WorldWideScience

Sample records for regulating chlorophyll degradation

  1. Phytohormone and Light Regulation of Chlorophyll Degradation

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zhu

    2017-11-01

    Full Text Available Degreening, due to the net loss of chlorophyll (Chl, is the most prominent symptom during the processes of leaf senescence, fruit ripening, and seed maturation. Over the last decade or so, extensive identifications of Chl catabolic genes (CCGs have led to the revelation of the biochemical pathway of Chl degradation. As such, exploration of the regulatory mechanism of the degreening process is greatly facilitated. During the past few years, substantial progress has been made in elucidating the regulation of Chl degradation, particularly via the mediation of major phytohormones' signaling. Intriguingly, ethylene and abscisic acid's signaling have been demonstrated to interweave with light signaling in mediating the regulation of Chl degradation. In this review, we briefly summarize this progress, with an effort on providing a framework for further investigation of multifaceted and hierarchical regulations of Chl degradation.

  2. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos.

    Science.gov (United States)

    Smolikova, Galina; Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej; Medvedev, Sergei

    2017-09-16

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN ( SGR ) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  3. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos

    Directory of Open Access Journals (Sweden)

    Galina Smolikova

    2017-09-01

    Full Text Available The embryos of some angiosperms (usually referred to as chloroembryos contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR genes are the principle ones. On the biochemical level, abscisic acid (ABA is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  4. Investigating the Control of Chlorophyll Degradation by Genomic Correlation Mining.

    Science.gov (United States)

    Ghandchi, Frederick P; Caetano-Anolles, Gustavo; Clough, Steven J; Ort, Donald R

    2016-01-01

    Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulated. The primary regulatory step in the chlorophyll degradation pathway involves the enzyme pheophorbide a oxygenase (PAO), which oxidizes the chlorophyll intermediate pheophorbide a, that is eventually converted to non-fluorescent chlorophyll catabolites. There is evidence that PAO is differentially regulated across different environmental and developmental conditions with both transcriptional and post-transcriptional components, but the involved regulatory elements are uncertain or unknown. We hypothesized that transcription factors modulate PAO expression across different environmental conditions, such as cold and drought, as well as during developmental transitions to leaf senescence and maturation of green seeds. To test these hypotheses, several sets of Arabidopsis genomic and bioinformatic experiments were investigated and re-analyzed using computational approaches. PAO expression was compared across varied environmental conditions in the three separate datasets using regression modeling and correlation mining to identify gene elements co-expressed with PAO. Their functions were investigated as candidate upstream transcription factors or other regulatory elements that may regulate PAO expression. PAO transcript expression was found to be significantly up-regulated in warm conditions, during leaf senescence, and in drought conditions, and in all three conditions significantly positively correlated with expression of transcription factor Arabidopsis thaliana activating factor 1 (ATAF1), suggesting that ATAF1 is triggered in the plant response to these processes or abiotic stresses and in result up-regulates PAO expression. The proposed regulatory network includes the

  5. Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-10-01

    Full Text Available Leaf senescence is a typical symptom in plants exposed to dark and may be regulated by plant growth regulators. The objective of this study was to determine whether exogenous application of melatonin (N-acetyl-5-methoxytryptamine suppresses dark-induced leaf senescence and the effects of melatonin on reactive oxygen species (ROS scavenging system and chlorophyll degradation pathway in perennial grass species. Mature perennial ryegrass (Lolium perenne L. cv. ‘Pinnacle’ leaves were excised and incubated in 3 mM 2-(N-morpholino ethanesulfonic buffer (pH 5.8 supplemented with melatonin or water (control and exposed to dark treatment for 8 d. Leaves treated with melatonin maintained significantly higher endogenous melatonin level, chlorophyll content, photochemical efficiency, and cell membrane stability expressed by lower electrolyte leakage and malondialdehyde (MDA content compared to the control. Exogenous melatonin treatment also reduced the transcript level of chlorophyll degradation-associated genes and senescence marker genes (LpSAG12.1, Lph36, and Lpl69 during the dark treatment. The endogenous O2- production rate and H2O2 content were significantly lower in these excised leaves treated with melatonin compared to the water control. Exogenous melatonin treatment caused increases in enzymatic activity and transcript levels of superoxide dismutase and catalase but had no significant effects on ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monohydroascorbate reductase. The content of non-enzymatic antioxidants, such as ascorbate and dehydroascorbate, were decreased by melatonin treatment, while the content of glutathione and oxidized glutathione was not affected by melatonin. These results suggest that the suppression of dark-induced leaf senescence by exogenous melatonin may be associated with its roles in regulating ROS scavenging through activating the superoxide dismutase-catalase enzymatic antioxidant

  6. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    Science.gov (United States)

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  7. Chlorophyll Degradation: The Tocopherol Biosynthesis-Related Phytol Hydrolase in Arabidopsis Seeds Is Still Missing1[C][W][OPEN

    Science.gov (United States)

    Zhang, Wei; Liu, Tianqi; Ren, Guodong; Hörtensteiner, Stefan; Zhou, Yongming; Cahoon, Edgar B.; Zhang, Chunyu

    2014-01-01

    Phytyl diphosphate (PDP) is the prenyl precursor for tocopherol biosynthesis. Based on recent genetic evidence, PDP is supplied to the tocopherol biosynthetic pathway primarily by chlorophyll degradation and sequential phytol phosphorylation. Three enzymes of Arabidopsis (Arabidopsis thaliana) are known to be capable of removing the phytol chain from chlorophyll in vitro: chlorophyllase1 (CLH1), CLH2, and pheophytin pheophorbide hydrolase (PPH), which specifically hydrolyzes pheophytin. While PPH, but not chlorophyllases, is required for in vivo chlorophyll breakdown during Arabidopsis leaf senescence, little is known about the involvement of these phytol-releasing enzymes in tocopherol biosynthesis. To explore the origin of PDP for tocopherol synthesis, seed tocopherol concentrations were determined in Arabidopsis lines engineered for seed-specific overexpression of PPH and in single and multiple mutants in the three genes encoding known dephytylating enzymes. Except for modestly increasing tocopherol content observed in the PPH overexpressor, none of the remaining lines exhibited significantly reduced tocopherol concentrations, suggesting that the known chlorophyll-derived phytol-releasing enzymes do not play major roles in tocopherol biosynthesis. Tocopherol content of seeds from double mutants in NONYELLOWING1 (NYE1) and NYE2, regulators of chlorophyll degradation, had modest reduction compared with wild-type seeds, although mature seeds of the double mutant retained significantly higher chlorophyll levels. These findings suggest that NYEs may play limited roles in regulating an unknown tocopherol biosynthesis-related phytol hydrolase. Meanwhile, seeds of wild-type over-expressing NYE1 had lower tocopherol levels, suggesting that phytol derived from NYE1-dependent chlorophyll degradation probably doesn’t enter tocopherol biosynthesis. Potential routes of chlorophyll degradation are discussed in relation to tocopherol biosynthesis. PMID:25059706

  8. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening

    Science.gov (United States)

    Chlorophyll degradation naturally occurs during plant senescence. However, in fruit such as citrus, it is a positive characteristic, as degreening is an important colour development contributing to fruit quality. In the present work, Citrus sinensis Osbeck, cv. Newhall fruit was used as a model for ...

  9. Contribution of Polyphenol Oxidation, Chlorophyll and Vitamin C Degradation to the Blackening of Piper nigrum L.

    Science.gov (United States)

    Gu, Fenglin; Huang, Feifei; Wu, Guiping; Zhu, Hongying

    2018-02-09

    Black pepper ( Piper nigrum L.) is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC) degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC) and ultraviolet-visible and visible (UV-Vis) spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.

  10. Contribution of Polyphenol Oxidation, Chlorophyll and Vitamin C Degradation to the Blackening of Piper nigrum L.

    Directory of Open Access Journals (Sweden)

    Fenglin Gu

    2018-02-01

    Full Text Available Black pepper (Piper nigrum L. is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC and ultraviolet-visible and visible (UV-Vis spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.

  11. Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis

    Science.gov (United States)

    vom Dorp, Katharina; Hölzl, Georg; Plohmann, Christian; Eisenhut, Marion; Abraham, Marion

    2015-01-01

    Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate. PMID:26452599

  12. Chlorophyll degradation in the gut of generalist and specialist Lepidopteran caterpillars.

    Science.gov (United States)

    Badgaa, Amarsanaa; Jia, Aiqun; Ploss, Kerstin; Boland, Wilhelm

    2014-12-01

    Plant feeding herbivores excrete most of the ingested chlorophyll (Chl) as partly degraded derivatives lacking the phytol side chain and the central magnesium ion. An ecological role of digested and degraded Chls in the interactions between insects, their food plant and other insects has been described recently. To gain more information on common degradation patterns in plant-feeding insects, the orals secretions and frass of five Lepidopteran caterpillars covering generalists and specialists, namely Spodoptera littoralis, Spodoptera eridania, Heliothis virescens, Helicoverpa armigera, Manduca sexta, and, for comparison, of the leaf beetle larva Chrysomela lapponica were analyzed for chlorophyll catabolites. The major degradation products were determined as pheohorbide a/b and pyropheophorbide a/b by using LC-MS, LC-NMR, UV, and fluorescence spectrometry. The compounds were not present in fresh leaves of the food plants (Phaseolus lunatus, Nicotiana tabacum). The catabolite spectrum in generalists and specialists was qualitatively similar and could be attributed to the action of gut proteins and the strongly alkaline milieu in the digestive tract. Due to the anaerobic environment of the larval gut, the tetrapyrrole core of the Chl catabolites was not cleaved. Substantial amounts of Chl a/b metabolites were strongly complexed by a protein in the mid-gut.

  13. Exogenous spermidine is enhancing tomato tolerance to salinity-alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism.

    Science.gov (United States)

    Li, Jianming; Hu, Lipan; Zhang, Li; Pan, Xiongbo; Hu, Xiaohui

    2015-12-29

    Salinity-alkalinity stress is known to adversely affect a variety of processes in plants, thus inhibiting growth and decreasing crop yield. Polyamines protect plants against a variety of environmental stresses. However, whether exogenous spermidine increases the tolerance of tomato seedlings via effects on chloroplast antioxidant enzymes and chlorophyll metabolism is unknown. In this study, we examined the effect of exogenous spermidine on chlorophyll synthesis and degradation pathway intermediates and related enzyme activities, as well as chloroplast ultrastructure, gene expression, and antioxidants in salinity-alkalinity-stressed tomato seedlings. Salinity-alkalinity stress disrupted chlorophyll metabolism and hindered uroorphyrinogen III conversion to protoporphyrin IX. These effects were more pronounced in seedlings of cultivar Zhongza No. 9 than cultivar Jinpengchaoguan. Under salinity-alkalinity stress, exogenous spermidine alleviated decreases in the contents of total chlorophyll and chlorophyll a and b in seedlings of both cultivars following 4 days of stress. With extended stress, exogenous spermidine reduced the accumulation of δ-aminolevulinic acid, porphobilinogen, and uroorphyrinogen III and increased the levels of protoporphyrin IX, Mg-protoporphyrin IX, and protochlorophyllide, suggesting that spermidine promotes the conversion of uroorphyrinogen III to protoporphyrin IX. The effect occurred earlier in cultivar Jinpengchaoguan than in cultivar Zhongza No. 9. Exogenous spermidine also alleviated the stress-induced increases in malondialdehyde content, superoxide radical generation rate, chlorophyllase activity, and expression of the chlorophyllase gene and the stress-induced decreases in the activities of antioxidant enzymes, antioxidants, and expression of the porphobilinogen deaminase gene. In addition, exogenous spermidine stabilized the chloroplast ultrastructure in stressed tomato seedlings. The tomato cultivars examined exhibited different

  14. Functional and RNA-sequencing analysis revealed expression of a novel stay-green gene from Zoysia japonica (ZjSGR caused chlorophyll degradation and accelerated senescence in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ke Teng

    2016-12-01

    Full Text Available Senescence is not only an important developmental process, but also a responsive regulation to abiotic and biotic stress for plants. Stay-green protein plays crucial roles in plant senescence and chlorophyll degradation. However, the underlying mechanisms were not well studied, particularly in non-model plants. In this study, a novel stay-green gene, ZjSGR, was isolated from Zoysia japonica. Subcellular localization result demonstrated that ZjSGR was localized in the chloroplasts. Quantitative real-time PCR results together with promoter activity determination using transgenic Arabidopsis confirmed that ZjSGR could be induced by darkness, ABA and MeJA. Its expression levels could also be up-regulated by natural senescence, but suppressed by SA treatments. Overexpression of ZjSGR in Arabidopsis resulted in a rapid yellowing phenotype; complementary experiments proved that ZjSGR was a functional homologue of AtNYE1 from Arabidopsis thaliana. Overexpression of ZjSGR accelerated chlorophyll degradation and impaired photosynthesis in Arabidopsis. Transmission electron microscopy observation revealed that overexpression of ZjSGR decomposed the chloroplasts structure. RNA sequencing analysis showed that ZjSGR could play multiple roles in senescence and chlorophyll degradation by regulating hormone signal transduction and the expression of a large number of senescence and environmental stress related genes. Our study provides a better understanding of the roles of SGRs, and new insight into the senescence and chlorophyll degradation mechanisms in plants.

  15. ABF2, ABF3, and ABF4 Promote ABA-Mediated Chlorophyll Degradation and Leaf Senescence by Transcriptional Activation of Chlorophyll Catabolic Genes and Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Gao, Shan; Gao, Jiong; Zhu, Xiaoyu; Song, Yi; Li, Zhongpeng; Ren, Guodong; Zhou, Xin; Kuai, Benke

    2016-09-06

    Chlorophyll (Chl) degradation is an integral process of leaf senescence, and NYE1/SGR1 has been demonstrated as a key regulator of Chl catabolism in diverse plant species. In this study, using yeast one-hybrid screening, we identified three abscisic acid (ABA)-responsive element (ABRE)-binding transcription factors, ABF2 (AREB1), ABF3, and ABF4 (AREB2), as the putative binding proteins of the NYE1 promoter. Through the transactivation analysis, electrophoretic mobility shift assay, and chromatin immunoprecipitation, we demonstrated that ABF2, ABF3, and ABF4 directly bound to and activated the NYE1 promoter in vitro and in vivo. ABA is a positive regulator of leaf senescence, and exogenously applied ABA can accelerate Chl degradation. The triple mutant of the ABFs, abf2abf3abf4, as well as two ABA-insensitive mutants, abi1-1 and snrk2.2/2.3/2.6, exhibited stay-green phenotypes after ABA treatment, along with decreased induction of NYE1 and NYE2 expression. In contrast, overexpression of ABF4 accelerated Chl degradation upon ABA treatment. Interestingly, ABF2/3/4 could also activate the expression of two Chl catabolic enzyme genes, PAO and NYC1, by directly binding to their promoters. In addition, abf2abf3abf4 exhibited a functional stay-green phenotype, and senescence-associated genes (SAGs), such as SAG29 (SWEET15), might be directly regulated by the ABFs. Taken together, our results suggest that ABF2, ABF3, and ABF4 likely act as key regulators in mediating ABA-triggered Chl degradation and leaf senescence in general in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  16. A NAP-AAO3 Regulatory Module Promotes Chlorophyll Degradation via ABA Biosynthesis in Arabidopsis Leaves[W][OPEN

    Science.gov (United States)

    Yang, Jiading; Worley, Eric

    2014-01-01

    Chlorophyll degradation is an important part of leaf senescence, but the underlying regulatory mechanisms are largely unknown. Excised leaves of an Arabidopsis thaliana NAC-LIKE, ACTIVATED BY AP3/PI (NAP) transcription factor mutant (nap) exhibited lower transcript levels of known chlorophyll degradation genes, STAY-GREEN1 (SGR1), NON-YELLOW COLORING1 (NYC1), PHEOPHYTINASE (PPH), and PHEIDE a OXYGENASE (PaO), and higher chlorophyll retention than the wild type during dark-induced senescence. Transcriptome coexpression analysis revealed that abscisic acid (ABA) metabolism/signaling genes were disproportionately represented among those positively correlated with NAP expression. ABA levels were abnormally low in nap leaves during extended darkness. The ABA biosynthetic genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE2, ABA DEFICIENT3, and ABSCISIC ALDEHYDE OXIDASE3 (AAO3) exhibited abnormally low transcript levels in dark-treated nap leaves. NAP transactivated the promoter of AAO3 in mesophyll cell protoplasts, and electrophoretic mobility shift assays showed that NAP can bind directly to a segment (−196 to −162 relative to the ATG start codon) of the AAO3 promoter. Exogenous application of ABA increased the transcript levels of SGR1, NYC1, PPH, and PaO and suppressed the stay-green phenotype of nap leaves during extended darkness. Overexpression of AAO3 in nap leaves also suppressed the stay-green phenotype under extended darkness. Collectively, the results show that NAP promotes chlorophyll degradation by enhancing transcription of AAO3, which leads to increased levels of the senescence-inducing hormone ABA. PMID:25516602

  17. REGULATION OF CHLOROPHY LL DEGRADATION IN PLANT TISSUES

    Directory of Open Access Journals (Sweden)

    Syvash O. O.

    2017-06-01

    Full Text Available The purpose of the review was to analyze the basic biochemical processes leading to the chlorophyll degradation and ways to control this process in plant product storage. First of all, this is a complex of enzymatic reactions starting with the hydrolysis of chlorophyll with the formation of acyclic diterpene phytol and water-soluble chlorophyllide. An alternative primary reaction is the removal of magnesium from the chlorophyll tetrapyrrole ring to form pheophytin with the participation of Mg2+-dechelatase and/or low-molecular Mg2+-dechelating substances. The chlorophyll breakdown can also be caused by free radicals formed in the peroxidase-catalyzed reaction of Н2О2 with phenolic compounds or fatty acids. The unstable product of chlorophyll peroxidation, C132 –hydroxychlorophyll a decomposes to colorless low-molecular compounds. Expression of the genes of chlorophyll catabolism enzymes is controlled by phytohormones. Methods for controlling the pigment decomposition during storage of plant products are associated with the use of activators and inhibitors of chlorophyll decomposition. The best known inductor of the synthesis of catabolic enzymes is ethylene, widely used to accelerate fruit ripening. Gibberellins, cytokinins and nitric oxide, on the contrary, slow down the loss of chlorophyll.

  18. Quantitation of chlorophylls and 22 of their colored degradation products in culinary aromatic herbs by HPLC-DAD-MS and correlation with color changes during the dehydration process.

    Science.gov (United States)

    Lafeuille, Jean-Louis; Lefèvre, Stéphane; Lebuhotel, Julie

    2014-02-26

    Chlorophylls and their green and olive-brown derivatives were successfully separated from culinary herb extracts by HPLC with photodiode-array and mass spectrometry detection. The method involved a ternary gradient elution and reverse-phase separation conditions capable of resolving 24 different pigments (2 chlorophylls and 22 of their derivatives) of different polarities within 28 min. The method was applied to monitor color changes in 50 samples of culinary aromatic herbs subjected to five different drying treatments. Of the 24 pigments, 14 were key to understanding the differences between the primary degradation pathways of chlorophyll a and chlorophyll b in culinary herbs during drying processes. A color degradation ladder based on the total molar percentage of all the remaining green pigments was also proposed as a tool to measure the impact of drying treatments on aromatic herb visual aspects.

  19. Responses of wild husk tomato, Physalis angulata L. to growth regulators and gamma rays on chlorophyll content and fruit yield

    International Nuclear Information System (INIS)

    Raghava, R.P.; Raghava, Nisha

    1994-01-01

    Effect of different growth regulators and gamma rays on the total chlorophyll content and fruit yield were studied in wild species of husk tomato and concluded that indole-3-acetic acid (IAA) 200 and kinetin (KIN) 10 ppm showed remarkable enhancement in both total chlorophyll content and fruit yield, while maleic hydrazide (MH) 100, 200 ppm and coumarin (COU) in all the treatments enhanced total chlorophyll content. Gamma ray treatments significantly enhanced both the parameters. Amongst all the treatments maximum fruit yield was in 20 kR of gamma rays. (author). 31 refs., 1 tab

  20. Chlorophyll-derived fatty acids regulate expression of lipid metabolizing enzymes in liver - a nutritional opportunity

    Directory of Open Access Journals (Sweden)

    Wolfrum Christian

    2001-01-01

    Full Text Available Nutritional values of fatty acid classes are normally discussed on the basis of their saturated, monounsaturated and polyunsaturated structures with implicit understanding that they are straight-chain. Here we focus on chlorophyll-derived phytanic and pristanic acids that are minor isoprenoid branched-chain lipid constituents in food, but of unknown nutritional value. After describing the enzyme machinery that degrades these nutrient fatty acids in the peroxisome, we show by the criteria of a mouse model and of a human cell culture model that they induce with high potency expression of enzymes responsible for beta-oxidation of straight-chain fatty acids in the peroxisome. We summarize present mechanistic knowledge on fatty acid signaling to the nucleus, which involves protein/protein contacts between peroxisome proliferator activated receptor (PPAR and fatty acid binding protein (FABP. In this signaling event the branched-chain fatty acids are the most effective ones. Finally, on the basis of this nutrient-gene interaction we discuss nutritional opportunities and therapeutic aspects of the chlorophyll-derived fatty acids.

  1. Bioinformatics Evaluation of Plant Chlorophyllase, the Key Enzyme in Chlorophyll Degradation

    Directory of Open Access Journals (Sweden)

    Ebrahim Sharafi

    2017-06-01

    Full Text Available Background and Objective: Chlorophyllase catalyzes the hydrolysis of chlorophylls to chlorophyllide and phytol. Recently, several applications including removal of chlorophylls from vegetable oils, use in laundry detergents and production of chlorophyllides have been described for chlorophyllase. However, there is little information about the biochemical characteristics of chlorophyllases.Material and Methods: 35 chlorophyllase protein sequences were obtained from the National Centre for Biotechnology Information database. All of the sequences were analyzed using bioinformatics tools for their conserved domain, phylogenetic relationships and biochemical characteristics.Results and Conclusion: The overall domain architecture of chlorophyllases consisted of the esterases/lipases superfamily domain over their full length and the alpha/beta hydrolase family domain over the middle part of their sequences. Plant chlorophyllases could be classified into 4 clades. Molecular weight and pI of the chlorophyllases ranged 32.65-37.77 kDa and 4.80-8.97, respectively. The most stable chlorophyllase is probably obtained from Malus domestica. Chlorophyllases form Solanum pennellii, Triticum aestivum, Triticum urartu, Arabidopsis lyrata, Pachira macrocarpa, Prunus mume and Malus domestica were predicted to be soluble upon overexpression in Escherichia coli, Beta vulgaris and Chenopodium album chlorophyllases were predicted to form no disulfide bond. Chlorophyllases from Jatropha curcas, Amborella trichopod, Setaria italica, Piper betle, Triticum urartu and Arabidopsis thaliana were predicted to be in non-N-glycosylated form.Conflict of interest: The authors declare no conflict of interest.

  2. Chlorophyll and its degradation products in the two-spotted spider mite, Tetranychus urticae: observations using epifluorescence and confocal laser scanning microscopy.

    Science.gov (United States)

    Occhipinti, Andrea; Maffei, Massimo E

    2013-10-01

    Chlorophyll and chlorophyll degradation products were observed in the two-spotted spider mite (Tetranychus urticae) using epifluorescence microscopy (EFM) and confocal laser scanning microscopy (CLSM). A clear red fluorescence (EFM) and a fluorescence induced by a laser wavelength of 650 nm (CLSM) were observed. In the lateral caeca, in the ventriculus and in the excretory organ, a bright light blue fluorescence was observed in close association with chlorophyll by using EFM. The same material can be localized with CLSM by using a laser with a wavelength of 488 nm. By comparison with synthetic guanine, this bright fluorescence is supposed to be guanine. The presence of guanine fluorescence in the mite pellets confirms this hypothesis. A possible mechanism for guanine formation is discussed.

  3. Melatonin Improves the Photosynthetic Apparatus in Pea Leaves Stressed by Paraquat via Chlorophyll Breakdown Regulation and Its Accelerated de novo Synthesis

    Directory of Open Access Journals (Sweden)

    Katarzyna Szafrańska

    2017-05-01

    Full Text Available The positive effect of melatonin on the function of the photosynthetic apparatus is known, but little is known about the specific mechanisms of melatonin's action in plants. The influence of melatonin on chlorophyll metabolism of 24-day-old Pisum sativum L. seedlings during paraquat (PQ-induced oxidative stress was investigated in this study. Seeds were hydro-primed with water (H, 50 and 200 μM melatonin/water solutions (H-MEL50, H-MEL200, while non-primed seeds were used as controls (C. Increases in chlorophyllase activity (key enzyme in chlorophyll degradation and 5-aminolevulinic acid contents (the first compound in the porphyrin synthesis pathway were observed in H-MEL50 and H-MEL200 leaf disks. This suggests that melatonin may accelerate damaged chlorophyll breakdown and its de novo synthesis during the first hours of PQ treatment. Elevated level of pheophytin in control leaf disks following 24 h of PQ incubation probably was associated with an enhanced rate of chlorophyll degradation through formation of pheophytin as a chlorophyll derivative. This validates the hypothesis that chlorophyllide, considered for many years, as a first intermediate of chlorophyll breakdown is not. This is indicated by the almost unchanged chlorophyll to chlorophyllide ratio after 24 h of PQ treatment. However, prolonged effects of PQ-induced stress (48 h revealed extensive discolouration of control and water-treated leaf disks, while melatonin treatment alleviated PQ-induced photobleaching. Also the ratio of chlorophyll to chlorophyllide and porphyrin contents were significantly higher in plants treated with melatonin, which may indicate that this indoleamine both retards chlorophyll breakdown and stimulates its de novo synthesis during extended stress. We concluded that melatonin added into the seeds enhances the ability of pea seedlings to accelerate chlorophyll breakdown and its de novo synthesis before stress appeared and for several hours after, while

  4. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim

    2015-01-01

    , the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province

  5. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Hoteit, Ibrahim

    2015-04-01

    The Gulf of Aden, although subject to seasonally reversing monsoonal winds, has been previously reported as an oligotrophic basin during summer, with elevated chlorophyll concentrations only occurring during winter due to convective mixing. However, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province distinct from the adjacent Arabian Sea. Climatological hydrographic data suggest that the thermocline, hence the nutricline, in the entire gulf is markedly shoaled by the southwest monsoon during summer and fall. Under this condition, cyclonic eddies in the gulf can effectively pump deep nutrients to the surface layer and lead to the chlorophyll bloom in late summer, and, after the transition to the northeast monsoon in fall, coastal upwelling driven by the northeasterly winds produces a pronounced increase in surface chlorophyll concentrations along the Somali coast.

  6. Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening.

    Science.gov (United States)

    Rosianskey, Yogev; Dahan, Yardena; Yadav, Sharawan; Freiman, Zohar E; Milo-Cochavi, Shira; Kerem, Zohar; Eyal, Yoram; Flaishman, Moshe A

    2016-08-01

    Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig 'Brown Turkey'. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained

  7. Phytochrome B Mediates the Regulation of Chlorophyll Biosynthesis through Transcriptional Regulation of ChlH and GUN4 in Rice Seedlings

    Science.gov (United States)

    Kagawa, Takatoshi; Tanaka, Ayumi; Ueno, Osamu; Shimada, Hiroaki; Takano, Makoto

    2015-01-01

    Accurate regulation of chlorophyll synthesis is crucial for chloroplast formation during the greening process in angiosperms. In this study, we examined the role of phytochrome B (phyB) in the regulation of chlorophyll synthesis in rice seedlings (Oryza sativa L.) through the characterization of a pale-green phenotype observed in the phyB mutant grown under continuous red light (Rc) irradiation. Our results show that the Rc-induced chlorophyll accumulation can be divided into two components—a phyB-dependent and a phyB-independent component, and that the pale-green phenotype is caused by the absence of the phyB-dependent component. To elucidate the role of the missing component we established an Rc-induced greening experiment, the results of which revealed that several genes encoding proteins on the chlorophyll branch were repressed in the phyB mutant. Notable among them were ChlH and GUN4 genes, which encode subunit H and an activating factor of magnesium chelatase (Mg-chelatase), respectively, that were largely repressed in the mutant. Moreover, the kinetic profiles of chlorophyll precursors suggested that Mg-chelatase activity simultaneously decreased with the reduction in the transcript levels of ChlH and GUN4. These results suggest that phyB mediates the regulation of chlorophyll synthesis through transcriptional regulation of these two genes, whose products exert their action at the branching point of the chlorophyll biosynthesis pathway. Reduction of 5-aminolevulinic acid (5-ALA) synthesis could be detected in the mutant, but the kinetic profiles of chlorophyll precursors indicated that it was an event posterior to the reduction of the Mg-chelatase activity. It means that the repression of 5-ALA synthesis should not be a triggering event for the appearance of the pale-green phenotype. Instead, the repression of 5-ALA synthesis might be important for the subsequent stabilization of the pale-green phenotype for preventing excessive accumulation of hazardous

  8. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Hoteit, Ibrahim; Yao, Fengchao

    2015-01-01

    The Gulf of Aden, although subject to seasonally reversing monsoonal winds, has been previously reported as an oligotrophic basin during summer, with elevated chlorophyll concentrations only occurring during winter due to convective mixing. However

  9. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Yao, Fengchao

    2015-03-19

    The Gulf of Aden, although subject to seasonally reversing monsoonal winds, has been previously reported as an oligotrophic basin during summer, with elevated chlorophyll concentrations only occurring during winter due to convective mixing. However, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province distinct from the adjacent Arabian Sea. Climatological hydrographic data suggest that the thermocline, hence the nutricline, in the entire gulf is markedly shoaled by the southwest monsoon during summer and fall. Under this condition, cyclonic eddies in the gulf can effectively pump deep nutrients to the surface layer and lead to the chlorophyll bloom in late summer, and, after the transition to the northeast monsoon in fall, coastal upwelling driven by the northeasterly winds produces a pronounced increase in surface chlorophyll concentrations along the Somali coast. © 2015 Yao, Hoteit.

  10. BEL1-LIKE HOMEODOMAIN 11 regulated chloroplast development and chlorophyll synthesis in tomato fruit

    Science.gov (United States)

    Chloroplast development and chlorophyll content and metabolism in unripe tomato contribute to the growth and development of the fruit, and also the ripe fruit quality, but the mechanism is poorly understood. In this work, seven homeobox-containing transcription factors (TFs) with specific ripening-a...

  11. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    Science.gov (United States)

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat

  12. Accuracy of two optical chlorophyll meters in predicting chemical composition and in vitro ruminal organic matter degradability of Brachiaria hybrid, Megathyrsus maximus, and Paspalum atratum

    Directory of Open Access Journals (Sweden)

    Martin P. Hughes

    2017-03-01

    Full Text Available The objective of this study was to determine the accuracy and reliability of 2 optical chlorophyll meters: FieldScout CM 1,000 NDVI and Yara N-Tester, in predicting neutral detergent fibre (NDF, acid detergent fibre (ADF, acid detergent lignin (ADL, acid detergent insoluble nitrogen (ADIN and in vitro ruminal organic matter degradability (IVOMD of 3 tropical grasses. Optical chlorophyll measurements were taken at 3 stages (4, 8 and 12 weeks of regrowth in Brachiaria hybrid, and Megathyrsus maximus and at 6 and 12 weeks of regrowth in Paspalum atratum (cv. Ubon. Optical chlorophyll measurements showed the highest correlation (r = 0.57 to 0.85 with NDF concentration. The FieldScout CM 1,000 NDVI was better than the Yara N-Tester in predicting NDF (R2 = 0.70 and ADF (R2 = 0.79 concentrations in Brachiaria hybrid and NDF (R2 = 0.79 in M. maximus. Similarly, FieldScout CM 1,000 NDVI produced better estimates of 24 h IVOMD (IVOMD24h in Brachiaria hybrid (R2 = 0.81 and IVOMD48h in Brachiaria hybrid (R2 = 0.65 and M. maximus (R2 = 0.75. However, these prediction models had relatively low concordance correlation coefficients, i.e., CCC >0.90, but random errors were the main source of bias. It was, therefore, concluded that both optical chlorophyll meters were poor and unreliable predictors of ADIN and ADL concentrations. Overall, the FieldScout CM 1,000 NDVI shows potential to produce useful estimates of IVOMD24h and ADF in Brachiaria hybrid and IVOMD48h and NDF concentrations in M. maximus.

  13. Effect of irradiation and growth regulators on degradation processes in detached soybean leaves

    International Nuclear Information System (INIS)

    Annamalainathan, K.; Pathmanabhan, G.; Manian, K.; Veerannah, L.

    1996-01-01

    Changes in soluble protein profile and chlorophyll (Ch1) content in detached soybean leaves incubated in darkness or light were delayed by application of benzyladenine or indole-3-acetic acid and enhanced by abscisic acid. The degradation in light differed significantly from the degradation in darkness. Chl and proteins were lost at a higher rate in darkness than in light. (author)

  14. REGULATION OF COAL POLYMER DEGRADATION BY FUNGI

    Energy Technology Data Exchange (ETDEWEB)

    John A. Bumpus

    1998-11-30

    A variety of lignin degrading fungi mediate solubilization and subsequent biodegradation of coal macromolecules (a.k.a. coal polymer) from highly oxidized low rank coals such as leonardites. It appears that oxalate or possibly other metal chelators (i.e., certain Krebs Cycle intermediates) mediate solubilization of low rank coals while extracellular oxidases have a role in subsequent oxidation of solubilized coal macromolecule. These processes are under nutritional control. For example, in the case of P. chrysosporium, solubilization of leonardite occurred when the fungi were cultured on most but not all nutrient agars tested and subsequent biodegradation occurred only in nutrient nitrogen limited cultures. Lignin peroxidases mediate oxidation of coal macromolecule in a reaction that is dependent on the presence of veratryl alcohol and hydrogen peroxide. Kinetic evidence suggests that veratryl alcohol is oxidized to the veratryl alcohol cation radical which then mediates oxidation of the coal macromolecule. Results by others suggest that Mn peroxidases mediate formation of reactive Mn{sup 3+} complexes which also mediate oxidation of coal macromolecule. A biomimetic approach was used to study solubilization of a North Dakota leonardite. It was found that a concentration {approximately}75 mM sodium oxalate was optimal for solubilization of this low rank coal. This is important because this is well above the concentration of oxalate produced by fungi in liquid culture. Higher local concentrations probably occur in solid agar cultures and thus may account for the observation that greater solubilization occurs in agar media relative to liquid media. The characteristics of biomimetically solubilized leonardite were similar to those of biologically solubilized leonardite. Perhaps our most interesting observation was that in addition to oxalate, other common Lewis bases (phosphate/hydrogen phosphate/dihydrogen phosphate and bicarbonate/carbonate ions) are able to mediate

  15. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    Science.gov (United States)

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  16. Arabidopsis miR171-Targeted Scarecrow-Like Proteins Bind to GT cis-Elements and Mediate Gibberellin-Regulated Chlorophyll Biosynthesis under Light Conditions

    Science.gov (United States)

    Ma, Zhaoxue; Hu, Xupeng; Cai, Wenjuan; Huang, Weihua; Zhou, Xin; Luo, Qian; Yang, Hongquan; Wang, Jiawei; Huang, Jirong

    2014-01-01

    An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light. PMID:25101599

  17. Phytoplankton chlorophyll

    NARCIS (Netherlands)

    van de Poll, W.H.; Kulk, G.; Timmermans, K.R.; Brussaard, C.P.D.; van der Woerd, H.J.; Kehoe, M.J.; Mojica, K.D.A.; Visser, R.J.W.; Rozema, P.D.; Buma, A.G.J.

    2013-01-01

    Relationships between sea surface temperature (SST, > 10 m) and vertical density stratification, nutrient concentrations, and phytoplankton biomass, composition, and chlorophyll a (Chl a) specific absorption were assessed in spring and summer from latitudes 29 to 63 degrees N in the northeast

  18. The nucleolus directly regulates p53 export and degradation.

    Science.gov (United States)

    Boyd, Mark T; Vlatkovic, Nikolina; Rubbi, Carlos P

    2011-09-05

    The correlation between stress-induced nucleolar disruption and abrogation of p53 degradation is evident after a wide variety of cellular stresses. This link may be caused by steps in p53 regulation occurring in nucleoli, as suggested by some biochemical evidence. Alternatively, nucleolar disruption also causes redistribution of nucleolar proteins, potentially altering their interactions with p53 and/or MDM2. This raises the fundamental question of whether the nucleolus controls p53 directly, i.e., as a site where p53 regulatory processes occur, or indirectly, i.e., by determining the cellular localization of p53/MDM2-interacting factors. In this work, transport experiments based on heterokaryons, photobleaching, and micronucleation demonstrate that p53 regulatory events are directly regulated by nucleoli and are dependent on intact nucleolar structure and function. Subcellular fractionation and nucleolar isolation revealed a distribution of ubiquitylated p53 that supports these findings. In addition, our results indicate that p53 is exported by two pathways: one stress sensitive and one stress insensitive, the latter being regulated by activities present in the nucleolus.

  19. Reticulophagy and Ribophagy: Regulated Degradation of Protein Production Factories

    Directory of Open Access Journals (Sweden)

    Eduardo Cebollero

    2012-01-01

    Full Text Available During autophagy, cytosol, protein aggregates, and organelles are sequestered into double-membrane vesicles called autophagosomes and delivered to the lysosome/vacuole for breakdown and recycling of their basic components. In all eukaryotes this pathway is important for adaptation to stress conditions such as nutrient deprivation, as well as to regulate intracellular homeostasis by adjusting organelle number and clearing damaged structures. For a long time, starvation-induced autophagy has been viewed as a nonselective transport pathway; however, recent studies have revealed that autophagy is able to selectively engulf specific structures, ranging from proteins to entire organelles. In this paper, we discuss recent findings on the mechanisms and physiological implications of two selective types of autophagy: ribophagy, the specific degradation of ribosomes, and reticulophagy, the selective elimination of portions of the ER.

  20. Regulating the 20S Proteasome Ubiquitin-Independent Degradation Pathway

    Directory of Open Access Journals (Sweden)

    Gili Ben-Nissan

    2014-09-01

    Full Text Available For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by the core 20S proteasome itself. Degradation by the 20S proteasome does not require ubiquitin tagging or the presence of the 19S regulatory particle; rather, it relies on the inherent structural disorder of the protein being degraded. Thus, proteins that contain unstructured regions due to oxidation, mutation, or aging, as well as naturally, intrinsically unfolded proteins, are susceptible to 20S degradation. Unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome, relatively little is known about the means by which 20S-mediated proteolysis is controlled. Here, we describe our current understanding of the regulatory mechanisms that coordinate 20S proteasome-mediated degradation, and highlight the gaps in knowledge that remain to be bridged.

  1. Regulation of phytoplankton carbon to chlorophyll ratio by light, nutrients and temperature in the Equatorial Pacific Ocean: a basin-scale model

    Directory of Open Access Journals (Sweden)

    X. J. Wang

    2009-03-01

    Full Text Available The complex effects of light, nutrients and temperature lead to a variable carbon to chlorophyll (C:Chl ratio in phytoplankton cells. Using field data collected in the Equatorial Pacific, we derived a new dynamic model with a non-steady C:Chl ratio as a function of irradiance, nitrate, iron, and temperature. The dynamic model is implemented into a basin-scale ocean circulation-biogeochemistry model and tested in the Equatorial Pacific Ocean. The model reproduces well the general features of phytoplankton dynamics in this region. For instance, the simulated deep chlorophyll maximum (DCM is much deeper in the western warm pool (~100 m than in the Eastern Equatorial Pacific (~50 m. The model also shows the ability to reproduce chlorophyll, including not only the zonal, meridional and vertical variations, but also the interannual variability. This modeling study demonstrates that combination of nitrate and iron regulates the spatial and temporal variations in the phytoplankton C:Chl ratio in the Equatorial Pacific. Sensitivity simulations suggest that nitrate is mainly responsible for the high C:Chl ratio in the western warm pool while iron is responsible for the frontal features in the C:Chl ratio between the warm pool and the upwelling region. In addition, iron plays a dominant role in regulating the spatial and temporal variations of the C:Chl ratio in the Central and Eastern Equatorial Pacific. While temperature has a relatively small effect on the C:Chl ratio, light is primarily responsible for the vertical decrease of phytoplankton C:Chl ratio in the euphotic zone.

  2. Indicators: Chlorophyll a

    Science.gov (United States)

    Chlorophyll allows plants (including algae) to photosynthesize, i.e., use sunlight to convert simple molecules into organic compounds. Chlorophyll a is the predominant type of chlorophyll found in green plants and algae.

  3. Ubiquitin regulates GGA3-mediated degradation of BACE1.

    Science.gov (United States)

    Kang, Eugene L; Cameron, Andrew N; Piazza, Fabrizio; Walker, Kendall R; Tesco, Giuseppina

    2010-07-30

    BACE1 (beta-site amyloid precursor protein-cleaving enzyme 1) is a membrane-tethered member of the aspartyl proteases, essential for the production of beta-amyloid, a toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. The BACE1 C-terminal fragment contains a DXXLL motif that has been shown to bind the VHS (VPS27, Hrs, and STAM) domain of GGA1-3 (Golgi-localized gamma-ear-containing ARF-binding proteins). GGAs are trafficking molecules involved in the transport of proteins containing the DXXLL signal from the Golgi complex to endosomes. Moreover, GGAs bind ubiquitin and traffic synthetic and endosomal ubiquitinated cargoes to lysosomes. We have previously shown that depletion of GGA3 results in increased BACE1 levels and activity because of impaired lysosomal degradation. Here, we report that the accumulation of BACE1 is rescued by the ectopic expression of GGA3 in H4 neuroglioma cells depleted of GGA3. Accordingly, the overexpression of GGA3 reduces the levels of BACE1 and beta-amyloid. We then established that mutations in the GGA3 VPS27, Hrs, and STAM domain (N91A) or in BACE1 di-leucine motif (L499A/L500A), able to abrogate their binding, did not affect the ability of ectopically expressed GGA3 to rescue BACE1 accumulation in cells depleted of GGA3. Instead, we found that BACE1 is ubiquitinated at lysine 501 and is mainly monoubiquitinated and Lys-63-linked polyubiquitinated. Finally, a GGA3 mutant with reduced ability to bind ubiquitin (GGA3L276A) was unable to regulate BACE1 levels both in rescue and overexpression experiments. These findings indicate that levels of GGA3 tightly and inversely regulate BACE1 levels via interaction with ubiquitin sorting machinery.

  4. Ubiquitin Regulates GGA3-mediated Degradation of BACE1*

    Science.gov (United States)

    Kang, Eugene L.; Cameron, Andrew N.; Piazza, Fabrizio; Walker, Kendall R.; Tesco, Giuseppina

    2010-01-01

    BACE1 (β-site amyloid precursor protein-cleaving enzyme 1) is a membrane-tethered member of the aspartyl proteases, essential for the production of β-amyloid, a toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. The BACE1 C-terminal fragment contains a DXXLL motif that has been shown to bind the VHS (VPS27, Hrs, and STAM) domain of GGA1–3 (Golgi-localized γ-ear-containing ARF-binding proteins). GGAs are trafficking molecules involved in the transport of proteins containing the DXXLL signal from the Golgi complex to endosomes. Moreover, GGAs bind ubiquitin and traffic synthetic and endosomal ubiquitinated cargoes to lysosomes. We have previously shown that depletion of GGA3 results in increased BACE1 levels and activity because of impaired lysosomal degradation. Here, we report that the accumulation of BACE1 is rescued by the ectopic expression of GGA3 in H4 neuroglioma cells depleted of GGA3. Accordingly, the overexpression of GGA3 reduces the levels of BACE1 and β-amyloid. We then established that mutations in the GGA3 VPS27, Hrs, and STAM domain (N91A) or in BACE1 di-leucine motif (L499A/L500A), able to abrogate their binding, did not affect the ability of ectopically expressed GGA3 to rescue BACE1 accumulation in cells depleted of GGA3. Instead, we found that BACE1 is ubiquitinated at lysine 501 and is mainly monoubiquitinated and Lys-63-linked polyubiquitinated. Finally, a GGA3 mutant with reduced ability to bind ubiquitin (GGA3L276A) was unable to regulate BACE1 levels both in rescue and overexpression experiments. These findings indicate that levels of GGA3 tightly and inversely regulate BACE1 levels via interaction with ubiquitin sorting machinery. PMID:20484053

  5. Chlorophyll b Reductase Plays an Essential Role in Maturation and Storability of Arabidopsis Seeds1[W

    Science.gov (United States)

    Nakajima, Saori; Ito, Hisashi; Tanaka, Ryouichi; Tanaka, Ayumi

    2012-01-01

    Although seeds are a sink organ, chlorophyll synthesis and degradation occurs during embryogenesis and in a manner similar to that observed in photosynthetic leaves. Some mutants retain chlorophyll after seed maturation, and they are disturbed in seed storability. To elucidate the effects of chlorophyll retention on the seed storability of Arabidopsis (Arabidopsis thaliana), we examined the non-yellow coloring1 (nyc1)/nyc1-like (nol) mutants that do not degrade chlorophyll properly. Approximately 10 times more chlorophyll was retained in the dry seeds of the nyc1/nol mutant than in the wild-type seeds. The germination rates rapidly decreased during storage, with most of the mutant seeds failing to germinate after storage for 23 months, whereas 75% of the wild-type seeds germinated after 42 months. These results indicate that chlorophyll retention in the seeds affects seed longevity. Electron microscopic studies indicated that many small oil bodies appeared in the embryonic cotyledons of the nyc1/nol mutant; this finding indicates that the retention of chlorophyll affects the development of organelles in embryonic cells. A sequence analysis of the NYC1 promoter identified a potential abscisic acid (ABA)-responsive element. An electrophoretic mobility shift assay confirmed the binding of an ABA-responsive transcriptional factor to the NYC1 promoter DNA fragment, thus suggesting that NYC1 expression is regulated by ABA. Furthermore, NYC1 expression was repressed in the ABA-insensitive mutants during embryogenesis. These data indicate that chlorophyll degradation is induced by ABA during seed maturation to produce storable seeds. PMID:22751379

  6. Induction, regulation, degradation, and biological significance of mammalian metallothioneins.

    Science.gov (United States)

    Miles, A T; Hawksworth, G M; Beattie, J H; Rodilla, V

    2000-01-01

    MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypeptides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.

  7. The Regulation of para-Nitrophenol Degradation in Pseudomonas putida DLL-E4.

    Directory of Open Access Journals (Sweden)

    Qiongzhen Chen

    Full Text Available Pseudomonas putida DLL-E4 can efficiently degrade para-nitrophenol and its intermediate metabolite hydroquinone. The regulation of para-nitrophenol degradation was studied, and PNP induced a global change in the transcriptome of P. putida DLL-E4. When grown on PNP, the wild-type strain exhibited significant downregulation of 2912 genes and upregulation of 845 genes, whereas 2927 genes were downregulated and 891 genes upregulated in a pnpR-deleted strain. Genes related to two non-coding RNAs (ins1 and ins2, para-nitrophenol metabolism, the tricarboxylic acid cycle, the outer membrane porin OprB, glucose dehydrogenase Gcd, and carbon catabolite repression were significantly upregulated when cells were grown on para-nitrophenol plus glucose. pnpA, pnpR, pnpC1C2DECX1X2, and pnpR1 are key genes in para-nitrophenol degradation, whereas pnpAb and pnpC1bC2bDbEbCbX1bX2b have lost the ability to degrade para-nitrophenol. Multiple components including transcriptional regulators and other unknown factors regulate para-nitrophenol degradation, and the transcriptional regulation of para-nitrophenol degradation is complex. Glucose utilization was enhanced at early stages of para-nitrophenol supplementation. However, it was inhibited after the total consumption of para-nitrophenol. The addition of glucose led to a significant enhancement in para-nitrophenol degradation and up-regulation in the expression of genes involved in para-nitrophenol degradation and carbon catabolite repression (CCR. It seemed that para-nitrophenol degradation can be regulated by CCR, and relief of CCR might contribute to enhanced para-nitrophenol degradation. In brief, the regulation of para-nitrophenol degradation seems to be controlled by multiple factors and requires further study.

  8. SCF(KMD) controls cytokinin signaling by regulating the degradation of type-B response regulators.

    Science.gov (United States)

    Kim, Hyo Jung; Chiang, Yi-Hsuan; Kieber, Joseph J; Schaller, G Eric

    2013-06-11

    Cytokinins are plant hormones that play critical roles in growth and development. In Arabidopsis, the transcriptional response to cytokinin is regulated by action of type-B Arabidopsis response regulators (ARRs). Although central elements in the cytokinin signal transduction pathway have been identified, mechanisms controlling output remain to be elucidated. Here we demonstrate that a family of F-box proteins, called the kiss me deadly (KMD) family, targets type-B ARR proteins for degradation. KMD proteins form an S-phase kinase-associated PROTEIN1 (SKP1)/Cullin/F-box protein (SCF) E3 ubiquitin ligase complex and directly interact with type-B ARR proteins. Loss-of-function KMD mutants stabilize type-B ARRs and exhibit an enhanced cytokinin response. In contrast, plants with elevated KMD expression destabilize type-B ARR proteins leading to cytokinin insensitivity. Our results support a model in which an SCF(KMD) complex negatively regulates cytokinin responses by controlling levels of a key family of transcription factors.

  9. Identification of Genes Associated with Chlorophyll Accumulation in Flower Petals

    Science.gov (United States)

    Ohmiya, Akemi; Hirashima, Masumi; Yagi, Masafumi; Tanase, Koji; Yamamizo, Chihiro

    2014-01-01

    Plants have an ability to prevent chlorophyll accumulation, which would mask the bright flower color, in their petals. In contrast, leaves contain substantial amounts of chlorophyll, as it is essential for photosynthesis. The mechanisms of organ-specific chlorophyll accumulation are unknown. To identify factors that determine the chlorophyll content in petals, we compared the expression of genes related to chlorophyll metabolism in different stages of non-green (red and white) petals (very low chlorophyll content), pale-green petals (low chlorophyll content), and leaves (high chlorophyll content) of carnation (Dianthus caryophyllus L.). The expression of many genes encoding chlorophyll biosynthesis enzymes, in particular Mg-chelatase, was lower in non-green petals than in leaves. Non-green petals also showed higher expression of genes involved in chlorophyll degradation, including STAY-GREEN gene and pheophytinase. These data suggest that the absence of chlorophylls in carnation petals may be caused by the low rate of chlorophyll biosynthesis and high rate of degradation. Similar results were obtained by the analysis of Arabidopsis microarray data. In carnation, most genes related to chlorophyll biosynthesis were expressed at similar levels in pale-green petals and leaves, whereas the expression of chlorophyll catabolic genes was higher in pale-green petals than in leaves. Therefore, we hypothesize that the difference in chlorophyll content between non-green and pale-green petals is due to different levels of chlorophyll biosynthesis. Our study provides a basis for future molecular and genetic studies on organ-specific chlorophyll accumulation. PMID:25470367

  10. Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi

    Science.gov (United States)

    Anne Christine Steenkjær Hastrup; Frederick Green III; Patricia K. Lebow; Bo Jensen

    2012-01-01

    Oxalic acid is a key component in the initiation of brown-rot decay and it has been suggested that it plays multiple roles during the degradation process. Oxalic acid is accumulated to varying degrees among brown-rot fungi; however, details on active regulation are scarce. The accumulation of oxalic acid was measured in this study from wood degraded by the four brown-...

  11. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.

    Science.gov (United States)

    Sen, Gulseren; Eryilmaz, Isil Ezgi; Ozakca, Dilek

    2014-02-01

    In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Chlorophyll: The wonder pigment

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.R.

    Chlorophyll, the green plant pigment, a 'real life force' of living beings, besides synthesizing food, is a great source of vitamins, minerals and other phytochemicals. Adding chlorophyll rich food to our diet fortifies our body against health...

  13. Proteolytic degradation of regulator of G protein signaling 2 facilitates temporal regulation of Gq/11 signaling and vascular contraction.

    Science.gov (United States)

    Kanai, Stanley M; Edwards, Alethia J; Rurik, Joel G; Osei-Owusu, Patrick; Blumer, Kendall J

    2017-11-24

    Regulator of G protein signaling 2 (RGS2) controls signaling by receptors coupled to the G q/11 class heterotrimeric G proteins. RGS2 deficiency causes several phenotypes in mice and occurs in several diseases, including hypertension in which a proteolytically unstable RGS2 mutant has been reported. However, the mechanisms and functions of RGS2 proteolysis remain poorly understood. Here we addressed these questions by identifying degradation signals in RGS2, and studying dynamic regulation of G q/11 -evoked Ca 2+ signaling and vascular contraction. We identified a novel bipartite degradation signal in the N-terminal domain of RGS2. Mutations disrupting this signal blunted proteolytic degradation downstream of E3 ubiquitin ligase binding to RGS2. Analysis of RGS2 mutants proteolyzed at various rates and the effects of proteasome inhibition indicated that proteolytic degradation controls agonist efficacy by setting RGS2 protein expression levels, and affecting the rate at which cells regain agonist responsiveness as synthesis of RGS2 stops. Analyzing contraction of mesenteric resistance arteries supported the biological relevance of this mechanism. Because RGS2 mRNA expression often is strikingly and transiently up-regulated and then down-regulated upon cell stimulation, our findings indicate that proteolytic degradation tightly couples RGS2 transcription, protein levels, and function. Together these mechanisms provide tight temporal control of G q/11 -coupled receptor signaling in the cardiovascular, immune, and nervous systems. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Regulated degradation of the APC coactivator Cdc20

    Directory of Open Access Journals (Sweden)

    Robbins Jonathan A

    2010-09-01

    Full Text Available Abstract Background Cdc20 is a highly conserved activator of the anaphase-promoting complex (APC, promoting cell-cycle-regulated ubiquitination and proteolysis of a number of critical cell-cycle-regulatory targets including securin and mitotic cyclins. APC-Cdc20 activity is tightly regulated, and this regulation is likely important for accurate cell cycle control. One significant component of Cdc20 regulation is thought to be Cdc20 proteolysis. However, published literature suggests different mechanisms and requirements for Cdc20 proteolysis. The degree to which Cdc20 proteolysis is cell-cycle regulated, the dependence of Cdc20 proteolysis on Cdc20 destruction boxes (recognition sequences for APC-mediated ubiqutination, either by Cdc20 or by the related Cdh1 APC activator, and the need for APC itself for Cdc20 proteolysis all have been disputed to varying extents. In animals, Cdc20 proteolysis is thought to be mediated by Cdh1, contributing an intrinsic order of APC activation by Cdc20 and then by Cdh1. One report suggests a Cdh1 requirement for Cdc20 proteolysis in budding yeast; this idea has not been tested further. Results We characterized Cdc20 proteolysis using Cdc20 expressed from its endogenous locus; previous studies generally employed strongly overexpressed Cdc20, which can cause significant artifacts. We analyzed Cdc20 proteolysis with or without mutations in previously identified destruction box sequences, using varying methods of cell cycle synchronization, and in the presence or absence of Cdh1. Cdc20 instability is only partially dependent on destruction boxes. A much stronger dependence on Cdh1 for Cdc20 proteolysis was observed, but Cdh1-independent proteolysis was also clearly observed. Cdc20 proteolysis independent of both destruction boxes and Cdh1 was especially detectable around the G1/S transition; Cdh1-dependent proteolysis was most notable in late mitosis and G1. Conclusions Cdc20 proteolysis is under complex control

  15. Chlorophyll a is a favorable substrate for Chlamydomonas Mg-dechelatase encoded by STAY-GREEN.

    Science.gov (United States)

    Matsuda, Kaori; Shimoda, Yousuke; Tanaka, Ayumi; Ito, Hisashi

    2016-12-01

    Mg removal from chlorophyll by Mg-dechelatase is the first step of chlorophyll degradation. Recent studies showed that in Arabidopsis, Stay Green (SGR) encodes Mg-dechelatase. Though the Escherichia coli expression system is advantageous for investigating the properties of Mg-dechelatase, Arabidopsis Mg-dechelatase is not successfully expressed in E. coli. Chlamydomonas reinhardtii SGR (CrSGR) has a long, hydrophilic tail, suggesting that active CrSGR can be expressed in E. coli. After the incubation of chlorophyll a with CrSGR expressed in E. coli, pheophytin a accumulated, indicating that active CrSGR was expressed in E. coli. Substrate specificity of CrSGR against chlorophyll b and an intermediate molecule of the chlorophyll b degradation pathway was examined. CrSGR exhibited no activity against chlorophyll b and low activity against 7-hydroxymethyl chlorophyll a, consistent with the fact that chlorophyll b is degraded only after conversion to chlorophyll a. CrSGR exhibited low activity against divinyl chlorophyll a and chlorophyll a', and no activity against chlorophyllide a, protochlorophyll a, chlorophyll c 2 , and Zn-chlorophyll a. These observations indicate that chlorophyll a is the most favorable substrate for CrSGR. When CrSGR was expressed in Arabidopsis cells, the chlorophyll content decreased, further confirming that SGR has Mg-dechelating activity in chloroplasts. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. A cytokine axis regulates elastin formation and degradation

    Science.gov (United States)

    Sproul, Erin P.; Argraves, W. Scott

    2013-01-01

    Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine–governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin–cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production. PMID:23160093

  17. Chlorophyll in tomato seeds: marker for seed performance?

    NARCIS (Netherlands)

    Suhartanto, M.R.

