits, for antibiofilm potential against species of the genus Streptococcus, which have been deeply studied worldwide owing to their multiple pathogenic efficacy. Limonene showed a concentration-dependent reduction in the biofilm formation of Streptococcus pyogenes (SF370), with minimal biofilm inhibitory concentration (MBIC) of 400 μg ml - 1. Limonene was found to possess about 75-95 % antibiofilm activity against all the pathogens tested, viz. Streptococcus pyogenes (SF370 and 5 clinical isolates), Streptococcus mutans (UA159) and Streptococcus mitis (ATCC 6249) at 400 μg ml - 1 concentration. Microscopic analysis of biofilm architecture revealed a quantitative breach in biofilm formation. Results of a surface-coating assay suggested that the possible mode of action of limonene could be by inhibiting bacterial adhesion to surfaces, thereby preventing the biofilm formation cascade. Susceptibility of limonene-treated Streptococcus pyogenes to healthy human blood goes in unison with gene expression studies in which the mga gene was found to be downregulated. Anti-cariogenic efficacy of limonene against Streptococcus mutans was confirmed, with inhibition of acid production and downregulation of the vicR gene. Downregulation of the covR, mga and vicR genes, which play a critical role in regulating surface-associated proteins in Streptococcus pyogenes and Streptococcus mutans, respectively, is yet further evidence to show that limonene targets surface-associated proteins. The results of physiological assays and gene expression studies clearly show that the surface-associated antagonistic mechanism of limonene also reduces surface-mediated virulence factors.

  2. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life...... is believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  3. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe.

    Science.gov (United States)

    Braun, Burga; Richert, Inga; Szewzyk, Ulrich

    2009-10-01

    Iron-depositing bacteria play an important role in technical water systems (water wells, distribution systems) due to their intense deposition of iron oxides and resulting clogging effects. Pedomicrobium is known as iron- and manganese-oxidizing and accumulating bacterium. The ability to detect and quantify members of this species in biofilm communities is therefore desirable. In this study the fluorescence in situ hybridization (FISH) method was used to detect Pedomicrobium in iron and manganese incrusted biofilms. Based on comparative sequence analysis, we designed and evaluated a specific oligonucleotide probe (Pedo 1250) complementary to the hypervariable region 8 of the 16S rRNA gene for Pedomicrobium. Probe specificities were tested against 3 different strains of Pedomicrobium and Sphingobium yanoikuyae as non-target organism. Using optimized conditions the probe hybridized with all tested strains of Pedomicrobium with an efficiency of 80%. The non-target organism showed no hybridization signals. The new FISH probe was applied successfully for the in situ detection of Pedomicrobium in different native, iron-depositing biofilms. The hybridization results of native bioflims using probe Pedo_1250 agreed with the results of the morphological structure of Pedomicrobium bioflims based on scanning electron microscopy.

  4. Bovine milk osteopontin - Targeting bacterial adhesion for biofilm control

    DEFF Research Database (Denmark)

    Kristensen, Mathilde Frost; Meyer, Rikke Louise; Schlafer, Sebastian

    2016-01-01

    Self-performed mechanical tooth cleaning does usually not result in complete biofilm removal, due to the complex oral anatomy and the strong adhesion of the biofilm to the tooth. Therefore, different supportive measures are employed, most of which aim at the chemical eradication of bacteria...... in dental biofilms. As their bactericidal action impacts the entire oral microflora, agents that inhibit biofilm formation without killing bacteria, such as the bovine milk protein osteopontin, have gained increasing attention. Here, we investigate the adhesion of 8 bacterial species associated with dental...... subsp. paracasei, Streptococcus mitis and Streptococcus oralis with 74.0%, 62.4%, 90.0%, 89.6% and 81.5%, respectively, compared to protein-free saliva. All reductions were statistically significant (p

  5. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane

    KAUST Repository

    Jeong, Sanghyun; Cho, Kyungjin; Jeong, Dawoon; Lee, Seockheon; Leiknes, TorOve; Vigneswaran, Saravanamuthu; Bae, Hyokwan

    2017-01-01

    Four dual media filters (DMFs) were operated in a biofiltration mode with different engineered environments (DMF I and II: coagulation with/without acidification and DMF III and IV: without/with chlorination). Designed biofilm enrichment reactors

  6. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1

    DEFF Research Database (Denmark)

    Labbate, M.; Queek, S.Y.; Koh, K.S.

    2004-01-01

    aggregates and differentiated cell chains. Signal-based complementation of this mutant resulted in a biofilm with the wild-type architecture. Two quorum-sensing-regulated genes (bsmA and bsmB) involved in biofilm development were identified, and we propose that these genes are engaged in fine...

  7. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    Science.gov (United States)

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  8. The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Zhang, Lianbo; Chiang, Wen-Chi; Gao, Qingguo

    2012-01-01

    Bacteria form complex surface-attached biofilm communities in nature. Biofilm cells differentiate into subpopulations which display tolerance towards antimicrobial agents. However, the signal transduction pathways regulating subpopulation differentiation in biofilms are largely unelucidated. In t....... In the present study, we show that the catabolite repression control protein Crc regulates the metabolic state of Pseudomonas aeruginosa cells in biofilms, and plays an important role in the development of antimicrobial-tolerant subpopulations in P. aeruginosa biofilms....

  9. Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development.

    Directory of Open Access Journals (Sweden)

    Jennifer C Chang

    2011-08-01

    Full Text Available Streptococcus pyogenes (Group A Streptococcus, GAS is an important human commensal that occasionally causes localized infections and less frequently causes severe invasive disease with high mortality rates. How GAS regulates expression of factors used to colonize the host and avoid immune responses remains poorly understood. Intercellular communication is an important means by which bacteria coordinate gene expression to defend against host assaults and competing bacteria, yet no conserved cell-to-cell signaling system has been elucidated in GAS. Encoded within the GAS genome are four rgg-like genes, two of which (rgg2 and rgg3 have no previously described function. We tested the hypothesis that rgg2 or rgg3 rely on extracellular peptides to control target-gene regulation. We found that Rgg2 and Rgg3 together tightly regulate two linked genes encoding new peptide pheromones. Rgg2 activates transcription of and is required for full induction of the pheromone genes, while Rgg3 plays an antagonistic role and represses pheromone expression. The active pheromone signals, termed SHP2 and SHP3, are short and hydrophobic (DI[I/L]IIVGG, and, though highly similar in sequence, their ability to disrupt Rgg3-DNA complexes were observed to be different, indicating that specificity and differential activation of promoters are characteristics of the Rgg2/3 regulatory circuit. SHP-pheromone signaling requires an intact oligopeptide permease (opp and a metalloprotease (eep, supporting the model that pro-peptides are secreted, processed to the mature form, and subsequently imported to the cytoplasm to interact directly with the Rgg receptors. At least one consequence of pheromone stimulation of the Rgg2/3 pathway is increased biogenesis of biofilms, which counteracts negative regulation of biofilms by RopB (Rgg1. These data provide the first demonstration that Rgg-dependent quorum sensing functions in GAS and substantiate the role that Rggs play as peptide

  10. Identification of Streptococcus sanguinis Genes Required for Biofilm Formation and Examination of Their Role in Endocarditis Virulence▿

    Science.gov (United States)

    Ge, Xiuchun; Kitten, Todd; Chen, Zhenming; Lee, Sehmi P.; Munro, Cindy L.; Xu, Ping

    2008-01-01

    Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis. PMID:18390999

  11. Identification of Streptococcus sanguinis genes required for biofilm formation and examination of their role in endocarditis virulence.

    Science.gov (United States)

    Ge, Xiuchun; Kitten, Todd; Chen, Zhenming; Lee, Sehmi P; Munro, Cindy L; Xu, Ping

    2008-06-01

    Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis.

  12. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

    International Nuclear Information System (INIS)

    Epstein, Alexander K; Hong, Donggyoon; Kim, Philseok; Aizenberg, Joanna

    2013-01-01

    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1–100 mm s −1 ), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ∼ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ∼ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ∼ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ∼ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments. (paper)

  13. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

    Science.gov (United States)

    Epstein, Alexander K.; Hong, Donggyoon; Kim, Philseok; Aizenberg, Joanna

    2013-09-01

    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1-100 mm s-1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ˜ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ˜ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ˜ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ˜ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.

  14. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds: Biofilms and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    James, Garth A. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Ge Zhao, Alice [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Usui, Marcia [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Underwood, Robert A. [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Nguyen, Hung [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; Beyenal, Haluk [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; deLancey Pulcini, Elinor [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Agostinho Hunt, Alessandra [Department of Microbiology and Molecular Genetics, 5180 Biomedical and Physical Sciences, Michigan State University, East Lansing Michigan; Bernstein, Hans C. [Pacific Northwest National Laboratory, Chemical and Biological Signature Science, Richland Washington; Fleckman, Philip [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Olerud, John [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Williamson, Kerry S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Franklin, Michael J. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Stewart, Philip S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana

    2016-02-16

    Polymicrobial biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo in a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within both euthanized and live mouse wounds had steep gradients that reached minima ranging from 19 to 61% oxygen partial pressure, compared to atmospheric oxygen levels. The oxygen gradients in the mouse wounds were similar to those observed for clinical isolates cultured in vitro and for human ex vivo scabs. No oxygen gradients were observed for heat-killed scabs, suggesting that active metabolism by the viable bacteria contributed to the reduced oxygen partial pressure of the wounds. To characterize the metabolic activities of the bacteria in the mouse wounds, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that the metabolic activities of bacteria in biofilms act as oxygen sinks in chronic wounds and that the depletion of oxygen contributes to the

  15. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors

    Directory of Open Access Journals (Sweden)

    Jones Sara E

    2009-02-01

    Full Text Available Abstract Background Commensal-derived probiotic bacteria inhibit enteric pathogens and regulate host immune responses in the gastrointestinal tract, but studies examining specific functions of beneficial microbes in the context of biofilms have been limited in scope. Results Lactobacillus reuteri formed biofilms that retained functions potentially advantageous to the host including modulation of cytokine output and the production of the antimicrobial agent, reuterin. Immunomodulatory activities of biofilms were demonstrated by the abilities of specific L. reuteri strains to suppress human TNF production by LPS-activated monocytoid cells. Quantification of the antimicrobial glycerol derivative, reuterin, was assessed in order to document the antipathogenic potential of probiotic biofilms. L. reuteri biofilms differed in the quantities of reuterin secreted in this physiological state. Conclusion L. reuteri biofilms secreted factors that confer specific health benefits such as immunomodulation and pathogen inhibition. Future probiotic selection strategies should consider a strain's ability to perform beneficial functions as a biofilm.

  16. An overview of the structure and function of microbial biofilms, with ...

    African Journals Online (AJOL)

    As a food resource, streambed biofilms are intensively grazed by protozoans and macrobenthos, their quality as a food source for grazing organisms affecting the diversity, abundance and distribution of macrobenthic invertebrates. Biofilms are indicators of environmental quality and are active sites for species evolution.

  17. Biofilms

    OpenAIRE

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  18. Arsenic Transfer from As-Rich Sediments to River Water in the Presence of Biofilms

    Directory of Open Access Journals (Sweden)

    Diego Martiñá Prieto

    2016-01-01

    Full Text Available The influence of epipsammic biofilms on As release from river sediments was evaluated in a microcosm experiment where biofilms were grown on sediments containing 106 mg kg−1 As, collected in the Anllóns River, and compared with control systems without biofilms. The As transfer to the water column was low (<0.11% of total As in the sediment and was further reduced by 64% in the presence of biofilms. AsV was the predominant species in the overlying water in both systems. AsIII concentration was higher (up to 12% of total dissolved As in the control systems than in the systems with biofilms, where this species was almost absent. This fact is of toxicological relevance due to the usually higher mobility and toxicity of the reduced AsIII species. Control systems exhibited higher As mobility in water, in sulphate solution, and in weak acid medium and higher bioavailability in diffusive gradient in thin films (DGT devices. Arsenic retained by the biofilm was equally distributed between extracellular and intracellular compartments. Inside the cells, significant concentrations of AsIII, monomethylarsonic acid (MMAV, and dimethylarsinic acid (DMAV were detected, suggesting that active methylation (detoxification processes are occurring in the intracellular compartment.

  19. Role of bacterial efflux pumps in biofilm formation.

    Science.gov (United States)

    Alav, Ilyas; Sutton, J Mark; Rahman, Khondaker Miraz

    2018-02-28

    Efflux pumps are widely implicated in antibiotic resistance because they can extrude the majority of clinically relevant antibiotics from within cells to the extracellular environment. However, there is increasing evidence from many studies to suggest that the pumps also play a role in biofilm formation. These studies have involved investigating the effects of efflux pump gene mutagenesis and efflux pump inhibitors on biofilm formation, and measuring the levels of efflux pump gene expression in biofilms. In particular, several key pathogenic species associated with increasing multidrug resistance, such as Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, have been investigated, whilst other studies have focused on Salmonella enterica serovar Typhimurium as a model organism and problematic pathogen. Studies have shown that efflux pumps, including AcrAB-TolC of E. coli, MexAB-OprM of P. aeruginosa, AdeFGH of A. baumannii and AcrD of S. enterica, play important roles in biofilm formation. The substrates for such pumps, and whether changes in their efflux activity affect biofilm formation directly or indirectly, remain to be determined. By understanding the roles that efflux pumps play in biofilm formation, novel therapeutic strategies can be developed to inhibit their function, to help disrupt biofilms and improve the treatment of infections. This review will discuss and evaluate the evidence for the roles of efflux pumps in biofilm formation and the potential approaches to overcome the increasing problem of biofilm-based infections.

  20. Effects of Iron on DNA Release and Biofilm Development by Pseudomonas Aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Barken, Kim Bundvig; Skindersø, Mette Elena

    2007-01-01

    Extracellular DNA is one of the major matrix components in Pseudomonas aeruginosa biofilms. It functions as an intercellular connector and plays a role in stabilization of the biofilms. Evidence that DNA release in P. aeruginosa PAO1 biofilms is controlled by the las-rhl and pqs quorum-sensing sy......Extracellular DNA is one of the major matrix components in Pseudomonas aeruginosa biofilms. It functions as an intercellular connector and plays a role in stabilization of the biofilms. Evidence that DNA release in P. aeruginosa PAO1 biofilms is controlled by the las-rhl and pqs quorum......-sensing systems has been previously presented. This paper provides evidence that DNA release in P. aeruginosa PAO1 biofilms is also under iron regulation. Experiments involving cultivation of P. aeruginosa in microtitre trays suggested that pqs expression, DNA release and biofilm formation were favoured in media...

  1. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms

    Directory of Open Access Journals (Sweden)

    Roberta T. Melo

    2017-07-01

    Full Text Available Biofilm represents a way of life that allows greater survival of microorganisms in hostile habitats. Campylobacter jejuni is able to form biofilms in vitro and on surfaces at several points in the poultry production chain. Genetic determinants related to their formation are expressed differently between strains and external conditions are decisive in this respect. Our approach combines phylogenetic analysis and the presence of seven specific genes linked to biofilm formation in association with traditional microbiology techniques, using Mueller Hinton and chicken juice as substrates in order to quantify, classify, determine the composition and morphology of the biomass of simple and mixed biofilms of 30 C. jejuni strains. It also evaluates the inhibition of its formation by biocides commonly used in industry and also by zinc oxide nanoparticles. Genetic analysis showed high heterogeneity with the identification of 23 pulsotypes. Despite the diversity, the presence of flaA, cadF, luxS, dnaJ, htrA, cbrA, and sodB genes in all strains shows the high potential for biofilm formation. This ability was only expressed in chicken juice, where they presented phenotype of a strong biofilm producer, with a mean count of 7.37 log CFU/mL and an ultrastructure characteristic of mature biofilm. The composition of simple and mixed biofilms was predominantly composed by proteins. The exceptions were found in mixed biofilms with Pseudomonas aeruginosa, which includes a carbohydrate-rich matrix, lower ability to sessile form in chicken juice and compact architecture of the biofilm, this aspects are intrinsic to this species. Hypochlorite, chlorhexidine, and peracetic acid were more effective in controlling viable cells of C. jejuni in biofilm, but the existence of tolerant strains indicates exposure to sublethal concentrations and development of adaptation mechanisms. This study shows that in chicken juice C. jejuni presents greater potential in producing mature

  2. Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth; Regenberg, Birgitte; Folkesson, Sven Anders

    2014-01-01

    Background : Biofilm-forming Candida species cause infections that can be difficult to eradicate, possibly because of antifungal drug tolerance mechanisms specific to biofilms. In spite of decades of research, the connection between biofilm and drug tolerance is not fully understood. Results : We...... used Saccharomyces cerevisiae as a model for drug susceptibility of yeast biofilms. Confocal laser scanning microscopy showed that S. cerevisiae and C. glabrata form similarly structured biofilms and that the viable cell numbers were significantly reduced by treatment of mature biofilms...... with amphotericin B but not voriconazole, flucytosine, or caspofungin. We showed that metabolic activity in yeast biofilm cells decreased with time, as visualized by FUN-1 staining, and mature, 48-hour biofilms contained cells with slow metabolism and limited growth. Time-kill studies showed that in exponentially...

  3. Biofilm Risks

    DEFF Research Database (Denmark)

    Wirtanen, Gun Linnea; Salo, Satu

    2016-01-01

    This chapter on biofilm risks deals with biofilm formation of pathogenic microbes, sampling and detection methods, biofilm removal, and prevention of biofilm formation. Several common pathogens produce sticky and/or slimy structures in which the cells are embedded, that is, biofilms, on various...... surfaces in food processing. Biofilms of common foodborne pathogens are reviewed. The issue of persistent and nonpersistent microbial contamination in food processing is also discussed. It has been shown that biofilms can be difficult to remove and can thus cause severe disinfection and cleaning problems...... in food factories. In the prevention of biofilm formation microbial control in process lines should both limit the number of microbes on surfaces and reduce microbial activity in the process. Thus the hygienic design of process equipment and process lines is important in improving the process hygiene...

  4. Early canine plaque biofilms: characterization of key bacterial interactions involved in initial colonization of enamel.

    Directory of Open Access Journals (Sweden)

    Lucy J Holcombe

    Full Text Available Periodontal disease (PD is a significant problem in dogs affecting between 44% and 63.6% of the population. The main etiological agent for PD is plaque, a microbial biofilm that colonizes teeth and causes inflammation of the gingiva. Understanding how this biofilm initiates on the tooth surface is of central importance in developing interventions against PD. Although the stages of plaque development on human teeth have been well characterized little is known about how canine plaque develops. Recent studies of the canine oral microbiome have revealed distinct differences between the canine and human oral environments and the bacterial communities they support, particularly with respect to healthy plaque. These differences mean knowledge about the nature of plaque formation in humans may not be directly translatable to dogs. The aim of this study was to identify the bacterial species important in the early stages of canine plaque formation in vivo and then use isolates of these species in a laboratory biofilm model to develop an understanding of the sequential processes which take place during the initial colonization of enamel. Supra-gingival plaque samples were collected from 12 dogs at 24 and 48 hour time points following a full mouth descale and polish. Pyrosequencing of the 16S rDNA identified 134 operational taxonomic units after statistical analysis. The species with the highest relative abundance were Bergeyella zoohelcum, Neisseria shayeganii and a Moraxella species. Streptococcal species, which tend to dominate early human plaque biofilms, had very low relative abundance. In vitro testing of biofilm formation identified five primary colonizer species, three of which belonged to the genus Neisseria. Using these pioneer bacteria as a starting point, viable two and three species communities were developed. Combining in vivo and in vitro data has led us to construct novel models of how the early canine plaque biofilm develops.

  5. Biofilm Filtrates of Pseudomonas aeruginosa Strains Isolated from Cystic Fibrosis Patients Inhibit Preformed Aspergillus fumigatus Biofilms via Apoptosis.

    Science.gov (United States)

    Shirazi, Fazal; Ferreira, Jose A G; Stevens, David A; Clemons, Karl V; Kontoyiannis, Dimitrios P

    2016-01-01

    Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) colonize cystic fibrosis (CF) patient airways. Pa culture filtrates inhibit Af biofilms, and Pa non-CF, mucoid (Muc-CF) and nonmucoid CF (NMuc-CF) isolates form an ascending inhibitory hierarchy. We hypothesized this activity is mediated through apoptosis induction. One Af and three Pa (non-CF, Muc-CF, NMuc-CF) reference isolates were studied. Af biofilm was formed in 96 well plates for 16 h ± Pa biofilm filtrates. After 24 h, apoptosis was characterized by viability dye DiBAc, reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, DNA fragmentation and metacaspase activity. Muc-CF and NMuc-CF filtrates inhibited and damaged Af biofilm (pbiofilms (3.7- fold) compared to treatment with filtrates from Muc-CF- (2.5- fold) or non-CF Pa (1.7- fold). Depolarization of mitochondrial potential was greater upon exposure to NMuc-CF (2.4-fold) compared to Muc-CF (1.8-fold) or non-CF (1.25-fold) (pbiofilm, compared to control, mediated by metacaspase activation. In conclusion, filtrates from CF-Pa isolates were more inhibitory against Af biofilms than from non-CF. The apoptotic effect involves mitochondrial membrane damage associated with metacaspase activation.

  6. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms

    International Nuclear Information System (INIS)

    Thi Thuy Duong; Morin, Soizic; Herlory, Olivier; Feurtet-Mazel, Agnes; Coste, Michel; Boudou, Alain

    2008-01-01

    The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems

  7. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Thi Thuy Duong [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: duongthuy0712@yahoo.com; Morin, Soizic [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas cedex (France); Herlory, Olivier [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France); Feurtet-Mazel, Agnes [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: a.feurtet-mazel@epoc.u-bordeaux1.fr; Coste, Michel [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas cedex (France); Boudou, Alain [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)

    2008-10-20

    The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems.

  8. Biofilms Formed by Gram-Negative Bacteria Undergo Increased Lipid A Palmitoylation, Enhancing In Vivo Survival

    Science.gov (United States)

    Chalabaev, Sabina; Chauhan, Ashwini; Novikov, Alexey; Iyer, Pavithra; Szczesny, Magdalena; Beloin, Christophe; Caroff, Martine

    2014-01-01

    ABSTRACT Bacterial biofilm communities are associated with profound physiological changes that lead to novel properties compared to the properties of individual (planktonic) bacteria. The study of biofilm-associated phenotypes is an essential step toward control of deleterious effects of pathogenic biofilms. Here we investigated lipopolysaccharide (LPS) structural modifications in Escherichia coli biofilm bacteria, and we showed that all tested commensal and pathogenic E. coli biofilm bacteria display LPS modifications corresponding to an increased level of incorporation of palmitate acyl chain (palmitoylation) into lipid A compared to planktonic bacteria. Genetic analysis showed that lipid A palmitoylation in biofilms is mediated by the PagP enzyme, which is regulated by the histone-like protein repressor H-NS and the SlyA regulator. While lipid A palmitoylation does not influence bacterial adhesion, it weakens inflammatory response and enhances resistance to some antimicrobial peptides. Moreover, we showed that lipid A palmitoylation increases in vivo survival of biofilm bacteria in a clinically relevant model of catheter infection, potentially contributing to biofilm tolerance to host immune defenses. The widespread occurrence of increased lipid A palmitoylation in biofilms formed by all tested bacteria suggests that it constitutes a new biofilm-associated phenotype in Gram-negative bacteria. PMID:25139899

  9. The efficacy of sewage influent-isolated bacteriophages on Pseudomonas aeruginosa in a mixed-species biofilm

    KAUST Repository

    Yap, Scott

    2016-01-01

    The growth of environmentally persistent biofilms in cooling towers causes several associated problems, including microbiologically-induced corrosion (MIC) and biofouling. Current chemical control methods are not only ineffective against biofilms

  10. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent.

    Science.gov (United States)

    Schuch, Raymond; Khan, Babar K; Raz, Assaf; Rotolo, Jimmy A; Wittekind, Michael

    2017-07-01

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC 90 ) value of ≤0.25 μg/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes , and Streptococcus agalactiae were also sensitive to disruption, with MBEC 90 values ranging from 0.25 to 8 μg/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component. Copyright © 2017 American Society for Microbiology.

  11. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent

    KAUST Repository

    Schuch, Raymond; Khan, Babar Khalid; Raz, Assaf; Rotolo, Jimmy A.; Wittekind, Michael

    2017-01-01

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC90) value of <= 0.25 mu g/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC90 values ranging from 0.25 to 8 mu g/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.

  12. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent

    KAUST Repository

    Schuch, Raymond

    2017-05-02

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC90) value of <= 0.25 mu g/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC90 values ranging from 0.25 to 8 mu g/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.

  13. Characterization of the effect of serum and chelating agents on Staphylococcus aureus biofilm formation; chelating agents augment biofilm formation through clumping factor B

    Science.gov (United States)

    Abraham, Nabil Mathew

    investigated the molecular basis of this phenomenon. Deletion and complementation analysis and thereafter antibody based inhibition assays confirmed a functional role for the surface adhesin clumping factor B as the causative determinant associated with the increased biofilm phenotype. Finally, we investigated the regulation of clumping factor B-mediated biofilm formation and the basis for the strain dependence. Regulation was determined to occur via two novel post-translational networks- one affecting ClfB activity, mediated by Ca2+ binding to the EF-Hand domain, and the other affecting protein stability, mediated by the enzymatic activity of the metalloprotease-aureolysin. Polymorphisms within the aureolysin gene sequence, between strains, was identified as the basis for some strains forming robust biofilms within chelated media versus other than do not exhibit this phenotype.

  14. Influence of an oyster reef on development of the microbial heterotrophic community of an estuarine biofilm.

    Science.gov (United States)

    Nocker, Andreas; Lepo, Joe E; Snyder, Richard A

    2004-11-01

    We characterized microbial biofilm communities developed over two very closely located but distinct benthic habitats in the Pensacola Bay estuary using two complementary cultivation-independent molecular techniques. Biofilms were grown for 7 days on glass slides held in racks 10 to 15 cm over an oyster reef and an adjacent muddy sand bottom. Total biomass and optical densities of dried biofilms showed dramatic differences for oyster reef versus non-oyster reef biofilms. This study assessed whether the observed spatial variation was reflected in the heterotrophic prokaryotic species composition. Genomic biofilm DNA from both locations was isolated and served as a template to amplify 16S rRNA genes with universal eubacterial primers. Fluorescently labeled PCR products were analyzed by terminal restriction fragment length polymorphism, creating a genetic fingerprint of the composition of the microbial communities. Unlabeled PCR products were cloned in order to construct a clone library of 16S rRNA genes. Amplified ribosomal DNA restriction analysis was used to screen and define ribotypes. Partial sequences from unique ribotypes were compared with existing database entries to identify species and to construct phylogenetic trees representative of community structures. A pronounced difference in species richness and evenness was observed at the two sites. The biofilm community structure from the oyster reef setting had greater evenness and species richness than the one from the muddy sand bottom. The vast majority of the bacteria in the oyster reef biofilm were related to members of the gamma- and delta-subdivisions of Proteobacteria, the Cytophaga-Flavobacterium -Bacteroides cluster, and the phyla Planctomyces and Holophaga-Acidobacterium. The same groups were also present in the biofilm harvested at the muddy sand bottom, with the difference that nearly half of the community consisted of representatives of the Planctomyces phylum. Total species richness was estimated

  15. Shell biofilm-associated nitrous oxide production in marine molluscs

    DEFF Research Database (Denmark)

    Heisterkamp, I.M.; Schramm, Andreas; Larsen, Lone Heimann

    2013-01-01

    Emission of the greenhouse gas nitrous oxide (N2O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces...... are important sites of N2O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2O emission. Nitrification and denitrification were equally important sources of N2O in shell biofilms as revealed by 15N-stable isotope...... mollusc species. Ammonium excretion by the animals was found to be sufficient to sustain N2O production in the shell biofilm. Apparently, the animals provide a nutrient-enriched microenvironment that stimulates growth and N2O production of the shell biofilm. This animal-induced stimulation...

  16. Porphyromonas gingivalis displays a competitive advantage over Aggregatibacter actinomycetemcomitans in co-cultured biofilm.

    Science.gov (United States)

    Takasaki, K; Fujise, O; Miura, M; Hamachi, T; Maeda, K

    2013-06-01

    Biofilm formation occurs through the events of cooperative growth and competitive survival among multiple species. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans are important periodontal pathogens. The aim of this study was to demonstrate competitive or cooperative interactions between these two species in co-cultured biofilm. P. gingivalis strains and gingipain mutants were cultured with or without A. actinomycetemcomitans. Biofilms formed on glass surfaces were analyzed by crystal violet staining and colony counting. Preformed A. actinomycetemcomitans biofilms were treated with P. gingivalis culture supernatants. Growth and proteolytic activities of gingipains were also determined. Monocultured P. gingivalis strains exhibited a range of biofilm-formation abilities and proteolytic activities. The ATCC33277 strain, noted for its high biofilm-formation ability and proteolytic activity, was found to be dominant in biofilm co-cultured with A. actinomycetemcomitans. In a time-resolved assay, A. actinomycetemcomitans was primarily the dominant colonizer on a glass surface and subsequently detached in the presence of increasing numbers of ATCC33277. Detachment of preformed A. actinomycetemcomitans biofilm was observed by incubation with culture supernatants from highly proteolytic strains. These results suggest that P. gingivalis possesses a competitive advantage over A. actinomycetemcomitans. As the required biofilm-formation abilities and proteolytic activities vary among P. gingivalis strains, the diversity of the competitive advantage is likely to affect disease recurrence during periodontal maintenance. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Biofilm formation in surface and drinking water distribution systems in Mafikeng, South Africa

    Directory of Open Access Journals (Sweden)

    Suma George Mulamattathil

    2014-11-01

    Full Text Available Poor quality source water and poorly treated reused wastewater may result in poor quality drinking water that has a higher potential to form biofilms. A biofilm is a group of microorganisms which adhere to a surface. We investigated biofilm growth in the drinking water distribution systems in the Mafikeng area, in the North- West Province of South Africa. Analysis was conducted to determine the presence of faecal coliforms, total coliforms, Pseudomonas spp. and Aeromonas spp. in the biofilms. Biofilms were grown on a device that contained copper and galvanised steel coupons. A mini tap filter – a point-of-use treatment device which can be used at a single faucet – was also used to collect samples. Scanning electron microscopy demonstrated that multi-species biofilms developed on all the coupons as well as on the point-of-use filters. Galvanised steel and carbon filters had the highest density of biofilm. Total coliforms, faecal coliforms and Pseudomonas spp. were isolated from raw water biofilm coupons only. Aeromonas spp. and Pseudomonas spp. were isolated from filters. The susceptibility of selected isolates was tested against 11 antibiotics of clinical interest. The most prevalent antibiotic resistance phenotype observed was KF-AP-C-E-OT-K-TM-A. The presence of virulence genes was determined using the polymerase chain reaction. These results indicate that bacteria present in the water have the ability to colonise as biofilms and drinking water biofilms may be a reservoir for opportunistic bacteria including Pseudomonas and Aeromonas species.

  18. Iron enhances the peptidyl deformylase activity and biofilm formation in Staphylococcus aureus.

    Science.gov (United States)

    Swarupa, Vimjam; Chaudhury, Abhijit; Sarma, Potukuchi Venkata Gurunadha Krishna

    2018-01-01

    Staphylococcus aureus plays a major role in persistent infections and many of these species form structured biofilms on different surfaces which is accompanied by changes in gene expression profiles. Further, iron supplementation plays a critical role in the regulation of several protein(s)/enzyme function, which all aid in the development of active bacterial biofilms. It is well known that for each protein, deformylation is the most crucial step in biosynthesis and is catalyzed by peptidyl deformylase (PDF). Thus, the aim of the current study is to understand the role of iron in biofilm formation and deformylase activity of PDF. Hence, the PDF gene of S. aureus ATCC12600 was PCR amplified using specific primers and sequenced, followed by cloning and expression in Escherichia coli DH5α. The deformylase activity of the purified recombinant PDF was measured in culture supplemented with/without iron where the purified rPDF showed K m of 1.3 mM and V max of 0.035 mM/mg/min, which was close to the native PDF ( K m  = 1.4 mM, V max  = 0.030 mM/mg/min). Interestingly, the K m decreased and PDF activity increased when the culture was supplemented with iron, corroborating with qPCR results showing 100- to 150-fold more expression compared to control in S. aureus and its drug-resistant strains. Further biofilm-forming units (BU) showed an incredible increase (0.42 ± 0.005 to 6.3 ± 0.05 BU), i.e., almost 15-fold elevation in anaerobic conditions, indicating the significance of iron in S. aureus biofilms.

  19. Biofilm formation and antimicrobial sensitivity of lactobacilli contaminants from sugarcane-based fuel ethanol fermentation.

    Science.gov (United States)

    Dellias, Marina de Toledo Ferraz; Borges, Clóvis Daniel; Lopes, Mário Lúcio; da Cruz, Sandra Helena; de Amorim, Henrique Vianna; Tsai, Siu Mui

    2018-02-24

    Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.

  20. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals.

    Science.gov (United States)

    Sneed, Jennifer M; Sharp, Koty H; Ritchie, Kimberly B; Paul, Valerie J

    2014-07-07

    Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. The Impact of Biofilm Formation on the Persistence of Candidemia

    Directory of Open Access Journals (Sweden)

    Wei-Sin Li

    2018-06-01

    Full Text Available This study aimed to determine the predictors of persistent candidemia and examine the impact of biofilm formation by Candida isolates in adult patients with candidemia. Of the adult patients with candidemia in Kaohsiung Chang Gung Memorial Hospital between January 2007 and December 2012, 68 case patients with persistent candidemia (repeated candidemia after a 3-day systemic antifungal therapy and 68 control patients with non-persistent candidemia (Candida clearance from the bloodstream after a 3-day systemic antifungal therapy were included based on propensity score matching and matching for the Candida species isolated. Biofilm formation by the Candida species was assessed in vitro using standard biomass assays. Presence of central venous catheters (CVCs at diagnosis (adjusted odd ratio [AOR], 3.77; 95% confidence interval [CI], 1.09–13.00, p = 0.04, infection with higher biofilm forming strains of Candida species (AOR, 8.03; 95% CI, 2.50–25.81; p < 0.01, and receipt of suboptimal fluconazole doses as initial therapy (AOR, 5.54; 95% CI, 1.53–20.10; p < 0.01 were independently associated with persistent candidemia. Biofilm formation by Candida albicans, C. tropicalis, and C. glabrata strains was significantly higher in the case patients than in the controls. There were no significant differences in the overall mortality and duration of hospitalization between the two groups. Our data suggest that, other than presence of retained CVCs and use of suboptimal doses of fluconazole, biofilm formation was highly associated with development of persistent candidemia.