    2002-01-01

    Using Xe-PAM, laser induced fluorometry and high performance liquid chromatography we found that chlorophyll was present in young tomato (cv. Moneymaker) seeds and was degraded during maturation. Fluorescence microscopy and imaging showed that the majority of chlorophyll is located in the

  18. Finding of 13(2) , 17(3) -cyclopheophorbide a enol as a degradation product of chlorophyll in shrunk zooxanthellae of the coral Montipora digitata.

    Science.gov (United States)

    Suzuki, Toshiyuki; Casareto, Beatriz Estela; Shioi, Yuzo; Ishikawa, Yoshio; Suzuki, Yoshimi

    2015-02-01

    We examined the morphology and pigment composition of zooxanthellae in corals subjected to normal temperature (27°C) and thermal stress (32°C). We observed several normal and abnormal morphological types of zooxanthellar cells. Normal cells were intact and their chloroplasts were unbroken (healthy); abnormal cells were shrunken and had partially degraded or broken chloroplasts, or they were bleached and without chloroplasts. At 27°C, most healthy zooxanthellar cells were retained in the coral tissue, whereas shrunken zooxanthellae were expelled. Under thermal stress, the abundance of healthy zooxanthellae declined and the proportion of shrunken/abnormal cells increased in coral tissues. The rate of algal cell expulsion was reduced under thermal stress. Within the shrunken cells, we detected the presence of a chl-like pigment that is not ordinarily found in healthy zooxanthellae. Analysis of the absorption spectrum, absorption maxima, and retention time (by HPLC) indicated that this pigment was 13(2) , 17(3) -cyclopheophorbide a enol (cPPB-aE), which is frequently found in marine and lacustrine sediments, and in protozoans that graze on phytoplankton. The production of cPPB-aE in shrunken zooxanthellae suggests that the chls have been degraded to cPPB-aE, a compound that is not fluorescent. The lack of a fluorescence function precludes the formation of reactive oxygen species. We therefore consider the formation of cPPB-aE in shrunken zooxanthellae to be a mechanism for avoiding oxidative stress. © 2014 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.

  19. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.

    Science.gov (United States)

    Zhao, Wenming; Guan, Chunmei; Feng, Jian; Liang, Yan; Zhan, Ni; Zuo, Jianru; Ren, Bo

    2016-07-01

    In Arabidopsis, the phytohormone abscisic acid (ABA) plays a vital role in inhibiting seed germination and in post-germination seedling establishment. In the ABA signaling pathway, ABI5, a basic Leu zipper transcription factor, has important functions in the regulation of seed germination. ABI5 protein localizes in nuclear bodies, along with AFP, COP1, and SIZ1, and was degraded through the 26S proteasome pathway. However, the mechanisms of ABI5 nuclear body formation and ABI5 protein degradation remain obscure. In this study, we found that the Arabidopsis CROWDED NUCLEI (CRWN) proteins, predicted nuclear matrix proteins essential for maintenance of nuclear morphology, also participate in ABA-controlled seed germination by regulating the degradation of ABI5 protein. During seed germination, the crwn mutants are hypersensitive to ABA and have higher levels of ABI5 protein compared to wild type. Genetic analysis suggested that CRWNs act upstream of ABI5. The observation that CRWN3 colocalizes with ABI5 in nuclear bodies indicates that CRWNs might participate in ABI5 protein degradation in nuclear bodies. Moreover, we revealed that the extreme C-terminal of CRWN3 protein is necessary for its function in the response to ABA in germination. Our results suggested important roles of CRWNs in ABI5 nuclear body organization and ABI5 protein degradation during seed germination. © 2015 Institute of Botany, Chinese Academy of Sciences.

  20. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle.

    Science.gov (United States)

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A

    2015-06-12

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics.

  1. Chlorophyll_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included chlorophyll for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came from...

  2. OSU Chlorophyll Bloom Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This product was developed for the Oregon coast based on the observed change between running 8-day composite chlorophyll-a (CHL) data obtained by the MODerate...

  3. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    DEFF Research Database (Denmark)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate......-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin...... ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together...

  4. Degradation Behaviour of Lithium-Ion Batteries based on Field Measured Frequency Regulation Mission Profile

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina

    2015-01-01

    Energy storage systems based on Lithium-ion batteries have been proposed as an environmental friendly alternative to traditional conventional generating units for providing grid frequency regulation. One major challenge regarding the use of Lithium-ion batteries in such applications is their cost...... competitiveness in comparison to other storage technologies or with the traditional frequency regulation methods. In order to surpass this challenge and to allow for optimal sizing and proper use of the battery, accurate knowledge about the lifetime of the Lithium-ion battery and its degradation behaviour...... is required. This paper aims to investigate, based on a laboratory developed lifetime model, the degradation behaviour of the performance parameters (i.e., capacity and power capability) of a Lithium-ion battery cell when it is subjected to a field measured mission profile, which is characteristic...

  5. PPARγ transcriptionally regulates the expression of insulin-degrading enzyme in primary neurons

    International Nuclear Information System (INIS)

    Du, Jing; Zhang, Lang; Liu, Shubo; Zhang, Chi; Huang, Xiuqing; Li, Jian; Zhao, Nanming; Wang, Zhao

    2009-01-01

    Insulin-degrading enzyme (IDE) is a protease that has been demonstrated to play a key role in degrading both Aβ and insulin and deficient in IDE function is associated with Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2) pathology. However, little is known about the cellular and molecular regulation of IDE expression. Here we show IDE levels are markedly decreased in DM2 patients and positively correlated with the peroxisome proliferator-activated receptor γ (PPARγ) levels. Further studies show that PPARγ plays an important role in regulating IDE expression in rat primary neurons through binding to a functional peroxisome proliferator-response element (PPRE) in IDE promoter and promoting IDE gene transcription. Finally, we demonstrate that PPARγ participates in the insulin-induced IDE expression in neurons. These results suggest that PPARγ transcriptionally induces IDE expression which provides a novel mechanism for the use of PPARγ agonists in both DM2 and AD therapies.

  6. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zheng [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Dadao Bei, Guangzhou 510515 (China); Zhou, Yuning [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Evers, B. Mark [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Wang, Qingding, E-mail: qingding.wang@uky.edu [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Rictor associates with FBXW7 to form an E3 complex. Black-Right-Pointing-Pointer Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. Black-Right-Pointing-Pointer Knockdown of rictor increases protein levels of c-Myc and cylin E. Black-Right-Pointing-Pointer Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Black-Right-Pointing-Pointer Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor-FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  7. GSK3α and GSK3β Phosphorylate Arc and Regulate its Degradation

    Directory of Open Access Journals (Sweden)

    Agata Gozdz

    2017-06-01

    Full Text Available The selective and neuronal activity-dependent degradation of synaptic proteins appears to be crucial for long-term synaptic plasticity. One such protein is activity-regulated cytoskeleton-associated protein (Arc, which regulates the synaptic content of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR, excitatory synapse strength and dendritic spine morphology. The levels of Arc protein are tightly regulated, and its removal occurs via proteasome-mediated degradation that requires prior ubiquitination. Glycogen synthase kinases α and β (GSK3α, GSKβ; collectively named GSK3α/β are serine-threonine kinases with abundant expression in the central nervous system. Both GSK3 isozymes are tonically active under basal conditions, but their activity is regulated by intra- and extracellular factors, intimately involved in neuronal activity. Similar to Arc, GSK3α and GSK3β contribute to synaptic plasticity and the structural plasticity of dendritic spines. The present study identified Arc as a GSK3α/β substrate and showed that GSKβ promotes Arc degradation under conditions that induce de novo Arc synthesis. We also found that GSK3α/β inhibition potentiated spine head thinning that was caused by the prolonged stimulation of N-methyl-D-aspartate receptors (NMDAR. Furthermore, overexpression of Arc mutants that were resistant to GSK3β-mediated phosphorylation or ubiquitination resulted in a stronger reduction of dendritic spine width than wildtype Arc overexpression. Thus, GSK3β terminates Arc expression and limits its effect on dendritic spine morphology. Taken together, the results identify GSK3α/β-catalyzed Arc phosphorylation and degradation as a novel mechanism for controlling the duration of Arc expression and function.

  8. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    International Nuclear Information System (INIS)

    Guo, Zheng; Zhou, Yuning; Evers, B. Mark; Wang, Qingding

    2012-01-01

    Highlights: ► Rictor associates with FBXW7 to form an E3 complex. ► Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. ► Knockdown of rictor increases protein levels of c-Myc and cylin E. ► Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. ► Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor–FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  9. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  11. Cellular Cholesterol Regulates Ubiquitination and Degradation of the Cholesterol Export Proteins ABCA1 and ABCG1*

    Science.gov (United States)

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716

  12. Palmitoylation regulates 17β-estradiol-induced estrogen receptor-α degradation and transcriptional activity.

    Science.gov (United States)

    La Rosa, Piergiorgio; Pesiri, Valeria; Leclercq, Guy; Marino, Maria; Acconcia, Filippo

    2012-05-01

    The estrogen receptor-α (ERα) is a transcription factor that regulates gene expression through the binding to its cognate hormone 17β-estradiol (E2). ERα transcriptional activity is regulated by E2-evoked 26S proteasome-mediated ERα degradation and ERα serine (S) residue 118 phosphorylation. Furthermore, ERα mediates fast cell responses to E2 through the activation of signaling cascades such as the MAPK/ERK and phosphoinositide-3-kinase/v-akt murine thymoma viral oncogene homolog 1 pathways. These E2 rapid effects require a population of the ERα located at the cell plasma membrane through palmitoylation, a dynamic enzymatic modification mediated by palmitoyl-acyl-transferases. However, whether membrane-initiated and transcriptional ERα activities integrate in a unique picture or represent parallel pathways still remains to be firmly clarified. Hence, we evaluated here the impact of ERα palmitoylation on E2-induced ERα degradation and S118 phosphorylation. The lack of palmitoylation renders ERα more susceptible to E2-dependent degradation, blocks ERα S118 phosphorylation and prevents E2-induced ERα estrogen-responsive element-containing promoter occupancy. Consequently, ERα transcriptional activity is prevented and the receptor addressed to the nuclear matrix subnuclear compartment. These data uncover a circuitry in which receptor palmitoylation links E2-dependent ERα degradation, S118 phosphorylation, and transcriptional activity in a unique molecular mechanism. We propose that rapid E2-dependent signaling could be considered as a prerequisite for ERα transcriptional activity and suggest an integrated model of ERα intracellular signaling where E2-dependent early extranuclear effects control late receptor-dependent nuclear actions.

  13. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    Science.gov (United States)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K; Ejsing, Christer S; Carvalho, Pedro

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI: http://dx.doi.org/10.7554/eLife.00953.001 PMID:23898401

  14. Highly stable and degradable multifunctional microgel for self-regulated insulin delivery under physiological conditions

    Science.gov (United States)

    Zhang, Xinjie; Lü, Shaoyu; Gao, Chunmei; Chen, Chen; Zhang, Xuan; Liu, Mingzhu

    2013-06-01

    The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size distribution (~250 nm) is suitable for diabetes because it can adapt to the surrounding medium of different glucose concentrations over a clinically relevant range (0-20 mM), control the release of preloaded insulin and is highly stable under physiological conditions (pH 7.4, 0.15 M NaCl, 37 °C). When synthesized multifunctional microgels regulate drug delivery, they gradually degrade as time passes and, as a result, show enhanced biocompatibility. This exhibits a new proof-of-concept for diabetes treatment that takes advantage of the properties of each building block from a multifunctional micro-object. These highly stable and versatile multifunctional microgels have the potential to be used for self-regulated therapy and monitoring of the response to treatment, or even simultaneous diagnosis as nanobiosensors.The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size

  15. Chlorophyll formation and phytochrome

    NARCIS (Netherlands)

    Raven, C.W.

    1973-01-01

    The rôle of phytochrome in the regeneration of protochlorophyll (Pchl) in darkness following short exposures to light, as well as in the accumulation of chlorophyll- a (Chl- a ) in continuous light in previously dark-grown seedlings of pea, bean,

  16. Effects of biocides on chlorophyll contents of detached basil leaves

    Directory of Open Access Journals (Sweden)

    Titima Arunrangsi

    2013-06-01

    Full Text Available Herbicides and insecticides have been widely and intensively used in agricultural areas worldwide to enhance crop yield. However, many biocides cause serious environmental problems. In addition, the biocides may also have some effects on the treated agricultural crops. To study effects of biocides on chlorophyll content in detached basil leaves, 2,4-D dimethylamine salt (2,4 D-Amine, paraquat, carbosulfan, and azadirachtin, were chosen as representatives of biocide. After applying the chemicals to detached basil leaves overnight in darkness, chlorophyll contents were determined. Only treatment with 2,4 D-Amine resulted in reduction of chlorophyll contents significantly compared to treatment with deionized (DI water. In the case of paraquat and carbosulfan, chlorophyll contents were not significantly changed, while slightly higher chlorophyll contents, compared to DI water, after the treatment with azadirachtin, were observed. The results indicated that 2,4 D-Amine shows an ability to accelerate chlorophyll degradation, but azadirachtin helps to retard chlorophyll degradation, when each biocide is used at the concentration recommended by the manufacturer.

  17. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation.

    Science.gov (United States)

    Stylli, Stanley S; Stacey, T T I; Verhagen, Anne M; Xu, San San; Pass, Ian; Courtneidge, Sara A; Lock, Peter

    2009-08-01

    Invadopodia are actin-based projections enriched with proteases, which invasive cancer cells use to degrade the extracellular matrix (ECM). The Phox homology (PX)-Src homology (SH)3 domain adaptor protein Tks5 (also known as SH3PXD2A) cooperates with Src tyrosine kinase to promote invadopodia formation but the underlying pathway is not clear. Here we show that Src phosphorylates Tks5 at Y557, inducing it to associate directly with the SH3-SH2 domain adaptor proteins Nck1 and Nck2 in invadopodia. Tks5 mutants unable to bind Nck show reduced matrix degradation-promoting activity and recruit actin to invadopodia inefficiently. Conversely, Src- and Tks5-driven matrix proteolysis and actin assembly in invadopodia are enhanced by Nck1 or Nck2 overexpression and inhibited by Nck1 depletion. We show that clustering at the plasma membrane of the Tks5 inter-SH3 region containing Y557 triggers phosphorylation at this site, facilitating Nck recruitment and F-actin assembly. These results identify a Src-Tks5-Nck pathway in ECM-degrading invadopodia that shows parallels with pathways linking several mammalian and pathogen-derived proteins to local actin regulation.

  18. Molybdenum Sulfide Induce Growth Enhancement Effect of Rice ( Oryza sativa L.) through Regulating the Synthesis of Chlorophyll and the Expression of Aquaporin Gene.

    Science.gov (United States)

    Li, Yadong; Jin, Qian; Yang, Desong; Cui, Jianghu

    2018-04-25

    Molybdenum sulfide (MoS 2 ) has been applied widely in industrial and environmental application, leading to increasing release into environment. So far, no studies have been investigated with regard to the potential effect of MoS 2 on plants. Herein, we studied the impact of MoS 2 on the growth, chlorophyll content, lipid peroxidation, antioxidase system, and aquaporins of rice for the first time. Results showed that MoS 2 did not significantly affect the germination of rice seeds, malonaldehyde (MDA) content, and the antioxidant enzyme activity. While the length and biomass of rice root and shoot, chlorophyll content index (CCI), and expression of aquaporin genes were significantly increased. Based on these results, we concluded that MoS 2 promoted rice growth through (i) the promotion of nitrogen source assimilation, (ii) the enhancement of photosynthesis, enzymatic-related biochemical reactions, and metabolic processes, subsequently, (iii) the acceleration of cell division and expansion, furthermore (iv) no abiotic stress and favorable condition of antioxidant enzyme system. These results provided an important insight into the further application of MoS 2 on agriculture and environment.

  19. Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription

    Directory of Open Access Journals (Sweden)

    Antonina N. Shvetsova

    2017-08-01

    Full Text Available Mitochondria are the main consumers of molecular O2 in a cell as well as an abundant source of reactive oxygen species (ROS. Both, molecular oxygen and ROS are powerful regulators of the hypoxia-inducible factor-1α-subunit (HIF-α. While a number of mechanisms in the oxygen-dependent HIF-α regulation are quite well known, the view with respect to mitochondria is less clear. Several approaches using pharmacological or genetic tools targeting the mitochondrial electron transport chain (ETC indicated that ROS, mainly formed at the Rieske cluster of complex III of the ETC, are drivers of HIF-1α activation. However, studies investigating non-ETC located mitochondrial defects and their effects on HIF-1α regulation are scarce, if at all existing. Thus, in the present study we examined three cell lines with non-ETC mitochondrial defects and focused on HIF-1α degradation and transcription, target gene expression, as well as ROS levels. We found that cells lacking the key enzyme 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (MECR, and cells lacking manganese superoxide dismutase (MnSOD showed a reduced induction of HIF-1α under long-term (20 h hypoxia. By contrast, cells lacking the mitochondrial DNA depletion syndrome channel protein Mpv17 displayed enhanced levels of HIF-1α already under normoxic conditions. Further, we show that ROS do not exert a uniform pattern when mediating their effects on HIF-1α, although all mitochondrial defects in the used cell types increased ROS formation. Moreover, all defects caused a different HIF-1α regulation via promoting HIF-1α degradation as well as via changes in HIF-1α transcription. Thereby, MECR- and MnSOD-deficient cells showed a reduction in HIF-1α mRNA levels whereas the Mpv17 lacking cells displayed enhanced HIF-1α mRNA levels under normoxia and hypoxia. Altogether, our study shows for the first time that mitochondrial defects which are not related to the ETC and Krebs cycle

  20. Pulse amplitude modulated chlorophyll fluorometer

    Science.gov (United States)

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  1. Liquid scintillation counting of chlorophyll

    International Nuclear Information System (INIS)

    Fric, F.; Horickova, B.; Haspel-Horvatovic, E.

    1975-01-01

    A precise and reproducible method of liquid scintillation counting was worked out for measuring the radioactivity of 14 C-labelled chlorophyll a and chlorophyll b solutions without previous bleaching. The spurious count rate caused by luminescence of the scintillant-chlorophyll system is eliminated by using a suitable scintillant and by measuring the radioactivity at 4 to 8 0 C after an appropriate time of dark adaptation. Bleaching of the chlorophyll solutions is necessary only for measuring of very low radioactivity. (author)

  2. Hypothalamic ER–associated degradation regulates POMC maturation, feeding, and age-associated obesity

    Science.gov (United States)

    Kim, Geun Hyang; Somlo, Diane R.M.; Haataja, Leena; Song, Soobin; Nillni, Eduardo A.

    2018-01-01

    Pro-opiomelanocortin (POMC) neurons function as key regulators of metabolism and physiology by releasing prohormone-derived neuropeptides with distinct biological activities. However, our understanding of early events in prohormone maturation in the ER remains incomplete. Highlighting the significance of this gap in knowledge, a single POMC cysteine-to-phenylalanine mutation at position 28 (POMC-C28F) is defective for ER processing and causes early onset obesity in a dominant-negative manner in humans through an unclear mechanism. Here, we report a pathologically important role of Sel1L-Hrd1, the protein complex of ER-associated degradation (ERAD), within POMC neurons. Mice with POMC neuron–specific Sel1L deficiency developed age-associated obesity due, at least in part, to the ER retention of POMC that led to hyperphagia. The Sel1L-Hrd1 complex targets a fraction of nascent POMC molecules for ubiquitination and proteasomal degradation, preventing accumulation of misfolded and aggregated POMC, thereby ensuring that another fraction of POMC can undergo normal posttranslational processing and trafficking for secretion. Moreover, we found that the disease-associated POMC-C28F mutant evades ERAD and becomes aggregated due to the presence of a highly reactive unpaired cysteine thiol at position 50. Thus, this study not only identifies ERAD as an important mechanism regulating POMC maturation within the ER, but also provides insights into the pathogenesis of monogenic obesity associated with defective prohormone folding. PMID:29457782

  3. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Directory of Open Access Journals (Sweden)

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  4. REGγ regulates ERα degradation via ubiquitin–proteasome pathway in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Fan; Liang, Yan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Bi, Jiong [Laboratory of General Surgery, First Affiliated Hospital, Sun Yet-sen University, Guangzhou 510080 (China); Chen, Li; Zhang, Fan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Cui, Youhong [Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Jiang, Jun, E-mail: jcbd@medmail.com.cn [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2015-01-02

    Highlights: • High expression of REGγ is correlated with ERα status and poor clinical features. • Cell growth, mobility and invasion are significantly impaired by REGγ knockdown. • REGγ indirectly regulates ERα protein expression. - Abstract: REGγ is a proteasome coactivator which regulates proteolytic activity in eukaryotic cells. Abundant lines of evidence have showed that REGγ is over expressed in a number of human carcinomas. However, its precise role in the pathogenesis of cancer is still unclear. In this study, by examining 200 human breast cancer specimens, we demonstrated that REGγ was highly expressed in breast cancers, and the expression of REGγ was positively correlated with breast cancer patient estrogen receptor alpha (ERα) status. Moreover, the expression of REGγ was found positively associated with poor clinical features and low survival rates in ERα positive breast cancer patients. Further cell culture studies using MCF7 and BT474 breast cancer cell lines showed that cell proliferation, motility, and invasion capacities were decreased significantly by REGγ knockdown. Lastly, we demonstrated that REGγ indirectly regulates the degradation of ERα protein via ubiquitin–proteasome pathway. In conclusion, our findings provide the evidence that REGγ expression was positively correlated with ERα status and poor clinical prognosis in ERα positive breast cancer patients. As well, we disclose a new connection between the two molecules that are both highly expressed in most breast cancer cases.

  5. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes.

    Science.gov (United States)

    Singh, Randeep K; Dagnino, Lina

    2017-01-17

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation.

  6. Saturated fatty acid palmitate negatively regulates autophagy by promoting ATG5 protein degradation in meniscus cells.

    Science.gov (United States)

    Mallik, Aritra; Yammani, Raghunatha R

    2018-07-20

    Obesity and associated metabolic factors are major risk factors for the development of osteoarthritis. Previously, we have shown that the free fatty acid palmitate induces endoplasmic reticulum (ER) stress and induces apoptosis in meniscus cells. However, the molecular mechanisms involved in these effects are not clearly understood. In our current study, we found that palmitate inhibits autophagy by modulating the protein levels of autophagy-related genes-5 (ATG5) that is associated with decreased lipidation of LC3 and increased activation of cleaved caspase 3. Pretreatment of meniscus cells with 4-phenyl butyric acid, a small molecule chemical chaperone that alleviates ER stress, or with MG-132, a proteasome inhibitor, restored normal levels of ATG5 and autophagosome formation, and decreased expression of cleaved caspase 3. Thus, our data suggest that palmitate downregulates autophagy in meniscus cells by degrading ATG5 protein via ER-associated protein degradation, and thus promotes apoptosis. This is the first study to demonstrate that palmitate-induced endoplasmic reticulum stress negatively regulates autophagy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Chlorophyllase in Piper betle L. has a role in chlorophyll homeostasis and senescence dependent chlorophyll breakdown.

    Science.gov (United States)

    Gupta, Supriya; Gupta, Sanjay Mohan; Sane, Aniruddha P; Kumar, Nikhil

    2012-06-01

    Total chlorophyll content and chlorophyllase (chlorophyll-chlorophyllido hydrolase EC 3.1.1.14) activity in fresh leaves of Piper betle L. landrace KS was, respectively, twofold higher and eight fold lower than KV, showing negative correlation between chlorophyll and chlorophyllase activity. Specific chlorophyllase activity was nearly eightfold more in KV than KS. ORF of 918 nt was found in cloned putative chlorophyllase cDNAs from KV and KS. The gene was present as single copy in both the landraces. The encoded polypeptide of 306 amino acids differed only at two positions between the KV and KS; 203 (cysteine to tyrosine) and 301 (glutamine to glycine). Difference in chlorophyllase gene expression between KV and KS was evident in fresh and excised leaves. Up regulation of chlorophyllase gene by ABA and down regulation by BAP was observed in both the landraces; however, there was quantitative difference between KV and KS. Data suggests that chlorophyllase in P. betle is involved in chlorophyll homeostasis and chlorophyll loss during post harvest senescence.

  8. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition.

    Science.gov (United States)

    Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-06-01

    Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. © 2015 Wiley Periodicals, Inc.

  9. The perlecan-interacting growth factor progranulin regulates ubiquitination, sorting, and lysosomal degradation of sortilin.

    Science.gov (United States)

    Tanimoto, Ryuta; Palladino, Chiara; Xu, Shi-Qiong; Buraschi, Simone; Neill, Thomas; Gomella, Leonard G; Peiper, Stephen C; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea

    2017-12-01

    Despite extensive clinical and experimental studies over the past decades, the pathogenesis and progression to the castration-resistant stage of prostate cancer remains largely unknown. Progranulin, a secreted growth factor, strongly binds the heparin-sulfate proteoglycan perlecan, and counteracts its biological activity. We established that progranulin acts as an autocrine growth factor and promotes prostate cancer cell motility, invasion, and anchorage-independent growth. Progranulin was overexpressed in prostate cancer tissues vis-à-vis non-neoplastic tissues supporting the hypothesis that progranulin may play a key role in prostate cancer progression. However, progranulin's mode of action is not well understood and proteins regulating progranulin signaling have not been identified. Sortilin, a single-pass type I transmembrane protein of the Vps10 family, binds progranulin in neurons and targets progranulin for lysosomal degradation. Significantly, in DU145 and PC3 cells, we detected very low levels of sortilin associated with high levels of progranulin production and enhanced motility. Restoring sortilin expression decreased progranulin levels, inhibited motility and anchorage-independent growth and destabilized Akt. These results demonstrated a critical role for sortilin in regulating progranulin and suggest that sortilin loss may contribute to prostate cancer progression. Here, we provide the novel observation that progranulin downregulated sortilin protein levels independent of transcription. Progranulin induced sortilin ubiquitination, internalization via clathrin-dependent endocytosis and sorting into early endosomes for lysosomal degradation. Collectively, these results constitute a regulatory feed-back mechanism whereby sortilin downregulation ensures sustained progranulin-mediated oncogenesis. Copyright © 2017. Published by Elsevier B.V.

  10. Predicted overlapping microRNA regulators of acetylcholine packaging and degradation in neuroinflammation-related disorders

    Directory of Open Access Journals (Sweden)

    Bettina eNadorp

    2014-02-01

    Full Text Available MicroRNAs (miRNAs can notably control many targets each and regulate entire cellular pathways, but whether miRNAs can regulate complete neurotransmission processes is largely unknown. Here, we report that miRNAs with complementary sequence motifs to the key genes involved in acetylcholine (ACh synthesis and/or packaging show massive overlap with those regulating ACh degradation. To address this topic, we first searched for miRNAs that could target the 3’-untranslated regions of the choline acetyltransferase (ChAT gene that controls ACh synthesis; the vesicular ACh transporter (VAChT, encoded from an intron in the ChAT gene and the ACh hydrolyzing genes acetyl- and/or butyrylcholinesterase (AChE, BChE. Intriguingly, we found that many of the miRNAs targeting these genes are primate-specific, and that changes in their levels associate with inflammation, anxiety, brain damage, cardiac, neurodegenerative or pain-related syndromes. To validate the in vivo relevance of this dual interaction, we selected the evolutionarily conserved miR-186, which targets both the stress-inducible soluble readthrough variant AChE-R and the major peripheral cholinesterase BChE. We exposed mice to predator scent stress and searched for potential associations between consequent changes in their miR-186, AChE-R and BChE levels. Both intestinal miR-186 as well as BChE and AChE-R activities were conspicuously elevated one week post-exposure, highlighting the previously unknown involvement of miR-186 and BChE in psychological stress responses. Overlapping miRNA regulation emerges from our findings as a recently evolved surveillance mechanism over cholinergic neurotransmission in health and disease; and the corresponding miRNA details and disease relevance may serve as a useful resource for studying the molecular mechanisms underlying this surveillance.

  11. Notes on the instability of extracted chlorophyll and a reported effect of ozone on lichen algae

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D H

    1980-01-01

    Recently Rosentreter and Ahmadjian reported on the effects of ozone on the chlorophyll content of Cladonia arbuscula and isolated Trebouxia cells. However, the chlorophyll data they presented, even for the control, unozone-treated material, appears to be unusual. They reported values of the chlorophyll a/b ratio of 0.308-0.463 from Cladonia arbuscula and 0.345-0.476 for Trebouxia which are substantially lower than other published values. Because chlorophyll b is normally present in green plants as a minor accessory photosynthetic pigment, the suggestion that it was the major chlorophyll component requires some explanation. The purpose of this study is to show that chlorophyll is unstable when extracted into methanol and to suggest that the extraction and storage conditions used by Rosentreter and Ahmadjian may have allowed pigment degradation to occur which thereby accounted for the low chlorophyll a/b ratios they obtained.

  12. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana

    Science.gov (United States)

    Espineda, Cromwell E.; Linford, Alicia S.; Devine, Domenica; Brusslan, Judy A.

    1999-01-01

    Chlorophyll b is synthesized from chlorophyll a and is found in the light-harvesting complexes of prochlorophytes, green algae, and both nonvascular and vascular plants. We have used conserved motifs from the chlorophyll a oxygenase (CAO) gene from Chlamydomonas reinhardtii to isolate a homologue from Arabidopsis thaliana. This gene, AtCAO, is mutated in both leaky and null chlorina1 alleles, and DNA sequence changes cosegregate with the mutant phenotype. AtCAO mRNA levels are higher in three different mutants that have reduced levels of chlorophyll b, suggesting that plants that do not have sufficient chlorophyll b up-regulate AtCAO gene expression. Additionally, AtCAO mRNA levels decrease in plants that are grown under dim-light conditions. We have also found that the six major Lhcb proteins do not accumulate in the null ch1-3 allele. PMID:10468639

  13. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets.

    Science.gov (United States)

    Huang, Zengrong; Zhao, Long; Chen, Dandan; Liang, Mingxiang; Liu, Zhaopu; Shao, Hongbo; Long, Xiaohua

    2013-01-01

    Proline accumulation is an important mechanism for osmotic regulation under salt stress. In this study, we evaluated proline accumulation profiles in roots, stems and leaves of Jerusalem artichoke (Helianthus tuberosus L.) plantlets under NaCl stress. We also examined HtP5CS, HtOAT and HtPDH enzyme activities and gene expression patterns of putative HtP5CS1, HtP5CS2, HtOAT, HtPDH1, and HtPDH2 genes. The objective of our study was to characterize the proline regulation mechanisms of Jerusalem artichoke, a moderately salt tolerant species, under NaCl stress. Jerusalem artichoke plantlets were observed to accumulate proline in roots, stems and leaves during salt stress. HtP5CS enzyme activities were increased under NaCl stress, while HtOAT and HtPDH activities generally repressed. Transcript levels of HtP5CS2 increased while transcript levels of HtOAT, HtPDH1 and HtPDH2 generally decreased in response to NaCl stress. Our results supports that for Jerusalem artichoke, proline synthesis under salt stress is mainly through the Glu pathway, and HtP5CS2 is predominant in this process while HtOAT plays a less important role. Both HtPDH genes may function in proline degradation.

  14. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets.

    Directory of Open Access Journals (Sweden)

    Zengrong Huang

    Full Text Available Proline accumulation is an important mechanism for osmotic regulation under salt stress. In this study, we evaluated proline accumulation profiles in roots, stems and leaves of Jerusalem artichoke (Helianthus tuberosus L. plantlets under NaCl stress. We also examined HtP5CS, HtOAT and HtPDH enzyme activities and gene expression patterns of putative HtP5CS1, HtP5CS2, HtOAT, HtPDH1, and HtPDH2 genes. The objective of our study was to characterize the proline regulation mechanisms of Jerusalem artichoke, a moderately salt tolerant species, under NaCl stress. Jerusalem artichoke plantlets were observed to accumulate proline in roots, stems and leaves during salt stress. HtP5CS enzyme activities were increased under NaCl stress, while HtOAT and HtPDH activities generally repressed. Transcript levels of HtP5CS2 increased while transcript levels of HtOAT, HtPDH1 and HtPDH2 generally decreased in response to NaCl stress. Our results supports that for Jerusalem artichoke, proline synthesis under salt stress is mainly through the Glu pathway, and HtP5CS2 is predominant in this process while HtOAT plays a less important role. Both HtPDH genes may function in proline degradation.

  15. Degradation Behavior of Lithium-Ion Batteries Based on Lifetime Models and Field Measured Frequency Regulation Mission Profile

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina

    2016-01-01

    Energy storage systems based on Lithium-ion (Li-ion) batteries have been proposed as an environmentally friendly alternative to traditional conventional generating units for providing grid frequency regulation. One major challenge regarding the use of Lithium-ion batteries in such applications...... is their higher cost—in comparison with other storage technologies or with the traditional frequency regulation methods—combined with performance-degradation uncertainties. In order to surpass this challenge and to allow for optimal sizing and proper operation of the battery, accurate knowledge about the lifetime...... of the Li-ion battery and its degradation behavior is required. Thus, this paper aims to investigate, based on a laboratory developed lifetime model, the degradation behavior of the performance parameters (i.e., capacity and power capability) of a Li-ion battery cell when it is subjected to a field measured...

  16. Regulation of mIκBNS stability through PEST-mediated degradation by proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Park, Koog Chan; Jeong, Jiyeong; Kim, Keun Il, E-mail: kikim@sookmyung.ac.kr

    2014-01-24

    Highlights: • mIκBNS is degraded rapidly by proteasome without ubiquitylation. • N-terminal PEST sequence is responsible for the unstable nature of mIκBNS. • PEST sequence is not critical for nuclear localization of mIκBNS. • There is single bona fide NLS at the C-terminus of mIκBNS. - Abstract: Negative regulatory proteins in a cytokine signaling play a critical role in restricting unwanted excess activation of the signaling pathway. At the same time, negative regulatory proteins need to be removed rapidly from cells to respond properly to the next incoming signal. A nuclear IκB protein called IκBNS is known to inhibit a subset of NF-κB target genes upon its expression by NF-κB activation. Here, we show a mechanism to control the stability of mIκBNS which might be important for cells to prepare the next round signaling. We found that mIκBNS is a short-lived protein of which the stability is controlled by proteasome, independent of ubiquitylation process. We identified that the N-terminal PEST sequence in mIκBNS was critical for the regulation of stability.

  17. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators

    Science.gov (United States)

    Liu, Yangfan P.; Tsai, I-Chun; Morleo, Manuela; Oh, Edwin C.; Leitch, Carmen C.; Massa, Filomena; Lee, Byung-Hoon; Parker, David S.; Finley, Daniel; Zaghloul, Norann A.; Franco, Brunella; Katsanis, Nicholas

    2014-01-01

    Cilia are critical mediators of paracrine signaling; however, it is unknown whether proteins that contribute to ciliopathies converge on multiple paracrine pathways through a common mechanism. Here, we show that loss of cilopathy-associated proteins Bardet-Biedl syndrome 4 (BBS4) or oral-facial-digital syndrome 1 (OFD1) results in the accumulation of signaling mediators normally targeted for proteasomal degradation. In WT cells, several BBS proteins and OFD1 interacted with proteasomal subunits, and loss of either BBS4 or OFD1 led to depletion of multiple subunits from the centrosomal proteasome. Furthermore, overexpression of proteasomal regulatory components or treatment with proteasomal activators sulforaphane (SFN) and mevalonolactone (MVA) ameliorated signaling defects in cells lacking BBS1, BBS4, and OFD1, in morphant zebrafish embryos, and in induced neurons from Ofd1-deficient mice. Finally, we tested the hypothesis that other proteasome-dependent pathways not known to be associated with ciliopathies are defective in the absence of ciliopathy proteins. We found that loss of BBS1, BBS4, or OFD1 led to decreased NF-κB activity and concomitant IκBβ accumulation and that these defects were ameliorated with SFN treatment. Taken together, our data indicate that basal body proteasomal regulation governs paracrine signaling pathways and suggest that augmenting proteasomal function might benefit ciliopathy patients. PMID:24691443

  18. Chlorophyll d: the puzzle resolved

    DEFF Research Database (Denmark)

    Larkum, Anthony W D; Kühl, Michael

    2005-01-01

    Chlorophyll a (Chl a) has always been regarded as the sole chlorophyll with a role in photochemical conversion in oxygen-evolving phototrophs, whereas chlorophyll d (Chl d), discovered in small quantities in red algae in 1943, was often regarded as an artefact of isolation. Now, as a result...... of discoveries over the past year, it has become clear that Chl d is the major chlorophyll of a free-living and widely distributed cyanobacterium that lives in light environments depleted in visible light and enhanced in infrared radiation. Moreover, Chl d not only has a light-harvesting role but might also...... replace Chl a in the special pair of chlorophylls in both reactions centers of photosynthesis. Udgivelsesdato: 2005-Aug...

  19. The effect of High Pressure and High Temperature processing on carotenoids and chlorophylls content in some vegetables.

    Science.gov (United States)

    Sánchez, Celia; Baranda, Ana Beatriz; Martínez de Marañón, Iñigo

    2014-11-15

    The effect of High Pressure (HP) and High Pressure High Temperature (HPHT) processing on carotenoid and chlorophyll content of six vegetables was evaluated. In general, carotenoid content was not significantly influenced by HP or HPHT treatments (625 MPa; 5 min; 20, 70 and 117 °C). Regarding chlorophylls, HP treatment caused no degradation or slight increases, while HPHT processes degraded both chlorophylls. Chlorophyll b was more stable than chlorophyll a at 70 °C, but both of them were highly degraded at 117 °C. HPHT treatment at 117 °C provided products with a good retention of carotenoids and colour in the case of red vegetables. Even though the carotenoids also remained in the green vegetables, their chlorophylls and therefore their colour were so affected that milder temperatures need to be applied. As an industrial scale equipment was used, results will be useful for future industrial implementation of this technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis[C][W

    Science.gov (United States)

    Sakuraba, Yasuhito; Schelbert, Silvia; Park, So-Yon; Han, Su-Hyun; Lee, Byoung-Doo; Andrès, Céline Besagni; Kessler, Felix; Hörtensteiner, Stefan; Paek, Nam-Chon

    2012-01-01

    During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid. In addition, STAY-GREEN (SGR), Mendel’s green cotyledon gene encoding a chloroplast protein, is required for the initiation of chlorophyll breakdown in plastids. Senescence-induced SGR binds to light-harvesting complex II (LHCII), but its exact role remains elusive. Here, we show that all five CCEs also specifically interact with LHCII. In addition, SGR and CCEs interact directly or indirectly with each other at LHCII, and SGR is essential for recruiting CCEs in senescing chloroplasts. PAO, which had been attributed to the inner envelope, is found to localize in the thylakoid membrane. These data indicate a predominant role for the SGR-CCE-LHCII protein interaction in the breakdown of LHCII-located chlorophyll, likely to allow metabolic channeling of phototoxic chlorophyll breakdown intermediates upstream of nontoxic pFCC. PMID:22366162

  1. Evaluation of Chlorophyll Content and Chlorophyll Fluorescence Parameters and Relationships between Chlorophyll a, b and Chlorophyll Content Index under Water Stress in Olea europaea cv. Dezful

    OpenAIRE

    E. Khaleghi; K. Arzani; N. Moallemi; M. Barzegar

    2012-01-01

    This study was conducted to determine effect of water stress on chlorophyll content and chlorophyll fluorescence parameter in young `Dezful- olive trees. Three irrigation regimes (40% ETcrop, 65% ETcrop and 100% ETcrop) were used. After irrigation treatments were applied, some of biochemical parameters including chlorophyll a, b, total chlorophyll, chlorophyll fluorescence and also chlorophyll content index (C.C.I) were measured. Results of Analysis of variance showed that irrigation treatmen...

  2. Instability of chlorophyll in yellow lupin seedlings grown in soil contaminated with ciprofloxacin and tetracycline.

    Science.gov (United States)

    Rydzyński, Dariusz; Piotrowicz-Cieślak, Agnieszka I; Grajek, Hanna; Michalczyk, Dariusz J

    2017-10-01

    With increasing soil concentrations of ciprofloxacin and tetracycline a decrease of leaf chlorophyll content was observed. Tetracycline was more detrimental than ciprofloxacin. The chlorophyll content in plants growing for ten days on a tetracycline containing soil decreased by 68%. The decrease of chlorophyll concentration was even sharper in new leaves that formed after application of the antibiotic (up to 81% drop). The comparison of absorption spectra of commercial, reagent grade chlorophyll, alone and incubated with antibiotics, has shown that ciprofloxacin and tetracycline can react directly with chlorophyll and decrease its concentration by 47.7% and 48.5%, respectively. The changes in fluorescence spectra confirmed the formation of chlorophyll degradation product. The chlorophyll decay was a second order reaction and depended on antibiotic concentration and duration of exposure. Reaction rate constants differed with antibiotics and their soil concentrations. With increasing contents of antibiotics in soil the constant of chlorophyll degradation rate in lupin plants increased from k = 870 M -1 day -1 for 3 mg ciprofloxacin to k = 2490 M -1 day -1 for 90 mg ciprofloxacin, and in the case of tetracycline the reaction rate constant increased from k = 1330 M -1 day -1 to k = 2910 M -1 day -1 . The sensitivity of chlorophyll to ciprofloxacin and tetracycline was confirmed by determining EC and TU indices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    Science.gov (United States)

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  4. Regulation of tissue levels of metallothionein with emphasis on metallothionein degradation

    International Nuclear Information System (INIS)

    Chen, M.L.

    1988-01-01

    The synthesis and degradation of metallothionein (MT) was studied in streptozotocin-induced diabetic rats and monolayer cultures of adult rat hepatocytes. Critical analysis of in vivo studies with diabetic rats and other literature revealed that cytoplasmic turnover of MT may not reflect actual degradation of this protein. Therefore, the characteristics of MT degradation in primary cultures of hepatocytes were investigated in subsequent studies. Hepatocytes were incubated in medium containing 35 S-cysteine and 100 μM Zn overnight to induce MT synthesis. The level of 35 S-MT was quantified in heat stable extracts of cell homogenates by Fast Protein Liquid Chromatography (FPLC). When Zn was removed from medium, the rate of 35 S-MT turnover was found times faster than general 3 H-protein. This decrease in cellular MT level reflected degradation since less than 1% of cellular MT was secreted. The rate of MT degradation was inversely proportional to cellular Zn status

  5. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chen; Lange, Jeffrey J.; Samovski, Dmitri [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Su, Xiong [Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110 (United States); Liu, Jialiu [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Sundaresan, Sinju [Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110 (United States); Stahl, Philip D., E-mail: pstahl@wustl.edu [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States)

    2013-05-03

    Highlights: •Hominoid-specific oncogene TBC1D3 is targeted to plasma membrane by palmitoylation. •TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. •TBC1D3 palmitoylation governs growth factors-induced TBC1D3 degradation. •Post-translational modifications may regulate oncogenic properties of TBC1D3. -- Abstract: Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.

  6. Degradation of Triton X-100 surfactant/lipid regulator systems by ionizing radiation in water

    International Nuclear Information System (INIS)

    Racz, Gergely; Obuda-University, Budapest; Csay, Tamas; Takacs, Erzsebet; Wojnarovits, Laszlo

    2017-01-01

    The radiolytic degradation of Triton X-100 surfactant was investigated at concentrations below and above the critical micelle concentration (CMC, ∼ 0.23 mmol dm -3 ) in air saturated aqueous solutions. At low concentrations the degradation took place both on the aromatic head and on the polyethoxylates chain, while above CMC it was shifted towards the chain. The CMC was higher in irradiated solutions at 10 Gy by a factor of 2, at 20 kGy by a factor of 3 than in the un-irradiated solution. The degradation of clofibric acid in the presence of TX-100 was more effective outside the micelles than inside them. (author)

  7. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor.

    Directory of Open Access Journals (Sweden)

    Fanny Kortüm

    Full Text Available Endosomal sorting is an essential control mechanism for signaling through the epidermal growth factor receptor (EGFR. We report here that the guanine nucleotide exchange factor αPIX, which modulates the activity of Rho-GTPases, is a potent bimodal regulator of EGFR trafficking. αPIX interacts with the E3 ubiquitin ligase c-Cbl, an enzyme that attaches ubiquitin to EGFR, thereby labelling this tyrosine kinase receptor for lysosomal degradation. We show that EGF stimulation induces αPIX::c-Cbl complex formation. Simultaneously, αPIX and c-Cbl protein levels decrease, which depends on both αPIX binding to c-Cbl and c-Cbl ubiquitin ligase activity. Through interaction αPIX sequesters c-Cbl from EGFR and this results in reduced EGFR ubiquitination and decreased EGFR degradation upon EGF treatment. However, quantitatively more decisive for cellular EGFR distribution than impaired EGFR degradation is a strong stimulating effect of αPIX on EGFR recycling to the cell surface. This function depends on the GIT binding domain of αPIX but not on interaction with c-Cbl or αPIX exchange activity. In summary, our data demonstrate a previously unappreciated function of αPIX as a strong promoter of EGFR recycling. We suggest that the novel recycling regulator αPIX and the degradation factor c-Cbl closely cooperate in the regulation of EGFR trafficking: uncomplexed αPIX and c-Cbl mediate a positive and a negative feedback on EGFR signaling, respectively; αPIX::c-Cbl complex formation, however, results in mutual inhibition, which may reflect a stable condition in the homeostasis of EGF-induced signal flow.

  8. The Magnesium Chelation Step in Chlorophyll Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gregory L. Dilworth, Ph.D Chemical Sciences, Geosciences and Biosciences Division Office of Basis Energy Sciences, greg.dilworth@science.doe.gov

    2001-01-17

    The progress described in this report encompasses work supported by DOE grant DE-FG09-89ER13989 for the period 2/15/92 to the present 6/14/94. The goals of the project were to continue investigating the enzymology of Mg-chelatase and to investigate the co-regulation of heme and chlorophyll formation in intact plastids. During this period the laboratory had additional support (two years) from USDA to investigate heme metabolism in chloroplasts. This report is arranged so that the progress is described by reference to manuscripts which are published, under review or in preparation.

  9. Chlorophyll as a biomarker for early disease diagnosis

    Science.gov (United States)

    Manzoor Atta, Babar; Saleem, M.; Ali, Hina; Arshad, Hafiz Muhammad Imran; Ahmed, M.

    2018-06-01

    The current study was designed to identify the stage for the diagnosis of disease before visible symptoms appeared. Fluorescence spectroscopy has been employed to identify disease signatures for its early diagnosis in rice plant leaves. Bacterial leaf blight (BLB) diseased and healthy leaf samples were collected from the rice fields in September, 2017 which were then used to record spectra using an excitation wavelength at 410 nm. The spectral range of emission was set from 420 to 800 nm which covers the blue–green and the chlorophyll bands. It was found that diseased leaves have a narrower ‘chlorophyll a’ band than healthy ones, and furthermore, that the emission band at 730 nm was either declined or depleted in the sample with high infection symptoms. In contrast, the blue–green region was observed to increase due to the emergence of disease. As the band intensity of chlorophyll decreases during infection, this decrease in chlorophyll content and increase in the blue–green spectral region could provide a new approach for predicting BLB at an early stage. The important finding was that the chlorophyll degradation and rise in the blue–green region take place in leaves with BLB or during BLB infection. Principal component analysis has been applied to spectral data which successfully separated diseased samples from healthy ones even with very small spectral variations.

  10. Mediterranean Ocean Colour Chlorophyll Trends.

    Science.gov (United States)

    Colella, Simone; Falcini, Federico; Rinaldi, Eleonora; Sammartino, Michela; Santoleri, Rosalia

    2016-01-01

    In being at the base of the marine food web, phytoplankton is particularly important for marine ecosystem functioning (e.g., biodiversity). Strong anthropization, over-exploitation of natural resources, and climate change affect the natural amount of phytoplankton and, therefore, represent a continuous threat to the biodiversity in marine waters. In particular, a concerning risks for coastal waters is the increase in nutrient inputs of terrestrial/anthropogenic origin that can lead to undesirable modifications of phytoplankton concentration (i.e., eutrophication). Monitoring chlorophyll (Chl) concentration, which is a proxy of phytoplankton biomass, is an efficient tool for recording and understanding the response of the marine ecosystem to human pressures and thus for detecting eutrophication. Here, we compute Chl trends over the Mediterranean Sea by using satellite data, also highlighting the fact that remote sensing may represent an efficient and reliable solution to synoptically control the "good environmental status" (i.e., the Marine Directive to achieve Good Environmental Status of EU marine waters by 2020) and to assess the application of international regulations and environmental directives. Our methodology includes the use of an ad hoc regional (i.e., Mediterranean) algorithm for Chl concentration retrieval, also accounting for the difference between offshore (i.e., Case I) and coastal (i.e., Case II) waters. We apply the Mann-Kendall test and the Sens's method for trend estimation to the Chl concentration de-seasonalized monthly time series, as obtained from the X-11 technique. We also provide a preliminary analysis of some particular trends by evaluating their associated inter-annual variability. The high spatial resolution of our approach allows a clear identification of intense trends in those coastal waters that are affected by river outflows. We do not attempt to attribute the observed trends to specific anthropogenic events. However, the trends

  11. Mediterranean Ocean Colour Chlorophyll Trends.

    Directory of Open Access Journals (Sweden)

    Simone Colella

    Full Text Available In being at the base of the marine food web, phytoplankton is particularly important for marine ecosystem functioning (e.g., biodiversity. Strong anthropization, over-exploitation of natural resources, and climate change affect the natural amount of phytoplankton and, therefore, represent a continuous threat to the biodiversity in marine waters. In particular, a concerning risks for coastal waters is the increase in nutrient inputs of terrestrial/anthropogenic origin that can lead to undesirable modifications of phytoplankton concentration (i.e., eutrophication. Monitoring chlorophyll (Chl concentration, which is a proxy of phytoplankton biomass, is an efficient tool for recording and understanding the response of the marine ecosystem to human pressures and thus for detecting eutrophication. Here, we compute Chl trends over the Mediterranean Sea by using satellite data, also highlighting the fact that remote sensing may represent an efficient and reliable solution to synoptically control the "good environmental status" (i.e., the Marine Directive to achieve Good Environmental Status of EU marine waters by 2020 and to assess the application of international regulations and environmental directives. Our methodology includes the use of an ad hoc regional (i.e., Mediterranean algorithm for Chl concentration retrieval, also accounting for the difference between offshore (i.e., Case I and coastal (i.e., Case II waters. We apply the Mann-Kendall test and the Sens's method for trend estimation to the Chl concentration de-seasonalized monthly time series, as obtained from the X-11 technique. We also provide a preliminary analysis of some particular trends by evaluating their associated inter-annual variability. The high spatial resolution of our approach allows a clear identification of intense trends in those coastal waters that are affected by river outflows. We do not attempt to attribute the observed trends to specific anthropogenic events. However

  12. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    Science.gov (United States)

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  13. The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori.

    Science.gov (United States)

    Zeng, Baosheng; Huang, Yuping; Xu, Jun; Shiotsuki, Takahiro; Bai, Hua; Palli, Subba Reddy; Huang, Yongping; Tan, Anjiang

    2017-07-14

    Forkhead box O (FOXO) functions as the terminal transcription factor of the insulin signaling pathway and regulates multiple physiological processes in many organisms, including lifespan in insects. However, how FOXO interacts with hormone signaling to modulate insect growth and development is largely unknown. Here, using the transgene-based CRISPR/Cas9 system, we generated and characterized mutants of the silkworm Bombyx mori FOXO ( BmFOXO ) to elucidate its physiological functions during development of this lepidopteran insect. The BmFOXO mutant (FOXO-M) exhibited growth delays from the first larval stage and showed precocious metamorphosis, pupating at the end of the fourth instar (trimolter) rather than at the end of the fifth instar as in the wild-type (WT) animals. However, different from previous reports on precocious metamorphosis caused by juvenile hormone (JH) deficiency in silkworm mutants, the total developmental time of the larval period in the FOXO-M was comparable with that of the WT. Exogenous application of 20-hydroxyecdysone (20E) or of the JH analog rescued the trimolter phenotype. RNA-seq and gene expression analyses indicated that genes involved in JH degradation but not in JH biosynthesis were up-regulated in the FOXO-M compared with the WT animals. Moreover, we identified several FOXO-binding sites in the promoter of genes coding for JH-degradation enzymes. These results suggest that FOXO regulates JH degradation rather than its biosynthesis, which further modulates hormone homeostasis to control growth and development in B. mori In conclusion, we have uncovered a pivotal role for FOXO in regulating JH signaling to control insect development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Photosynthetic bark: use of chlorophyll absorption continuum index to estimate Boswellia papyrifera bark chlorophyll content

    NARCIS (Netherlands)

    Girma, A.; Skidmore, A.K.; Bie, de C.A.J.M.; Bongers, F.; Schlerf, M.

    2013-01-01

    Quantification of chlorophyll content provides useful insight into the physiological performance of plants. Several leaf chlorophyll estimation techniques, using hyperspectral instruments, are available. However, to our knowledge, a non-destructive bark chlorophyll estimation technique is not

  15. Photosynthetic bark : use of chlorophyll absorption continuum index to estimate Boswellia papyrifera bark chlorophyll content

    NARCIS (Netherlands)

    Girma Gebrekidan, A.; Skidmore, A.K.; de Bie, C.A.J.M.; Bongers, Frans; Schlerf, Martin; Schlerf, M.

    2013-01-01

    Quantification of chlorophyll content provides useful insight into the physiological performance of plants. Several leaf chlorophyll estimation techniques, using hyperspectral instruments, are available. However, to our knowledge, a non-destructive bark chlorophyll estimation technique is not

  16. GRP94 Regulates Circulating Cholesterol Levels through Blockade of PCSK9-Induced LDLR Degradation

    Directory of Open Access Journals (Sweden)

    Steve Poirier

    2015-12-01

    Full Text Available Clearance of circulating low-density lipoprotein cholesterol (LDLc by hepatic LDL receptors (LDLR is central for vascular health. Secreted by hepatocytes, PCSK9 induces the degradation of LDLR, resulting in higher plasma LDLc levels. Still, it remains unknown why LDLR and PCSK9 co-exist within the secretory pathway of hepatocytes without leading to complete degradation of LDLR. Herein, we identified the ER-resident GRP94, and more precisely its client-binding C-terminal domain, as a PCSK9-LDLR inhibitory binding protein. Depletion of GRP94 did not affect calcium homeostasis, induce ER stress, nor did it alter PCSK9 processing or its secretion but greatly increased its capacity to induce LDLR degradation. Accordingly, we found that hepatocyte-specific Grp94-deficient mice have higher plasma LDLc levels correlated with ∼80% reduction in hepatic LDLR protein levels. Thus, we provide evidence that, in physiological conditions, binding of PCSK9 to GRP94 protects LDLR from degradation likely by preventing early binding of PCSK9 to LDLR within the ER.

  17. Comparative Assessment of Goods and Services Provided by Grazing Regulation and Reforestation in Degraded Mediterranean Rangelands

    NARCIS (Netherlands)

    Papanastasis, Vasilios P.; Bautista, Susana; Chouvardas, Dimitrios; Mantzanas, Konstantinos; Papadimitriou, Maria; Garcia Mayor, Angeles; Koukioumi, Polina; Papaioannou, Athanasios; Vallejo, Ramon V.

    2017-01-01

    Several management actions are applied to restore ecosystem services in degraded Mediterranean rangelands, which range from adjusting the grazing pressure to the removal of grazers and pine plantations. Four such actions were assessed in Quercus coccifera L. shrublands in northern Greece: (i)

  18. Down-Regulation of Desmosomes in Cultured Cells: The Roles of PKC, Microtubules and Lysosomal/Proteasomal Degradation

    Science.gov (United States)

    McHarg, Selina; Hopkins, Gemma; Lim, Lusiana; Garrod, David

    2014-01-01

    Desmosomes are intercellular adhesive junctions of major importance for tissue integrity. To allow cell motility and migration they are down-regulated in epidermal wound healing. Electron microscopy indicates that whole desmosomes are internalised by cells in tissues, but the mechanism of down-regulation is unclear. In this paper we provide an overview of the internalisation of half-desmosomes by cultured cells induced by calcium chelation. Our results show that: (i) half desmosome internalisation is dependent on conventional PKC isoforms; (ii) microtubules transport internalised half desmosomes to the region of the centrosome by a kinesin-dependent mechanism; (iii) desmosomal proteins remain colocalised after internalisation and are not recycled to the cell surface; (iv) internalised desmosomes are degraded by the combined action of lysosomes and proteasomes. We also confirm that half desmosome internalisation is dependent upon the actin cytoskeleton. These results suggest that half desmosomes are not disassembled and recycled during or after internalisation but instead are transported to the centrosomal region where they are degraded. These findings may have significance for the down-regulation of desmosomes in wounds. PMID:25291180

  19. Ectopic expression of GA 2-oxidase 6 from rapeseed (Brassica napus L.) causes dwarfism, late flowering and enhanced chlorophyll accumulation in Arabidopsis thaliana.