  2. Adhesion of Porphyromonas gingivalis and Biofilm Formation on Different Types of Orthodontic Brackets

    Directory of Open Access Journals (Sweden)

    William Papaioannou

    2012-01-01

    Full Text Available Objectives. To examine the interaction between Porphyromonas gingivalis and 3 different orthodontic brackets in vitro, focusing on the effect of an early salivary pellicle and other bacteria on the formation of biofilms. Material and Methods. Mono- and multi-species P. gingivalis biofilms were allowed to form in vitro, on 3 different bracket types (stainless steel, ceramic and plastic with and without an early salivary pellicle. The brackets were anaerobically incubated for 3 days in Brain Heart Infusion Broth to form biofilms. Bacteria were quantified by trypsin treatment and enumeration of the total viable counts of bacteria recovered. Results. Saliva was found to significantly affect (<0.001 adhesion and biofilm formation of P. gingivalis, with higher numbers for the coated brackets. No significant effect was detected for the impact of the type of biofilm, although on stainless steel and plastic brackets there was a tendency for higher numbers of the pathogen in multi-species biofilms. Bracket material alone was not found to affect the number of bacteria. Conclusions. The salivary pellicle seems to facilitate the adhesion of P. gingivalis and biofilm formation on orthodontic brackets, while the material comprising the brackets does not significantly impact on the number of bacteria.

  3. Biofilm architecture in a novel pressurized biofilm reactor.

    Science.gov (United States)

    Jiang, Wei; Xia, Siqing; Duan, Liang; Hermanowicz, Slawomir W

    2015-01-01

    A novel pure-oxygen pressurized biofilm reactor was operated at different organic loading, mechanical shear and hydrodynamic conditions to understand the relationships between biofilm architecture and its operation. The ultimate goal was to improve the performance of the biofilm reactor. The biofilm was labeled with seven stains and observed with confocal laser scanning microscopy. Unusual biofilm architecture of a ribbon embedded between two surfaces with very few points of attachment was observed. As organic loading increased, the biofilm morphology changed from a moderately rough layer into a locally smoother biomass with significant bulging protuberances, although the chemical oxygen demand (COD) removal efficiency remained unchanged at about 75%. At higher organic loadings, biofilms contained a larger fraction of active cells distributed uniformly within a proteinaceous matrix with decreasing polysaccharide content. Higher hydrodynamic shear in combination with high organic loading resulted in the collapse of biofilm structure and a substantial decrease in reactor performance (a COD removal of 16%). Moreover, the important role of proteins for the spatial distribution of active cells was demonstrated quantitatively.

  4. Material properties of biofilms – key methods for understanding permeability and mechanics

    Science.gov (United States)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  5. High Levels of Genetic Recombination during Nasopharyngeal Carriage and Biofilm Formation in Streptococcus pneumoniae

    Science.gov (United States)

    Marks, Laura R.; Reddinger, Ryan M.; Hakansson, Anders P.

    2012-01-01

    ABSTRACT Transformation of genetic material between bacteria was first observed in the 1920s using Streptococcus pneumoniae as a model organism. Since then, the mechanism of competence induction and transformation has been well characterized, mainly using planktonic bacteria or septic infection models. However, epidemiological evidence suggests that genetic exchange occurs primarily during pneumococcal nasopharyngeal carriage, which we have recently shown is associated with biofilm growth, and is associated with cocolonization with multiple strains. However, no studies to date have comprehensively investigated genetic exchange during cocolonization in vitro and in vivo or the role of the nasopharyngeal environment in these processes. In this study, we show that genetic exchange during dual-strain carriage in vivo is extremely efficient (10−2) and approximately 10,000,000-fold higher than that measured during septic infection (10−9). This high transformation efficiency was associated with environmental conditions exclusive to the nasopharynx, including the lower temperature of the nasopharynx (32 to 34°C), limited nutrient availability, and interactions with epithelial cells, which were modeled in a novel biofilm model in vitro that showed similarly high transformation efficiencies. The nasopharyngeal environmental factors, combined, were critical for biofilm formation and induced constitutive upregulation of competence genes and downregulation of capsule that promoted transformation. In addition, we show that dual-strain carriage in vivo and biofilms formed in vitro can be transformed during colonization to increase their pneumococcal fitness and also, importantly, that bacteria with lower colonization ability can be protected by strains with higher colonization efficiency, a process unrelated to genetic exchange. PMID:23015736

  6. Development and (evidence for) destruction of biofilm with Pseudomonas aeruginosa as architect

    Science.gov (United States)

    Uzcategui, Valerie N.; Donadeo, John J.; Lombardi, Daniel R.; Costello, Michael J.; Sauer, Richard L.

    1991-01-01

    Disinfection and maintenance of an acceptable level of asepsis in spacecraft potable water delivery systems is a formidable task. The major area of research for this project has been to monitor the formation and growth of biofilm, and biofilm attached microorganisms, on stainless steel surfaces (specifically coupons), and the use of ozone for the elimination of these species in a closed loop system. A number of different techniques have been utilized during the course of a typical run. Scraping and sonication of coupon surfaces with subsequent plating as well as epifluorescence microscopy have been utilized to enumerate biofilm protected Pseudomonas aeruginosa. In addition, scanning electron microscopy is the method of choice to examine the integrity of the biofilm. For ozone determinations, the indigo decolorization spectrophotometric method seems most reliable. Both high- and low-nutrient cultured P. aeruginosa organisms were the target species for the ozone disinfection experiments.

  7. The effect of Streptococcus mutans and Candida glabrata on Candida albicans biofilms formed on different surfaces

    NARCIS (Netherlands)

    Pereira-Cenci, T.; Deng, D.M.; Kraneveld, E.A.; Manders, E.M.M.; Del Bel Cury, A.A.; ten Cate, J.M.; Crielaard, W.

    2008-01-01

    Although Candida containing biofilms contribute to the development of oral candidosis, the characteristics of multi-species Candida biofilms and how oral bacteria modulate these biofilms is poorly understood. The aim of this study was to investigate interactions between Candida albicans and either

  8. Effect of alcohols on filamentation, growth, viability and biofilm development in Candida albicans.

    Science.gov (United States)

    Chauhan, Nitin M; Shinde, Ravikumar B; Karuppayil, S Mohan

    2013-12-01

    In this study we report the potential of alcohols as morphogenetic regulators in Candida albicans. All the alcohols tested influenced various modes of growth like planktonic as well as biofilm forms. Viability was affected at high concentrations. Among the alcohols, the response of C. albicans to amyl alcohol (pentanol) was noteworthy. Amyl alcohol at a concentration 0.5% which was not inhibitory to growth and viability specifically inhibited morphogenetic switching from yeast to hyphal forms. It also inhibited normal biofilm development favoring yeast dominated biofilms. Based on this study we hypothesize that alcohols produced under anaerobic conditions may not favor biofilm development and support dissemination of yeast cells. Since anaerobic conditions are not found to favor production of quorum sensing molecules like farnesol, the alcohols may play a role in morphogenetic regulation.

  9. Antimicrobial Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (VIS + wIRA Alters In Situ Oral Biofilms.

    Directory of Open Access Journals (Sweden)

    A Al-Ahmad

    Full Text Available Recently, growing attention has been paid to antimicrobial photodynamic therapy (aPDT in dentistry. Changing the microbial composition of initial and mature oral biofilm by aPDT using visible light plus water-filtered infrared-A wavelengths (VIS + wIRA has not yet been investigated. Moreover, most aPDT studies have been conducted on planktonic bacterial cultures. Therefore, in the present clinical study we cultivated initial and mature oral biofilms in six healthy volunteers for 2 hours or 3 days, respectively. The biofilms were treated with aPDT using VIS+wIRA (200 mW cm(-2, toluidine blue (TB and chlorine e6 (Ce6 for 5 minutes. Chlorhexidine treated biofilm samples served as positive controls, while untreated biofilms served as negative controls. After aPDT treatment the colony forming units (CFU of the biofilm samples were quantified, and the surviving bacteria were isolated in pure cultures and identified using MALDI-TOF, biochemical tests and 16S rDNA-sequencing. aPDT killed more than 99.9% of the initial viable bacterial count and 95% of the mature oral biofilm in situ, independent of the photosensitizer. The number of surviving bacterial species was highly reduced to 6 (TB and 4 (Ce6 in the treated initial oral biofilm compared to the 20 different species of the untreated biofilm. The proportions of surviving bacterial species were also changed after TB- and Ce6-mediated aPDT of the mature oral biofilm, resulting in a shift in the microbial composition of the treated biofilm compared to that of the control biofilm. In conclusion, aPDT using VIS + wIRA showed a remarkable potential to eradicate both initial and mature oral biofilms, and also to markedly alter the remaining biofilm. This encourages the clinical use of aPDT with VIS + wIRA for the treatment of periimplantitis and periodontitis.

  10. Effects of Disinfection on Legionella spp., Eukarya, and Biofilms in a Hot Water System

    Science.gov (United States)

    Moletta-Denat, Marina; Frère, Jacques; Onillon, Séverine; Trouilhé, Marie-Cécile; Robine, Enric

    2012-01-01

    Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms. PMID:22820326

  11. A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Zhu, Xinna; Long, Fei; Chen, Yonghui

    2008-01-01

    Listeria monocytogenes may persist for long periods in food processing environments. In some instances, this may be due to aggregation or biofilm formation. To investigate the mechanism controlling biofilm formation in the food-borne pathogen L. monocytogenes, we characterized LM-49, a mutant...... with enhanced ability of biofilm-formation generated via transposon Tn917 mutagenesis of L. monocytogenes 4b G. In this mutant, a Tn917 insertion has disrupted the coding region of the gene encoding a putative ATP binding cassette (ABC) transporter permease identical to Lmof2365_1771 (a putative ABC...... the same amount of biofilm biomass as the wild-type strain. Furthermore, transcription of the downstream lm.G_1770 was not influenced by the upstream Tn917 insertion, and the presence of Tn917 has no effect on biofilm formation. These results suggest that lm.G_1771 was solely responsible for the negative...

  12. Staphylococcus aureus biofilm removal by targeting biofilm-associated extracellular proteins

    Directory of Open Access Journals (Sweden)

    Sudhir K Shukla

    2017-01-01

    Methods: Biofilm assay was done in 96-well microtitre plate to evaluate the effect of proteinase K on biofilms of bovine mastitis S. Aureus isolates. Extracellular polymeric substances were extracted and evaluated for their composition (protein, polysaccharides and extracellular DNA, before and after the proteinase K treatment. Results: Biofilm assay showed that 2 μg/ml proteinase K significantly inhibited biofilm development in bap-positive S. aureus V329 as well as other S. aureus isolates (SA7, SA10, SA33, SA352, but not in bap-mutant M556 and SA392 (a weak biofilm-producing strain. Proteinase K treatment on S. aureus planktonic cells showed that there was no inhibition of planktonic growth up to 32 μg/ml of proteinase K. Proteinase K treatment on 24 h old preformed biofilms showed an enhanced dispersion of bap-positive V329 and SA7, SA10, SA33 and SA352 biofilms; however, proteinase K did not affect the bap-mutant S. aureus M556 and SA392 biofilms. Biofilm compositions study before and after proteinase K treatment indicated that Bap might also be involved in eDNA retention in the biofilm matrix that aids in biofilm stability. When proteinase K was used in combination with antibiotics, a synergistic effect in antibiotic efficacy was observed against all biofilm-forming S. aureus isolates. Interpretation & conclusions: Proteinase K inhibited biofilms growth in S. aureus bovine mastitis isolates but did not affect their planktonic growth. An enhanced dispersion of preformed S. aureus biofilms was observed on proteinase K treatment. Proteinase K treatment with antibiotics showed a synergistic effect against S. aureus biofilms. The study suggests that dispersing S. aureus by protease can be of use while devising strategies againstS. aureus biofilms.

  13. Quorum-sensing and cheating in bacterial biofilms

    Science.gov (United States)

    Popat, Roman; Crusz, Shanika A.; Messina, Marco; Williams, Paul; West, Stuart A.; Diggle, Stephen P.

    2012-01-01

    The idea from human societies that self-interest can lead to a breakdown of cooperation at the group level is sometimes termed the public goods dilemma. We tested this idea in the opportunistic bacterial pathogen, Pseudomonas aeruginosa, by examining the influence of putative cheats that do not cooperate via cell-to-cell signalling (quorum-sensing, QS). We found that: (i) QS cheating occurs in biofilm populations owing to exploitation of QS-regulated public goods; (ii) the thickness and density of biofilms was reduced by the presence of non-cooperative cheats; (iii) population growth was reduced by the presence of cheats, and this reduction was greater in biofilms than in planktonic populations; (iv) the susceptibility of biofilms to antibiotics was increased by the presence of cheats; and (v) coercing cooperator cells to increase their level of cooperation decreases the extent to which the presence of cheats reduces population productivity. Our results provide clear support that conflict over public goods reduces population fitness in bacterial biofilms, and that this effect is greater than in planktonic populations. Finally, we discuss the clinical implications that arise from altering the susceptibility to antibiotics. PMID:23034707

  14. Novel application for the prevention and treatment of Staphylococcus aureus biofilm formation

    Science.gov (United States)

    Traba, Christian

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this dissertation, the application of plasma from two very different facets was studied. In part one, the susceptibility of pre-formed Staphylococcus aureus biofilms on biomaterials to different plasmas was investigated. It was found that the distinct chemical/physical properties of plasmas generated from oxygen, nitrogen, and argon all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of these results show: 1) different reactive species produced in each plasma demonstrate specific activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions and the discharge gas. These studies provide insights into the anti-biofilm mechanisms of plasma as well as the effects of different reactive species on biofilm inactivation. Under experimental parameters, bacterial cells in Staphylococcus aureus biofilms were killed (>99.9%) by plasmas within minutes of exposure and no bacteria nor biofilm re-growth from discharge gas treated biofilms was observed throughout the life-span of the re-growth experiment. The decontamination ability of plasmas for the treatment of biofilm related infections on biomedical materials was confirmed and novel applications involving the use of low power argon and oxygen for the treatment of biofilm contaminated biomaterials and indwelling devices is proposed. The second facet of this dissertation explores the interaction between biofilm forming Staphylococcus aureus bacteria on different antibacterial/anti-biofilm surfaces. The antibiotic-free anti-fouling surfaces constructed in this study were generated from the plasma-assisted graft polymerization technique. These sophisticated surfaces were stable, biocompatible and capable of preventing biofilm formation on biomaterials and medical devices. Under

  15. A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community

    DEFF Research Database (Denmark)

    Herschend, Jakob; Damholt, Zacharias Brimnes Visby; Marquard, Andrea Marion

    2017-01-01

    Microbial biofilms are omnipresent in nature and relevant to a broad spectrum of industries ranging from bioremediation and food production to biomedical applications. To date little is understood about how multi-species biofilm communities develop and function on a molecular level, due to the co......Microbial biofilms are omnipresent in nature and relevant to a broad spectrum of industries ranging from bioremediation and food production to biomedical applications. To date little is understood about how multi-species biofilm communities develop and function on a molecular level, due...... to the complexity of these biological systems. Here we apply a meta-proteomics approach to investigate the mechanisms influencing biofilm formation in a model consortium of four bacterial soil isolates; Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus...

  16. Candida glabrata Biofilms: How Far Have We Come?

    Directory of Open Access Journals (Sweden)

    Célia F. Rodrigues

    2017-03-01

    Full Text Available Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata’s biofilms are emerging. In this article, the knowledge available on C. glabrata’s resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them.

  17. Candida glabrata Biofilms: How Far Have We Come?

    Science.gov (United States)

    Rodrigues, Célia F.; Rodrigues, Maria Elisa; Silva, Sónia; Henriques, Mariana

    2017-01-01

    Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata’s biofilms are emerging. In this article, the knowledge available on C. glabrata’s resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them. PMID:29371530

  18. Biofilms of a Bacillus subtilis hospital isolate protect Staphylococcus aureus from biocide action.

    Directory of Open Access Journals (Sweden)

    Arnaud Bridier

    Full Text Available The development of a biofilm constitutes a survival strategy by providing bacteria a protective environment safe from stresses such as microbicide action and can thus lead to important health-care problems. In this study, biofilm resistance of a Bacillus subtilis strain (called hereafter ND(medical recently isolated from endoscope washer-disinfectors to peracetic acid was investigated and its ability to protect the pathogen Staphylococcus aureus in mixed biofilms was evaluated. Biocide action within Bacillus subtilis biofilms was visualised in real time using a non-invasive 4D confocal imaging method. The resistance of single species and mixed biofilms to peracetic acid was quantified using standard plate counting methods and their architecture was explored using confocal imaging and electronic microscopy. The results showed that the ND(medical strain demonstrates the ability to make very large amount of biofilm together with hyper-resistance to the concentration of PAA used in many formulations (3500 ppm. Evidences strongly suggest that the enhanced resistance of the ND(medical strain was related to the specific three-dimensional structure of the biofilm and the large amount of the extracellular matrix produced which can hinder the penetration of peracetic acid. When grown in mixed biofilm with Staphylococcus aureus, the ND(medical strain demonstrated the ability to protect the pathogen from PAA action, thus enabling its persistence in the environment. This work points out the ability of bacteria to adapt to an extremely hostile environment, and the necessity of considering multi-organism ecosystems instead of single species model to decipher the mechanisms of biofilm resistance to antimicrobials agents.