    Science.gov (United States)

    Yan, Jindong; Liao, Xiaoying; He, Reqing; Zhong, Ming; Feng, Panpan; Li, Xinmei; Tang, Dongying; Liu, Xuanming; Zhao, Xiaoying

    2017-02-01

    Gibberellins (GAs) are endogenous hormones that play an important role in higher plant growth and development. GA2-oxidase (GA2ox) promotes catabolism and inactivation of bioactive GAs or their precursors. In this study, we identified the GA2-oxidase gene, BnGA2ox6, and found it to be highly expressed in the silique and flower. Overexpression of BnGA2ox6 in Arabidopsis resulted in GA-deficiency symptoms, including inhibited elongation of the hypocotyl and stem, delayed seed germination, and late flowering. BnGA2ox6 overexpression reduced silique growth, but had no effect on seed development. Additionally, BnGA2ox6 overexpression enhanced chlorophyll b and total chlorophyll accumulation, and downregulated mRNA expression levels of the CHL1 and RCCR genes, which are involved in the chlorophyll degradation. These findings suggest that BnGA2ox6 regulates plant hight, silique development, flowering and chlorophyll accumulation in transgenic Arabidopsis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. An additional regulator, TsaQ, is involved with TsaR in regulation of transport during the degradation of p-toluenesulfonate in Comamonas testosteroni T-2

    OpenAIRE

    Tralau, Tewes; Cook, Alasdair M.; Ruff, Jürgen

    2003-01-01

    The degradation of p-toluenesulfonate (TSA) by Comamonas testosteroni T-2 is initiated by a transport system (TsaST) and enzymes (TsaMBCD) encoded on the tsa transposon, Tn tsa, on the TSA plasmid (pTSA). Tn tsa comprises an insert of 15 kb between two IS 1071 elements. The left-hand 6 kb and the right-hand 6 kb are nearly mirror images. The regulator of the tsaMBCD1 genes (right-hand side) is the centrally located LysR-type TsaR, which is encoded upstream of tsaMBCD1 on the reverse strand. T...

  1. Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation.

    Science.gov (United States)

    Erenpreisa, Jekaterina; Salmina, Kristine; Huna, Anda; Kosmacek, Elizabeth A; Cragg, Mark S; Ianzini, Fiorenza; Anisimov, Alim P

    2011-07-01

    'Neosis' describes the process whereby p53 function-deficient tumour cells undergo self-renewal after genotoxic damage apparently via senescing ETCs (endopolyploid tumour cells). We previously reported that autophagic digestion and extrusion of DNA occurs in ETC and subsequently revealed that self-renewal transcription factors are also activated under these conditions. Here, we further studied this phenomenon in a range of cell lines after genotoxic damage induced by gamma irradiation, ETO (etoposide) or PXT (paclitaxel) treatment. These experiments revealed that chromatin degradation by autophagy was compatible with continuing mitotic activity in ETC. While the actively polyploidizing primary ETC produced early after genotoxic insult activated self-renewal factors throughout the polygenome, the secondary ETC restored after failed multipolar mitosis underwent subnuclei differentiation. As such, only a subset of subnuclei continued to express OCT4 and NANOG, while those lacking these factors stopped DNA replication and underwent degradation and elimination through autophagy. The surviving subnuclei sequestered nascent cytoplasm to form subcells, while being retained within the confines of the old ETC. Finally, the preformed paradiploid subcells became released from their linking chromosome bridges through autophagy and subsequently began cell divisions. These data show that 'neotic' ETC resulting from genotoxically damaged p53 function-deficient tumour cells develop through a heteronuclear system differentiating the polyploid genome into rejuvenated 'viable' subcells (which provide mitotically propagating paradiploid descendents) and subnuclei, which become degraded and eliminated by autophagy. The whole process reduces aneuploidy in descendants of ETC.

  2. Regulation of the Stress-Activated Degradation of Mitochondrial Respiratory Complexes in Yeast

    Directory of Open Access Journals (Sweden)

    Alba Timón-Gómez

    2018-01-01

    Full Text Available Repair and removal of damaged mitochondria is a key process for eukaryotic cell homeostasis. Here we investigate in the yeast model how different protein complexes of the mitochondrial electron transport chain are subject to specific degradation upon high respiration load and organelle damage. We find that the turnover of subunits of the electron transport complex I equivalent and complex III is preferentially stimulated upon high respiration rates. Particular mitochondrial proteases, but not mitophagy, are involved in this activated degradation. Further mitochondrial damage by valinomycin treatment of yeast cells triggers the mitophagic removal of the same respiratory complexes. This selective protein degradation depends on the mitochondrial fusion and fission apparatus and the autophagy adaptor protein Atg11, but not on the mitochondrial mitophagy receptor Atg32. Loss of autophagosomal protein function leads to valinomycin sensitivity and an overproduction of reactive oxygen species upon mitochondrial damage. A specific event in this selective turnover of electron transport chain complexes seems to be the association of Atg11 with the mitochondrial network, which can be achieved by overexpression of the Atg11 protein even in the absence of Atg32. Furthermore, the interaction of various Atg11 molecules via the C-terminal coil domain is specifically and rapidly stimulated upon mitochondrial damage and could therefore be an early trigger of selective mitophagy in response to the organelles dysfunction. Our work indicates that autophagic quality control upon mitochondrial damage operates in a selective manner.

  3. Regulation of the development of the first leaf of oats (Avena sativa L.) : characterization and subcellular localization of proteases

    NARCIS (Netherlands)

    Valk, van der H.C.P.M.

    1987-01-01

    The loss of chlorophyll during the senescence of leaves is preceded by a decrease in protein content. Proteases responsible for the degradation of the proteins have been implicated in the regulation of the senescence process. The first leaf of the seedling of oats ( Avena

  4. Complexes and aggregates of chlorophylls

    NARCIS (Netherlands)

    Kooyman, R.P.H.

    1980-01-01

    Chlorophyll (Chl) molecules can form complexes in two important ways: by ligation at the magnesium atom and/or by hydrogen bonding at the keto- carbonyl group. Under certain conditions these processes may give rise to dimer formation. This thesis describes some properties of complexes and dimers of

  5. Characterization of chlorophyll binding to LIL3.

    Science.gov (United States)

    Mork-Jansson, Astrid Elisabeth; Eichacker, Lutz Andreas

    2018-01-01

    The light harvesting like protein 3 (LIL 3) from higher plants, has been linked to functions in chlorophyll and tocopherol biosynthesis, photo-protection and chlorophyll transfer. However, the binding of chlorophyll to LIL3 is unclear. We present a reconstitution protocol for chlorophyll binding to LIL3 in DDM micelles. It is shown in the absence of lipids and carotenoids that reconstitution of chlorophyll binding to in vitro expressed LIL3 requires pre-incubation of reaction partners at room temperature. We show chlorophyll a but not chlorophyll b binding to LIL3 at a molar ratio of 1:1. Neither dynamic light scattering nor native PAGE, enabled a discrimination between binding of chlorophyll a and/or b to LIL3.

  6. Degradation of brown adipocyte purine nucleotides regulates uncoupling protein 1 activity

    Directory of Open Access Journals (Sweden)

    Tobias Fromme

    2018-02-01

    Full Text Available Objective: Non-shivering thermogenesis in mammalian brown adipose tissue depends on thermogenic uncoupling protein 1. Its activity is triggered by free fatty acids while purine nucleotides mediate inhibition. During activation, it is thought that free fatty acids overcome purine-mediated inhibition. We measured the cellular concentration and the release of purine nucleotide metabolites to uncover a possible role of purine nucleotide degradation in uncoupling protein 1 activation. Methods: With mass spectrometry, purine nucleotide metabolites were quantified in cellular homogenates and supernatants of cultured primary brown adipocytes. We also determined oxygen consumption in response to a β-adrenergic agonist. Results: Upon adrenergic activation, brown adipocytes decreased the intracellular concentration of inhibitory nucleotides (ATP, ADP, GTP and GDP and released the respective degradation products. At the same time, an increase in cellular calcium occurred. None of these phenomena occurred in white adipocytes or myotubes. The brown adipocyte expression of enzymes implicated in purine metabolic remodeling is altered upon cold exposure. Pharmacological and genetic interference of purine metabolism altered uncoupling protein 1 mediated uncoupled respiration. Conclusion: Adrenergic stimulation of brown adipocytes lowers the intracellular concentration of purine nucleotides, thereby contributing to uncoupling protein 1 activation. Keywords: Purine nucleotides, Uncoupling protein 1, Brown adipose tissue, Non-shivering thermogenesis, HILIC-MS/MS, Guanosine monophosphate reductase

  7. UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation To Regulate Cell Proliferation

    Science.gov (United States)

    Matsunuma, Ryoichi; Ohhata, Tatsuya; Kitagawa, Kyoko; Sakai, Satoshi; Uchida, Chiharu; Shiotani, Bunsyo; Matsumoto, Masaki; Nakayama, Keiichi I.; Ogura, Hiroyuki; Shiiya, Norihiko; Kitagawa, Masatoshi

    2015-01-01

    Histone acetyltransferase binding to ORC-1 (HBO1) is a critically important histone acetyltransferase for forming the prereplicative complex (pre-RC) at the replication origin. Pre-RC formation is completed by loading of the MCM2-7 heterohexameric complex, which functions as a helicase in DNA replication. HBO1 recruited to the replication origin by CDT1 acetylates histone H4 to relax the chromatin conformation and facilitates loading of the MCM complex onto replication origins. However, the acetylation status and mechanism of regulation of histone H3 at replication origins remain elusive. HBO1 positively regulates cell proliferation under normal cell growth conditions. Whether HBO1 regulates proliferation in response to DNA damage is poorly understood. In this study, we demonstrated that HBO1 was degraded after DNA damage to suppress cell proliferation. Ser50 and Ser53 of HBO1 were phosphorylated in an ATM/ATR DNA damage sensor-dependent manner after UV treatment. ATM/ATR-dependently phosphorylated HBO1 preferentially interacted with DDB2 and was ubiquitylated by CRL4DDB2. Replacement of endogenous HBO1 in Ser50/53Ala mutants maintained acetylation of histone H3K14 and impaired cell cycle regulation in response to UV irradiation. Our findings demonstrate that HBO1 is one of the targets in the DNA damage checkpoint. These results show that ubiquitin-dependent control of the HBO1 protein contributes to cell survival during UV irradiation. PMID:26572825

  8. Isolation of chlorophyll a from spinach leaves

    Directory of Open Access Journals (Sweden)

    E.D. Dikio

    2008-08-01

    Full Text Available An efficient method for separating chlorophyll a from spinach leaves by column chromatography and solvent extraction techniques has been developed. The purity and identity of the chlorophyll a have been confirmed by UV-Vis, IR and mass spectrometry. Yields from 100 g of freeze-dried spinach were 23 – 24 mg of chlorophyll a.

  9. Relationship between chlorophyll density and SPAD chlorophyll meter reading for Jerusalem artichoke (Helianthus tuberosus L.)

    Science.gov (United States)

    Chlorophyll is an indicator of crop health and productivity. Measuring chlorophyll is usually done directly and requires significant time and resources. Indirect measurement of chlorophyll density using a handheld portable chlorophyll meter can reduce time. However, this information is very limit...

  10. The magnesium chelation step in chlorophyll biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.D.

    1991-01-01

    The biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins and lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX. Insertion of iron leads to heme, while insertion of magnesium leads to chlorophyll. The Mg-chelatase from intact cucumber chloroplasts has been characterized with regard to substrate specificity, regulation, ATP requirement, and a requirement for intact chloroplasts. Mg-chelatase was isolated from maize, barley and peas and characterized in order to circumvent the intact chloroplast requirement of cucumber Mg-chelatase. Pea Mg-chelatase activity is higher than cucumber Mg-chelatase activity, and lacks the requirement for intact chloroplasts. Studies on isolated pea Mg-chelatase have shown more cofactors are required for the reaction than are seen with ferrochelatase, indicating a greater opportunity for regulatory control of this pathway. Two of the cofactors are proteins, and there appears to be a requirement for a protease-sensitive component which is outside the outer envelope. We are developing a continuous spectrophotometric assay for Mg-chelatase activity, and an assay for free heme which has shown heme efflux from intact chloroplasts. 18 refs. (MHB)

  11. Control of quantum interference of an excitonic wave in a chlorophyll chain with a chlorophyll ring

    International Nuclear Information System (INIS)

    Hong, Suc-Kyoung; Nam, Seog-Woo; Yeon, Kyu-Hwang

    2010-01-01

    The quantum interference of an excitonic wave and its coherent control in a nanochain with a nanoring are studied. The nanochain is comprised of six chlorophylls, where four chlorophylls compose the nanoring and two chlorophylls are attached at two opposite sites on the nanoring. The exciton dynamics and the correlation of the excitation between chlorophylls are analyzed for a given configurational arrangement and dipolar orientation of the chlorophylls. The results of this study show that the excitation at specified chlorophylls is suppressed or enhanced by destructive or constructive interference of the excitonic wave in the chlorophyll nanochain.

  12. Surface binding sites (SBSs), mechanism and regulation of enzymes degrading amylopectin and α-limit dextrins

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Cockburn, Darrell; Nielsen, Jonas W.

    2013-01-01

    into barley seed α-amylase 1 (AMY1) and limit dextrinase (LD) includes i. kinetics of bi-exponential amylopectin hydrolysis by AMY1, one reaction having low Km (8 μg/mL) and high kcat (57 s-1) and the other high Km (97 μg/mL) and low kcat (23 s-1). β-Cyclodextrin (β-CD) inhibits the first reaction by binding...... to an SBS (SBS2) on domain C with Kd = 70 μM, which for the SBS2 Y380A mutant increases to 1.4 mM. SBS2 thus has a role in the fast, high-affinity component of amylopectin degradation. ii. The N-terminal domain of LD, the debranching enzyme in germinating seeds, shows distant structural similarity...

  13. CRP-dependent positive autoregulation and proteolytic degradation regulate competence activator Sxy of Escherichia coli

    DEFF Research Database (Denmark)

    Jaskólska, Milena; Gerdes, Kenn

    2015-01-01

    is positively autoregulated at the level of transcription by a mechanism that requires cAMP receptor protein (CRP), cyclic AMP (cAMP) and a CRP-S site in the sxy promoter. Similarly, we found no evidence that Sxy expression in E. coli was regulated at the translational level. However, our analysis revealed...

  14. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    Science.gov (United States)

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-01-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057

  15. Tumor necrosis factor-alpha regulates the Hypocretin system via mRNA degradation and ubiquitination.

    Science.gov (United States)

    Zhan, Shuqin; Cai, Guo-Qiang; Zheng, Anni; Wang, Yuping; Jia, Jianping; Fang, Haotian; Yang, Youfeng; Hu, Meng; Ding, Qiang

    2011-04-01

    Recent studies recognize that Hypocretin system (also known as Orexin) plays a critical role in sleep/wake disorders and feeding behaviors. However, little is known about the regulation of the Hypocretin system. It is also known that tumor necrosis factor alpha (TNF-α) is involved in the regulation of sleep/wake cycle. Here, we test our hypothesis that the Hypocretin system is regulated by TNF-α. Prepro-Hypocretin and Hypocretin receptor 2 (HcrtR2) can be detected at a very low level in rat B35 neuroblastoma cells. In response to TNF-α, Prepro-Hypocretin mRNA and protein levels are down-regulated, and also HcrtR2 protein level is down-regulated in B35 cells. To investigate the mechanism, exogenous rat Prepro-Hypocretin and rat HcrtR2 were overexpressed in B35 cells. In response to TNF-α, protein and mRNA of Prepro-Hypocretin are significantly decreased (by 93% and 94%, respectively), and the half-life of Prepro-Hypocretin mRNA is decreased in a time- and dose-dependent manner. The level of HcrtR2 mRNA level is not affected by TNF-α treatment; however, HcrtR2 protein level is significantly decreased (by 86%) through ubiquitination in B35 cells treated with TNF-α. Downregulation of cellular inhibitor of apoptosis protein-1 and -2 (cIAP-1 and -2) abrogates the HcrtR2 ubiquitination induced by TNF-α. The control green fluorescent protein (GFP) expression is not affected by TNF-α treatment. These studies demonstrate that TNF-α can impair the function of the Hypocretin system by reducing the levels of both Prepro-Hypocretin and HcrtR2. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Regulation of cuticle-degrading subtilisin proteases from the entomopathogenic fungi, Lecanicillium spp: implications for host specificity.

    Science.gov (United States)

    Bye, Natasha J; Charnley, A Keith

    2008-01-01

    The ability to produce cuticle-degrading proteases to facilitate host penetration does not distinguish per se entomopathogenic fungi from saprophytes. However, adapted pathogens may produce host-protein specific enzymes in response to cues. This possibility prompted an investigation of the regulation of isoforms of the subtilisin Pr1-like proteases from five aphid-pathogenic isolates of Lecanicillium spp. Significant differences were found in substrate specificity and regulation of Pr1-like proteases between isoforms of the same isolate and between different isolates. For example, the pI 8.6 isoform from KV71 was considerably more active against aphid than locust cuticle and was induced specifically by N-acetylglucosamine (NAG). Isoform pI 9.1 from the same isolate was only produced on insect cuticle while most other isoforms were more prominent on chitin containing substrates but not induced by NAG. The ability to regulate isoforms independently may allow production at critical points in host penetration. Appearance of proteases (not subtilisins) with pI 4.2 and 4.4 only on aphid cuticle was a possible link with host specificity of KV71. The absence of C or N metabolite repression in subtilisins from KV42 is unusual for pathogen proteases and may help to account for differences in virulence strategy between aphid-pathogenic isolates of Lecanicillium longisporum (unpublished data).

  17. Skip Regulates TGF-β1-Induced Extracellular Matrix Degrading Proteases Expression in Human PC-3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Victor Villar

    2013-01-01

    Full Text Available Purpose. To determine whether Ski-interacting protein (SKIP regulates TGF-β1-stimulated expression of urokinase-type plasminogen activator (uPA, matrix metalloproteinase-9 (MMP-9, and uPA Inhibitor (PAI-1 in the androgen-independent human prostate cancer cell model. Materials and Methods. PC-3 prostate cancer cell line was used. The role of SKIP was evaluated using synthetic small interference RNA (siRNA compounds. The expression of uPA, MMP-9, and PAI-1 was evaluated by zymography assays, RT-PCR, and promoter transactivation analysis. Results. In PC-3 cells TGF-β1 treatment stimulated uPA, PAI-1, and MMP-9 expressions. The knockdown of SKIP in PC-3 cells enhanced the basal level of uPA, and TGF-β1 treatment inhibited uPA production. Both PAI-1 and MMP-9 production levels were increased in response to TGF-β1. The ectopic expression of SKIP inhibited both TGF-β1-induced uPA and MMP-9 promoter transactivation, while PAI-1 promoter response to the factor was unaffected. Conclusions. SKIP regulates the expression of uPA, PAI-1, and MMP-9 stimulated by TGF-β1 in PC-3 cells. Thus, SKIP is implicated in the regulation of extracellular matrix degradation and can therefore be suggested as a novel therapeutic target in prostate cancer treatment.

  18. Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation.

    Science.gov (United States)

    Perea-Resa, Carlos; Rodríguez-Milla, Miguel A; Iniesto, Elisa; Rubio, Vicente; Salinas, Julio

    2017-06-05

    The process of cold acclimation is an important adaptive response whereby many plants from temperate regions increase their freezing tolerance after being exposed to low non-freezing temperatures. The correct development of this response relies on proper accumulation of a number of transcription factors that regulate expression patterns of cold-responsive genes. Multiple studies have revealed a variety of molecular mechanisms involved in promoting the accumulation of these transcription factors. Interestingly, however, the mechanisms implicated in controlling such accumulation to ensure their adequate levels remain largely unknown. In this work, we demonstrate that prefoldins (PFDs) control the levels of HY5, an Arabidopsis transcription factor with a key role in cold acclimation by activating anthocyanin biosynthesis, in response to low temperature. Our results show that, under cold conditions, PFDs accumulate into the nucleus through a DELLA-dependent mechanism, where they interact with HY5, triggering its ubiquitination and subsequent degradation. The degradation of HY5 would result, in turn, in anthocyanin biosynthesis attenuation, ensuring the accurate development of cold acclimation. These findings uncover an unanticipated nuclear function for PFDs in plant responses to abiotic stresses. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  19. Human cytomegalovirus gH stability and trafficking are regulated by ER-associated degradation and transmembrane architecture.

    Science.gov (United States)

    Gardner, Thomas J; Hernandez, Rosmel E; Noriega, Vanessa M; Tortorella, Domenico

    2016-03-30

    The prototypic betaherpesvirus human cytomegalovirus (CMV) establishes life-long persistence within its human host. While benign in healthy individuals, CMV poses a significant threat to the immune compromised, including transplant recipients and neonates. The CMV glycoprotein complex gH/gL/gO mediates infection of fibroblasts, and together with the gH/gL/UL128/130/131 a pentameric complex permits infection of epithelial, endothethial, and myeloid cells. Given the central role of the gH/gL complex during infection, we were interested in studying cellular trafficking of the gH/gL complex through generation of human cells that stably express gH and gL. When expressed alone, CMV gH and gL were degraded through the ER-associated degradation (ERAD) pathway. However, co-expression of these proteins stabilized the polypeptides and enhanced their cell-surface expression. To further define regulatory factors involved in gH/gL trafficking, a CMV gH chimera in which the gH transmembrane and cytoplasmic tail were replaced with that of human CD4 protein permitted cell surface gH expression in absence of gL. We thus demonstrate the ability of distinct cellular processes to regulate the trafficking of viral glycoproteins. Collectively, the data provide insight into the processing and trafficking requirements of CMV envelope protein complexes and provide an example of the co-opting of cellular processes by CMV.

  20. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Jungsug; Song, Taeyun [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Jie-Young; Yun, Yeon-Sook [Laboratory of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Choi, Il-Whan [Department of Microbiology, Center for Viral Disease Research, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Jeong, Yongsu [Department of Genetic Engineering, and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.

  1. Skp2 regulates androgen receptor through ubiquitin-mediated degradation independent of Akt/mTOR pathways in prostate cancer.

    Science.gov (United States)

    Li, Bo; Lu, Wenfu; Yang, Qing; Yu, Xiuping; Matusik, Robert J; Chen, Zhenbang

    2014-04-01

    The intervention of advanced prostate cancer (PCa) in patients has been commonly depending on androgen deprivation therapy. Despite of tremendous research efforts, however, molecular mechanisms on AR regulation remain poorly understood, particularly for castration resistant prostate cancer (CRPC). Targeting AR and associated factors is considered an effective strategy in PCa treatment. Human prostate cancer cells were used in this study. Manipulations of Skp2 expression were achieved by Skp2 shRNA/siRNA or overexpression of plasmids. Dual luciferase reporter assay was applied for AR activity assessment. Western blot, ubiquitination assay, immunoprecipitation, and immunofluorescence were applied to detect the proteins. Our results demonstrated that Skp2 directly involves the regulation of AR expression through ubiquitination-mediated degradation. Skp2 interacted with AR protein in PCa cells, and enforced expression of Skp2 resulted in a decreased level and activity of AR. By contrast, Skp2 knockdown increased the protein accumulation and activity of AR. Importantly, changes of AR contributed by Skp2 led to subsequent alterations of PSA level in PCa cells. AR ubiquitination was significantly increased upon Skp2 overexpression but greatly reduced upon Skp2 knockdown. AR mutant at K847R abrogated Skp2-mediated ubiquitination of AR. NVP-BEZ235, a dual PI3K/mTOR inhibitor, remarkably inhibited Skp2 level with a striking elevation of AR. The results indicate that Skp2 is an E3 ligase for proteasome-dependent AR degradation, and K847 on AR is the recognition site for Skp2-mediated ubiquitination. Our findings reveal an essential role of Skp2 in AR signaling. © 2013 Wiley Periodicals, Inc.

  2. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450.

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-05-01

    The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a(fl/fl);alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Flvcr1a(fl/fl);alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1a(fl/fl);alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. Methods We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1afl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Results Flvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. Conclusions In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. PMID:24486949

  4. Ubiquitination regulates MHC class II-peptide complex retention and degradation in dendritic cells

    OpenAIRE

    Walseng, Even; Furuta, Kazuyuki; Bosch, Berta; Weih, Karis A.; Matsuki, Yohei; Bakke, Oddmund; Ishido, Satoshi; Roche, Paul A.

    2010-01-01

    The expression and turnover of MHC class II-peptide complexes (pMHC-II) on the surface of dendritic cells (DCs) is essential for their ability to activate CD4 T cells efficiently. The half-life of surface pMHC-II is significantly greater in activated (mature) DCs than in resting (immature) DCs, but the molecular mechanism leading to this difference remains unknown. We now show that ubiquitination of pMHC-II by the E3 ubiquitin ligase membrane-associated RING-CH 1 (March-I) regulates surface e...

  5. NEDD4-2 associates with {gamma}{sub c} and regulates its degradation rate

    Energy Technology Data Exchange (ETDEWEB)

    Malarde, Valerie [Institut Pasteur, Unite de Biologie des Interactions Cellulaires, URA CNRS-2582, 25 rue du Dr. Roux, 75015 Paris (France); Proust, Richard [UMR S749, Faculte de Pharmacie, 5 rue JB Clement, 92296 Chatenay-Malabry (France); Dautry-Varsat, Alice [Institut Pasteur, Unite de Biologie des Interactions Cellulaires, URA CNRS-2582, 25 rue du Dr. Roux, 75015 Paris (France); Gesbert, Franck, E-mail: franck.gesbert@u-psud.fr [Institut Pasteur, Unite de Biologie des Interactions Cellulaires, URA CNRS-2582, 25 rue du Dr. Roux, 75015 Paris (France); UMR S749, Faculte de Pharmacie, 5 rue JB Clement, 92296 Chatenay-Malabry (France)

    2009-09-18

    Interleukin-2 (IL-2) is a cytokine that regulates proliferation, differentiation and survival of various lymphoid cell subsets. Its actions are mediated through its binding to the IL-2 receptor which is composed of three subunits (IL-2R{alpha}, IL-2R{beta} and {gamma}{sub c}). Only {beta} and {gamma}{sub c} have been shown to transduce intra cellular signals. The {gamma}{sub c} chain is shared by the interleukin-2, 4, 7, 9, 15 and 21 receptors, and is essential for lymphocyte functions. The regulation of {gamma}{sub c} expression level is therefore critical for the ability of cells to respond to these cytokines. In the present work, we show that the IL-2R constitutively associates with the ubiquitin ligase NEDD4-2, and to a lesser extent NEDD4-1. We identified the specific binding site on {gamma}{sub c}. And we show that the loss of NEDD4 association on {gamma}{sub c} is accompanied by a dramatic increase of the half-life of the receptor subunit.

  6. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Cathepsin B is up-regulated and mediates extracellular matrix degradation in trabecular meshwork cells following phagocytic challenge.

    Directory of Open Access Journals (Sweden)

    Kristine Porter

    Full Text Available Cells in the trabecular meshwork (TM, a tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic activity in TM cells is thought to play an important role in outflow pathway physiology. However, the molecular mechanisms triggered by phagocytosis in TM cells are unknown. Here we investigated the effects of chronic phagocytic stress on lysosomal function using different phagocytic ligands (E. coli, carboxylated beads, collagen I-coated beads, and pigment. Lysotracker red co-localization and electron micrographs showed the maturation of E. coli- and collagen I-coated beads-containing phagosomes into phagolysosomes. Maturation of phagosomes into phagolysosomes was not observed with carboxylated beads or pigment particles. In addition, phagocytosis of E. coli and collagen I-coated beads led to increased lysosomal mass, and the specific up-regulation and activity of cathepsin B (CTSB. Higher levels of membrane-bound and secreted CTSB were also detected. Moreover, in vivo zymography showed the intralysosomal degradation of ECM components associated with active CTSB, as well as an overall increased gelatinolytic activity in phagocytically challenged TM cells. This increased gelatinolytic activity with phagocytosis was partially blocked with an intracellular CTSB inhibitor. Altogether, these results suggest a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.

  8. Cross-regulation of cytokine signalling: pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation.

    Science.gov (United States)

    Radtke, Simone; Wüller, Stefan; Yang, Xiang-ping; Lippok, Barbara E; Mütze, Barbara; Mais, Christine; de Leur, Hildegard Schmitz-Van; Bode, Johannes G; Gaestel, Matthias; Heinrich, Peter C; Behrmann, Iris; Schaper, Fred; Hermanns, Heike M

    2010-03-15

    The inflammatory response involves a complex interplay of different cytokines which act in an auto- or paracrine manner to induce the so-called acute phase response. Cytokines are known to crosstalk on multiple levels, for instance by regulating the mRNA stability of targeted cytokines through activation of the p38-MAPK pathway. In our study we discovered a new mechanism that answers the long-standing question how pro-inflammatory cytokines and environmental stress restrict immediate signalling of interleukin (IL)-6-type cytokines. We show that p38, activated by IL-1beta, TNFalpha or environmental stress, impairs IL-6-induced JAK/STAT signalling through phosphorylation of the common cytokine receptor subunit gp130 and its subsequent internalisation and degradation. We identify MK2 as the kinase that phosphorylates serine 782 in the cytoplasmic part of gp130. Consequently, inhibition of p38 or MK2, deletion of MK2 or mutation of crucial amino acids within the MK2 target site or the di-leucine internalisation motif blocks receptor depletion and restores IL-6-dependent STAT activation as well as gene induction. Hence, a novel negative crosstalk mechanism for cytokine signalling is described, where cytokine receptor turnover is regulated in trans by pro-inflammatory cytokines and stress stimuli to coordinate the inflammatory response.

  9. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water

    Science.gov (United States)

    Luo, Lijuan; Lai, Xueying; Chen, Baowei; Lin, Li; Fang, Ling; Tam, Nora F. Y.; Luan, Tiangang

    2015-01-01

    Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment. PMID:26239357

  10. The dynamics of connexin expression, degradation and localisation are regulated by gonadotropins during the early stages of in vitro maturation of swine oocytes.

    Directory of Open Access Journals (Sweden)

    Nicolas Santiquet

    Full Text Available Gap junctional communication (GJC plays a primordial role in oocyte maturation and meiotic resumption in mammals by directing the transfer of numerous molecules between cumulus cells and the oocyte. Gap junctions are made of connexins (Cx, proteins that regulate GJC in numerous ways. Understanding the dynamic regulation of connexin arrangements during in vitro maturation (IVM could provide a powerful tool for controlling meiotic resumption and consequently in vitro development of fully competent oocytes. However, physiological events happening during the early hours of IVM may still be elucidated. The present study reports the dynamic regulation of connexin expression, degradation and localization during this stage. Cx43, Cx45 and Cx60 were identified as the main connexins expressed in swine COC. Cx43 and Cx45 transcripts were judged too static to be a regulator of GJC, while Cx43 protein expression was highly responsive to gonadotropins, suggesting that it might be the principal regulator of GJC. In addition, the degradation of Cx43 expressed after 4.5 h of IVM in response to equine chorionic gonadotropin appeared to involve the proteasomal complex. Cx43 localisation appeared to be associated with GJC. Taken together, these results show for the first time that gonadotropins regulate Cx43 protein expression, degradation and localisation in porcine COC during the first several hours of IVM. Regulation of Cx43 may in turn, via GJC, participate in the development of fully competent oocytes.

  11. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-06-01

    Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. This study provides the first extensive

  12. The magnesium chelation step in chlorophyll biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.

    1990-11-01

    In photosynthetic organisms, the biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins, and various lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX (Proto). Insertion of iron leads to the formation of hemes, while insertion of magnesium is the first step unique to chlorophyll formation. This project is directed toward identifying the enzyme(s) responsible for magnesium chelation and elucidating the mechanism which regulates the flux of precursors through the branch point enzymes in isolated chloroplasts. Using intact chloroplasts from greening cucumber cotyledons, we have confirmed the ATP requirement for Mg-Proto formation. Use of non-hydrolyzable ATP analogs, uncouplers and ionophores has led to the conclusions that ATP hydrolysis is necessary, but that this hydrolysis is not linked to the requirement for membrane intactness by transmembrane ion gradients or electrical potentials. The enzyme(s) are flexible with respect to the porphyrin substrate specificity, accepting porphyrins with -vinyl, -ethyl, or -H substituents at the 2 and 4 positions. The activity increases approximately four-fold during greening. Possible physiological feedback inhibitors such as heme, protochlorophyllide, and chlorophyllide had no specific effect on the activity. The activity has now been assayed in barely, corn and peas, with the system from peas almost ten-fold more active than the cucumber system. Work is continuing in pea chloroplasts with the development of a continuous assay and investigation of the feasibility of characterizing an active, organelle-free preparation. 6 figs.

  13. Role of chlorophylls, amino acids and sugars in tea

    International Nuclear Information System (INIS)

    Dev Choudhury, M.N.

    1980-01-01

    Plucked tea shoots from clones of different varieties of tea were withered, rolled, fermented and fired by CTC and orthodox methods of manufacture. Quantitative changes in the levels of chlorophylls, amino acids and water soluble sugars during different stages of processing of tea and also changes in the contents of their degradation products were studied by feeding 14 C-labelled phenylalanine, glucose, sodium carbonate and sodium propionate to the excised shoots and subsequently analysing the products. Results are discussed and suggestions have been made about adjusting the conditions of manufacture so that the teas with desired chemical constituents are produced. (M.G.B.)

  14. Actin cytoskeleton-dependent Rab GTPase-regulated angiotensin type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Li, Hewang; Yu, Peiying; Sun, Yuansheng; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2010-09-01

    The dynamic regulation of the cellular trafficking of human angiotensin (Ang) type 1 receptor (AT1R) is not well understood. Therefore, we investigated the cellular trafficking of AT1R-enhanced green fluorescent protein (EGFP) (AT1R-EGFP) heterologously expressed in HEK293 cells by determining the change in donor lifetime (AT1R-EGFP) in the presence or absence of acceptor(s) using fluorescence lifetime imaging-fluorescence resonance energy transfer (FRET) microscopy. The average lifetime of AT1R-EGFP in our donor-alone samples was ~2.33 ns. The basal state lifetime was shortened slightly in the presence of Rab5 (2.01+/-0.10 ns) or Rab7 (2.11+/-0.11 ns) labeled with Alexa 555, as the acceptor fluorophore. A 5-min Ang II treatment markedly shortened the lifetime of AT1R-EGFP in the presence of Rab5-Alexa 555 (1.78+/-0.31 ns) but was affected minimally in the presence of Rab7-Alexa 555 (2.09+/-0.37 ns). A 30-min Ang II treatment further decreased the AT1R-EGFP lifetime in the presence of both Rab5- and Rab7-Alexa 555. Latrunculin A but not nocodazole pretreatment blocked the ability of Ang II to shorten the AT1R-EGFP lifetime. The occurrence of FRET between AT1R-EGFP (donor) and LAMP1-Alexa 555 (acceptor) with Ang II stimulation was impaired by photobleaching the acceptor. These studies demonstrate that Ang II-induced AT1R lysosomal degradation through its association with LAMP1 is regulated by Rab5/7 via mechanisms that are dependent on intact actin cytoskeletons.

  15. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp [Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto (Japan); Usuki, Fusako [Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto (Japan)

    2015-10-01

    Methylmercury (MeHg) is an environmental neurotoxicant. The developing nervous system is susceptible to low concentrations of MeHg; however, the effect of MeHg on neural progenitor cell (NPC) proliferation, a key stage of neurogenesis during development, remains to be clarified. In this study, we investigated the effect of low concentrations of MeHg on NPCs by using a primary culture system developed using the embryonic rat cerebral cortex. NPC proliferation was suppressed 48 h after exposure to 10 nM MeHg, but cell death was not observed. Western blot analyses for cyclins A, B, D1, and E demonstrated that MeHg down-regulated cyclin E, a promoter of the G1/S cell cycle transition. Cyclin E has been shown to be degraded following the phosphorylation by glycogen synthase kinase 3β (GSK-3β). The time course study showed that GSK-3β was up-regulated 3 h after exposure to 10 nM MeHg, and cyclin E degradation 48 h after MeHg exposure. We further demonstrated that GSK-3β inhibitors, lithium and SB-415286, suppressed MeHg-induced inhibition of NPC proliferation by preventing cyclin E degradation. These results suggest that the inhibition of NPC proliferation induced by low concentration of MeHg was associated with up-regulation of GSK-3β at the early stage and subsequent degeneration of cyclin E. - Highlights: • NPC proliferation was suppressed by 10 nM MeHg, but cell death was not observed. • MeHg induced down-regulation of cyclin E, a promoter of cell cycle progression. • GSK-3β was up-regulated by 10 nM MeHg, leading to cyclin E degradation. • GSK-3β inhibitors suppressed MeHg-induced degradation of cyclin E.

  16. Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation.

    Science.gov (United States)

    Brun, Sylvain; Malagnac, Fabienne; Bidard, Frédérique; Lalucque, Hervé; Silar, Philippe

    2009-10-01

    NADPH oxidases are enzymes that produce reactive oxygen species. Studies in mammals, plants and fungi have shown that they play important roles in differentiation, defence, host/pathogen interaction and mutualistic symbiosis. In this paper, we have identified a Podospora anserina mutant strain impaired for processes controlled by PaNox1 and PaNox2, the two Nox isoforms characterized in this model ascomycete. We show that the gene mutated is PaNoxR, the homologue of the gene encoding the regulatory subunit p67(phox), conserved in mammals and fungi, and that PaNoxR regulates both PaNox1 and PaNox2. Genome sequence analysis of P. anserina reveals that this fungus posses a third Nox isoform, PaNox3, related to human Nox5/Duox and plant Rboh. We have generated a knock-out mutant of PaNox3 and report that PaNox3 plays a minor role in P. anserina, if any. We show that PaNox1 and PaNox2 play antagonist roles in cellulose degradation. Finally, we report for the first time that a saprobic fungus, P. anserina, develops special cell structures dedicated to breach and to exploit a solid cellulosic substrate, cellophane. Importantly, as for similar structures present in some plant pathogens, their proper differentiation requires PaNox1, PaNox2, PaNoxR and the tetraspanin PaPls1.

  17. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi

    International Nuclear Information System (INIS)

    Bonnarme, P.; Jeffries, T.W.

    1990-01-01

    Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of 14 CO 2 from 14 C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of 14 CO 2 release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini

  18. Distribution of nutrients, chlorophyll and phytoplankton primary ...

    African Journals Online (AJOL)

    Distribution of nutrients, chlorophyll and phytoplankton primary production in ... Two cruises were undertaken in the vicinity of the Cape Frio upwelling cell ... and concentrations of nitrate, phosphate, silicate, oxygen and chlorophyll a. ... Estimates of the annual primary production for each of the water bodies were calculated.

  19. Quantifying mangrove chlorophyll from high spatial resolution imagery

    NARCIS (Netherlands)

    Heenkenda, M.K.; Joyce, K.E.; Maier, S.W.; Bruin, de S.

    2015-01-01

    Lower than expected chlorophyll concentration of a plant can directly limit photosynthetic activity, and resultant primary production. Low chlorophyll concentration may also indicate plant physiological stress. Compared to other terrestrial vegetation, mangrove chlorophyll variations are poorly

  20. Effect of PEG-6000 Imposed Water Deficit on Chlorophyll Metabolism in Maize Leaves

    Directory of Open Access Journals (Sweden)

    Rekha Gadre

    2013-08-01

    Full Text Available Drought stress is one of the major abiotic constraint limiting plant growth and productivity world wide. The current study was undertaken with the aim to investigate the effect of water deficit imposed by PEG-6000, on chlorophyll metabolism in maize leaves to work out the mechanistic details. Leaf segments prepared from primary leaves of etiolated maize seedlings were treated with varying concentrations of polyethylene glycol-6000 (PEG-6000; w/v- 5%, 10%, 20%, 30% in continuous light of intensity 40 Wm-2 at 26±2 °C for 24 h in light chamber. The results demonstrate a concentration dependent decline in chlorophyll content with increasing concentration of polyethylene glycol-6000 (PEG-6000. Reduction in chlorophyll ‘a’ level was to a greater extent than the chlorophyll ‘b’. The RNA content decreased in a concentration dependent manner with PEG, however, proline content increased significantly. Relative water content decreased significantly with the supply of 30% PEG only. A substantial decrease in chlorophyll synthesis due to significant reduction in ALA content and ALAD activity, with no change in chlorophyllase activity with the supply of PEG suggests that water deficit affects chlorophyll formation rather than its degradation.

  1. The ethylene response factor AtERF4 negatively regulates the iron deficiency response in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Iron (Fe deficiency is one of many conditions that can seriously damage crops. Low levels of photosynthesis can lead to the degradation of chlorophyll content and impaired respiration in affected plants, which together cause poor growth and reduce quality. Although ethylene plays an important role in responses to Fe deficiency, a limited number of studies have been carried out on ethylene response factor (ERFs as components of plant regulation mechanisms. Thus, this study aimed to investigate the role of AtERF4 in plant responses to Fe deficiency. Results collected when Arabidopsis thaliana was grown under Fe deficient conditions as well as in the presence of 1-aminocyclopropane-1-carboxylic acid (ACC revealed that leaf chlorosis did not occur over short timescales and that chloroplast structural integrity was retained. At the same time, expression of the chlorophyll degradation-related genes AtPAO and AtCLH1 was inhibited and net H+ root flux was amplified. Our results show that chlorophyll content was enhanced in the mutant erf4, while expression of the chlorophyll degradation gene AtCLH1 was reduced. Ferric reductase activity in roots was also significantly higher in the mutant than in wild type plants, while erf4 caused high levels of expression of the genes AtIRT1 and AtHA2 under Fe deficient conditions. We also utilized yeast one-hybrid technology in this study to determine that AtERF4 binds directly to the AtCLH1 and AtITR1 promoter. Observations show that transient over-expression of AtERF4 resulted in rapid chlorophyll degradation in the leaves of Nicotiana tabacum and the up-regulation of gene AtCLH1 expression. In summary, AtERF4 plays an important role as a negative regulator of Fe deficiency responses, we hypothesize that AtERF4 may exert a balancing effect on plants subject to nutrition stress.

  2. Radiation induced chlorophyll mutations in rice

    International Nuclear Information System (INIS)

    Bari, G.; Mustafa, G.; Soomro, A.M.; Baloch, A.W.

    1985-01-01

    Air dried grains of four local varieties of rice were treated with gamma-rays and fast neutrons for determining their mutagenic effectiveness through the occurence of chlorophyll mutations. Fast neutrons were more effective in inducing chlorophyll mutations and the rice variety Basmati 370 produced maximum number of mutations followed by varieties Sonahri Sugdasi, Jajai 77 and Sada Gulab. The highest frequency of chlorophyll mutations was that of albina types followed by striata types. The xantha, viridis and tigrina types of mutations were less frequent. (authors)

  3. The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development.

    Directory of Open Access Journals (Sweden)

    Archana D Siddam

    2018-03-01

    Full Text Available Opacification of the ocular lens, termed cataract, is a common cause of blindness. To become transparent, lens fiber cells undergo degradation of their organelles, including their nuclei, presenting a fundamental question: does signaling/transcription sufficiently explain differentiation of cells progressing toward compromised transcriptional potential? We report that a conserved RNA-binding protein Celf1 post-transcriptionally controls key genes to regulate lens fiber cell differentiation. Celf1-targeted knockout mice and celf1-knockdown zebrafish and Xenopus morphants have severe eye defects/cataract. Celf1 spatiotemporally down-regulates the cyclin-dependent kinase (Cdk inhibitor p27Kip1 by interacting with its 5' UTR and mediating translation inhibition. Celf1 deficiency causes ectopic up-regulation of p21Cip1. Further, Celf1 directly binds to the mRNA of the nuclease Dnase2b to maintain its high levels. Together these events are necessary for Cdk1-mediated lamin A/C phosphorylation to initiate nuclear envelope breakdown and DNA degradation in fiber cells. Moreover, Celf1 controls alternative splicing of the membrane-organization factor beta-spectrin and regulates F-actin-crosslinking factor Actn2 mRNA levels, thereby controlling fiber cell morphology. Thus, we illustrate new Celf1-regulated molecular mechanisms in lens development, suggesting that post-transcriptional regulatory RNA-binding proteins have evolved conserved functions to control vertebrate oculogenesis.

  4. Seasonal Composite Chlorophyll Concentrations - Gulf of Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This personal geodatabase contains raster images of chlorophyll concentrations in the Gulf of Maine. These raster images are seasonal composites, and were calculated...

  5. EmpiricalValues_Chlorophyll_GrandComposite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This personal geodatabase contains raster images of chlorophyll concentrations in the Gulf of Maine. These raster images are a composite of several years (1997-2005)...

  6. Monthly Composite Chlorophyll Concentrations - Gulf of Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This personal geodatabase contains raster images of chlorophyll concentrations in the Gulf of Maine. These raster images are monthly composites, and were calculated...

  7. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart; Tzfadia, Oren; Vallabhaneni, Ratnakar; Gehring, Christoph A; Wurtzel, Eleanore T

    2011-01-01

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  8. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart

    2011-05-19

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  9. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vallabhaneni Ratnakar

    2011-05-01

    Full Text Available Abstract Background The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana. Results A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR but was inhibited by abscisic acid (ABA. Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced

  10. Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes

    Science.gov (United States)

    Filstrup, Christopher T.; Wagner, Tyler; Soranno, Patricia A.; Stanley, Emily H.; Stow, Craig A.; Webster, Katherine E.; Downing, John A.

    2014-01-01

    The relationship between chlorophyll a (Chl a) and total phosphorus (TP) is a fundamental relationship in lakes that reflects multiple aspects of ecosystem function and is also used in the regulation and management of inland waters. The exact form of this relationship has substantial implications on its meaning and its use. We assembled a spatially extensive data set to examine whether nonlinear models are a better fit for Chl a—TP relationships than traditional log-linear models, whether there were regional differences in the form of the relationships, and, if so, which regional factors were related to these differences. We analyzed a data set from 2105 temperate lakes across 35 ecoregions by fitting and comparing two different nonlinear models and one log-linear model. The two nonlinear models fit the data better than the log-linear model. In addition, the parameters for the best-fitting model varied among regions: the maximum and lower Chl aasymptotes were positively and negatively related to percent regional pasture land use, respectively, and the rate at which chlorophyll increased with TP was negatively related to percent regional wetland cover. Lakes in regions with more pasture fields had higher maximum chlorophyll concentrations at high TP concentrations but lower minimum chlorophyll concentrations at low TP concentrations. Lakes in regions with less wetland cover showed a steeper Chl a—TP relationship than wetland-rich regions. Interpretation of Chl a—TP relationships depends on regional differences, and theory and management based on a monolithic relationship may be inaccurate.

  11. Induction of chlorophyll chimeras and chlorophyll mutations in mungbean (Vigna radiata) cv. T44

    International Nuclear Information System (INIS)

    Singh, V.P.; Yadav, R.D.S.

    1993-01-01

    Uniform and healthy seeds of mungbean (Vigna radiata) cv. T44 were exposed to varying doses of gamma rays, ethyl methane sulphonate (EMS) and combination treatment of gamma rays with EMS. The data were recorded for seed germination, plant survival, frequency and spectrum of chlorophyll chimeras in M 1 and chlorophyll mutations in M 2 generation. Among all, the combination treatments were found most effective for inducing chlorophyll chimeras and chlorophyll mutations than the gamma rays or EMS alone. Of the mutants under reference, the albino, xantha and chlorina showed monogenic recessive while viridis exhibited digenic recessive inheritance. (author). 8 refs., 2 tabs

  12. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts.

    Science.gov (United States)

    Wang, Peng; Grimm, Bernhard

    2015-12-01

    Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.

  13. A conserved serine residue regulates the stability of Drosophila Salvador and human WW domain-containing adaptor 45 through proteasomal degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di, E-mail: DiWu@mail.nankai.edu.cn; Wu, Shian

    2013-04-19

    Highlights: •Ser-17 is key for the stability of Drosophila Sav. •Ala mutation of Ser-17 promotes the proteasomal degradation of Sav. •Ser-17 residue is not the main target of Hpo-induced Sav stabilization. •Hpo-dependent and -independent mechanisms regulate Sav stability. •This mechanism is conserved in the homologue of Sav, human WW45. -- Abstract: The Hippo (Hpo) pathway is a conserved tumor suppressor pathway that controls organ size through the coordinated regulation of apoptosis and proliferation. Drosophila Salvador (Sav), which limits organ size, is a core component of the Hpo pathway. In this study, Ser-17 was shown to be important for the stability of Sav. Alanine mutation of Ser-17 promoted the proteasomal degradation of Sav. Destabilization and stabilization of the Sav protein mediated by alanine mutation of Ser-17 and by Hpo, respectively, were independent of each other. This implies that the stability of Sav is controlled by two mechanisms, one that is Ser-17-dependent and Hpo-independent, and another that is Ser-17-independent and Hpo-dependent. These dual mechanisms also regulated the human counterpart of Drosophila Sav, WW domain-containing adaptor 45 (WW45). The conservation of this regulation adds to its significance in normal physiology and tumorigenesis.

  14. Investigations on gamma ray induced chlorophyll variegated mutants

    International Nuclear Information System (INIS)

    Datta, S.K.; Dwivedi, A.K.; Banerji, B.K.

    1995-01-01

    Considering economic importance of chlorophyll variegation in floriculture trade an attempt was made for cytological, anatomical and biochemical analysis of four Bougainvillea and Lantana depressa chlorophyll variegated mutants for better and clear understanding of origin of chlorophyll variegation. No cytological evidence could be detected for their origin. Anatomical and biochemical examinations revealed that chlorophyll variegation in these mutants were due to changes in biosynthesis pathways and time of chlorophyll synthesis in palisade and spongy mesophyll cells. (author). 7 refs., 3 figs., 3 tabs

  15. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection.

    Science.gov (United States)

    Lei, Rong; Jiang, Hongshan; Hu, Fan; Yan, Jin; Zhu, Shuifang

    2017-02-01

    Leaf chlorosis induced by plant virus infection has a short fluorescence lifetime, which reflects damaged photosynthetic complexes and degraded chloroplasts. Plant viruses often induce chlorosis and necrosis, which are intimately related to photosynthetic functions. Chlorophyll fluorescence lifetime measurement is a valuable noninvasive tool for analyzing photosynthetic processes and is a sensitive indicator of the environment surrounding the fluorescent molecules. In this study, our central goal was to explore the effect of viral infection on photosynthesis by employing chlorophyll fluorescence lifetime imaging (FLIM), steady-state fluorescence, non-photochemical quenching (NPQ), transmission electron microscopy (TEM), and pigment analysis. The data indicated that the chlorophyll fluorescence lifetime of chlorotic leaves was significantly shorter than that of healthy control leaves, and the fitted short lifetime component of chlorophyll fluorescence of chlorotic leaves was dominant. This dominant short lifetime component may result from damage to the structure of thylakoid, which was confirmed by TEM. The NPQ value of chlorotic leaves was slightly higher than that of healthy green leaves, which can be explained by increased neoxanthin, lutein and violaxanthin content relative to chlorophyll a. The difference in NPQ is slight, but FLIM can provide simple and direct characterization of PSII structure and photosynthetic function. Therefore, this technique shows great potential as a simple and rapid method for studying mechanisms of plant virus infection.

  16. Community Structure and Succession Regulation of Fungal Consortia in the Lignocellulose-Degrading Process on Natural Biomass

    Directory of Open Access Journals (Sweden)

    Baoyu Tian

    2014-01-01

    Full Text Available The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%, unclassified Zygomycetes (33.5%, Ascomycota (32.4%, and Basidiomycota (4.6%. When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%, Ascomycota (36.1%, and Fungi incertae sedis (1.4%. After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%, Ascomycota (11.5%, and Fungi incertae sedis (1.6%. The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex.

  17. Community structure and succession regulation of fungal consortia in the lignocellulose-degrading process on natural biomass.

    Science.gov (United States)

    Tian, Baoyu; Wang, Chunxiang; Lv, Ruirui; Zhou, Junxiong; Li, Xin; Zheng, Yi; Jin, Xiangyu; Wang, Mengli; Ye, Yongxia; Huang, Xinyi; Liu, Ping

    2014-01-01

    The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%), unclassified Zygomycetes (33.5%), Ascomycota (32.4%), and Basidiomycota (4.6%). When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%), Ascomycota (36.1%), and Fungi incertae sedis (1.4%). After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%), Ascomycota (11.5%), and Fungi incertae sedis (1.6%). The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex.

  18. Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression.

    Science.gov (United States)

    Takaya, Akiko; Kubota, Yohsuke; Isogai, Emiko; Yamamoto, Tomoko

    2005-02-01

    Salmonella pathogenicity island 1 (SPI1) enables infecting Salmonella to cross the small intestinal barrier and to escape phagocytosis by inducing apoptosis. Several environmental signals and transcriptional regulators modulate the expression of hilA, which encodes a protein playing a central role in the regulatory hierarchy of SPI1 gene expression. We have previously shown that Lon, a stress-induced ATP-dependent protease, is a negative regulator of hilA, suggesting that it targets factors required for activating hilA expression. To elucidate the mechanisms by which Lon protease negatively regulates SPI1 transcription, we looked for its substrate proteins. We found that HilC and HilD, which are positive regulators of hilA expression, accumulate in Lon-depleted cells, and that the enhancement of SPI1 expression that occurs in a lon-disrupted mutant is not observed in the lon hilC hilD triple null mutant. Furthermore, we demonstrated that the half-lives of HilC and HilD are, respectively, about 12 times and three times longer in the Lon-depleted mutant, than in the Lon+ cells, suggesting that Lon targets both of HilC and HilD. In view of these findings, we suggest that the regulation of SPI1 expression is negatively controlled through degradation of the HilC and HilD transcriptional regulators by Lon.

  19. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    Science.gov (United States)

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  20. Degradation of lipid regulators by the UV/chlorine process: Radical mechanisms, chlorine oxide radical (ClO•)-mediated transformation pathways and toxicity changes.

    Science.gov (United States)

    Kong, Xiujuan; Wu, Zihao; Ren, Ziran; Guo, Kaiheng; Hou, Shaodong; Hua, Zhechao; Li, Xuchun; Fang, Jingyun

    2018-06-15

    Degradation of three lipid regulators, i.e., gemfibrozil, bezafibrate and clofibric acid, by a UV/chlorine treatment was systematically investigated. The chlorine oxide radical (ClO • ) played an important role in the degradation of gemfibrozil and bezafibrate with second-order rate constants of 4.2 (±0.3) × 10 8  M -1  s -1 and 3.6 (±0.1) × 10 7  M -1  s -1 , respectively, whereas UV photolysis and the hydroxyl radical (HO • ) mainly contributed to the degradation of clofibric acid. The first-order rate constants (k') for the degradation of gemfibrozil and bezafibrate increased linearly with increasing chlorine dosage, primarily due to the linear increase in the ClO • concentration. The k' values for gemfibrozil, bezafibrate, and clofibric acid degradation decreased with increasing pH from 5.0 to 8.4; however, the contribution of the reactive chlorine species (RCS) increased. Degradation of gemfibrozil and bezafibrate was enhanced in the presence of Br - , whereas it was inhibited in the presence of natural organic matter (NOM). The presence of ammonia at a chlorine: ammonia molar ratio of 1:1 resulted in decreases in the k' values for gemfibrozil and bezafibrate of 69.7% and 7%, respectively, but led to an increase in that for clofibric acid of 61.8%. Degradation of gemfibrozil by ClO • was initiated by hydroxylation and chlorine substitution on the benzene ring. Then, subsequent hydroxylation, bond cleavage and chlorination reactions led to the formation of more stable products. Three chlorinated intermediates were identified during ClO • oxidation process. Formation of the chlorinated disinfection by-products chloral hydrate and 1,1,1-trichloropropanone was enhanced relative to that of other by-products. The acute toxicity of gemfibrozil to Vibrio fischeri increased significantly when subjected to direct UV photolysis, whereas it decreased when oxidized by ClO • . This study is the first to report the transformation pathway of a

  1. C/EBPα regulates CRL4Cdt2-mediated degradation of p21 in response to UVB-induced DNA damage to control the G1/S checkpoint

    Science.gov (United States)

    Hall, Jonathan R; Bereman, Michael S; Nepomuceno, Angelito I; Thompson, Elizabeth A; Muddiman, David C; Smart, Robert C

    2014-01-01

    The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4Cdt2. Cdt2 is the substrate recognition subunit of CRL4Cdt2 and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4Cdt2 mediated degradation of p21. PMID:25483090

  2. Recent Trends in Global Ocean Chlorophyll

    Science.gov (United States)

    Gregg, Watson; Casey, Nancy

    2004-01-01

    Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 5% since 1998. The North Pacific ocean basin has increased nearly 19%. To understand the causes of these trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The mode1 utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. Ths enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll.

  3. The spontaneous chlorophyll mutation frequency in barley

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Jensen, Hans Peter

    1986-01-01

    A total of 1866 barley plants were progeny tested in the greenhouse. Twenty-five plants segregated for newly arisen, spontaneous chlorophyll mutant genes. Among the total of 470,129 seedlings screened there were 79 mutants (1.7 .+-. 0.6 .times. 10-4). The data are added to data from three similar...... materials and the resulting estimate of the chlorophyll mutant frequency is 1.6 .times. 10-4 in about 1.43 million seedlings. The estimate of the chlorophyll mutation rate per generation is close to 67.3 .times. 10-4 per diploid genome or in the order of 6 .times. 10-7 per locus and haploid genome....