  19. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics.

    Directory of Open Access Journals (Sweden)

    Sasha J Rose

    Full Text Available Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH. In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain and MAH 104 (reference strain were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections.

  20. Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions.

    Science.gov (United States)

    Moche, Martin; Schlüter, Rabea; Bernhardt, Jörg; Plate, Kristina; Riedel, Katharina; Hecker, Michael; Becher, Dörte

    2015-09-04

    Staphylococcal biofilms are associated with persistent infections due to their capacity to protect bacteria against the host's immune system and antibiotics. Cell-surface-associated proteins are of great importance during biofilm formation. In the present study, an optimized biotinylation approach for quantitative GeLC-MS-based analysis of the staphylococcal cell-surface proteome was applied and the cytoplasmic protein fraction was analyzed to elucidate proteomic differences between colony biofilms and planktonic cells. The experimental setup enabled a time-resolved monitoring of the proteome under both culture conditions and the comparison of biofilm cells to planktonic cells at several time points. This allowed discrimination of differences attributed to delayed growth phases from responses provoked by biofilm conditions. Biofilm cells expressed CcpA-dependent catabolic proteins earlier than planktonic cells and strongly accumulated proteins that belong to the SigB stress regulon. The amount of the cell-surface protein and virulence gene regulator Rot decreased within biofilms and MgrA-dependent regulations appeared more pronounced. Biofilm cells simultaneously up-regulated activators (e.g., SarZ) as well as repressors (e.g., SarX) of RNAIII. A decreased amount of high-affinity iron uptake systems and an increased amount of the iron-storage protein FtnA possibly indicated a lower demand of iron in biofilms.

  1. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix

    Science.gov (United States)

    Kong, Eric F.; Tsui, Christina; Kucharíková, Sona; Andes, David

    2016-01-01

    ABSTRACT Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections. PMID:27729510

  2. Type III methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 regulates biofilm formation and human cell invasion

    Directory of Open Access Journals (Sweden)

    Agnieszka eKwiatek

    2015-12-01

    , but more easily penetrate inside the host cells. All these data suggest that the NgoAX methyltransferase, may be implicated in N. gonorrhoeae pathogenicity, involving regulation of biofilm formation, adhesion to host cells and epithelial cell invasion.

  3. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Markussen, Trine

    2011-01-01

    Biofilm infections may not simply be the result of colonization by one bacterium, but rather the consequence of pathogenic contributions from several bacteria. Interspecies interactions of different organisms in mixed-species biofilms remain largely unexplained, but knowledge of these is very imp...

  4. Comparison of transcriptional heterogeneity of eight genes between batch Desulfovibrio vulgaris biofilm and planktonic culture at a single-cell level

    Directory of Open Access Journals (Sweden)

    Zhenhua eQi

    2016-04-01

    Full Text Available Sulfate-reducing bacteria (SRB biofilm formed on metal surfaces can change the physicochemical properties of metals and cause metal corrosion. To enhance understanding of differential gene expression in Desulfovibrio vulgaris under planktonic and biofilm growth modes, a single-cell based RT-qPCR approach was applied to determine gene expression levels of 8 selected target genes in four sets of the 31 individual cells isolated from each growth condition (i.e., biofilm formed on a stainless steel (SS) and planktonic cultures, exponential and stationary phases. The results showed obvious gene-expression heterogeneity for the target genes among D. vulgaris single cells of both biofilm and planktonic cultures. In addition, an increased gene-expression heterogeneity in the D. vulgaris biofilm when compared with the planktonic culture was also observed for seven out of eight selected genes, which may be contributing to the increased complexity in terms of structures and morphology in the biofilm. Moreover, the results showed up-regulation of DVU0281 gene encoding exopolysaccharide biosynthesis protein, and down-regulation of genes involved in energy metabolism (i.e., DVU0434 and DVU0588, stress responses (i.e., DVU2410 and response regulator (i.e., DVU3062 in the D. vulgaris biofilm cells. Finally, the gene (DVU2571 involved in iron transportation was found down-regulated, and two genes (DVU1340 and DVU1397 involved in ferric uptake repressor and iron storage were up-regulated in D. vulgaris biofilm, suggesting their possible roles in maintaining normal metabolism of the D. vulgaris biofilm under environments of high concentration of iron. This study showed that the single-cell based analysis could be a useful approach in deciphering metabolism of microbial biofilms.

  5. Histophilus somni biofilm formation in cardiopulmonary tissue of the bovine host following respiratory challenge

    DEFF Research Database (Denmark)

    Sandal, Indra; Shao, Jian Q.; Annadata, Satish

    2009-01-01

    Biofilms form in a variety of host sites following infection with many bacterial species. However, the study of biofilms in a host is hindered due to the lack of protocols for the proper experimental investigation of biofilms in vivo. Histophilus somni is an agent of respiratory and systemic...... diseases in bovines, and readily forms biofilms in vitro. In the present study the capability of H. somni to form biofilms in cardiopulmonary tissue following experimental respiratory infection in the bovine host was examined by light microscopy, transmission electron microscopy, immunoelectron microscopy...... haemagglutinin (FHA), predicted to be involved in attachment. Thus, this investigation demonstrated that H. somni is capable of forming a biofilm in its natural host, that such a biofilm may be capable of harboring other bovine respiratory disease pathogens, and that the genes responsible for biofilm formation...

  6. Anti-adhesion and Anti-biofilm Potential of Organosilane Nanoparticles against Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Eleni N. Gkana

    2017-07-01

    Full Text Available Nowadays, modification of surfaces by nanoparticulate coatings is a simple process that may have applications in reducing the prevalence of bacterial cells both on medical devices and food processing surfaces. To this direction, biofilm biological cycle of Salmonella Typhimurium, Listeria monocytogenes, Escherichia coli O157:H7, Staphylococcus aureus, and Yersinia enterocolitica on stainless steel and glass surfaces, with or without nanocoating was monitored. To achieve this, four different commercial nanoparticle compounds (two for each surface based on organo-functionalized silanes were selected. In total 10 strains of above species (two for each species were selected to form biofilms on modified or not, stainless steel or glass surfaces, incubated at 37°C for 72 h. Biofilm population was enumerated by bead vortexing-plate counting method at four time intervals (3, 24, 48, and 72 h. Organosilane based products seemed to affect bacterial attachment on the inert surfaces and/or subsequent biofilm formation, but it was highly dependent on the species and material of surfaces involved. Specifically, reduced bacterial adhesion (at 3 h of Salmonella and E. coli was observed (P < 0.05 in nanocoating glass surfaces in comparison with the control ones. Moreover, fewer Salmonella and Yersinia biofilm cells were enumerated on stainless steel coupons coated with organosilanes, than on non-coated surfaces at 24 h (P < 0.05. This study gives an insight to the efficacy of organosilanes based coatings against biofilm formation of foodborne pathogens, however, further studies are needed to better understand the impact of surface modification and the underlying mechanisms which are involved in this phenomenon.

  7. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms

    Science.gov (United States)

    Rosenberg, Gili; Steinberg, Nitai; Oppenheimer-Shaanan, Yaara; Olender, Tsvia; Doron, Shany; Ben-Ari, Julius; Sirota-Madi, Alexandra; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2016-01-01

    Bacillus subtilis biofilms have a fundamental role in shaping the soil ecosystem. During this process, they unavoidably interact with neighbour bacterial species. We studied the interspecies interactions between biofilms of the soil-residing bacteria B. subtilis and related Bacillus species. We found that proximity between the biofilms triggered recruitment of motile B. subtilis cells, which engulfed the competing Bacillus simplex colony. Upon interaction, B. subtilis secreted surfactin and cannibalism toxins, at concentrations that were inert to B. subtilis itself, which eliminated the B. simplex colony, as well as colonies of Bacillus toyonensis. Surfactin toxicity was correlated with the presence of short carbon-tail length isomers, and synergistic with the cannibalism toxins. Importantly, during biofilm development and interspecies interactions a subpopulation in B. subtilis biofilm lost its native plasmid, leading to increased virulence against the competing Bacillus species. Overall, these findings indicate that genetic programs and traits that have little effect on biofilm development when each species is grown in isolation have a dramatic impact when different bacterial species interact. PMID:28721238

  8. Inhibitory effect of farnesol on biofilm formation by Candida tropicalis

    Directory of Open Access Journals (Sweden)

    E Zibafar

    2009-03-01

    Full Text Available ABSTRACT Background: Candidiasis associated with indwelling medical devices is especially problematic since they can act as substrates for biofilm growth which are highly resistant to antifungal drugs. Farnesol is a quorum-sensing molecule that inhibits filamentation and biofilm formation in Candida albicans. Since in recent years Candida tropicalis have been reported as an important and common non-albicans Candida species with high drug resistance pattern, the inhibitory effect of farnesol on biofilm formation by Candida tropicalis was evaluated. Methods: Five Candida tropicalis strains were treated with different concentration of farnesol (0, 30 and 300 µM after 0, 1 and 4 hrs of adherence and then they were maintained under biofilm formation condition in polystyrene, 96-well microtiter plates at 37°C for 48 hrs. Biofilm formation was measured by a semiquantitative colorimetric technique based on reduction assay of 2,3- bis  -2H-tetrazolium- 5- carboxanilide (XTT. Results: The results indicated that the initial adherence time had no effect on biofilm formation and low concentration of farnesol (30 µM could not inhibit biofilm formation. However the presence of non-adherent cells increased biofilm formation significantly and the high concentration of farnesol (300 µM could inhibit biofilm formation. Conclusion: Results of this study showed that the high concentration of farnesol could inhibit biofilm formation and may be used as an adjuvant in prevention and in therapeutic strategies with antifungal drugs.

  9. Biofilm Implication in Oral Diseases of Dogs and Cats

    Directory of Open Access Journals (Sweden)

    Csilla Zambori

    2012-10-01

    Full Text Available The importance of biofilm in disease processes in humans and animals is now widely recognized. In animal species,the risk of infection is probably greater than the risk in humans. This is due to the difference in animal housing andliving environments – animals naturally live in environments with a large and much more diverse microbialcommunity. Most oral bacteria live symbiotically in biofilm. This symbiotic association gives the bacteria differentcommunal properties than individual planktonic bacteria.Bacteria that form biofilm live and develop in communities which are an important property for dental plaqueformation that leads to dental calculus formation, periodontal diseases, dental caries and systemic diseases.The objective of this study is to reveal the role of dental plaque (oral biofilm in pathogenesis of dental calculus,periodontal disease and dental caries in dogs and cats.

  10. Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials.

    Science.gov (United States)

    Vo, Duc-Thang; Sabrina, Sabrina; Lee, Cheng-Kang

    2017-04-01

    Carboxymethyl chitosan (CMCS) was known to have a much better antimicrobial activity than chitosan due to the increased cationic -NH 3 + groups resulted from the intra- and intermolecular interactions between the carboxyl and amino groups. CMCS was grafted onto the surface of silica coated magnetic nanoparticles (MNPs) to obtain magnetically retrievable and deliverable antimicrobial nanoparticles (MNPs@CMCS). The presence of carboxylate groups in CMCS not only enhanced antimicrobial activity but also enabled Ag ions chelating ability to induce the in situ formation of Ag nanoparticles (AgNPs). The deposition of AgNPs on the surface of MNPs@CMCS could significantly increase its antimicrobial activity against planktonic cells due to the dual action of CMCS and AgNPs. Due to its high magnetism, the as-prepared MNPs@CMCS-Ag could be efficiently delivered into an existing biofilm under the guidance of an applied magnetic field. Without direct contact, the Ag ions and/or radical oxygen species (ROS) released from the deposited Ag nanoparticles could effectively kill the bacteria embedded in the extracellular polymeric substances (EPS) matrix of biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Management of dental unit waterline biofilms in the 21st century.

    LENUS (Irish Health Repository)

    O'Donnell, Mary J

    2011-10-01

    Dental chair units (DCUs) use water to cool and irrigate DCU-supplied instruments and tooth surfaces, and provide rinsewater during dental treatment. A complex network of interconnected plastic dental unit waterlines (DUWLs) supply water to these instruments. DUWLs are universally prone to microbial biofilm contamination seeded predominantly from microorganisms in supply water. Consequently, DUWL output water invariably becomes contaminated by high densities of microorganisms, principally Gram-negative environmental bacteria including Pseudomonas aeruginosa and Legionella species, but sometimes contain human-derived pathogens such as Staphylococcus aureus. Patients and staff are exposed to microorganisms from DUWL output water and to contaminated aerosols generated by DCU instruments. A wide variety of approaches, many unsuccessful, have been proposed to control DUWL biofilm. More recently, advances in biofilm science, chemical DUWL biofilm treatment agents, DCU design, supply water treatment and development of automated DUWL biofilm control systems have provided effective long-term solutions to DUWL biofilm control.

  12. Biofilm roughness determines Cryptosporidium parvum retention in environmental biofilms.

    Science.gov (United States)

    DiCesare, E A Wolyniak; Hargreaves, B R; Jellison, K L

    2012-06-01

    The genus Cryptosporidium is a group of waterborne protozoan parasites that have been implicated in significant outbreaks of gastrointestinal infections throughout the world. Biofilms trap these pathogens and can contaminate water supplies through subsequent release. Biofilm microbial assemblages were collected seasonally from three streams in eastern Pennsylvania and used to grow biofilms in laboratory microcosms. Daily oocyst counts in the influx and efflux flow allowed the calculation of daily oocyst retention in the biofilm. Following the removal of oocysts from the influx water, oocyst attachment to the biofilm declined to an equilibrium state within 5 days that was sustained for at least 25 days. Varying the oocyst loading rate for the system showed that biofilm retention could be saturated, suggesting that discrete binding sites determined the maximum number of oocysts retained. Oocyst retention varied seasonally but was consistent across all three sites; however, seasonal oocyst retention was not consistent across years at the same site. No correlation between oocyst attachment and any measured water quality parameter was found. However, oocyst retention was strongly correlated with biofilm surface roughness and roughness varied among seasons and across years. We hypothesize that biofilm roughness and oocyst retention are dependent on environmentally driven changes in the biofilm community rather than directly on water quality conditions. It is important to understand oocyst transport dynamics to reduce risks of human infection. Better understanding of factors controlling biofilm retention of oocysts should improve our understanding of oocyst transport at different scales.

  13. Development of photosynthetic biofilms affected by dissolved and sorbed copper in a eutrophic river

    NARCIS (Netherlands)

    Barranguet, C.; Plans, M.; Van der Grinten, E.; Sinke, J.J.; Admiraal, W.

    2002-01-01

    Photosynthetic biofilms are capable of immobilizing important concentrations of metals, therefore reducing bioavailability to organisms. But also metal pollution is believed to produce changes in the microalgal species composition of biofilms. We investigated the changes undergone by natural

  14. Staring at the cold sun: blue light regulation is distributed within the genus Acinetobacter.

    Directory of Open Access Journals (Sweden)

    Adrián Golic

    Full Text Available We previously showed that the opportunistic nosocomial pathogen Acinetobacter baumannii is able to sense and respond to light via BlsA, a BLUF (Blue-Light-sensing Using FAD-domain photoreceptor protein. Here, we extend our previous studies showing that light regulation is not restricted to A. baumannii, but rather widespread within the genus Acinetobacter. First, we found that blue light modulates motility and biofilm formation in many species of the genus, including members of the Acinetobacter calcoaceticus-A. baumannii complex. In many of these species blue light acts as a key factor guiding the decision between motility or sessility at 24°C, whereas in A. baumannii, light inhibits both motility and biofilm formation. We also show that light regulation of motility occurred not only at 24°C but also at 37°C in non-A. baumannii species, contrasting the situation of A. baumannii which only shows photoregulation at 24°C. Second, we show that Acinetobacter baylyi (strain ADP1 BLUF-photoreceptors can functionally replace in vivo the A. baumannii 17978 BlsA protein and that the pathways leading to biofilm formation are inversely regulated at 24°C between these two microorganisms. Finally, we found the presence of predicted genes coding BLUF-containing proteins in all Acinetobacter sequenced genomes, even though the copy number is variable among them. Phylogenetic analysis suggests a common origin for all BLUF domains present in members of this genus, and could distinguish well-differentiated clusters that group together BLUF homologs from different species, a situation particularly clear for members of the ACB complex. Despite a role played by these BLUF domain-containing proteins in the photoregulation observed in the members of the genus Acinetobacter is a likely scenario given our findings in A. baumannii and A. baylyi, further research will contribute to confirm this possibility.

  15. Staring at the Cold Sun: Blue Light Regulation Is Distributed within the Genus Acinetobacter

    Science.gov (United States)

    Golic, Adrián; Vaneechoutte, Mario; Nemec, Alexandr; Viale, Alejandro M.; Actis, Luis A.; Mussi, María Alejandra

    2013-01-01

    We previously showed that the opportunistic nosocomial pathogen Acinetobacter baumannii is able to sense and respond to light via BlsA, a BLUF (Blue-Light-sensing Using FAD)-domain photoreceptor protein. Here, we extend our previous studies showing that light regulation is not restricted to A. baumannii, but rather widespread within the genus Acinetobacter. First, we found that blue light modulates motility and biofilm formation in many species of the genus, including members of the Acinetobacter calcoaceticus-A. baumannii complex. In many of these species blue light acts as a key factor guiding the decision between motility or sessility at 24°C, whereas in A. baumannii, light inhibits both motility and biofilm formation. We also show that light regulation of motility occurred not only at 24°C but also at 37°C in non-A. baumannii species, contrasting the situation of A. baumannii which only shows photoregulation at 24°C. Second, we show that Acinetobacter baylyi (strain ADP1) BLUF-photoreceptors can functionally replace in vivo the A. baumannii 17978 BlsA protein and that the pathways leading to biofilm formation are inversely regulated at 24°C between these two microorganisms. Finally, we found the presence of predicted genes coding BLUF-containing proteins in all Acinetobacter sequenced genomes, even though the copy number is variable among them. Phylogenetic analysis suggests a common origin for all BLUF domains present in members of this genus, and could distinguish well-differentiated clusters that group together BLUF homologs from different species, a situation particularly clear for members of the ACB complex. Despite a role played by these BLUF domain-containing proteins in the photoregulation observed in the members of the genus Acinetobacter is a likely scenario given our findings in A. baumannii and A. baylyi, further research will contribute to confirm this possibility. PMID:23358859

  16. Potential of Combining Optical and Dual Polarimetric SAR Data for Improving Mangrove Species Discrimination Using Rotation Forest

    Directory of Open Access Journals (Sweden)

    Hongsheng Zhang

    2018-03-01

    Full Text Available Classification of mangrove species using satellite images is important for investigating the spatial distribution of mangroves at community and species levels on local, regional and global scales. Hence, studies of mangrove deforestation and reforestation are imperative to support the conservation of mangrove forests. However, accurate discrimination of mangrove species remains challenging due to many factors such as data resolution, species number and spectral confusion between species. In this study, three different combinations of datasets were designed from Worldview-3 and Radarsat-2 data to classify four mangrove species, Kandelia obovate (KO, Avicennia marina (AM, Acanthus ilicifolius (AI and Aegiceras corniculatum (AC. Then, the Rotation Forest (RoF method was employed to classify the four mangrove species. Results indicated the benefits of dual polarimetric SAR data with an improvement of accuracy by 2–3%, which can be useful for more accurate large-scale mapping of mangrove species. Moreover, the difficulty of classifying different mangrove species, in order of increasing difficulty, was identified as KO < AM < AI < AC. Dual polarimetric SAR data are recognized to improve the classification of AI and AC species. Although this improvement is not remarkable, it is consistent for all three methods. The improvement can be particularly important for large-scale mapping of mangrove forest at the species level. These findings also provide useful guidance for future studies using multi-source satellite data for mangrove monitoring and conservation.

  17. Bacillus cereus growth and biofilm formation: the impact of substratum, iron sources, and transcriptional regulator Sigma 54

    NARCIS (Netherlands)

    Hayrapetyan, Hasmik

    2017-01-01

    Biofilms are surface-associated communities of microbial cells embedded in a matrix of extracellular polymers. It is generally accepted that the biofilm growth mode represents the most common lifestyle of microorganisms. Next to beneficial biofilms used in biotechnology applications, undesired

  18. Antimicrobial potential of Eucalyptus globulus against biofilms of Staphylococcus aureus isolated from bovine mastitis

    OpenAIRE

    Gomes, F. I.; Martins, Natália; Ferreira, Isabel C. F. R.; Henriques, Mariana

    2016-01-01

    Staphylococcus aureus are among the most common species isolated from bovine mastitis. The pathogenesis of this bacterium is facilitated by a number of virulence factors, including the ability to adhere to abiotic surfaces and/or host tissues often leading to biofilms' formation. From the clinical perspective, the most important feature of Staphytococcus species' biofilms is their high tolerance to the conventional antimicrobial therapy. So, the increasing number of bovine m...

  19. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.

    2013-01-23

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.

  20. Surface modification of platelet concentrate bags to reduce biofilm formation and transfusion sepsis.

    Science.gov (United States)

    Wilson-Nieuwenhuis, Joels S T; Dempsey-Hibbert, Nina; Liauw, Christopher M; Whitehead, Kathryn A

    2017-12-01

    Bacterial contamination of blood products poses a major risk in transfusion medicine, including transfusions involving platelet products. Although testing systems are in place for routine screening of platelet units, the formation of bacterial biofilms in such units may decrease the likelihood that bacteria will be detected. This work determined the surface properties of p-PVC platelet concentrate bags and investigated how these characteristics influenced biofilm formation. Serratia marcescens and Staphylococcus epidermidis, two species commonly implicated in platelet contamination, were used to study biofilm growth. The platelet concentrate bags were physically flattened to determine if reducing the surface roughness altered biofilm formation. The results demonstrated that the flattening process of the platelet bags affected the chemistry of the surface and reduced the surface hydrophobicity. Flattening of the surfaces resulted in a reduction in biofilm formation for both species after 5 days, with S. marcescens demonstrating a greater reduction. However, there was no significant difference between the smooth and flat surfaces following 7 days' incubation for S. marcescens and no significant differences between any of the surfaces following 7 days' incubation for S. epidermidis. The results suggest that flattening the p-PVC surfaces may limit potential biofilm formation for the current duration of platelet storage time of 5 days. It is hoped that this work will enhance the understanding of how surface properties influence the development of microbial biofilms in platelet concentrate bags in order to devise a solution to discourage biofilm formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preliminary Transcriptome Analysis of Mature Biofilm and Planktonic Cells of Salmonella Enteritidis Exposure to Acid Stress

    Directory of Open Access Journals (Sweden)

    Kun Jia

    2017-09-01

    Full Text Available Salmonella has emerged as a well-recognized food-borne pathogen, with many strains able to form biofilms and thus cause cross-contamination in food processing environments where acid-based disinfectants are widely encountered. In the present study, RNA sequencing was employed to establish complete transcriptome profiles of Salmonella Enteritidis in the forms of planktonic and biofilm-associated cells cultured in Tryptic Soytone Broth (TSB and acidic TSB (aTSB. The gene expression patterns of S. Enteritidis significantly differed between biofilm-associated and planktonic cells cultivated under the same conditions. The assembled transcriptome of S. Enteritidis in this study contained 5,442 assembled transcripts, including 3,877 differentially expressed genes (DEGs identified in biofilm and planktonic cells. These DEGs were enriched in terms such as regulation of biological process, metabolic process, macromolecular complex, binding and transferase activity, which may play crucial roles in the biofilm formation of S. Enteritidis cultivated in aTSB. Three significant pathways were observed to be enriched under acidic conditions: bacterial chemotaxis, porphyrin-chlorophyll metabolism and sulfur metabolism. In addition, 15 differentially expressed novel non-coding small RNAs (sRNAs were identified, and only one was found to be up-regulated in mature biofilms. This preliminary study of the S. Enteritidis transcriptome serves as a basis for future investigations examining the complex network systems that regulate Salmonella biofilm in acidic environments, which provide information on biofilm formation and acid stress interaction that may facilitate the development of novel disinfection procedures in the food processing industry.

  2. A Biofilm Pocket Model to Evaluate Different Non-Surgical Periodontal Treatment Modalities in Terms of Biofilm Removal and Reformation, Surface Alterations and Attachment of Periodontal Ligament Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Tobias T Hägi

    Full Text Available There is a lack of suitable in vitro models to evaluate various treatment modalities intending to remove subgingival bacterial biofilm. Consequently, the aims of this in vitro-study were: a to establish a pocket model enabling mechanical removal of biofilm and b to evaluate repeated non-surgical periodontal treatment with respect to biofilm removal and reformation, surface alterations, tooth hard-substance-loss, and attachment of periodontal ligament (PDL fibroblasts.Standardized human dentin specimens were colonized by multi-species biofilms for 3.5 days and subsequently placed into artificially created pockets. Non-surgical periodontal treatment was performed as follows: a hand-instrumentation with curettes (CUR, b ultrasonication (US, c subgingival air-polishing using erythritol (EAP and d subgingival air-polishing using erythritol combined with chlorhexidine digluconate (EAP-CHX. The reduction and recolonization of bacterial counts, surface roughness (Ra and Rz, the caused tooth substance-loss (thickness as well as the attachment of PDL fibroblasts were evaluated and statistically analyzed by means of ANOVA with Post-Hoc LSD.After 5 treatments, bacterial reduction in biofilms was highest when applying EAP-CHX (4 log10. The lowest reduction was found after CUR (2 log10. Additionally, substance-loss was the highest when using CUR (128±40 µm in comparison with US (14±12 µm, EAP (6±7 µm and EAP-CHX (11±10 µm. Surface was roughened when using CUR and US. Surfaces exposed to US and to EAP attracted the highest numbers of PDL fibroblasts.The established biofilm model simulating a periodontal pocket combined with interchangeable placements of test specimens with multi-species biofilms enables the evaluation of different non-surgical treatment modalities on biofilm removal and surface alterations. Compared to hand instrumentation the application of ultrasonication and of air-polishing with erythritol prevents from substance-loss and results

  3. Main photoautotrophic components of biofilms in natural draft cooling towers.

    Science.gov (United States)

    Hauer, Tomáš; Čapek, Petr; Böhmová, Petra

    2016-05-01

    While photoautotrophic organisms are an important component of biofilms that live in certain regions of natural draft cooling towers, little is known about these communities. We therefore examined 18 towers at nine sites to identify the general patterns of community assembly in three distinct tower parts, and we examined how community structures differ depending on geography. We also compared the newly acquired data with previously published data. The bottom sections of draft cooling towers are mainly settled by large filamentous algae, primarily Cladophora glomerata. The central portions of towers host a small amount of planktic algae biomass originating in the cooling water. The upper fourths of towers are colonized by biofilms primarily dominated by cyanobacteria, e.g., members of the genera Gloeocapsa and Scytonema. A total of 41 taxa of phototrophic microorganisms were identified. Species composition of the upper fourth of all towers was significantly affected by cardinal position. There was different species composition at positions facing north compared to positions facing south. West- and east-facing positions were transitory and highly similar to each other in terms of species composition. Biofilms contribute to the degradation of paint coatings inside towers.

  4. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized...... as being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections...... such as diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well...

  5. A high-throughput microfluidic dental plaque biofilm system to visualize and quantify the effect of antimicrobials

    Science.gov (United States)

    Nance, William C.; Dowd, Scot E.; Samarian, Derek; Chludzinski, Jeffrey; Delli, Joseph; Battista, John; Rickard, Alexander H.

    2013-01-01

    Objectives Few model systems are amenable to developing multi-species biofilms in parallel under environmentally germane conditions. This is a problem when evaluating the potential real-world effectiveness of antimicrobials in the laboratory. One such antimicrobial is cetylpyridinium chloride (CPC), which is used in numerous over-the-counter oral healthcare products. The aim of this work was to develop a high-throughput microfluidic system that is combined with a confocal laser scanning microscope (CLSM) to quantitatively evaluate the effectiveness of CPC against oral multi-species biofilms grown in human saliva. Methods Twenty-four-channel BioFlux microfluidic plates were inoculated with pooled human saliva and fed filter-sterilized saliva for 20 h at 37°C. The bacterial diversity of the biofilms was evaluated by bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). The antimicrobial/anti-biofilm effect of CPC (0.5%–0.001% w/v) was examined using Live/Dead stain, CLSM and 3D imaging software. Results The analysis of biofilms by bTEFAP demonstrated that they contained genera typically found in human dental plaque. These included Aggregatibacter, Fusobacterium, Neisseria, Porphyromonas, Streptococcus and Veillonella. Using Live/Dead stain, clear gradations in killing were observed when the biofilms were treated with CPC between 0.5% and 0.001% w/v. At 0.5% (w/v) CPC, 90% of the total signal was from dead/damaged cells. Below this concentration range, less killing was observed. In the 0.5%–0.05% (w/v) range CPC penetration/killing was greatest and biofilm thickness was significantly reduced. Conclusions This work demonstrates the utility of a high-throughput microfluidic–CLSM system to grow multi-species oral biofilms, which are compositionally similar to naturally occurring biofilms, to assess the effectiveness of antimicrobials. PMID:23800904

  6. "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment

    DEFF Research Database (Denmark)

    Rossi, Elio; Cimdins, Annika; Luthje, Petra

    2018-01-01

    Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pat...

  7. Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation.

    Science.gov (United States)

    Scavone, Paola; Iribarnegaray, Victoria; Caetano, Ana Laura; Schlapp, Geraldine; Härtel, Steffen; Zunino, Pablo

    2016-07-01

    Proteus mirabilis is one of the most common etiological agents of complicated urinary tract infections, especially those associated with catheterization. This is related to the ability of P. mirabilis to form biofilms on different surfaces. This pathogen encodes 17 putative fimbrial operons, the highest number found in any sequenced bacterial species so far. The present study analyzed the role of four P. mirabilis fimbriae (MR/P, UCA, ATF and PMF) in biofilm formation using isogenic mutants. Experimental approaches included migration over catheter, swimming and swarming motility, the semiquantitative assay based on adhesion and crystal violet staining, and biofilm development by immunofluorescence and confocal microscopy. Different assays were performed using LB or artificial urine. Results indicated that the different fimbriae contribute to the formation of a stable and functional biofilm. Fimbriae revealed particular associated roles. First, all the mutants showed a significantly reduced ability to migrate across urinary catheter sections but neither swimming nor swarming motility were affected. However, some mutants formed smaller biofilms compared with the wild type (MRP and ATF) while others formed significantly larger biofilms (UCA and PMF) showing different bioarchitecture features. It can be concluded that P. mirabilis fimbriae have distinguishable roles in the generation of biofilms, particularly in association with catheters. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Photodynamic therapy with water-soluble phtalocyanines against bacterial biofilms in teeth root canals

    Science.gov (United States)

    Gergova, Raina; Georgieva, Tzvetelina; Angelov, Ivan; Mantareva, Vanya; Valkanov, Serjoga; Mitov, Ivan; Dimitrov, Slavcho

    2012-06-01

    The study presents the PDT with metal phthalocyanines on biofilms grown in root canals of ten representatives of the Gram-positive and the Gram-negative bacterial species and a fungus Candida albicans which cause aqute teeth infections in root canals.. The extracted human single-root teeth infected for 48 h with microorganisms in conditions to form biofilms of the above pathogens were PDT treated. The stage of biofilm formation and PDT effect of the samples of the teeth were determined by the scaning electron microscopy and with standard microbial tests. The PDT treating procedure included 10 min incubation with the respected phthalocyanine and irradiated with 660 nm Diode laser for 10 min. The most strongly antibacterial activity was achieved with zinc(II) phthalocyanine (ZnPc) against Enterococcus faecalis, Staphylococcus aureus and Moraxella catarrhalis. The other Gram-negative bacteria and Candida albicans were 10-100 times more resistant than the Gram-positive species. The Gram-negative Moraxella catarrhalis and Acinetobacter baumannii were more sensitive than the enterobacteria, but eradication of Pseudomonas aeruginosa in biofilm was insignificant. The influence of the stage of biofilm formation and the initial conditions (bacterial density, photosensitizer concentration and energy fluence of radiation) to the obtained level of inactivation of biofilms was investigated. The PDT with ZnPc photosensitizers show a powerful antimicrobial activity against the most frequent pathogens in endodontic infections and this method for inactivation of pathogens may be used with sucsses for treatment of the bacterial biofilms in the root canals.

  9. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms

    Science.gov (United States)

    Castillo Pedraza, Midian C.; Novais, Tatiana F.; Faustoferri, Roberta C.; Quivey, Robert G.; Terekhov, Anton; Hamaker, Bruce R.; Klein, Marlise I.

    2018-01-01

    Streptococcus mutans -derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA – ΔlytS and ΔlytT; LTA – ΔdltA and ΔdltD; and insoluble exopolysaccharide – ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms. PMID:28946780

  10. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms.

    Science.gov (United States)

    Castillo Pedraza, Midian C; Novais, Tatiana F; Faustoferri, Roberta C; Quivey, Robert G; Terekhov, Anton; Hamaker, Bruce R; Klein, Marlise I

    2017-10-01

    Streptococcus mutans-derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA - ∆lytS and ∆lytT; LTA - ∆dltA and ∆dltD; and insoluble exopolysaccharide - ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms.

  11. Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals.

    Directory of Open Access Journals (Sweden)

    Agustina Taglialegna

    2016-06-01

    Full Text Available Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria.

  12. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  13. Poly-P storage by natural biofilms in streams with varying biogeochemistry

    Science.gov (United States)

    Carrick, H. J.

    2015-12-01

    Anthropogenic inputs of nitrogen (N) and phosphorus (P) have increased in many watersheds throughout the world; these inputs have been linked to the eutrophication of inland and coastal waters worldwide. We selected and surveyed 20, third-order streams that supported a range of water column biogeochemical conditions (conductivity, nutrient concentrations) located in the mid-Atlantic region, USA. Biofilm biomass, algal taxonomic composition, and nutrient stoichiometry (C, N, P, and poly-P) were measured at all stream sites. Pulse-amplitude modulation fluorometry (PAM) was used to estimate photosynthetic parameters for stream biofilms (e.g., alpha, Pmax), while microbiology techniques were used to verify poly-P storage by pro- and eukaryotic components of the biofilm (e.g., epi-fluorescent staining). As anticipated, chlorophyll ranged over 2 orders of magnitude among the streams (range 10-1,000 mg/m2). Biofilm chlorophyll and algal biovolume levels increased with water column nutrient contents, while the C:P ratio within the biofilm decreased. Both pro and eukaryotic organisms were present in resident biofilms and actively stored intracellular poly-P. Finally, the rate of photosynthetic within the biofilms appeared to be driven the nutritional condition of the biofilms; pmax and alpha values increased with significantly with stream biofilm poly-P content (r2 = 0.35 and 0.44, respectively). These results indicated that where nutrients are plentiful, biofilms P storage is favored, and this is likely a key regulator of stream biofilm biomass and productivity.