  4. Characterization of TsaR, an Oxygen-Sensitive LysR-Type Regulator for the Degradation of p-Toluenesulfonate in Comamonas testosteroni T-2

    OpenAIRE

    Tralau, Tewes; Mampel, Jörg; Cook, Alasdair M.; Ruff, Jürgen

    2003-01-01

    TsaR is the putative LysR-type regulator of the tsa operon (tsaMBCD) which encodes the first steps in the degradation of p-toluenesulfonate (TSA) in Comamonas testosteroni T-2. Transposon mutagenesis was used to knock out tsaR. The resulting mutant lacked the ability to grow with TSA and p-toluenecarboxylate (TCA). Reintroduction of tsaR in trans on an expression vector reconstituted growth with TSA and TCA. The tsaR gene was cloned into Escherichia coli with a C-terminal His tag and overexpr...

  5. Sterol metabolism regulates neuroserpin polymer degradation in the absence of the unfolded protein response in the dementia FENIB.

    Science.gov (United States)

    Roussel, Benoit D; Newton, Timothy M; Malzer, Elke; Simecek, Nikol; Haq, Imran; Thomas, Sally E; Burr, Marian L; Lehner, Paul J; Crowther, Damian C; Marciniak, Stefan J; Lomas, David A

    2013-11-15

    Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines and Drosophila models to show that the G392E mutant of neuroserpin that forms polymers is degraded by UBE2j1 E2 ligase and Hrd1 E3 ligase while truncated neuroserpin, a protein that lacks 132 amino acids, is degraded by UBE2g2 (E2) and gp78 (E3) ligases. The degradation of G392E neuroserpin results from SREBP-dependent activation of the cholesterol biosynthetic pathway in cells that express polymers of neuroserpin (G392E). Inhibition of HMGCoA reductase, the limiting enzyme of the cholesterol biosynthetic pathway, reduced the ubiquitination of G392E neuroserpin in our cell lines and increased the retention of neuroserpin polymers in both HeLa cells and primary neurones. Our data reveal a reciprocal relationship between cholesterol biosynthesis and the clearance of mutant neuroserpin. This represents the first description of a link between sterol metabolism and modulation of the proteotoxicity mediated by the EOR.

  6. Chlorophyll mutants in Phaseolus vulgaris (L.) Savi

    International Nuclear Information System (INIS)

    Svetleva, D.; Petkova, S.

    1991-01-01

    Three-year investigations were conducted on chlorophyll mutants of three type: viridissima, claroviridis, flavoviridis, viridocostata and xanthomarginata produced post gamma irradiation ( 60 Co, 8 krad, 280 rad/min). Cell division rate in spectrum and in quantity of induced aberrations was found to have no significant differences with the control. Chlorophyll mutations compared to the control are less developed and their productive characters are less manifested. Cell division rate and the quantity of induced aberrations have no relation to the elements of productivity in the mutants investigated. 3 tabs., 12 refs

  7. Identification of a Chlorophyll Dephytylase Involved in Chlorophyll Turnover in Arabidopsis[OPEN

    Science.gov (United States)

    2016-01-01

    Chlorophyll turns over in green organs during photosystem repair and is salvaged via de- and rephytylation, but the enzyme involved in dephytylation is unknown. We have identified an Arabidopsis thaliana thylakoid protein with a putative hydrolase domain that can dephytylate chlorophyll in vitro and in vivo. The corresponding locus, CHLOROPHYLL DEPHYTYLASE1 (CLD1), was identified by mapping a semidominant, heat-sensitive, missense allele (cld1-1). CLD1 is conserved in oxygenic photosynthetic organisms, sharing structural similarity with pheophytinase, which functions in chlorophyll breakdown during leaf senescence. Unlike pheophytinase, CLD1 is predominantly expressed in green organs and can dephytylate chlorophyll in vitro. The specific activity is significantly higher for the mutant protein encoded by cld1-1 than the wild-type enzyme, consistent with the semidominant nature of the cld1-1 mutation. Supraoptimal CLD1 activities in cld1-1 mutants and transgenic seedlings led to the proportional accumulation of chlorophyllides derived from chlorophyll dephytylation after heat shock, which resulted in light-dependent cotyledon bleaching. Reducing CLD1 expression diminished thermotolerance and the photochemical efficiency of photosystem II under prolonged moderate heat stress. Taken together, our results suggest that CLD1 is the long-sought enzyme for removing the phytol chain from chlorophyll during its turnover at steady state within the chloroplast. PMID:27920339

  8. Identification of a Chlorophyll Dephytylase Involved in Chlorophyll Turnover in Arabidopsis.

    Science.gov (United States)

    Lin, Yao-Pin; Wu, Meng-Chen; Charng, Yee-Yung

    2016-12-01

    Chlorophyll turns over in green organs during photosystem repair and is salvaged via de- and rephytylation, but the enzyme involved in dephytylation is unknown. We have identified an Arabidopsis thaliana thylakoid protein with a putative hydrolase domain that can dephytylate chlorophyll in vitro and in vivo. The corresponding locus, CHLOROPHYLL DEPHYTYLASE1 (CLD1), was identified by mapping a semidominant, heat-sensitive, missense allele (cld1-1). CLD1 is conserved in oxygenic photosynthetic organisms, sharing structural similarity with pheophytinase, which functions in chlorophyll breakdown during leaf senescence. Unlike pheophytinase, CLD1 is predominantly expressed in green organs and can dephytylate chlorophyll in vitro. The specific activity is significantly higher for the mutant protein encoded by cld1-1 than the wild-type enzyme, consistent with the semidominant nature of the cld1-1 mutation. Supraoptimal CLD1 activities in cld1-1 mutants and transgenic seedlings led to the proportional accumulation of chlorophyllides derived from chlorophyll dephytylation after heat shock, which resulted in light-dependent cotyledon bleaching. Reducing CLD1 expression diminished thermotolerance and the photochemical efficiency of photosystem II under prolonged moderate heat stress. Taken together, our results suggest that CLD1 is the long-sought enzyme for removing the phytol chain from chlorophyll during its turnover at steady state within the chloroplast. © 2016 American Society of Plant Biologists. All rights reserved.

  9. Aflatoxin B1 inhibition in Aspergillus flavus by Aspergillus niger through down-regulating expression of major biosynthetic genes and AFB1 degradation by atoxigenic A. flavus.

    Science.gov (United States)

    Xing, Fuguo; Wang, Limin; Liu, Xiao; Selvaraj, Jonathan Nimal; Wang, Yan; Zhao, Yueju; Liu, Yang

    2017-09-01

    Twenty Aspergillus niger strains were isolated from peanuts and 14 strains were able to completely inhibit AFB 1 production with co-cultivation. By using a Spin-X centrifuge system, it was confirmed that there are some soluble signal molecules or antibiotics involved in the inhibition by A. niger, although they are absent during the initial 24h of A. flavus growth when it is sensitive to inhibition. In A. flavus, 19 of 20 aflatoxin biosynthetic genes were down-regulated by A. niger. Importantly, the expression of aflS was significantly down-regulated, resulting in a reduction of AflS/AflR ratio. The results suggest that A. niger could directly inhibit AFB 1 biosynthesis through reducing the abundance of aflS to aflR mRNAs. Interestingly, atoxigenic A. flavus JZ2 and GZ15 effectively degrade AFB 1 . Two new metabolites were identified and the key toxic lactone and furofuran rings both were destroyed and hydrogenated, meaning that lactonase and reductase might be involved in the degradation process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Afterglow of chlorophyll in vivo and photosynthesis

    NARCIS (Netherlands)

    Goedheer, J.C.

    1962-01-01

    Two pigment systems are involved in the afterglow of chlorophyll a-containing cells. Absorption in only one of these systems (promoting or “p” system) is effective in producing luminescence. If light is absorbed simultaneously by the other (quenching or “q” system), a decrease in luminescence

  11. SHORT COMMUNICATION ISOLATION OF CHLOROPHYLL A ...

    African Journals Online (AJOL)

    a

    chromatography (CCC) technique has been applied to the separation of chlorophyll a from ... auxiliary gas flow rate, 0.06 L min-1; ion spray voltage, 3.5 kV; capillary .... This work presents a successful application of column chromatography ...

  12. Overview of remote sensing of chlorophyll flourescene in ocean waters

    African Journals Online (AJOL)

    Overview of remote sensing of chlorophyll flourescene in ocean waters. ... Besides empirical algorithms with the blue-green ratio, the algorithms based on ... between fluorescence and chlorophyll concentration and the red shift phenomena.

  13. Comprehensive chlorophyll composition in the main edible seaweeds.

    Science.gov (United States)

    Chen, Kewei; Ríos, José Julián; Pérez-Gálvez, Antonio; Roca, María

    2017-08-01

    Natural chlorophylls present in seaweeds have been studied regarding their biological activities and health benefit effects. However, detailed studies regarding characterization of the complete chlorophyll profile either qualitatively and quantitatively are scarce. This work deals with the comprehensive spectrometric study of the chlorophyll derivatives present in the five main coloured edible seaweeds. The novel complete MS 2 characterization of five chlorophyll derivatives: chlorophyll c 2 , chlorophyll c 1 , purpurin-18 a, pheophytin d and phytyl-purpurin-18 a has allowed to obtain fragmentation patterns associated with their different structural features. New chlorophyll derivatives have been identified and quantified by first time in red, green and brown seaweeds, including some oxidative structures. Quantitative data of the chlorophyll content comes to achieve significant information for food composition databases in bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Arabidopsis chlorophyll biosynthesis: an essential balance between the methylerythritol phosphate and tetrapyrrole pathways.

    Science.gov (United States)

    Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet

    2013-12-01

    Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)-derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis.

  15. A review of ocean chlorophyll algorithms and primary production models

    Science.gov (United States)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  16. Fibroblast growth factor receptor 4 regulates tumor invasion by coupling fibroblast growth factor signaling to extracellular matrix degradation

    DEFF Research Database (Denmark)

    Sugiyama, Nami; Varjosalo, Markku; Meller, Pipsa

    2010-01-01

    /stroma border and tumor invasion front. The strongest overall coexpression was found in prostate carcinoma. Studies with cultured prostate carcinoma cell lines showed that the FGFR4-R388 variant, which has previously been associated with poor cancer prognosis, increased MT1-MMP-dependent collagen invasion......Aberrant expression and polymorphism of fibroblast growth factor receptor 4 (FGFR4) has been linked to tumor progression and anticancer drug resistance. We describe here a novel mechanism of tumor progression by matrix degradation involving epithelial-to-mesenchymal transition in response...... to membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14) induction at the edge of tumors expressing the FGFR4-R388 risk variant. Both FGFR4 and MT1-MMP were upregulated in tissue biopsies from several human cancer types including breast adenocarcinomas, where they were partially coexpressed at the tumor...

  17. Pyrrole-regulated precipitation of titania nanorods on polymer fabrics for photocatalytic degradation of trace toluene in air

    Science.gov (United States)

    Gu, Yi-Jie; Wen, Wei; Xu, Yang; Wu, Jin-Ming

    2018-03-01

    When compared with nanoparticulate counterparts, TiO2 thin films with vertically aligned one-dimensional (1D) nanostructures exhibit enhanced photocatalytic activity because of the highly accessible surface area. The perpendicular of the 1D nanostructure reduces the charge migration path and hence the carrier recombination rate, which also contributes to the photocatalytic activity. Furthermore, TiO2 thin films on flexible substrates are more suitable to degrade pollutants in either water or air because of its easy recovery and free-bending shape. In this study, flexible polyethylene fabrics were firstly coated with a sol-gel nanoparticulate TiO2 seed layer. Quasi-aligned TiO2 nanorods were then precipitated homogeneously under an atmospheric pressure and a low temperature not exceeding 80 °C, using a peroxy-titanium complex precursor with the additive of pyrrole. It is found that the density of TiO2 nanorods increased with the increasing amount of pyrrole monomers. The resultant TiO2 film on polyethylene fabrics exhibited a much reduced band gap of ca. 2.86 eV, which can be attributed to the surface oxygen deficiencies. When utilized to assist photocatalytic degradation of trace toluene in air under the UV light illumination, the TiO2 film exhibited a gradually increased photocatalytic activity upon the increasing cycles for up to six, because of the gradual removal of trace organics on the TiO2 surface. The highest photocatalytic efficiency is recorded to be 5 times that of TiO2 nanotube arrays, which are regarded as an excellent photocatalyst for air cleaning.

  18. Crystal Structure and Catalytic Mechanism of 7-Hydroxymethyl Chlorophyll a Reductase*

    Science.gov (United States)

    Wang, Xiao; Liu, Lin

    2016-01-01

    7-Hydroxymethyl chlorophyll a reductase (HCAR) catalyzes the second half-reaction in chlorophyll b to chlorophyll a conversion. HCAR is required for the degradation of light-harvesting complexes and is necessary for efficient photosynthesis by balancing the chlorophyll a/b ratio. Reduction of the hydroxymethyl group uses redox cofactors [4Fe-4S] cluster and FAD to transfer electrons and is difficult because of the strong carbon-oxygen bond. Here, we report the crystal structure of Arabidopsis HCAR at 2.7-Å resolution and reveal that two [4Fe-4S]clusters and one FAD within a very short distance form a consecutive electron pathway to the substrate pocket. In vitro kinetic analysis confirms the ferredoxin-dependent electron transport chain, thus supporting a proton-activated electron transfer mechanism. HCAR resembles a partial reconstruction of an archaeal F420-reducing [NiFe] hydrogenase, which suggests a common mode of efficient proton-coupled electron transfer through conserved cofactor arrangements. Furthermore, the trimeric form of HCAR provides a biological clue of its interaction with light-harvesting complex II. PMID:27072131

  19. Chlorophyll catabolism in olive fruits (var. Arbequina and Hojiblanca) during maturation.

    Science.gov (United States)

    Vergara-Domínguez, Honorio; Ríos, José Julían; Gandul-Rojas, Beatriz; Roca, María

    2016-12-01

    The central reaction of chlorophyll (chl) breakdown pathway occurring during olive fruits maturation is the cleavage of the macrocycle pheophorbide a to a primary fluorescent chl catabolite (pFCC) and it is catalyzed by two enzymes: pheophorbide a oxygenase (PaO) and red chl catabolite reductase (RCCR). In subsequent steps, pFCC is converted to different fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs). This work demonstrated that RCCR activity of olive fruits is type II. During the study of evolution of PaO and RCCR activities through the olive fruits maturation in two varieties: Hojiblanca and Arbequina, a significant increase in PaO and RCCR activity was found in ripening stage. In addition, the profile and structure of NCCs present in epicarp of this fruit was studied using HPLC/ESI-TOF-MS. Five different NCCs were defined and for the first time the enzymatic reactions implied in chlorophyll degradations in olive fruits elucidated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Carbon-14 labeling of phytoplankton carbon and chlorophyll a carbon: determination of specific growth rates

    International Nuclear Information System (INIS)

    Welschmeyer, N.A.; Lorenzen, C.J.

    1984-01-01

    The pattern of photosynthetic 14 C labeling over time is described for phytoplankton. The carbon-specific growth rate (d -1 ) is defined explicitly by changes in the specific activity (dpm μg -1 C) of the algae. For Skeletonema costatum, growing in axenic batch culture, the specific activities of both total cellular carbon and chlorophyll carbon increase at equal rates and the change in specific activity with time follows the predicted pattern. The specific activity of 14 C-labeled chlorophyll a was used to estimate phytoplankton growth rates and C:Chl ratios of field samples in Dabob Bay (Puget Sound), Washington. Growth rates decreased with depth and C:Chl ratios were higher for samples incubated under high light intensity. In several instances the C:Chl ratio increased from the beginning to the end of the incubation; this trend was most conspicuous near surface light intensities and for days of high total incident radiation. On these occasions, Chl a was actively 14 C labeled, yet little (or even negative) change was noted in the concentration of Chl a. These results suggest that some process (or processes) of chlorophyll degradation must be active at the same time that chlorophyll is being synthesized

  1. Deletion of pH Regulator pac-3 Affects Cellulase and Xylanase Activity during Sugarcane Bagasse Degradation by Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Amanda Cristina Campos Antoniêto

    Full Text Available Microorganisms play a vital role in bioethanol production whose usage as fuel energy is increasing worldwide. The filamentous fungus Neurospora crassa synthesize and secrete the major enzymes involved in plant cell wall deconstruction. The production of cellulases and hemicellulases is known to be affected by the environmental pH; however, the regulatory mechanisms of this process are still poorly understood. In this study, we investigated the role of the pH regulator PAC-3 in N. crassa during their growth on sugarcane bagasse at different pH conditions. Our data indicate that secretion of cellulolytic enzymes is reduced in the mutant Δpac-3 at alkaline pH, whereas xylanases are positively regulated by PAC-3 in acidic (pH 5.0, neutral (pH 7.0, and alkaline (pH 10.0 medium. Gene expression profiles, evaluated by real-time qPCR, revealed that genes encoding cellulases and hemicellulases are also subject to PAC-3 control. Moreover, deletion of pac-3 affects the expression of transcription factor-encoding genes. Together, the results suggest that the regulation of holocellulase genes by PAC-3 can occur as directly as in indirect manner. Our study helps improve the understanding of holocellulolytic performance in response to PAC-3 and should thereby contribute to the better use of N. crassa in the biotechnology industry.

  2. Brassinosteroid-Induced Transcriptional Repression and Dephosphorylation-Dependent Protein Degradation Negatively Regulate BIN2-Interacting AIF2 (a BR Signaling-Negative Regulator) bHLH Transcription Factor.

    Science.gov (United States)

    Kim, Yoon; Song, Ji-Hye; Park, Seon-U; Jeong, You-Seung; Kim, Soo-Hwan

    2017-02-01

    Brassinosteroids (BRs) are plant polyhydroxy-steroids that play important roles in plant growth and development via extensive signal integration through direct interactions between regulatory components of different signaling pathways. Recent studies have shown that diverse helix-loop-helix/basic helix-loop-helix (HLH/bHLH) family proteins are actively involved in control of BR signaling pathways and interact with other signaling pathways. In this study, we show that ATBS1-INTERACTING FACTOR 2 (AIF2), a nuclear-localized atypical bHLH transcription factor, specifically interacts with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) among other BR signaling molecules. Overexpression of AIF2 down-regulated transcript expression of growth-promoting genes, thus resulting in retardation of growth. AIF2 renders plants hyposensitive to BR-induced root growth inhibition, but shows little effects on BR-promoted hypocotyl elongation. Notably, AIF2 was dephosphorylated by BR, and the dephosphorylated AIF2 was subject to proteasome-mediated degradation. AIF2 degradation was greatly induced by BR and ABA, but relatively slightly by other hormones such as auxin, gibberellin, cytokinin and ethylene. Moreover, AIF2 transcription was significantly suppressed by a BRI1/BZR1-mediated BR signaling pathway through a direct binding of BRASSINAZOLE RESISTANT 1 (BZR1) to the BR response element (BRRE) region of the AIF2 promoter. In conclusion, our study suggests that BIN2-driven AIF2 phosphorylation could augment the BIN2/AIF2-mediated negative circuit of BR signaling pathways, and the BR-induced transcriptional repression and protein degradation negatively regulate AIF2 transcription factor, reinforcing the BZR1/BES1-mediated positive BR signaling pathway. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation.

    Science.gov (United States)

    Malyukova, A; Brown, S; Papa, R; O'Brien, R; Giles, J; Trahair, T N; Dalla Pozza, L; Sutton, R; Liu, T; Haber, M; Norris, M D; Lock, R B; Sangfelt, O; Marshall, G M

    2013-04-01

    Loss of function mutation in FBXW7, an E3 ubiquitin ligase, is associated with good prognosis and early glucocorticoid treatment response in childhood T-cell acute lymphoblastic leukemia (T-ALL) by unknown mechanisms. Here, we show that FBXW7 targets the glucocorticoid receptor α (GRα) for ubiquitylation and proteasomal degradation in a manner dependent on glycogen synthase kinase 3 β-mediated phsophorylation. FBXW7 inactivation caused elevated GRα levels, and enhanced the transcriptional response to glucocorticoids. There was significant enhancement of GR transcriptional responses in FBXW7-deficient cell lines and primary T-ALL samples, in particular, for those pro-apoptotic regulatory proteins, BIM and PUMA. Reduced FBXW7 expression or function promoted glucocorticoid sensitivity, but not sensitivity to other chemotherapeutic agents used in T-ALL. Moreover, this was a general feature of different cancer cell types. Taken together, our work defines GRα as a novel FBXW7 substrate and demonstrates that favorable patient prognosis in T-ALL is associated with FBXW7 mutations due to enhanced GRα levels and steroid sensitivity. These findings suggest that inactivation of FBXW7, a putative tumor suppressor protein, may create a synthetic lethal state in the presence of specific anticancer therapies.

  4. Genetic analysis of sunflower chlorophyll mutants

    International Nuclear Information System (INIS)

    Mashkina, E.V.; Guskov, E.P.

    2001-01-01

    The method of getting the chlorophyll mutations in sunflower was developed by Y.D. Beletskii in 1969 with the use of N-nitroso-N-methylurea (NMH). Certain concentrations of NMH are known to induce plastid mutations in growing seeds, and their yield depends on the duration of the exposure. The given work presented studies on the influence of rifampicin (R) and 2,4-dinitrophenol (DNP) on the genetic activity NMH, as an inductor of plastid and nuclear mutations

  5. The COP9 Signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5.

    Directory of Open Access Journals (Sweden)

    Dan Jin

    2018-02-01

    Full Text Available The control of seed germination and seed dormancy are critical for the successful propagation of plant species, and are important agricultural traits. Seed germination is tightly controlled by the balance of gibberellin (GA and abscisic acid (ABA, and is influenced by environmental factors. The COP9 Signalosome (CSN is a conserved multi-subunit protein complex that is best known as a regulator of the Cullin-RING family of ubiquitin E3 ligases (CRLs. Multiple viable mutants of the CSN showed poor germination, except for csn5b-1. Detailed analyses showed that csn1-10 has a stronger seed dormancy, while csn5a-1 mutants exhibit retarded seed germination in addition to hyperdormancy. Both csn5a-1 and csn1-10 plants show defects in the timely removal of the germination inhibitors: RGL2, a repressor of GA signaling, and ABI5, an effector of ABA responses. We provide genetic evidence to demonstrate that the germination phenotype of csn1-10 is caused by over-accumulation of RGL2, a substrate of the SCF (CRL1 ubiquitin E3 ligase, while the csn5a-1 phenotype is caused by over-accumulation of RGL2 as well as ABI5. The genetic data are consistent with the hypothesis that CSN5A regulates ABI5 by a mechanism that may not involve CSN1. Transcriptome analyses suggest that CSN1 has a more prominent role than CSN5A during seed maturation, but CSN5A plays a more important role than CSN1 during seed germination, further supporting the functional distinction of these two CSN genes. Our study delineates the molecular targets of the CSN complex in seed germination, and reveals that CSN5 has additional functions in regulating ABI5, thus the ABA signaling pathway.

  6. One-electron oxidation of photosynthetic pigments in micelles. Bacteriochlorophyll a, chlorophyll a, chlorophyll b, and pheophytin a

    International Nuclear Information System (INIS)

    Chauvet, J.P.

    1981-01-01

    Chlorophyll a, chlorophyll b, and bacteriochlorophyll a in aqueous micellar solutions of Trition X 100 (2%) are readily oxidized by pulse-radiolytically generated N 3 ., Br 2 - ., and (SCN) 2 - . radicals at nearly diffusion-controlled rates. The kinetic study suggests that pigment molecules occupy multiple sites in the micelle. Pheophytin a is only oxidized by N 3 . and Br 2 - . radicals. The absolute spectra and the molar extinction coefficients of chlorophyll a, bacteriochlorophyll a, chlorophyll b, and pheophytin a cations have been determined. The chlorophyll a cation has been observed in the presence of pigment aggregates

  7. SGT1 regulates Akt signaling by promoting beta-TrCP-dependent PHLPP1 degradation in gastric cancer cells.

    Science.gov (United States)

    Gao, Ganglong; Kun, Tao; Sheng, Youhua; Qian, Min; Kong, Fanzhi; Liu, Xiaoguang; Yu, Zhenfeng; Zhang, Haiqin; Zhang, Qiang; Gu, Jianping; Zhang, Xueli

    2013-04-01

    SGT1 (suppressor of G2 allele of Skp1) plays a role in various cellular processes including kinetochore assembly and protein ubiquitination by interacting with Skp1, a component of SCF E3 ligase complex. However, the function of SGT1 in cancer is largely unknown. Here, we showed that SGT1 was over-expressed in gastric cancer tissues and silencing of SGT1 by siRNAs significantly inhibited the growth and colony formation of gastric cancer cells. We further showed that SGT1 could regulate Akt signaling pathway by modulating Akt ser473 phosphorylation status. Moreover, we found that SGT1 was able to regulate the stability of PHLPP1, which is the direct phosphatase for Akt ser473 phosphorylation. Immunoprecipitation assay revealed that SGT1 could enhance the binding between PHLPP1 and beta-TrCP which has been documented to be able to target PHLPP1 for destruction. Decreased PHLPP1 in SGT1 over-expressed gastric cancer cells failed to dephosphorylate Akt and resulted in increased Akt ser473 phosphorylation and amplified downstream Akt signaling. Thus, our data revealed a previously uncovered role of SGT1 in gastric cancer development, and suggested that SGT1 could be a promising anti-cancer target to against gastric cancer.

  8. A proteomic perspective of inbuilt viral protein regulation: pUL46 tegument protein is targeted for degradation by ICP0 during herpes simplex virus type 1 infection.

    Science.gov (United States)

    Lin, Aaron E; Greco, Todd M; Döhner, Katinka; Sodeik, Beate; Cristea, Ileana M

    2013-11-01

    Much like the host cells they infect, viruses must also regulate their life cycles. Herpes simples virus type 1 (HSV-1), a prominent human pathogen, uses a promoter-rich genome in conjunction with multiple viral trans-activating factors. Following entry into host cells, the virion-associated outer tegument proteins pUL46 and pUL47 act to increase expression of viral immediate-early (α) genes, thereby helping initiate the infection life cycle. Because pUL46 has gone largely unstudied, we employed a hybrid mass spectrometry-based approach to determine how pUL46 exerts its functions during early stages of infection. For a spatio-temporal characterization of pUL46, time-lapse microscopy was performed in live cells to define its dynamic localization from 2 to 24 h postinfection. Next, pUL46-containing protein complexes were immunoaffinity purified during infection of human fibroblasts and analyzed by mass spectrometry to investigate virus-virus and virus-host interactions, as well as post-translational modifications. We demonstrated that pUL46 is heavily phosphorylated in at least 23 sites. One phosphorylation site matched the consensus 14-3-3 phospho-binding motif, consistent with our identification of 14-3-3 proteins and host and viral kinases as specific pUL46 interactions. Moreover, we determined that pUL46 specifically interacts with the viral E3 ubiquitin ligase ICP0. We demonstrated that pUL46 is partially degraded in a proteasome-mediated manner during infection, and that the catalytic activity of ICP0 is responsible for this degradation. This is the first evidence of a viral protein being targeted for degradation by another viral protein during HSV-1 infection. Together, these data indicate that pUL46 levels are tightly controlled and important for the temporal regulation of viral gene expression throughout the virus life cycle. The concept of a structural virion protein, pUL46, performing nonstructural roles is likely to reflect a theme common to many viruses

  9. Data for iTRAQ-based quantitative proteomics analysis of Brassica napus leaves in response to chlorophyll deficiency

    Directory of Open Access Journals (Sweden)

    Pu Chu

    2015-03-01

    Full Text Available The essential pigment chlorophyll (Chl plays important roles in light harvesting and energy transfer during photosynthesis. Here we present the data from a comparative proteomic analysis of chlorophyll-deficient Brassica napus mutant cde1 and its corresponding wild-type using the iTRAQ approach (Pu Chu et al., 2014 [1]. The distribution of length and number of peptides, mass and sequence coverage of proteins identified was calculated, and the repeatability of the replicates was analyzed. A total of 443 differentially expressed proteins were identified in B. napus leaves, including 228 down-accumulated proteins mainly involved in photosynthesis, porphyrin and chlorophyll metabolism, biosynthesis of secondary metabolites, carbon fixation and 215 up-accumulated proteins that enriched in the spliceosome, mRNA surveillance and RNA degradation.

  10. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    International Nuclear Information System (INIS)

    Kita, Kayoko; Suzuki, Toshihide; Ochi, Takafumi

    2007-01-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments

  11. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Kayoko [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan); Suzuki, Toshihide [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan); Ochi, Takafumi [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan)

    2007-05-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments.

  12. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    Science.gov (United States)

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 μg L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 μg L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 μg L(-1), NOEC was 5 μg L(-1) and LOEC was 15 μg L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 μg L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. SKP2 siRNA inhibits the degradation of P27kip1 and down-regulates the expression of MRP in HL-60/A cells.

    Science.gov (United States)

    Xiao, Jie; Yin, Songmei; Li, Yiqing; Xie, Shuangfeng; Nie, Danian; Ma, Liping; Wang, Xiuju; Wu, Yudan; Feng, Jianhong

    2009-08-01

    S-phase kinase-associated protein 2 (SKP2) gene is a tumor suppressor gene, and is involved in the ubiquitin-mediated degradation of P27kip1. SKP2 and P27kip1 affect the proceeding and prognosis of leukemia through regulating the proliferation, apoptosis and differentiation of leukemia cells. In this study, we explored the mechanism of reversing of HL-60/A drug resistance through SKP2 down-regulation. HL-60/A cells were nucleofected by Amaxa Nucleofector System with SKP2 siRNA. The gene and protein expression levels of Skp2, P27kip1, and multi-drug resistance associated protein (MRP) were determined by reverse transcription-polymerase chain reaction and western blot analysis, respectively. The cell cycle was analyzed by flow cytometry. The 50% inhibitory concentration value was calculated using cytotoxic analysis according to the death rate of these two kinds of cells under different concentrations of chemotherapeutics to compare the sensitivity of the cells. HL-60/A cells showed multi-drug resistance phenotype characteristic by cross-resistance to adriamycin, daunorubicin, and arabinosylcytosine, due to the expression of MRP. We found that the expression of SKP2 was higher in HL-60/A cells than in HL-60 cells, but the expression of P27kip1 was lower. The expression of SKP2 in HL-60/A cells nucleofected by SKP2 siRNA was down-regulated whereas the protein level of P27kip1 was up-regulated. Compared with the MRP expression level in the control group (nucleofected by control siRNA), the mRNA and protein expression levels of MRP in HL-60/A cells nucleofected by SKP2 siRNA were lower, and the latter cells were more sensitive to adriamycin, daunorubicin, and arabinosylcytosine. Down-regulating the SKP2 expression and arresting cells in the G0/G1 phase improve drug sensitivity of leukemia cells with down-regulated MRP expression.

  14. Role of chlorophyllase in chlorophyll homeostasis and post-harvest breakdown in Piper betle L. leaf.

    Science.gov (United States)

    Gupta, Supriya; Gupta, Sanjay Mohan; Kumar, Nikhil

    2011-10-01

    Piper betle L., a dioecious shade-loving perennial climber is one of the important Pan-Asiatic plants. More than hundred landraces having marked variation in leaf chlorophyll (Chl) content are in cultivation in India. In this study, role of chlorophyllase (Chlase) in Chl homeostasis and post-harvest breakdown was investigated in two contrasting P. betle landraces Kapoori Vellaikodi (KV) with light green and Khasi Shillong (KS) with dark green leaves. The two landraces showed negative correlation between Chl content and Chlase activity in fresh as well as stored leaves. Accumulation of chlorophyllide a (Chlid a) was correlated with the level of Chlase activity, which was higher in KV than KS. The overall response of abscisic acid (ABA) and benzylaminopurine (BAP) was similar in KV and KS, however, the time-course was different. ABA-induced Chl loss was accompanied by rise in Chlase activity in KV and KS and the delay in Chl loss by BAP was accompanied by reduction in Chlase activity. While there were significant differences in Chlase activity in KV and KS, only minor differences were observed in the enzyme properties like pH and temperature optima, Km and Vmax. No landrace-related differences were observed on the effect of metal ions and functional group reagents/amino acid effectors on Chlase activity. These results showed that despite significant differences in Chl content and Chlase activity between landraces KV and KS, the properties of Chlase were similar. The findings show that in P. betle Chlase is involved in Chl homeostasis and also in Chl degradation during post-harvest storage and responds to hormonal regulations. These findings might be useful in predicting the stability of Chl during post-harvest storage and also the shelf-life in other P. betle landraces.

  15. Chlorophyll evaluation methods in Brachiaria brizantha brs Piatã added with poultry litter compost

    Directory of Open Access Journals (Sweden)

    Alexandre Antonio Pasqualini

    2013-12-01

    quadratic to the equations: Chlorophyll-Dualex= -0.003PL2 + 056PL + 28.9 (R2= 0.84, and for Lichtenthaler & Wellburn methods Chlorophyll = -0.003PL2 + 0.052 PL + 24.8 (R2=0.76. Chlorophyll values were similar with both methods used. The Dualex method is faster and easier than the spectrometric method. The use of PL disables the improvement of photosynthetic potential and forage yield. Further studies are necessary to determine the correct use of those organic residues in degraded areas as well as in small production areas.

  16. Salt stress change chlorophyll fluorescence in mango

    Directory of Open Access Journals (Sweden)

    Cicero Cartaxo de Lucena

    2012-12-01

    Full Text Available This study evaluated the tolerance of mango cultivars 'Haden', 'Palmer', 'Tommy Atkins' and 'Uba' grafted on rootstock 'Imbú' to salt stress using chlorophyll fluorescence. Plants were grown in modified Hoagland solution containing 0, 15, 30, and 45 mmol L-1 NaCl. At 97 days the parameters of the chlorophyll fluorescence (F0, Fm, Fv, F0/Fm, Fv/Fm, Fv'/Fm', ΦPSII = [(Fm'-Fs/(Fm'], D = (1- Fv'/Fm' and ETR = (ΦPSII×PPF×0,84×0,5 were determined. At 100 days, the leaf emission and leaf area, toxicity and leaf abscission indexes were determined. In all cultivars evaluated, in different degree, there were decreases in photochemical efficiency of photosystem II, enhanced concentrations from 15 mmol L-1 NaCl. The decreases in the potential quantum yield of photosystem II (Fv/Fm were 27.9, 18.7, 20.5, and 27.4%, for cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba', respectively, when grown in 45 mmol L-1 NaCl. It was found decreases in leaf emission and mean leaf area in all cultivars from 15 mmol L-1 NaCl. There were increases in leaf toxicity of 33.0, 67.5, 41.6 and 80.8% and in leaf abscission of 71.8, 29.2, 32.5, and 67.9% for the cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba' respectively, when grown in 45 mmol L-1 NaCl. Leaf toxicity and leaf abscission were not observed in 15 mmol L-1 NaCl. The decrease in Fv/Fm ratio were accompanied by decreasing in leaf emission and increased leaf toxicity index, showing, therefore, the potential of chlorophyll fluorescence in the early detection of salt stress in mango tree.

  17. An extended PROSPECT: Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b.

    Science.gov (United States)

    Zhang, Yao; Huang, Jingfeng; Wang, Fumin; Blackburn, George Alan; Zhang, Hankui K; Wang, Xiuzhen; Wei, Chuanwen; Zhang, Kangyu; Wei, Chen

    2017-07-25

    The PROSPECT leaf optical model has, to date, well-separated the effects of total chlorophyll and carotenoids on leaf reflectance and transmittance in the 400-800 nm. Considering variations in chlorophyll a:b ratio with leaf age and physiological stress, a further separation of total plant-based chlorophylls into chlorophyll a and chlorophyll b is necessary for advanced monitoring of plant growth. In this study, we present an extended version of PROSPECT model (hereafter referred to as PROSPECT-MP) that can combine the effects of chlorophyll a, chlorophyll b and carotenoids on leaf directional hemispherical reflectance and transmittance (DHR and DHT) in the 400-800 nm. The LOPEX93 dataset was used to evaluate the capabilities of PROSPECT-MP for spectra modelling and pigment retrieval. The results show that PROSPECT-MP can both simultaneously retrieve leaf chlorophyll a and b, and also performs better than PROSPECT-5 in retrieving carotenoids concentrations. As for the simulation of DHR and DHT, the performances of PROSPECT-MP are similar to that of PROSPECT-5. This study demonstrates the potential of PROSPECT-MP for improving capabilities of remote sensing of leaf photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) and for providing a framework for future refinements in the modelling of leaf optical properties.

  18. The Use of a Chlorophyll Meter (SPAD-502) for Field Determinations of Red Mangrove (Rhizophora Mangle L.) Leaf Chlorophyll Amount

    Science.gov (United States)

    Connelly, Xana M.

    1997-01-01

    The red mangrove Rhizophora mangle L., is a halophytic woody spermatophyte common to the land-sea interface of tropical and subtropical intertidal zones. It has been reported that 60 to 75% of the coastline of the earth's tropical regions are lined with mangroves. Mangroves help prevent shoreline erosion, provide breeding, nesting and feeding areas for many marine animals and birds. Mangroves are important contributors of primary production in the coastal environment, and this is largely proportional to the standing crop of leaf chlorophylls. Higher intensities of ultraviolet radiation, resulting from stratospheric ozone depletion, can lead to a reduction of chlorophyll in terrestrial plants. Since the most common method for determining chlorophyll concentration is by extraction and this is labor intensive and time consuming, few studies on photosynthetic pigments of mangroves have been reported. Chlorophyll meter readings have been related to leaf chlorophyll content in apples and maples. It has also been correlated to nitrogen status in corn and cotton. Peterson et al., (1993) used a chlorophyll meter to detect nitrogen deficiency in crops and in determining the need for additional nitrogen fertilizer. Efforts to correlate chlorophyll meter measurements to chlorophyll content of mangroves have not been reported. This paper describes the use of a hand-held chlorophyll meter (Minolta SPAD-502) to determine the amount of red mangrove foliar chlorophyll present in the field.

  19. 果蔬食品加工贮藏过程中易变色素的降解及调控机理研究与展望%Degradation and Regulation Mechanisms of Variable Pigments during Processing and Storage of Fruits and Vegetables: Status and Trends

    Institute of Scientific and Technical Information of China (English)

    张慜; 廖红梅

    2011-01-01

    果蔬食品是人们生活的重要副食之一.由于果蔬及其产品的色泽决定产品的外观及消费者的选择性,故加工贮藏过程中易变色素的降解及调控问题变得极为重要.采用合理的加工贮藏方法来保持果蔬原有鲜艳、自然的色泽,对保持果蔬品质和减少商品损耗非常重要.针对果蔬食品加工贮藏过程中易变色素的降解及其调控机制这样一个重要的应用问题和具有挑战性的科学问题,本文综述了果蔬加工和贮藏过程中以花青素为主的红色素,以叶绿素为主的绿色素的降解机理和褐变机理;针对色素降解和褐变机理,阐述现有的护色调控机制;分析提炼果蔬变色的科学问题,并在此基础上提出本领域可能的研究方向,期望对相关领域的研究者有启发.%Fruits and vegetables are one of the most important non-staple foods. As the colour of fruit and vegetable products responsible for its exterior appearance and decide the selection of consumers, so investigation of the degradation and regulation mechanisms of variable pigments during processing and storage is very important. Using appropriate processing and storage methods to retain the bright and original colour is emergent for preserving quality and reducing commodity loss of fruits and vegetables. To promote its further development, it is important to summarize achievements and scientific questions in existing researches. This paper makes a summary of the development statuses of the degradation and regulation mechanisms of anthocyanin, chlorophylls and browning during processing and storage, and gives a discussion of existing issues and suggests some directions for the future development.

  20. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana.

    Science.gov (United States)

    Mork-Jansson, Astrid Elisabeth; Gargano, Daniela; Kmiec, Karol; Furnes, Clemens; Shevela, Dmitriy; Eichacker, Lutz Andreas

    2015-10-07

    The two-helix light harvesting like (Lil) protein Lil3 belongs to the family of chlorophyll binding light harvesting proteins of photosynthetic membranes. A function in tetrapyrrol synthesis and stabilization of geranylgeraniol reductase has been shown. Lil proteins contain the chlorophyll a/b-binding motif; however, binding of chlorophyll has not been demonstrated. We find that Lil3.2 from Arabidopsis thaliana forms heterodimers with Lil3.1 and binds chlorophyll. Lil3.2 heterodimerization (25±7.8 nM) is favored relative to homodimerization (431±59 nM). Interaction of Lil3.2 with chlorophyll a (231±49 nM) suggests that heterodimerization precedes binding of chlorophyll in Arabidopsis thaliana. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    Science.gov (United States)

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. © 2014 Institute of Food Technologists®

  2. Vitex rotundifolia Fruit Suppresses the Proliferation of Human Colorectal Cancer Cells through Down-regulation of Cyclin D1 and CDK4 via Proteasomal-Dependent Degradation and Transcriptional Inhibition.

    Science.gov (United States)

    Song, Hun Min; Park, Gwang Hun; Park, Su Bin; Kim, Hyun-Seok; Son, Ho-Jun; Um, Yurry; Jeong, Jin Boo

    2018-01-01

    Viticis Fructus (VF) as the dried fruit from Vitex rotundifolia L. used as a traditional medicine for treating inflammation, headache, migraine, chronic bronchitis, eye pain, and gastrointestinal infections has been reported to have antiproliferative effects against various cancer cells, including breast, lung and colorectal cancer cells. However, the molecular mechanisms by which VF mediates the inhibitory effect of the proliferation of cancer cells have not been elucidated in detail. In this study, we investigated the molecular mechanism of VF on the down-regulation of cyclin D1 and CDK4 level associated with cancer cell proliferation. VF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 and SW480. VF induced decrease in cyclin D1 and CDK4 in both protein and mRNA levels. However, the protein levels of cyclin D1 and CDK4 were decreased by VF at an earlier time than the change of mRNA levels; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 and CDK4 degradation, we found that Thr286 phosphorylation of cyclin D1 plays a pivotal role in VF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that VF-mediated degradation of cyclin D1 may be dependent on GSK3[Formula: see text] and VF-mediated degradation of CDK4 is dependent on ERK1/2, p38 and GSK3[Formula: see text]. In the transcriptional regulation of cyclin D1 and CDK4, we found that VF inhibited Wnt activation associated with cyclin D1 transcriptional regulation through TCF4 down-regulation. In addition, VF treatment down-regulated c-myc expression associated CDK4 transcriptional regulation. Our results suggest that VF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  3. Involvement of Arabidopsis glutaredoxin S14 in the maintenance of chlorophyll content.

    Science.gov (United States)

    Rey, Pascal; Becuwe, Noëlle; Tourrette, Sébastien; Rouhier, Nicolas

    2017-10-01

    Plant class-II glutaredoxins (GRXs) are oxidoreductases carrying a CGFS active site signature and are able to bind iron-sulfur clusters in vitro. In order to explore the physiological functions of the 2 plastidial class-II isoforms, GRXS14 and GRXS16, we generated knockdown and overexpression Arabidopsis thaliana lines and characterized their phenotypes using physiological and biochemical approaches. Plants deficient in one GRX did not display any growth defect, whereas the growth of plants lacking both was slowed. Plants overexpressing GRXS14 exhibited reduced chlorophyll content in control, high-light, and high-salt conditions. However, when exposed to prolonged darkness, plants lacking GRXS14 showed accelerated chlorophyll loss compared to wild-type and overexpression lines. We observed that the GRXS14 abundance and the proportion of reduced form were modified in wild type upon darkness and high salt. The dark treatment also resulted in decreased abundance of proteins involved in the maturation of iron-sulfur proteins. We propose that the phenotype of GRXS14-modified lines results from its participation in the control of chlorophyll content in relation with light and osmotic conditions, possibly through a dual action in regulating the redox status of biosynthetic enzymes and contributing to the biogenesis of iron-sulfur clusters, which are essential cofactors in chlorophyll metabolism. © 2017 John Wiley & Sons Ltd.

  4. Relationship of intertidal surface sediment chlorophyll concentration to hyper-spectral reflectance and chlorophyll fluorescence

    NARCIS (Netherlands)

    Kromkamp, J.C.; Morris, E.P.; Forster, R.M.; Honeywill, C.; Hagerthey, S.; Paterson, D.M.

    2006-01-01

    Estimating biomass of microphytobenthos (MPB) on intertidal mud flats is extremely difficult due to their patchy occurrence, especially at the scale of an entire mud flat. We tested two optical approaches that can be applied in situ: spectral reflectance and chlorophyll fluorescence. These two

  5. Chlorophyll-a specific volume scattering function of phytoplankton.

    Science.gov (United States)

    Tan, Hiroyuki; Oishi, Tomohiko; Tanaka, Akihiko; Doerffer, Roland; Tan, Yasuhiro

    2017-06-12

    Chlorophyll-a specific light volume scattering functions (VSFs) by cultured phytoplankton in visible spectrum range is presented. Chlorophyll-a specific VSFs were determined based on the linear least squares method using a measured VSFs with different chlorophyll-a concentrations. We found obvious variability of it in terms of spectral and angular shapes of VSF between cultures. It was also presented that chlorophyll-a specific scattering significantly affected on spectral variation of the remote sensing reflectance, depending on spectral shape of b. This result is useful for developing an advance algorithm of ocean color remote sensing and for deep understanding of light in the sea.

  6. Stereoelectronic properties of aggregated chlorophyll systems

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, R. E.; Maggiora, G. M.

    1979-09-01

    During the first nine months of the current contract, significant progress has occurred in several areas. All SCF CI studies of the singlet and triplet states of the neutral molecules Et-Chl a, Et-Pheo a, Et-BChl a, and Et-BPheo a, and the doublet states of the ..pi..-cation radicals Et-Chl a/sup +/. and Et-BChl a/sup +/. have now been completed. In addition, SCF CI calculations on BPheo a/sup -/. indicate that ..pi..-anion radicals can also be studied using the present approach. Similar work on a number of other ..pi..-cation and ..pi..-anion radicals is currently underway. Preliminary SCF CI studies have also been completed for benzoquinone and dihydroquinone, and studies on benzoquinone/sup -/. should be completed by the end of this year. The development and characterization of an empirical potential function is nearly complete, and data from selected systems is summarized. Implementation of a more efficient, quadratically convergent energy minimization procedure is also being carried out. This procedure should make it possible to study the geometry and properties of dimeric chlorophyll systems as well as various ligand-chlorophyll systems. Developmental work is continuing on the direct calculation of optical rotatory strengths.

  7. Biosynthesis of Chlorophyll a in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll-Protein Complex.

    Science.gov (United States)

    Hitchcock, Andrew; Jackson, Philip J; Chidgey, Jack W; Dickman, Mark J; Hunter, C Neil; Canniffe, Daniel P

    2016-09-16

    Improvements to photosynthetic efficiency could be achieved by manipulating pigment biosynthetic pathways of photosynthetic organisms in order to increase the spectral coverage for light absorption. The development of organisms that can produce both bacteriochlorophylls and chlorophylls is one way to achieve this aim, and accordingly we have engineered the bacteriochlorophyll-utilizing anoxygenic phototroph Rhodobacter sphaeroides to make chlorophyll a. Bacteriochlorophyll and chlorophyll share a common biosynthetic pathway up to the precursor chlorophyllide. Deletion of genes responsible for the bacteriochlorophyll-specific modifications of chlorophyllide and replacement of the native bacteriochlorophyll synthase with a cyanobacterial chlorophyll synthase resulted in the production of chlorophyll a. This pigment could be assembled in vivo into the plant water-soluble chlorophyll protein, heterologously produced in Rhodobacter sphaeroides, which represents a proof-of-principle for the engineering of novel antenna complexes that enhance the spectral range of photosynthesis.

  8. Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-kappaB p50/p65.

    Science.gov (United States)

    Masuhara, Masaaki; Sato, Takuya; Hada, Naoto; Hakeda, Yoshiyuki

    2009-01-01

    Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.

  9. Revisiting chlorophyll extraction methods in biological soil crusts - methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods

    Science.gov (United States)

    Caesar, Jennifer; Tamm, Alexandra; Ruckteschler, Nina; Lena Leifke, Anna; Weber, Bettina

    2018-03-01

    Chlorophyll concentrations of biological soil crust (biocrust) samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO) as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual). Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.

  10. Revisiting chlorophyll extraction methods in biological soil crusts – methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods

    Directory of Open Access Journals (Sweden)

    J. Caesar

    2018-03-01

    Full Text Available Chlorophyll concentrations of biological soil crust (biocrust samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual. Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.

  11. Functional importance of the anaphase-promoting complex-Cdh1-mediated degradation of TMAP/CKAP2 in regulation of spindle function and cytokinesis.

    Science.gov (United States)

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-05-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G(1)/S and peaks at G(2)/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis.

  12. Functional Importance of the Anaphase-Promoting Complex-Cdh1-Mediated Degradation of TMAP/CKAP2 in Regulation of Spindle Function and Cytokinesis▿ †

    Science.gov (United States)

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-01-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G1/S and peaks at G2/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis. PMID:17339342

  13. A Role for TIC55 as a Hydroxylase of Phyllobilins, the Products of Chlorophyll Breakdown during Plant Senescence[OPEN

    Science.gov (United States)

    Christ, Bastien; Das, Aditi; Hörtensteiner, Stefan

    2016-01-01

    Chlorophyll degradation is the most obvious hallmark of leaf senescence. Phyllobilins, linear tetrapyrroles that are derived from opening of the chlorin macrocycle by the Rieske-type oxygenase PHEOPHORBIDE a OXYGENASE (PAO), are the end products of chlorophyll degradation. Phyllobilins carry defined modifications at several peripheral positions within the tetrapyrrole backbone. While most of these modifications are species-specific, hydroxylation at the C32 position is commonly found in all species analyzed to date. We demonstrate that this hydroxylation occurs in senescent chloroplasts of Arabidopsis thaliana. Using bell pepper (Capsicum annuum) chromoplasts, we establish that phyllobilin hydroxylation is catalyzed by a membrane-bound, molecular oxygen-dependent, and ferredoxin-dependent activity. As these features resemble the requirements of PAO, we considered membrane-bound Rieske-type oxygenases as potential candidates. Analysis of mutants of the two Arabidopsis Rieske-type oxygenases (besides PAO) uncovered that phyllobilin hydroxylation depends on TRANSLOCON AT THE INNER CHLOROPLAST ENVELOPE55 (TIC55). Our work demonstrates a catalytic activity for TIC55, which in the past has been considered as a redox sensor of protein import into plastids. Given the wide evolutionary distribution of both PAO and TIC55, we consider that chlorophyll degradation likely coevolved with land plants. PMID:27655840

  14. An optimal thermal condition for maximal chlorophyll extraction

    Directory of Open Access Journals (Sweden)

    Fu Jia-Jia

    2017-01-01

    Full Text Available This work describes an environmentally friendly process for chlorophyll extraction from bamboo leaves. Shaking water bath and ultrasound cleaner are adopted in this technology, and the influence of temperature of the water bath and ultrasonic cleaner is evaluated. Results indicated that there is an optimal condition for maximal yield of chlorophyll.

  15. Regional ocean-colour chlorophyll algorithms for the Red Sea

    KAUST Repository

    Brewin, Robert J.W.; Raitsos, Dionysios E.; Dall'Olmo, Giorgio; Zarokanellos, Nikolaos; Jackson, Thomas; Racault, Marie-Fanny; Boss, Emmanuel S.; Sathyendranath, Shubha; Jones, Burton; Hoteit, Ibrahim

    2015-01-01

    an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll

  16. A model for chlorophyll fluorescence and photosynthesis at leaf scale

    NARCIS (Netherlands)

    Tol, van der C.; Verhoef, W.; Rosema, A.

    2009-01-01

    This paper presents a leaf biochemical model for steady-state chlorophyll fluorescence and photosynthesis of C3 and C4 vegetation. The model is a tool to study the relationship between passively measured steady-state chlorophyll fluorescence and actual photosynthesis, and its evolution during the

  17. Chlorophyll meter reading and total nitrogen content applied as ...

    African Journals Online (AJOL)

    Ana Mascarello

    The present study was aimed to assess the relationship between the reading of the chlorophyll meter and the total nitrogen (N) content ... devices to measure chlorophyll index (SPAD) and N content in the leaf. The nitrogen levels were found ... absorption of other nutrients and the production of carbohydrates. The methods ...

  18. Dinitrogen fixation in a unicellular chlorophyll d-containing cyanobacterium

    NARCIS (Netherlands)

    Pfreundt, U.; Stal, L.J.; Voss, B.; Hess, W.R.

    2012-01-01

    Marine cyanobacteria of the genus Acaryochloris are the only known organisms that use chlorophyll d as a photosynthetic pigment. However, based on chemical sediment analyses, chlorophyll d has been recognized to be widespread in oceanic and lacustrine environments. Therefore it is highly relevant to

  19. Influence of ambient sulphur dioxide on chlorophyll

    International Nuclear Information System (INIS)

    Shahare, C.B.; Varshney, C.K.

    1995-01-01

    For the evaluation of the injury due to SO 2 from Indraprashtha (IP) Thermal Power Plant, eight species of trees were selected. Experiment was divided in two sections. Section one include transplanted tree saplings of Bauhinia variegata, Delonix regia, Flcus benghalensis, Putranjiwa roxburghii, Morus indica, Polyalthia longifolia, Leucaena leucocephala and Tabernaemontana coronaria. Here one set of plants was transplanted to polluted site of IP and other set was maintained at non polluted site of Jawaharlal Nehru University (Ecological Nursery). Second section of the study have naturally growing trees of the same species in the vicinity of the transplanted plants. Findings of the present study show that tree species were not safe at polluted site. Maximum chlorophyll reduction occurred in Bauhinia variegata, that is 32.05% (transplanted saplings). In naturally growing trees up to 35.70% reduction was seen in B. variegata. (author). 11 refs., 2 tabs

  20. Calibrations between chlorophyll meter values and chlorophyll contents vary as the result of differences in leaf structure

    Science.gov (United States)

    In order to relate leaf chlorophyll meter values with total leaf chlorophyll contents (µg cm-2), calibration equations are established with measured data on leaves. Many studies have documented differences in calibration equations using different species and using different growing conditions for th...

  1. Concentration Effect on Quenching of Chlorophyll a Fluorescence by All-Trans-β-Carotene in Photosynthesis

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2017-09-01

    Full Text Available Absorption, fluorescence spectra of chlorophyll a (Chl-a and all-trans-β-carotene (β-Car mixing solution are investigated in different polarity and polarizability solvents. The carotenoids regulate the energy flow in photosynthesis by interaction with chlorophyll, leading to an observable reduction of Chl-a fluorescence. The fluorescence red shifts with the increasing solvent polarizability. The energy transfer in the Chl-a and β-Car system is proposed. The electron transfer should be dominant in quenching Chl-a fluorescence rather than the energy transfer in this system. Polar solvent with large polarizability shows high quenching efficiency. When dissolved in carbon tetrachloride, Chl-a presents red shift of absorption and blue shift of fluorescence spectra with increasing β-Car concentration, which implies a Chl-a conformational change.

  2. Genetic Architecture of Natural Variation in Rice Chlorophyll Content Revealed by a Genome-Wide Association Study.

    Science.gov (United States)

    Wang, Quanxiu; Xie, Weibo; Xing, Hongkun; Yan, Ju; Meng, Xiangzhou; Li, Xinglei; Fu, Xiangkui; Xu, Jiuyue; Lian, Xingming; Yu, Sibin; Xing, Yongzhong; Wang, Gongwei

    2015-06-01

    Chlorophyll content is one of the most important physiological traits as it is closely related to leaf photosynthesis and crop yield potential. So far, few genes have been reported to be involved in natural variation of chlorophyll content in rice (Oryza sativa) and the extent of variations explored is very limited. We conducted a genome-wide association study (GWAS) using a diverse worldwide collection of 529 O. sativa accessions. A total of 46 significant association loci were identified. Three F2 mapping populations with parents selected from the association panel were tested for validation of GWAS signals. We clearly demonstrated that Grain number, plant height, and heading date7 (Ghd7) was a major locus for natural variation of chlorophyll content at the heading stage by combining evidence from near-isogenic lines and transgenic plants. The enhanced expression of Ghd7 decreased the chlorophyll content, mainly through down-regulating the expression of genes involved in the biosynthesis of chlorophyll and chloroplast. In addition, Narrow leaf1 (NAL1) corresponded to one significant association region repeatedly detected over two years. We revealed a high degree of polymorphism in the 5' UTR and four non-synonymous SNPs in the coding region of NAL1, and observed diverse effects of the major haplotypes. The loci or candidate genes identified would help to fine-tune and optimize the antenna size of canopies in rice breeding. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  3. Light Intensity-Dependent Modulation of Chlorophyll b Biosynthesis and Photosynthesis by Overexpression of Chlorophyllide a Oxygenase in Tobacco1[C][OA

    Science.gov (United States)

    Biswal, Ajaya K.; Pattanayak, Gopal K.; Pandey, Shiv S.; Leelavathi, Sadhu; Reddy, Vanga S.; Govindjee; Tripathy, Baishnab C.

    2012-01-01

    Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%–80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation. PMID:22419827

  4. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves.

    Science.gov (United States)

    Pérez-Patricio, Madaín; Camas-Anzueto, Jorge Luis; Sanchez-Alegría, Avisaí; Aguilar-González, Abiel; Gutiérrez-Miceli, Federico; Escobar-Gómez, Elías; Voisin, Yvon; Rios-Rojas, Carlos; Grajales-Coutiño, Ruben

    2018-02-22

    This work introduces a new vision-based approach for estimating chlorophyll contents in a plant leaf using reflectance and transmittance as base parameters. Images of the top and underside of the leaf are captured. To estimate the base parameters (reflectance/transmittance), a novel optical arrangement is proposed. The chlorophyll content is then estimated by using linear regression where the inputs are the reflectance and transmittance of the leaf. Performance of the proposed method for chlorophyll content estimation was compared with a spectrophotometer and a Soil Plant Analysis Development (SPAD) meter. Chlorophyll content estimation was realized for Lactuca sativa L., Azadirachta indica , Canavalia ensiforme , and Lycopersicon esculentum . Experimental results showed that-in terms of accuracy and processing speed-the proposed algorithm outperformed many of the previous vision-based approach methods that have used SPAD as a reference device. On the other hand, the accuracy reached is 91% for crops such as Azadirachta indica , where the chlorophyll value was obtained using the spectrophotometer. Additionally, it was possible to achieve an estimation of the chlorophyll content in the leaf every 200 ms with a low-cost camera and a simple optical arrangement. This non-destructive method increased accuracy in the chlorophyll content estimation by using an optical arrangement that yielded both the reflectance and transmittance information, while the required hardware is cheap.

  5. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves

    Directory of Open Access Journals (Sweden)

    Madaín Pérez-Patricio

    2018-02-01

    Full Text Available This work introduces a new vision-based approach for estimating chlorophyll contents in a plant leaf using reflectance and transmittance as base parameters. Images of the top and underside of the leaf are captured. To estimate the base parameters (reflectance/transmittance, a novel optical arrangement is proposed. The chlorophyll content is then estimated by using linear regression where the inputs are the reflectance and transmittance of the leaf. Performance of the proposed method for chlorophyll content estimation was compared with a spectrophotometer and a Soil Plant Analysis Development (SPAD meter. Chlorophyll content estimation was realized for Lactuca sativa L., Azadirachta indica, Canavalia ensiforme, and Lycopersicon esculentum. Experimental results showed that—in terms of accuracy and processing speed—the proposed algorithm outperformed many of the previous vision-based approach methods that have used SPAD as a reference device. On the other hand, the accuracy reached is 91% for crops such as Azadirachta indica, where the chlorophyll value was obtained using the spectrophotometer. Additionally, it was possible to achieve an estimation of the chlorophyll content in the leaf every 200 ms with a low-cost camera and a simple optical arrangement. This non-destructive method increased accuracy in the chlorophyll content estimation by using an optical arrangement that yielded both the reflectance and transmittance information, while the required hardware is cheap.

  6. Regional ocean-colour chlorophyll algorithms for the Red Sea

    KAUST Repository

    Brewin, Robert J.W.

    2015-05-18

    The Red Sea is a semi-enclosed tropical marine ecosystem that stretches from the Gulf of Suez and Gulf of Aqaba in the north, to the Gulf of Aden in the south. Despite its ecological and economic importance, its biological environment is relatively unexplored. Satellite ocean-colour estimates of chlorophyll concentration (an index of phytoplankton biomass) offer an observational platform to monitor the health of the Red Sea. However, little is known about the optical properties of the region. In this paper, we investigate the optical properties of the Red Sea in the context of satellite ocean-colour estimates of chlorophyll concentration. Making use of a new merged ocean-colour product, from the European Space Agency (ESA) Climate Change Initiative, and in situ data in the region, we test the performance of a series of ocean-colour chlorophyll algorithms. We find that standard algorithms systematically overestimate chlorophyll when compared with the in situ data. To investigate this bias we develop an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll algorithms and the overestimation in chlorophyll originally observed was corrected. Results suggest that the overestimation was likely due to an excess of CDOM absorption per unit chlorophyll in the Red Sea when compared with average global conditions. However, we recognise that additional information is required to test the influence of other potential sources of the overestimation, such as aeolian dust, and we discuss uncertainties in the datasets used. We present a series of regional chlorophyll algorithms for the Red Sea, designed for a suite of ocean-colour sensors, that may be used for further testing.

  7. Chlorophyll derivatives for pest and disease control: Are they safe?

    International Nuclear Information System (INIS)

    Azizullah, Azizullah; Murad, Waheed

    2015-01-01

    Chlorophyll derivatives are getting widespread acceptance among the researchers as natural photosensitizers for photodynamic control of pests and disease vectors; however, rare attention has been given to evaluation of their toxicity to non-target organisms in the environment. This perspective article highlights that chlorophyll derivatives may not be as safe as believed and can possibly pose risk to non-target organisms in the environment. We invite the attention of environmental biologists, particularly ecotoxicologists, to contribute their role in making the application of chlorophyll derivatives more environmentally friendly and publicly acceptable

  8. Gamma ray induced chlorophyll and morphological mutants in grasspea

    International Nuclear Information System (INIS)

    Das, P.K.; Kundagrami, S.

    2000-01-01

    Higher dose of gamma ray treatment such as 30 kR promoted larger chlorophyll as well as morphological mutation frequency and spectrum. In both M 1 and M 2 generation marginata significantly out numbered other types of chlorophyll mutations. On the other hand, along morphological mutations stunted growth types were recovered more frequently. Both the genotypes Nirmal and P-24 differed greatly for their mutagenic specificity. In both M 1 and M 2 generation Nirmal recorded higher chlorophyll and morphological mutation frequency and spectrum indicating differential genotype response to different dosages of gamma ray treatment. (author)

  9. Chlorophyll derivatives for pest and disease control: Are they safe?

    Energy Technology Data Exchange (ETDEWEB)

    Azizullah, Azizullah, E-mail: azizswabi@gmail.com; Murad, Waheed

    2015-01-15

    Chlorophyll derivatives are getting widespread acceptance among the researchers as natural photosensitizers for photodynamic control of pests and disease vectors; however, rare attention has been given to evaluation of their toxicity to non-target organisms in the environment. This perspective article highlights that chlorophyll derivatives may not be as safe as believed and can possibly pose risk to non-target organisms in the environment. We invite the attention of environmental biologists, particularly ecotoxicologists, to contribute their role in making the application of chlorophyll derivatives more environmentally friendly and publicly acceptable.

  10. Photogeneration of charges in microcrystalline chlorophyll a

    International Nuclear Information System (INIS)

    Kassi, Hassan; Barazzouk, Said; Brullemans, Marc; Leblanc, Roger M.; Hotchandani, Surat

    2010-01-01

    The electric-field and temperature dependence of hole photogeneration in chlorophyll a (Chla) have been analyzed in terms of electric-field assisted thermal dissociation of charge pairs based on Onsager theory. An excellent agreement between the experimental and theoretical values of the slope-to-intercept ratio, S/I, for the plot of photogeneration efficiency vs. electric field at low field strengths provides a proof for the applicability of the Onsager approach to the photogeneration of charges in Chla. A value of 19 nm has been obtained for Coulomb capture radius, r c , from S/I. From the temperature dependence of photogeneration, the initial separation, r 0 , of photogenerated electron-hole has been evaluated, and has a value of 1.24 nm. This smaller r 0 compared to r c leads to a feeble dissociation probability of electron-hole pairs into free carriers, and may, among other factors, explain the low power conversion efficiencies of Chla photovoltaic cells.

  11. Photogeneration of charges in microcrystalline chlorophyll a

    Energy Technology Data Exchange (ETDEWEB)

    Kassi, Hassan [Scientech R and D, Inc., 2200 Rue Didbec S., Bureau 203, Trois-Rivieres, Trois-Rivieres, QC, G8Z 4H1 (Canada); Barazzouk, Said, E-mail: barazzos@uqtr.c [Groupe de Recherche en Biologie Vegetale, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, QC, G9A 5H7 (Canada); Brullemans, Marc [Groupe de Recherche en Biologie Vegetale, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, QC, G9A 5H7 (Canada); Leblanc, Roger M. [Department of Chemistry, University of Miami, P.O. Box 249118, Coral Gables, FL 33124-0431 (United States); Hotchandani, Surat [Groupe de Recherche en Biologie Vegetale, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, QC, G9A 5H7 (Canada)

    2010-07-01

    The electric-field and temperature dependence of hole photogeneration in chlorophyll a (Chla) have been analyzed in terms of electric-field assisted thermal dissociation of charge pairs based on Onsager theory. An excellent agreement between the experimental and theoretical values of the slope-to-intercept ratio, S/I, for the plot of photogeneration efficiency vs. electric field at low field strengths provides a proof for the applicability of the Onsager approach to the photogeneration of charges in Chla. A value of 19 nm has been obtained for Coulomb capture radius, r{sub c}, from S/I. From the temperature dependence of photogeneration, the initial separation, r{sub 0}, of photogenerated electron-hole has been evaluated, and has a value of 1.24 nm. This smaller r{sub 0} compared to r{sub c} leads to a feeble dissociation probability of electron-hole pairs into free carriers, and may, among other factors, explain the low power conversion efficiencies of Chla photovoltaic cells.

  12. BOREAS TE-9 NSA Leaf Chlorophyll Density

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. These data were collected to help provide an explanation of potential seasonal and spatial changes of leaf pigment properties in boreal forest species at the NSA. At different dates (FFC-Winter, FFC-Thaw, IFC-1, IFC-2, and IMC-3), foliage samples were collected from the upper third of the canopy for five NSA sites (YJP, OJP, OBS, UBS, and OA) near Thompson, Manitoba. Subsamples of 100 needles for black spruce, 20 needles for jack pine, and single leaf for trembling aspen were cut into pieces and immersed in a 20-mL DMF aliquot in a Nalgene test tube. The extracted foliage materials were then oven-dried at 68 C for 48 hours and weighed. Extracted leaf dry weight was converted to a total leaf area basis to express the chlorophyll content in mg/sq cm of total leaf area. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  13. Isolation of the phe-operon from G. stearothermophilus comprising the phenol degradative meta-pathway genes and a novel transcriptional regulator

    Directory of Open Access Journals (Sweden)

    Reiss Monika

    2008-11-01

    Full Text Available Abstract Background Geobacillus stearothermophilus is able to utilize phenol as a sole carbon source. A DNA fragment encoding a phenol hydroxylase catalyzing the first step in the meta-pathway has been isolated previously. Based on these findings a PCR-based DNA walk was performed initially to isolate a catechol 2,3-dioxygenase for biosensoric applications but was continued to elucidate the organisation of the genes encoding the proteins for the metabolization of phenol. Results A 20.2 kb DNA fragment was isolated as a result of the DNA walk. Fifteen open reading frames residing on a low-copy megaplasmid were identified. Eleven genes are co-transcribed in one polycistronic mRNA as shown by reverse transcription-PCR. Ten genes encode proteins, that are directly linked with the meta-cleavage pathway. The deduced amino acid sequences display similarities to a two-component phenol hydroxylase, a catechol 2,3-dioxygenase, a 4-oxalocrotonate tautomerase, a 2-oxopent-4-dienoate hydratase, a 4-oxalocrotonate decarboxylase, a 4-hydroxy-2-oxovalerate aldolase, an acetaldehyde dehydrogenase, a plant-type ferredoxin involved in the reactivation of extradiol dioxygenases and a novel regulatory protein. The only enzymes missing for the complete mineralization of phenol are a 2-hydroxymuconic acid-6-semialdehyde hydrolase and/or 2-hydroxymuconic acid-6-semialdehyde dehydrogenase. Conclusion Research on the bacterial degradation of aromatic compounds on a sub-cellular level has been more intensively studied in gram-negative organisms than in gram-positive bacteria. Especially regulatory mechanisms in gram-positive (thermophilic prokaryotes remain mostly unknown. We isolated the first complete sequence of an operon from a thermophilic bacterium encoding the meta-pathway genes and analyzed the genetic organization. Moreover, the first transcriptional regulator of the phenol metabolism in gram-positive bacteria was identified. This is a first step to elucidate

  14. Effect of xanthophyll composition on the chlorophyll excited state lifetime in plant leaves and isolated LHCII

    International Nuclear Information System (INIS)

    Johnson, Matthew P.; Zia, Ahmad; Horton, Peter; Ruban, Alexander V.

    2010-01-01

    Xanthophyll excited states have been implicated by transient absorption and two-photon excitation studies in playing a key role in the regulation of photosynthetic light harvesting via photoprotective energy dissipation. For any proposed quenching mechanism to be effective it must reduce the chlorophyll excited state lifetime from 2 ns to ∼0.5-0.4 ns. In the presented study the effect of xanthophyll composition on the chlorophyll excited state lifetime in Arabidopsis leaves in the light harvesting (F m ) and photoprotective (NPQ) states was determined. The data was compared to the chlorophyll excited state lifetime of native isolated LHCII and CP26 in detergent micelles with varying xanthophyll composition. It was found that although the differences in xanthophyll composition between LHC complexes from various Arabidopsis mutants were sufficient to explain the varying F m lifetime (and varying PSII efficiency), they were not of a sufficient scale to fully explain the observed differences in the NPQ lifetimes. Only when the LHC complexes were exposed to a low detergent/low pH media, a condition known to mimic the conformational state of LHCII associated with NPQ in vivo, were variations in excited state lifetime large enough to explain the differences observed in leaves. Furthermore, the data reveal that the replacement of lutein by either zeaxanthin or violaxanthin in the internal xanthophyll binding sites of LHCII and CP26 reduces the efficiency of energy dissipation in the photoprotective state in leaves and isolated complexes.

  15. EFFECT OF ARSENIC ON DRY WEIGHT AND RELATIVE CHLOROPHYLL CONTENT IN GREENINGMAIZE AND SUNFLOWER TISSUES

    Directory of Open Access Journals (Sweden)

    Szilvia Várallyay

    2015-02-01

    Full Text Available Arsenic is one of the most toxic elements that can be found in the environment. Excessive uptake of arsenic may cause physiological changes in plants. The aim of the study was to investigate the effect of different arsenic treatments on relative chlorophyll content and dry weight of shoot and root of maize and sunflower in the early phases of plant development. Seedlings were grown in climatic room in nutrient solution under strictly regulated environmental conditions. The plants were exposed to 3, 10 and 30 mg kg-1arsenic, whereas there was no arsenic treatment on the control plants. We applied arsenic in the form of arsenite (NaAsO2 and arsenate (KH2AsO4, respectively. After 14 days of arsenic treatments, changes in relative chlorophyll content and dry weight of maize shoots and roots were recorded. In the case of sunflower these physiological parameters were measured after 21 day. The applied arsenic decreased the relative chlorophyll content of maize and sunflower leaves, especially at concentration of30 mg kg-1. The increasing amount of As treatment were resulted the lower weight of the experimental plants, which was more considerable in the case of the roots. The results indicate that the sunflower plants is more sensitive to arsenic toxicity than maize plants and all data demonstrate that the As(III is more toxic to these crop plants than the As(V.

  16. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  17. Assessment of water pollution by airborne measurement of chlorophyll

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1972-01-01

    Remote measurement of chlorophyll concentrations to determine extent of water pollution is discussed. Construction and operation of radiometer to provide measurement capability are explained. Diagram of equipment is provided.

  18. A database of chlorophyll a in Australian waters

    Science.gov (United States)

    Davies, Claire H.; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Baird, Mark E.; Beard, Jason; Bonham, Pru; Burford, Michele; Clementson, Lesley; Coad, Peter; Crawford, Christine; Dela-Cruz, Jocelyn; Doblin, Martina A.; Edgar, Steven; Eriksen, Ruth; Everett, Jason D.; Furnas, Miles; Harrison, Daniel P.; Hassler, Christel; Henschke, Natasha; Hoenner, Xavier; Ingleton, Tim; Jameson, Ian; Keesing, John; Leterme, Sophie C.; James McLaughlin, M.; Miller, Margaret; Moffatt, David; Moss, Andrew; Nayar, Sasi; Patten, Nicole L.; Patten, Renee; Pausina, Sarah A.; Proctor, Roger; Raes, Eric; Robb, Malcolm; Rothlisberg, Peter; Saeck, Emily A.; Scanes, Peter; Suthers, Iain M.; Swadling, Kerrie M.; Talbot, Samantha; Thompson, Peter; Thomson, Paul G.; Uribe-Palomino, Julian; van Ruth, Paul; Waite, Anya M.; Wright, Simon; Richardson, Anthony J.

    2018-02-01

    Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.

  19. Investigation into robust spectral indices for leaf chlorophyll estimation

    CSIR Research Space (South Africa)

    Main, R

    2011-11-01

    Full Text Available remote sensing data, new users are faced with a plethora of options when choosing an optical index to relate to their chosen or canopy parameter. The literature base regarding optical indices (particularly chlorophyll indices) is wide ranging...

  20. Relationship between chlorophyll-a and column primary production

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Bhargava, R.M.S.

    Relationship between surface chlorophyll a and column primary production has been established to help in estimating the latter more quickly and accurately. The equation derived is Primary Production, y = 0.54 Ln Chl a - 0.6. The relationship...

  1. Effects of copper stress on antioxidative enzymes, chlorophyll and ...

    African Journals Online (AJOL)

    Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex ... Journal Home > Vol 10, No 50 (2011) > ... The aim of this work was to investigate some enzymatic systems response of this plant to copper stress.

  2. Chlorophyll modulation of mixed layer thermodynamics in a mixed ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    in a mixed-layer isopycnal General Circulation Model – An ... three dimensional ocean circulation theory combined with solar radiation transfer process. 1. .... temperature decrease compared with simulation without chlorophyll (bottom panel).

  3. Endolithic chlorophyll d-containing phototrophs

    DEFF Research Database (Denmark)

    Behrendt, Lars; Larkum, Anthony W D; Norman, Anders

    2011-01-01

    hyperspectral and variable chlorophyll fluorescence imaging, scanning electron microscopy, photopigment analysis and DNA sequencing to show that Acaryochloris-like cyanobacteria thrive underneath crustose coralline algae in a widespread endolithic habitat on coral reefs. This finding suggests an important role...

  4. Tomato seeds maturity detection system based on chlorophyll fluorescence

    Science.gov (United States)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  5. Estimating chlorophyll content from Eucalyptus dunnii leaves by reflectance values

    Directory of Open Access Journals (Sweden)

    João Alexandre Lopes Dranski

    2016-06-01

    Full Text Available This study aimed to estimate photosynthetic pigments contents from leaves of Eucalyptus dunni Maiden based on values of reflectance spectra of red, green and blue colors obtained with a digital color analyzer. We collected fifty leaves from the lower third of the crown of twenty trees including young as well as mature leaves. From each leaf an area of 14 cm2 of the leaf blade was cut in which we measured reflectance values on the red, green and blue spectra with a portable digital colorimeter, obtained relative index of chlorophyll with a SPAD – 502 and determined the content of the chlorophyll a, b, and a + b by classic method of solvent extraction. We submitted the data to multiple linear regression and nonlinear analysis at 5% of error probability. It was evaluated the occurrence of multicollinearity. The negative exponential model resulted in good fit when data from red spectrum was used for chlorophyll a, green spectrum for chlorophyll b and a + b, making possible correlation coefficients between the estimated values and the extracted above 0.85. Except for the chlorophyll a content, the accuracy in estimates of photosynthetic pigments were higher than estimated by the chlorophyll meter, even with linearity between methods. Therefore, it is possible to estimate photosynthetic pigments on E. dunni leaves through values of red and green wavelengths from a digital color analyser.

  6. Water-Soluble Chlorophyll Protein (WSCP) Stably Binds Two or Four Chlorophylls.

    Science.gov (United States)

    Palm, Daniel M; Agostini, Alessandro; Tenzer, Stefan; Gloeckle, Barbara M; Werwie, Mara; Carbonera, Donatella; Paulsen, Harald

    2017-03-28

    Water-soluble chlorophyll proteins (WSCPs) of class IIa from Brassicaceae form tetrameric complexes containing one chlorophyll (Chl) per apoprotein but no carotenoids. The complexes are remarkably stable toward dissociation and protein denaturation even at 100 °C and extreme pH values, and the Chls are partially protected against photooxidation. There are several hypotheses that explain the biological role of WSCPs, one of them proposing that they function as a scavenger of Chls set free upon plant senescence or pathogen attack. The biochemical properties of WSCP described in this paper are consistent with the protein acting as an efficient and flexible Chl scavenger. At limiting Chl concentrations, the recombinant WSCP apoprotein binds substoichiometric amounts of Chl (two Chls per tetramer) to form complexes that are as stable toward thermal dissociation, denaturation, and photodamage as the fully pigmented ones. If more Chl is added, these two-Chl complexes can bind another two Chls to reach the fully pigmented state. The protection of WSCP Chls against photodamage has been attributed to the apoprotein serving as a diffusion barrier for oxygen, preventing its access to triplet excited Chls and, thus, the formation of singlet oxygen. By contrast, the sequential binding of Chls by WSCP suggests a partially open or at least flexible structure, raising the question of how WSCP photoprotects its Chls without the help of carotenoids.

  7. Measuring chlorophyll a and 14C-labeled photosynthate in aquatic angiosperms by the use of a tissue solubilizer

    International Nuclear Information System (INIS)

    Beer, S.; Stewart, A.J.; Wetzel, R.G.

    1982-01-01

    A compound that quantitatively correlated with chlorophyll a could be measured fluorometrically in the extracts of leaves of three aquatic angiosperms (Myriophyllum heterophyllum Michx., Potamogeton crispus L., Elodea canadensis Michx.) treated with the tissue solubilizer BTS-450. Fluorescent characteristics of the solubilized plant tissues were stable for several weeks in the dark at temperatures up to 60 0 C but rapidly degraded in sunlight or when acidified. 14 C-Labeled photosynthate, which had been fixed by leaf discs during 1- to 10-hour exposure to H 14 CO 3 , was also readily extracted by the tissue solubilizer. Solubilizer extraction can, therefore, be use to determine both chlorophyll a content and 14 C incorporation rates in the same leaf sample. The method is practical, because no grinding is required, the fluorescent characteristics of the extracts are stable, and analyses can be performed with very little plant material

  8. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  9. Evaluation of nitrogen status and total chlorophyll in longkong (Aglaia dookkoo Griff. leaves under water stress using a chlorophyll meter

    Directory of Open Access Journals (Sweden)

    Sdoodee, S.

    2005-07-01

    Full Text Available A chlorophyll meter (SPAD-502 was used to assess nitrogen status and total chlorophyll in longkong leaves, leaves from twelve of 10-year-old trees grown in the experimental plot at Prince of Songkla University, Songkhla province. The relationship between SPAD-502 meter reading and nitrogen status and total chlorophyll content analyzed in the laboratory was evaluated during 8 months (May-December 2003. It was found that the trend of the relationships in each month was similar. There was no significant differenceamong regression linears of all months. The data of 8 months showed that SPAD-reading and nitrogen content, and SPAD-reading and total chlorophyll content were related in a positive manner. They were Y = 0.19X+10.10, r = 0.76** (n = 240, and Y = 0.43X-7.89, r = 0.79** (n = 400, respectively. The SPAD-502 was then used to assess total nitrogen and total chlorophyll content during imposed water stress. Fifteen 4-yearold plants were grown in pots (each pot containing 50 kg soil volume. The experiment was arranged in acompletely randomized design with 3 treatments: (1 daily watering (2 once watering on day 7 (3 no watering with 5 replications during 14 days of the experimental period. Measurements showed a continuous decrease of SPAD-reading in the treatment of no watering. On day 14, a significant difference of SPAD- reading values between the treatment of daily watering and no watering was found. Then, the values of nitrogen content and total chlorophyll were assessed by using the linear regression equations. From the result, it is suggested that the measurement by chlorophyll meter is a rapid technique for the evaluation of total chlorophyll and nitrogen status in longkong leaves during water stress.

  10. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) I: transcriptome analysis of the effects of uniconazole on chlorophyll and endogenous hormone biosynthesis.

    Science.gov (United States)

    Liu, Yang; Fang, Yang; Huang, Mengjun; Jin, Yanling; Sun, Jiaolong; Tao, Xiang; Zhang, Guohua; He, Kaize; Zhao, Yun; Zhao, Hai

    2015-01-01

    Duckweed is a novel aquatic bioenergy crop that is found ubiquitously throughout the world. Uniconazole plays an important role in improving crop production through the regulation of endogenous hormone levels. We found that a high quantity and quality of duckweed growth can be achieved by uniconazole application, although the mechanisms are unknown. The fronds of Landoltia punctata were sprayed evenly with 800 mg/L uniconazole. The dry weight following treatment increased by 10% compared to the controls at 240 h. Endogenous cytokinin (CK) and abscisic acid (ABA) content both increased compared to the control, while the level of gibberellins (GAs) decreased. Additionally, gene expression profiling results showed that the expression of transcripts encoding key enzymes involved in endogenous CK and ABA biosynthesis were up-regulated, while the transcripts of key enzymes for GAs biosynthesis were down-regulated. On the other hand, chlorophyll a and chlorophyll b contents were both increased compared with the control. Moreover, the net photosynthetic rate was elevated to 25.6 μmol CO2/m(2)/s compared with the control value of 22.05 μmol CO2/m(2)/s. Importantly, the expression of some chlorophyll biosynthesis-related transcripts was up-regulated. Uniconazole treatment altered endogenous hormone levels and enhanced chlorophyll content and net photosynthetic rate in duckweed by regulating key enzymes involved in endogenous hormone and chlorophyll biosynthesis. The alterations of endogenous hormones and the increase of chlorophyll and photosynthetic rate data support the increase of biomass and starch accumulation.

  11. HPLC Analysis of Chlorophyll a, Chlorophyll b, and Beta-Carotene in Collard Greens: A Project for a Problem-Oriented Laboratory Course.

    Science.gov (United States)

    Silveira, Augustine, Jr.; And Others

    1984-01-01

    High performance liquid chromatography (HPLC) is used to separate and quantitate beta-carotene, chlorophyll a, and chlorophyll b originating from collard greens. Experimental procedures used and typical results obtained are discussed. (JN)

  12. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...... groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading...

  13. Regulation

    International Nuclear Information System (INIS)

    Ballereau, P.

    1999-01-01

    The different regulations relative to nuclear energy since the first of January 1999 are given here. Two points deserve to be noticed: the decree of the third august 1999 authorizing the national Agency for the radioactive waste management to install and exploit on the commune of Bures (Meuse) an underground laboratory destined to study the deep geological formations where could be stored the radioactive waste. The second point is about the uranium residues and the waste notion. The judgment of the administrative tribunal of Limoges ( 9. july 1998) forbidding the exploitation of a storage installation of depleted uranium considered as final waste and qualifying it as an industrial waste storage facility has been annulled bu the Court of Appeal. It stipulated that, according to the law number 75663 of the 15. july 1965, no criteria below can be applied to depleted uranium: production residue (possibility of an ulterior enrichment), abandonment of a personal property or simple intention to do it ( future use aimed in the authorization request made in the Prefecture). This judgment has devoted the primacy of the waste notion on this one of final waste. (N.C.)

  14. CHLOROPHYLL a FLUORESCENCE ANALYSIS IN FORESTS

    Directory of Open Access Journals (Sweden)

    M. Pollastrini

    2016-03-01

    Full Text Available A European-wide assessment of chlorophyll a fluorescence (ChlF, prompt fluorescence on dark-adapted samples parameters in forest ecosystems was carried out in the years 2012-2013, within the 7FP FunDivEUROPE project. A total of 1596 trees growing in 209 stands distributed in six countries, from Mediterranean to boreal sites, were sampled. This paper shows the applicability of the ChlF in forest ecology surveys, the protocols adopted for leaf sampling and ChlF measurements, the variability of the ChlF parameters within and between trees, their dependence to environmental factors and the relationships with other functional leaf traits. The most relevant findings were as follows: (i The least variable ChlF parameter within and between the trees was the maximum quantum yield of primary photochemistry (FV/FM, whereas the performance indices (PIABS and PITOT showed the highest variability; (ii for a given tree, the ChlF parameters measured at two heights of the crown (top and bottom leaves were correlated and, in coniferous species, the ChlF parameters were correlated between different needle age classes (from the current year and previous year; (iii the ChlF parameters showed a geographical pattern, and the photochemical performance of the forest trees was higher in central Europe than in the edge sites (northernmost and southernmost; and (iv ChlF parameters showed different sensitivity to specific environmental factors: FV/FM increased with the increase of the leaf area index of stands and soil fertility; ΔVIP was reduced under high temperature and drought. The photochemical responses of forest tree species, analyzed with ChlF parameters, were influenced by the ecology of the trees (i.e. their functional groups, continental distribution, successional status, etc., tree species’ richness and composition of the stands. Our results support the applicability and usefulness of the ChlF in forest monitoring investigations on a large spatial scale and

  15. Photo- and thermal degradation of olive oil measured using an optical fibre smartphone spectrofluorimeter

    Science.gov (United States)

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Jamalipour, Abbas

    2017-04-01

    Degradation of olive oil under light and heat are analysed using an optical fibre based low-cost portable smartphone spectrofluorimeter. Visible fluorescence bands associated with phenolic acids, vitamins and chlorophyll centred at λ 452, 525 and 670 nm respectively are generated using near-UV excitation (LED λex 370 nm), of extra virgin olive oil are degraded more likely than refined olive oil under light and heat exposure. Packaging is shown to be critical when assessing the origin of degradation.

  16. Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium

    Science.gov (United States)

    Amber Vanden Wymelenberg; Grzegorz Sabat; Michael Mozuch; Philip J. Kersten; Dan Cullen; Robert A. Blanchette

    2006-01-01

    The white rot basidiomycete Phanerochaete chrysosporium produces an array of nonspecific extracellular enzymes thought to be involved in lignin degradation, including lignin peroxidases, manganese peroxidases, and the H2O2-generating copper radical oxidase, glyoxal oxidase (GLX). Preliminary analysis of the P. chrysosporium draft genome had identified six sequences...

  17. APPLICATION OF MODULATED CHLOROPHYLL FLUORESCENCE AND MODULATED CHLOROPHYLL FLUORESCENCE IMAGING IN STUDYING ENVIRONMENTAL STRESSES EFFECT

    Directory of Open Access Journals (Sweden)

    L. Guidi

    2016-03-01

    Full Text Available Chlorophyll (Chl a fluorescence is a widely used tool to monitor the photosynthetic process in plants subjected to environmental stresses.this review reports the theoretical bases of Chl fluorescence, and the significance of the most important Chl fluorescence parameters. it also reportshow these parameters can be utilised to estimate changes in photosystem ii (PSII photochemistry, linear electron flux and energy dissipationmechanisms. the relation between actual PSII photochemistry and CO2 assimilation is discussed, as is the role of photochemical andnon-photochemical quenching in inducing changes in PSII activity. the application of Chl fluorescence imaging to study heterogeneity on leaflamina is also considered. this review summarises only some of the results obtained by this methodology to study the effects of differentenvironmental stresses, namely water and nutrients availability, pollutants, temperature and salinity.

  18. Chlorophyll biosynthesis and assembly into chlorophyll-protein complexes in isolated developing chloroplasts

    International Nuclear Information System (INIS)

    Bhaya, D.; Castelfranco, P.A.

    1985-01-01

    Isolated developing plastids from greening cucumber cotyledons or from photoperiodically grown pea seedlings incorporated 14 C-labeled 5-aminolevulinic acid (ALA) into chlorophyll (Chl). Incorporation was light dependent, enhanced by S-adenosylmethionine, and linear for 1 hr. The in vitro rate of Chl synthesis from ALA was comparable to the in vivo rate of Chl accumulation. Levulinic acid and dioxoheptanoic acid strongly inhibited Chl synthesis but not plastid protein synthesis. Neither chloramphenicol nor spectinomycin affected Chl synthesis, although protein synthesis was strongly inhibited. Components of thylakoid membranes from plastids incubated with [ 14 C]ALA were resolved by electrophoresis and then subjected to autoradiography. This work showed that (i) newly synthesized Chl was assembled into Chl-protein complexes and (ii) the inhibition of protein synthesis during the incubation did not alter the labeling pattern. Thus, there was no observable short-term coregulation between Chl synthesis (from ALA) and the synthesis of membrane proteins in isolated plastids

  19. Photoactive nanocomplex formed from chlorophyll assembly on TMA-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Barbaros, Sibel; Meray, Zeynep; Tecim, Tuğba; Genç, Rükan, E-mail: rukangnc@gmail.com [Mersin University, Functional Nanomaterials Laboratory, Chemical Engineering Department, Engineering Faculty (Turkey)

    2016-07-15

    In this study, hierarchical self-assembly of photocatalytic nanodisks through non-covalent interactions between spinach-extracted chlorophyll molecules and trimethylammonium hydroxide-coated magnetic iron oxide nanoparticles was discussed. Combination of chlorophyll molecules with iron oxide nanoparticles generated an alteration in light absorption at both visible and near-IR region with accompanying enhancement in fluorescence emission. Further, photocatalytic role of resulting molecular assembly was studied by means of the photoinduced degradation of methylene blue dye under UV light and direct sun irradiation at neutral pH. In order to enhance the long-term stability of the hybrid nanocatalyst, commercially available cellulose membrane was used as a support and magnetic recovery and reusability was achieved where the nanocatalyst retained more than 90 % of its efficiency even after four cycles. This simple strategy could initiate the development of new materials for wastewater treatment including membrane-based technologies. On the other hand, their sunlight-induced photocatalytic activity could easily be conducted to dye-synthesized solar cells or their enhanced photoluminescence can provide a strong basis for future bioimaging tools.Graphical Abstract.

  20. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit.

    Science.gov (United States)

    Gao, Meiling; Hu, Liangliang; Li, Yuhong; Weng, Yiqun

    2016-10-01

    The cucumber chlorophyll-deficient golden leaf mutation is due to a single nucleotide substitution in the CsChlI gene for magnesium chelatase I subunit which plays important roles in the chlorophyll biosynthesis pathway. The Mg-chelatase catalyzes the insertion of Mg(2+) into the protoporphyrin IX in the chlorophyll biosynthesis pathway, which is a protein complex encompassing three subunits CHLI, CHLD, and CHLH. Chlorophyll-deficient mutations in genes encoding the three subunits have played important roles in understanding the structure, function and regulation of this important enzyme. In an EMS mutagenesis population, we identified a chlorophyll-deficient mutant C528 with golden leaf color throughout its development which was viable and able to set fruits and seeds. Segregation analysis in multiple populations indicated that this leaf color mutation was recessively inherited and the green color showed complete dominance over golden color. Map-based cloning identified CsChlI as the candidate gene for this mutation which encoded the CHLI subunit of cucumber Mg-chelatase. The 1757-bp CsChlI gene had three exons and a single nucleotide change (G to A) in its third exon resulted in an amino acid substitution (G269R) and the golden leaf color in C528. This mutation occurred in the highly conserved nucleotide-binding domain of the CHLI protein in which chlorophyll-deficient mutations have been frequently identified. The mutant phenotype, CsChlI expression pattern and the mutated residue in the CHLI protein suggested the mutant allele in C528 is unique among mutations identified so far in different species. This golden leaf mutant not only has its potential in cucumber breeding, but also provides a useful tool in understanding the CHLI function and its regulation in the chlorophyll biosynthesis pathway as well as chloroplast development.

  1. An overview of remote sensing of chlorophyll fluorescence

    Science.gov (United States)

    Xing, Xiao-Gang; Zhao, Dong-Zhi; Liu, Yu-Guang; Yang, Jian-Hong; Xiu, Peng; Wang, Lin

    2007-03-01

    Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

  2. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    Directory of Open Access Journals (Sweden)

    Jesus R. Millan-Almaraz

    2012-08-01

    Full Text Available Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images.

  3. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    Science.gov (United States)

    Fernandez-Jaramillo, Arturo A.; Duarte-Galvan, Carlos; Contreras-Medina, Luis M.; Torres-Pacheco, Irineo; de J. Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon G.; Millan-Almaraz, Jesus R.

    2012-01-01

    Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images. PMID:23112686

  4. HA117 endows HL60 cells with a stem-like signature by inhibiting the degradation of DNMT1 via its ability to down-regulate expression of the GGL domain of RGS6.

    Directory of Open Access Journals (Sweden)

    Shuangshuang Li

    Full Text Available All-trans retinoic acid (ATRA induces complete remission in almost all patients with acute promyelocytic leukemia (APL via its ability to induce the in vivo differentiation of APL blasts. However, prolonged ATRA treatment can result in drug resistance. In previous studies, we generated a multi-drug-resistant HL60/ATRA cell line and found it to contain a new drug resistance-related gene segment, HA117. In this study, we demonstrate that ATRA induces multi-drug-resistant subpopulations of HL60 cells with a putative stem-like signature by up-regulating the expression of the new gene segment HA117. Western blot analysis and quantitative real-time PCR demonstrated that HA117 causes alternative splicing of regulator of G-protein signaling 6 (RGS6 and down-regulation of the expression of the GGL domain of RGS6, which plays an important role in DNA methyltransferase 1 (DNMT1 degradation. Moreover, DNMT1 expression was increased in multi-drug resistance HL60/ATRA cells. Knockdown of HA117 restored expression of the GGL domain and blocked DNMT1 expression. Moreover, resistant cells displayed a putative stem-like signature with increased expression of cancer steam cell markers CD133 and CD123. The stem cell marker, Nanog, was significantly up-regulated. In conclusion, our study shows that HA117 potentially promotes the stem-like signature of the HL60/ATRA cell line by inhibiting by the ubiquitination and degradation of DNMT1 and by down-regulating the expression of the GGL domain of RGS6. These results throw light on the cellular events associated with the ATRA-induced multi-drug resistance phenotype in acute leukemia.

  5. Degradation of Mcl-1 through GSK-3β Activation Regulates Apoptosis Induced by Bufalin in Non-Small Cell Lung Cancer H1975 Cells

    Directory of Open Access Journals (Sweden)

    Xiao-hong Kang

    2017-04-01

    Full Text Available Background/Aims: Mcl-1, an anti-apoptotic Bcl-2 family member, is often overexpressed in non-small cell lung cancer (NSCLC. Bufalin has been reported to induce apoptosis in various tumor cells. However, there is no report showing that bufalin could downregulate Mcl-1 expression in NSCLC. Methods: Cell proliferation was analyzed by cell counting kit-8 (CCK-8 assay in H1975 cells. Cell apoptosis was detected by flow cytometry. Mcl-1 mRNA was detected by RT-PCR. The expression of apoptosis-associated proteins in H1975 cells was detected by western blotting. The levels of Mcl-1 ubiquitination and NOXA were analyzed by Immunoprecipitation assay. Results: Cell growth was inhibited by bufalin in a time and dose-dependent manner. Bufalin induced apoptosis in NSCLC cells by activating caspase cascades and downregulating Mcl-1 expression. However, overexpression of Mcl-1 diminished bufalin-induced apoptosis. Furthermore, bufalin did not reduce Mcl-1 mRNA expression in H1975 cells, but strongly promoted Mcl-1 protein degradation. Proteasome inhibitor MG132 markedly prevented the degradation of Mcl-1 and blocked bufalin-induced Mcl-1 reduction. Bufalin did not significantly affect NOXA protein levels, but downregulated the expression of p-GSK-3β. GSK-3 inhibitor and GSK-3β siRNA resulted in increased levels of Mcl-1 and reversed the bufalin-induced Mcl-1 degradation. Conclusion: Bufalin induced cell apoptosis in H1975 cells may be through downregulation of Mcl-1. Proteasomal degradation of Mcl-1 via GSK-3β activation was involved in bufalin-induced apoptosis.

  6. Detecting crop population growth using chlorophyll fluorescence imaging.

    Science.gov (United States)

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2017-12-10

    For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45  cm×34  cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.

  7. Optimal leaf positions for chlorophyll meter measurement in rice

    Directory of Open Access Journals (Sweden)

    Zhaofeng eYuan

    2016-05-01

    Full Text Available The Soil Plant Analysis Development (SPAD chlorophyll meter is one of the most commonly used diagnostic tools to measure crop nitrogen status. However, the measurement method of the meter could significantly affect the accuracy of the final estimation. Thus, this research was undertaken to develop a new methodology to optimize SPAD meter measurements in rice (Oryza sativa L.. A flatbed color scanner was used to map the dynamic chlorophyll distribution and irregular leaf shapes. Calculus algorithm was adopted to estimate the potential positions for SPAD meter measurement along the leaf blade. Data generated by the flatbed color scanner and SPAD meter were analysed simultaneously. The results suggested that a position 2/3 of the distance from the leaf base to the apex (2/3 position could represent the chlorophyll content of the entire leaf blade, as indicated by the relatively low variance of measurements at that positon. SPAD values based on di-positional leaves and the extracted chlorophyll a and b contents were compared. This comparison showed that the 2/3 position on the lower leaves tended to be more sensitive to changes in chlorophyll content. Finally, the 2/3 position and average SPAD values of the fourth fully expanded leaf from the top were compared with leaf nitrogen concentration. The results showed the 2/3 position on that leaf was most suitable for predicting the nitrogen status of rice. Based on these results, we recommend making SPAD measurements at the 2/3 position on the fourth fully expanded leaf from the top. The coupling of dynamic chlorophyll distribution and irregular leaf shapes information can provide a promising approach for the calibration of SPAD meter measurement, which can further benefit the in situ nitrogen management by providing reliable estimation of crops nitrogen nutrition status.

  8. Continuous excitation chlorophyll fluorescence parameters: a review for practitioners.

    Science.gov (United States)

    Banks, Jonathan M

    2017-08-01

    This review introduces, defines and critically reviews a number of chlorophyll fluorescence parameters with specific reference to those derived from continuous excitation chlorophyll fluorescence. A number of common issues and criticisms are addressed. The parameters fluorescence origin (F0) and the performance indices (PI) are discussed as examples. This review attempts to unify definitions for the wide range of parameters available for measuring plant vitality, facilitating their calculation and use. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase.

    Science.gov (United States)

    Mudhasani, Rajini; Tran, Julie P; Retterer, Cary; Kota, Krishna P; Whitehouse, Chris A; Bavari, Sina

    2016-02-01

    Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)(FBXW11) E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCF(FBXW11) E3 ligase. We further show that disrupting the assembly of the SCF(FBXW11-NSs) E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCF(FBXW11-NSs) E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCF(FBXW11) complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.

  10. Satellite remote sensing of chlorophyll a in support of nutrient management in the Neuse and Tar-Pamlico River (North Carolina) estuaries

    Science.gov (United States)

    The North Carolina Environmental Management Commission (EMC) has adopted as a water quality standard that chlorophyll a concentration should not exceed 40 ug/L in sounds, estuaries and other slow-moving waters. Exceedances require regulators to develop a Total Maximum Daily Limit...

  11. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3.

    Science.gov (United States)

    Li, Shao-Jia; Yin, Xue-Ren; Wang, Wen-Li; Liu, Xiao-Fen; Zhang, Bo; Chen, Kun-Song

    2017-06-15

    Citric acid is the predominant organic acid of citrus fruit. Degradation of citric acid occurs during fruit development, influencing fruit acidity. Associations of CitAco3 transcripts and citric acid degradation have been reported for citrus fruit. Here, transient overexpression of CitAco3 significantly reduced the citric acid content of citrus leaves and fruits. Using dual luciferase assays, it was shown that CitNAC62 and CitWRKY1 could transactivate the promoter of CitAco3. Subcellular localization results showed that CitWRKY1 was located in the nucleus and CitNAC62 was not. Yeast two-hybrid analysis and bimolecular fluorescence complementation (BiFC) assays indicated that the two differently located transcription factors could interact with each other. Furthermore, BiFC showed that the protein-protein interaction occurred only in the nucleus, indicating the potential mobility of CitNAC62 in plant cells. A synergistic effect on citrate content was observed between CitNAC62 and CitWRKY1. Transient overexpression of CitNAC62 or CitWRKY1 led to significantly lower citrate content in citrus fruit. The combined expression of CitNAC62 and CitWRKY1 resulted in lower citrate content compared with the expression of CitNAC62 or CitWRKY1 alone. The transcript abundance of CitAco3 was consistent with the citrate content. Thus, we propose that a complex of CitWRKY1 and CitNAC62 contributes to citric acid degradation in citrus fruit, potentially via modulation of CitAco3. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity.

    Science.gov (United States)

    Zwanziger, Denise; Schmidt, Mathias; Fischer, Jana; Kleinau, Gunnar; Braun, Doreen; Schweizer, Ulrich; Moeller, Lars Christian; Biebermann, Heike; Fuehrer, Dagmar

    2016-10-15

    Monocarboxylate transporter 8 (MCT8) equilibrates thyroid hormones between the extra- and the intracellular sides. MCT8 exists either with a short or a long N-terminus, but potential functional differences between both variants are yet not known. We, therefore, generated MCT8 constructs which are different in N-terminal length: MCT8(1-613), MCT8(25-613), MCT8(49-613) and MCT8(75-613). The M75G substitution prevents translation of MCT8(75-613) and ensures expression of full-length MCT8 protein. The K56G substitution was made to prevent ubiquitinylation. Cell-surface expression, localization and proteasomal degradation were investigated using C-terminally GFP-tagged MCT8 constructs (HEK293 and MDCK1 cells) and oligomerization capacity was determined using N-terminally HA- and C-terminally FLAG-tagged MCT8 constructs (COS7 cells). MCT8(1-613)-GFP showed a lower protein expression than the shorter MCT8(75-613)-GFP protein. The proteasome inhibitor lactacystin increased MCT8(1-613)-GFP protein amount, suggesting proteasomal degradation of MCT8 with the long N-terminus. Ubiquitin conjugation of MCT8(1-613)-GFP was found by immuno-precipitation. A diminished ubiquitin conjugation caused by K56G substitution resulted in increased MCT8(1-613)-GFP protein expression. Sandwich ELISA was performed to investigate if the bands at higher molecular weight observed in Western blot analysis are due to MCT8 oligomerization, which was indeed shown. Our data imply a role of the long N-terminus of MCT8 as target of ubiquitin-dependent proteasomal degradation affecting MCT8 amount and subsequently oligomerization capacity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. The magnesium chelation step in chlorophyll biosynthesis. Progress report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.D.

    1993-12-31

    Progress is reported on the identification and fractionation of Magnesium chealatase, an enzyme involved in addition of Mg to chlorophyll during the later`s biosynthesis. Progress is documented as a series of synopsis of published and unpublished papers by the author.

  14. Influence of vermicompost humic acid on chlorophyll content and ...

    African Journals Online (AJOL)

    Influence of vermicompost humic acid on chlorophyll content and acclimatization in banana clone, Enano Guantanamero. Marcia Beatriz Moya Fernández, Esteban Sánchez Chávez, Daniel Cabezas Montero, Andrés Calderín García, Dany Marrero López, Eduardo F. Héctor Ardisana, Sandra Pérez Álvarez ...

  15. Improved ocean chlorophyll estimate from remote sensed data: The ...

    African Journals Online (AJOL)

    Gregg and Conkright (2001) who pioneered the use of the blending technique in an attempt to calibrate ocean chlorophyll, expressed the need for further work to be done in order to obtain improved results. One problem faced when using this technique with spatially sparse data, is distortion of the resulting blended field ...

  16. Identification and classification of vertical chlorophyll patterns in the ...

    African Journals Online (AJOL)

    A type of artificial neural network called a self-organizing map (SOM) was then used on these four parameters to identify characteristic profiles. The analysis identified a continuum of chlorophyll patterns, from those with large surface peaks (>10 mg m-3) to those with smaller near-surface peaks (<2 mg m-3). The frequency of ...

  17. Chlorophyll as a measure of plant health: Agroecological aspects

    Directory of Open Access Journals (Sweden)

    Danijela Pavlović

    2014-03-01

    Full Text Available As photosynthesis is the basic process during which light energy is absorbed and converted into organic matter, the importance of the plant pigment chlorophyll (a and b forms as an intermediary in transformation of the absorbed solar energy and its activity in the process of photosynthesis and synthesis of organic substances in plants are crucial. Therefore, this paper provides an overview of methods for monitoring the optical activity of chlorophyll molecules and methods (non-destructive and destructive for quantification of chlorophyll in plants. These methods are used to estimate the effects of different stress factors (abiotic, biotic and xenobiotic on the efficiency of photosynthesis and bioproductivity, aiming to assess the impact that these limiting factors have on the yield of various cultivars. Also, those methods for analysis of chlorophyll optical activity and/or content are appropriate for assessing the reaction of weed species to different agricultural practices (mineral nutrition, treatment by herbicides, etc. and studies of different aspects of weed ecophysiology and their influence on crop harvest.

  18. Enzyme-assisted extraction of stabilized chlorophyll from spinach.

    Science.gov (United States)

    Özkan, Gülay; Ersus Bilek, Seda

    2015-06-01

    Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Validation of OCM-2 sensor performance in retrieving chlorophyll ...

    Indian Academy of Sciences (India)

    Ocean colour; chlorophyll a; total suspended matter; validation; Bay of Bengal; OCM-2. J. Earth Syst. Sci. 122 ... two basins, the Arabian Sea and Bay of Bengal. (BoB). Arabian ... The capability of visible bands of multi-spectral satellite data has ...

  20. Application of a chlorophyll index derived from satellite data to ...

    African Journals Online (AJOL)

    Application of a chlorophyll index derived from satellite data to investigate the variability of phytoplankton in the Benguela ecosystem. H Demarcq, R Barlow, L Hutchings. Abstract. No Abstract. African Journal of Marine Science Vol.29(2) 2007: pp. 271-282. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD ...

  1. Effect of temperature on accumulation of chlorophylls and leaf ...

    African Journals Online (AJOL)

    White young shoots from albino tea cultivars have high level of amino acids and are rare and valuable materials for processing green tea. The effects of temperature on leaf colour, accumulation of chlorophylls and leaf ultrastructures of an albino tea cultivar 'Xiaxueya' were investigated. The study showed that the shoot ...

  2. Chlorophyll, nitrogen and antioxidant activities in Cumaru ( Dipteryx ...

    African Journals Online (AJOL)

    ... by traditional populations and industries using timber and non-timber forest products. This study aimed to analyze the levels of chlorophyll A, B, total ammonia levels, nitrate, proline, electrolyte leakage and activity of oxidative enzymes in evaluation to tolerance of cumaru plants subjected to drought for 21 days of stress.

  3. Using chlorophyll fluorescence to determine stress in Eucalyptus ...

    African Journals Online (AJOL)

    Using chlorophyll fluorescence to determine stress in Eucalyptus grandis seedlings: scientific paper. ... Southern Forests: a Journal of Forest Science ... factors affect the functioning of the photosynthetic system, the status of the photosynthetic apparatus is a good indicator of the plant in terms of stress and stress adaptation.

  4. Chlorophyll Fluorescence Imaging Uncovers Photosynthetic Fingerprint of Citrus Huanglongbing

    Directory of Open Access Journals (Sweden)

    Haiyan Cen

    2017-08-01

    Full Text Available Huanglongbing (HLB is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves. Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease.

  5. Mahalanobis distance screening of Arabidopsis mutants with chlorophyll fluorescence

    Czech Academy of Sciences Publication Activity Database

    Codrea, C. C.; Hakala-Yatkin, M.; Karlund-Marttila, A.; Nedbal, Ladislav; Aittokallio, T.; Nevalainen, O. S.; Tyystjärvi, E.

    2010-01-01

    Roč. 105, č. 3 (2010), s. 273-283 ISSN 0166-8595 Institutional research plan: CEZ:AV0Z60870520 Keywords : arabidopsis thaliana * chlorophyll fluorescence * fluorescence imaging * mutant detection * outlier detection Subject RIV: EH - Ecology, Behaviour Impact factor: 2.410, year: 2010 http://www.springerlink.com/content/x3586512462pn006/

  6. Effect of organic and inorganic fertilizer on yield and chlorophyll ...

    African Journals Online (AJOL)

    The effects of amending soil with organic (poultry manure) and inorganic fertilizer on yield and chlorophyll content of maize (Zea mays L.) and sorghum (Sorghum bicolour (L.) Moench) was carried out at the Teaching and Research (T&R) Farm of the Obafemi Awolowo University, (O.A.U.) Ile - Ife, Nigeria. The experiment ...

  7. Chlorophyll meter reading and total nitrogen content applied as ...

    African Journals Online (AJOL)

    The present study was aimed to assess the relationship between the reading of the chlorophyll meter and the total nitrogen (N) content in the leaf in different parts of the crambe plant, depending on the doses of nitrogen applied to the canopy. Randomized block design in a split plot experimental design was used. The plots ...

  8. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice.

    Science.gov (United States)

    Zhou, Fei; Wang, Cheng-Yuan; Gutensohn, Michael; Jiang, Ling; Zhang, Peng; Zhang, Dabing; Dudareva, Natalia; Lu, Shan

    2017-06-27

    In plants, geranylgeranyl diphosphate (GGPP) is produced by plastidic GGPP synthase (GGPPS) and serves as a precursor for vital metabolic branches, including chlorophyll, carotenoid, and gibberellin biosynthesis. However, molecular mechanisms regulating GGPP allocation among these biosynthetic pathways localized in the same subcellular compartment are largely unknown. We found that rice contains only one functionally active GGPPS, OsGGPPS1, in chloroplasts. A functionally active homodimeric enzyme composed of two OsGGPPS1 subunits is located in the stroma. In thylakoid membranes, however, the GGPPS activity resides in a heterodimeric enzyme composed of one OsGGPPS1 subunit and GGPPS recruiting protein (OsGRP). OsGRP is structurally most similar to members of the geranyl diphosphate synthase small subunit type II subfamily. In contrast to members of this subfamily, OsGRP enhances OsGGPPS1 catalytic efficiency and specificity of GGPP production on interaction with OsGGPPS1. Structural biology and protein interaction analyses demonstrate that affinity between OsGRP and OsGGPPS1 is stronger than between two OsGGPPS1 molecules in homodimers. OsGRP determines OsGGPPS1 suborganellar localization and directs it to a large protein complex in thylakoid membranes, consisting of geranylgeranyl reductase (OsGGR), light-harvesting-like protein 3 (OsLIL3), protochlorophyllide oxidoreductase (OsPORB), and chlorophyll synthase (OsCHLG). Taken together, genetic and biochemical analyses suggest OsGRP functions in recruiting OsGGPPS1 from the stroma toward thylakoid membranes, thus providing a mechanism to control GGPP flux toward chlorophyll biosynthesis.

  9. Evaluation of water quality by chlorophyll and dissolved oxygen

    International Nuclear Information System (INIS)

    Latif, Z.; Tasneem, M.A.; Javed, T.; Butt, S.; Fazil, M.; Ali, M.; Sajjad, M.I.

    2002-01-01

    This paper focuses on the impact of Chlorophyll and dissolved Oxygen on water quality. Kalar Kahar and Rawal lakes were selected for this research. A Spectrophotometer was used for determination of Chlorophyll a, Chlorophyll b, Chlorophyll c and Pheophytin pigment. Dissolved Oxygen was measured in situ, using dissolved oxygen meter. The gamma O/sup 18/ of dissolved Oxygen, like concentration, is affected primarily by three processes: air water gas exchange, respiration and photosynthesis; gamma O/sup 18/ is analyzed on isotopic ratio mass spectrometer, after extraction of dissolved Oxygen from water samples, followed by purification and conversion into CO/sub 2/. Rawal lake receives most of the water from precipitation during monsoon period and supplemented by light rains in December and January. This water is used throughout the year for drinking purposes in Rawalpindi city. The water samples were collected from 5, 7.5, and 10 meters of depth for seasonal studies of physiochemical and isotopic parameters of water and dissolved Oxygen. Optimum experimental conditions for delta O/sup 18/ analysis of dissolved Oxygen from aqueous samples were determined. Stratification of dissolved Oxygen was observed in Rawal Lake before rainy season in summer. The water quality deteriorates with depth, because the respiration exceeds the photosynthesis and gas exchange. The concentration and delta O/sup 18/ of dissolved Oxygen show no variation with depth in 1998 winter sampling. Kalar Kahar lake gets water from springs, which are recharged by local rains on the nearby mountains. It is a big lake, with shallow and uniform depth of nearly 1.5 meters. A lot of vegetation can be seen on the periphery of the lake. Algae have grown on the floor of the lake Water samples were collected from the corner with large amount of vegetation and from the center of the lake for dissolved Oxygen and Chlorophyll measurements. Chlorophyll result shows that Kalar Kahar Lake falls in Eutrophic category

  10. Global NOAA CoastWatch Chlorophyll Frontal Product from MODIS/Aqua (NCEI Accession 0110333)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS/Aqua chlorophyll frontal products: the NOAA Okeanos operational production system produces near real-time chlorophyll frontal products (magnitude and...

  11. Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study

    Science.gov (United States)

    Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.

    2018-02-01

    Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.

  12. The effect of acid rain stress on chlorophyll, peroxidase of the conservation of rare earth elements

    International Nuclear Information System (INIS)

    Chongling, Y.; Yetang, H.; Xianke, Y.; Shunzhen, F.; Shanql, W.