  14. Biophysics of biofilm infection.

    Science.gov (United States)

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Synergistic Interactions within a Multispecies Biofilm Enhance Individual Species Protection against Grazing by a Pelagic Protozoan

    DEFF Research Database (Denmark)

    Raghupathi, Prem Krishnan; Liu, Wenzheng; Sabbe, Koen

    2018-01-01

    of a multispecies bacterial biofilm subject to grazing by a pelagic protozoan predator were investigated. To this end, a mono and multispecies biofilms of four bacterial soil isolates, namely Xanthomonas retroflexus, Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus, were...

  16. Chemical sanitizers to control biofilms formed by two Pseudomonas species on stainless steel surface Sanificantes químicos no controle de biofilmes formados por duas espécies de Pseudomonas em superfície de aço inoxidável

    Directory of Open Access Journals (Sweden)

    Danila Soares Caixeta

    2012-03-01

    Full Text Available The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1 when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.A capacidade de adesão e formação de biofilme por Pseudomonas aeruginosa e Pseudomonas fluorescens em aço inoxidável AISI 304, na presença de leite desnatado resconstituído sobre diferentes temperaturas foi conduzido e o potencial de três sanificantes químicos na remoção de biofilmes monoespécies foi comparado. Pseudomonas aeruginosa cultivada em leite desnatado a 28 °C apresentou melhor crescimento (10,4 log UFC.mL-1 quando comparado com 3,7 and 4,2 log UFC.mL-1 para P. aeruginosa e P. fluorescens cultivadas a 7 °C, respectivamente. Pseudomonas aeruginosa formou biofilme quando cultivada a 28 °C. Contudo foi observado somente adesão de P. aeruginosa e P. fluorescens quando incubada a 7 °C. O dicloroisocianurato de sódio foi o sanificante mais eficiente na redução de células aderidas e em biofilme de P. aeruginosa a 7 e 28 °C, respectivamente. O peróxido de hidrogênio foi o mais eficiente na redução de células aderidas de P. fluorescens a 7 °C.

  17. Subsurface Examination of a Foliar Biofilm Using Scanning Electron- and Focused-Ion-Beam Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Patricia K.; Arey, Bruce W.; Mahaffee, Walt F.

    2011-08-01

    The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB can remove a predetermined amount of material from a selected site to allow for subsurface exploration and when coupled with SEM or scanning ion- beam microscopy (SIM) could be suitable to examine the subsurface structure of bacterial biofilms on the leaf surface. The suitability of chemical and cryofixation was examined for use with the FIB SEM to examine bacterial biofilms on leaf surfaces. The biological control agent, Burkholderia pyroccinia FP62, that rapidly colonizes the leaf surface and forms biofilms, was inoculated onto geranium leaves and incubated in a greenhouse for 7 or 14 days. Cryofixation was not suitable for examination of leaf biofilms because it created a frozen layer over the leaf surface that cracked when exposed to the electron beam and the protective cap required for FIB milling could not be accurately deposited. With chemically fixed samples, it was possible to precisely FIB mill a single cross section (5 µm) or sequential cross sections from a single site without any damage to the surrounding surface. Biofilms, 7 days post-inoculation (DPI), were composed of 2 to 5 bacterial cell layers while biofilms 14 DPI ranged from 5 to greater than 30 cell layers. Empty spaces between bacteria cells in the subsurface structure were observed in biofilms 7- and 14-DPI. Sequential cross sections inferred that the empty spaces were often continuous between FP62 cells and could possibly make up a network of channels throughout the biofilm. FIB SEM was a useful tool to observe the subsurface composition of a foliar biofilm.

  18. Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis

    Directory of Open Access Journals (Sweden)

    Martin J. Süess

    2016-04-01

    Full Text Available We report on the dynamic behavior of dual-wavelength distributed feedback (DFB quantum cascade lasers (QCLs in continuous wave and intermittent continuous wave operation. We investigate inherent etaloning effects based on spectrally resolved light-current-voltage (LIV characterization and perform time-resolved spectral analysis of thermal chirping during long (>5 µs current pulses. The theoretical aspects of the observed behavior are discussed using a combination of finite element method simulations and transfer matrix method calculations of dual-section DFB structures. Based on these results, we demonstrate how the internal etaloning can be minimized using anti-reflective (AR coatings. Finally, the potential and benefits of these devices for high precision trace gas analysis are demonstrated using a laser absorption spectroscopic setup. Thereby, the atmospherically highly relevant compounds CO2 (including its major isotopologues, CO and N2O are simultaneously determined with a precision of 0.16 ppm, 0.22 ppb and 0.26 ppb, respectively, using a 1-s integration time and an optical path-length of 36 m. This creates exciting new opportunities in the development of compact, multi-species trace gas analyzers.

  19. Microbial Biofilms: Persisters, Tolerance and Dosing

    Science.gov (United States)

    Cogan, N. G.

    2005-03-01

    Almost all moist surfaces are colonized by microbial biofilms. Biofilms are implicated in cross-contamination of food products, biofouling, medical implants and various human infections such as dental cavities, ulcerative colitis and chronic respiratory infections. Much of current research is focused on the recalcitrance of biofilms to typical antibiotic and antimicrobial treatments. Although the polymer component of biofilms impedes the penetration of antimicrobials through reaction-diffusion limitation, this does not explain the observed tolerance, it merely delays the action of the agent. Heterogeneities in growth-rate also slow the eradication of the bacteria since most antimicrobials are far less effective for non-growing, or slowly growing bacteria. This also does not fully describe biofilm tolerance, since heterogeneities arr primairly a result of nutrient consumption. In this investigation, we describe the formation of `persister' cells which neither grow nor die in the presence of antibiotics. We propose that the cells are of a different phenotype than typical bacterial cells and the expression of the phenotype is regulated by the growth rate and the antibiotic concentration. We describe several experiments which describe the dynamics of persister cells and which motivate a dosing protocol that calls for periodic dosing of the population. We then introduce a mathematical model, which describes the effect of such a dosing regiment and indicates that the relative dose/withdrawal times are important in determining the effectiveness of such a treatment. A reduced model is introduced and the similar behavior is demonstrated analytically.

  20. Dual Regulation of Voltage-Sensitive Ion Channels by PIP2

    Directory of Open Access Journals (Sweden)

    Aldo A Rodríguez Menchaca

    2012-09-01

    Full Text Available Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidilinositol 4,5-bisphosphate (PIP2. Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav channels were shown to be regulated bidirectionally by PIP2. On one hand, PIP2 stabilized their activity by reducing current rundown but on the other hand it produced a voltage-dependent inhibition by shifting the activation curve to more positive voltages. For voltage-gated potassium (Kv channels PIP2 was first shown to prevent N-type inactivation. Careful examination of the effects of PIP2 on the activation mechanism of Kv1.2 has shown a similar bidirectional regulation as in the Cav channels. The two effects could be distinguished kinetically, in terms of their sensitivities to PIP2 and by distinct molecular determinants. The rightward shift of the Kv1.2 voltage dependence implicated basic residues in the S4-S5 linker and was consistent with stabilization of the inactive state of the voltage sensor. A third type of a voltage-gated ion channel modulated by PIP2 is the hyperpolarization-activated cyclic nucleotide-gated (HCN channel. PIP2 has been shown to enhance the opening of HCN channels by shifting their voltage-dependent activation toward depolarized potentials. The sea urchin HCN channel, SpIH, showed again a PIP2-mediated bidirectional effect but in reverse order than the depolarization-activated Cav and Kv channels: a voltage-dependent potentiation, like the mammalian HCN channels, but also an inhibition of the cGMP-induced current activation. Just like the Kv1.2 channels, distinct molecular determinants underlied the PIP2 dual effects on SpIH channels. The dual regulation of these very different ion channels, all of which are voltage dependent, points to conserved mechanisms of regulation of these channels by PIP2.

  1. Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Kooltheat, Nateelak; Kamuthachad, Ludthawun; Anthapanya, Methinee; Samakchan, Natthapon; Sranujit, Rungnapa Pankla; Potup, Pachuen; Ferrante, Antonio; Usuwanthim, Kanchana

    2016-04-01

    Although kaffir lime has been reported to exhibit antioxidant and antileukemic activity, little is known about the antimicrobial effect of kaffir lime extract. Because Streptococcus mutans has been known to cause biofilm formation, it has been considered the most important causative pathogen of dental caries. Thus, the effective control of its effects on the oral biofilm is the key to the prevention of dental caries. The aims of the present study were to investigate the effect of kaffir lime leaves extract on biofilm formation and its antibacterial activity on S. mutans. We examined the effect of kaffir lime leaves extract on growth and biofilm formation of S. mutans. For the investigation we used a kaffir lime extract with high phenolic content. The minimum inhibitory concentration of the extract was determined by broth microdilution assay. The inhibitory effect of the test substances on biofilm formation was also investigated by biofilm formation assay and qRT-PCR of biofilm formation-associated genes. Kaffir lime leaves extract inhibits the growth of S. mutans, corresponding to the activity of an antibiotic, ampicillin. Formation of biofilm by S. mutans was also inhibited by the extract. These results were confirmed by the down-regulation of genes associated with the biofilm formation. The findings highlight the ability of kaffir lime leaves extract to inhibit S. mutans activity, which may be beneficial in the prevention of biofilm formation on dental surface, reducing dental plaque and decreasing the chance of dental carries. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Andreas Dötsch

    Full Text Available In this study, we evaluated how gene expression differs in mature Pseudomonas aeruginosa biofilms as opposed to planktonic cells by the use of RNA sequencing technology that gives rise to both quantitative and qualitative information on the transcriptome. Although a large proportion of genes were consistently regulated in both the stationary phase and biofilm cultures as opposed to the late exponential growth phase cultures, the global biofilm gene expression pattern was clearly distinct indicating that biofilms are not just surface attached cells in stationary phase. A large amount of the genes found to be biofilm specific were involved in adaptation to microaerophilic growth conditions, repression of type three secretion and production of extracellular matrix components. Additionally, we found many small RNAs to be differentially regulated most of them similarly in stationary phase cultures and biofilms. A qualitative analysis of the RNA-seq data revealed more than 3000 putative transcriptional start sites (TSS. By the use of rapid amplification of cDNA ends (5'-RACE we confirmed the presence of three different TSS associated with the pqsABCDE operon, two in the promoter of pqsA and one upstream of the second gene, pqsB. Taken together, this study reports the first transcriptome study on P. aeruginosa that employs RNA sequencing technology and provides insights into the quantitative and qualitative transcriptome including the expression of small RNAs in P. aeruginosa biofilms.

  3. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.

    Science.gov (United States)

    Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M

    2013-01-01

    Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection

    Science.gov (United States)

    de Melo, Wanessa CMA; Avci, Pinar; de Oliveira, Milene Nóbrega; Gupta, Asheesh; Vecchio, Daniela; Sadasivam, Magesh; Chandran, Rakkiyappan; Huang, Ying-Ying; Yin, Rui; Perussi, Livia R; Tegos, George P; Perussi, Janice R; Dai, Tianhong; Hamblin, Michael R

    2015-01-01

    Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. PMID:23879608

  5. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Science.gov (United States)

    Wang, Zhejun; de la Fuente-Núñez, Cesar; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W

    2015-01-01

    Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM), peptide 1018 was able to significantly (pbiofilm formation over 3 days. The activity of the peptide on preformed biofilms was found to be concentration-dependent since more than 60% of the total plaque biofilm cell population was killed by 10 μg/ml of peptide 1018 in 3 days, while at 5 μg/ml 50% of cells were dead and at 1 μg/ml the peptide triggered cell death in around 30% of the total bacterial population, as revealed by confocal microscopy. The presence of saliva did not affect peptide activity, since no statistically significant difference was found in the ability of peptide 1018 to kill oral biofilms using either saliva coated and non-saliva coated hydroxyapatite surfaces. Scanning electron microscopy experiments indicated that peptide 1018 induced cell lysis in plaque biofilms. Furthermore, combined treatment using peptide 1018 and chlorhexidine (CHX) increased the anti-biofilm activity of each compound compared to when these were used alone, resulting in >50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  6. Staphylococcus aureus biofilms: recent developments in biofilm dispersal.

    Science.gov (United States)

    Lister, Jessica L; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.

  7. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ryan, Robert P.; Lucey, Jean; O'Donovan, Karen

    2009-01-01

    residues (YN-GYP). Here we have investigated the role of these proteins in biofilm formation, virulence factor synthesis and virulence of P. aeruginosa. Mutation of PA4108 and PA4781 led to an increase in the level of cyclic-di-GMP in P. aeruginosa, consistent with the predicted activity of the encoded......2572 had a negative influence on swarming that was cryptic and was revealed only after removal of an uncharacterized C-terminal domain. Mutation of PA4108, PA4781 and PA2572 had distinct effects on biofilm formation and architecture of P. aeruginosa. All three proteins contributed to virulence of P...

  8. Polyphasic analysis of an Azoarcus-Leptothrix-dominated bacterial biofilm developed on stainless steel surface in a gasoline-contaminated hypoxic groundwater.

    Science.gov (United States)

    Benedek, Tibor; Táncsics, András; Szabó, István; Farkas, Milán; Szoboszlay, Sándor; Fábián, Krisztina; Maróti, Gergely; Kriszt, Balázs

    2016-05-01

    Pump and treat systems are widely used for hydrocarbon-contaminated groundwater remediation. Although biofouling (formation of clogging biofilms on pump surfaces) is a common problem in these systems, scarce information is available regarding the phylogenetic and functional complexity of such biofilms. Extensive information about the taxa and species as well as metabolic potential of a bacterial biofilm developed on the stainless steel surface of a pump submerged in a gasoline-contaminated hypoxic groundwater is presented. Results shed light on a complex network of interconnected hydrocarbon-degrading chemoorganotrophic and chemolitotrophic bacteria. It was found that besides the well-known hydrocarbon-degrading aerobic/facultative anaerobic biofilm-forming organisms (e.g., Azoarcus, Leptothrix, Acidovorax, Thauera, Pseudomonas, etc.), representatives of Fe(2+)-and Mn(2+)-oxidizing (Thiobacillus, Sideroxydans, Gallionella, Rhodopseudomonas, etc.) as well as of Fe(3+)- and Mn(4+)-respiring (Rhodoferax, Geobacter, Magnetospirillum, Sulfurimonas, etc.) bacteria were present in the biofilm. The predominance of β-Proteobacteria within the biofilm bacterial community in phylogenetic and functional point of view was revealed. Investigation of meta-cleavage dioxygenase and benzylsuccinate synthase (bssA) genes indicated that within the biofilm, Azoarcus, Leptothrix, Zoogloea, and Thauera species are most probably involved in intrinsic biodegradation of aromatic hydrocarbons. Polyphasic analysis of the biofilm shed light on the fact that subsurface microbial accretions might be reservoirs of novel putatively hydrocarbon-degrading bacterial species. Moreover, clogging biofilms besides their detrimental effects might supplement the efficiency of pump and treat systems.

  9. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Directory of Open Access Journals (Sweden)

    Zhejun Wang

    Full Text Available Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM, peptide 1018 was able to significantly (p50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  10. Bacterial biofilms and quorum sensing: fidelity in bioremediation technology.

    Science.gov (United States)

    Mangwani, Neelam; Kumari, Supriya; Das, Surajit

    Increased contamination of the environment with toxic pollutants has paved the way for efficient strategies which can be implemented for environmental restoration. The major problem with conventional methods used for cleaning of pollutants is inefficiency and high economic costs. Bioremediation is a growing technology having advanced potential of cleaning pollutants. Biofilm formed by various micro-organisms potentially provide a suitable microenvironment for efficient bioremediation processes. High cell density and stress resistance properties of the biofilm environment provide opportunities for efficient metabolism of number of hydrophobic and toxic compounds. Bacterial biofilm formation is often regulated by quorum sensing (QS) which is a population density-based cell-cell communication process via signaling molecules. Numerous signaling molecules such as acyl homoserine lactones, peptides, autoinducer-2, diffusion signaling factors, and α-hydroxyketones have been studied in bacteria. Genetic alteration of QS machinery can be useful to modulate vital characters valuable for environmental applications such as biofilm formation, biosurfactant production, exopolysaccharide synthesis, horizontal gene transfer, catabolic gene expression, motility, and chemotaxis. These qualities are imperative for bacteria during degradation or detoxification of any pollutant. QS signals can be used for the fabrication of engineered biofilms with enhanced degradation kinetics. This review discusses the connection between QS and biofilm formation by bacteria in relation to bioremediation technology.

  11. Promoting Preservice Teachers' Dual Self-Regulation Roles as Learners and as Teachers: Effects of Generic vs. Specific Prompts

    Science.gov (United States)

    Kramarski, Bracha; Kohen, Zehavit

    2017-01-01

    Researchers have recently suggested that teachers must undertake important dual self-regulation roles if they want to become effective at improving their students' self-regulation. First, teachers need to become proficient at self-regulated learning (SRL) themselves, and then teachers need to learn explicitly how to proactively teach SRL -- termed…

  12. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation.