    1998-01-01

    Full text: Based on pot experiment, the effect of acid rain stress on chlorophyll, peroxidase of wheat, the relationship of them and the conservation of rare earth elements has been studied. The result showed: stress of acid rain resulted in decrease of chlorophyll content and a/b values, chlorophyll a/b value and chlorophyll content is positive correlation with pH value of acid rain: peroxidase activity was gradually rise with pH value decrease, which indirectly increased decomposition intensity of chlorophyll. Decreased content and a/b value of chlorophyll further speeded blade decay affected the transport and transformation of light energy and metabolism of carbohydrates. After being treated by rare earth elements content and pH value of chlorophyll and peroxidase activity could be relatively stable. Therefore, under lower acidity condition, rare earth elements can influence the effect of acid rain on chlorophyll and peroxidase activity of wheat

  13. Lead pollution: effects on chlorophyll. [Phalaris canariensis, Lemna minor, graminaceae

    Energy Technology Data Exchange (ETDEWEB)

    Fiussello, N

    1973-01-01

    The emissions of motors are responsible for the high concentrations of lead in soil and plants near roads. In man, when the concentration of lead in blood exceeds the value of 30 ..mu..g/100 ml, is shown a decrease of haemaglobin and an increase of ALA urinary content. Since the early stages of chlorophyll biosynthetic pathway are similar if not identical with those leading to haem as far as protoporphyrin IX, it is interesting to ascertain if lead can specifically interfere in chlorophyll biosynthesis. In sand cultures with 200 p.p.m. of lead (the conc. in roadside soils), after 2 weeks, wheat shows a diminution of 16,5% in fresh weight 7,5% in dry weight and 6,5% in chlorophyll; Phalaris canariensis shows a diminution of 68% f.w., 41% d.w. and 39% chl. in comparison with the controls. A water-plant, Lemna minor, is more sensitive: the chlorophyll content, referred to dry weight, shows after a week a diminution of 32% and 55% with 10/sup -4/M and 10/sup -3/M lead nitrate. Lead in 200 p.p.m. conc. is surely poisonous against the tested plants but a specific action on chlorophyll synthesis could be accepted, at present, only for Lemna minor. It is possible that in wheat and in Phalaris a part of lead is bound in root-system, the more damaged, while in Lemna it can reach more easily the chloroplasts. At present a detectable increase of ALA, in plants treated with lead, has not been proved both in Graminaceae and in Lemna minor.

  14. Factors regulating collagen synthesis and degradation during second-intention healing of wounds in the thoracic region and the distal aspect of the forelimb of horses.

    Science.gov (United States)

    Schwartz, Anne J; Wilson, David A; Keegan, Kevin G; Ganjam, Venkataseshu K; Sun, Yao; Weber, Karl T; Zhang, Jiakun

    2002-11-01

    To determine significant molecular and cellular factors responsible for differences in second-intention healing in thoracic and metacarpal wounds of horses. 6 adult mixed-breed horses. A full-thickness skin wound on the metacarpus and another such wound on the pectoral region were created, photographed, and measured, and tissue was harvested from these sites weekly for 4 weeks. Gene expression of type-I collagen, transforming growth factor (TGF)-beta1, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by quantitative in situ hybridization. Myofibroblasts were detected by immunohistochemical labeling with alpha-smooth muscle actin (alpha-SMA). Collagen accumulation was detected by use of picrosirius red staining. Tissue morphology was examined by use of H&E staining. Unlike thoracic wounds, forelimb wounds enlarged during the first 2 weeks. Myofibroblasts, detected by week 1, remained abundant with superior organization in thoracic wounds. Type-I collagen mRNA accumulated progressively in both wounds. More type-I collagen and TGF-beta1 mRNA were seen in forelimb wounds. Volume of MMP-1 mRNA decreased from day 0 in both wounds. By week 3, TIMP-1 mRNA concentration was greater in thoracic wounds. Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA,TGF-beta1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue.

  15. Portable chlorophyll meter (PCM-502) values are related to total chlorophyll concentration and photosynthetic capacity in papaya (Carica papaya L.)

    Science.gov (United States)

    This study was carried out to verify the practical use of the portable chlorophyll meter-PCM502 (PCM) in two papaya cultivars with contrasting green coloring of the leaf blade (‘Golden’: yellowish-green; ‘Solo’: dark green). The relationship was studied between the photosynthetic process and leaf n...

  16. Effect of automobile pollution on chlorophyll content of roadside urban trees

    Directory of Open Access Journals (Sweden)

    M. Iqbal

    2015-09-01

    Full Text Available The effect of automobile pollution was determined on chlorophyll content of four different tree species viz. Azadirachta indica L., Conocarpus erectus L., Guiacum officinale L.and Eucalyptus sp. growing along the roads of the city.  Significant changes in the level of chlorophyll “a”, chlorophyll “b” and total chlorophyll “a+b” were found in the leaves of four tree species (A. indica, C. erectus, G.officinale and Eucalyptus sp. collected from polluted sites (Airport, Malir Halt, Quaidabad as compared to control site (Karachi University Campus. Lowest concentration of chlorophyll “a”, chlorophyll “b” and chlorophyll “a+b” was recorded in the leaf samples of all tree species collected from Quaidabad site when compared with the leaf samples collected from control site. The highest levels of chlorophyll pigment were recorded in all tree species leave samples collected from Karachi University Campus.  Similarly, better levels of chlorophyll “a”, chlorophyll “b” and total chlorophyll “a+b” was observed in all tree species growing at Airport site as compared to plants growing at Malir Halt and Quaidabad sites.  This study clearly indicated that the vehicular activities induced air pollution problem and affected on the level of chlorophyll pigments in trees which were exposed to road side pollution.

  17. Integrating Biology into the General Chemistry Laboratory: Fluorometric Analysis of Chlorophyll "a"

    Science.gov (United States)

    Wesolowski, Meredith C.

    2014-01-01

    A laboratory experiment that introduces fluorometry of chlorophyll "a" at the general chemistry level is described. The use of thin-layer chromatography to isolate chlorophyll "a" from spirulina and leaf matter enables quantification of small amounts of chlorophyll "a" via fluorometry. Student results were reasonably…

  18. Improvement of Photosynthesis by Sub1 QTL in Rice Under Submergence: Probed by Chlorophyll Fluorescence OJIP Transients

    Directory of Open Access Journals (Sweden)

    Panda Debabrata

    2011-09-01

    Full Text Available The influence of submergence on the photosynthetic activity in rice plants either possessing or not possessing Sub1 QTL i.e. Swarna and Swarna Sub1 cultivars (cv. were evaluated under simulated complete submergence. The leaf photosynthetic rate and stomatal conductance decreased in both the cv. during the progression of submergence as compared to control plant but significant varietal differences was observed after 1 day (d of submergence. Submergence also alters the photo-system (PS II activity, as reflected in a decrease in the values of Fo, Fm and the Fv/Fm ratio and degradation of chlorophyll, more in Swarna than that of Swarna Sub1. Under complete submergence the shape of the OJIP transient also changed in rice leaves with decrease in maximal fluorescence (P=Fm intensity, resulted lowering of variable fluorescence levels. The decrease was more pronounced in Swarna compared to the Swarna Sub1 cv. Thus, Swarna Sub1 improves photosynthetic activity showing more photosynthetic rate compared to Swarna under submergence because, of less degradation of chlorophyll, higher stomatal conductance, and efficient PS II activity.

  19. Qtl mapping of wheat doubled haploids for chlorophyll content and chlorophyll fluorescence kinetics under drought stress imposed at anthesis stage

    International Nuclear Information System (INIS)

    Ilyas, M.; Ilyas, N.; Arshad, M.; Kazi, A.G.

    2014-01-01

    Drought stress is one of the major environmental constraints to crop plants including wheat worldwide. Synthetic hexaploid can act as a vehicle for improving crop tolerance against biotic and abiotic stresses. Doubled haploid population consisting of one hundred and forty individuals derived from cross of Opata and SH223 was used in the present study to identify genomic regions associated with various quantitative attributes of physiological nature. Doubled haploid mapping population was phenotyped for chlorophyll content and chlorophyll fluorescence kinetics under control and drought stress imposed at anthesis stage. Genotyping of population was accomplished by utilizing two hundred and sixty one polymorphic Gaterslaben wheat microsatellites and Beltsville agriculture research center simple sequence repeats. Linkage map of doubled haploid population comprising of 19 linkage groups and covering map length of two thousands six hundred and twenty six (2626) cM was constructed using map maker software. Major and minor QTLs associated with quantitative traits were identified using QGene software. Major QTL for chlorophyll content (QTc.wwc-1B-S11) of doubled haploid mapping population under anthesis drought stress was mapped on chromosome 1B and explained 10.09 percent of phenotypic variation at LOD score of 5.5. Seven major and minor QTLs for PCFK of doubled haploids were identified on chromosome 1B, 7A and 7D under control and drought stress at anthesis stage. The identified QTLs are of prime importance for high resolution mapping in synthetic hexaploid wheat. Genomic synteny of doubled haploids was observed with rice chromosome 2, 4, 7 and maize chromosome 7 owing to occurrence of orthologous QTLs for chlorophyll content and chlorophyll fluorescence respectively. (author)

  20. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes a new approach to detect strong excitonic chlorophyll a/b coupling

    CERN Document Server

    Leupold, D; Ehlert, J; Irrgang, K D; Renger, G; Lokstein, H

    2002-01-01

    Stepwise two-photon excitation of chlorophyll a and b in the higher plant main light-harvesting complex (LHC II) and the minor complex CP29 (as well as in organic solution) with 100-fs pulses in the Q/sub y/ region results in a weak blue fluorescence. The dependence of the spectral shape of the blue fluorescence on excitation wavelength offers a new approach to elucidate the long-standing problem of the origin of spectral "chlorophyll forms" in pigment-protein complexes, in particular the characterization of chlorophyll a/b-heterodimers. As a first result we present evidence for the existence of strong chlorophyll a/b-interactions (excitonically coupled transitions at 650 and 680 nm) in LHC II at ambient temperature. In comparison with LHC II, the experiments with CP29 provide further evidence that the lowest energy chlorophyll a transition (at ~680 nm) is not excitonically coupled to chlorophyll b. (22 refs).

  1. A new energy transfer channel from carotenoids to chlorophylls in purple bacteria.

    Science.gov (United States)

    Feng, Jin; Tseng, Chi-Wei; Chen, Tingwei; Leng, Xia; Yin, Huabing; Cheng, Yuan-Chung; Rohlfing, Michael; Ma, Yuchen

    2017-07-10

    It is unclear whether there is an intermediate dark state between the S 2 and S 1 states of carotenoids. Previous two-dimensional electronic spectroscopy measurements support its existence and its involvement in the energy transfer from carotenoids to chlorophylls, but there is still considerable debate on the origin of this dark state and how it regulates the energy transfer process. Here we use ab initio calculations on excited-state dynamics and simulated two-dimensional electronic spectrum of carotenoids from purple bacteria to provide evidence supporting that the dark state may be assigned to a new A g + state. Our calculations also indicate that groups on the conjugation backbone of carotenoids may substantially affect the excited-state levels and the energy transfer process. These results contribute to a better understanding of carotenoid excited states.Carotenoids harvest energy from light and transfer it to chlorophylls during photosynthesis. Here, Feng et al. perform ab initio calculations on excited-state dynamics and simulated 2D electronic spectrum of carotenoids, supporting the existence of a new excited state in carotenoids.

  2. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages.

    Science.gov (United States)

    Asghar, Tehseen; Jamil, Yasir; Iqbal, Munawar; Zia-Ul-Haq; Abbas, Mazhar

    2016-12-01

    Laser and magnetic field bio-stimulation attracted the keen interest of scientific community in view of their potential to enhance seed germination, seedling growth, physiological, biochemical and yield attributes of plants, cereal crops and vegetables. Present study was conducted to appraise the laser and magnetic field pre-sowing seed treatment effects on soybean sugar, protein, nitrogen, hydrogen peroxide (H 2 O 2 ) ascorbic acid (AsA), proline, phenolic and malondialdehyde (MDA) along with chlorophyll contents (Chl "a" "b" and total chlorophyll contents). Specific activities of enzymes such as protease (PRT), amylase (AMY), catalyst (CAT), superoxide dismutase (SOD) and peroxides (POD) were also assayed. The specific activity of enzymes (during germination and early growth), biochemical and chlorophyll contents were enhanced significantly under the effect of both laser and magnetic pre-sowing treatments. Magnetic field treatment effect was slightly higher than laser treatment except PRT, AMY and ascorbic acid contents. However, both treatments (laser and magnetic field) effects were significantly higher versus control (un-treated seeds). Results revealed that laser and magnetic field pre-sowing seed treatments have potential to enhance soybean biological moieties, chlorophyll contents and metabolically important enzymes (degrade stored food and scavenge reactive oxygen species). Future study should be focused on growth characteristics at later stages and yield attributes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis.

    Science.gov (United States)

    Falbel, T G; Meehl, J B; Staehelin, L A

    1996-10-01

    Analyses of a series of allelic chlorina mutants of wheat (Triticum aestivum L.), which have partial blocks in chlorophyll (Chl) synthesis and, therefore, a limited Chl supply, reinforce the principle that Chl is required for the stable accumulation of Chl-binding proteins and that only reaction centers accumulate when the supply of Chl is severely limited. Depending on the rate of Chl accumulation (determined by the severity of the mutation) and on the rate of turnover of Chl and its precursors (determined by the environment in which the plant is grown), the mutants each reach an equilibrium of Chl synthesis and degradation. Together these mutants generate a spectrum of phenotypes. Under the harshest conditions (high illumination), plants with moderate blocks in Chl synthesis have membranes with very little Chl and Chl-proteins and membrane stacks resembling the thylakoids of the lethal xantha mutants of barely grown at low to medium light intensities (which have more severe blocks). In contrast, when grown under low-light conditions the same plants with moderate blocks have thylakoids resembling those of the wild type. The wide range of phenotypes of Chl b-deficient mutants has historically produced more confusion than enlightenment, but incomparable growth conditions can now explain the discrepancies reported in the literature.

  4. Cylindrical aggregates of chlorophylls studied by small-angle neutron scatter

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L. [Univ. of Missouri, Columbus, MO (United States); Katz, J.J. [Argonne National Laboratory, IL (United States)

    1994-12-31

    Neutron small-angle scattering has demonstrated tubular chlorophyll aggregates formed by self-assembly of a variety of chlorophyll types in nonpolar solvents. The size and other properties of the tubular aggregates can be accounted for by stereochemical properties of the chlorophyll molecules. Features of some of the structures are remarkably similar to light harvesting chlorophyll complexes in vivo, particularly for photosynthetic bacteria. These nanotube chlorophyll structures may have applications as light harvesting biomaterials where efficient energy transfer occurs from an excited state which is highly delocalized.

  5. Synthesis of chlorophyll-c derivatives by modifying natural chlorophyll-a.

    Science.gov (United States)

    Xu, Meiyun; Kinoshita, Yusuke; Matsubara, Shogo; Tamiaki, Hitoshi

    2016-03-01

    Chlorophyll-a (Chl-a) was extracted from cyanobacterial cells and modified to methyl pyropheophorbide-a. The 3-vinyl-chlorin was transformed to zinc complex of the corresponding 3-acetyl-porphyrin. The zinc porphyrin was oxidized to give cis-7,8- and 17,18-dihydroxy-chlorins as well cis-7,8-cis-17,18-tetrahydroxybacteriochlorin. After zinc-demetallation, the isolated cis-7,8- and 17,18-diols were reduced at the 3-acetyl group and triply dehydrated under acidic conditions to afford two regioisomeric 3-vinyl-porphyrins, methyl divinyl-pyroprotopheophorbide-a possessing the 8-vinyl group and 17-propionate residue (one of the divinyl-protoChl-a derivatives) and methyl pyropheophorbide-c 1 possessing the 8-ethyl group and 17-acrylate residue (one of the Chl-c 1 derivatives), respectively. The resulting 7,8,17,18-tetrol was reduced and then acidically treated, giving five-fold dehydrated free base porphyrin, methyl pyropheophorbide-c 2 possessing the 3,8-divinyl groups and 17-acrylate residue (one of the Chl-c 2 derivatives). The visible absorption and fluorescence emission spectra of the three semi-synthetic 3-vinyl-porphyrins in dichloromethane were compared with those of the corresponding 8-ethyl-porphyrin bearing the 17-propionate residue, methyl pyroprotopheophorbide-a (one of the protoChl-a derivatives). The Soret and Qy absorption maxima were shifted to longer wavelengths with an increase of π-conjugation in a molecule: protoChl-a (8-CH2CH3/17-CH2CH2COOCH3) < divinyl-protoChl-a (8-CH=CH2/17-CH2CH2COOCH3) < Chl-c 1 (8-CH2CH3/17-CH=CHCOOCH3) < Chl-c 2 derivatives (8-CH=CH2/17-CH=CHCOOCH3). The 17(1),17(2)-dehydrogenation broadened the absorption bands. The emission maxima were bathochromically shifted in the same order. The reaction mechanism of the present dehydration indicates that the biosynthetic pathway of Chls-c would include the hydroxylation of the 17-propionate reside at the 17(1)-position and successive dehydration to the 17-acrylate residue.

  6. Multifractal analysis of oceanic chlorophyll maps remotely sensed from space

    Directory of Open Access Journals (Sweden)

    L. de Montera

    2011-03-01

    Full Text Available Phytoplankton patchiness has been investigated with multifractal analysis techniques. We analyzed oceanic chlorophyll maps, measured by the SeaWiFS orbiting sensor, which are considered to be good proxies for phytoplankton. The study area is the Senegalo-Mauritanian upwelling region, because it has a low cloud cover and high chlorophyll concentrations. Multifractal properties are observed, from the sub-mesoscale up to the mesoscale, and are found to be consistent with the Corssin-Obukhov scale law of passive scalars. This result indicates that, in this specific region and within this scale range, turbulent mixing would be the dominant effect leading to the observed variability of phytoplankton fields. Finally, it is shown that multifractal patchiness can be responsible for significant biases in the nonlinear source and sink terms involved in biogeochemical numerical models.

  7. Estimate of Leaf Chlorophyll and Nitrogen Content in Asian Pear (Pyrus serotina Rehd. by CCM-200

    Directory of Open Access Journals (Sweden)

    Mostafa GHASEMI

    2011-03-01

    Full Text Available In many cases evaluation of chlorophyll and nitrogen content in plants need to destructive methods, more time and organic solvents. Application of chlorophyll meters save time and resources. The aim of this study was estimating of chlorophyll and nitrogen content in Asian pear leaves using non-destructive method and rapid quantification of chlorophyll by chlorophyll content meter (CCM-200. This study was conducted on 8 years old Asian pear trees during June 2008 in Tehran, Iran. To develop our regression model, the chlorophyll meter data were correlated with extracted chlorophyll and nitrogen content data obtained from DMSO and Kejeldal methods, respectively. The results showed that, there was positive and linear correlation between CCM-200 data and chlorophyll a (R�=0.7183, chlorophyll b (R�=0.8523, total chlorophyll (R�=0.90, and total nitrogen content (R�=0.76 in Asian pear leaves. Thus, it can be concluded that, CCM-200 can be used in order to predict both chlorophyll and nitrogen content in Asian pear leaves.

  8. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin.

    Science.gov (United States)

    Shimizu, Motoyuki; Yuda, Naoki; Nakamura, Tomofumi; Tanaka, Hiroo; Wariishi, Hiroyuki

    2005-10-01

    A proteomic differential display technique was utilized to study cellular responses of Phanerochaete chrysosporium exposed to vanillin, one of the key intermediates found during lignin biodegradation. Intracellular proteins were resolved by 2-DE and target protein spots were identified using MALDI-MS after in-gel tryptic digestions. Upon addition of vanillin to P. chrysosporium, up-regulation of homogentisate 1,2-dioxygenase, 1,4-benzoquinone reductases, aldehyde dehydrogenase, and aryl-alcohol dehydrogenase, which seem to play roles in vanillin metabolism, was observed. Furthermore, enzymes involved in glycolysis, the tricarboxylic acid cycle, the pentose-phosphate cycle, and heme biosynthesis were also activated. Up-regulation of extracellular peroxidase was also observed. One of the most unique phenomena against exogenous vanillin was a switch from the glyoxylate cycle to the tricarboxylic acid cycle, where a drastic increase in isocitrate dehydrogenase activity was observed. The exogenous addition of other aromatic compounds also caused an increase in its activity, which in turn triggered NAD(P)H production via the action of dehydrogenases in the tricarboxylic acid cycle, heme biosynthesis via the action of aminolevulinic acid synthase on succinyl-CoA, and energy production via activation of the mitochondrial electron transfer system. These metabolic shifts seem to be required for activating a metabolic system for aromatic compounds.

  9. Vitamin D up-regulates the vitamin D receptor by protecting it from proteasomal degradation in human CD4+ T cells

    DEFF Research Database (Denmark)

    Kongsbak, Martin; von Essen, Marina R; Boding, Lasse

    2014-01-01

    The active form of vitamin D3, 1,25(OH)2D3, has significant immunomodulatory properties and is an important determinant in the differentiation of CD4+ effector T cells. The biological actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR) and are believed to correlate with the VDR...... protein expression level in a given cell. The aim of this study was to determine if and how 1,25(OH)2D3 by itself regulates VDR expression in human CD4+ T cells. We found that activated CD4+ T cells have the capacity to convert the inactive 25(OH)D3 to the active 1,25(OH)2D3 that subsequently up......-regulates VDR protein expression approximately 2-fold. 1,25(OH)2D3 does not increase VDR mRNA expression but increases the half-life of the VDR protein in activated CD4+ T cells. Furthermore, 1,25(OH)2D3 induces a significant intracellular redistribution of the VDR. We show that 1,25(OH)2D3 stabilizes the VDR...

  10. Gas exchange and chlorophyll a fluorescence parameters of ornamental bromeliads

    Directory of Open Access Journals (Sweden)

    Karina Gonçalves da Silva

    2017-10-01

    Full Text Available Gas exchange and chlorophyll a fluorescence are widely used in physiological and ecological studies; however, few studies have used these techniques with ornamental plants. This study tested the potential contribution of gas exchange and chlorophyll a fluorescence to evaluate the water and nutrients uptake by the tank and root system of epiphyte bromeliad Guzmania lingulata. For this purpose, we conducted an experiment with different water regime and another with different concentrations of nitrogen. The experiments were: 1 - Watering: Control (application of water into Tank and Root, Tank (watering into Tank, Root (watering Root and Drought (water suspension during the 90 days of experimentation and 2 - Nitrogen: Plants fertilized with Hoagland and Arnon nutrient solution exclusively into Tank or Root with nitrogen concentrations of control and 2.62 or 5.34 mM N applied as urea. The Fv /Fm ratio allowed comparing the treatments between experiments, demonstrating that Root and Tank both have the capacity to maintain G. lingulata photosynthetic activity and growth, while Drought treatment (water suspension was the limiting factor for energy conversion efficiency of PSII. However, gas exchange was more permissive as a parameter for comparing treatments in the nitrogen experiment, providing important information about the general aspects of the photosynthetic process in the watering experiment. Both gas exchange and chlorophyll a fluorescence can support the evaluation of G. lingulata physiological status and can be useful tools in ornamental horticultural studies.

  11. Aberrant regulation of synthesis and degradation of viral proteins in coliphage lambda-infected UV-irradiated cells and in minicells

    International Nuclear Information System (INIS)

    Shaw, J.E.; Epp, C.; Pearson, M.L.; Reeve, J.N.

    1987-01-01

    The patterns of bacteriophage lambda proteins synthesized in UV-irradiated Escherichia coli cells and in anucleate minicells are significantly different; both systems exhibit aberrations of regulation in lambda gene expression. In unirradiated cells or cells irradiated with low UV doses (less than 600 J/m2), regulation of lambda protein synthesis is controlled by the regulatory proteins CI, N, CII, CIII, Cro, and Q. As the UV dose increases, activation of transcription of the cI, rexA, and int genes by CII and CIII proteins fails to occur and early protein synthesis, normally inhibited by the action of Cro, continues. After high UV doses (greater than 2000 J/m2), late lambda protein synthesis does not occur. Progression through the sequence of regulatory steps in lambda gene expression is slower in infected minicells. In minicells, there is no detectable cII- and cIII-dependent synthesis of CI, RexA, or Int proteins and inhibition of early protein synthesis by Cro activity is always incomplete. The synthesis of early b region proteins is not subject to control by CI, N, or Cro proteins, and evidence is presented suggesting that, in minicells, transcription of the early b region is initiated at a promoter(s) within the b region. Proteolytic cleavage of the regulatory proteins O and N and of the capsid proteins C, B, and Nu3 is much reduced in infected minicells. Exposure of minicells to very high UV doses before infection does not completely inhibit late lambda protein synthesis

  12. How diffusivity, thermocline and incident light intensity modulate the dynamics of deep chlorophyll maximum in Tyrrhenian Sea.

    Directory of Open Access Journals (Sweden)

    Davide Valenti

    Full Text Available During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time-dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environmental variables, such as light intensity, thickness of upper mixed layer and profiles of vertical turbulent diffusivity, obtained starting from experimental findings. Theoretical distributions of phytoplankton cell concentration was converted in chlorophyll concentration, and compared with the experimental profiles measured in a site of the Tyrrhenian Sea at four different times (seasons of the year, during four different oceanographic cruises. As a result we find a good agreement between theoretical and experimental distributions of chlorophyll concentration. In particular, theoretical results reveal that the seasonal changes of environmental variables play a key role in the phytoplankton distribution and determine the properties of the deep chlorophyll maximum. This study could be extended to other marine ecosystems to predict future changes in the phytoplankton biomass due to global warming, in view of devising strategies to prevent the decline of the primary production and the consequent decrease of fish species.

  13. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis

    Science.gov (United States)

    Brouwer, Bastiaan; Gardeström, Per; Keech, Olivier

    2014-01-01

    Phytochrome is thought to control the induction of leaf senescence directly, however, the signalling and molecular mechanisms remain unclear. In the present study, an ecophysiological approach was used to establish a functional connection between phytochrome signalling and the physiological processes underlying the induction of leaf senescence in response to shade. With shade it is important to distinguish between complete and partial shading, during which either the whole or only a part of the plant is shaded, respectively. It is first shown here that, while PHYB is required to maintain chlorophyll content in a completely shaded plant, only PHYA is involved in maintaining the leaf chlorophyll content in response to partial plant shading. Second, it is shown that leaf yellowing associated with strong partial shading in phyA-mutant plants actually correlates to a decreased biosynthesis of chlorophyll rather than to an increase of its degradation. Third, it is shown that the physiological impact of this decreased biosynthesis of chlorophyll in strongly shaded phyA-mutant leaves is accompanied by a decreased capacity to adjust the Light Compensation Point. However, the increased leaf yellowing in phyA-mutant plants is not accompanied by an increase of senescence-specific molecular markers, which argues against a direct role of PHYA in inducing leaf senescence in response to partial shade. In conclusion, it is proposed that PHYA, but not PHYB, is essential for fine-tuning the chlorophyll biosynthetic pathway in response to partial shading. In turn, this mechanism allows the shaded leaf to adjust its photosynthetic machinery to very low irradiances, thus maintaining a positive carbon balance and repressing the induction of leaf senescence, which can occur under prolonged periods of shade. PMID:24604733

  14. IGF-1 and PDGF-bb Suppress IL-1β-Induced Cartilage Degradation through Down-Regulation of NF-κB Signaling: Involvement of Src/PI-3K/AKT Pathway

    Science.gov (United States)

    Mobasheri, Ali; Buhrmann, Constanze; Aldinger, Constance; Rad, Jafar Soleimani; Shakibaei, Mehdi

    2011-01-01

    Objective Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key role in the pathogenesis of osteoarthritis (OA). Growth factors (GFs) capable of antagonizing the catabolic actions of cytokines may have therapeutic potential in the treatment of OA. Herein, we investigated the potential synergistic effects of insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF-bb) on different mechanisms participating in IL-1β-induced activation of nuclear transcription factor-κB (NF-κB) and apoptosis in chondrocytes. Methods Primary chondrocytes were treated with IL-1β to induce dedifferentiation and co-treated with either IGF-1 or/and PDGF-bb and evaluated by immunoblotting and electron microscopy. Results Pretreatment of chondrocytes with IGF-1 or/and PDGF-bb suppressed IL-1β-induced NF-κB activation via inhibition of IκB-α kinase. Inhibition of IκB-α kinase by GFs led to the suppression of IκB-α phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene products involved in inflammation and cartilage degradation (COX-2, MMPs) and apoptosis (caspase-3). GFs or BMS-345541 (specific inhibitor of the IKK) reversed the IL-1β-induced down-regulation of collagen type II, cartilage specific proteoglycans, β1-integrin, Shc, activated MAPKinase, Sox-9 and up-regulation of active caspase-3. Furthermore, the inhibitory effects of IGF-1 or/and PDGF-bb on IL-1β-induced NF-κB activation were sensitive to inhibitors of Src (PP1), PI-3K (wortmannin) and Akt (SH-5), suggesting that the pathway consisting of non-receptor tyrosine kinase (Src), phosphatidylinositol 3-kinase and protein kinase B must be involved in IL-1β signaling. Conclusion The results presented suggest that IGF-1 and PDGF-bb are potent inhibitors of IL-1β-mediated activation of NF-κB and apoptosis in chondrocytes, may be mediated in part through suppression of Src/PI-3K/AKT pathway, which may contribute to their anti-inflammatory effects. PMID

  15. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].

    Science.gov (United States)

    Yang, Xi-guang; Fan, Wen-yi; Yu, Ying

    2010-11-01

    The forest canopy chlorophyll content directly reflects the health and stress of forest. The accurate estimation of the forest canopy chlorophyll content is a significant foundation for researching forest ecosystem cycle models. In the present paper, the inversion of the forest canopy chlorophyll content was based on PROSPECT and SAIL models from the physical mechanism angle. First, leaf spectrum and canopy spectrum were simulated by PROSPECT and SAIL models respectively. And leaf chlorophyll content look-up-table was established for leaf chlorophyll content retrieval. Then leaf chlorophyll content was converted into canopy chlorophyll content by Leaf Area Index (LAD). Finally, canopy chlorophyll content was estimated from Hyperion image. The results indicated that the main effect bands of chlorophyll content were 400-900 nm, the simulation of leaf and canopy spectrum by PROSPECT and SAIL models fit better with the measured spectrum with 7.06% and 16.49% relative error respectively, the RMSE of LAI inversion was 0. 542 6 and the forest canopy chlorophyll content was estimated better by PROSPECT and SAIL models with precision = 77.02%.

  16. Oceanic turbidity and chlorophyll as inferred from ERTS-1 observations

    Science.gov (United States)

    Curran, R. J.

    1973-01-01

    Spectral signatures of phytoplankton and other obscuring effects are considered in order to determine how to best use satellite data. The results of this study were then used to analyze the spectral data obtained from the ERTS-1 multispectral scanner (MSS). The analyzed satellite data were finally compared with surface ship measurements of chlorophyll concentration. It was found that the effects of water turbidity on the multispectral imagery can be discriminated by rationing the two shortest wavelength channels so that the effect of phytoplankton is enhanced.

  17. Influence of water-based ferrofluid upon chlorophylls in cereals

    Energy Technology Data Exchange (ETDEWEB)

    Racuciu, Mihaela [Lucian Blaga University, Faculty of Science, 10 Blvd. Victoriei, Sibiu, 550012 (Romania)]. E-mail: mracuciu@yahoo.com; Creanga, Dorina-Emilia [Al. I. Cuza University, Faculty of Physics, 11A Blvd.Copou, Iasi, 700506 (Romania)

    2007-04-15

    The present experimental investigation was focused on the study of the simultaneous influence of the water-based ferrofluid and static magnetic field exposure on young cereal plants. Water-based ferrofluid, stabilized with citric acid was added daily in various concentrations, ranging between 10 and 250 {mu}L/L, in the culture medium of maize (Zea mays) plants in their early ontogenetic stages. The used static magnetic field was about 50 mT. In order to investigate the biochemical changes of chlorophylls and total carotenoids, spectrophotometric measurements were carried out, that revealed stimulatory effects of ferrofluid and magnetic exposure upon the studied plant species.

  18. Influence of water-based ferrofluid upon chlorophylls in cereals

    International Nuclear Information System (INIS)

    Racuciu, Mihaela; Creanga, Dorina-Emilia

    2007-01-01

    The present experimental investigation was focused on the study of the simultaneous influence of the water-based ferrofluid and static magnetic field exposure on young cereal plants. Water-based ferrofluid, stabilized with citric acid was added daily in various concentrations, ranging between 10 and 250 μL/L, in the culture medium of maize (Zea mays) plants in their early ontogenetic stages. The used static magnetic field was about 50 mT. In order to investigate the biochemical changes of chlorophylls and total carotenoids, spectrophotometric measurements were carried out, that revealed stimulatory effects of ferrofluid and magnetic exposure upon the studied plant species

  19. Simple heterogeneity parametrization for sea surface temperature and chlorophyll

    Science.gov (United States)

    Skákala, Jozef; Smyth, Timothy J.

    2016-06-01

    Using satellite maps this paper offers a complex analysis of chlorophyll & SST heterogeneity in the shelf seas around the southwest of the UK. The heterogeneity scaling follows a simple power law and is consequently parametrized by two parameters. It is shown that in most cases these two parameters vary only relatively little with time. The paper offers a detailed comparison of field heterogeneity between different regions. How much heterogeneity is in each region preserved in the annual median data is also determined. The paper explicitly demonstrates how one can use these results to calculate representative measurement area for in situ networks.

  20. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-09-01

    Full Text Available Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  1. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-01-01

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel. PMID:27618070

  2. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock.

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-09-07

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  3. Detection of photosynthetic performance of Stipa bungeana seedlings under climatic change using chlorophyll fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xiliang eSong

    2016-01-01

    Full Text Available In this study, the impact of future climate change on photosynthetic efficiency as well as energy partitioning in the Stipa bungeana was investigated by using chlorophyll fluorescence imaging (CFI technique. Two thermal regimes (room temperature, T0: 23.0/17.0℃; High temperature, T6: 29.0/23.0℃ and three water conditions (Control, W0; Water deficit, W-30; excess precipitation, W+30 were set up in artificial control chambers. The results showed that excess precipitation had no significant effect on chlorophyll fluorescence parameters, while water deficit decreased the maximal quantum yield of photosystem II (PSII photochemistry for the dark-adapted state (Fv/Fm by 16.7%, with no large change in maximal quantum yield of PSII photochemistry for the light-adapted state (FV'/FM' and coefficient of the photochemical quenching (qP at T0 condition. Under T6 condition, high temperature offset the negative effect of water deficit on Fv/Fm and enhanced the positive effect of excess precipitation on Fv/Fm, Fv'/Fm' and qP, the values of which all increased. This indicates that the temperature higher by 6 ℃ will be beneficial to the photosynthetic performance of S. bungeana. Spatial changes of photosynthetic performance were monitored in three areas of interest (AOIs located on the bottom, middle and upper position of leaf. Chlorophyll fluorescence images (Fv/Fm, actual quantum yield of PSII photochemistry for the light-adapted state (ΦPSII, quantum yield of nonregulated energy dissipation for the light-adapted state (ΦNO at T0 condition, and ΦPSII at T6 condition showed a large spatial variation, with greater value of ΦNO and lower values of Fv/Fm and ΦPSII in the upper position of leaves. Moreover, there was a closer relationship between ΦPSII and ΦNO, suggesting that the energy dissipation by non-regulated quenching mechanisms played a dominant role in the yield of PSII photochemistry. It was also found that, among all measured fluorescence

  4. Time-resolved interaction investigations of carbocyanine dyes and chlorophyll a in solution

    International Nuclear Information System (INIS)

    Feller, K.H.; Fassler, D.

    1983-01-01

    Using a Nd:YAG laser/streak camera system of 30 ps time resolution the quenching of the fluorescence of the carbocyanine dye ICC by chlorophyll a in methanolic solution was investigated. The fluorescence lifetime of ICC decreased within the chlorophyll concentration range 0 - 9x10 - 5 mol/l from 170 ps to 135 ps. The observed very effective fluorescence quenching process suggests that the formation of heteroaggregates from ICC and chlorophyll is responsible for the rapid energy transfer. (author)

  5. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes.

    Science.gov (United States)

    Talla, Sai Krishna; Panigrahy, Madhusmita; Kappara, Saivishnupriya; Nirosha, P; Neelamraju, Sarla; Ramanan, Rajeshwari

    2016-03-01

    The phytohormone cytokinin (CK) is known to delay senescence in plants. We studied the effect of a CK analog, 6-benzyl adenine (BA), on rice leaves to understand the possible mechanism by which CK delays senescence in a drought- and heat-tolerant rice cultivar Nagina22 (N22) using dark-induced senescence (DIS) as a surrogate for natural senescence of leaves. Leaves of N22-H-dgl162, a stay-green mutant of N22, and BA-treated N22 showed retention of chlorophyll (Chl) pigments, maintenance of the Chl a/b ratio, and delay in reduction of both photochemical efficiency and rate of oxygen evolution during DIS. HPLC analysis showed accumulation of 7-hydroxymethyl chlorophyll (HmChl) during DIS, and the kinetics of its accumulation correlated with progression of senescence. Transcriptome analysis revealed that several plastid-localized genes, specifically those associated with photosystem II (PSII), showed higher transcript levels in BA-treated N22 and the stay-green mutant leaves compared with naturally senescing N22 leaves. Real-time PCR analyses showed that genes coding for enzymes associated with Chl a/b interconversion and proteins associated with light-harvesting complexes maintained higher transcript levels up to 72h of DIS following BA treatment. The pigment-protein complexes analyzed by green gel remained intact in both N22-H-dgl162 and BA-treated N22 leaves even after 96h of DIS. Thus, CK delays senescence by accumulation of HmChl and up-regulating genes in the Chl cycle, thereby maintaining the Chl a/b ratio. Also, CK treatment retains higher transcript levels of PSII-related genes, resulting in the stability of photosynthetic pigment complexes and functional stay-greenness in rice. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. GNC and CGA1 Modulate Chlorophyll Biosynthesis and Glutamate Synthase (GLU1/Fd-GOGAT) Expression in Arabidopsis

    Science.gov (United States)

    Hudson, Darryl; Guevara, David; Yaish, Mahmoud W.; Hannam, Carol; Long, Nykoll; Clarke, Joseph D.; Bi, Yong-Mei; Rothstein, Steven J.

    2011-01-01

    Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA). The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT), which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC). As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology. PMID:22102866

  7. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  8. Effect of gamma radiation on chlorophylls contents, net photosynthesis and respiration of chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Martin Moreno, C.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first 'b' chlorophyll affected to a greater extent than 'a' chlorophyll. Net photosynthesis and respiration decline throughout the time of the observations after irradiation, this depressing effect being much more remarkable for the first one. Net photosynthesis inhibition levels of about 30% have got only five hours post irradiation at a dose of 5000 Gy. (author)

  9. Chlorophyll bleaching by UV-irradiation in vitro and in situ: Absorption and fluorescence studies

    International Nuclear Information System (INIS)

    Zvezdanovic, Jelena; Cvetic, Tijana; Veljovic-Jovanovic, Sonja; Markovic, Dejan

    2009-01-01

    Chlorophyll bleaching by UV-irradiation has been studied by absorbance and fluorescence spectroscopy in extracts containing mixtures of photosynthetic pigments, in acetone and n-hexane solutions, and in aqueous thylakoid suspensions. Chlorophyll undergoes destruction (bleaching) accompanied by fluorescent transient formation obeying first-order kinetics. The bleaching is governed by UV-photon energy input, as well as by different chlorophyll molecular organizations in solvents of different polarities (in vitro), and in thylakoids (in situ). UV-C-induced bleaching of chlorophylls in thylakoids is probably caused by different mechanisms compared to UV-A- and UV-B-induced bleaching

  10. The effects of heavy metal ions on the chlorophyll content and cell membrane permeability of charophytes

    International Nuclear Information System (INIS)

    Fu Hualong; Chen Hao; Dong Bin; Qing Renwei

    2001-01-01

    The authors studied the effects of several heavy metal ions in different concentrations (Cd 2+ , Hg 2+ , Pb 2+ , Cr 6+ ) on the chlorophyll content and cell membrane permeability of Chara vulgaris L. It was discovered that the effects of heavy metal ions on the chlorophyll content and cell membrane permeability of Chara vulgaris L. changed with their different concentration. The trend was that the chlorophyll content and cell membrane permeability were decreased with the increase of the heavy metal ions. The degree of chlorophyll content affected was Cr 6+ , Cd 2+ , Hg 2+ , Pb 2+ , and that of cell membrane permeability affected was Cd 2+ , Cr 6+ , Hg 2+ , Pb 2+

  11. Efficiency of portable chlorophyll meters in assessing the nutritional status of wheat plants

    Directory of Open Access Journals (Sweden)

    Alessana F. Schlichting

    2015-12-01

    Full Text Available ABSTRACT The objective of this study was to verify the efficiency of two portable chlorophyll meters (Minolta SPAD® 502 and Falker ClorofiLOG® 1030 in assessing the nutritional status of wheat plants, correlating the indices from the devices and the direct determination of chlorophyll content with the concentration of nitrogen (N in the plant. The experiment was conducted in a greenhouse, in pots with 5 dm3 of Oxisol, in a completely randomized design, with six N doses (0, 80, 160, 240, 320 and 400 mg dm-3 and five replicates. At 47 days after emergence, the readings of SPAD and Falker indices and the quantification of chlorophyll content and N concentration in wheat plants were performed, as well as analysis of variance and correlation test, both at 0.05 probability level. The chlorophyll meters Minolta SPAD® 502 and Falker ClorofiLOG® 1030 do not differ with respect to the indirect determination of chlorophyll in wheat plants. The Falker chlorophyll index was statistically equal to the chlorophyll content. Indirect chlorophyll indices and chlorophyll content showed a high correlation with the N concentration in the plant.

  12. Particulate and dissolved organic carbon and chlorophyll A in the Zaire river, estuary and plume

    Science.gov (United States)

    Cadée, G. C.

    Data were collected on POC, DOC and phytoplankton in the Zaire river, estuary and plume. Mean river value for POC was 1.1 mg·l -1, 4.7% of the suspended matter. Average DOC content of the river water was 8.5 mg·l -1. These values are in accordance with the calculations of TOC input from rivers to the world's ocean. Within the estuary POC and chlorophyll decreased regularly up to a salinity of 20. Between salinities of 20 and 32 small phytoplankton bloom occurred resulting also in higher POC values. DOC mixed conservatively up to a salinity of 25; at salinities above 25, values indicate DOC production. This DOC production occurred partly in the bottom water of the canyon where low oxygen values indicated mineralization and conversion of the accumulated POC into DOC. Another area of DOC production observed inside and outside the surface waters of the plume, was partly related to autolysis and degradation of the phytoplankton bloom. This study shows that the influence of rivers on the organic carbon in the ocean will not be confined to the amount introduced directly, but that we have to add the amounts of POC and DOC resulting from enhanced phytoplankton primary production by nutrient input from rivers and by river induced upwelling.

  13. Distribution of phytoplankton groups within the deep chlorophyll maximum

    KAUST Repository

    Latasa, Mikel

    2016-11-01

    The fine vertical distribution of phytoplankton groups within the deep chlorophyll maximum (DCM) was studied in the NE Atlantic during summer stratification. A simple but unconventional sampling strategy allowed examining the vertical structure with ca. 2 m resolution. The distribution of Prochlorococcus, Synechococcus, chlorophytes, pelagophytes, small prymnesiophytes, coccolithophores, diatoms, and dinoflagellates was investigated with a combination of pigment-markers, flow cytometry and optical and FISH microscopy. All groups presented minimum abundances at the surface and a maximum in the DCM layer. The cell distribution was not vertically symmetrical around the DCM peak and cells tended to accumulate in the upper part of the DCM layer. The more symmetrical distribution of chlorophyll than cells around the DCM peak was due to the increase of pigment per cell with depth. We found a vertical alignment of phytoplankton groups within the DCM layer indicating preferences for different ecological niches in a layer with strong gradients of light and nutrients. Prochlorococcus occupied the shallowest and diatoms the deepest layers. Dinoflagellates, Synechococcus and small prymnesiophytes preferred shallow DCM layers, and coccolithophores, chlorophytes and pelagophytes showed a preference for deep layers. Cell size within groups changed with depth in a pattern related to their mean size: the cell volume of the smallest group increased the most with depth while the cell volume of the largest group decreased the most. The vertical alignment of phytoplankton groups confirms that the DCM is not a homogeneous entity and indicates groups’ preferences for different ecological niches within this layer.

  14. Importance of sulfide interaction with iron as regulator of the microbial community in biogas reactors and its effect on methanogenesis, volatile fatty acids turnover, and syntrophic long-chain fatty acids degradation.

    Science.gov (United States)

    Shakeri Yekta, Sepehr; Ziels, Ryan M; Björn, Annika; Skyllberg, Ulf; Ejlertsson, Jörgen; Karlsson, Anna; Svedlund, Matilda; Willén, Magnus; Svensson, Bo H

    2017-05-01

    The inhibitory effects of sulfide on microbial processes during anaerobic digestion have been widely addressed. However, other effects of sulfide are less explored, given that sulfide is a potential sulfur source for microorganisms and its high reactivity triggers a suit of abiotic reactions. We demonstrated that sulfide interaction with Fe regulates the dynamics and activities of microbial community during anaerobic digestion. This was manifested by the S:Fe molar ratio, whose increase adversely influenced the acetoclastic methanogens, Methanosaeta, and turnover of acetate. Dynamics of hydrogenotrophic methanogens, Methanoculleus and Methanobrevibacter, were presumably influenced by sulfide-induced changes in the partial pressure of hydrogen. Interestingly, conversion of the long-chain fatty acid (LCFA), oleate, to methane was enhanced together with the abundance of LCFA-degrading, β-oxidizing Syntrophomonas at an elevated S:Fe molar ratio. The results suggested that sulfur chemical speciation is a controlling factor for microbial community functions in anaerobic digestion processes. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Water relation, leaf gas exchange and chlorophyll a fluorescence imaging of soybean leaves infected with Colletotrichum truncatum.

    Science.gov (United States)

    Dias, Carla Silva; Araujo, Leonardo; Alves Chaves, Joicy Aparecida; DaMatta, Fábio M; Rodrigues, Fabrício A

    2018-06-01

    Considering the potential of anthracnose to decrease soybean yield and the need to gain more information regarding its effect on soybean physiology, the present study performed an in-depth analysis of the photosynthetic performance of soybean leaflets challenged with Colletotrichum truncatum by combining chlorophyll a fluorescence images with gas-exchange measurements and photosynthetic pigment pools. There were no significant differences between non-inoculated and inoculated plants in leaf water potential, apparent hydraulic conductance, net CO 2 assimilation rate, stomatal conductance to water vapor and transpiration rate. For internal CO 2 concentration, significant difference between non-inoculated and inoculated plants occurred only at 36 h after inoculation. Reductions in the values of the chlorophyll a fluorescence parameters [initial fluorescence (F 0 ), maximal fluorescence (F m ), maximal photosystem II quantum yield (F v /F m ), quantum yield of regulated energy dissipation (Y(NPQ))] and increases in effective PS II quantum yield (Y(II)), quantum yield of non-regulated energy dissipation Y(NO) and photochemical quenching coefficient (q P ) were noticed on the necrotic vein tissue in contrast to the surrounding leaf tissue. It appears that the impact of the infection by C. truncatum on the photosynthetic performance of the leaflets was minimal considering the preference of the fungus to colonize the veins. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Microbial degradation of dissolved proteins in seawater

    International Nuclear Information System (INIS)

    Hollibaugh, J.T.; Azam, F.

    1983-01-01

    An experimental protocol using radiolabeled proteins was developed to investigate the rates and mechanisms whereby dissolved proteins are degraded in natural marine plankton communities. The results of field observations and laboratory experiments indicate that proteins are degraded by a particle-bound, thermolabile system, presumably bacteria-associated enzymes, with an apparent half-saturation constant of ca. 25 μg bovine serum albumin (BSA) per liter. Gel permeation chromatography indicated that peptides of chain length intermediate between BSA and the final products of degradation (MW<700) do not accumulate in the medium. Competition experiments indicate that the system is relatively nonspecific. Turnover rates for the protein pool in samples collected in the Southern California Bight were of the same order of magnitude as the turnover rate of the L-leucine pool and were correlated with primary productivity, chlorophyll a concentrations, bacterial abundance and biomass, and L-leucine turnover rate. These data suggest that amino acids derived from proteins are utilized preferentially and do not completely mix with the amino acids in the bulk phase

  17. Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using High Performance Thin Layer Chromatography.

    Science.gov (United States)

    Hynstova, Veronika; Sterbova, Dagmar; Klejdus, Borivoj; Hedbavny, Josef; Huska, Dalibor; Adam, Vojtech

    2018-01-30

    In this study, 14 commercial products (dietary supplements) containing alga Chlorella vulgaris and cyanobacteria Spirulina platensis, originated from China and Japan, were analysed. UV-vis spectrophotometric method was applied for rapid determination of chlorophylls, carotenoids and pheophytins; as degradation products of chlorophylls. High Performance Thin-Layer Chromatography (HPTLC) was used for effective separation of these compounds, and also Atomic Absorption Spectrometry for determination of heavy metals as indicator of environmental pollution. Based on the results obtained from UV-vis spectrophotometric determination of photosynthetic pigments (chlorophylls and carotenoids), it was confirmed that Chlorella vulgaris contains more of all these pigments compared to the cyanobacteria Spirulina platensis. The fastest mobility compound identified in Chlorella vulgaris and Spirulina platensis using HPTLC method was β-carotene. Spectral analysis and standard calibration curve method were used for identification and quantification of separated substances on Thin-Layer Chromatographic plate. Quantification of copper (Cu 2+ , at 324.7 nm) and zinc (Zn 2+ , at 213.9nm) was performed using Flame Atomic Absorption Spectrometry with air-acetylene flame atomization. Quantification of cadmium (Cd 2+ , at 228.8 nm), nickel (Ni 2+ , at 232.0nm) and lead (Pb 2+ , at 283.3nm) by Electrothermal Graphite Furnace Atomic Absorption Spectrometry; and quantification of mercury (Hg 2+ , at 254nm) by Cold Vapour Atomic Absorption Spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance

    International Nuclear Information System (INIS)

    Campbell, P.K. Entcheva; Middleton, E.M.; Corp, L.A.; Kim, M.S.

    2008-01-01

    Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance data, which provide estimates of vigor based primarily on chlorophyll content. Chlorophyll fluorescence (ChlF) measurements offer a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, technology based on ChlF may allow more accurate carbon sequestration estimates and earlier stress detection than is possible when using reflectance data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contributions from both the reflected and fluoresced radiation. The aim of this study is to determine the relative contributions of reflectance and ChlF fractions to Ra in the red to near-infrared region (650-800 nm) of the spectrum. The practical objectives of the study are to: 1) evaluate the relationship between ChlF and reflectance at the foliar level for corn, soybean and maple; and 2) for corn, determine if the relationship established for healthy vegetation changes under nitrogen (N) deficiency. To obtain generally applicable results, experimental measurements were conducted on unrelated crop and tree species (corn, soybean and maple) under controlled conditions and a gradient of inorganic N fertilization levels. Optical reflectance spectra and actively induced ChlF emissions were collected on the same foliar samples, in conjunction with measurements of photosynthetic function, pigment levels, and carbon (C) and N content. The spectral trends were examined for similarities. On average, 10-20% of Ra at 685 nm was actually due to ChlF. The spectral trends in steady state and maximum fluorescence varied significantly, with steady state fluorescence (especially red, 685 nm) showing higher ability for species and treatment separation. The relative contribution of ChlF to Ra varied significantly among species, with maple

  19. What if the Diatoms of the Deep Chlorophyll Maximum Can Ascend?

    Science.gov (United States)

    Villareal, T. A.

    2016-02-01

    Buoyancy regulation is an integral part of diatom ecology via its role in sinking rates and is fundamental to understanding their distribution and abundance. Numerous studies have documented the effects of size and nutrition on sinking rates. Many pelagic diatoms have low intrinsic sinking rates when healthy and nutrient-replete (deep chlorophyll maximum. The potential for ascending behavior adds an additional layer of complexity by allowing both active depth regulation similar to that observed in flagellated taxa and upward transport by some fraction of deep euphotic zone diatom blooms supported by nutrient injection. In this talk, I review the data documenting positive buoyancy in small diatoms, offer direct visual evidence of ascending behavior in common diatoms typical of both oceanic and coastal zones, and note the characteristics of sinking rate distributions within a single species. Buoyancy control leads to bidirectional movement at similar rates across a wide size spectrum of diatoms although the frequency of ascending behavior may be only a small portion of the individual species' abundance. While much remains to be learned, the paradigm of unidirectional downward movement by diatoms is both inaccurate and an oversimplification.

  20. Presence of a chlorophyll d-like pigment in Chlorella extracts

    NARCIS (Netherlands)

    Michel-Wolwertz, M.R.; Sironval, C.; Goedheer, J.C.

    1965-01-01

    Three chlorophyll a isomers (a₁, a₂ and a₃) were separated by the chromatography of Chlorella extracts on paper 1. One of these, chlorophyll (a₃) showed additional absorption bands at 688 and 455 mμ in diethyl ether. Chromatographic analysis could not decide whether these bands were due to a₃ or

  1. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements

    NARCIS (Netherlands)

    Darvishzadeh, R.; Skidmore, A.K.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M.A.

    2008-01-01

    The study shows that leaf area index (LAI), leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) can be mapped in a heterogeneous Mediterranean grassland from canopy spectral reflectance measurements. Canopy spectral measurements were made in the field using a GER 3700

  2. Influence of sulphur dioxide on chlorophyll content and catalase activity in some chosen lichen species

    Energy Technology Data Exchange (ETDEWEB)

    Kuziel, S

    1974-01-01

    The influence of SO/sub 2/ on changes in catalase activity and in chlorophyll content were investigated under laboratory conditions in several lichen species and in maize. In all the plants examined the chlorophyll content and catalase activity decreased after treatment with SO/sub 2/ as compared with that in the control plants.

  3. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus.

    Science.gov (United States)

    Ferreira, V S; Pinto, R F; Sant'Anna, C

    2016-03-01

    Chlorophyll is a photosynthetic pigment found in plants and algal organisms and is a bioproduct with human health benefits and a great potential for use in the food industry. The chlorophyll content in microalgae strains varies in response to environmental factors. In this work, we assessed the effect of nitrogen depletion and low light intensity on the chlorophyll content of the Scenedesmus dimorphus microalga. The growth of S. dimorphus under low light intensity led to a reduction in cell growth and volume as well as increased cellular chlorophyll content. Nitrogen starvation led to a reduction in cell growth and the chlorophyll content, changes in the yield and productivity of chlorophylls a and b. Transmission electron microscopy was used to investigate the ultrastructural changes in the S. dimorphus exposed to nitrogen and light deficiency. In contrast to nitrogen depletion, low light availability was an effective mean for increasing the total chlorophyll content of green microalga S. dimorphus. The findings acquired in this work are of great biotechnological importance to extend knowledge of choosing the right culture condition to stimulate the effectiveness of microalgae strains for chlorophyll production purposes. © 2015 The Society for Applied Microbiology.

  4. Study of 660 nm laser-induced photoluminescence of chlorophyll-a and its applications

    International Nuclear Information System (INIS)

    Song, Y; Zhang, D X; Zhang, H J

    2007-01-01

    Based on the phenomenon of chlorophyll a photoluminescence, this paper introduces a new method to measure the chlorophyll a content, using 660nm laser diode as a new kind of light source to stimulate fluorescence as well as combining a fiber and spectrum technique. We analyze the characteristics of laser-induced fluorescence spectrum of chlorophyll a and then put forward the new method using two parameters, the relative fluorescence intensity and fluorescence intensity ratio F685/F735, to measure the chlorophyll a content in the water and green leaves respectively. The experimental results indicate that it is completely feasible to give a visual judgment for chlorophyll a content, according to the fluorescence emission spectrum of chlorophyll a. Subsequently, it is verified by three kinds of typical applications. All of these provide a new kind of light source to develop the chlorophyll a fluorometry and further give a technical foundation of on-spot monitoring the chlorophyll a content in the ocean or in green leaves

  5. Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content

    NARCIS (Netherlands)

    Clevers, J.G.P.W.; Kooistra, L.

    2012-01-01

    Plant stress is often expressed as a reduction in amount of biomass or leaf area index (LAI). In addition, stress may affect the plant pigment system, influencing the photosynthetic capacity of plants. Chlorophyll content is the main driver for this primary production. The chlorophyll content is

  6. TOXICITY OF INDUSTRIAL EFFLUENT ON TOTAL CHLOROPHYLL CONTENT OF CERTAIN AQUATIC MACROPHYTES

    OpenAIRE

    Singh Priti; Vishen Ashish; Wadhwani R; Pandey Y.N

    2012-01-01

    To assess the toxicity of industrial effluents on certain macrophytes, the total chlorophyll content of free floating, submerged and emergent macrophytes were estimated in concentrations of industrial effluents at varying exposure duration. The result revealed reduction in total chlorophyll content of exposed macrophytes at higher concentrations of industrial effluents on prolonged duration.

  7. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes

    DEFF Research Database (Denmark)

    Vadeboncoeur, Y.; Kalff, J.; Christoffersen, Kirsten Seestern

    2006-01-01

    content of periphyton on hard substrata (rocks and wood) was positively related to water-column total P (TP), whereas chlorophyll content of algae on sediment (epipelon) and TP were not significantly related. Chlorophyll content was up to 100× higher on sediments than on hard substrata. Within regions...... of the littoral zones in nutrient and energy cycles in lakes....

  8. The effect of shade on chlorophyll and anthocyanin content of upland red rice

    Science.gov (United States)

    Muhidin; Syam'un, E.; Kaimuddin; Musa, Y.; Sadimantara, G. R.; Usman; Leomo, S.; Rakian, T. C.

    2018-02-01

    Upland red rice (Oryza sativa) is a staple food and contains anthocyanin, which can act as antioxidants, plays an important role both for the plant itself and for human health. Levels of antioxidants in rice can be affected by the availability of light. The results showed that the difference of shade, cultivar, and interaction both significantly affect the content of chlorophyll a, chlorophyll b and total chlorophyll. The results also showed that shade could increase chlorophyll in all cultivars tested. The highest levels of chlorophyll a were present in the moderate shade level (n2), then decreased at the shelter level (n3) and increased again at high levels (n4). While on chlorophyll content b, it appears that shade increased chlorophyll b in all cultivars tested and this increase was linear to the increase of shade. The shade treatment may increase the anthocyanin content and the increase depending on the type of cultivar. Increased levels of anthocyanin highest due to shade occurred on Jangkobembe cultivar. The original level of anthocyanin on Jangkobembe cultivar averaged 0.096 mg g-1 increased to 2.487 mg g-1 or increased 26 fold. It is concluded that the shade had a significant effect on the chlorophyll and anthocyanin content.

  9. Chlorophyll meter for estimating nitrogen status of irrigated wheat

    International Nuclear Information System (INIS)

    Schepers, J.S.

    2000-01-01

    Chlorophyll-meter readings, generated from the leaves of irrigated wheat at particular growth stages, were normalized to the data obtained with locally recommended rates of fertilizer N, in Chile China, India and Mexico. Normalizing permitted comparisons of crop-N status across growth stages, locations, cultivars, and years. Relative yields and meter readings at growth-stage Z-50 are presented; they revealed similar trends for India, China, and Chile, however, for Mexico, the combination of soil, wheat cultivar, and climate resulted in much less response to N fertilization in the meter data. The implications are discussed. The SPAD meter proved to be a good tool to monitor and evaluate the N status of irrigated wheat. (author)

  10. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    Science.gov (United States)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  11. Canopy Level Chlorophyll Fluorescence and the PRI in a Cornfield

    Science.gov (United States)

    Middleton, Elizabeth M.; Cheng, Yen-Ben; Corp, Lawrence A.; Campbell, Petya K. E.; Huemmrich, K. Fred; Zhang, Qingyuan; Kustas, William P.

    2012-01-01

    Two bio-indicators, the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (SIF), were derived from directional hyperspectral observations and studied in a cornfield on two contrasting days in the growing season. Both red and far-red SIF exhibited higher values on the day when the canopy in the early senescent stage, but only the far-red SIF showed sensitivity to viewing geometry. Consequently, the red/far-red SIF ratio varied greatly among azimuth positions while the largest values were obtained for the "hotspot" at both growth stages. This ratio was lower (approx.0.88 +/- 0.4) in early July than in August when the ratio approached equivalence (near approx.1). In concert, the PRI exhibited stronger responses to both zenith and azimuth angles and different values on the two growth stages. The potential of using these indices to monitor photosynthetic activities needs further investigation

  12. Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria.

    Science.gov (United States)

    Wiwczar, Jessica M; LaFountain, Amy M; Wang, Jimin; Frank, Harry A; Brudvig, Gary W

    2017-11-01

    Photosystem II (PSII) of oxygenic photosynthetic organisms normally contains exclusively chlorophyll a (Chl a) as its major light-harvesting pigment. Chl a canonically consists of the chlorin headgroup with a 20-carbon, 4-isoprene unit, phytyl tail. We have examined the 1.9 Å crystal structure of PSII from thermophilic cyanobacteria reported by Shen and coworkers in 2012 (PDB accession of 3ARC/3WU2). A newly refined electron density map from this structure, presented here, reveals that some assignments of the cofactors may be different from those modeled in the 3ARC/3WU2 structure, including a specific Chl a that appears to have a truncated tail by one isoprene unit. We provide experimental evidence using high-performance liquid chromatography and mass spectrometry for a small population of Chl a esterified to a 15-carbon farnesyl tail in PSII of thermophilic cyanobacteria.

  13. Chlorophyll a fluorescence to phenotype wheat genotypes for heat tolerance

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto

    In prospects of global climate change, heat stress is a rising constraint for the productivity of wheat (Triticum aestivum L.). It is a heat-susceptible crop beyond 17-23oC temperature throughout its phenological stages, flowering phase being the most sensitive stage. Chlorophyll a fluorescence...... parameter, maximum quantum yield efficiency of PSII (Fv/Fm) is used as a physiological marker for early stress detection in PSII in plants. We established a reproducible protocol to measure response of wheat genotypes to high temperature based on Fv/Fm. The heat treatment of 40°C in 300 µmol m-2s-1 PAR...... enabled the identification of contrasting wheat genotypes that can be used to study the genetic and physiological nature of heat stress tolerance to dissect quantitative traits into simpler and more heritable traits....

  14. Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio.

    Science.gov (United States)

    Zivcak, Marek; Brückova, Klaudia; Sytar, Oksana; Brestic, Marian; Olsovska, Katarina; Allakhverdiev, Suleyman I

    2017-06-01

    Environmentally induced variation and the genotypic differences in flavonoid and phenolic content in lettuce can be reliably detected using the appropriate parameters derived from the records of rapid non-invasive fluorescence technique. The chlorophyll fluorescence excitation ratio method was designed as a rapid and non-invasive tool to estimate the content of UV-absorbing phenolic compounds in plants. Using this technique, we have assessed the dynamics of accumulation of flavonoids related to developmental changes and environmental effects. Moreover, we have tested appropriateness of the method to identify the genotypic differences and fluctuations in total phenolics and flavonoid content in lettuce. Six green and two red genotypes of lettuce (Lactuca sativa L.) grown in pots were exposed to two different environments for 50 days: direct sunlight (UV-exposed) and greenhouse conditions (low UV). The indices based on the measurements of chlorophyll fluorescence after red, green and UV excitation indicated increase of the content of UV-absorbing compounds and anthocyanins in the epidermis of lettuce leaves. In similar, the biochemical analyses performed at the end of the experiment confirmed significantly higher total phenolic and flavonoid content in lettuce plants exposed to direct sun compared to greenhouse conditions and in red compared to green genotypes. As the correlation between the standard fluorescence indices and the biochemical records was negatively influenced by the presence of red genotypes, we proposed the use of a new parameter named Modified Flavonoid Index (MFI) taking into an account both absorbance changes due to flavonol and anthocyanin content, for which the correlation with flavonoid and phenolic content was relatively good. Thus, our results confirmed that the fluorescence excitation ratio method is useful for identifying the major differences in phenolic and flavonoid content in lettuce plants and it can be used for high-throughput pre

  15. The power of pigments, calibrating chemoclines with chlorophylls and carotenoids.

    Science.gov (United States)

    Junium, C. K.; Uveges, B. T.

    2017-12-01

    Phototrophic organisms produce a diversity of pigments that serve a broad range of specific biochemical functions. Pigments are either directly associated with the photosynthetic apparatus, the most notable being chlorophyll a, or are accessory pigments such as the carotenoid lutein. Their functions can also be categorized into roles that are related to light harvesting (e.g. fucoxanthin) or for photoprotection (e.g. scytonemin). The abundances of these two classes of pigments from environmental samples can provide specific information about photointensity and how it relates to environmental changes. For example, a deepening of the chemo/nutricline can result in the increased production of light gathering relative to photoprotective pigments. Here we apply a relatively simple approach that utilizes the abundance of photosynthetic relative to photoprotective pigments to help constrain changes in the water column position of the chemocline. To test the efficacy of this approach we have utilized the sedimentary record of the anoxic Lake Kivu in the East African Rift. Recent Lake Kivu sediments are punctuated by a series of sapropels that may be associated with overturn of the lake, and release of carbon dioxide and sulfide during potential limnic eruptions. Carbon and nitrogen isotopes decrease significantly at the onset of sapropel deposition and suggest that 13C-depleted dissolved inorganic carbon was upwelled into surface waters and was accompanied by high concentrations of ammonium, that allowed for 15N-depletion during incomplete nitrogen utilization. The pigment record, specifically the ratio of the photoprotective carotenoids lutein and zeaxanthin to chlorophyll a increases significantly at the onset of sapropel deposition. This suggests that the chemocline shallowed, displacing phototrophic communities toward the surface of the lake where light intensities required production of photoprotective pigments. This approach can easily be applied to a wide variety of

  16. Researches Regarding the Influence of Cold Storage on the Chlorophyll Content in Lettuce

    Directory of Open Access Journals (Sweden)

    Iuliana Cretescu

    2014-05-01

    Full Text Available The aim of the present investigations was to determine the effect of the cold storage period on the content of chlorophylls in the leaves of lettuce and arugula (rucola. The research material consisted in two types of lettuce (Lactuca sativa L. var. capitata; Lactuca sativa L. var. crispa and arugula (Eruca sativa purchased from supermarkets in Timisoara. The quantitative determination of chlorophyll pigments in leaves (SPAD was made by chlorophyll meter (SPAD 502 Konica-Minolta. During the few days cold storage at a temperature of 4ºC, the content of chlorophyll in the leaf significantly decreased, compared with that in the control group. After 3 days of cold storage arugula and lettuce (Lactuca sativa var. capitata values of chlorophyll content differ statistically very significantly (p<0.001 from the values found in the control group which for lettuce (Lactuca sativa L. var. crispa differs statistically significant (p < 0.05.

  17. The effect of storage temperature of cucumber fruit on chlorophyll fluorescence

    Directory of Open Access Journals (Sweden)

    Ryszard Kosson

    2013-12-01

    Full Text Available The effect of three storage temperature levels: 12,5°C, 20°C, and 1,5°C on basic indexes of chlorophyll fluorescence of cucumber fruits was studied. The greenhouse grown cucumber fruits cv. Wiktor F1 were stored in perforated polyethylene bags or without packages. The minimum chlorophyll fluorescence (Fo, maximum chlorophyll fluorescence (Fm, variable chlorophyll fluorescence (Fv and relative variable fluorescence (Fv/Fm of the cucumber peel were measured. Relative variable fluorescence was decTeasing when cucumbers were stored at temperature lower or higher than optimum level. The chlorophyll fluorescence measurements can be helpful for determination of appropriate temperature parameters of cucumber storage.

  18. Stomata character and chlorophyll content of tomato in response to Zn application under drought condition

    Science.gov (United States)

    Sakya, A. T.; Sulistyaningsih, E.; Indradewa, D.; Purwanto, B. H.

    2018-03-01

    This experiment was performed in order to evaluate the effects of Zn application under drought condition on tomato, especially its chlorophyll content and stomata character. This experiment was arranged in factorial using randomized complete block design with three replications. The treatment consisted of the Zn application method, namely: soil and foliar, the Zn dosage, namely: 0, 40 and 60 mg ZnSO4 kg-1 soil and two cultivars of tomato, namely: ‘Tyrana’ F1 and ‘Permata’ F1. The stress condition was induced by watering every 12 days of 3 weeks after transplanting until harvesting. The results showed that the soil with a Zn application under drought conditions increased the aperture stomata, chlorophyll b and chlorophyll a/b ratio. The response of stomata character, chlorophyll a and total chlorophyll in both cultivars was similar.

  19. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content.

    Science.gov (United States)

    Sun, Ye; Wang, Yihang; Xiao, Hui; Gu, Xinzhe; Pan, Leiqing; Tu, Kang

    2017-11-15

    Honey peach is a very common but highly perishable market fruit. When pathogens infect fruit, chlorophyll as one of the important components related to fruit quality, decreased significantly. Here, the feasibility of hyperspectral imaging to determine the chlorophyll content thus distinguishing diseased peaches was investigated. Three optimal wavelengths (617nm, 675nm, and 818nm) were selected according to chlorophyll content via successive projections algorithm. Partial least square regression models were established to determine chlorophyll content. Three band ratios were obtained using these optimal wavelengths, which improved spatial details, but also integrates the information of chemical composition from spectral characteristics. The band ratio values were suitable to classify the diseased peaches with 98.75% accuracy and clearly show the spatial distribution of diseased parts. This study provides a new perspective for the selection of optimal wavelengths of hyperspectral imaging via chlorophyll content, thus enabling the detection of fungal diseases in peaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects

    Directory of Open Access Journals (Sweden)

    Aris Hosikian

    2010-01-01

    Full Text Available Chlorophyll is an essential compound in many everyday products. It is used not only as an additive in pharmaceutical and cosmetic products but also as a natural food colouring agent. Additionally, it has antioxidant and antimutagenic properties. This review discusses the process engineering of chlorophyll extraction from microalgae. Different chlorophyll extraction methods and chlorophyll purification techniques are evaluated. Our preliminary analysis suggests supercritical fluid extraction to be superior to organic solvent extraction. When compared to spectroscopic technique, high performance liquid chromatography was shown to be more accurate and sensitive for chlorophyll analysis. Finally, through CO2 capture and wastewater treatment, microalgae cultivation process was shown to have strong potential for mitigation of environmental impacts.

  1. Staying green postharvest: how three mutations in the Arabidopsis chlorophyll b reductase gene NYC1 delay degreening by distinct mechanisms.

    Science.gov (United States)

    Jibran, Rubina; Sullivan, Kerry L; Crowhurst, Ross; Erridge, Zoe A; Chagné, David; McLachlan, Andrew R G; Brummell, David A; Dijkwel, Paul P; Hunter, Donald A

    2015-11-01

    Stresses such as energy deprivation, wounding and water-supply disruption often contribute to rapid deterioration of harvested tissues. To uncover the genetic regulation behind such stresses, a simple assessment system was used to detect senescence mutants in conjunction with two rapid mapping techniques to identify the causal mutations. To demonstrate the power of this approach, immature inflorescences of Arabidopsis plants that contained ethyl methanesulfonate-induced lesions were detached and screened for altered timing of dark-induced senescence. Numerous mutant lines displaying accelerated or delayed timing of senescence relative to wild type were discovered. The underlying mutations in three of these were identified using High Resolution Melting analysis to map to a chromosomal arm followed by a whole-genome sequencing-based mapping method, termed 'Needle in the K-Stack', to identify the causal lesions. All three mutations were single base pair changes and occurred in the same gene, NON-YELLOW COLORING1 (NYC1), a chlorophyll b reductase of the short-chain dehydrogenase/reductase (SDR) superfamily. This was consistent with the mutants preferentially retaining chlorophyll b, although substantial amounts of chlorophyll b were still lost. The single base pair mutations disrupted NYC1 function by three distinct mechanisms, one by producing a termination codon, the second by interfering with correct intron splicing and the third by replacing a highly conserved proline with a non-equivalent serine residue. This non-synonymous amino acid change, which occurred in the NADPH binding domain of NYC1, is the first example of such a mutation in an SDR protein inhibiting a physiological response in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1

    Science.gov (United States)

    Lee, Min Ho; Cho, Yoonjung; Kim, Do Hyun; Woo, Hyun Jun; Yang, Ji Yeong; Kwon, Hye Jin; Yeon, Min Ji; Park, Min; Kim, Sa-Hyun; Moon, Cheol; Tharmalingam, Nagendran; Kim, Tae Ue; Kim, Jong-Bae

    2016-01-01

    Menadione (vitamin K3) has been reported to induce apoptotic cell death and growth inhibition in various types of cancer cells. However, involvement of menadione in cell cycle control has not been considered in gastric cancer cells yet. In the current study, we have investigated whether menadione is involved in the cell cycle regulation and suppression of growth in gastric cancer cells. In the cell cycle analysis, we found that menadione induced G2/M cell cycle arrest in AGS cells. To elucidate the underlying mechanism, we investigated the cell cycle regulatory molecules involved in the G2/M cell cycle transition. After 24 h of menadione treatment, the protein level of CDK1, CDC25C and cyclin B1 in AGS cells was decreased in a menadione dose-dependent manner. In the time course experiment, the protein level of CDC25C decreased in 6 h, and CDK1and cyclin B1 protein levels began to decrease after 18 h of menadione treatment. We found that mRNA level of CDC25C decreased by menadione treatment in 6 h. Menadione did not have an influence on mRNA level of CDK1 and cyclin B1 though the protein levels were decreased. However, the decreased protein levels of CDK1 and cyclin B1 were recovered by inhibition of proteasome. Collectively, these results suggest that menadione inhibits growth of gastric cancer cells by reducing expression of CDC25C and promoting proteasome mediated degradation of CDK1 and cyclin B1 thereby blocking transition of the cell cycle from G2 phase to M phase. PMID:28077999

  3. Chemical transformations of chlorophyll and its application in the design of a new generation of environmentally safe dyes

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, Boris D; Rumyantseva, Svetlana V; Moryganov, Andrey P; Berezin, Mikhail B [Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo (Russian Federation)

    2004-02-28

    Chemical transformations of chlorophyll and physicochemical properties of its derivatives are considered. These compounds can be used in the design of a new generation of chlorophyll- and porphyrin-based dyes environmentally more safe than currently used arene dyes and possessing renewable sources of raw materials. The first results on the use of chlorophyll derivatives for dyeing wool, acetate fibres and cotton are reported.

  4. Chemical transformations of chlorophyll and its application in the design of a new generation of environmentally safe dyes

    International Nuclear Information System (INIS)

    Berezin, Boris D; Rumyantseva, Svetlana V; Moryganov, Andrey P; Berezin, Mikhail B

    2004-01-01

    Chemical transformations of chlorophyll and physicochemical properties of its derivatives are considered. These compounds can be used in the design of a new generation of chlorophyll- and porphyrin-based dyes environmentally more safe than currently used arene dyes and possessing renewable sources of raw materials. The first results on the use of chlorophyll derivatives for dyeing wool, acetate fibres and cotton are reported.

  5. [Effects of groundwater level on chlorophyll fluorescence characteristics of Tamarix hispida in lower reaches of Tarim River].

    Science.gov (United States)

    Zhu, Cheng-gang; Li, Wei-hong; Ma, Jian-xin; Ma, Xiao-dong

    2010-07-01

    Based on the monitoring data of groundwater level at the typical sections in lower reaches of Tarim River, three survey plots nearby the ecological monitoring wells with groundwater depths > 6 m were selected to investigate the chlorophyll fluorescence characteristics of Tamarix hispida and its photosynthetic activity of PSII under effects of different groundwater depths. With increasing groundwater depth, the chlorophyll fluorescence parameters such as actual photochemical efficiency of PSII in the light (phi(PSII)), electron transport rate (ETR), and photochemistry quenching (q(p)) of T. hispida decreased, while the non-photochemistry quenching (q(N), NPQ) and the yield for dissipation by down-regulation (Y(NPQ)) increased remarkably, and the maximal photochemical efficiency of PSII (Fv/Fm) maintained an optimum value. All the results suggested that the PSII photosynthetic activity of T. hispida under drought stress declined with increasing groundwater depth, and the greater excess energy could result in more risk of photo-inhibition. However, the good adaptability and drought tolerance of T. hispida could make its PSII not seriously damaged, though the drought stress actually existed.

  6. Near infrared fluorescent chlorophyll nanoscale liposomes for sentinel lymph node mapping

    Science.gov (United States)

    Fan, Lina; Wu, Qiang; Chu, Maoquan

    2012-01-01

    Background Sentinel lymph node (SLN) mapping using in vivo near infrared fluorescence imaging has attracted great attention during the past few years. Here we report on the early use of poorly water-soluble chlorophyll with near infrared fluorescence extracted from the leaf of Chimonanthus salicifolius, for mouse axillary SLN mapping. Methods and results To improve the water solubility and SLN targeting of the chlorophyll, we encapsulated the chlorophyll in nanoscale liposomes. The liposome-coated chlorophyll nanocomposites obtained were spherical in shape and had an average diameter of 21.7 ± 6.0 nm. The nanocomposites dispersed well in water, and in aqueous suspension they exhibited brighter near infrared fluorescence than chlorophyll alone. After incubation of the nanocomposites with normal liver cells (QSG-7701) and macrophage cells (Ana-1) for no more than 48 hours, there was no obvious reduction in cell viability. When the nanocomposites were injected intradermally into the paw of a mouse, the axillary SLN was found to be strongly fluorescent and was easily visualized in real time without a requirement for surgery. The intensity of the near infrared fluorescence emitted by the SLN was obviously brighter than that emitted by the SLN of another mouse that had been intradermally injected with chlorophyll alone. Conclusion Our data show that the liposome-coated chlorophyll nanocomposites could have great potential for clinical SLN mapping due to their lack of toxicity, bright near infrared fluorescence, and small diameter. PMID:22787402

  7. Completing the Feedback Loop: The Impact of Chlorophyll Data Assimilation on the Ocean State

    Science.gov (United States)

    Borovikov, Anna; Keppenne, Christian; Kovach, Robin

    2015-01-01

    In anticipation of the integration of a full biochemical model into the next generation GMAO coupled system, an intermediate solution has been implemented to estimate the penetration depth (1Kd_PAR) of ocean radiation based on the chlorophyll concentration. The chlorophyll is modeled as a tracer with sources-sinks coming from the assimilation of MODIS chlorophyll data. Two experiments were conducted with the coupled ocean-atmosphere model. In the first, climatological values of Kpar were used. In the second, retrieved daily chlorophyll concentrations were assimilated and Kd_PAR was derived according to Morel et al (2007). No other data was assimilated to isolate the effects of the time-evolving chlorophyll field. The daily MODIS Kd_PAR product was used to validate the skill of the penetration depth estimation and the MERRA-OCEAN re-analysis was used as a benchmark to study the sensitivity of the upper ocean heat content and vertical temperature distribution to the chlorophyll input. In the experiment with daily chlorophyll data assimilation, the penetration depth was estimated more accurately, especially in the tropics. As a result, the temperature bias of the model was reduced. A notably robust albeit small (2-5 percent) improvement was found across the equatorial Pacific ocean, which is a critical region for seasonal to inter-annual prediction.

  8. Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops.

    Science.gov (United States)

    Gitelson, Anatoly A; Peng, Yi; Viña, Andrés; Arkebauer, Timothy; Schepers, James S

    2016-08-20

    One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  10. Unexpected stasis in a changing world: Lake nutrient and chlorophyll trends since 1990

    Science.gov (United States)

    Oliver, Samantha K.; Collins, Sarah M.; Soranno, Patricia A.; Wagner, Tyler; Stanley, Emily H.; Jones, John R.; Stow, Craig A.; Lottig, Noah R.

    2017-01-01

    The United States (U.S.) has faced major environmental changes in recent decades, including agricultural intensification and urban expansion, as well as changes in atmospheric deposition and climate—all of which may influence eutrophication of freshwaters. However, it is unclear whether or how water quality in lakes across diverse ecological settings has responded to environmental change. We quantified water quality trends in 2913 lakes using nutrient and chlorophyll (Chl) observations from the Lake Multi-Scaled Geospatial and Temporal Database of the Northeast U.S. (LAGOS-NE), a collection of preexisting lake data mostly from state agencies. LAGOS-NE was used to quantify whether lake water quality has changed from 1990 to 2013, and whether lake-specific or regional geophysical factors were related to the observed changes. We modeled change through time using hierarchical linear models for total nitrogen (TN), total phosphorus (TP), stoichiometry (TN:TP), and Chl. Both the slopes (percent change per year) and intercepts (value in 1990) were allowed to vary by lake and region. Across all lakes, TN declined at a rate of 1.1% year−1, while TP, TN:TP, and Chl did not change. A minority (7%–16%) of individual lakes had changing nutrients, stoichiometry, or Chl. Of those lakes that changed, we found differences in the geospatial variables that were most related to the observed change in the response variables. For example, TN and TN:TP trends were related to region-level drivers associated with atmospheric deposition of N; TP trends were related to both lake and region-level drivers associated with climate and land use; and Chl trends were found in regions with high air temperature at the beginning of the study period. We conclude that despite large environmental change and management efforts over recent decades, water quality of lakes in the Midwest and Northeast U.S. has not overwhelmingly degraded or improved.

  11. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a , and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH , we used a yeast ( Saccharomyces cerevisiae ) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant ( soc1-6 ) showed an accelerated yellowing phenotype, whereas those of SOC1 -overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis ( Arabidopsis thaliana ) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES ( SAGs ) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis. © 2017 American Society of Plant Biologists. All

  12. Correlation of electronic carotenoid-chlorophyll interactions and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants

    International Nuclear Information System (INIS)

    Liao, Pen-Nan; Bode, Stefan; Wilk, Laura; Hafi, Nour; Walla, Peter J.

    2010-01-01

    The aggregation dependent correlation between fluorescence quenching and the electronic carotenoid-chlorophyll interactions, φ Coupling Car S 1 -Chl , as measured by comparing chlorophyll fluorescence observed after two- and one-photon excitation, has been investigated using native LHC II samples as well as mutants lacking Chl 2 and Chl 13. For native LHC II the same linear correlation between φ Coupling Car S 1 -Chl and the fluorescence quenching was observed as previously reported for the pH and Zea-dependent quenching of LHC II . In order to elucidate which carotenoid-chlorophyll pair might dominate this correlation we also investigated the mutants lacking Chl 2 and Chl 13. However, also with these mutants the same linear correlation as for native LHC II was observed. This provides indication that these two chlorophylls play only a minor role for the observed effects. Nevertheless, we also conclude that this does not exclude that their neighboured carotenoids, lutein 1 and neoxanthin, might interact electronically with other chlorophylls close by.

  13. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis

    Directory of Open Access Journals (Sweden)

    RICARDO I TEJOS

    2010-01-01

    Full Text Available The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  14. Impact of petrochemicals on the photosynthesis of Halophila ovalis using chlorophyll fluorescence

    International Nuclear Information System (INIS)

    Ralph, P.J.; Burchett, M.D.

    1998-01-01

    Laboratory-cultured Halophila ovalis showed tolerance to petrochemical exposure up to 1% (w/v) solution of Bass Strait crude oil, an oil dispersant (Corexit 9527) and a mixture of crude oil and dispersant. Quantum yield, as measured by chlorophyll fluorescence, was the most sensitive measure of the photosynthetic processes affected by petrochemical. The results indicated clearly that chlorophyll fluorescence was effective at monitoring the onset and development of stress and recovery of H. ovalis when exposed to crude oil, dispersant and a mixture of the two compounds. Photosynthetic pigment content generally confirmed the chlorophyll fluorescence response; however, several anomalies occurred. (author)

  15. Magnetic field dependence of the current flowing in the spin-coated chlorophyll thin films

    Science.gov (United States)

    Aji, J. R. P.; Kusumandari; Purnama, B.

    2018-03-01

    The magnetic dependence of the current flowing in the spin coated chlorophyll films on a patterned Cu PCB substrate has been presented. Chlorophyll was isolated from Spirulina sp and deposited by spin coated methods. The reducing of current by the change of magnetic field (magneto conductance effect) was performed by inducing the magnetic field parallel to the inplane of film at room temp. The magnetoconductance ratio decreases as the increase of voltage. It was indicated that the origin of carrier charge in chlorophyll films should be different with the carrier charge injection (electron).

  16. Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants

    International Nuclear Information System (INIS)

    Rochalska, M.

    2005-01-01

    Chlorophyll content in plant leaves is correlated with the yield and nitrogen content in plants. Non-destructive investigations of chlorophyll content in leaves of 3 varieties of sugar beet grown from seeds revealed that a low frequent magnetic field, acting independently or in combination with other methods of seed improvement, increased chlorophyll content in leaves of the investigated plants. The treatment with the magnetic field increased nitrogen content in the examined plants. The effect was not connected with environmental conditions during vegetation seasons. (author)

  17. Analysis of chlorophyll mutations induced by γ-rays in barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan; Chen Qiufang

    1991-06-01

    Thirty varieties of dormant barley seeds were irradiated with 137 Cs γ-rays. Dose-effect relations of chlorophyll mutation frequency in M 2 seedling and differences resulting from cultured types or radiosensitive types were investigated. Experimental results show that the relations between chlorophyll mutation frequency and doses can be fitted by a linear regression equation Y = A + BX. According to analysis of covariance, there is no considerable difference in various cultured types, but the difference of five different radiosensitive types is remarkable. The sensitive and intermediate types need much lower doses than other types to induce maximum chlorophyll mutation

  18. Electron transfer reactions involving porphyrins and chlorophyll a

    International Nuclear Information System (INIS)

    Neta, P.; Scherz, A.; Levanon, H.

    1979-01-01

    Electron transfer reactions involving porphyrins (P) and quinones (Q) have been studied by pulse radiolysis. The porphyrins used were tetraphenylporphyrin (H 2 TPP), its tetracarboxy derivative (H 2 TCPP), the sodium and zinc compounds (Na 2 TPP and ZnTPP), and chlorophyll a (Chl a). These compounds were found to be rapidly reduced by electron transfer from (CH 3 ) 2 CO - . Reduction by (CH 3 ) 2 COH was rapid in aqueous solutions but relatively slow in i-PrOH solutions. Transient spectra of the anion radicals were determined and, in the case of H 2 TCPP - ., a pK = 9.7 was derived for its protonation. Electron-transfer reactions from the anion radical of H 2 TCPP to benzoquinone, duroquinone, 9,10-anthraquinone 2-sulfonate, and methylviologen occur in aqueous solutions with rate constants approx. 10 7 -10 9 M -1 s -1 which depend on the pH and the quinone reduction potential. Reactions of Na 2 TPP - ., ZnTPP - ., and Chl a - . with anthraquinone in basic i-PrOH solutions occur with rate constants approx. 10 9 M -1 s -1 . The spectral changes associated with these electron-transfer reactions as observed over a period of approx. 1 ms indicated, in some cases, the formation of an intermediate complex [P...Q - .]. 8 figures, 2 tables

  19. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant.

    Science.gov (United States)

    Sakowska, Karolina; Alberti, Giorgio; Genesio, Lorenzo; Peressotti, Alessandro; Delle Vedove, Gemini; Gianelle, Damiano; Colombo, Roberto; Rodeghiero, Mirco; Panigada, Cinzia; Juszczak, Radosław; Celesti, Marco; Rossini, Micol; Haworth, Matthew; Campbell, Benjamin W; Mevy, Jean-Philippe; Vescovo, Loris; Cendrero-Mateo, M Pilar; Rascher, Uwe; Miglietta, Franco

    2018-03-02

    The photosynthetic, optical, and morphological characteristics of a chlorophyll-deficient (Chl-deficient) "yellow" soybean mutant (MinnGold) were examined in comparison with 2 green varieties (MN0095 and Eiko). Despite the large difference in Chl content, similar leaf photosynthesis rates were maintained in the Chl-deficient mutant by offsetting the reduced absorption of red photons by a small increase in photochemical efficiency and lower non-photochemical quenching. When grown in the field, at full canopy cover, the mutants reflected a significantly larger proportion of incoming shortwave radiation, but the total canopy light absorption was only slightly reduced, most likely due to a deeper penetration of light into the canopy space. As a consequence, canopy-scale gross primary production and ecosystem respiration were comparable between the Chl-deficient mutant and the green variety. However, total biomass production was lower in the mutant, which indicates that processes other than steady state photosynthesis caused a reduction in biomass accumulation over time. Analysis of non-photochemical quenching relaxation and gas exchange in Chl-deficient and green leaves after transitions from high to low light conditions suggested that dynamic photosynthesis might be responsible for the reduced biomass production in the Chl-deficient mutant under field conditions. © 2018 John Wiley & Sons Ltd.

  20. An evaluation of the problems of chlorophyll retrieval from ocean colour, for case 2 waters

    Digital Repository Service at National Institute of Oceanography (India)

    Sathyendranath, S.; Prieur, L.; Morel, A.

    A reflectance model is presented that takes into account the spectral signatures of phytoplankton, dissolved organic matter and non-chlorophyllous particles. The model is validated by comparison with observed reflectance spectra. It is then used...

  1. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, Indonesia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  2. Chlorophyll-a, Aqua MODIS, OSU DB, 0.0125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  3. Chlorophyll-a, Aqua MODIS, NPP, 0.025 degrees, Pacific Ocean, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  4. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  5. Chlorophyll-a, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  6. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, East US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  7. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, West US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  8. TRACKING CHANGES IN CHLOROPHYLL AND CAROTENOIDS IN THE PRODUCTION PROCESS OF FROZEN SPINACH PURÉE

    Directory of Open Access Journals (Sweden)

    Andrea Mendelová

    2014-02-01

    Full Text Available Spinach is in the professional and general public considered highly nutritious vegetable with many beneficial effects on human health. It is a rich source of antioxidant active substances, especially chlorophyll, carotenoids, flavonoids and minerals especially zinc and copper. This work studies the changes of chlorophyll and carotenoids that occur after mass production technology of freezing at -37 °C. Before freezing was used blanching operation. In this work we used a variety Boeing, Boa, Beaver, Hudson and Chica. The highest content of all monitored parameters are found in fresh leaves of sampled Hudson. We found that within the processing decreases chlorophyll in 16.6%, 13.8% of chlorophyll b and carotenoids of 6.15%. This decrease was in all cases statistically significant.

  9. Seasonal variability of sea surface chlorophyll-a of waters around ...

    Indian Academy of Sciences (India)

    days during 1978--1986 are processed to produce sea surface chlorophyll maps ... shallow water areas, in particular waters in Palk Bay and Gulf of Mannar, should be carried out in order .... The circulation penetrates deeper, affecting the.

  10. Chlorophyll 'a' particulate organic carbon and suspended load from the mangrove areas of Cochin backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Sheeba, P.; Devi, K.S.; Balasubramanian, T.; Sankaranarayanan, V.N.

    Chlorophyll 'a' Particulate Organic Carbon and suspended load were estimated for one year from two distinct mangrove areas of Cochin backwaters, viz. Puthuvypeen and Nettoor. Environmental parameters like tau degrees C, S ppt and pH were also...

  11. HAAR TRANSFORM BASED ESTIMATION OF CHLOROPHYLL AND STRUCTURE OF THE LEAF

    OpenAIRE

    Abhinav Arora; R. Menaka; Shivangi Gupta; Archit Mishra

    2013-01-01

    In this paper, the health of a plant is estimated using various non-destructive Image Processing Techniques. Chlorophyll content was detected based on colour Image Processing. The Haar transform is applied to get size of leaf and the parameters.

  12. Comparison of chlorophyll in the Red Sea derived from MODIS-Aqua and in vivo fluorescence

    KAUST Repository

    Brewin, Robert J W; Raitsos, Dionysios E.; Pradhan, Yaswant; Hoteit, Ibrahim

    2013-01-01

    The Red Sea is a unique marine environment but relatively unexplored. The only available long-term biological dataset at large spatial and temporal scales is remotely-sensed chlorophyll observations (an index of phytoplankton biomass) derived using

  13. Effect of gamma radiation on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Martin Moreno, C.; Fernandez Gonzalez, J.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first b chlorophyll affected to a greater extent than a chlorophyll. Net photosynthesis and respiration decline throughout the time of the observation after irradiation, this depressing effect being much more remarkable for the first one. Met photosynthesis inhibition levels of about 30% are got only five hours post irradiation at a dose of 5000 Gy. Radio estimation by low doses, although obtained in some cases for tho 10 Gy dose, has not been statistically confirmed. (Author) 23 refs

  14. Chlorophyll Detection and Mapping of Shallow Water Impoundments Using Image Spectrometry

    International Nuclear Information System (INIS)

    Artigas, F.; Pechmann, I.; Marti, A.; Yao, N.; Pechmann, I.

    2008-01-01

    There exists a common perception that chlorophyll a concentrations in tidal coastal waters are unsuitable to be captured by remote sensing techniques because of high water turbidity. In this study, we use band index measurements to separate active chlorophyll pigments from other constituents in the water. Published single- and multiband spectral indices are used to establish a relationship between algal chlorophyll concentration and reflectance data. We find an index which is suitable to map chlorophyll gradients in the impoundments, ditches, and associated waterways of the Hackensack Meadow lands (NJ, USA). The resulting images clearly depict the spatial distribution of plant pigments and their relationship with the biological conditions of the waters in the estuary. Since these biological conditions are often determined by land usage, the methods in this paper provide a simple tool to address water quality management issues in fragmented urban estuaries.

  15. Are the Satellite-Observed Narrow, Streaky Chlorophyll Filaments Locally Intensified by the Submesoscale Processes?

    Science.gov (United States)

    2015-11-05

    HIS I’OR’A CANCELS AND SUPERSEOFS Al l PRFV•OUS VERSIONS ARE THE SATELLITE-OBSERVED NARROW, STREAKY CHLOROPHYLL FILAMENTS LOCALLY INTENSIFIED BY...AUGUST 2003 cold, dense jeto C 17 16 15 14 13 122.4W 122W 122.4W 122W warm, anticyclonic eddy CHLOROPHYLL 122.4W 122W 122.4W 122W 122.4W 122W filament...122.4W 122W mg/m 3 10 4 2 1 0.4 0.2 Figure 1. MODIS-Aqua SST and Chlorophyll a images for August 2003. Black lines on MODIS SST and Chlorophyll a

  16. Mutagentic effects of aerospace on Poa pratensis L.. Pt.2: Photosynthesis characters and chlorophyll contents

    International Nuclear Information System (INIS)

    Han Lei; Sun Zhenyuan; Ju Guansheng; Qian Yongqiang; Li Yinfeng; Peng Zhenhua

    2005-01-01

    The dry seeds of Poa pratensis L. 'Nassau' were carried by 'Shenzhou No.3' and three mutants were screened based on presentational characters from the treated plants and asexual reproduced them as PM 1 , PM 2 and PM 3 . The effects of the space environment on the photosynthesis characters and the contents of chlorophyll of the plants were investigated. Compared to CK, the contents of the chlorophyll a and b were reduced both in PM 1 and PM 3 , and the photosynthetic ability also decreased. The content of the chlorophyll in PM 2 increased greatly, but the ratio of the chlorophyll a/b was reduced, and the apparent quantum efficiency and the photosynthetic ability also decreased. The approximately CO 2 saturation point of the three mutants were higher than CK, but the CO 2 compensation points showed no difference between the mutants and CK. The carboxylation efficiency was PM 2 3 1 . (authors)

  17. An FTIR study on the chlorophyll and apoprotein aggregation states in LHCII due to solvent effects

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2012-07-01

    Full Text Available Photosynthesis provides us with the most abundant and efficient light-harvesting systems found in nature. The photosynthetic process is very much dependent on the aggregation state of the chlorophylls and secondary conformational structure...

  18. Relationships between Concentrations of Phytoplankton Chlorophyll a and Total Nitrogen in Ten U.S. Estuaries

    Science.gov (United States)

    This presentation focuses on the summertime response of phytoplankton chlorophyll to nitrogen concentrations in the upper water columns of ten U.S. estuaries. Using publicly available data from monitoring programs, regression relationships have been developed between summer surfa...

  19. VIIRSN Level-3 Standard Mapped Image, Chlorophyll a, Daily, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from the NPP -Suonomi Spacecraft. Measurements are gathered by the VIIRS instrument carried aboard the...

  20. Five Year Mean Surface Chlorophyll Estimates in the Northern Gulf of Mexico for 2005 through 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These images were created by combining the mean surface chlorophyll estimates to produce seasonal representations for winter, spring, summer and fall. Winter...

  1. Subsurface chlorophyll maxima in the north-western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; Aswanikumar, V.

    of thermocline suggests that the formation of the subsurface maximum is influencEd. by the presence of seasonal thermocline. Further the subsurface chlorophyll maximum is noticed within the depth ranges of ammonium maximum and nitracline, suggesting...

  2. Chlorophyll-a, Terra MODIS, OSU DB, 0.0125 degrees, West US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Terra satellite. Measurements are gathered by the Moderate Resolution Imaging...

  3. Extraction of chlorophyll from pandan leaves using ethanol and mass transfer study

    Directory of Open Access Journals (Sweden)

    Putra Meilana Dharma

    2017-01-01

    Full Text Available Green pigments are used in many industrial branches including food, drinks, soap and cosmetics. Chlorophyll can substitute synthetic dyes which may affect health. Chlorophyll can be extracted from pandan leaves; the pandan crop grows in many tropical areas. The effects of temperature, 30–70°C and agitation speed, 100–400 rpm on chlorophyll extraction from pandan leaves, using ethanol and the evaluation of mass transfer coefficient, using dimensionless analysis were investigated. The optimal conditions of extraction was obtained at 60°C and 300 rpm; the chlorophyll concentration was 107.1 mg L-1. The volumetric mass transfer coefficient increased with the temperature and agitation speed. Determination of volumetric mass transfer coefficient and dimensionless correlations are useful for further process development or industrial applications.

  4. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    Science.gov (United States)

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  5. Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model

    Science.gov (United States)

    Hilker, Thomas; Galvão, Lênio Soares; Aragão, Luiz E. O. C.; de Moura, Yhasmin M.; do Amaral, Cibele H.; Lyapustin, Alexei I.; Wu, Jin; Albert, Loren P.; Ferreira, Marciel José; Anderson, Liana O.; dos Santos, Victor A. H. F.; Prohaska, Neill; Tribuzy, Edgard; Barbosa Ceron, João Vitor; Saleska, Scott R.; Wang, Yujie; de Carvalho Gonçalves, José Francisco; de Oliveira Junior, Raimundo Cosme; Cardoso Rodrigues, João Victor Figueiredo; Garcia, Maquelle Neves

    2017-06-01

    As a preparatory study for future hyperspectral missions that can measure canopy chemistry, we introduce a novel approach to investigate whether multi-angle Moderate Resolution Imaging Spectroradiometer (MODIS) data can be used to generate a preliminary database with long-term estimates of chlorophyll. MODIS monthly chlorophyll estimates between 2000 and 2015, derived from a fully coupled canopy reflectance model (ProSAIL), were inspected for consistency with eddy covariance fluxes, tower-based hyperspectral images and chlorophyll measurements. MODIS chlorophyll estimates from the inverse model showed strong seasonal variations across two flux-tower sites in central and eastern Amazon. Marked increases in chlorophyll concentrations were observed during the early dry season. Remotely sensed chlorophyll concentrations were correlated to field measurements (r2 = 0.73 and r2 = 0.98) but the data deviated from the 1:1 line with root mean square errors (RMSE) ranging from 0.355 μg cm-2 (Tapajós tower) to 0.470 μg cm-2 (Manaus tower). The chlorophyll estimates were consistent with flux tower measurements of photosynthetically active radiation (PAR) and net ecosystem productivity (NEP). We also applied ProSAIL to mono-angle hyperspectral observations from a camera installed on a tower to scale modeled chlorophyll pigments to MODIS observations (r2 = 0.73). Chlorophyll pigment concentrations (ChlA+B) were correlated to changes in the amount of young and mature leaf area per month (0.59 ≤ r2 ≤ 0.64). Increases in MODIS observed ChlA+B were preceded by increased PAR during the dry season (0.61 ≤ r2 ≤ 0.62) and followed by changes in net carbon uptake. We conclude that, at these two sites, changes in LAI, coupled with changes in leaf chlorophyll, are comparable with seasonality of plant productivity. Our results allowed the preliminary development of a 15-year time series of chlorophyll estimates over the Amazon to support canopy chemistry studies using future

  6. DAYTIME VARIATIONS OF CHLOROPHYLL A FLUORESCENCE IN PAU D'ALHO SEEDLINGS

    OpenAIRE

    Bacarin, Marcos Antonio; Martinazzo, Emanuela Garbin; Cassol, Daniela; Falqueto, Antelmo Ralph; Silva, Diolina Moura

    2016-01-01

    ABSTRACT Analysis of transient and modulated fluorescence of chlorophyll a were made at one-hour intervals during an eight-hour period starting at 07:30h aiming to study mechanisms of photoprotection against high radiation and temperature in Gallesia integrifolia plants. Seeds were germinated inside plastic pots containing soil as substrate. At 120 days after emergence, chlorophyll fluorescence measurements were performed using Handy-PEA and FMS2 fluorometers. During the course of a day, an i...

  7. Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton

    OpenAIRE

    McKee, D.; Röttgers, R.; Neukermans, G.; Calzado, V.S.; Trees, C.; Ampolo-Rella, M.; Neil, C.; Cunningham, A.

    2014-01-01

    Understanding variability in the chlorophyll-specific absorption of marine phytoplankton, aph*Chl (λ), is essential for primary production modelling, calculation of underwater light field characteristics, and development of algorithms for remote sensing of chlorophyll concentrations. Previous field and laboratory studies have demonstrated significant apparent variability in aph*Chl (λ) for natural samples and algal cultures. However, the potential impact of measurement uncertain...

  8. Characterization of [8-ethyl]-chlorophyll c3 from Emiliania huxleyi.

    Science.gov (United States)

    Álvarez, Susana; Zapata, Manuel; Garrido, José L; Vaz, Belén

    2012-06-04

    We report herein the isolation and complete characterization of a member of the chlorophyll c family, designated as [8-ethyl]-chlorophyll c(3) ([8-ethyl]-chl c(3)). Structural elucidation of this pigment rested on the analysis of mono- and bidimensional NMR, UV-VIS spectroscopy and ESI-MS data, and the configuration at the 13(2) position on chiral HPLC analysis.

  9. PIXE analysis of trace elements in relation to chlorophyll concentration in Plantago ovata Forsk

    International Nuclear Information System (INIS)

    Saha, Priyanka; Sen Raychaudhuri, Sarmistha; Chakraborty, Anindita; Sudarshan, Mathummal

    2010-01-01

    Plantago ovata Forsk - an economically important medicinal plant - was analyzed for trace elements and chlorophyll in a study of the effects of gamma radiation on physiological responses of the seedlings. Proton-induced X-ray emission (PIXE) technique was used to quantify trace elements in unirradiated and gamma-irradiated plants at the seedling stage. The experiments revealed radiation-induced changes in the trace element and chlorophyll concentrations.

  10. Trends in Ocean Colour and Chlorophyll Concentration from 1889 to 2000, Worldwide

    Science.gov (United States)

    Wernand, Marcel R.; van der Woerd, Hendrik J.; Gieskes, Winfried W. C.

    2013-01-01

    Marine primary productivity is an important agent in the global cycling of carbon dioxide, a major ‘greenhouse gas’, and variations in the concentration of the ocean's phytoplankton biomass can therefore explain trends in the global carbon budget. Since the launch of satellite-mounted sensors globe-wide monitoring of chlorophyll, a phytoplankton biomass proxy, became feasible. Just as satellites, the Forel-Ule (FU) scale record (a hardly explored database of ocean colour) has covered all seas and oceans – but already since 1889. We provide evidence that changes of ocean surface chlorophyll can be reconstructed with confidence from this record. The EcoLight radiative transfer numerical model indicates that the FU index is closely related to chlorophyll concentrations in open ocean regions. The most complete FU record is that of the North Atlantic in terms of coverage over space and in time; this dataset has been used to test the validity of colour changes that can be translated to chlorophyll. The FU and FU-derived chlorophyll data were analysed for monotonously increasing or decreasing trends with the non-parametric Mann-Kendall test, a method to establish the presence of a consistent trend. Our analysis has not revealed a globe-wide trend of increase or decrease in chlorophyll concentration during the past century; ocean regions have apparently responded differentially to changes in meteorological, hydrological and biological conditions at the surface, including potential long-term trends related to global warming. Since 1889, chlorophyll concentrations have decreased in the Indian Ocean and in the Pacific; increased in the Atlantic Ocean, the Mediterranean, the Chinese Sea, and in the seas west and north-west of Japan. This suggests that explanations of chlorophyll changes over long periods should focus on hydrographical and biological characteristics typical of single ocean regions, not on those of ‘the’ ocean. PMID:23776435

  11. Non-invasive method for in vivo detection of chlorophyll precursors

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Khrouchtchova, Anastassia; Stenbæk, Anne

    2009-01-01

    Traditionally chlorophyll (Chl) and Chl precursors have been studied in vitro or in leaf tissue at low temperature. These methods are destructive and make it impossible to work with the same individual plant later on. In this paper we present a method for in vivo detection of Chl and its precursors...... is compared to current methods. Furthermore, we report on optimization of the spectral scanning method with the aim to minimize the excitation light-evoked photo-conversion of the chlorophyll precursors....

  12. New evidence for primordial action site of Fluazifop-P-butyl on Acanthospermum hispidum seedlings: From the effects on chlorophyll fluorescence characteristics and histological observation.

    Science.gov (United States)

    Shang, Yuhong; Yang, Congjun; Liu, Zhihang; Song, Jiqing; Li, Pingliang; Li, Lingxu; Zhou, Fei; Xin, Hua; Wan, Fanghao; Matsumoto, Hiroshi; Luo, Xiaoyong

    2017-10-01

    Acanthospermum hispidum DC, an Asteraceae weed species, was very susceptible to fluazifop-P-butyl, but tolerant to other aryloxyphenoxypropionate herbicides, such as haloxyfop-P-methyl. However, other Asteraceae weeds including Bidens pilosa were all tolerant to fluazifop-P-butyl. Membrane lipid peroxidation by increasing the levels of reactive oxygen species (ROS) was proposed as an action mechanism of fluazifop-P-butyl in A. hispidum. To further clarify the primordial action site of fluazifop-P-butyl in this species, the effects on chlorophyll fluorescence characteristics and cytohistology of apical meristems were studied. Chlorophyll fluorescence characteristics (CFC) in sensitive A. hispidum seedlings were markedly affected by 10μM fluazifop-P-butyl, with the dark fluorescence yield (Fo), maximal fluorescence yield (Fm), maximal PS II quantum yield (Fv/Fm), effective photosystem II (PS II) quantum yield [Y(II)], and quantum yield of regulated energy dissipation [Y(NPQ)] declining, quantum yield of nonregulated energy dissipation [Y(NO)] rising, but these measures were not affected in Bidens pilosa. The effects of fluazifop-P-butyl on chlorophyll fluorescence properties were observed on the growing point before the mature leaves by about 4-6h. Haloxyfop-P-methyl, a control herbicide, had no effects on CFC of either A. hispidum or B. pilosa. In addition, damage to apical meristem cells of A. hispidum was observed at 6 HAT prior to changes in chlorophyll fluorescence parameters suggesting that the primary action site of fluazifop-P-butyl in this species is in the apical meristem and the effects on CFC may be the results of secondary action. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Constitutive and ligand-induced TCR degradation

    DEFF Research Database (Denmark)

    von Essen, Marina; Bonefeld, Charlotte Menné; Siersma, Volkert

    2004-01-01

    Modulation of TCR expression levels is a central event during T cell development and activation, and it probably plays an important role in adjusting T cell responsiveness. Conflicting data have been published on down-regulation and degradation rates of the individual TCR subunits, and several di...... to the lysosomes. Similar results were obtained in studies of primary human Vbeta8+ T cells stimulated with superantigen. Based on these results, the simplest model for TCR internalization, sorting, and degradation is proposed.......Modulation of TCR expression levels is a central event during T cell development and activation, and it probably plays an important role in adjusting T cell responsiveness. Conflicting data have been published on down-regulation and degradation rates of the individual TCR subunits, and several...... divergent models for TCR down-regulation and degradation have been suggested. The aims of this study were to determine the rate constants for constitutive and ligand-induced TCR degradation and to determine whether the TCR subunits segregate or are processed as an intact unit during TCR down...

  14. Genetic Analysis and Molecular Mapping of a Novel Chlorophyll-Deficit Mutant Gene in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-qun HUANG

    2008-03-01

    Full Text Available A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chl11(t.

  15. Contribution of Co2+ in increasing chlorophyll a concentration of Nannochloropsis salina in controlled Conwy medium

    Science.gov (United States)

    Hala, Y.; Taba, P.; Suryati, E.; Kasih, P.; Firman, N. F.

    2018-03-01

    A research in determining the contribution of Co2+ on the increase of chlorophyll a concentration of Nannochloropsis salina has been caried out. The cultivation of N. salina was conducted in the Conwy medium with a salinity of 5%o and 25%o and various Co2+ concentration (2, 4, and 8 ppm). In this research, Co2+ was exposed early in the cultivation of N. salina. The growth of N. salina was observed daily by counting the number of populations using a haemocytometer while the chlorophyll a concentration was determined by a Uv-Vis spectrophotometer. The results showed that the growth of N. salina in the control was higher than that in the medium containing Co2+. The optimum growth time was achieved on 15th days (5%) and 8th days (25%). In the cultivation medium with a salinity of 5%, Co2+ with a concentration of 2 ppm increased the chlorophyll a level while Co2+ with concentrations of 4 and 8 ppm decreased it. In the medium of cultivation with a salinity of 25%, the increase in chlorophyll a level was observed at Co2+ concentrations of 2 and 4 ppm whereas the decrease in chlorophyl a level was given at a concentration of 8 ppm. It can be concluded that at low concentrations, Co2+ increased the concentration of chlorophyll a in N. salina.

  16. Spatial-temporal variability of leaf chlorophyll and its relationship with cocoa yield

    Directory of Open Access Journals (Sweden)

    Caique C. Medauar

    Full Text Available ABSTRACT The objective of this study was to evaluate the spatial-temporal variability of leaf chlorophyll index and its relationship with cocoa yield. The experiment was carried out in an experimental area of cocoa production located in Ilhéus, Bahia State, Brazil. Leaf chlorophyll content was measured in September, October, January, February, March and April in the 2014/2015 season, at each sampling point of a regular grid by using a portable chlorophyll meter. Under the same conditions, yield was evaluated and the data were submitted to descriptive statistics and a linear correlation study. Geostatistical analysis was used to determine and quantify the spatial and temporal variability of leaf chlorophyll index and yield. Leaf chlorophyll index varied over the period evaluated, but the months of February, March and April showed no spatial dependence in the study area, indicating absence of temporal stability. Cocoa monthly yield, except in January, presented high spatial variability. Under the conditions of this study, it was not possible to establish a relationship between leaf chlorophyll index and cocoa yield.

  17. Estimating chlorophyll content of spartina alterniflora at leaf level using hyper-spectral data

    Science.gov (United States)

    Wang, Jiapeng; Shi, Runhe; Liu, Pudong; Zhang, Chao; Chen, Maosi

    2017-09-01

    Spartina alterniflora, one of most successful invasive species in the world, was firstly introduced to China in 1979 to accelerate sedimentation and land formation via so-called "ecological engineering", and it is now widely distributed in coastal saltmarshes in China. A key question is how to retrieve chlorophyll content to reflect growth status, which has important implication of potential invasiveness. In this work, an estimation model of chlorophyll content of S. alterniflora was developed based on hyper-spectral data in the Dongtan Wetland, Yangtze Estuary, China. The spectral reflectance of S. alterniflora leaves and their corresponding chlorophyll contents were measured, and then the correlation analysis and regression (i.e., linear, logarithmic, quadratic, power and exponential regression) method were established. The spectral reflectance was transformed and the feature parameters (i.e., "san bian", "lv feng" and "hong gu") were extracted to retrieve the chlorophyll content of S. alterniflora . The results showed that these parameters had a large correlation coefficient with chlorophyll content. On the basis of the correlation coefficient, mathematical models were established, and the models of power and exponential based on SDb had the least RMSE and larger R2 , which had a good performance regarding the inversion of chlorophyll content of S. alterniflora.

  18. Dustfall Effect on Hyperspectral Inversion of Chlorophyll Content - a Laboratory Experiment

    Science.gov (United States)

    Chen, Yuteng; Ma, Baodong; Li, Xuexin; Zhang, Song; Wu, Lixin

    2018-04-01

    Dust pollution is serious in many areas of China. It is of great significance to estimate chlorophyll content of vegetation accurately by hyperspectral remote sensing for assessing the vegetation growth status and monitoring the ecological environment in dusty areas. By using selected vegetation indices including Medium Resolution Imaging Spectrometer Terrestrial Chlorophyll Index (MTCI) Double Difference Index (DD) and Red Edge Position Index (REP), chlorophyll inversion models were built to study the accuracy of hyperspectral inversion of chlorophyll content based on a laboratory experiment. The results show that: (1) REP exponential model has the most stable accuracy for inversion of chlorophyll content in dusty environment. When dustfall amount is less than 80 g/m2, the inversion accuracy based on REP is stable with the variation of dustfall amount. When dustfall amount is greater than 80 g/m2, the inversion accuracy is slightly fluctuation. (2) Inversion accuracy of DD is worst among three models. (3) MTCI logarithm model has high inversion accuracy when dustfall amount is less than 80 g/m2; When dustfall amount is greater than 80 g/m2, inversion accuracy decreases regularly and inversion accuracy of modified MTCI (mMTCI) increases significantly. The results provide experimental basis and theoretical reference for hyperspectral remote sensing inversion of chlorophyll content.