    Science.gov (United States)

    Okshevsky, Mira; Louw, Matilde Greve; Lamela, Elena Otero; Nilsson, Martin; Tolker-Nielsen, Tim; Meyer, Rikke Louise

    2018-04-01

    Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 +  transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. Essential oils from Origanum vulgare and Salvia officinalis exhibit antibacterial and anti-biofilm activities against Streptococcus pyogenes.

    Science.gov (United States)

    Wijesundara, Niluni M; Rupasinghe, H P Vasantha

    2018-04-01

    In the present study, essential oils (EOs) extracted from oregano, sage, cloves, and ginger were evaluated for the phytochemical profile, antibacterial, and anti-biofilm activities against Streptococcus pyogenes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of EOs. The minimum biofilm inhibitory concentrations (MBICs) were determined using MTT assay and fixed biofilms were observed through scan electron microscopy. The oregano and sage EOs showed the lowest MIC as well as MBC of 0.25-0.5 mg/mL. Time kill assay results showed that oregano and sage EOs exhibited bactericidal effects within 5 min and 4 h, respectively. Both oregano and sage extracts acts as a potent anti-biofilm agent with dual actions, preventing and eradicating the biofilm. The microscopic visualization of biofilms treated with EOs have shown morphological and density changes compared to the untreated control. Oregano EO was constituted predominantly carvacrol (91.6%) and in sage EO, higher levels of α-thujone (28.5%) and camphor (16.6%) were revealed. EOs of oregano and sage inhibit the growth and biofilm formation of S. pyogenes. Effective concentrations of oregano and sage EOs and their phytochemicals can be used in developing potential plant-derived antimicrobial agents in the management of streptococcal pharyngitis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The in vivo biofilm

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Maria; Alhede, Morten

    2013-01-01

    Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms...... have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo...... experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms...

  15. Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome.

    Science.gov (United States)

    Garcia, S S; Blackledge, M S; Michalek, S; Su, L; Ptacek, T; Eipers, P; Morrow, C; Lefkowitz, E J; Melander, C; Wu, H

    2017-07-01

    Dental caries is a costly and prevalent disease characterized by the demineralization of the tooth's enamel. Disease outcome is influenced by host factors, dietary intake, cariogenic bacteria, and other microbes. The cariogenic bacterial species Streptococcus mutans metabolizes sucrose to initiate biofilm formation on the tooth surface and consequently produces lactic acid to degrade the tooth's enamel. Persistence of S. mutans biofilms in the oral cavity can lead to tooth decay. To date, no anticaries therapies that specifically target S. mutans biofilms but do not disturb the overall oral microbiome are available. We screened a library of 2-aminoimidazole antibiofilm compounds with a biofilm dispersion assay and identified a small molecule that specifically targets S. mutans biofilms. At 5 µM, the small molecule annotated 3F1 dispersed 50% of the established S. mutans biofilm but did not disperse biofilms formed by the commensal species Streptococcus sanguinis or Streptococcus gordonii. 3F1 dispersed S. mutans biofilms independently of biofilm-related factors such as antigen I/II and glucosyltransferases. 3F1 treatment effectively prevented dental caries by controlling S. mutans in a rat caries model without perturbing the oral microbiota. Our study demonstrates that selective targeting of S. mutans biofilms by 3F1 was able to effectively reduce dental caries in vivo without affecting the overall oral microbiota shaped by the intake of dietary sugars, suggesting that the pathogenic biofilm-specific treatment is a viable strategy for disease prevention.

  16. Extracellular matrix influence in Streptococcus mutans gene expression in a cariogenic biofilm.

    Science.gov (United States)

    Florez Salamanca, E J; Klein, M I

    2018-04-01

    Caries etiology is biofilm-diet-dependent. Biofilms are highly dynamic and structured microbial communities enmeshed in a three-dimensional extracellular matrix. The study evaluated the expression dynamics of Streptococcus mutans genes associated with exopolysaccharides (EPS) (gtfBCD, gbpB, dexA), lipoteichoic acids (LTA) (dltABCD, SMU_775c) and extracellular DNA (eDNA) (lytST, lrgAB, ccpA) during matrix development within a mixed-species biofilm of S. mutans, Actinomyces naeslundii and Streptococcus gordonii. Mixed-species biofilms using S. mutans strains UA159 or ΔgtfB formed on saliva-coated hydroxyapatite discs were submitted to a nutritional challenge (providing an abundance of sucrose and starch). Biofilms were removed at eight developmental stages for gene expression analysis by quantitative polymerase chain reaction. The pH of spent culture media remained acidic throughout the experimental periods, being lower after sucrose and starch exposure. All genes were expressed at all biofilm developmental phases. EPS- and LTA-associated genes had a similar expression profile for both biofilms, presenting lower levels of expression at 67, 91 and 115 hours and a peak of expression at 55 hours, but having distinct expression magnitudes, with lower values for ΔgtfB (eg, fold-difference of ~382 for gtfC and ~16 for dltB at 43 hours). The eDNA-associated genes presented different dynamics of expression between both strains. In UA159 biofilms lrgA and lrgB genes were highly expressed at 29 hours (which were ~13 and ~5.4 times vs ΔgtfB, respectively), whereas in ΔgtfB biofilms an inverse relationship between lytS and lrgA and lrgB expression was detected. Therefore, the deletion of gtfB influences dynamics and magnitude of expression of genes associated with matrix main components. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy

    Science.gov (United States)

    Cooper, N.; Da Ros, E.; Nute, J.; Baldolini, D.; Jouve, P.; Hackermüller, L.; Langer, M.

    2018-03-01

    We describe the design, construction and characterisation of a collimated, dual-species oven source for generating intense beams of lithium and caesium in UHV environments. Our design produces full beam overlap for the two species. Using an aligned microtube array the FWHM of the output beam is restricted to  ˜75 milliradians, with an estimated axial brightness of 3.6× 1014 atoms s-1 sr-1 for Li and 7.4× 1015 atoms s-1 sr-1 for Cs. We measure the properties of the output beam using a spatially-resolved fluorescence technique, which allows for the extraction of additional information not accessible without spatial resolution.

  18. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm

  19. Capsular Polysaccharide Interferes with Biofilm Formation by Pasteurella multocida Serogroup A

    Directory of Open Access Journals (Sweden)

    Briana Petruzzi

    2017-11-01

    Full Text Available Pasteurella multocida is an important multihost animal and zoonotic pathogen that is capable of causing respiratory and multisystemic diseases, bacteremia, and bite wound infections. The glycosaminoglycan capsule of P. multocida is an essential virulence factor that protects the bacterium from host defenses. However, chronic infections (such as swine atrophic rhinitis and the carrier state in birds and other animals may be associated with biofilm formation, which has not been characterized in P. multocida. Biofilm formation by clinical isolates was inversely related to capsule production and was confirmed with capsule-deficient mutants of highly encapsulated strains. Capsule-deficient mutants formed biofilms with a larger biomass that was thicker and smoother than the biofilm of encapsulated strains. Passage of a highly encapsulated, poor-biofilm-forming strain under conditions that favored biofilm formation resulted in the production of less capsular polysaccharide and a more robust biofilm, as did addition of hyaluronidase to the growth medium of all of the strains tested. The matrix material of the biofilm was composed predominately of a glycogen exopolysaccharide (EPS, as determined by gas chromatography-mass spectrometry, nuclear magnetic resonance, and enzymatic digestion. However, a putative glycogen synthesis locus was not differentially regulated when the bacteria were grown as a biofilm or planktonically, as determined by quantitative reverse transcriptase PCR. Therefore, the negatively charged capsule may interfere with biofilm formation by blocking adherence to a surface or by preventing the EPS matrix from encasing large numbers of bacterial cells. This is the first detailed description of biofilm formation and a glycogen EPS by P. multocida.

  20. Biofilm formation by clinical isolates and the implications in chronic infections

    Directory of Open Access Journals (Sweden)

    Sanchez Carlos J

    2013-01-01

    Full Text Available Abstract Background Biofilm formation is a major virulence factor contributing to the chronicity of infections. To date few studies have evaluated biofilm formation in infecting isolates of patients including both Gram-positive and Gram-negative multidrug-resistant (MDR species in the context of numerous types of infectious syndromes. Herein, we investigated the biofilm forming capacity in a large collection of single patient infecting isolates and compared the relationship between biofilm formation to various strain characteristics. Methods The biofilm-forming capacity of 205 randomly sampled clinical isolates from patients, collected from various anatomical sites, admitted for treatment at Brooke Army Medical Center (BAMC from 2004–2011, including methicillin-resistant/methicillin susceptible Staphylococcus aureus (MRSA/MSSA (n=23, Acinetobacter baumannii (n=53, Pseudomonas aeruginosa (n=36, Klebsiella pneumoniae (n=54, and Escherichia coli (n=39, were evaluated for biofilm formation using the high-throughput microtiter plate assay and scanning electron microscopy (SEM. Relationships between biofilm formation to clonal type, site of isolate collection, and MDR phenotype were evaluated. Furthermore, in patients with relapsing infections, serial strains were assessed for their ability to form biofilms in vitro. Results Of the 205 clinical isolates tested, 126 strains (61.4% were observed to form biofilms in vitro at levels greater than or equal to the Staphylococcus epidermidis, positive biofilm producing strain, with P. aeruginosa and S. aureus having the greatest number of biofilm producing strains. Biofilm formation was significantly associated with specific clonal types, the site of isolate collection, and strains positive for biofilm formation were more frequently observed to be MDR. In patients with relapsing infections, the majority of serial isolates recovered from these individuals were observed to be strong biofilm producers in vitro

  1. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.

    Science.gov (United States)

    Yan, Jing; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2017-08-23

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmotic pressure difference between the biofilm and the external environment. This pressure difference promotes biofilm expansion on nutritious surfaces by physically swelling the colony, which enhances nutrient uptake, and enables matrix-producing cells to outcompete non-matrix-producing cheaters via physical exclusion. Osmotic pressure together with crosslinking of the matrix also controls the growth of submerged biofilms and their susceptibility to invasion by planktonic cells. As the basic physicochemical principles of matrix crosslinking and osmotic swelling are universal, our findings may have implications for other biofilm-forming bacterial species.Most bacteria live in biofilms, surface-attached communities encased in an extracellular matrix. Here, Yan et al. show that matrix production in Vibrio cholerae increases the osmotic pressure within the biofilm, promoting biofilm expansion and physical exclusion of non-matrix producing cheaters.

  2. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts

    International Nuclear Information System (INIS)

    Pérez-Díaz, M.; Alvarado-Gomez, E.; Magaña-Aquino, M.; Sánchez-Sánchez, R.; Velasquillo, C.; Gonzalez, C.; Ganem-Rondero, A.; Martínez-Castañon, G.; Zavala-Alonso, N.; Martinez-Gutierrez, F.

    2016-01-01

    The development of multi-species biofilms in chronic wounds is a serious health problem that primarily generates strong resistance mechanisms to antimicrobial therapy. The use of silver nanoparticles (AgNPs) as a broad-spectrum antimicrobial agent has been studied previously. However, their cytotoxic effects limit its use within the medical area. The purpose of this study was to evaluate the anti-biofilm capacity of chitosan gel formulations loaded with AgNPs, using silver sulfadiazine (SSD) as a standard treatment, on strains of clinical isolates, as well as their cytotoxic effect on human primary fibroblasts. Multi-species biofilm of Staphylococcus aureus oxacillin resistant (MRSA) and Pseudomonas aeruginosa obtained from a patient with chronic wound infection were carried out using a standard Drip Flow Reactor (DFR) under conditions that mimic the flow of nutrients in the human skin. Anti-biofilm activity of chitosan gels and SSD showed a log-reduction of 6.0 for MRSA when chitosan gel with AgNPs at a concentration of 100 ppm was used, however it was necessary to increase the concentration of the chitosan gel with AgNPs to 1000 ppm to get a log-reduction of 3.3, while the SSD showed a total reduction of both bacteria in comparison with the negative control. The biocompatibility evaluation on primary fibroblasts showed better results when the chitosan gels with AgNPs were tested even in the high concentration, in contrast with SSD, which killed all the primary fibroblasts. In conclusion, chitosan gel formulations loaded with AgNPs effectively prevent the formation of biofilm and kill bacteria in established biofilm, which suggest that chitosan gels with AgNPs could be used for prevention and treatment of infections in chronic wounds. The statistic significance of the biocompatibility of chitosan gel formulations loaded with AgNPs represents an advance; however further research and development are necessary to translate this technology into therapeutic and

  3. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Díaz, M.; Alvarado-Gomez, E. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (Mexico); Magaña-Aquino, M. [Servicio de Epidemiologia del Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosi (Mexico); Sánchez-Sánchez, R.; Velasquillo, C. [Laboratorio de Biotecnologia, Instituto Nacional de Rehabilitacion, Mexico, D.F. (Mexico); Gonzalez, C. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (Mexico); Ganem-Rondero, A. [Division de Estudios de Posgrado (Tecnologia Farmaceutica), Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlan Izcalli, Estado de Mexico (Mexico); Martínez-Castañon, G.; Zavala-Alonso, N. [Doctorado en Ciencias Odontológicas Facultad de Estomatologia, UASLP (Mexico); Martinez-Gutierrez, F. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (Mexico)

    2016-03-01

    The development of multi-species biofilms in chronic wounds is a serious health problem that primarily generates strong resistance mechanisms to antimicrobial therapy. The use of silver nanoparticles (AgNPs) as a broad-spectrum antimicrobial agent has been studied previously. However, their cytotoxic effects limit its use within the medical area. The purpose of this study was to evaluate the anti-biofilm capacity of chitosan gel formulations loaded with AgNPs, using silver sulfadiazine (SSD) as a standard treatment, on strains of clinical isolates, as well as their cytotoxic effect on human primary fibroblasts. Multi-species biofilm of Staphylococcus aureus oxacillin resistant (MRSA) and Pseudomonas aeruginosa obtained from a patient with chronic wound infection were carried out using a standard Drip Flow Reactor (DFR) under conditions that mimic the flow of nutrients in the human skin. Anti-biofilm activity of chitosan gels and SSD showed a log-reduction of 6.0 for MRSA when chitosan gel with AgNPs at a concentration of 100 ppm was used, however it was necessary to increase the concentration of the chitosan gel with AgNPs to 1000 ppm to get a log-reduction of 3.3, while the SSD showed a total reduction of both bacteria in comparison with the negative control. The biocompatibility evaluation on primary fibroblasts showed better results when the chitosan gels with AgNPs were tested even in the high concentration, in contrast with SSD, which killed all the primary fibroblasts. In conclusion, chitosan gel formulations loaded with AgNPs effectively prevent the formation of biofilm and kill bacteria in established biofilm, which suggest that chitosan gels with AgNPs could be used for prevention and treatment of infections in chronic wounds. The statistic significance of the biocompatibility of chitosan gel formulations loaded with AgNPs represents an advance; however further research and development are necessary to translate this technology into therapeutic and

  4. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.

    Science.gov (United States)

    Nett, Jeniel E; Andes, David R

    2015-06-01

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

  5. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation

    DEFF Research Database (Denmark)

    Ren, Dawei; Madsen, Jonas Stenløkke; Sørensen, Søren Johannes

    2015-01-01

    of single-species biofilms, indicating that all the individual strains benefit from inclusion in the multispecies community. Our results show a high prevalence of synergy in biofilm formation in multispecies consortia isolated from a natural bacterial habitat and suggest that interspecific cooperation...

  6. Biofilm formation on nanostructured titanium oxide surfaces and a micro/nanofabrication-based preventive strategy using colloidal lithography

    International Nuclear Information System (INIS)

    Singh, Ajay Vikram; Vyas, Varun; Salve, Tushar S; Dellasega, David; Cortelli, Daniele; Podestà, Alessandro; Milani, Paolo; Gade, W N

    2012-01-01

    The contamination of implant devices as a result of biofilm formation through bacterial infection has instigated major research in this area, particularly to understand the mechanism of bacterial cell/implant surface interactions and their preventions. In this paper, we demonstrate a controlled method of nanostructured titanium oxide surface synthesis using supersonic cluster beam depositions. The nanoscale surface characterization using atomic force microscopy and a profilometer display a regulated evolution in nanomorphology and physical properties. X-ray photoelectron spectroscopy analyses display a stoichiometric nanostructured TiO 2 film. Measurement of the water contact angle shows a nominal increase in the hydrophilic nature of ns-TiO 2 films, whereas the surface energy increases with decreasing contact angle. Bacterial species Staphylococcus aureus and Escherichia coli interaction with nanostructured surfaces shows an increase in adhesion and biofilm formation with increasing nanoscale morphological properties. Conversely, limiting ns-TiO 2 film distribution to micro/nanopatterned designed substrates integrated with bovine serum albumin functionalization leads to a reduction in biofilm formations due to a globally decreased bacterial cell–surface interaction area. The results have potential implications in inhibiting bacterial colonization and promoting mammalian cell–implant interactions. (paper)

  7. [Detection of biofilm formation by selected pathogens relevant to the food industry].