  19. Chlorophyll and carbohydrates in Arachis pintoi plants under influence of water regimes and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Rita Manuele Porto Sales

    2013-06-01

    Full Text Available In this experiment the chlorophyll and carbohydrate contents of Arachis pintoi were evaluated to verify if the presence of nitrogen in the soil could contribute to the effectiveness of the establishment of this legume. The design was completely randomized, in a 4 × 4 factorial arrangement, with four N rates (0, 40, 80 and 120 kg ha-1 and four irrigation levels (25, 50, 75 and 100% of field capacity, with four replications. The biochemical evaluations of chlorophylls a and b and total chlorophyll and total soluble sugars, sucrose and starch were performed. The highest contents of chlorophyll a and b and total chlorophyll in leaves were found at the dose of 120 kg ha-1. The water regime of 25% of field capacity was responsible for the lowest content of reducing sugars and total soluble sugars in leaves, stolons and roots. In the roots, the sucrose contents were higher in these conditions, which can be associated with a slight tolerance of the plant to water stress. The water deficiency was responsible for the decrease of reducing sugars and total N in the whole plant and positively influenced the levels of chlorophyll and sugars in the stolon, promoting growth, especially of shoots, at the beginning of establishment.

  20. Spatiotemporal Variation in Mangrove Chlorophyll Concentration Using Landsat 8

    Directory of Open Access Journals (Sweden)

    Julio Pastor-Guzman

    2015-11-01

    Full Text Available There is a need to develop indicators of mangrove condition using remotely sensed data. However, remote estimation of leaf and canopy biochemical properties and vegetation condition remains challenging. In this paper, we (i tested the performance of selected hyperspectral and broad band indices to predict chlorophyll concentration (CC on mangrove leaves and (ii showed the potential of Landsat 8 for estimation of mangrove CC at the landscape level. Relative leaf CC and leaf spectral response were measured at 12 Elementary Sampling Units (ESU distributed along the northwest coast of the Yucatan Peninsula, Mexico. Linear regression models and coefficients of determination were computed to measure the association between CC and spectral response. At leaf level, the narrow band indices with the largest correlation with CC were Vogelmann indices and the MTCI (R2 > 0.5. Indices with spectral bands around the red edge (705–753 nm were more sensitive to mangrove leaf CC. At the ESU level Landsat 8 NDVI green, which uses the green band in its formulation explained most of the variation in CC (R2 > 0.8. Accuracy assessment between estimated CC and observed CC using the leave-one-out cross-validation (LOOCV method yielded a root mean squared error (RMSE = 15 mg·cm−2, and R2 = 0.703. CC maps showing the spatiotemporal variation of CC at landscape scale were created using the linear model. Our results indicate that Landsat 8 NDVI green can be employed to estimate CC in large mangrove areas where ground networks cannot be applied, and mapping techniques based on satellite data, are necessary. Furthermore, using upcoming technologies that will include two bands around the red edge such as Sentinel 2 will improve mangrove monitoring at higher spatial and temporal resolutions.

  1. Chlorophyll f distribution and dynamics in cyanobacterial beachrock biofilms.

    Science.gov (United States)

    Trampe, Erik; Kühl, Michael

    2016-12-01

    Chlorophyll (Chl) f, the most far-red (720-740 nm) absorbing Chl species, was discovered in cyanobacterial isolates from stromatolites and subsequently in other habitats as well. However, the spatial distribution and temporal dynamics of Chl f in a natural habitat have so far not been documented. Here, we report the presence of Chl f in cyanobacterial beachrock biofilms. Hyperspectral imaging on cross-sections of beachrock from Heron Island (Great Barrier Reef, Australia), showed a strong and widely distributed signature of Chl f absorption in an endolithic layer below the dense cyanobacterial surface biofilm that could be localized to aggregates of Chroococcidiopsis-like unicellular cyanobacteria packed within a thick common sheath. High-pressure liquid chromatography-based pigment analyses showed in situ ratios of Chl f to Chl a of 5% in brown-pigmented zones of the beachrock, with lower ratios of ~0.5% in the black- and pink-pigmented biofilm zones. Enrichment experiments with black beachrock biofilm showed stimulated synthesis of Chl f and Chl d when grown under near-infrared radiation (NIR; 740 nm), with a Chl f to Chl a ratio increasing 4-fold to 2%, whereas the Chl d to Chl a ratio went from 0% to 0.8%. Enrichments grown under white light (400-700 nm) produced no detectable amounts of either Chl d or Chl f. Beachrock cyanobacteria thus exhibited characteristics of far-red light photoacclimation, enabling Chl f -containing cyanobacteria to thrive in optical niches deprived of visible light when sufficient NIR is prevalent. © 2016 Phycological Society of America.

  2. Seasonality in sub-surface chlorophyll maxima in the Arabian Sea: Detection by IRS-P4/OCM and implication of it to primary productivity

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Parab, S.G.; Dwivedi, R.M.

    various seasons. During November at St. 1 surface chlorophyll a was 1.503 mgm-3and subsurface chlorophyll maxima was 12.692 mgm-3. Similarly, at St. 13 surface chlorophyll a was 0.584 mgm-3and surface chlorophyll maxima was 8.517 mgm-3. During upwelling...

  3. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  4. Maintenance Operations Degradation of Airfield Pavement Markings

    Science.gov (United States)

    2012-03-01

    DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this article are those of the author and...DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GEM/ENV/12-M09 MAINTENANCE OPERATIONS DEGRADATION OF...placement, color, and style (Federal Aviation Adminstration (FAA), 2010). However, regulations and standards do not make good asset management plans

  5. Stress-induced NQO1 controls stability of C/EBPα against 20S proteasomal degradation to regulate p63 expression with implications in protection against chemical-induced skin cancer.

    Science.gov (United States)

    Patrick, B A; Jaiswal, A K

    2012-10-04

    Previously, we have shown a role of cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) in the stabilization of p63 against 20S proteasomal degradation resulting in thinning of the epithelium and chemical-induced skin cancer (Oncogene (2011) 30, 1098-1107). Current studies have demonstrated that NQO1 control of CCAAT-enhancer binding protein (C/EBPα) against 20S proteasomal degradation also contributes to the upregulation of p63 expression and protection. Western and immunohistochemistry analysis revealed that disruption of the NQO1 gene in mice and mouse keratinocytes led to degradation of C/EBPα and loss of p63 gene expression. p63 promoter mutagenesis, transfection and chromatin immunoprecipitation assays identified a C/EBPα-binding site between nucleotide position -185 and -174 that bound to C/EBPα and upregulated p63 gene expression. Co-immunoprecipitation and immunoblot analysis demonstrated that 20S proteasomes directly interacted and degraded C/EBPα. NQO1 direct interaction with C/EBPα led to stabilization of C/EBPα against 20S proteasomal degradation. NQO1 protection of C/EBPα required binding of NADH with NQO1. Exposure of skin and keratinocytes to the chemical stress agent benzo(a)pyrene led to induction of NQO1 and stabilization of C/EBPα protein, resulting in an increase in p63 RNA and protein in wild-type but not in NQO1-/- mice. Collectively, the current data combined with previous data suggest that stress induction of NQO1 through both stabilization of C/EBPα and increase in p63 and direct stabilization of p63 controls keratinocyte differentiation, leading to protection against chemical-induced skin carcinogenesis. The studies are significant as 2-4% human individuals are homozygous and 23% are heterozygous for the NQO1P187S mutation and might be susceptible to stress-induced skin diseases.

  6. Measuring solar induced chlorophyll fluorescence (SIF) in the Amazon rainforest

    Science.gov (United States)

    Kornfeld, A.; Stutz, J.; Berry, J. A.

    2016-12-01

    Measurement of solar induced chlorophyll fluorescence (SIF) has, in our hands, been fraught with missteps and puzzling problems. Here we describe lessons we have learned and the resulting novel system recently installed in the Amazon rainforest near Manaus, Brazil. The system is designed to measure light from 740 - 780 nm, enabling us to compare SIF computed from Fraunhofer lines in an optically transparent band of the atmosphere (745 - 759 nm) with SIF computed using the telluric O2A band (760 - 770 nm). Fraunhofer line analysis requires high optical resolution (better than 0.2 nm) to detect the relatively narrow lines, but we discovered that fiber-optic diffraction-grating spectrometers are sensitive to very small inhomogeneities in the lighting. Errors resulting from this autocorrelated but random noise were similar in magnitude to the SIF signal itself. Optical diffusers reduce this problem, leading to our final design: a sealed cylinder, dubbed Rotaprism, in which a rotatable prism selects whether light from upward- or downward-looking windows enters an axially-placed optical fiber. Cosine-correcting opal glass covering the windows not only solves the noise issue but also makes the measurements correspond to photon flux. Rotaprism also maximizes the amount of light reaching the spectrometer - maximizing the signal:noise ratio - by avoiding the need for lossy optical switches and fiber splitters. Rotaprism is driven by a pneumatic actuator that is controlled by electronic valves attached to a pressurized N2 source. The gas exhausts into the temperature-controlled spectrometer enclosure to help purge the optics. Finally, custom software provides fault-tolerant control and data acquisition, ensuring that measurements continue with little or no intervention at the remote field site despite unreliable power. Analysis of initial data demonstrates the advantage of Fraunhofer line SIF analysis: due to the atmosphere transparency in this band, the results are more

  7. Chlorophyll fluorescence response to water and nitrogen deficit

    Science.gov (United States)

    Cendrero Mateo, Maria del Pilar

    The increasing food demand as well as the need to predict the impact of warming climate on vegetation makes it critical to find the best tools to assess crop production and carbon dioxide (CO2) exchange between the land and atmosphere. Photosynthesis is a good indicator of crop production and CO2 exchange. Chlorophyll fluorescence (ChF) is directly related to photosynthesis. ChF can be measured at leaf-scale using active techniques and at field-scales using passive techniques. The measurement principles of both techniques are different. In this study, three overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF? ; Q2) which are the limits within which active and passive techniques are comparable?; and Q3) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? To address these questions, two main experiments were conducted: Exp1) Concurrent photosynthesis and ChF light-response curves were measured in camelina and wheat plants growing under (i) intermediate-light and (ii) high-light conditions respectively. Plant stress was induced by (i) withdrawing water, and (ii) applying different nitrogen levels; and Exp2) coincident active and passive ChF measurements were made in a wheat field under different nitrogen treatments. The results indicated ChF has a direct relationship with photosynthesis when water or nitrogen drives the relationship. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Also, the results showed that for leaf-average-values, active measurements can be used to better understand the daily and seasonal behavior of passive ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a

  8. Overview of Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space

    Science.gov (United States)

    Guanter, Luis; Zhang, Yongguang; Kohler, Philipp; Walther, Sophia; Frankenberg, Christian; Joiner, Joanna

    2016-01-01

    Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming

  9. Chlorophyll-a retrieval in the Philippine waters

    Science.gov (United States)

    Perez, G. J. P.; Leonardo, E. M.; Felix, M. J.

    2017-12-01

    Satellite-based monitoring of chlorophyll-a (Chl-a) concentration has been widely used for estimating plankton biomass, detecting harmful algal blooms, predicting pelagic fish abundance, and water quality assessment. Chl-a concentrations at 1 km spatial resolution can be retrieved from MODIS onboard Aqua and Terra satellites. However, with this resolution, MODIS has scarce Chl-a retrieval in coastal and inland waters, which are relevant for archipelagic countries such as the Philippines. These gaps on Chl-a retrieval can be filled by sensors with higher spatial resolution, such as the OLI of Landsat 8. In this study, assessment of Chl-a concentration derived from MODIS/Aqua and OLI/Landsat 8 imageries across the open, coastal and inland waters of the Philippines was done. Validation activities were conducted at eight different sites around the Philippines for the period October 2016 to April 2017. Water samples filtered on the field were processed in the laboratory for Chl-a extraction. In situ remote sensing reflectance was derived from radiometric measurements and ancillary information, such as bathymetry and turbidity, were also measured. Correlation between in situ and satellite-derived Chl-a concentration using the blue-green ratio yielded relatively high R2 values of 0.51 to 0.90. This is despite an observed overestimation for both MODIS and OLI-derived values, especially in turbid and coastal waters. The overestimation of Chl-a may be attributed to inaccuracies in i) remote sensing reflectance (Rrs) retrieval and/or ii) empirical model used in calculating Chl-a concentration. However, a good 1:1 correspondence between the satellite and in situ maximum Rrs band ratio was established. This implies that the overestimation is largely due to the inaccuracies from the default coefficients used in the empirical model. New coefficients were then derived from the correlation analysis of both in situ-measured Chl-a concentration and maximum Rrs band ratio. This

  10. Photosynthesis and chlorophyll fluorescence reaction to different shade stresses of weak light sensitive maize

    International Nuclear Information System (INIS)

    Wang, J.; Li, F.; Shi, Z.; Huang, H.; Jia, S.

    2017-01-01

    A split-plot experimental study was conducted to evaluate the effect of different shade stresses on photosynthesis and chlorophyll fluorescence of maize leaves.The experiment was designed on the south farm of Special Corn Institute, Shenyang Agricultural University, China.Data was collected from the day maize tasseled (Jul. 21) to the beginning of grouting (Aug.12 ) under 18%, 28%, 38%, 60%, and 75% shade stress to determine indexes such as photosynthesis and chlorophyll fluorescence after 15 days of shade treatment. Pairs of near-isogenic lines (NILs) of Shennong 98A (a barren stalk inbred line) and Shennong 98B (an un-barren stalk inbred line) were used as experimental materials to further reveal photosynthetic mechanisms of weak light sensitive maize when exposed to weak light conditions. Thus, a foundation was established for high density-resistant (shade resistant) corn breeding,while identifying weak light sensitive varieties. After shading treatment, chlorophyll a and total chlorophyll content of both varieties increased, chlorophyll b content first increased, followed by a decrease, while the net photosynthetic rate and stomatal conductance showed a gradually decreasing trend. The changing trends of photochemical quenching coefficient(qp) and effective quantum yield of PSII photochemistry (FPSII)were similar, FPSII and qP increased significantly as shading stress increased from 18% to 38%;however, FPSII and qP declined significantly under 60% and 75% shading stresses. The changing trend of NPQ was opposite to FPSII and qP. A comparison of both inbred lines showed that photosynthesis and chlorophyll fluorescence characteristics of Shennong 98B were superior to Shennong 98A. This study revealed the relationships between weak light sensitive lines and shade intensities by comparing differences in photosynthesis and chlorophyll fluorescence parameters. (author)

  11. Long-term dynamics of chlorophyll concentration in the ocean surface layer (by space data)

    Science.gov (United States)

    Shevyrnogov, A.; Vysotskaya, G.

    To preserve the biosphere and to use it efficiently, it is necessary to gain a deep insight into the dynamics of the primary production process on our planet. Variability of chlorophyll concentration in the ocean is one of the most important components of this process. These investigations are, however, very labor-consuming, because of the difficulties related to the accessibility of the water surface and its large size. In this work long-term changes in chlorophyll concentration in the surface layer of the ocean have been analyzed on the basis of the CZCS data for 7.5 years from 1979 to 1986 and the SeaWiFS data from 1997 to 2004. It has been shown that the average chlorophyll concentration calculated in all investigated areas varies moderately. However, when analyzing spatially local trends, the areas have been detected that have significant rise and fall of chlorophyll concentrations. Some interesting features of the long-term dynamics of chlorophyll concentration have been found. The opposite directions of long-term trends (essential increase or decrease) cannot be explained only by large-scale hydrological phenomena in the ocean (currents, upwellings, etc.). The measured chlorophyll concentration results from the balance between production and destruction processes. Which process dominates is determined by various hydrophysical, hydrobiological, and climatic processes, leading to sharp rises or falls of the concentration. It is important to estimate the scale of the areas in which this or that process dominates. Therefore, the study addresses not only the dynamics of the mean value but also the dynamics of the areas in which the dominance of certain factors has led to a sharp fall or rise in chlorophyll concentration. Thus, the obtained results can be used to estimate long-term changes in the ocean biota.

  12. Microdroplet fusion mass spectrometry: accelerated kinetics of acid-induced chlorophyll demetallation.

    Science.gov (United States)

    Lee, Jae Kyoo; Nam, Hong Gil; Zare, Richard N

    2017-01-01

    Kinetics of acid-induced chlorophyll demetallation was recorded in microdroplets by fusing a stream of microdroplets containing 40 µM chlorophyll a or b dissolved in methanol with a stream of aqueous microdroplets containing 35 mM hydrochloric acid (pH = 1·46). The kinetics of the demetallation of chlorophyll in the fused microdroplets (14 ± 6 µm diameter; 84 ± 18 m s-1 velocity) was recorded by controlling the traveling distance of the fused microdroplets between the fusion region and the inlet of a mass spectrometer. The rate of acid-induced chlorophyll demetallation was about 960 ± 120 times faster in the charged microdroplets compared with that reported in bulk solution. If no voltage was applied to the sprayed microdroplets, then the acceleration factor was about 580 ± 90, suggesting that the applied voltage is not a major factor determining the acceleration. Chlorophyll a was more rapidly demetallated than chlorophyll b by a factor of ~26 in bulk solution and ~5 in charged microdroplets. The demetallation kinetics was second order in the H+ concentration, but the acceleration factor of microdroplets compared with bulk solution appeared to be unchanged in going from pH = 1·3 to 7·0. The water:methanol ratio of the fused microdroplets was varied from 7:3 to 3:7 causing an increase in the reaction rate of chlorophyll a demetallation by 20%. This observation demonstrates that the solvent composition, which has different evaporation rates, does not significantly affect the acceleration. We believe that a major portion of the acceleration can be attributed to confinement effects involving surface reactions rather than either to evaporation of solvents or to the introduction of charges to the microdroplets.

  13. How is the chlorophyll count affected by burned and unburned marsh areas?

    Science.gov (United States)

    Kendrick, C.

    2017-12-01

    Does marsh burnings, either man made or natural, hinder or help Louisiana's vitally important coastal plant life? Does the carbon produced from the fires have a negative effect on the chlorophyll count of these precious living protective barriers? Or does it help contribute to raising the plants chlorophyll count? Along Louisiana's Gulf Coast, marsh burnings are conducted every 2-4 years to destroy some of the Spartina patens. Fires and smoke may have an effect on the chlorophyll count of the plants found in Louisiana's marshes. Peat burns, root burns, and cover burns are the three types of marsh fires. These burns can be either man made or started by natural causes. Peat burns occur when the soil is dry due to a drained marsh. Root burns occur when plant roots are burned without the soil being consumed. Cover burns occur when several centimeters of water covers the soil. Cover burns are often used by Wildlife and Fisheries personnel to promote preferred plant food growth like Scirpus olneyi rather than the dominant Spartina patens. Our project was conducted by testing marsh plants and obtaining chlorophyll count of both a burned (cover burn) and an unburned area. Approximately one year after the burn, in August 2015, we tested the burned area's site. We retested the same site in December 2016. The results from our testing showed that there was a slightly higher chlorophyll count in the burned area. The chlorophyll count average from the two testing days was 33.5 in the burned area and 30.15 in the unburned area. Our hypothesis was that the chlorophyll content of "controlled" burned wetland areas will have a higher amount than the "no" burn area. The experiment results supported this hypothesis by showing an increase of 3.35 average in the burned area.

  14. Intermittent degradation and schizotypy

    Directory of Open Access Journals (Sweden)

    Matthew W. Roché

    2015-06-01

    Full Text Available Intermittent degradation refers to transient detrimental disruptions in task performance. This phenomenon has been repeatedly observed in the performance data of patients with schizophrenia. Whether intermittent degradation is a feature of the liability for schizophrenia (i.e., schizotypy is an open question. Further, the specificity of intermittent degradation to schizotypy has yet to be investigated. To address these questions, 92 undergraduate participants completed a battery of self-report questionnaires assessing schizotypy and psychological state variables (e.g., anxiety, depression, and their reaction times were recorded as they did so. Intermittent degradation was defined as the number of times a subject’s reaction time for questionnaire items met or exceeded three standard deviations from his or her mean reaction time after controlling for each item’s information processing load. Intermittent degradation scores were correlated with questionnaire scores. Our results indicate that intermittent degradation is associated with total scores on measures of positive and disorganized schizotypy, but unrelated to total scores on measures of negative schizotypy and psychological state variables. Intermittent degradation is interpreted as potentially derivative of schizotypy and a candidate endophenotypic marker worthy of continued research.

  15. Changes in chlorophyll fluorescence and photosynthetic activity of French bean leaves induced by gamma radiation

    International Nuclear Information System (INIS)

    Saakov, V.; Lang, M.; Schindler, C.; Stober, F.; Lichtenthaler, H.K.

    1992-01-01

    When exposed to gamma-radiation (12, 8 and 3.5 kGy), the growth of bean seedlings (Phaseolus vulgaris L.) was stopped and after some hours or days the plants began to wilt in a dose-dependent manner, starting from the leaf rim. The rate of the dark respiration (R) of leaves increased and that of net photosynthesis (P(N)) was strongly reduced. The regulation of stomata opening and closure was lost and the stomatal conductance (g(s)) of the gamma-ray exposed plants was strongly reduced. The reduced P(N) was only partly due to either the partial or almost full stomata closure. Chlorophyll (Chl) fluorescence measurements witha two-wavelength fluorometer and a PAM fluorometer showed an increasingly reduced variable fluorescence F(v), lower values of R(fd), of ground fluorescence F0, and of the fluorescence ratios F(v)/F(m) and F(v)/F(o). This indicated a damage to the photosynthetic apparatus. The increasing loss of photosynthetic pigments in the 350 krad exposed plants was also detected via an increase in the fluorescence ratio F690/F730. The performance of the light driven xanthophyll cycle (violaxanthin/zeaxanthin transformation) proceeded in the gamma-ray treated plants only at reduced rates. The gamma-ray damage of plants can best be detected by measurements of stomatal conductance, P(N) and various Chl fluorescence ratios such as R(fd), F(v)/F(o) and F(v)/F(m)

  16. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency.

    Science.gov (United States)

    Liu, Wei; Li, Qiwei; Wang, Yi; Wu, Ting; Yang, Yafei; Zhang, Xinzhong; Han, Zhenhai; Xu, Xuefeng

    2017-09-23

    Ethylene regulates the plant's response to stress caused by iron (Fe) deficiency. However, specific roles of ERF proteins in response to Fe deficiency remain poorly understood. Here, we investigated the role of ERF72 in response to iron deficiency in Arabidopsis thaliana. In this study, the levels of the ethylene response factor AtERF72 increased in leaves and roots induced under the iron deficient conditions. erf72 mutant plants showed increased growth compared to wild type (WT) when grown in iron deficient medium for 5 d. erf72 mutants had increased root H + velocity and the ferric reductase activity, and increase in the expression of the iron deficiency response genes iron-regulated transporter 1 (IRT1) and H + -ATPase (HA2) levels in iron deficient conditions. Compared to WT plants, erf72 mutants retained healthy chloroplast structure with significantly higher Fe and Mg content, and decreased chlorophyll degradation gene pheophorbide a oxygenase (PAO) and chlorophyllase (CLH1) expression when grown in iron deficient media. Yeast one-hybrid analysis showed that ERF72 could directly bind to the promoter regions of iron deficiency responses genes IRT1, HA2 and CLH1. Based on our results, we suggest that ethylene released from plants under iron deficiency stress can activate the expression of ERF72, which responds to iron deficiency in the negative regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A study of the low-lying singlet and triplet electronic states of chlorophyll A and B

    Directory of Open Access Journals (Sweden)

    Etinski Mihajlo

    2013-01-01

    Full Text Available Chlorophylls have been extensively investigated both experimentally and theoretically owing to the fact that they are essential for photosynthesis. We have studied two forms of chlorophyll, chlorophyll a and chlorophyll b, by means of density functional theory. Optimization of S0, S1 and T1 states was performed with the B3-LYP functional. The computed fluorescence lifetimes show good agreement with the available experimental data. The electronic adiabatic energies of S1 and T1 states are 2.09/2.12 and 1.19/1.29 eV for chlorophyll a and chlorophyll b respectively. We discussed the implications of this results on the triplet formation. Also, the calculated vertical ionization potentials shows good agreement with the experimental results. [Projekat Ministarstva nauke Reoublike Srbije, br. 172040

  18. Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean

    Directory of Open Access Journals (Sweden)

    J. C. Currie

    2013-10-01

    Full Text Available The Indian Ocean Dipole (IOD and the El Niño/Southern Oscillation (ENSO are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries

  19. Expanded separation technique for chlorophyll metabolites in Oriental tobacco leaf using non aqueous reversed phase chromatography.

    Science.gov (United States)

    Ishida, Naoyuki

    2011-08-26

    An improved separation method for chlorophyll metabolites in Oriental tobacco leaf was developed. While Oriental leaf still gives the green color even after the curing process, little attention has been paid to the detailed composition of the remaining green pigments. This study aimed to identify the green pigments using non aqueous reversed phase chromatography (NARPC). To this end, liquid chromatograph (LC) equipped with a photo diode array detector (DAD) and an atmospheric pressure chemical ionization/mass spectrometer (APCI/MSD) was selected, because it is useful for detecting low polar non-volatile compounds giving green color such as pheophytin a. Identification was based on the wavelength spectrum, mass spectrum and retention time, comparing the analytes in Oriental leaf with the commercially available and synthesized components. Consequently, several chlorophyll metabolites such as hydroxypheophytin a, solanesyl pheophorbide a and solanesyl hydroxypheophorbide a were newly identified, in addition to typical green pigments such as chlorophyll a and pheophytin a. Chlorophyll metabolites bound to solanesol were considered the tobacco specific components. NARPC expanded the number of detectable low polar chlorophyll metabolites in Oriental tobacco leaf. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Culture of a high-chlorophyll-producing and halotolerant Chlorella vulgaris.

    Science.gov (United States)

    Nakanishi, Koichi; Deuchi, Keiji

    2014-05-01

    In order to increase the value of freshwater algae as raw ingredients for health foods and feed for seawater-based farmed fish, we sought to breed high-chlorophyll halotolerant Chlorella with the objective of generating strains with both high chlorophyll concentrations (≥ 5%) and halotolerance (up to 1% NaCl). We used the Chlorella vulgaris K strain in our research institute culture collection and induced mutations with UV irradiation and acriflavine which is known to effect mutations of mitochondrial DNA that are associated with chlorophyll production. Screenings were conducted on seawater-based "For Chlorella spp." (FC) agar medium, and dark-green-colored colonies were visually selected by macroscopic inspection. We obtained a high-chlorophyll halotolerant strain (designated C. vulgaris M-207A7) that had a chlorophyll concentration of 6.7% (d.m.), a level at least three-fold higher than that of K strain. This isolate also exhibited a greater survival rate in seawater that of K strain. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    Science.gov (United States)

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  2. Relationships between nutrients and chlorophyll a concentration in the international Alma Gol Wetland, Iran

    Directory of Open Access Journals (Sweden)

    Saeed Balali

    2013-05-01

    Full Text Available This study investigated the relationships between nutrients and chlorophyll, a concentration in the International Alma Gol Wetland. Chlorophyll a is the major photosynthetic pigment in lots of phytoplanktons and has been used as a trophy index in aquatic ecosystems. Water samples were collected fortnightly from five stations in the wetland during summer and autumn. Chlorophyll-a ranged between 4.38 to 156.55 mg/m3, sulfate ranged between 138 to 190 mg/l, total alkalinity ranged between 80 to 280 mg/l, silica ranged between 3.80 to 35.00 mg/l, phosphate ranged between 0.02 to 3.70 mg/l, ammonia ranged between 0.10 to 11.90 mg/l, nitrate ranged between 0.01 to 2.75 mg/l and nitrite ranged between 0.01 to 0.39 mg/l. There was a significant correlation between chlorophyll a and nitrate, nitrite and ammonia but there was no significant correlation between chlorophyll a and silica, total alkalinity, sulfate and phosphorus.

  3. Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, Vytautas; Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Augulis, Ramūnas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Gall, Andrew; Robert, Bruno [Institut de Biologie et Technologies de Saclay, Bât 532, Commissariat à l’Energie Atomique Saclay, 91191 Gif sur Yvette (France); Büchel, Claudia [Institut für Molekulare Biowissenschaften, Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt (Germany); Zigmantas, Donatas [Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund (Sweden); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania)

    2015-06-07

    Energy transfer processes and coherent phenomena in the fucoxanthin–chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Q{sub y} transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Q{sub y} transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.

  4. Using visible reflectance spectroscopy to reconstruct historical changes in chlorophyll a concentration in East Antarctic ponds

    Directory of Open Access Journals (Sweden)

    Qianqian Chen

    2013-12-01

    Full Text Available The visible reflectance spectroscopy (VRS and chlorophyll a concentration were determined in three sediment profiles collected from East Antarctica to investigate the potential application of VRS in reconstructing historical changes in Antarctic lake primary productivity. The results showed that the appearance of a trough at 650–700 nm is an important marker for chlorophyll a concentration and can therefore be used to distinguish the sedimentary organic matter source from guano and algae. The measured chlorophyll a content had significant positive correlations with the trough area between 650 and 700 nm, and no distinct trough was found in the sediments with organic matter completely derived from guano. Modelling results showed that the spectra spectrally inferred chlorophyll a content, and the measured data exhibit consistent trends with depth, showing that the dimensionless trough area can serve as an independent proxy for reconstructing historical fluctuations in the primary production of Antarctic ponds. The correlation of phosphorus (P with measured and inferred chlorophyll a contents in ornithogenic sediments near penguin colonies indicates that the change in primary productivity in the Antarctic ponds investigated was closely related to the amount of guano input from these birds.

  5. Why is the Ratio of Reflectivity Effective for Chlorophyll Estimation in the Lake Water?

    Directory of Open Access Journals (Sweden)

    Kazuo Oki

    2010-07-01

    Full Text Available The reasons why it is effective to estimate the chlorophyll-a concentration with the ratio of spectral radiance reflectance at the red light region and near infrared regions were shown in theory using a two-flow model. It was found that all of the backscattering coefficients can consequently be ignored by using the ratio of spectral radiance reflectance, which is the ratio of the upward radiance to the downward irradiance, at the red light and near infrared regions. In other words, the ratio can be expressed by using only absorption coefficients, which are more stable for measurement than backscattering coefficients. In addition, the band selection is crucial for producing the band ratio when the chlorophyll-a concentration is estimated without the effects of backscattering. I conclude that the two wavelengths selected must be close, but one must be within the absorption range of chlorophyll-a, and the other must be outside of the absorption range of chlorophyll-a, in order to accurately estimate the chlorophyll-a concentration.

  6. Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model

    Science.gov (United States)

    Lim, Hyung-Gyu; Park, Jong-Yeon; Kug, Jong-Seong

    2017-12-01

    Climate modeling groups nowadays develop earth system models (ESMs) by incorporating biogeochemical processes in their climate models. The ESMs, however, often show substantial bias in simulated marine biogeochemistry which can potentially introduce an undesirable bias in physical ocean fields through biogeophysical interactions. This study examines how and how much the chlorophyll bias in a state-of-the-art ESM affects the mean and seasonal cycle of tropical Pacific sea-surface temperature (SST). The ESM used in the present study shows a sizeable positive bias in the simulated tropical chlorophyll. We found that the correction of the chlorophyll bias can reduce the ESM's intrinsic cold SST mean bias in the equatorial Pacific. The biologically-induced cold SST bias is strongly affected by seasonally-dependent air-sea coupling strength. In addition, the correction of chlorophyll bias can improve the annual cycle of SST by up to 25%. This result suggests a possible modeling approach in understanding the two-way interactions between physical and chlorophyll biases by biogeophysical effects.

  7. How do polymers degrade?

    Science.gov (United States)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  8. Purex diluent degradation

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO 3 system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO 2 ) molecule, not HNO 3 as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO 3 concentration and the temperature. The rate was decreased by argon sparging to remove NO 2 and by the addition of butanol, which probably acts as a NO 2 scavenger. 13 references, 11 figures

  9. Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA).

    Science.gov (United States)

    Kihara, A; Akiyama, Y; Ito, K

    1997-05-27

    The cII gene product of bacteriophage lambda is unstable and required for the establishment of lysogenization. Its intracellular amount is important for the decision between lytic growth and lysogenization. Two genetic loci of Escherichia coli are crucial for these commitments of infecting lambda genome. One of them, hflA encodes the HflKC membrane protein complex, which has been believed to be a protease degrading the cII protein. However, both its absence and overproduction stabilized cII in vivo and the proposed serine protease-like sequence motif in HflC was dispensable for the lysogenization control. Moreover, the HflKC protein was found to reside on the periplasmic side of the plasma membrane. In contrast, the other host gene, ftsH (hflB) encoding an integral membrane ATPase/protease, is positively required for degradation of cII, since loss of its function stabilized cII and its overexpression accelerated the cII degradation. In vitro, purified FtsH catalyzed ATP-dependent proteolysis of cII and HflKC antagonized the FtsH action. These results, together with our previous finding that FtsH and HflKC form a complex, suggest that FtsH is the cII degrading protease and HflKC is a modulator of the FtsH function. We propose that this transmembrane modulation differentiates the FtsH actions to different substrate proteins such as the membrane-bound SecY protein and the cytosolic cII protein. This study necessitates a revision of the prevailing view about the host control over lambda lysogenic decision.

  10. Rice gene SDL/RNRS1, encoding the small subunit of ribonucleotide reductase, is required for chlorophyll synthesis and plant growth development.

    Science.gov (United States)

    Qin, Ran; Zeng, Dongdong; Liang, Rong; Yang, Chengcong; Akhter, Delara; Alamin, Md; Jin, Xiaoli; Shi, Chunhai

    2017-09-05

    A new mutant named sdl (stripe and drooping leaf) was characterized from indica cultivar Zhenong 34 by ethylmethane sulfonate (EMS) mutagenesis. The mutant sdl exhibited development defects including stripe and drooping leaf, dwarfism and deformed floral organs. The gene SDL was found allelic to RNRS1 by map-based cloning, which was homologous to Arabidopsis TSO2 encoding the small subunit of ribonucleotide reductase. The gDNA sequencing results of sdl in mutant showed that there was a repetitive sequence insertion of 138-bp at the 475 th bp in the exon. The redundant sequence was conserved in SDL homologous proteins, which contained the active site (tyrosine), as well as two amino acids glutamate and histidine involved in the binding of iron. There were fewer chloroplasts and grana lamellas in sdl leaf compared with those of wild-type. Additionally, the stripe leaves of sdl seedlings were highly sensitive to temperature, since the chlorophyll content was increased with the temperature rising. The drooping leaf of sdl might be resulted from the disappearance of vascular bundles and mesophyll cells in both leaf midrib and lateral veins. Fittingly to the phenotypes of mutant sdl, the expression levels of genes associated with photosynthesis and chlorophyll synthesis were found to be down- or up-regulated at different temperatures in mutant sdl. Also, the transcriptional levels of genes related to plant height and floral organ formation showed obvious differences between wild-type and sdl. The "SDL/RNRS1" was, hence, required for the chlorophyll biosynthesis and also played pleiotropic roles in the regulation of plant development. Copyright © 2017. Published by Elsevier B.V.

  11. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  12. Principal Component Analysis of Chlorophyll Content in Tobacco, Bean and Petunia Plants Exposed to Different Tropospheric Ozone Concentrations

    Science.gov (United States)

    Borowiak, Klaudia; Zbierska, Janina; Budka, Anna; Kayzer, Dariusz

    2014-06-01

    Three plant species were assessed in this study - ozone-sensitive and -resistant tobacco, ozone-sensitive petunia and bean. Plants were exposed to ambient air conditions for several weeks in two sites differing in tropospheric ozone concentrations in the growing season of 2009. Every week chlorophyll contents were analysed. Cumulative ozone effects on the chlorophyll content in relation to other meteorological parameters were evaluated using principal component analysis, while the relation between certain days of measurements of the plants were analysed using multivariate analysis of variance. Results revealed variability between plant species response. However, some similarities were noted. Positive relations of all chlorophyll forms to cumulative ozone concentration (AOT 40) were found for all the plant species that were examined. The chlorophyll b/a ratio revealed an opposite position to ozone concentration only in the ozone-resistant tobacco cultivar. In all the plant species the highest average chlorophyll content was noted after the 7th day of the experiment. Afterwards, the plants usually revealed various responses. Ozone-sensitive tobacco revealed decrease of chlorophyll content, and after few weeks of decline again an increase was observed. Probably, due to the accommodation for the stress factor. While during first three weeks relatively high levels of chlorophyll contents were noted in ozone-resistant tobacco. Petunia revealed a slow decrease of chlorophyll content and the lowest values at the end of the experiment. A comparison between the plant species revealed the highest level of chlorophyll contents in ozone-resistant tobacco.

  13. Modelling ocean-colour-derived chlorophyll a

    Directory of Open Access Journals (Sweden)

    S. Dutkiewicz

    2018-01-01

    Full Text Available This article provides a proof of concept for using a biogeochemical/ecosystem/optical model with a radiative transfer component as a laboratory to explore aspects of ocean colour. We focus here on the satellite ocean colour chlorophyll a (Chl a product provided by the often-used blue/green reflectance ratio algorithm. The model produces output that can be compared directly to the real-world ocean colour remotely sensed reflectance. This model output can then be used to produce an ocean colour satellite-like Chl a product using an algorithm linking the blue versus green reflectance similar to that used for the real world. Given that the model includes complete knowledge of the (model water constituents, optics and reflectance, we can explore uncertainties and their causes in this proxy for Chl a (called derived Chl a in this paper. We compare the derived Chl a to the actual model Chl a field. In the model we find that the mean absolute bias due to the algorithm is 22 % between derived and actual Chl a. The real-world algorithm is found using concurrent in situ measurement of Chl a and radiometry. We ask whether increased in situ measurements to train the algorithm would improve the algorithm, and find a mixed result. There is a global overall improvement, but at the expense of some regions, especially in lower latitudes where the biases increase. Not surprisingly, we find that region-specific algorithms provide a significant improvement, at least in the annual mean. However, in the model, we find that no matter how the algorithm coefficients are found there can be a temporal mismatch between the derived Chl a and the actual Chl a. These mismatches stem from temporal decoupling between Chl a and other optically important water constituents (such as coloured dissolved organic matter and detrital matter. The degree of decoupling differs regionally and over time. For example, in many highly seasonal regions, the timing of initiation

  14. Relationship between color (instrumental and visual) and chlorophyll contents in soybean seeds during ripening.

    Science.gov (United States)

    Sinnecker, Patrícia; Gomes, M Salete O; Arêas, José A G; Lanfer-Marquez, Ursula M

    2002-07-03

    The correlation between chlorophyll content and quantitative color parameters was investigated in order to find an indirect method for predicting green pigment in ripening soybean seeds. Five Brazilian soybean varieties harvested at different maturity stages (R(6) to R(8) according to the scale of Fehr & Caviness) and dried under two conditions (in oven at 40 degrees C with circulating air and at ambient temperature around 25 degrees C) were analyzed in two consecutive years. The slow-dried seeds at 25 degrees C lost chlorophyll faster, whereas drying at 40 degrees C did not result in yellowing of seeds. High and significant linear correlations between a value and total chlorophyll were obtained over the whole maturation period and on both conditions of drying. From an industrial point of view it appears that a value, obtained by the CIE-L*a*b* method, seems to be a good tool to be applied for quality control and classifying soybean seeds for different purposes.

  15. Chlorophyll fluorescence, Orbital and Photosynthesis: practical activities integrating concepts of Chemistry, Physics and Biology

    Directory of Open Access Journals (Sweden)

    Elgion Lucio da Silva Loreto

    2013-11-01

    Full Text Available These laboratory activities explore the relationship between the reserve of energy that occur during photosynthesis and the chlorophyll fluorescence emission when in solution as opposed to absence of fluorescence when the chlorophyll are in intact chloroplasts. This proposal can be used as short demo or as  activities with longer duration, to show chlorophyll's properties associated with the photosynthesis. The materials proposed for the implementation of the activities are simple, and possible to building it by the students, enabling the development of various skills and experimental proposals. The protocols are based on observations and record key questions to continue the execution. During the activities, questions promotes pauses for moments of reflection and review of concepts. At the end are presented and discussed proposals for development of interdisciplinary projects.

  16. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions.

    Science.gov (United States)

    Ogawa, Takako; Misumi, Masahiro; Sonoike, Kintake

    2017-09-01

    Cyanobacteria are photosynthetic prokaryotes and widely used for photosynthetic research as model organisms. Partly due to their prokaryotic nature, however, estimation of photosynthesis by chlorophyll fluorescence measurements is sometimes problematic in cyanobacteria. For example, plastoquinone pool is reduced in the dark-acclimated samples in many cyanobacterial species so that conventional protocol developed for land plants cannot be directly applied for cyanobacteria. Even for the estimation of the simplest chlorophyll fluorescence parameter, F v /F m , some additional protocol such as addition of DCMU or illumination of weak blue light is necessary. In this review, those problems in the measurements of chlorophyll fluorescence in cyanobacteria are introduced, and solutions to those problems are given.

  17. Kinetics and mechanism of the dissociation of chlorophyll and its metalloanalogues in proton-donating media

    International Nuclear Information System (INIS)

    Berezin, B.D.; Drobysheva, A.N.; Karmanova, L.P.

    1976-01-01

    The kinetics of the dissociation of chlorophyll a and its metalloanalogues (Zn 2+ and Cd 2+ complexes of chlorophyllic acid) have been investigated in t-butyl alcohol-trichloracetic acid mixtures. The dissociation reaction is kinetically firts-order with respect to the complex. The rate constants and the activation energies and entropies for the dissociation reaction have been calculated. In order to determine the order of the reaction with respect to the protogenic species, a study was made of the ionisation of m-nitroaniline in t-butyl alcohol at 25 0 C in the trichloroacetic acid concentration range from 0.15 to 4.75 M. The dissociation reaction of chlorophyll and its zinc-containing metalloanalogue has been shown to be of second order with respect to the solvated proton. The cadmium complex dissociates by a second-order reaction with respect to trichloroacetic acid

  18. A schematic model for energy and charge transfer in the chlorophyll complex

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F.B.

    2011-01-01

    A theory for simultaneous charge and energy transfer in the carotenoid-chlorophyll-a complex is presented here and discussed. The observed charge transfer process in these chloroplast complexes is reasonably explained in terms of this theory. In addition, the process leads to a mechanism to drive...... an electron in a lower to a higher-energy state, thus providing a mechanism for the ejection of the electron to a nearby molecule (chlorophyll) or into the environment. The observed lifetimes of the electronically excited states are in accord/agreement with the investigations of Sundström et al....... and are in the range of pico-seconds and less. The change in electronic charge distribution in internuclear space as the system undergoes an electronic transition to a higher-energy state could, under appropriate physical conditions, lead to oscillating dipoles capable of transmitting energy from the carotenoid-chlorophylls...

  19. A temperature-sensitive winter wheat chlorophyll mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Zhao Hongbin; Guo Huijun; Zhao Linshu; Gu Jiayu; Zhao Shirong; Li Junhui; Liu Luxiang

    2010-01-01

    A temperature-sensitive winter wheat (Triticum aestivum L.) chlorophyll mutant Mt18, induced by spaceflight mutagenesis, was studied on agronomic traits, ultrastructure of chloroplast and photosynthesis characteristics. The leaf color of the mutant Mt18 showed changes from green to albino and back to green during the whole growth period. Plant height, productive tillers, spike length, grains and grain weight per plant, and 1000-grain weight of the mutant were lower than those of the wild type. The ultrastructural observation showed that no significant difference was found between the mutant and the wild type during prior albino stage, however, at the albino stage the number of granum-thylakoids and grana lamellae became fewer or completely disappeared, but the strom-thylakoid was obviously visible. After turning green,the structure of most chloroplasts recovered to normal, but number of chloroplast was still lower than that of the wild type. When exposed to photosynthetic active radiation (PAR) of 110 μmol·m -2 ·s -1 , the non-photochemical quenching (NPQ) of mutant was significantly lower than that of the wild type, and the non-regulated energy dissipation (Y NO ) was significantly higher than that of the wild type, while the change of the maximum photosystem II quantum yield (F v /F m ), potential activity of photosystem II (F v /F o ), photochemical quenching (q P ), effective quantum yield (Y PSI I) and regulated non-photochemical energy dissipation (Y NPQ ) were different at various stages. In addition, the differences of the electron transport rate (ETR), photochemical quenching (q P ), and effective quantum yield (Y PSI I) between mutant and wild type varied under different PAR conditions. It was concluded that with the change of chloroplast ultrastructure, the leaf color and photosynthesis of the wheat mutant Mt18 change correspondingly. The chloroplast ultrastructure was obviously different from that of wild type, and the photosynthetic efficiency

  20. Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat

    DEFF Research Database (Denmark)

    Li, Xiangnan; Brestic, Marian; Tan, Dun-xian

    2018-01-01

    the activities of ATPase and sucrose synthesis and maintaining a relatively higher level of total chlorophyll concentration in leaves. In addition, melatonin priming in maternal plants at grain filling promoted the seed germination in offspring by accelerating the starch degradation and improved the cold...... tolerance of seedlings through activating the antioxidant enzymes and enhancing the photosynthetic electron transport efficiency. These findings suggest the important roles of melatonin in plant response to future climate change, indicating that the melatonin priming at grain filling in maternal plants...

  1. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China.

    Science.gov (United States)

    Du, Enzai; Dong, Dan; Zeng, Xuetong; Sun, Zhengzhong; Jiang, Xiaofei; de Vries, Wim

    2017-12-15

    Anthropogenic emissions of acid precursors in China have resulted in widespread acid rain since the 1980s. Although efforts have been made to assess the indirect, soil mediated ecological effects of acid rain, a systematic assessment of the direct foliage injury by acid rain across terrestrial plants is lacking. Leaf chlorophyll content is an important indicator of direct foliage damage and strongly related to plant productivity. We synthesized data from published literature on experiments of simulated acid rain, by directly exposing plants to acid solutions with varying pH levels, to assess the direct effect of acid rain on leaf chlorophyll content across 67 terrestrial plants in China. Our results indicate that acid rain substantially reduces leaf chlorophyll content by 6.71% per pH unit across the recorded plant species. The direct reduction of leaf chlorophyll content due to acid rain exposure showed no significant difference across calcicole, ubiquist or calcifuge species, implying that soil acidity preference does not influence the sensitivity to leaf injury by acid rain. On average, the direct effects of acid rain on leaf chlorophyll on trees, shrubs and herbs were comparable. The effects, however varied across functional groups and economic use types. Specifically, leaf chlorophyll content of deciduous species was more sensitive to acid rain in comparison to evergreen species. Moreover, vegetables and fruit trees were more sensitive to acid rain than other economically used plants. Our findings imply a potential production reduction and economic loss due to the direct foliage damage by acid rain. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    Science.gov (United States)

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  3. Spectral and physiological information from chlorophyll fluorescence signals in the detection of pine damage

    Energy Technology Data Exchange (ETDEWEB)

    Meinander, O. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.; Somersalo, S. [Helsinki Univ., Helsinki (Finland). Dept. of Plant Biology

    1995-12-31

    Photosynthesis is often among the first targets of the air pollution stress of plants. As chlorophyll fluorescence is a process competing with photosynthetic electron transport it can be employed to study the potential photosynthetic capacity and to detect damage to the photosynthetic apparatus. Many previous studies have shown that chlorophyll fluorescence can be a powerful tool in the detection of forest damage. In this preliminary study, singular value analysis of the fluorescence induction curves was used together with the traditional way of analyzing fluorescence measurements. The experimental data were collected from ozone and carbon dioxide fumigated Scots pine saplings. (author)

  4. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading

    Directory of Open Access Journals (Sweden)

    M. A. García-Sánchez

    2016-07-01

    Full Text Available Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO2, TiO2 or ZrO2 synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most

  5. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    Science.gov (United States)

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-07-22

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical

  6. Spinach seed quality - potential for combining seed size grading and chlorophyll flourescence sorting

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina; Olesen, Merete Halkjær; Boelt, Birte

    2013-01-01

    might therefore improve the establishment of spinach for producers. Spinach seeds were harvested at five different times (H1, H2, H3, H4 and H5) starting 3 weeks before estimated optimum harvest time. The harvested seeds were sorted according to chlorophyll fluorescence (CF) and seed size. Two harvest.......5–3.25 mm size seeds had germinated on day 3 than both their larger and smaller counterparts at the later time of harvest (H4). Seeds with a diameter below 2.5 mm displayed the lowest MGT. Commercially, the use of chlorophyll fluorescence (CF)-sorted seeds, in combination with seed size sorting, may provide...

  7. On extreme atmospheric and marine nitrogen fluxes and chlorophyll-a levels in the Kattegat Strait

    Directory of Open Access Journals (Sweden)

    C. B. Hasager

    2003-01-01

    Full Text Available A retrospective analysis is carried out to investigate the importance of the vertical fluxes of nitrogen to the marine sea surface layer in which high chlorophyll a levels may cause blooms of harmful algae and subsequent turn over and oxygen depletion at the bottom of the sea. Typically nitrogen is the limiting factor for phytoplankton in the Kattegat Strait during summer periods (May to August and the major nitrogen inputs come from the atmosphere and deep-water entrainment. The extreme reoccurrence values of nitrogen from atmospheric wet and dry deposition and deep-water flux entrainments are calculated by the periodic maximum method and the results are successfully compared to a map of chlorophyll return periods based on in-situ observations. The one-year return of extreme atmospheric wet deposition is around 60 mg N m-2 day-1 and 30 mg N m-2 day-1 for deep-water entrainment. Atmospheric nitrogen dry deposition is insignificant in the context of algal blooms. At longer time-scales e.g. at 10-year return, the nitrogen deep-water entrainment is larger than the extreme of atmospheric wet deposition. This indicates that the pool of nitrogen released from the sea bottom by deep-water entrainment forced by high winds greatly exceeds the atmospheric pool of nitrogen washed out by precipitation. At the frontal zone of the Kattegat Strait and Skagerrak, the nitrogen deep-water entrainment is very high and this explains the high 10-year return chlorophyll level at 8 mg m-3 in the Kattegat Strait. In the southern part, the extreme chlorophyll level is only 4 mg m-3 according to the statistics of a multi-year time-series of water samples. The chlorophyll level varies greatly in time and space as documented by a series of SeaWiFS satellite maps (OC4v4 algorithm of chlorophyll ScanFish and buoy observations from an experimental period in the Kattegat Strait. It is recommended to sample in-situ chlorophyll observation collocated in time to the satellite

  8. Leaf reflectance-nitrogen-chlorophyll relations among three south Texas woody rangeland plant species

    Science.gov (United States)

    Gausman, H. W.; Everitt, J. H.; Escobar, D. E. (Principal Investigator)

    1982-01-01

    Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant.

  9. Spectral and physiological information from chlorophyll fluorescence signals in the detection of pine damage

    Energy Technology Data Exchange (ETDEWEB)

    Meinander, O [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.; Somersalo, S [Helsinki Univ., Helsinki (Finland). Dept. of Plant Biology

    1996-12-31

    Photosynthesis is often among the first targets of the air pollution stress of plants. As chlorophyll fluorescence is a process competing with photosynthetic electron transport it can be employed to study the potential photosynthetic capacity and to detect damage to the photosynthetic apparatus. Many previous studies have shown that chlorophyll fluorescence can be a powerful tool in the detection of forest damage. In this preliminary study, singular value analysis of the fluorescence induction curves was used together with the traditional way of analyzing fluorescence measurements. The experimental data were collected from ozone and carbon dioxide fumigated Scots pine saplings. (author)

  10. Use of induced chlorophyll deficient mutants to identify 'heterotic blocks' in pearl millet chromosomes

    International Nuclear Information System (INIS)

    Burton, G.W.

    1989-01-01

    Full text: Chlorophyll deficient mutant stocks induced in 'Tift 23' of pearl millet (Pennisetum americanum L. Leeke) were crossed with 'Tift 23' and 5 other normal inbreds to study the effect of these deleterious recessive genes on yield. The difference between near-isogenic S 1 (F 2 ) populations homozygous or heterozygous for the chlorophyll deficiency was not significant. However among 69 S 1 progenies from crosses with other inbreds the heterozygotes were higher yielding than the homozygotes in 53 cases, 15 of which were significant. A mutant like 'M5' identified a high yield 'heterotic block' in 'Inbred 104' and a very low yield 'heterotic block' in 'Inbred 186'. (author)

  11. Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis.

    Science.gov (United States)

    Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E; Chen, Ming; Zhou, Yongming; Yu, Bin; Cahoon, Edgar B

    2015-08-01

    Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. © 2015 American Society of

  12. Effect of Drought Stress and Methanol on Chlorophyll Parameters, Chlorophyll Content and Relative Water Content of Soybean (Glycine max L., var. L 17

    Directory of Open Access Journals (Sweden)

    M Mirakhori

    2011-01-01

    Full Text Available Abstract In order to investigate the effects of methanol application on some physiological properties of soybean under low water stress, a factorial experiment was conducted at Research Field of Faculty of Agriculture and Natural Resources, Islamic Azad University-Karaj Branch, Karaj, Iran, during 2008, based on a randomized complete block design with three replications. The first factor was consisted of different levels of methanol equal to 0 (control, 7, 14, 21, 28 and 35 volumetric percentage (v/v, which were used as foliar applications at three times during growth season of soybean, with 15 days intervals. The second factor was water stress conditions in two levels, based on depletion of 40 and 70% of available soil moisture. Some traits such as grain yield (GY, relative water content (RWC, chlorophyll fluorescence parameters, and chlorophyll content were measured, one day before and after the third methanol application. Results showed that chlorophyll content (Chl, GY, electrolytes leakage (EL at second sampling, photochemical capacity of PSII (Fv/Fm, maximum and variable fluorescence (Fm and FV, respectively were affected by water stress significantly (p

  13. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    D. Kicker

    2004-01-01

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  14. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal

  15. Development of the spectrometric imaging apparatus of laser induced fluorescence from plants and estimation of chlorophyll contents of rice leaves; Laser reiki keiko sokutei sochi no kaihatsu to inehanai no chlorophyll ganryo no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, K.; Shoji, K.; Hanyu, H.

    1999-05-01

    Photosynthetic activity of plants is an important factor to assess the micrometeorological effect of plant canopy or to estimate the influence of circumstances such as water stress. Light illumination induces fluorescence from a leaf or suspension of chloroplasts. The red chlorophyll fluorescence had been used to determine the process of the electron transportation in photosynthetic reaction. The fluorescence source other than chlorophyll is not announced sufficiently, but is supposed to be useful to determine the contents of the substance corresponding to physiological response of plants. We developed a fluorescence imaging apparatus to observe spectrum and distribution of laser induced fluorescence from a leaf. Pulsed UV-laser (Nd:YAG) induced blue-green fluorescence and red chlorophyll fluorescence from a green leaf. The pulse modulated measuring light and CCD with image-intensifier (ICCD) enable to detect the fluorescence from plants under illumination. The laser induced fluorescence (LIF) spectra were investigated to estimate the chlorophyll contents in leaves of rice. During the greening course of dark grown etiolated rice leaves, chlorophyll contents were determined using the extraction of leaves and steady state LIF spectra were measured. As a result, the ratio of fluorescent intensity between blue-green and red peaks (F460/F740 and F510/F740) decreased in proportion to alteration of chlorophyll contents respectively. These fluorescence intensity ratios perform more precise estimation of higher chlorophyll contents of leaves than reported red chlorophyll fluorescence intensity ratio (F690/E740). (author)

  16. Developments in polymer degradation - 7

    International Nuclear Information System (INIS)

    Grassie, N.

    1987-01-01

    A selection of topics which are representative of the continually expanding area of polymer degradation is presented. The aspects emphasised include the products of degradation of specific polymers, degradation by high energy radiation and mechanical forces, fire retardant studies and the special role of small radicals in degradation processes. (author)

  17. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  18. Degradation of fluorotelomer alcohols

    DEFF Research Database (Denmark)

    Ellis, David A; Martin, Jonathan W; De Silva, Amila O

    2004-01-01

    Human and animal tissues collected in urban and remote global locations contain persistent and bioaccumulative perfluorinated carboxylic acids (PFCAs). The source of PFCAs was previously unknown. Here we present smog chamber studies that indicate fluorotelomer alcohols (FTOHs) can degrade...... in the atmosphere to yield a homologous series of PFCAs. Atmospheric degradation of FTOHs is likely to contribute to the widespread dissemination of PFCAs. After their bioaccumulation potential is accounted for, the pattern of PFCAs yielded from FTOHs could account for the distinct contamination profile of PFCAs....... The significance of the gas-phase peroxy radical cross reactions that produce PFCAs has not been recognized previously. Such reactions are expected to occur during the atmospheric degradation of all polyfluorinated materials, necessitating a reexamination of the environmental fate and impact of this important...

  19. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  20. Ecosystem degradation in India

    International Nuclear Information System (INIS)

    Sinha, B.N.

    1990-01-01

    Environmental and ecosystem studies have assumed greater relevance in the last decade of the twentieth century than even before. The urban settlements are becoming over-crowded and industries are increasingly polluting the air, water and sound in our larger metropolises. Degradation of different types of ecosystem are discussed in this book, Ecosystem Degradation in India. The book has been divided into seven chapters: Introduction, Coastal and Delta Ecosystem, River Basin Ecosystem, Mountain Ecosystem, Forest Ecosystem, Urban Ecosystem and the last chapter deals with the Environmental Problems and Planning. In the introduction the environmental and ecosystem degradation problems in India is highlighted as a whole while in other chapters mostly case studies by experts who know their respective terrain very intimately are included. The case study papers cover most part of India and deal with local problems, stretching from east coast to west coast and from Kashmir to Kanyakumari. (author)