    Science.gov (United States)

    Šilhová-Hrušková, L; Moťková, P; Šilha, D; Vytřasová, J

    2015-09-01

    Detection of biofilm formation by microbial pathogens relevant to the food industry and comparison of biofilm formation under different conditions of culture. The following microorganisms were selected for the study: Staphylococcus aureus, Listeria innocua, Listeria ivanovii, Cronobacter sakazakii, Cronobacter muytjensii, Arcobacter butzleri, Arcobacter cryaerophilus, Campylobacter jejuni, and Campylobacter coli. To detect biofilm formation the microtiter plate assay, as described by Christensen and culture on stainless steel coupons were used. The biofilm forming capacity was confirmed in all microorganisms tested, both on the microtiter plates and stainless steel coupons. Biofilm formation was influenced by the culture medium, material used, and culture duration as well as by the test microorganism. It was found that different species and strains of the same genus differ in biofilm formation. Differences were also found between the collection strains and isolates from the environment. Some bacteria tended to form biofilm more readily on the surface of the polyethylene microtiter plates and less readily on stainless steel coupons while others appeared to have an opposite tendency. Some pathogens were able to increase the planktonic cell density in the initial suspension even by three orders of magnitude within 72 hours while producing plenty of biofilm. The study of biofilm formation by high risk pathogens is of utmost importance, not only to the food industry. From the obtained results, it is evident that bacterial biofilms form rapidly (within 24 hours in the present study). Due to their architecture, these biofilms are difficult to eradicate, and therefore, it is crucial to prevent biofilm formation.

  8. [The bacterial biofilm and the possibilities of chemical plaque control. Literature review].

    Science.gov (United States)

    Gera, István

    2008-06-01

    Most microorganisms in the oral cavity attach to surfaces and form matrix-embedded biofilms. Biofilms are structured and spatially organized, composed of consortia of interacting microorganisms. The properties of the mass of biofilm are different from that of the simple sum of the component species. The older the plaque (biofilm) is the more structurally organized and become more resistant to environmental attacks. The bacterial community favors the growth of obligatory anaerobic microorganisms. The most effective means of the elimination of matured biofilm is the mechanical disruption of the interbacterial protective matrix and removal of bacterial colonies. The antiseptic agents are primarily effective in the prevention of biofilm formation and anticipation of the maturation of the bacterial plaque. Bacteria in matured biofilms are less susceptible to antimicrobial agents because several physical and biological factors protect the bacterial consortia. To kill bacteria in a matured, well organized biofilm, significantly higher concentration and longer exposition are required. Antiseptic mouthrinses in a conventional dose and time can only reach the superficial bacteria while the bacteria in the depth of the biofilm remains intact. Therefore, the efficacy of any antiseptic mouthwash depends not just on its microbicidal properties demonstrated in vitro, but also on its ability to penetrate the organized biofilm on the teeth. Recent studies have demonstrated that both bisbiguanid compounds and essential oils are capable of penetrating the biofilm, and reduce established plaque and gingivitis. The essential oils showed high penetrability and were more effective on organized biofilm than stannous fluorides or triclosan copolymer antiplaque agents.

  9. Distinct roles of long/short fimbriae and gingipains in homotypic biofilm development by Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Tribble Gena D

    2009-05-01

    Full Text Available Abstract Background Porphyromonas gingivalis, a periodontal pathogen, expresses a number of virulence factors, including long (FimA and short (Mfa fimbriae as well as gingipains comprised of arginine-specific (Rgp and lysine-specific (Kgp cysteine proteinases. The aim of this study was to examine the roles of these components in homotypic biofilm development by P. gingivalis, as well as in accumulation of exopolysaccharide in biofilms. Results Biofilms were formed on saliva-coated glass surfaces in PBS or diluted trypticase soy broth (dTSB. Microscopic observation showed that the wild type strain formed biofilms with a dense basal monolayer and dispersed microcolonies in both PBS and dTSB. A FimA deficient mutant formed patchy and small microcolonies in PBS, but the organisms proliferated and formed a cohesive biofilm with dense exopolysaccharides in dTSB. A Mfa mutant developed tall and large microcolonies in PBS as well as dTSB. A Kgp mutant formed markedly thick biofilms filled with large clumped colonies under both conditions. A RgpA/B double mutant developed channel-like biofilms with fibrillar and tall microcolonies in PBS. When this mutant was studied in dTSB, there was an increase in the number of peaks and the morphology changed to taller and loosely packed biofilms. In addition, deletion of FimA reduced the autoaggregation efficiency, whereas autoaggregation was significantly increased in the Kgp and Mfa mutants, with a clear association with alteration of biofilm structures under the non-proliferation condition. In contrast, this association was not observed in the Rgp-null mutants. Conclusion These results suggested that the FimA fimbriae promote initial biofilm formation but exert a restraining regulation on biofilm maturation, whereas Mfa and Kgp have suppressive and regulatory roles during biofilm development. Rgp controlled microcolony morphology and biovolume. Collectively, these molecules seem to act coordinately to regulate

  10. The pulsed light inactivation of veterinary relevant microbial biofilms ...

    African Journals Online (AJOL)

    tulyasys

    2016-01-27

    Jan 27, 2016 ... functioning innate and adaptive immune responses, biofilm-based infections ... of parasite species and bacterial endospores has shown this system to be highly ..... chlorine commonly observed with these complex structures ...

  11. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    2013-01-01

    Full Text Available Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.

  12. Effects of iron-oxide nanoparticles on compound biofilms of streptococcus gordonii and fusobacterium nucleatum

    Science.gov (United States)

    Nguyen, Jane Q.; Withers, Nathan J.; Alas, Gema; Senthil, Arjun; Minetos, Christina; Jaiswal, Nikita; Ivanov, Sergei A.; Huber, Dale L.; Smolyakov, Gennady A.; Osiński, Marek

    2018-02-01

    The human mouth is a host of a large gamut of bacteria species, with over 700 of different bacteria strains identified. Most of these bacterial species are harmless, some are beneficial (such as probiotics assisting in food digestion), but some are responsible for various diseases, primarily tooth decay and gum diseases such as gingivitis and periodontitis. Dental plaque has a complicated structure that varies from patient to patient, but a common factor in most cases is the single species of bacterium acting as a secondary colonizer, namely Fusobacterium nucleatum, while the actual disease is caused by a variety of tertiary colonizers. We hypothesize that destruction of a compound biofilm containing Fusobacterium nucleatum will prevent tertiary colonizers (oral pathogens) from establishing a biofilm, and thus will protect the patient from developing gingivitis and periodontitis. In this paper, we report on the effects of exposure of compound biofilms of a primary colonizer Streptococcus gordonii combined with Fusobacterium nucleatum to iron oxide nanoparticles as possible bactericidal agent.

  13. Cymbopogon citratus essential oil: effect on polymicrobial caries-related biofilm with low cytotoxicity.

    Science.gov (United States)

    Oliveira, Maria Alcionéia Carvalho de; Borges, Aline Chiodi; Brighenti, Fernanda Lourenção; Salvador, Marcos José; Gontijo, Aline Vidal Lacerda; Koga-Ito, Cristiane Yumi

    2017-11-06

    The objective of this study was to evaluate the effects of Cymbopogon citratus essential oil and its main compound (citral) against primary dental colonizers and caries-related species. Chemical characterization of the essential oil was performed by gas chromatography/mass spectroscopy (GC/MS), and the main compound was determined. Antimicrobial activity was tested against Actinomyces naeslundii, Lactobacillus acidophilus, S. gordonii, S. mitis, S. mutans, S. sanguinis and S. sobrinus. Minimum inhibitory and bactericide concentrations were determined by broth microdilution assay for streptococci and lactobacilli reference, and for clinical strains. The effect of the essential oil on bacterial adhesion and biofilm formation/disruption was investigated. Negative (without treatment) and positive controls (chlorhexidine) were used. The effect of citral on preformed biofilm was also tested using the same methodology. Monospecies and microcosm biofilms were tested. ANOVA or Kruskal-Wallis tests were used (α=0.05). Cytotoxicity of the essential oil to human keratinocytes was performed by MTT assay. GC/MS demonstrated one major component (citral). The essential oil showed an inhibitory effect on all tested bacterial species, including S. mutans and L. acidophilus. Essential oil of C. citratus (10X MIC) reduced the number of viable cells of lactobacilli and streptococci biofilms (p essential oil inhibited adhesion of caries-related polymicrobial biofilm to dental enamel (p essential oil showed low cytotoxicity to human keratinocytes. Based on these findings, this study can contribute to the development of new formulations for products like mouthwash, against dental biofilms.

  14. [Formation of microbial biofilms in causative agents of acute and chronic pyelonephritis].

    Science.gov (United States)

    Lagun, L V; Atanasova, Iu V; Tapal'skiĭ, D V

    2013-01-01

    Study the intensity of formation of microbial biofilms by Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus strains isolated during various forms of pyelonephritis. 150 clinical isolates of microorganisms isolated from urine ofpatientswith acute and chronic pyelonephritiswere included into the study. Determination of intensity of film-formation was carried out by staining of the formed biofilms by crystal violet with consequent extraction of the dye and measurement of its concentration in washout solution. Among causative agents ofpyelonephritis P. aeruginosa isolates had the maximum film-forming ability. The intensity of biofilm formation of these isolates was 2-3 time higher than staphylococcus and enterobacteria strains. Strains isolated from patients with chronic pyelonephritis by ability to form biofilms significantly surpassed strains isolated from acute pyelonephritis patients. A higher ability to form microbial biofilms for microorganisms--causative agents of pyelonephritis progressing against the background ofurolithiasis was noted. The ability to form biofilms is determined by both causative agent species and character of the infectious process in which this microorganism participates. Intensive formation of biofilms by E. coli, P. aeruginosa, K. pneumoniae, S. aureus clinical isolates may be an important factor of chronization of urinary tract infections.

  15. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis.

    Science.gov (United States)

    Kalishwaralal, Kalimuthu; BarathManiKanth, Selvaraj; Pandian, Sureshbabu Ram Kumar; Deepak, Venkataraman; Gurunathan, Sangiliyandi

    2010-09-01

    Biofilms are ensued due to bacteria that attach to surfaces and aggregate in a hydrated polymeric matrix. Formation of these sessile communities and their inherent resistance to anti-microbial agents are the source of many relentless and chronic bacterial infections. Such biofilms are responsible play a major role in development of ocular related infectious diseases in human namely microbial keratitis. Different approaches have been used for preventing biofilm related infections in health care settings. Many of these methods have their own demerits that include chemical based complications; emergent antibiotic resistant strains, etc. silver nanoparticles are renowned for their influential anti-microbial activity. Hence the present study over the biologically synthesized silver nanoparticles, exhibited a potential anti-biofilm activity that was tested in vitro on biofilms formed by Pseudomonas aeruginosa and Staphylococcus epidermidis during 24-h treatment. Treating these organisms with silver nanoparticles resulted in more than 95% inhibition in biofilm formation. The inhibition was known to be invariable of the species tested. As a result this study demonstrates the futuristic application of silver nanoparticles in treating microbial keratitis based on its potential anti-biofilm activity. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Microbiology and performance of a methanogenic biofilm reactor during the start-up period.

    Science.gov (United States)

    Cresson, R; Dabert, P; Bernet, N

    2009-03-01

    To understand the interactions between anaerobic biofilm development and process performances during the start-up period of methanogenic biofilm reactor. Two methanogenic inverse turbulent bed reactors have been started and monitored for 81 days. Biofilm development (adhesion, growth, population dynamic) and characteristics (biodiversity, structure) were investigated using molecular tools (PCR-SSCP, FISH-CSLM). Identification of the dominant populations, in relation to process performances and to the present knowledge of their metabolic activities, was used to propose a global scheme of the degradation routes involved. The inoculum, which determines the microbial species present in the biofilm influences bioreactor performances during the start-up period. FISH observations revealed a homogeneous distribution of the Archaea and bacterial populations inside the biofilm. This study points out the link between biodiversity, functional stability and methanogenic process performances during start-up of anaerobic biofilm reactor. It shows that inoculum and substrate composition greatly influence biodiversity, physiology and structure of the biofilm. The combination of molecular techniques associated to a biochemical engineering approach is useful to get relevant information on the microbiology of a methanogenic growing biofilm, in relation with the start-up of the process.

  17. Outstanding Anti-inflammatory Potential of Selected Asteraceae Species through the Potent Dual Inhibition of Cyclooxygenase-1 and 5-Lipoxygenase.

    Science.gov (United States)

    Chagas-Paula, Daniela Aparecida; Oliveira, Tiago Branquinho; Faleiro, Danniela Príscylla Vasconcelos; Oliveira, Rejane Barbosa; Costa, Fernando Batista Da

    2015-09-01

    Cyclooxygenase and 5-lipoxygenase are enzymes that catalyze important inflammatory pathways, suggesting that dual cyclooxygenase/lipoxygenase inhibitors should be more efficacious as anti-inflammatory medicines with lower side effects than the currently available nonsteroidal anti-inflammatory drugs. Many plants from the family Asteraceae have anti-inflammatory activities, which could be exerted by inhibiting the cyclooxygenase-1 and 5-lipoxygenase enzymes. Nevertheless, only a small number of compounds from this family have been directly evaluated for their ability to inhibit the enzymes in cell-free assays. Therefore, this study systematically evaluated 57 Asteraceae extracts in vitro in enzyme activity experiments to determine whether any of these extracts exhibit dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The chemical profiles of the extracts were obtained by the high-performance liquid chromatography-ultraviolet-diode array detector method, and their major constituents were dereplicated. Of the 57 tested extracts, 13 (26.6 %, IC50 range from 0.03-36.2 µg/mL) of them displayed dual inhibition. Extracts from known anti-inflammatory herbs, food plants, and previously uninvestigated species are among the most active. Additionally, the extract action was found to be specific with IC50 values close to or below those of the standard inhibitors. Thus, the active extracts and active substances of these species are potent inhibitors acting through the mechanism of dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The extracts were prepared for this study using nontoxic extraction solvents (EtOH-H2O), requiring only a small amount of plant material to carry out the bioassays and the phytochemical analyses. In summary, this study demonstrated the potential of the investigated species as dual inhibitors, revealing their potential as pharmaceuticals or nutraceuticals. Georg Thieme Verlag KG Stuttgart · New York.

  18. Pseudomonas aeruginosa Biofilm Infections

    DEFF Research Database (Denmark)

    Rybtke, Morten; Hultqvist, Louise Dahl; Givskov, Michael

    2015-01-01

    Studies of biopsies from infectious sites, explanted tissue and medical devises have provided evidence that biofilms are the underlying cause of a variety of tissue-associated and implant-associated recalcitrant human infections. With a need for novel anti-biofilm treatment strategies, research...... in biofilm infection microbiology, biofilm formation mechanisms and biofilm-associated antimicrobial tolerance has become an important area in microbiology. Substantial knowledge about biofilm formation mechanisms, biofilm-associated antimicrobial tolerance and immune evasion mechanisms has been obtained...... through work with biofilms grown in in vitro experimental setups, and the relevance of this information in the context of chronic infections is being investigated by the use of animal models of infection. Because our current in vitro experimental setups and animal models have limitations, new advanced...

  19. Srv mediated dispersal of streptococcal biofilms through SpeB is observed in CovRS+ strains.

    Directory of Open Access Journals (Sweden)

    Kristie L Connolly

    Full Text Available Group A Streptococcus (GAS is a human specific pathogen capable of causing both mild infections and severe invasive disease. We and others have shown that GAS is able to form biofilms during infection. That is to say, they form a three-dimensional, surface attached structure consisting of bacteria and a multi-component extracellular matrix. The mechanisms involved in regulation and dispersal of these GAS structures are still unclear. Recently we have reported that in the absence of the transcriptional regulator Srv in the MGAS5005 background, the cysteine protease SpeB is constitutively produced, leading to increased tissue damage and decreased biofilm formation during a subcutaneous infection in a mouse model. This was interesting because MGAS5005 has a naturally occurring mutation that inactivates the sensor kinase domain of the two component regulatory system CovRS. Others have previously shown that strains lacking covS are associated with decreased SpeB production due to CovR repression of speB expression. Thus, our results suggest the inactivation of srv can bypass CovR repression and lead to constitutive SpeB production. We hypothesized that Srv control of SpeB production may be a mechanism to regulate biofilm dispersal and provide a mechanism by which mild infection can transition to severe disease through biofilm dispersal. The question remained however, is this mechanism conserved among GAS strains or restricted to the unique genetic makeup of MGAS5005. Here we show that Srv mediated control of SpeB and biofilm dispersal is conserved in the invasive clinical isolates RGAS053 (serotype M1 and MGAS315 (serotype M3, both of which have covS intact. This work provides additional evidence that Srv regulated control of SpeB may mediate biofilm formation and dispersal in diverse strain backgrounds.

  20. Biofilm Formation by Pseudomonas Species Onto Graphene Oxide-TiO2 Nanocomposite-Coated Catheters: In vitro Analysis

    Science.gov (United States)

    Deb, Ananya; Vimala, R.

    The present study focuses on the development of an in vitro model system for biofilm growth by Pseudomonas aerouginosa onto small discs of foley catheter. Catheter disc used for the study was coated with graphene oxide-titanium oxide composite (GO-TiO2) and titanium oxide (TiO2) and characterized through XRD, UV-visible spectroscopy. Morphological analysis was done by scanning electron microscopy (SEM). The biofilm formed on the catheter surface was quantified by crystal violet (CV) staining method and a colorimetric assay (MTT assay) which involves the reduction of tetrazolium salt. The catheter coated with GO-TiO2 showed reduced biofilm growth in comparison to the TiO2-coated and uncoated catheter, thus indicating that it could be successfully used in coating biomedical devices to prevent biofilm formation which is a major cause of nosocomial infection.